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Abstract. Consider an abstract storage devicg7) that can hold a single elemenfrom a fixed, publicly known
finite groupg. Storage is private in the sense that an adversary does veotéed access t&'(G) at all. However,
X(G) is non-robust in the sense that the adversary can modifpiteeats by adding some offsét € G. Due to the
privacy of the storage device, the valdecan only depend on an adversarg’griori knowledge ofr. We introduce

a new primitive called aalgebraic manipulation detectiofAMD) code, which encodes a sourgento a valuer
stored on¥’(G) so that any tampering by an adversary will be detected, ¢éxaépa small error probability. We
give a nearly optimal construction of AMD codes, which carifiy accommodate arbitrary choices for the length
of the sources and security leved. We use this construction in two applications:

— We show how to efficiently convert any linear secret sharagfgeme into aobust secret sharing schemehich
ensures that nonqualified subsaeif players can modify their shares and cause the reconistnuaitsome value
s' # s.

— We show how how to build nearly optimedbust fuzzy extractofer several natural metrics. Robust fuzzy ex-
tractors enable one to reliably extract and later recovedtaen keys from noisy and non-uniform secrets, such
as biometrics, by relying only onon-robust public storagén the past, such constructions were known only
in the random oracle model, or required the entropy rateemsttret to be greater than half. Our construction
relies on a randomly chosen common reference string (CR&pale to all parties.

1 Introduction

We consider an abstract storage de\igig/) that can hold a single elementrom a fixed, publicly known
finite (additive) grouy. Storage is private in the sense that an adversary doesvetérd access tb(G)

at all. However,2'(G) allows tampering in the sense that an adversary may matepiiia stored value

by adding some offset\ € G of his choice. As a result’'(G) stores the element + A € G. Due to the
privacy of the storage device, the valdecan only depend on an adversarg'priori knowledge ofx. For
instance, one-time-pad encryption can be understood assstorage device: it hides the message perfectly,
but an adversary can add (bitwise-xor) a string to the mesadttiout being detected. Of course, by itself,
this example is not very interesting, since it requires sanhditional private and tamper-proof storader

the one-time pad key. However, in the two applications discussed below, no othigate or tamper-proof
storage is available and hence we will need to i$g) alone to achieve authenticity.

5 For example, by using a slightly longer secret key contajrirkey to a one-time MAC in addition to the one-time-pad ke o
can trivially add authentication to this application.



1.1 Linear Secret Sharing Schemes

In alinear secret sharing schenge.g. Shamir’s secret sharing [26] and many others) a se@etlistributed
amongn players so that each player gets some algelst#re of the secret. Anygualified subset of the
players can pool their shares together and recolgrmeans of a linear transformation over the appropriate
domain while anyunqualified subset gets no information abosit Unfortunately, the correctness of the
recovery procedure is guaranteed only if all the shares@red. In particular, if a qualified subset of the
players pools their shares for reconstruction, but the $iopkayers among them form an unqualified set,
then the dishonest players (possibly just one!) can cawseettonstruction of a modified secret. Moreover,
the difference between the correct secreind the reconstructed secrétis controlled by the corrupted
players, due to the linearity of the scheme. Luckily, thisal’ that the corrupted players can do: (1) by
the privacy of the secret sharing scheme, the noise intemtby the corrupted players can only depend on
their prior knowledge of the secret and (2) by the linearityhe secret sharing scheme, for any attempted
modification of their shares, the corrupted players musbiknthe additive difference betweemands’. In
essence, a linear secret sharing schemecah be viewed as storingon our abstract devicE(G).

To deal with this problem, we introduce the notion ofsdgebraic manipulation detectiofAMD) code.
This is a probabilistic encoding of a soureérom a given setS as an element of the growp with unique
decodability. The security of the code ensures that, whertitoding is stored i'(G), any manipulation
of contents by an adversary will be detected except with dlsmar probability §. The guarantee holds
even if the adversary has full a priori knowledge of the sewtates. No secret keys are required since we
rely on the privacy o (G) instead.

Using an AMD code, we can turn any linear secret sharing setieto arobust secret sharing scherfs],
which ensures that no unqualified subset of players can sntdufr shares and cause the reconstruction of
some value’ # s. The transformation is very simple: apply the linear seshetring scheme to the encoding
of s rather thars itself.

In terms of parameters, we obtain robust secret sharingreehevhich are nearly as efficient as their
non-robust counterparts, since the overhead added by iagcadource will be very small. More precisely,
to achieve securitg ", we build an AMD code where the length of the encoding oflait value s is only
2k 4+ O(log(u/k)) bits longer than the length af This construction is close to optimal since we prove a
lower bound o2« on the amount of overhead that an AMD encoding must add tazkeo§the source. As
a concrete example, in order to robustly secret share a 1byegmessage with security lewel= 27128,
our best construction adds fewer than 300 bits by encodiegribssage, whereas previous constructions
(described below) add nearly 2 megabytes.

Relation to Prior Work on Secret Sharing. Although AMD codes were never formally defined in previous
work, some constructions of AMD codes have appeared, mwstignnection with making secret sharing
robust [20, 7, 21]. Although some of these constructionsemsentially optimal, all of them are largely
inflexible in that the error probability is dictated by the cardinality of the source spate) ~ 1/|S].
In particular, this implies that when the cardinality 8fis large, the known constructions may introduce
significantly more overhead than what is needed to achiewataplar security threshold. In contrast, our
constructions can accommodate arbitrary choices of dgauand message length

For example, Cabello, Padrd and Saez [7] (see also [2BpR@)osed an elegant construction of a robust
secret sharing scheme which implicitly relies on the folligvAMD code. For any finite field of orderg,
the encoding of the secrete F is a triple(s, z, x - s), wherex € F. This code achieves securidy=1/¢
and optimal message overheatbg(q) = 2log(1/4) for this value ofé. However, as already mentioned,
it is far from optimal when we only desire a security levef> 1/q, making this construction inflexible
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for many applications. Similarly, Ogata and Kurosawa [2@pmsed an inflexible construction ofageakly
robust secret sharing scheme (the scheme is robust onlg isltared secret is uniformly random) that
implicitly defines what we call aseakAMD code. We describe this construction and argue its inbiésy

in Appendix C.3. In Appendix D, we also show a natural gentmdnsformation of weak AMD codes
to (ordinary “strong”) AMD codes, observing that such a sfanmation can never achieve the optimal
overhead (nearly) achieved by our direct construction. Abtides are also very useful for several other
related applications. Indeed, in Section 3 we point thepliaptions to robust information dispersal, secure
private storage and anonymous message transmission.

In the context of robust secret sharing, the inflexibilitpue mentioned above has recently been ad-
dressed in a paper by Obana and Araki [19], whefféexdble robust secret sharing scheme (in fact, an
AMD code in our terminology) was proposed and claimed to heven” secure. However, as we discuss in
Appendix B, the proposed robust secret sharing schemeegrtdggly AMD code) is completelinsecure

1.2 Fuzzy Extractors

A less obvious example comes from the domairfiuaizy extractor$l0]. A fuzzy extractor extracts a uni-
formly random keyR from some non-uniform secreit (e.g., biometric data) in such a way that this key
can be recovered from any sufficiently close tav in some appropriate metric spat@o accomplish this
task, the fuzzy extractor also computes a pubdtper stringP in addition to the extracted ke, and then
recoversR usingw’ and P. Unfortunately, the original notion of a fuzzy extractoitically depends on the
value of P being stored on a tamper-proof (though public) device. Aseoked by Boyen et al. [6, 5], this
severely limits the usability of the concept. To address gnoblem, [6, 5] introduced a stronger notion of
a robust fuzzy extractowhere any tampering aP will be detected by the user, even with an imperfect
readingw’ of w! Thus, P can be stored on a potentially untrusted server withoutehe that a wrong key
R # R will be extracted.

Before describing the new and prior results on robust fuzimaetors, let us give some intuition on how
this setting is related to our abstract storage device. Agltshow (extending the previous observation of
[11]), for “appropriately designed” (non-robust) fuzzytectors, the effect of modifying the helper string
P into P can be essentially subsumed by giving the attacker theyatuilcontrol the difference between the
original key R extracted fromw, and the “defective” keyz extracted fromw’ and P. Thus, on a very high
level, storing the public helpeP on a public and unprotected storage can be viewed as intplstiring
the extracted keyk on a deviceX'(G) that ensures privacy but allows tampering.

Unfortunately, in this application one does not have thedoen of storing some encoding &f on
¥({0,1}"), so AMD codes are not directly applicable. Instead, we thice a related notion called@ne-
time) message authentication code with key manipulationrgg (KMS-MAC). Abstractly, this authentica-
tion code is keyed by a random element of some finite gugnd remains secure even if the key is stored
in X(G). The message and the authentication tag can be stored ouiesstorage that is neither private
nor tamper-proof. The adversary, who gets to see one valgsage/tag pair and modify the key stored on
X(G), will be unable to produce an alternative message/tag Ipativerifies under the modified key, except
with some small error probability. We show how to construct KMS-MACSs using appropriate AMD ead
Combined with our nearly optimal AMD construction, we get KMVMACs that essentially achieve the same
parameters as ordinary (one-time) MACSs: to authenticate-aih message with substitution security~,
one uses a key of siza + O(log(u/k)) and a tag of size + O(log(u/k)).

® For now and much of the paper, we will concentrate on the Hargrapace ovef0, 1}, later pointing out how to extend our
results to related metrics.



We use KMS-MACs to add robustness to fuzzy extractors. As weationed, the public helpeP is
stored on a public unprotected storage and we can think eixinacted keyR as being stored i'({0, 1}*).
Surprisingly, we can use the kdy (which is derived fromP) to authenticateP itself! The idea is to split
the extracted keyr into two partsR,,... andR,;. The “long” R,.; will be the new extracted key, while the
“short” R,,.. Will be sacrificed and used as the key to the KMS-MAC applieth®original helper string
P (so that the new helper string will contaihand the tag). An adversary that repla¢esith P’ implicitly
adds a known offset t®,,,,. but, by the security of the KMS-MAC, is then unable to computalid tag for
P’ under the modified key. As a result, for the first time, we abtabustfuzzy extractors for the Hamming
(and related) metrics, which do not rely on random oraclestfter computational assumptions) and achieve
nearly the same optimal parameters as their non-robust moparts However, as we explain shortly, this
result is obtained in the Common Reference String modekddda setup assumption is necessary as our
result breaks the impossibility result of [12] for the plamodel.

Relation to Prior Work on Fuzzy Extractors. In their original paper, Dodis et al. [10] gave several nearl
optimal constructions for (non-robust) fuzzy extractarsthe Hamming and several other metrics. Boyen
et al. [5] gave a generic transformation which makes a fuzasaetor robusin the random oracle model
without considerably sacrificing any of the parameters.ddaohately, in the plain model Dodis et al. [11]
showed that robustness can only be achieved if the init@k$e contains an entropy rate of at least one
half (i.e. the entropy of the secret is at least half the lerdthe secret). In fact, this holds even if no errors
are allowed [12] (i.e.w = w’). Moreover, even when the secret does meet this threslutidsiness is only
achieved at a large cost in the length of the extracted rarkdynas compared to the optimal non-robust
extractors for the same entropy threshold.

In this work we overcome this pessimistic state of affairsbioylding robust fuzzy extractors in the
Common Reference Strii@RS) model. The common reference string can be chosen dmee thve system
is designed and can be hardwired/hardcoded into all hasdsadtware implementing the system. Moreover,
the CRS can be published publicly and we allow the attackebs@rve (but not modify) it.Our CRS is a
random bitstring - it has no trapdoors and we do not requiyeadility to “program” it. Since most users do
not create their own hardware/software but instead asshatatthird party implementation is correct, the
assumption that this implementation also contains an higrgenerated random string does not significantly
increase the amount of trust required from users. We do asthehthe probability distribution from which
the secretv is chosen is independent of the CRS. This is a very naturahgsson for biometrics and many
other scenarios. However, it also means that our scheme &ppbicable in the setting of exposure resilient
cryptography (see [9]) where the attacker can learn son&ifumof the secret after seeing the CRS.

What our result shows, however, is that this seemingly maddition not only allows us to achieve
robustness without additional restrictions on the entroadg of the secret, but also twearly match the
extracted key length of non-robust fuzzy extractor coosins (or the robust fuzzy extractor constructions
in the random oracle model [5]).

On a technical level, itis also interesting to compare oudehand techniques with those of Dodis et al.
[11], who built robust fuzzy extractors in the plain modeitfwthe necessarily poor parameters mentioned
above). The work of [11] could be viewed (in our language)ealsicing the question of building robust fuzzy
extractors to that of using tht@e original secretw stored inX(G), for authentication purposes. In partic-
ular, the authors had to build a message authentication @dact, one secure against key manipulation

" We remark that assuming tamper-proof storage of the CRShtzin be shared by many users, is very different than asgumin
tamper-proof storage of a “user-specific” helper stiihgndeed, the former can be hardwired into the system, anidittez can
not.



attacks) using thaon-uniformstringw as the key. Authentication codes keyed by non-uniform remuess
imply non-trivial parameter degradation in the plain mdde2l] and all the (necessary) inefficiencies of [11]
followed from this fact. In contrast, the addition of the CR8luces the question of building robust fuzzy
extractors to that of using uniformly randoextracted randomnesB, stored on¥'(G), for authentication
purposes (this implication is non-trivial and forms onelwd tontributions of this work). As a consequence,
we can use much more efficient KMS-MACSs relyingamiformly randonsecret keys and, therefore, obtain
nearly optimal robust fuzzy extractors in the CRS model.

2 Algebraic Manipulation Detection Codes

Definition 1. An (S, G, ¢)-algebraic manipulation detection cod® (S, G, §)-AMD code for short, is a

probabilistic encodingnapf : S — G from a setS of sizeS into an (additive) groug of orderG, together

with a (deterministicdecodingfunctionD : G — SU{_L} such thatD(£(s)) = s with probability 1 for any

s € 8. The security of an AMD code requires that for ang S, A € G, Pr[D(E(s) + A) & {s, L}] < 6.
An AMD code is calledystematidf S is a group, and the encoding is of the form

E:S§—-8%xG1 xGy, s (s,z, fx,s))

for some functiory andx €r G,. The decoding function of a systematic AMD code is natugilrgn by
D(s',a2',0") = ¢"if o/ = f(2/,s') and L otherwise.

Intuitively, £(s) can safely be stored on a private storage de¥i¢€) so that an adversary who manipulates
the stored value by adding an offsé&t cannot cause it to decode to some s. It is also possible to define
aweakAMD code where security only holds forrandoms € S rather than an arbitrary one. We focus of
regular (strong) AMD codes and mention some constructiosagpplications of weak AMD codes in the
appendices.

From a practical perspective, it is typically not sufficiéathave one particular code, but rather one
would like to have a class of codes at hand such that for everigewu for the bit-length of the sourceand
for every choicex of the security level, there exists a code that “fits” theseupaeters. This motivates the
following definition:

Definition 2. An AMD codefamily is a class of AMD codes such that for aryu € N there exists an
(S, G, )-AMD code in that class witl§ > 2" andd < 27*.

We point out that in this definition, the grogpcan be different for every AMD code in the family and is
left unspecified. In our constructions the grag@will often be the additive group of the vector spatefor
some fieldF. Specifically, we will often focus on the field,. (as an additive group, this is equivalenﬁt?tg))

so addition (and subtraction) is just bitwise-xorddbit long strings.

We would like the construction of an AMD code to be close taropt in thatG should not be much
larger thanS . We consider theéag sizew of a (5, G, §)-AMD code defined asv = log(G) — log(95).
Intuitively, this denotes the number of bits that the AMD eappends to the source. More generally we
define the efficiency of an AMD code family as follows.

Definition 3. Theeffective tag sizev*(x, u) with respect tox,u € N of an AMD code family is defined
asw*(k,u) = min{log(G)} — v where the minimum is over a(lS, G, §)-AMD codes in that class with
S >2%andd < 27,

In Appendix A, we prove the following lower bound on the effee tag size of an AMD code family.

Theorem 1. Any AMD code family has an affective tag size lower boundegtiy:, u) > 2x — 274+ >
2k — 1.



2.1 Optimal and Flexible Construction

We are now ready to present a construction of AMD codes whiidioth optimal and flexible. As noted in
the introduction, a similar, but more complicated congtancappeared in [11], though it was presented as
part of a larger construction, and its properties were ratedtexplicitly as a stand-alone primitive. The two
constructions were discovered concurrently and indepehdfsom each other.

Let[F be a field of sizey and characteristip, and letd be any integer such thdt+ 2 is not divisible by
p. Define the functiorf : F¢ — F¢ x F x F by E(s) = (s, z, f(x, s)) where

d
flz,s) =ax@? 4 Z s

1=1

Theorem 2. The given construction is a systemati¢, ¢?*2, (d + 1)/q)-AMD code with tag sizec =
2logq.

Proof. We wish to show that for any € F andA € F4+2: Pr[D(£(s) + A) ¢ {s, L}] < 4. Itis enough to
show that for any’ # s and anyA,, A¢ € F: Pr(f(z,s) + Af = f(x + A, s')] < &. Hence we consider
the event

d d
224N st Ap = (2 + AP+ si(w 4+ Ay’ (1)
i=1 =1

We rewrite the right hand side of (1) a§t2 + (d+2)A,z%t1 + 3.4 | s/’ + A, - p(x), wherep(z) is some

polynomial of degree at mostin x. Subtracting this term from both sides of equation ££);2 cancels out
and we get

d
—(d+2) Azt + Z(sl —sh)x' — Ay -p(z) + A =0 2
i=1

We claim that the left side of equation 2 isian-zeropolynomial of degree at mogt+ 1. To see this,
let us consider two cases:

1. If A, # 0, then the leading coefficientis(d+2) A, # 0 (here we use the fact thét- 2 is not divisible
by the characteristic of the field).

2. If A, = 0, then (2) simplifies tozle(si — sh)z' + Ay = 0, which is not identically zero since we
assumed that # s’

This shows that (2) has at mast- 1 solutionsz. Let B be the set of such solutions 88| < d + 1. Then

d+1

Pr[D(E(s) +8) ¢ {5, L}] = Prlr € B] < =

O

Notice, the elements of the range gra@ip= F¢ x IF x [ can be conveniently viewed as element%pﬁor
somet (recall,p is the characteristic df). Thus, addition irG simply corresponds to element-wise addition
modulop. Whenp = 2, this simply becomes the XOR operation.

Quantifying the above construction over all fieldsind all values ofi (such thatd + 2 is not divisible
by p), we get a very flexible AMD family. Indeed, we show that thieefive tag size of the family is nearly
optimal.



Corollary 1. The effective tag size of the AMD code familyi, u) < 2 +2log(% + 3) 4 2. Moreover,
this can be achieved with the range gro@being the group of bitstrings under the bitwise-xor operafl

Proof. For a givenx andu, choosed andq as follows: letd be the smallest positivedd integer such that
u < d(k + log(d + 1)), and choosg = 2[#tle(d+1)] Note thatd + 2 is not divisible by2, which is the
characteristic off,. Furthermoreu < dlog(g), and thus we can restrict the source spEéeviewed as
{0,1}%108(9) | to the subses = {0,1}* and the rang&? x F x F to the subgrouj = S x F x F. The
resulting(S, G, §)-AMD code fitsx andu in that.S > 2 andé = (d + 1)/q < 2. The effective tag size
is given by:

log(G) —u=1log(|S x F x F|) —u=2log(q) <2k + 2log(d+ 1) + 2
<2k +2log(% +3) +2.

Thusw* (s, u) < 2k + 2log(% + 3) + 2. 0

3 Application to Robust Secret Sharing

A secret sharing schenig given by two probabilistic functions. The functi&hare maps a secret from
some grougy to a vectorS = (54, ..., S,) where thesharesS; are in some groug;. The functionRecover
takes as input a vector of shars= (S1,...,5,) whereS; € G; U {1} and outputs € G U {_L}. A secret
sharing schemes is defined over somenotone access structuvghich maps subset8 C {1,...,n} to

a statusqual i fi ed,unqual i fi ed, L. The correctness property of such a scheme states thatyor an
s € G and anygualifiedset B, the following is true with probabilityl. If S <« Share(s) andS is defined to
beS; = S; for eachi € B andS; = L for eachi ¢ B, thenRecover(S) = s. Similarly, the privacy of such

a scheme states that for amgqualifiedsubsetA, the shareg.S;},. , reveal no information about the secret

s (this is formalized using standard indistinguishability)

Thus, qualified sets of players can recover the secret fremploled shares, while unqualified subsets
learn no information about the secret. Sets of players whiemeither qualified nor unqualified might not
be able to recover the secret in full but might gain some glartformation about its value.

A linear secret sharing scheme has the property thaR#wever function is linear: given any € G,
any S € Share(s), and any vectos’ (possibly containing somé symbols), we hav®ecover(S + S’) =
s+ Recover(S’), where vector addition is defined element-wise and additih L is defined byl + = =
x+ 1L =_1forall z.

Examples of linear secret sharing schemes include Shasetiet sharing scheme [26] where the access
structure is simply a threshold on the number of players,smt@me for a general access structure in [16].

We consider a setting where an honest dealer uses a searegs@eme to share some segramong
n players. Later, an outside entity called tlieeonstructorcontacts some qualified subgetof the players,
collects their shares and reconstructs the secret. Theityeoitthe scheme ensures that, as long as the set
A C B of players corrupted by an adversary is unqualified, the radwg gets no information about the
shared secret. However, if th®nestplayersB\ A also form an unqualified subset, then the adversary can
enforce the reconstruction of an incorrect secret by hanitinncorrect shares. In fact, if the reconstructor
contacts aninimal qualified subset of the players, then even a single corrygtgeer can cause the recon-
struction of an incorrect secret. Robust secret sharingmeb (defined in [28, 4]) ensure that such attacks

8 We can also imagine situations where the “base” fiéldf some characteristig is given to us, and our freedom is in choosing
the extension fiel@ and the appropriate value dfso thatS can be embedded inf&'. Under such restrictions, the effective tag
size becomes roughBk + 2log(u) + O(logp).



can't succeed: as long as the adversary corrupts only aralifig subset of the players, the reconstructor
will never recover a modified version of the secret.

Definition 4. A secret sharing scheme dsrobust if for any unbounded adversa#/who corrupts an un-
qualified set of playerst C {1,...,n} and anys € G, we have the following. Lef < Share(s) and S be
a value such that, for each< : < n,

g — A(iys,{Si}tica) ifie A
" Sior L ifig A

ThenPr[Recover(S) & {s, L}] < 4.

We note that in a (non-robust) linear secret sharing schevhen the adversary modifies shares by
settingS; = S; + A; then, by linearity of the scheme, the adversary also knowslifferenceA = 5 — s
between the reconstructed secrand the shared secretThis implies that we can think afas being stored
in an abstract storage devie&G), which is private for an adversary who corrupts an unqudli§ebset of
the players, yet is not-robust in that the adversary canifypadditive offsets so that’(G) storess + A.
This immediately implies that we can turn any linear sednarigg scheme into astrobust secret sharing
scheme using AMD codes.

Theorem 3. Let (Share, Recover) denote a linear secret sharing scheme with dongaof order G, and let
(€, D) be an(S, G, 0)-AMD code with rang&;. Then the schem@&hare*, Recover™) given byShare*(s) =

Share(&(s)), Recover®(S) = D(Recover(S)) is and-robust secret sharing scheme.

Proof. Let S = Share*(S) and letS be a vector meeting the requirements of Def. 4. 8% S — S. The
vector S’ containsD for honest players/ for absent players, and arbitrary values for dishonesteptayVe
have:

Pr[Recover*(S) ¢ {s, L}] = Pr[D(Recover(S) + Recover(S")) ¢ {s, L}]
=Pr[D(&(s) + A) & {s, L}]

where the valued = Recover(S’) is determined by the adversarial strate¢yBy the privacy of the secret
sharing scheme, it is only based on the adversary’s a-gariviedge of the shared secret and is otherwise
independent of the valug€(s). The conclusion then follows immediately from the defimtaf AMD codes.

O

For Shamir secret sharing (and similar schemes), whererthg ¢ can be an arbitrary field of size> n,

we can use the optimal and flexible AMD code construction f@action 2.1. In doing so, each player’s
share would increase by rougtiyog(1/4)+2 log u bits (whereu in the length of the message) as compared
to the non-robust case.

ROBUST INFORMATION DISPERSAL Systematic AMD codes have an additional benefit in that tued-
ing leaves the original valueintact. This could be beneficial in the scenario where pkgernot care about
the privacy ofs, but only about its authenticity. In other words, it is sajauseinformation dispersabn s
or, alternatively,s can be stored in some public non-robust storage. Using amgsic AMD code which
mapss to (s, z, f(z,s)), the players can just secret share the authenticationniafioon (x, f(z,s)) and
use it later to authenticate As long as the corrupted players form an unqualified setattirentication
information (x, f(z, s)) remains private and hence an adversary who changes’ (and trivially knows
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the offsetA; = s — ') still cannot come up with an offset t@:, f(z, s)) so that it authenticates in-
stead ofs. The values might be very large but the authentication informatienf(z, s)) remains relatively
small, and hence secret sharing only the authenticatiamndtion (rather than the entire encoding) gives
us significant gains in efficiency. Concretely, to authextdcanu-bit secrets, we only need to secret share
roughly 2(log(1/6) + log u) bits.

SECURE AND PRIVATE STORAGE/ SECURE MESSAGE TRANSMISSION. Consider again the problem of
reconstructing a shared secret in the presence of faultgshidowever, now the goal is not only to prevent
the reconstruction of an incorrect secret by detecting fftay, but to ensure that reconstruction always suc-
ceeds in producing the correct secret (except with smaligioihity). In other words we do not want to allow
the option of reconstructing . We still assume the dealer to be honest and that recoristilsttowards
one player. However, now we additionally assume that amoaglayers participating in reconstruction, the
honest players form qualifiedset. The dishonest players are still assumed to formngualifiedset. This
problem is known under the name (unconditiorsdrure information dispers§24, 17] or non-interactive
secure message transmissidd, 13]. There is a generic, though for large player setsmaationally inef-
ficient, construction based on a robust secret sharing¢8¥ery qualified subset of the involved players,
invoke the robust reconstruction until for one set of shai@g$oul play is detected and a secret is recon-
structed. If the robust secret sharing schemg/& *"-secure, then this procedure succeeds in producing
the correct secret except with probability at mbs2”.

ANONYMOUS MESSAGETRANSMISSION. In recent work [3], Broadbent and Tapp explicitly used tioe n
tion of AMD codes introduced in this paper (and our constacbf them) in the setting of unconditionally
secure multi-party protocols with a dishonest majoritye@fically, AMD codes allowed them to obtain
robustness in their protocol for anonymous message trasgmi This protocol, and with it the underlying
AMD code, was then used in [2] as a building block to obtain@tgarol for anonymous quantum commu-
nication.

4 Message Authentication Codes with Key Manipulation Secuty

As a notion related to AMD codes, we define message auth@oticeodes which remain secure even if the
adversary can manipulate the key. More precisely, we assiaméonly) the key of the authentication code
is stored on an abstract private devitéG) to which the adversary has algebraic manipulation access, b
the message and tlagithentication tagare stored publicly and the adversary can modify them at Wiils

is in contrast to AMD codes where the entire encoding of thesage is stored X' (G).

Definition 5. An (S, G, T, §)-message authentication code with key manipulation sgci{MS MAC) is
a functionMAC : § x G — 7 which maps @ource message a setS of sizeS to atagin the set7 of size
T using akey from a groupg of orderG. We require that for any # s’ € S, anyo,¢’ € 7 and anyA € G

Pr[MAC(s", K + A) = o' | MAC(s,K) = 0] < §
where the probability is taken over a uniformly random k& G.

Intuitively, the adversary get some message/tag (@atr). The adversary wins if he can produce an offset
Aand a messagé # s along with a tagr’ such that the paifs’, ') verifies correctly under the key + A.
The above definition guarantees that such an attack suceg@dsobability at mosb. In fact, the definition

is slightly stronger than required, since we quantify odepassible tagss of the message (rather than
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just looking at a randomly generated one). However, sine@bove definition is achievable and simpler to
state, we will consider this stronger notion only. We caio &iténk of a KMS-MAC as a generalization of a
standard message authentication code, which only guasaséeurity fordA = 0.

As with AMD codes, we will consider the notion of a KMS-MAC fdlyn For efficiency, we are inter-
ested in minimizing the tag siZeg(7") and the key sizéog(G). The following well known lower bounds
on standard message authentication codes (e.g., see Ridusly also apply to the stronger notion of a
KMS-MAC.

Lemma 1. For any authentication code with securify< 27, the key sizéog(G) must be at leas2x, and
the tag sizdog(7") must be at least.

We now give a construction of a KMS-MAC out of any systemati[d code.

Theorem 4. Let€ : S — S x G1 X Ga, 5 — (s,x, f(z,s)) be a systematic
(IS1,18111G11|G2], 8)-AMD code. Then the functiddAC : Sx (G xGa) — Gy yields a(|S|, |G1]|G2|, |G|, §)-
KMS-MAC:

MAC(s, (1, 22)) = f(x1,5) + z2

Proof. AssumeK = (x1,22) € G1 X Go is chosen uniformly at random, and consider arbitrary=
(A1, A2) € G1 X Go,0,0" € Go,ands, s’ € S, wheres £ 5.

The evenMAC(s, K) = o is the eventf (z1, s)+x2 = o, which is the same a8, = — f(x1, s)+o. Let
us call this evenE;. Similarly, the evenMAC(s’, K+ A) = o’ isthe evenif (z1+ Ay, s')+ (z2+A2) = o,
which is the same ag(z1 + A;,s’) = —x2 + 0’ — As. Let us call this evenE,. Thus, we need to bound
PI‘[EQ | El]

Let us denotedy = —o + 0’ — A, and define an auxiliary evetity asf(z, + Ay, ') = f(x1,5) + Ay
We claim thatPr[Fs | Eq] = Pr[E} | Eq]. Indeed, ifzy = — f(z1,s) + o, then

—z940 —Ay=—(—f(x1,8) +0)+0 — Ay = f(x1,5) + (—0 + 0" — Ay) = f(x1,5) + Af
Finally, notice thatt, and £, areindependentindeed, sincé”), does not depend ory, andz; is chosen at
random fromG,, whether or not;, is equal to— f(x1, s) + o does not affect any other events not involving
x9. Thus,Pr[E), | E1] = Pr[E)]. Therefore, we have

PrMAC(s', K + A) = o' | MAC(s, K) = o] = Pr[f(x1 + A1,5") = f(a1,s) + Af] <6

where the last inequality follows directly from the secuf the AMD code, since # s'. O
Using the systematic AMD code family constructed in Secfoh, we get a nearly optimal KMS-MAC
family. In particular, plugging in the systematic AMD codeiily from Theorem 2 and using the parameters

obtained in Corollary 1, we get:

Corollary 2. There is a KMS-MAC family such that, for aryu € N, the family contains afs, G, T, J)-
KMS-MAC (with respect to XOR operation) with< 277, § > 2% and

log(G) <2k +2log (u/k + 3) + 2
log(T) < k+log (u/k +3) +1
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5 Application to Robust Fuzzy Extractors

We start by reviewing the some basic definitions needed to@éiie notion of fuzzy extractors from [10].

MIN-ENTROPY. Themin-entropyof a random variableX is

H. (X) = —log(max, Prx[z]). Following [10], we define the (average) conditional mirtrepy of X
givenY asH..(X | Y) = —log(E,_y (2 H=(XIY=4))) (here the expectation is taken ovgefor which
Pr[Y = y| is nonzero). This definition is convenient for cryptograppurposes, because the probability
that the adversary will predict givenY is 2~ He(XIY)  Finally, we will use [10, Lemma 2.2], which states
thatH.. (X | Y) > Hoo((X,Y)) — ), where2* is the number of elements .

SECURESKETCHES. Let M be a metric space with distance functiis. Informally, a secure sketch enables
recovery of a stringy € M from any “close” stringy” € M without leaking too much information about

Definition 6. An (m,m/’, t)-secure sketch for a metric spaceM is a pair of efficient randomized proce-
dures £S, Rec) s.t.:

1. The sketching proceduf&sS on inputw € M returns a bit strings € {0, 1}*. The recovery procedure
Rec takes an element’ € M ands € {0,1}".

2. Correctnesstf dis(w, w’) < t thenRec(w’, SS(w)) = w.

3. Security:For any distributionV over M with min-entropym, the (average) min-entropy & condi-
tioned ons does not decrease very much. Specificallfgf (W) > m thenHq, (W | SS(W)) > m/.

The quantityn — m/’ is called theentropy losf the secure sketch.

As already mentioned in Footnote 6, we will concentrate enilamming metric ovef0, 1}, later
extending our results to several related metrics. For tlegimwe will make use of theyndrome construc-
tion from [10], which we review in Appendix E (this constructioppeared as a component of protocols
earlier, e.g., in [1]). For our current purposes, thoughpwy need to know that this construction isreear
transformationovery.

STATISTICAL DISTANCE. Let X7, X5 be two probability distributions over some sp&eTheir statistical
distanceis SD (X1, Xo) £ 1 3" o |Pry, [s] — Prx,[s]]. If

SD (X1, Xy) < ¢, we say they are-close, and writeX; ~. X,. Note thate-close distributions cannot

be distinguished with advantage better thagven by a computationally unbounded adversary. We use the
notationU, to denote (fresh) uniform distribution ové, 1}.

RANDOMNESS EXTRACTORS FOR AvG. MIN ENTROPY. A randomness extractor, as defined in [18], ex-

tracts a uniformly random string from any secret with higlowgh entropy using some randomness as a
seed. Here we include a slightly altered definition to enshsiewe can extract randomness from any secret
with high enoughaveragemin-entropy.

Definition 7. A functionExt : {0,1}" x {0,1}¢ — {0,1}* is called a(m, ¢, ¢)-extractor if for all random
variablesX andY such thatX € {0,1}" andH(X | Y) > m, andI < Uy, we have
SD( (Ya EXt(X7[)7I) ) (Ya UZaUd) ) <e

It was shown by [10, Lemma 2.4] that universal hash functiamsgood extractors in the above sense. In
particular, the constructioBixt : {0,1}" x {0,1}" — {0,1}¢, defined byExt(x,7) = [z - i]¢ is a(m, ¢, ¢)-
extractor for any < m — 2log(1/¢). Here the multiplicationz - i is performed in the field2» and the
notation[z]¢ denotes the first bits of .
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Fuzzy EXTRACTORS. A fuzzy extractor extracts a uniformly random key from soseeretw in such a
way that the key can be recovered from arfyclose tow. The notion was first defined in [10]. Here we alter
the definition to allow for a public common reference striGiRS).

Definition 8. An (m, ¢, t,e)-fuzzy extractor for a metric spaceM is defined by randomized procedures
(Init, Gen, Rep) with the following properties:

1. The procedurénit takes no inputs and outputs a striatRS € {0, 1}*.

2. The generation procedur@en, on inputw € M,CRS € {0,1}*, outputs an extracted strin§g €
{0,1}* and a helper string? € {0, 1}*. The reproduction procedurRep takesw’ € M and P, CRS €
{0,1}* as inputs. It outputsr € M U {L}.

3. Correctnesstf dis(w,w’) < t and (R, P) « Gen(w, CRS), thenRep(w’, P, CRS) = R.

4. Privacy:For any distributionl¥ with min-entropym over the metricM , the stringR is close to uniform
even conditioned on the value Bf Formally, if H., (W) > m and (R, P) < Gen(W, CRS), then
(R, P,CRS) ~. (U, P,CRS).

Composing ar(m,m’,t)-secure sketch with &n’, £, ¢)-extractorExt: M x {0,1}¢ — {0,1}¢ (as
defined in Def. 7) yields &n, ¢, t, €)-fuzzy extractor [10]. The construction of [10] has an em@BS and
setsP = (SS(w),i) and R = Ext(w;1) for a randomi. However, it is easy to see that the construction
would remain secure if the extractor seeslas contained in th€RS and P was justSS(w). One advantage
of such approach would be that tGen andRep algorithms are then deterministic which might make them
easier to implement in hardware. Another advantage is thabuld eventually allow us to overcome the
impossibility barrier of robust fuzzy extractors (definezkt) in the plain model.

5.1 Definition of Robust Fuzzy Extractor in CRS Model

Fuzzy extractors allow one to revellpublicly without sacrificing the security of the extracteshdomness
R. However, there are no guarantees when an active attackdifi@sa”. To prevent such attacks, robust
fuzzy extractors were defined and constructed in [5, 11]eler define robust fuzzy extractors in the CRS
model.

For two (correlated) random variabl&g 17’ over a metric spaca1, we say
dis(W,W'’) < t if the distance betweeW and W' is at mostt with probability one. We callW, W’) a
(t,m)-correlated pairif dis(W,W') < t andH. (W) > m. It will turn out that we can get more efficient
constructions if we assume that the random variable- W — W’ indicating the errors betwedi” and
W' is independent ofV (this was the only case considered by [5]). However, we dovatt to make this
assumption in general since it is often unlikely to hold. Veédirte the family]-"g% to be the family of all

(t, m)-correlated pairgW, W’) and the family]-'ff}ffep to be the family of(¢, m)-correlated pairs for which
A=W — W'is independent ofi/.

Definition 9. An (m, ¢, t,e,d)-robust fuzzy extractofor a metric spaceM and a family F of (¢, m)-
correlated pairs is ar{m, ¢, t, €)-fuzzy extractor oveM such that for all(W, W') € F and all adversaries

Rep(P,w’,CRS) # L CRS « Init(), (w,w’) « (W, W) <5
P+P (P,R) — Gen(w,CRS), P — A(P,R,CRS) | —
We call the above notiopost-application robustness and it will serve as our main definition. We alse co

sider a slightly weaker notion, callgate-application robustness where we do not giRketo the adversary
A.

Pr
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The distinction betweepre-application andoostapplication robustness was already made in [5, 11]. In-
tuitively, when a user Alice extracts a key using a robuskyuextractor, she may use this key for some
purpose such that the adversary can (partially) learn theevat the key. The adversary can then mount an
attack that modified® based on this learned value. For post-application secuviyinsist that robustness
is preserved even in this setting. For pre-application sgcuve assume that the adversary has no partial
information about the value of the key.

5.2 Construction

We are now ready to construct robust fuzzy extractors in tR8 Godel. First, let us outline a general idea
for the construction using an extractext, a secure sketcltb6, Rec) and a one-time (information-theoretic)
message authentication coRAC. A pictorial representation of the construction is showirigure 1 and
pseudo-code is given below.

Init() outputs a random seédor the extractoExt as a shared CRS.
Gen(w, 7) does the following:
R — Ext(w, 7) which we parse aR® = (Rmac, Rout)-
s « SS(w), 0 < MAC(s, Rimac), P := (s,0).
Output(P, Rout).
Rep(w’, P, ) does the following:
ParseP = (3, 5). Letw «— Rec(w’, §). If d(w,w’) > t then outputL.
Usingw ands, computeR and parse it a®out, Rmac.
Verify & = MAC(3, Rmac). If equation holds outpuR,..:, otherwise output..

The idea is fairly intuitive. First, we extract randomnessti w using the public extractor seedThen
we use part of the extracted randomné&sg; as the output, and the remaining p&t,.. as the key for the
one-time information-theoretic MAC to authenticate thewse sketchs of w.

However, in arguing robustness of the reconstruction phaseaotice that there is a problem. When an
adversary modifies to some value then this will force the user to incorrectly recov@r=# w, which in
turn leads to the reconstruction Bf £ R and Rynee # Rimac. SO the keyR,,.q., Which is used to verify the
authenticity ofs, will itself be modified whers is!

To break the circularity, we will need to us special lingaptoperties of the secure sketch and extractor
constructions, which we specify in section 5.3. We will a&dn that an adversary who modifieso § will
know the offsetA such thatR,,,,. = Rinae + A. Although Ronac is derived fromw’, § and theCRS, we can
think of R,,,.. as being stored in an abstract devic&7) which is private but only weakly robust in that the
adversary can specify an additive offset by modifyingVe can then use a KMS-MAC to get security even
when the key is stored on such a device. Hence, the adverdanotbe able to come up with a valid pair
(8,5) wheres # s.

5.3 Linearity of modifying P

In this section, we specify the properties of our securectkahd extractor constructions to ensure that an
adversary who knows\ = ' — w and modifiess to 3, will know the offsetR? = R — R between the
original extracted key and the recovered key.

Secure Sketch Linearity Property: Let(SS, Rec) be an(m, m’, t)-secure-sketch and, w’ be values such
thatdis(w,w’) < t. LetA = w’ —w ands = SS(w). For anys3, letw := Rec(w’, §) and A = w —w. Then,
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Fig. 1. Construction of Robust Fuzzy Extractor

we say that the secure sketch is lineat\ifs completely determined by, s ands. Formally A = f(A,s,3)
wheref is a deterministic function.

Lemma 2. The syndrome based construction of a secure sketch meetdtae linearity property.

This lemma follows easily from the properties of the syndearanstruction and we give a proof in Appendix
F. It was also implicitly used in [11].

Extractor Linearity Property: The extractorExt is linear if for anya, b andi, we haveExt(a — b,i) =
Ext(a,i) — Ext(b,1).

It is easy to see that the extractor definedHay(w, 1) e [w - i]§ has the required linearity property. We
also notice that several other extractors (e.g., [29, 2%]) shorter seed lengths also satisfy this property.
As it turns out, it is precisely this property of extractongt useful in the plain model setting of [11], that
would allow us to obtain the following key Lemma what we widlauin the CRS model.

Lemma 3. Assume a secure sket$S, Rec) and an extractoExt meet the respective linearity properties
above. Consider any, w', 7, § and lets = SS(w), R = Ext(w, i), w = Rec(w’, §), R = Ext(w, i). Finally,
denoteA = ' —w and R4 = R— R. Then, there is a deterministic functigrsuch thatR? = 9(A,s,35,1).
Namely, one can compuféd by knowing only the differenca betweenv andw’, the sketchs, the modified

sketchs and the public CR&

Proof. Using Lemma 2, there is a deterministic functipf, s, 5) = A=w—w. lfwe letg(A,s,3s,1) Y

Ext(f(4,s,3),i) then

g(A,s,8,1) = Ext(f(A4,s,5),i) = Ext(® — w,1) t(w, i) — Ext(w, 1)

= Ext(w,
—R-R=RA

5.4 Security of Construction and Parameters

We are now show that the construction outlined in Sectionifid2ed satisfies the definition of a robust
fuzzy extractor.

Let (SS, Rec) be a(m, m/, t)-secure sketch satisfying the secure sketch linearitygstp@nd letu be
an upper bound on the size 86(w). Let MAC be a(S, G, T, 4)-KMS-MAC, such thatS > 2“. Assume
that the keys come from a grogp= {0, 1}* under the XOR operation so that= 2*. Let F be a class of
(t,m)-correlated variable§V, W’) and letri be the largest value such that< H.. (W |SS(W), W — W)
for any (W, W’) € F. Lastly, letExt be a(7, ¢, )-strong randomness extractor satisfying the extractor
linearity property and seeded by randomnegtlengthd.
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Theorem 5. When instantiated with the primitiveisxt, MAC and (SS, Rec), our construction yields a
(m, 0 — k,t,2¢,§ 4 ¢)-robust-fuzzy extractor for the family.

Proof. The correctness property of the fuzzy extractor is guaeshiy the correctness of the secure sketch.
The privacy property follows from the security of the randwss extractor. Recall, that the adversary can
observei, s, 0. Since, by definitionsi, < Ho, (W|SS(W)), the distribution(i, s, Rmac, Rout) can be distin-
guished from(i, s, Uy, Uy—j) with probability at most. In particular,

(iv S, Rmaca Rout) Re (Z> S, Uka Ué—k) e (iv S, Rmaca Ué—k)

and so(%, s, Ryac, Rout) ~2: (i, 8, Rimace, Ur—k) by the triangle inequality. An adversary givers, o is
weaker than an adversary givérs, R,... and even this latter adversary can distinguigly; from R,_
with probability at mosRe.

For robustness, consider any péi¥’, 1W') € F and any adversaryl attacking the robustness of the
scheme. Then

i ~ CRS « Init(), (w,w") «— (W, W'
Pr[A succeeds— Pr | (P ‘gtCRS) 7L (P,R) 0 (Gen(w), CR(S) )
| andP#P P — A(CRS, P, R)
i i — Ug, (w,w') — (W, W)
MAC(3, Rypac) = & (Rimacs Rout) = Ext(w, i)
=Pr s :=SS(w), o := MAC(s, Rpac)
(57 5) 7£ (87 U) (57 5) N A(Z> $, 0, Rout)
i W := Rec(w', 3), (Rmacs Rout) := Ext(i0, 1)

Now we use Lemma 3 which defines the deterministic funcgisach that

i — Uy, (w,w") — (W, W)
.= (Rimac, Rout) := Ext(w, 1)
MAC 7Rmac =
s (;) b (s)a) s:=SS(w), o := MAC(s, Rinac)
’ ’ (57 &)~<_ A(Z7 S, 0, Rout)
A=uw'— W, Rimac = Ripac + g(A, S, §,Z)

o

Pr[A succeeds= Pr

On the right hand side of the inequality, the pair, w’) and the valué determine the valued, s, Rac, Rout-
But the distributiong A, s, 4, Ryac, Rout) @nd(A, s, i, Uy) can be distinguished with probability at mast
by the security of the extractor and the fact that< Ho, (W |SS(W), A).

Hence we have:

Pr[A succeeds
i« Uqg, Rpac — Uk, (w,w') — (W, W’)
s:=SS(w), o := MAC(s, Rinac) 3)
(8,0) — A(i,s,0,Up_)
A —w —w, Rmae := Rimac + 9(A, s, 8,1)

Roac < Uy, :|

MAC(3, Ripae) = &
<e+Pr
(8,0) # (s,0)

<e + max Pr MAC(§,RmaC):5’

B RA, §#s,0,6

mac?

o = MAC(s, Rmac)
Rmac = Rmac + Rrélac

<e+9d
Where the last inequality follows from the security of the BNVIAC. O
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The above theorem is stated with generality in mind. We noanere the parameters we get when
plugging in the optimal implementation of a KMS-MAC and wugithe “multiplication” extractor

Ext(z,i) £ [z - 47

Corollary 3. Using given constructions of strong randomness extraentsKMS-MACs, we get(an, ¢, t, €, 0)-
robust fuzzy extractor for the family and for anym, t,c and§ > . The extracted key length is

. 2(u+3)
{~m—21 —
o (a(a - e>>
Recall, thatu is the length of the secure sketetis the length of the secret, andrin < Ho (W |SS(W), W —

W') forany (W, W') € F.
Moreover, for the fam|Iy7-'“” of all (t,m) correlated pairs,

m>m —u—t(log( >+loge>

For the familyfffiff’ of all (t,m)-correlated pairs for whichA = W — W’ and W are independent
m=m'>m—u.

Proof. The strong randomness extractor construction we lookedeaiqusly, extracty R,,qc, Rout) Of
lengthrin — 21og(1/¢’) to achieve security’. We wante’ = /2. This implies? ~ 7 — 2log(2/e) — k
wherek is the size ofR,,,.. By the bounds on key-lengths of the KSM-MAC constructiowegi in 2, if
we want to get security — ¢ and authenticate messages of lengthwe can use a key of length <
21log(1/(d —€)) + 2log(u + 3) + 2 Putting these together we see

0> 1 — 2[log(2/¢) +log(1/(5 — €)) + log(u + 3)] — 2 > 7 — 2log (2(u +3)> .

e(d —e)

This proves the first part of the corollary. To boufgdwe noticeH o, (W |SS(W), W — W) > Hoo (W) — A
where2* is the number of possible values of the &&(1W), W — W’. The number of possible values of
SS(W) is 2%, sinceu is a bound on the size &S(W). The number of possible values df = W/ — W

of a(t,m) correlated paifW, W’) is the volume of the ball of elements of lengttthat are at a distanae
from each other. The log of this volume is derived in [11] asd (llog( ) + log e) This gets us the first

bound onvi.. WhenA andW are independent the (W |SS(W), W — W) = Hoo(W|SS(W)) = m’ >
H., (W) — u which derives the second bound. O

Sofar, all of our bounds are for post-application robusgtnége now show that for pre-application robustness
the bounds for the famllleﬁ-‘g” ) and]-'(mde)” are essentially equivalent. This is because, for pre-egjidin
robustness, the adversary does not get to/ggge when mounting a key-manipulation attack. Hence, for
robustness, we no longer need to ensure that there is enesiglual min entropy left over i after the
adversary seed ands to extractR,,; as well asRk,,,4c.

Corollary 4. For pre-application robustness only, we get(a, ¢, t, ¢, d)-robust fuzzy extractor for any
(t, m)-correlated familyF and for anym, ¢, andd > e with

ent-am(2553)
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as long as

. u+3
> o (55 ) -

Proof. The first condition on the size of the extracted key follovesfrTheorem 5 and bounds on the length
k of the KMS-MAC key. In Theorem 5, inequality 3, for pre-amatiion robustness the adversary does not
getR,,:. This means that inequality 3 holds as lond &S s, i, R;,..) and(A, s, i, U ) can be distinguished
with probability at most. Now we notice that the extractéxt(w, 7) = [w-1]}{ has the property that the first
H. (W) —2log(1/e) bits of Ext(w, i) aree close to random no matter how largés. This means we only
needR,,. to be indistinguishable in this case, and hence we have thkexreonditiont < 1 —2log(1/e)
rather thar? < m — 2log(1/¢) in Theorem 5. Substituting the bounds lowe get

2log((u+3)/(0 —€)) +2 <1 — 2log(1/e)

which derives the condition stated in the corollary. Thiaditon is very weak and likely to be satisfied in
practice. Hence, for pre-application robustness, we cagngiglly ignore the fact thatt and W might not
be independent. O

COMPARISON WITH PREVIOUS CONSTRUCTIONS Recall that the “non-robust” construction of [10] ex-
tracts/ < m’ — 2log (%) bits. On the other hand, the robust construction of [11] iregu

(< % <2m—n—u—2tlog <?) —2log <5215>) —-0(1)

The bounds achieved in this paper are significantly closd#radmon-robust version. In essence we show that
the price of robustness can be cheap if we allow random psjéitem parameters.

5.5 Extension to Other Metrics

We note that the above construction can be extended for otb&ic spaces and secure sketches. For ex-
ample, we can easily extend our discussion of the hammirngraie over a binary alphabet to an alphabet
of sizeq wherelF, is a field. The secure sketch simply uses an error correctidg €rF, (possibly even
allowing us to use the optimal Reed-Solomon codes>f n). For the extractor we work over the fiel)»
and the truncation functiom{ is defined as truncating symbolsb{where elements df ,» are viewed as
n dimensional vectors ovéf,) rather than bits.

Finally, we note that our construction extends to the sé&tmdihce metric in exactly the same way as the
construction of [11].
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A Lower Bounds

Theorem 6. Any weak, respectively regular (strong}, G, §)-AMD code satisfies

S—1 S—1

G > 5 +1 respectively G > 52 +1.

Let (&, D) be an(S, G, §)-AMD code, withE : S — GandD : G — S x {_L}. Foranys € S, consider
the setD~!(s) = {e € G : D(e) = s}. Clearly,D~'(s) N D~!(s') = ) and|D~!(s)| > 1 for anys # s'.

Consider first the case where the AMD codewvisaklysecure. Lets be uniformly distributed ove§.
SampleA # 0 at random frony, independently of. The probability thatD(E(s) + A) # {s, L} is upper
bounded by. This implies that

. ‘Us’;ésD_l(S/M > S—1
B G-1 ~G-1

§ > Pr[&(s)+A € Uy D7'()]

where the first inequality follows by consideringy fixed, and the first equality follows by considerirg
fixed, and realizing that if the (in)equality holds for anydikvalue then it also holds for a random value.

Consider now the case where the AMD codestingly secure. Then, for any € S, it holds that
|D~1(s)| > 1/4. This follows from the fact that if one guesséés) correctly (knowings) then it is easy to
come up with aA such thatD (£(s) + A)) ¢ {s, L}. Similar to above, it hence follows that

U D] (S - 1)/
B G-1 - G-1

§>Pr[E(s)+A € Uy D7H(s)]

which implies the claimed bound. Note that here the prolighd taken over a random\ and over the
randomness used by the encoding functidior a givens. O

Note that similar bounds were found in [20] for robust sestetring schemes. This is no coincidence,
since we show in the paper that AMD codes can be used to cohstioust secret sharing schemes. The
following bounds on the tag size now follow quite easily. Hows that it is unavoidable that the message
grows by respectively2x bits if one wants to have weak respectively str@ng-security.

Corollary 5. The effective tag size of a weak, respectively strong, AMiI2 elower bounded by
w*(k,u) >k —2""" >k -1 respectively w*(k,u) > 2k — 27T > 95— 1

Proof. For any weak(S, G, §)-AMD code with with.S > 2" and§ < 27%

log(G) — u > log(G) —log(S) > log (%%) = log (%) + log (1 - %) >k — %

where the last inequality follows from Theorem 6 and the lablag (1 — z) > —2z for 0 < z < %.9
Similarly, for a strongly secure AMD code, the argument pemts analogously but the last inequality is

replaced byog (%) + log (1 — %) > 2k — 2. O

¥ The bound follows from the fact that the two sides coincidewbvaluated at = 0 and atz = 3, and that-2x has constant
slope whereakg(1 — z) has strictly decreasing slope (as can be seen from its seteivdtive) i.e. makes a “right turn®.
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B An Insecure AMD code

Consider the systematic AMD code : F! — F? x F x F, s — (s,x, f(z,s)) with z € F, where
f(z,s) = syx + --- + sqz?. This AMD code, respectively the resulting robust secratisiy scheme, was
proposed and “proven” to be secure in [19]. However, it isydassee that this AMD code igsot secure.
This can easily be seen by observing that

d d
flz+ Ay, s) Zslac—l—A Zs'm’—l—Af—f(m s+ Ay
1=1 1=1

for somes’ = (s1,...,sq4) and someA; € F, where boths’ and A can (efficiently) be computed when
givens and A,. Recall that when considerirgjrongsecurity, the adversary is assumed to knowlence,
addingA, to z, Ay to f(z,s), and replacings by s” allows the adversary to break the AMD code with
probability 1. The “proof” given in [19] is very complicatednd thus it is difficult to point to what exactly
was argued incorrectly. We note that this mistake was ladgrchand fixed by the authors independently of
our work. However, we feel that the error nicely highlighte tadvantage of the abstract notion of an AMD
code: it allows for a much simpler (in the above case we mawy gagtrivial) analysis than, for instance,
when considering fully-fletched robust secret sharing st

C The Combinatorics of AMD Codes

C.1 Weakly Secure AMD Codes

Let G be a group of finite orde.

Definition 10. Asubsel” C G of sizeSisa(S, G, t)-bounded difference sétthe list of differences; —v;,
wherev;, v; € V, contains every non-zero elemengot mostt times.

Note that the standard notion of a difference set requiredish of differences to contain every non-zero
elementexactlyt times. We call an AMD codé€€, D) deterministidf the (in general probabilistic) mapping
£ is deterministic. The following equivalence holds.

Theorem 7. If V C Gisa(S, G, t)-bounded difference set then the AMD-code

E:V =G, s—s, and D(s):{jgtieewfgse

is a (deterministic) weakly secufes, G, §)-AMD code withd = ¢/S. And, vice versa, for an arbitrary
deterministicweak(m, n, §)-AMD code(&, D), the subselV = £(S) = {€(s) : s € S} C Gisa(S,G,t)-
bounded difference set with= §.5.

Proof. Itis clear that £, D) as constructed is a wedk, G, §)-AMD code. It remains to argue the valuedf
By the property ofl/, for every non-zera\ € G, there exist at mostelementss € V such thats + A € V.
For a uniformly distributes € V, and forA chosen independent of this means that + A € V holds at
most with probabilityt/S. The other implication is argued similarly. O
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C.2 Strongly Secure AMD Codes

Let G be afinite group of orde. LetS be a finite set of cardinality. For simplicity writeS = {1,...,S}.
Let V4, ..., Vs be disjoint non-empty subsets @f

Definition 11. We call(G, Vi, ..., Vy) adifferential structure

The parameters of interest related to a differential stmectre as follows. For anywe write ¢; for the
maximal overlap between any translationlgfand the union of the othér;’s:

ti = max (Vi+A)N UV] .
JFi
For a given differential structur@, V1, ..., Vs) consider the following AMD code.

E:ALl,...,8} -G, s—35§
with
5 €R VS )
i.e., s is chosen with uniform distribution o¥i; and independently of anything else, and

- s ifds:5eV;
b3) = {L otherwise

This AMD code iswith uniform selectiorin that for everys € S, the encoding (s) is uniformly distributed
overD~1(s) = {e € G : D(e) = s}. All natural AMD codes we are aware of are with uniform setact

Theorem 8. If (G, V4,...,Vs) is a differential structure with parameters, ..., ts, then the above code
(€, D) is a(strong)(S, G, 0)-AMD code (with uniform selection) whefe= max; ¢;/|V;|. And, vice versa,
for any (S, G, §)-AMD codewith uniform selectionthe setsV, = D~!(s) for s € S form a differential
structure where; < §|V|.

Proof. Let s be an arbitrary fixed source. L&be its probabilistic encoding, uniformly distributedf, and
let A be the difference added foby the adversary, independentofThen,s + A is uniformly distributed
in Vs + A, and thus the probability that it lies inlg with j # s is at most, /|V;|. The other implication is
argued similarly. O

An AMD code issystematiaf the source sef is a group and the encoding is of the form
E:85—>8%xG xGy, s (s,z, f(x,s))

for some functionf, and wherer €r G;. All our new constructions are systematic, and thus in paler
with uniform selection. The decoding function of a systamAMD code is naturally given by

s ife= f(x,s)
L otherwise

D(s,x,e) = {
and we usually leave it implicit. The following lemma is gl
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Lemma 4. For a systematic AMD code, the underlying differential stawe (G, V1, ..., Vg), we have
ti = maxaeg [(V;+A)NVj|fori=1...8.
J#i

Our results above can be viewed as supporting the view thmbicatorics that is “ugly and non-smooth
or non-symmetric” from a combinatorics point of view may simes lead to “stronger cryptography”.
Indeed, by requiring only certain relevant bounds on thamp&ters of a combinatorial construct with cryp-
tographic relevance (like theoundedcompared to the ordinarystrict’ notion of a difference set), a much
wider class of mathematical approaches to its constructiap become available. Note that there are other
areas in cryptography that have seen this phenomenon gevgellauthentication codes.

C.3 Relation to Earlier Work

Our combinatorial approach must be discussed with respegirtier work by Ogata and Kurosawa [20] and
Ogata, Kurosawa, Stinson and Saido [21]. In [20] the ideasofguthe classical notion of planar difference
sets is introduced, and applications to (in our terminojoggakly secure AMD codes are given. The con-
struction is based on the following AMD code. Lgebe a prime so that = ¢2 + ¢ + 1 is a prime as well,
and letB c {0,...,p — 1} be aplanar difference setf sizeq + 1. This means thatthg; + 1)g = p — 1
pairwise differences modulp of the elements irB are exactly the numbetfs...,p — 1. It is known that
such a difference set exists (see e.g. [20] and the refeseheeein). Thenf : B — Z,, s — s is a weak
(q+1,¢4*>+q+1,1/(qg+1))-AMD code. The tag size equats = log(¢> + ¢+ 1) —log(q + 1), which lies
betweenlog(q) andlog(q + 1). See also [21] for a more general approach. As before, tioe probability

is determined by the source space and hence the approadtlisxitde.

Motivated by this, the above approach is extended in [21]singexternal difference familieEDF),
as introduced there. AG, ¢, \) S-EDF consists consists of a grogpof orderG and.S disjoint non-empty
subsetsl, ..., Vg, each of size:, such that every non-zero element@®foccursexactly A timesas the
difference between some and somey; wherev; andv; come from different set¥; andV, respectively.
This abstract notion of an EDF (with = 1) leads to a weakly secure AMD code with a minimal tag size
for a source space of siZzeand withé = % However, no general construction has been proposed tgrdesi
EDF’s, and thus it is not clear how fruitful this approachasd in particular how good it is with respect
to theeffectivetag size, i.e., when andx are given and a weakly secufg, G, §)-AMD code needs to be
found withm > 2% and§ < 27%. Furthermore, we feel that the case that is more importarpriactice is

the case where the size of the source spatzdsr than the inverse of the allowed error probability.

As to strongly secure AMD codes, with this notion of (&, ¢, \) m-EDF one could at best guarantee
an error of at most, since it seems that one cannot rule out that thereds@ G and aV; such that the
intersection betweel; + A and some othev; has cardinality).

In conclusion, our notion of differential structures, thbusomewhat related to external difference fam-
ilies, captures exactly the case of strongly secure AMD sautel it also paves the way for a wider class of
mathematical constructions due to its relaxed conditions.

D From Weak AMD Codes to Strong AMD Codes

We show how to construct a strong AMD code from any weak AMDecadd a (standard) message authen-
tication code MAC. Consider a systemafienessage authentication code: S x K — 7 where we may

19 The restriction tesystematicodes is not crucial, but it allows to simplify the expositio
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assume, without loss of generality, titahnd7 are groups (e.g. sets of bitstrings of a given length with.xor
In the standard setting, such a code is used to authenticatgrees € S by appending the tag = A(k, s)
with a randomly sampled secret kkéyc IC (known to sender and receiver); integrity of a (possibly mod
fied) pair (s, o) is then checked by verifying # = A(k, §) holds. Letpg be the success probability of the
substitution attack, i.e., the maximum over alkt s’ € S of the probability of successfully substituting
the authenticated by s’.* Furthermore, lef’ : S’ — G’ be aweaklysecure(S’, G/, §')-AMD code with
S’ = K. Consider the following AMD code.

E:8—>8xG xT, s (s, E'k),Ak,s)).

for k € K. The decoding functiorD is obvious: D(s, €', o) outputss if and only if D'(¢/) # 1L and
o=A(D'(¢),s).

Theorem 9. The codef is a (S, G, 0)-AMD code withS = |S|, G = |S||G||T| andé = ¢’ + pg. If the
underlying AMD cod€’ is systematic, thefi = max{d’, ps}.

Proof. Obviously, the sizes of the domain and rangefadre as claimed. It remains to determifieFix
an arbitrarys € S, and an arbitrary translatiod = (A, A, A,) € S x G' x T with A; £ 0. Let
e = (s,e,0) = E(s) = (s,&'(k), A(k,s)) for a randomk. By assumption or€’, the probability that
D'(e+Ay) ¢ {k, L} is at most’. Furthermore, by assumption on the authentication coderbbability
thato + A, = A(k,s + A;) is at mostyg. It follows thatD(e) = s + A, with probability at most’ + pg.
In case of a systemati€, the encoding’ hask as first component, and we can make a case distinction
of whether the corresponding first componeht of A, is zero or not: ifA; # 0 thenD’(¢’) = L except
with probability &', and if Ay, = 0 theno + A, # A(k, s + A) except with probabilityps. O

We now show that this approach is still doomed to give a subvgh AMD code with an effective tag
size separated from the lower bound by essentiatly

Proposition 1. For any strongly secure AMD code obtained via Theorem 9, tieetéve tag size satisfies
@t (k,u) > 4w — 272+

Proof (of Proposition 1)In order to achieve an error probabilify< 27", by Lemma 1, the tag must be
of bit-size at least and the keyk of at least2x. But then, by Corollary 5, the elements ¢ must be of
bit-size at leassx — 272t (namely2x bits for the sourcé plusx — 272t for the tag size of’). This
adds up to the claimed bound. O

E Syndrome Based Construction of Secure Sketch

For completeness, we review the secure sketch construwndiom.

Recall that an efficiently decodalle, &, 2t + 1]-error-correcting (binary) cod€ over{0, 1}" consists
of 2% codewordsC' = {z | Hz = 0}, whereH is the(n — k) x n parity check matrixof C (addition and
multiplication overGF'(2)). Namely, H defines(n — k) linear constraints which are satisfied precisely by
the codewords irC. Moreover, H is chosen in such a way that the Hamming distance betweenwany t
distinct codewords;, z; € C'is at leas®t + 1 (recall, the Hamming distance betweerd € {0, 1}" is the

11 wWe would like to point out that there is some ambiguity in hawmay be precisely defined, with regard to the attacker’s obntr

over the source to be substituted and over the soustavith which he substitutes. The definition used here, which controls
theworst caseis necessary for our application.
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number of symbols such that; # b;). This means, in principle, that any codeward C' can be recovered
from any “corrupted” string:’ within Hamming distance at mosfrom z. In an efficiently decodable code
C, this procedure of recoveringfrom 2’ can be done efficiently.

As it turns out, for our purposes we will only need to know thédwing well known fact about such
efficiently decodablén, k, 2t + 1]-codes: ifz € C anddis(z, 2’) < t, then there is an efficient procedure
Decode that can determine the “error vectar”— = from the(n — k)-bit quantity H 2’. This quantityH 2’ is
also called thesyndrome ot’ and denotedyn(z’).

Coming back to the syndrome construction of the secure Is&stfrom [10], the sketch = SS(w) of
w € {0, 1}"™ consists of thé-bit syndrome ofw with respect to some (efficiently decodable)n — &, 2t +
1]-error-correcting cod€": SS(w) = syn(w) = s. Notice, s is a (deterministic)inear functionof w, and
that the entropy loss of this construction is at mest= n — k. To see the correctness of this cosntruction,
we notice that the recovery functidtec of w from the sketchs and anyw’ of Hamming distance at most
from w is computed as follows:

Rec(w’, s) = w' — Decode(syn(w') — s)

We should also note that this construction extends to thdiféetence metric through sublinear-time encod-
ing and decoding [10] .

F Proof of Lemma 2

Recall that the secure sketch for hamming distance is giygwd functionsyn, Decode

SS(w) = syn(w) = s
Rec(w', s) = w’ — Decode(syn(w') — s)

and thatyn is linear. Hence

A= —w=Rec(w,3) —w
= w' — Decode(syn(w') — 3) —w
= A — Decode(syn(w + A) — 3)
= A — Decode(s + syn(A) — 3)
= f(4,s,3)

wheref is deterministic.
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