
Improving the Security of Quantum Protocols

via Commit-and-Open

Ivan Damg̊ard1, Serge Fehr2,�, Carolin Lunemann1,��,
Louis Salvail3,� � �, and Christian Schaffner2,†

1 DAIMI, Aarhus University, Denmark
{ivan,carolin}@cs.au.dk

2 Centrum Wiskunde & Informatica (CWI) Amsterdam, The Netherlands
{s.fehr,c.schaffner}@cwi.nl
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Abstract. We consider two-party quantum protocols starting with a
transmission of some random BB84 qubits followed by classical messages.
We show a general “compiler” improving the security of such protocols:
if the original protocol is secure against an “almost honest” adversary,
then the compiled protocol is secure against an arbitrary computation-
ally bounded (quantum) adversary. The compilation preserves the num-
ber of qubits sent and the number of rounds up to a constant factor. The
compiler also preserves security in the bounded-quantum-storage model
(BQSM), so if the original protocol was BQSM-secure, the compiled pro-
tocol can only be broken by an adversary who has large quantum memory
and large computing power. This is in contrast to known BQSM-secure
protocols, where security breaks down completely if the adversary has
larger quantum memory than expected. We show how our technique can
be applied to quantum identification and oblivious transfer protocols.

1 Introduction

We consider two-party quantum protocols for mutually distrusting players Al-
ice and Bob. Such protocols typically start by Alice sending n random BB84
qubits to Bob who is supposed to measure them. Then some classical exchange
of messages follows. Several protocols following this pattern have been proposed,
implementing Oblivious Transfer (OT), Commitment, and Password-Based Iden-
tification [1,4,7,8].
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In more details, the first step of the protocol consists of Alice choosing random
binary strings x = x1, ..., xn and θ = θ1, ..., θn. She then prepares n particles
where xi is encoded in the state of the i’th particle using basis θi. Bob chooses a
basis string θ̂ = θ̂1, .., θ̂n and measures the i’th particle in basis θ̂i. If Bob plays
honestly, he learns xi whenever θ̂i = θi and else gets a random independent
result.

Protocols of the form we consider here are typically unconditionally secure
against cheating by Alice, but can (in their basic form) be broken easily by Bob,
if he does not measure the qubits immediately. This is because the protocol
typically asks Alice to reveal θ at a later stage, and Bob can then measure the
qubits with θ̂ = θ and learn more information than he was supposed to.

In this paper, we show a general “compiler” that can be used to improve se-
curity against such an attack. We assume that the original protocol implements
some two-party functionality F with statistical security against Bob if he is be-
nign, meaning that he treats the qubits “almost honestly”, a notion we make
more precise below. Then we show that the compiled protocol also implements
F , but now with security against any computationally bounded (quantum) Bob
(note that we cannot in general obtain unconditional security against both Alice
and Bob, not even using quantum communication [13]). The compiled proto-
col preserves unconditional security against Alice and has the same number of
transmitted qubits and rounds as the original one up to a constant factor.

By benign behavior of Bob, we mean that after having received the qubits,
two conditions are satisfied: First, Bob’s quantum storage is essentially of size
zero (note that it would be exactly zero if he had measured the qubits). Second,
there exists a basis string θ̂ such that the uncertainty about x is essentially as it
would be if Bob had really measured in bases θ̂, namely 1 bit for every position
where θ̂ differs from θ.

Thus, with our compiler, one can build a protocol for any two-party function-
ality by designing a protocol that only has to be secure if Bob is benign. We
note that proofs for known protocols typically go through under this assumption.
For instance, our compiler can easily be applied to the quantum identification
protocols of [7] and the OT protocol of [1].

The compiler is based on a computational assumption; namely we assume the
existence of a classical commitment scheme with some special properties, similar
to the commitment schemes used in [5] but with an additional extraction prop-
erty, secure against a quantum adversary. A good candidate is the cryptosystem
of Regev [16]. For efficiency, we use a common reference string which allows us
to use Regev’s scheme in a simple way and, since it is relatively efficient, we get
a protocol that is potentially practical. It is possible to generate the reference
string from scratch, but this requires a more complicated non-constant round
protocol [9].

The reader may ask whether it is really interesting to improve the security of
quantum protocols for classical tasks such as identification or OT using a com-
putational assumption. Perhaps it would be a more practical approach to use the
same assumption to build classical protocols for the same tasks, secure against
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quantum attacks? To answer this, it is important to point out that our compiler
also preserves security in the bounded-quantum-storage model (BQSM) [6], and
this feature allows us to get security properties that classical protocols cannot
achieve. In the BQSM, one assumes that Bob can only keep in his quantum
memory a limited number of qubits received from Alice. With current state of
the art, it is much easier to transmit and measure qubits than it is to store
them for a non-negligible time, suggesting that the BQSM and the subsequently
proposed noisy-quantum-storage model [20] are reasonable. On the other hand,
if the assumption fails and the adversary can perfectly store all qubits sent, the
known protocols can be easily broken. In contrast, by applying our compiler, one
obtains new protocols where the adversary must have large quantum storage and
large computing power to break the protocol.1

The basic technique we use to construct the compiler was already suggested
in connection with the first quantum OT protocol from [1]: we try to force Bob
to measure by asking him to commit (using a classical scheme) to all his basis
choices and measurement results, and open some of them later. While classical
intuition suggests that the commitments should force Bob to measure (almost)
all the qubits, it has proved very tricky to show that the approach really works
against a quantum adversary. In fact, it was previously very unclear what exactly
the commit-and-open approach forces Bob to do. Although some partial results
for OT have been shown [21,2], the original OT protocol from [1] has never been
proved secure for a concrete unconditionally hiding commitment scheme – which
is needed to maintain unconditional security against Alice. In this paper, we
develop new quantum information-theoretic tools (that may be of independent
interest) to characterize what commit-and-open achieves in general, namely it
forces Bob to be benign. This property allows us to apply the compiler to any
two-party functionality and in particular to show that the OT from [1] is indeed
secure when using an appropriate commitment scheme.

2 Preliminaries

We assume the reader to be familiar with the basic notation and concepts of
quantum information processing [14]. In this paper, the computational or + -
basis is defined by the pair {|0〉, |1〉} (also written as {|0〉+, |1〉+}). The pair
{|0〉×, |1〉×} denotes the diagonal or ×-basis, where |0〉× = (|0〉 + |1〉)/√2 and
|1〉× = (|0〉 − |1〉)/√2. We write |x〉θ = |x1〉θ1

⊗· · ·⊗ |xn〉θn
for the n-qubit state

where string x = (x1, . . . , xn) ∈ {0, 1}n is encoded in bases θ = (θ1, . . . , θn) ∈
{+,×}n. For S ⊆ {1, . . . , n} of size s, we denote by S̄ : = {1, . . . , n}\S the
complement of S and define x|S ∈ {0, 1}s and θ|S ∈ {+,×}s to be the restrictions
(xi)i∈S and (θi)i∈S , respectively. For two strings x, y ∈ {0, 1}n, we define the
Hamming distance between x and y as dH(x, y) := |{i : xi �= yi}|.
1 For the case of identification[7], the compiled protocol is not only secure against

adversaries trying to impersonate Alice or Bob, but can also be made secure against
man-in-the-middle attacks, where again the adversary must have large quantum
storage and large computing power to break the protocol.
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We use upper case letters for the random variables in the proofs that describe
the respective values in the protocol. Given a bipartite quantum state ρXE , we
say that X is classical if ρXE is of the form ρXE =

∑
x∈X PX(x)|x〉〈x| ⊗ ρx

E for
a probability distribution PX over a finite set X , i.e. the state of the quantum
register E depends on the classical random variable X in the sense that E is in
state ρx

E exactly if X = x. This naturally extends to states with two or more
classical registers.

For a state ρXE as above, X is independent of register E if ρXE = ρX ⊗ ρE ,
where ρX =

∑
x PX(x)|x〉〈x| and ρE =

∑
x PX(x)ρx

E . We also need to express
that a random variable X is independent of a quantum state E when given a
random variable Y . Independence means that when given Y , the state E gives
no additional information on X . Formally, adopting the notion introduced in [7],
we require that ρXY E equals ρX↔Y ↔E , where the latter is defined as

ρX↔Y ↔E :=
∑

x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E ,

where ρy
E :=

∑
x PX|Y (x|y)ρx,y

E . In other words, ρXY E = ρX↔Y ↔E precisely if
ρx,y

E = ρy
E for all x and y.

Full (conditional) independence is often too strong a requirement, and it usu-
ally suffices to be “close” to such a situation. Closeness of two states ρ and σ is
measured in terms of their trace distance δ(ρ, σ) = 1

2 tr(|ρ − σ|), where for any
operator A, |A| is defined as |A| :=

√
AA†.

A quantum algorithm consists of a family {Cn}n∈N of quantum circuits and
is said to run in polynomial time, if the number of gates of Cn is polynomial in
n. Two families of quantum states {ρn}n∈N and {σn}n∈N are called quantum-
computationally indistinguishable, denoted ρ

q≈ σ, if any polynomial-time quan-
tum algorithm has negligible advantage (in n) of distinguishing ρn from σn.
Analogously, we call them statistically indistinguishable, ρ

s≈ σ, if their trace
distance δ(ρn, σn) is negligible in n.

Definition 2.1 (Min-Entropy). The min-entropy of a random variable X
with probability distribution PX is defined as H∞(X) := − log

(
maxx PX(x)

)
.

Definition 2.2 (Max-Entropy). The max-entropy of a density matrix ρ is
defined as H0(ρ) := log

(
rank(ρ)

)
.

We will make use of the following properties of a pure state that can be written as
a “small superposition” of basis vectors; the proof is given in the full version [3].

Lemma 2.3. Let |ϕAE〉 ∈ HA ⊗ HE be of the form |ϕAE〉 =
∑

i∈J αi|i〉|ϕi
E〉,

where {|i〉}i∈I is a basis of HA and J ⊆ I. Then, the following holds.

1. Let ρ̃AE =
∑

i∈J |αi|2|i〉〈i| ⊗ |ϕi
E〉〈ϕi

E |, and let W and W̃ be the outcome of
measuring A of |ϕAE〉 respectively of ρ̃AE in some basis {|w〉}w∈W . Then,

H∞(W ) ≥ H∞(W̃ ) − log |J | .
2. The reduced density matrix ρE = trA(|ϕAE〉〈ϕAE |) has max-entropy

H0(ρE) ≤ log |J | .
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3 Definition of Security

In order to define security of our two-party protocols, we follow the framework
put forward by Fehr and Schaffner in [10]. We are interested in quantum protocols
that implement classical functionalities such as oblivious transfer. Such primi-
tives are often used as building blocks in more complicated classical (multi-party)
protocols which implement advanced tasks. Therefore, it is natural to restrict
our focus on quantum protocols that run in a classical environment and have
classical in- and outputs. A two-party quantum protocol Π = (Am,Bm) consists
of an infinite family of interactive quantum circuits for players Alice and Bob
indexed by the security parameter m (in our case, m will also be the number
of qubits transmitted). To ease notation, we often leave the dependence on m
implicit. A classical non-reactive two-party ideal functionality F is given by a
conditional probability distribution PF(U,V )|UV , inducing a pair of random vari-
ables (X,Y ) = F(U, V ) for every joint distribution of U and V . The definition
of correctness of a protocol is straightforward.

Definition 3.1 (Correctness). A protocol Π = (A,B) correctly implements
an ideal classical functionality F , if for every distribution of the input values U
and V , the resulting common output satisfies

(U, V, (X,Y ))
s≈ (U, V,F(U, V )) .

Let us denote by outF
Â,B̂

the joint output2 of the “ideal-life” protocol, where Alice
and Bob forward their inputs to F and output whatever they obtain from F .
And we write outF

Â,B̂′ for the joint output of the execution of this protocol with

a dishonest Bob with strategy B̂′ (and similarly for a dishonest Alice). Note
that Bob’s possibilities in the ideal world are very limited: he can produce some
classical input V for F from his input quantum state V ′, and then he can prepare
and output a quantum state Y ′ which might depend on F ’s classical reply Y .

3.1 Information-Theoretic Security

We define information-theoretic security using the real/ideal-world paradigm,
which requires that by attacking a protocol in the real world the dishonest party
cannot achieve (significantly) more than when attacking the corresponding func-
tionality in the ideal world. To be consistent with the framework used in [10],
we restrict the joint input state, consisting of a classical input to the honest
party and a possibly quantum input to the dishonest party, to a special form: in
case of a dishonest Bob (and correspondingly for a dishonest Alice), we require
that Bob’s input consists of a classical part Z and a quantum part V ′, such
that the joint state ρUZV ′ satisfies ρUZV ′ = ρU↔Z↔V ′ , i.e., that V ′ is correlated
with Alice’s input only via the classical Z. We call a joint input state of that
form (respectively of the form ρU ′ZV = ρU ′↔Z↔V in case of dishonest Alice) a
2 We use a slightly different notation here than in [10]. Our notation outF

Â,B̂
does not

mention the name of the input registers and corresponds to (FÂ,B̂)ρUV in [10].
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legitimate input state. As shown in [10], this restriction on the input state leads
to a meaningful security definition with a composition theorem that guarantees
sequential composition within classical outer protocols. Furthermore, the results
of Section 4 also hold when quantifying over all (possibly non-legitimate) joint
input states.

Definition 3.2 (Unconditional security against dishonest Alice). A pro-
tocol Π = (A,B) implements an ideal classical functionality F unconditionally
securely against dishonest Alice, if for any real-world adversary A′ there exists
an ideal-world adversary Â′ such that for any legitimate input state, it holds that
the outputs in the real and ideal world are statistically indistinguishable, i.e.

outΠA′,B
s≈ outF

Â′,B̂ .

Definition 3.3 (Unconditional security against dishonest Bob). A pro-
tocol Π = (A,B) implements an ideal classical functionality F unconditionally
securely against dishonest Bob, if for any real-world adversary B′ there exists an
ideal-world adversary B̂′ such that for any legitimate input state, it holds that
the outputs in the real and ideal world are statistically indistinguishable, i.e.

outΠA,B′
s≈ outF

Â,B̂′ .

It has been shown in Theorem 5.1 in [10] that protocols fulfilling the above
definitions compose sequentially as follows. For a classical real-life protocol Σ
which makes at most k oracle calls to functionalities F1, . . . ,Fk, it is guaranteed
that whatever output Σ produces, the output produced when the oracle calls
are replaced by ε-secure protocols is at distance at most O(kε).

3.2 Computational Security in the CRS Model

One can define security against a computationally bounded dishonest Bob anal-
ogously to information-theoretic security with the two differences that the input
given to the parties has to be sampled by an efficient quantum algorithm and
that the output states should be computationally indistinguishable.

In the common-reference-string (CRS) model, all participants in the real-life
protocol ΠA,B have access to a classical public string ω which is chosen before
any interaction starts according to a distribution only depending on the security
parameter. On the other hand, the participants in the “ideal-life” protocol FÂ,B̂
interacting only with the ideal functionality do not make use of the string ω.
Hence, an ideal-world adversary B̂′, that operates by simulating the real world
to the adversary B′, is free to choose ω in any way he wishes.

In order to define computational security against a dishonest Bob in the CRS
model, we consider a polynomial-size quantum circuit, called input sampler,
which takes as input the security parameter m and the CRS ω (chosen accord-
ing to its distribution) and produces the input state ρUZV ′ ; U is Alice’s classical
input to the protocol, and Z and V ′ denote the respective classical and quan-
tum information given to dishonest Bob. We call the input sampler legitimate if
ρUZV ′ = ρU↔Z↔V ′ .
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In the following and throughout the article, we let Bpoly be the family of all
polynomial-time quantum strategies for dishonest Bob B′.

Definition 3.4 (Computational security against dishonest Bob). A pro-
tocol Π = (A,B) implements an ideal classical functionality F computationally
securely against dishonest Bob, if for any real-world adversary B′ ∈ Bpoly who
has access to the common reference string ω, there exists an ideal-world adver-
sary B̂′ ∈ Bpoly not using ω such that for any efficient legitimate input sampler,
it holds that the outputs in the real and ideal world are q-indistinguishable, i.e.

outΠA,B′
q≈ outF

Â,B̂′ .

In the full version [3], we show that also the computational security definition,
as given here, allows for (sequential) composition of quantum protocols into
classical outer protocols.

4 Improving the Security via Commit-and-Open

4.1 Security Against Benign Bob

In this paper, we consider quantum two-party protocols that follow a particular
but very typical construction design. These protocols consist of two phases, called
preparation and post-processing phase, and are as specified in Figure 1. We call
a protocol that follows this construction design a BB84-type protocol.

Protocol Π

Preparation: A chooses x ∈R {0, 1}n and θ ∈R {+,×}n and sends |x〉θ to B, and

B chooses θ̂ ∈R {+,×}n and obtains x̂ ∈ {0, 1}n by measuring |x〉θ in basis θ̂.

Post-processing: Arbitrary classical communication and local computations.

Fig. 1. Generic BB84-type quantum protocol Π

The following definition captures information-theoretic security against a
somewhat mildly dishonest Bob who we call a benign (dishonest) Bob. Such
a dishonest Bob is benign in that, in the preparation phase, he does not deviate
too much from what he is supposed to do; in the post-processing phase though,
he may be arbitrarily dishonest.

To make this description formal, we fix an arbitrary choice of θ and an arbi-
trary value for the classical information, z, which B′ may obtain as a result of
the preparation phase (i.e. z = (θ̂, x̂) in case B′ is actually honest). Let X denote
the random variable describing the bit-string x, where we understand the distri-
bution PX of X to be conditioned on the fixed values of θ and z. Furthermore,
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let ρE be the state of B′’s quantum register E after the preparation phase. Note
that, still with fixed θ and z, ρE is of the form ρE =

∑
x PX(x)ρx

E , where ρx
E

is the state of B′’s quantum register in case X takes on the value x. In general,
the ρx

E ’s may be mixed, but we can think of them as being reduced pure states:
ρx

E = trR(|ψx
ER〉〈ψx

ER|) for a suitable register R and pure states |ψx
ER〉; we then

call the state ρER =
∑

x PX(x)|ψx
ER〉〈ψx

ER| a pointwise purification (with respect
to X) of ρE .

Obviously, in case B′ is honest, Xi is fully random whenever θi �= θ̂i, so that
H∞

(
X |I

∣
∣X |Ī = x|Ī

)
= dH

(
θ|I , θ̂|I

)
for every I ⊆ {1, . . . , n} and every x|I ,

and B′ does not store any non-trivial quantum state so that R is “empty” and
H0(ρER) = H0(ρE) = 0. A benign Bob B′ is now specified to behave close-
to-honestly in the preparation phase: he produces an auxiliary output θ̂ after
the preparation phase, and given this output, we are in a certain sense close to
the ideal situation where Bob really measured in basis θ̂ as far as the values of
H∞

(
X |I

∣
∣X |Ī = x|Ī

)
and H0(ρER) are concerned.3 We now make this precise:

Definition 4.1 (Unconditional security against benign Bob). A BB84-
type quantum protocol Π securely implements F against a β-benign Bob for
some parameter β ≥ 0, if it securely implements F according to Definition 3.3,
with the following two modifications:

1. The quantification is over all B′ with the following property: after the prepara-
tion phase B′ either aborts, or else produces an auxiliary output θ̂ ∈ {+,×}n.
Moreover, the joint state of A,B′ (after θ̂ has been output) is statistically in-
distinguishable from a state for which it holds that for any fixed values of θ,
θ̂ and z, for any subset I ⊆ {1, . . . , n}, and for any x|Ī
H∞

(
X |I

∣
∣X |Ī = x|Ī

) ≥ dH

(
θ|I , θ̂|I

) − βn and H0

(
ρER

) ≤ βn (1)

where ρER is the pointwise purification of ρE with respect to X.
2. B̂′’s running-time is polynomial in the running-time of B′.

4.2 From Benign to Computational Security

We show a generic compiler which transforms any BB84-type protocol into a new
quantum protocol for the same task. The compiler achieves that if the original
protocol is unconditionally secure against dishonest Alice and unconditionally
secure against benign Bob, then the compiled protocol is still unconditionally
secure against dishonest Alice and it is computationally secure against arbitrary
dishonest Bob.

The idea behind the construction of the compiler is to incorporate a commit-
ment scheme and force Bob to behave benignly by means of a commit-and-open

3 The reason why we consider the pointwise purification of ρE is to prevent Bob from
artificially blowing up H0(ρER) by locally generating a large mixture or storing an
unrelated mixed input state.
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procedure. Figure 2 shows the compilation of an arbitrary BB84-type proto-
col Π . The quantum communication is increased from n to m = n/(1 − α)
qubits, where 0 < α < 1 is some additional parameter that can be arbitrarily
chosen. The compiled protocol also requires 3 more rounds of interaction.

Protocol Cα(Π)

Preparation: A chooses x ∈R {0, 1}m and θ ∈R {+,×}m and sends |x〉θ to B.

Then, B chooses θ̂ ∈R {+,×}m and obtains x̂ ∈ {0, 1}m by measuring |x〉θ in

basis θ̂.

Verification: 1. B commits to θ̂ and x̂ position-wise: ci : = Commit
(
(θ̂i, x̂i), ri

)

with randomness ri for i = 1, . . . , m. He sends the commitments to A.
2. A sends a random test subset T ⊂ {1, . . . , m} of size αm. B opens ci for

all i ∈ T , and A checks that the openings were correct and that xi = x̂i

whenever θi = θ̂i. If all tests are passed, A accepts, otherwise, she rejects
and aborts.

3. The tested positions are discarded by both parties: A and B restrict x and
θ, respectively θ̂ and x̂, to i ∈ T̄ .

Post-processing: As in Π (with x, θ, x̂ and θ̂ restricted to the positions i ∈ T̄ ).

Fig. 2. Compiled protocol Cα(Π)

We need to specify what kind of commitment scheme to use. In order to pre-
serve unconditional security against dishonest Alice, the commitment scheme
needs to be unconditionally hiding, and so can at best be computationally bind-
ing. However, for a plain computationally binding commitment scheme, we do
not know how to reduce the computational security of Cα(Π) against dishonest
Bob to the computational binding property of the commitment scheme.4 There-
fore, we use a commitment scheme with additional properties: we require a keyed
commitment scheme Commitpk, where the corresponding public key pk is gener-
ated by one of two possible key-generation algorithms: GH or GB. For a key pkH
generated by GH, the commitment scheme CommitpkH is unconditionally hiding,
whereas the other generator, GB, actually produces a key pair (pkB, sk), so that
the secret key sk allows to efficiently extract m from CommitpkB(m, r), and as
such CommitpkB is unconditionally binding. Furthermore, we require pkH and pkB
to be computationally indistinguishable, even against quantum attacks. We call
such a commitment scheme a dual-mode commitment scheme.5 As a candidate
for implementing such a system, we propose the public-key encryption scheme of
Regev [16], which is based on a worst-case lattice assumption and is not known

4 Classically, this would be done by a rewinding argument, but this fails to work for
a quantum Bob.

5 The notions of dual-mode cryptosystems and of meaningful/meaningless encryptions,
as introduced in [15] and [12], are similar in spirit but differ slightly technically.
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to be breakable even by (efficient) quantum algorithms. Regev does not explic-
itly state that the scheme has the property we need, but this is implicit in his
proof that the underlying computational assumption implies semantic security.
For simplicity and efficiency, we consider the common-reference-string model,
and we assume the key pkB for the commitment scheme, generated according
to GB, to be contained in the CRS. We sketch in Section 6 how to avoid the
CRS model, at the cost of a non constant-round construction where the parties
generate the CRS jointly by means of a coin-tossing protocol (see [9] for details).

We sometimes write Cα
pkH(Π) for the compiled protocol Cα(Π) to stress that

a key pkH produced by GH is used for the dual-mode commitment scheme, and
we write Cα

pkB(Π) when a key pkB produced by GB is used instead.

Theorem 4.2. Let Π be a BB84-type protocol, unconditionally secure against
dishonest Alice and against β-benign Bob for some constant β > 0. Consider the
compiled protocol Cα(Π) for an arbitrary α > 0, where the commitment scheme
is instantiated by a dual-mode commitment scheme as described above. Then,
Cα(Π) is unconditionally secure against dishonest Alice and computationally se-
cure against dishonest Bob in the CRS model.

We now prove this theorem, which assumes noise-free quantum communication;
we explain in Section 4.4 how to generalize it for a noisy quantum channel.
Correctness and unconditional security against dishonest Alice are obvious; the
latter is due to the unconditional hiding property of the commitment scheme. As
for computational security against dishonest Bob, according to Definition 3.4, we
need to prove that for every real-world adversary B′ ∈ Bpoly attacking Cα(Π),
there exists a suitable ideal-world adversary B̂′ ∈ Bpoly attacking F such that

out
Cα(Π)
A,B′

q≈ outF
Â,B̂′ .

First, note that by the computational indistinguishability of pkH and pkB,

out
Cα(Π)
A,B′ = out

Cα
pkH(Π)

A,B′
q≈ out

Cα
pkB(Π)

A,B′ . (2)

Then, we construct an adversary B′◦ ∈ Bpoly who attacks the unconditional
security against benign Bob of protocol Π , and which satisfies

out
Cα
pkB(Π)

A,B′ = outΠA◦,B′◦
, (3)

where A◦ honestly executes Π . We define B′
◦ in the following way. Consider

the execution of Cα(Π) between A and B′. We split A into two players A◦ and
Ã, where we think of Ã as being placed in between A◦ and B′, see Figure 3.
A◦ plays honest Alice’s part of Π while Ã acts as follows: It receives n qubits
from A◦, produces αn/(1 − α) random BB84 qubits of its own and interleaves
them randomly with those received and sends the resulting m = n/(1 − α)
qubits to B′. It then does the verification step of Cα(Π) with B′, asking to have
commitments corresponding to its own qubits opened. If this results in accept,
it lets A◦ finish the protocol with B′. Note that the pair (A◦, Ã) does exactly the
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same as A; however, we can also move the actions of Ã to Bob’s side, and define
B′
◦ as follows. B′

◦ samples (pkB, sk) according to GB and executes Π with A by
locally running Ã and B′, using pkB as CRS. If Ã accepts the verification then
B′
◦ outputs θ̂ ∈ {0, 1}n (as required from a benign Bob), obtained by decrypting

the unopened commitments with the help of sk; else, B′
◦ aborts at this point. It

is now clear that Equation (3) holds: exactly the same computation takes place
in both “experiments”, the only difference being that they are executed partly
by different entities. The last step is to show that

outΠA◦,B′◦

s≈ outF
Â,B̂′ , (4)

for some B̂′. It is clear that the theorem follows from (2) - (4) together.

A◦ Ã B′
Π

Cα(Π)

A

B′
◦

Fig. 3. Constructing an attacker B′
◦ against Π from an attacker B′ against Cα(Π)

Now (4) actually claims that Â, B̂′ successfully simulate A◦ and B′◦ executing
Π , and this claim follows by assumption of benign security of Π if we show that
B′◦ is β-benign according to Definition 4.1 for any β > 0. We show this in the
following subsection, i.e., the joint state of A◦,B′

◦ after the preparation phase is
statistically indistinguishable from a state ρIdeal which satisfies the bounds (1)
from Definition 4.1.

4.3 Completing the Proof: Bounding Entropy and Memory Size

First recall that A◦ executing Π with B′
◦ can equivalently be thought of as A

executing Cα
pkB(Π) with B′. Furthermore, a joint state of A,B′ is clearly also a

joint state of A◦,B′
◦.

To show the existence of ρIdeal as promised above, it therefore suffices to
show such a state for A,B′. In other words, we need to show that the execution
of Cα

pkB(Π) with honest Alice A and arbitrarily dishonest Bob B′ will, after verifi-
cation, be close to a state where (1) holds. To show this closeness, we consider an
equivalent EPR-pair version, where Alice creates m EPR pairs (|00〉+ |11〉)/√2,
sends one qubit in each pair to Bob and keeps the others in register A. Alice mea-
sures her qubits only when needed: she measures the qubits within T in Step 2
of the verification phase, and the remaining qubits at the end of the verification
phase. With respect to the information Alice and Bob obtain, this EPR version
is identical to the original protocol Cα

pkB(Π): the only difference is the point in
time when Alice obtains certain information. Furthermore, we can also do the
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following modification without affecting (1). Instead of measuring her qubits in
T in her basis θ|T , she measures them in Bob’s basis θ̂|T ; however, she still ver-
ifies only whether xi = x̂i for those i ∈ T with θi = θ̂i. Because the positions
i ∈ T with θi �= θ̂i are not used in the protocol at all, this change has no effect.
As the commitment scheme is unconditionally binding if key pkB is used, Bob’s
basis θ̂ is well defined by his commitments (although hard to compute), even if
Bob is dishonest. The resulting scheme is given in Figure 4.

Protocol EPR-Cα
pkB(Π)

Preparation: A prepares m EPR pairs and sends the second qubit in each pair
to Bob while keeping the others in register A = A1 · · ·Am. B chooses θ̂ ∈R

{+,×}m and obtains x̂ ∈ {0, 1}m by measuring the received qubits in basis θ̂.

Verification: 1. B commits to θ̂ and x̂ position-wise: ci : = Commit
(
(θ̂i, x̂i), ri

)

with randomness ri for i = 1, . . . , m. He sends the commitments to A.
2. A sends a random test subset T ⊂ {1, . . . , m} of size αm. B opens ci for

all i ∈ T . A chooses θ ∈R {+,×}m, measures registers Ai with i ∈ T in
basis θ̂i to obtain xi, and she checks that the openings were correct and
that xi = x̂i whenever θi = θ̂i for i ∈ T . If all tests are passed, A accepts,
otherwise, she rejects and aborts the protocol.

3. A measures the remaining registers in basis θ|T̄ to obtain x|T̄ . The tested
positions are discarded by both parties: A and B restrict x and θ, respec-
tively θ̂ and x̂, to the positions i ∈ T̄ .

Post-processing: As in Π (with x, θ, x̂ and θ̂ restricted to the positions i ∈ T̄ ).

Fig. 4. EPR version of Cα
pkB(Π)

We consider an execution of the scheme from Figure 4 with an honest Alice A
and a dishonest Bob B′, and we fix θ̂ and x̂, determined by Bob’s commitments.
Let |ϕAE〉 ∈ HA ⊗ HE be the state of the joint system right before Step 2
of the verification phase. Since in the end, we are anyway interested in the
pointwise purification of Bob’s state, we may indeed assume this state to be
pure; if it is not, then we purify it and carry the purifying register R along with
E. Clearly, if B′ had honestly done his measurements then |ϕAE〉 = |x̂〉θ̂ ⊗ |ϕE〉
for some |ϕE〉 ∈ HE . In this case, the quantum memory E would be empty:
H0(|ϕE〉〈ϕE |) = 0. Moreover, X , obtained by measuring A|T̄ in basis θ|T̄ , would
contain dH(θ|T̄ , θ̂|T̄ ) random bits. We show that the verification phase enforces
these properties, at least approximately in the sense of (1), for an arbitrary
dishonest Bob B′.

In the following, rH(·, ·) denotes the relative Hamming distance between two
strings, i.e., the Hamming distance divided by their length. Recall that T ⊂
{1, . . . ,m} is random subject to |T | = αm. Furthermore, for a fixed θ̂ but a
randomly chosen θ, the subset T ′ = {i ∈ T : θi = θ̂i} is a random subset
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(of arbitrary size) of T . Let the random variable Test describe the choice of
test = (T, T ′) as specified above, and consider the state

ρTestAE = ρTest ⊗ |ϕAE〉〈ϕAE | =
∑

test

PTest(test)|test〉〈test| ⊗ |ϕAE〉〈ϕAE |

consisting of the classical Test and the quantum state |ϕAE〉.

Lemma 4.3. For any ε > 0, x̂ ∈ {0, 1}m and θ̂ ∈ {+,×}m, the state ρTestAE is
negligibly close (in m) to a state

ρ̃TestAE =
∑

test

PTest(test)|test〉〈test| ⊗
∣
∣ϕ̃test

AE

〉〈
ϕ̃test

AE

∣
∣

where for any test = (T, T ′):

∣
∣ϕ̃test

AE

〉
=

∑

x∈Btest

αtest
x |x〉θ̂|ψx

E〉

for Btest = {x ∈ {0, 1}m | rH(x|T̄ , x̂|T̄ ) ≤ rH(x|T ′ , x̂|T ′) + ε} and arbitrary coef-
ficients αtest

x ∈ C.

In other words, we are close to a situation where for any choice of T and T ′

and for any outcome x|T when measuring A|T in basis θ̂|T , the relative error
rH(x|T ′ , x̂|T ′) gives an upper bound (which holds with probability 1) on the
relative error rH(x|T̄ , x̂|T̄ ) one would obtain by measuring the remaining sub-
systems Ai with i ∈ T̄ in basis θ̂i.

Proof. For any test we let |ϕ̃test
AE〉 be the renormalized projection of |ϕAE〉 into

the subspace span{|x〉θ̂ |x ∈ Btest} ⊗ HE and let |ϕ̃test⊥
AE 〉 be the renormal-

ized projection of |ϕAE〉 into the orthogonal complement, such that |ϕAE〉 =
εtest|ϕ̃test

AE〉 + ε⊥test|ϕ̃test⊥
AE 〉 with εtest = 〈ϕ̃test

AE |ϕAE〉 and ε⊥test = 〈ϕ̃test⊥
AE |ϕAE〉. By

construction, |ϕ̃test
AE〉 is of the form required in the statement of the lemma. A

basic property of the trace norm of pure states gives

δ
(|ϕAE〉〈ϕAE |, ∣∣ϕ̃test

AE

〉〈
ϕ̃test

AE

∣
∣
)

=
√

1 − |〈ϕ̃test
AE

∣
∣ϕAE

〉|2 = |ε⊥test| .

This last term corresponds to the square root of the probability, when given
test, to observe a string x �∈ Btest when measuring subsystem A of |ϕAE〉 in
basis θ̂. Furthermore, using elementary properties of the trace norm and Jensen’s
inequality gives

δ
(
ρTestAE , ρ̃TestAE

)2 =
( ∑

test

PTest(test) δ
(|ϕAE〉〈ϕAE |, ∣∣ϕ̃test

AE

〉〈
ϕ̃test

AE

∣
∣
)
)2

=
( ∑

test

PTest(test) |ε⊥test|
)2

≤
∑

test

PTest(test) |ε⊥test|2 ,
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where the last term is the probability to observe a string x �∈ Btest when choosing
test according to PTest and measuring subsystem A of |ϕAE〉 in basis θ̂. This
situation, though, is a classical sampling problem, for which it is well known
that for any measurement outcome x, the probability (over the choice of test)
that x �∈ Btest is negligible in m (see e.g. [11]). 
�
In combination with Lemma 2.3 on “small superpositions of product states”, and
writing h for the binary entropy function h(μ) = −(

μ log(μ)+(1−μ) log(1−μ)
)

as well as using that
∣
∣{y ∈ {0, 1}n | dH(y, ŷ) ≤ μn}∣∣ ≤ 2h(μ)n for any ŷ ∈ {0, 1}n

and 0 ≤ μ ≤ 1
2 , we can conclude the following (the proof is given in [3]).

Corollary 4.4. Let ρ̃TestAE be of the form as in Lemma 4.3 (for given ε, x̂
and θ̂). For any fixed test = (T, T ′) and for any fixed x|T ∈ {0, 1}αm with
err := rH(x|T ′ , x̂|T ′) ≤ 1

2 , let |ψAE〉 be the state to which |ϕ̃test
AE〉 collapses when

for every i ∈ T subsystem Ai is measured in basis θ̂i and xi is observed, where we
understand A in |ψAE〉 to be restricted to the registers Ai with i ∈ T̄ . Finally, let
σE = trA(|ψAE〉〈ψAE |) and let the random variable X describe the outcome when
measuring the remaining n = (1−α)m subsystems of A in basis θ|T̄ ∈ {+,×}n.
Then, for any subset I ⊆ {1, . . . , n} and any x|I ,6

H∞
(
X |I

∣
∣X |Ī = x|Ī

) ≥ dH

(
θ|I , θ̂|I

)−h(err+ε)n and H0

(
σE

) ≤ h(err+ε)n .

Thus, the number of errors between the measured x|T ′ and the given x̂|T ′ gives
us a bound on the min-entropy of the outcome when measuring the remaining
subsystems of A, and on the max-entropy of the state of subsystem E.

The claim to be shown now follows by combining Lemma 4.3 and Corollary 4.4.
Indeed, the ideal state ρIdeal we promised is produced by putting A and B′ in the
state ρ̃TestAE defined in Lemma 4.3, and running Steps 2 and 3 of the verification
phase. This state is negligibly close to the real state since by Lemma 4.3 we were
negligibly close to the real state before these operations. Corollary 4.4 guarantees
that (1) is satisfied.

4.4 In the Presence of Noise

In the description of the compiler Cα and in its analysis, we assumed the quan-
tum communication to be noise-free. Indeed, if the quantum communication is
noisy honest Alice is likely to reject an execution with honest Bob. It is straight-
forward to generalize the result to noisy quantum communication: In Step 2 in
the verification phase of Cα(Π), Alice rejects and aborts if the relative number
of errors between xi and x̂i for i ∈ T with θi = θ̂i exceeds the error probability
φ induced by the noise in the quantum communication by some small ε′ > 0.
By Hoeffding’s inequality [11], this guarantees that honest Alice does not reject
honest Bob except with exponentially small probability. Furthermore, proving
the security of this “noise-resistant” compiler goes along the exact same lines

6 Below, θ|I (and similarly θ̂|I) should be understood as first restricting the m-bit
vector θ to T̄ , and then restricting the resulting n-bit vector θ|T̄ to I : θ|I := (θ|T̄ )|I .
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as for the original compiler. The only difference is that when applying Corol-
lary 4.4, the parameter err has to be chosen as err = φ + ε′, so that (1) holds
for β = h(err + ε) = h(φ + ε′ + ε) and thus the claim of Theorem 4.2 hold for
any β > h(φ) (by choosing ε, ε′ > 0 small enough). This allows us to generalize
the results from the Section 5 to the setting of noisy quantum communication.

4.5 Bounded-Quantum-Storage Security

In this section we show that our compiler preserves security in the bounded-
quantum-storage model (BQSM). In this model, one of the players (Bob in our
case) is assumed be able to store only a limited number of qubits beyond a certain
point in the protocol. BQSM-secure OT and identification protocols are known
[4,7], but they can be efficiently broken if the memory bound does not hold.
Therefore, by the theorem below, applying the compiler produces protocols with
better security, namely the adversary needs large quantum storage and large
computing power to succeed.

Consider a BB84-type protocol Π , and for a constant 0 < γ < 1, let Bγ
bqsm(Π)

be the set of dishonest players B′ that store only γn qubits after a certain point
in Π , where n is the number of qubits sent initially. Protocol Π is said to be
unconditionally secure against γ-BQSM Bob, if it satisfies Definition 3.3 with
the restriction that the quantification is over all dishonest B′ ∈ Bγ

bqsm(Π).

Theorem 4.5. If Π is unconditionally secure against γ-BQSM Bob, then
Cα(Π) (for an 0 < α < 1) is unconditionally secure against γ(1−α)-BQSM Bob.

Proof. Exactly as in the proof of Theorem 4.2, given dishonest Bob B′ attacking
Cα(Π), we construct dishonest Bob B′◦ attacking the original protocol Π . The
only difference here is that we let B′

◦ generate the CRS “correctly” as pkH sam-
pled according to GH. It follows by construction of B′

◦ that outC
α(Π)

A,B′ = outΠA◦,B′◦
.

Also, it follows by construction of B′
◦ that if B′ ∈ B

γ(1−α)
bqsm (Cα(Π)) then B′

◦ ∈
Bγ

bqsm(Π), since B′◦ requires the same amount of quantum storage as B′ but
communicates an α-fraction fewer qubits. It thus follows that there exists B̂′

such that outΠA◦,B′◦

s≈ outF
Â,B̂′ . This proves the claim. 
�

5 Applications

5.1 Oblivious Transfer

We discuss a protocol that securely implements one-out-of-two oblivious transfer
of strings of length � (i.e. 1-2 OT�). In 1-2 OT�, the sender A sends two l-bit
strings s0 and s1 to the receiver B. B can choose which string to receive (sk)
but does not learn anything about the other one (s1−k). On the other hand, A
does not learn B’s choice bit k. The protocol is almost identical to the 1-2 OT1

introduced in [1], but uses hash functions instead of parity values to mask the
inputs s0 and s1. The resulting scheme, called 1-2 QOT�, is presented in Figure 5,
where F denotes a suitable family of universal hash functions with range {0, 1}�

(as specified in [4]). We assume that � = �λn� for some constant λ > 0.
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Protocol 1-2 QOT� :

Preparation: A chooses x ∈R {0, 1}n and θ ∈R {+,×}n and sends |x〉θ to B, and

B chooses θ̂ ∈R {0, 1}n and obtains x̂ ∈ {0, 1}n by measuring |x〉θ in basis θ̂.

Post-processing: 1. A sends θ to B.
2. B partitions all positions 1 ≤ i ≤ n in two subsets according to his choice

bit k ∈ {0, 1}: the “good” subset Ik := {i : θi = θ̂i} and the “bad” subset
I1−k := {i : θi �= θ̂i}. B sends (I0, I1) to A.

3. A sends descriptions of f0, f1 ∈R F together with m0 := s0 ⊕ f0(x|I0) and
m1 := s1 ⊕ f1(x|I1).

4. B computes sk = mk ⊕ fk(x̂|Ik ).

Fig. 5. Protocol for String OT

Theorem 5.1. Protocol 1-2 QOT� is unconditionally secure against β-benign Bob
for any β < 1

8 − λ
2 .

The proof and precise definition of OT security is given in [3]. By combining
Theorem 5.1 with Theorem 4.2, and the results of [4] (realizing that the same
analysis also applies to 1-2 QOT�) with Theorem 4.5, we obtain the following
hybrid-security result.

Corollary 5.2. Let 0 < α < 1 and λ < 1
8 . Then protocol Cα(1-2 QOT�) is

computationally secure against dishonest Bob and unconditionally secure against
γ(1−α)-BQSM Bob with γ < 1

4 − 2λ.

5.2 Password-Based Identification

We want to apply our compiler to the quantum password-based identification
scheme from [7]. Such an identification scheme allows a user A to identify herself
to server B by means of a common (possibly non-uniform and low-entropy)
password w ∈ W , such that dishonest A′ cannot delude honest server B with
probability better then trying to guess the password, and dishonest B′ learns no
information on A’s password beyond trying to guessing it and learn whether the
guess is correct or not.

In [7], using quantum-information-theoretic security definitions, the proposed
identification scheme was proven to be unconditionally secure against arbitrary
dishonest Alice and against quantum-memory-bounded dishonest Bob. In [10] it
was then shown that these security definitions imply simulation-based security
as considered here, with respect to the functionality FID given in Figure 6.7

7 Actually, the definition and proof from [7] guarantees security only for a slightly
weaker functionality, which gives some unfair advantage to dishonest A′ in case she
guesses the password correctly; however, as discussed in [10], the protocol from [7]
does implement functionality FID.



424 I. Damg̊ard et al.

Functionality FID: Upon receiving wA, wB ∈ W from user Alice and from server
Bob, respectively, FID outputs the bit y := (wA

?= wB) to Bob. In case Alice is
dishonest, she may choose wA =⊥ (where ⊥ �∈ W). For any choice of wA the bit
y is also output to dishonest Alice.

Fig. 6. The Ideal Password-Based Identification Functionality

We cannot directly apply our compiler to the identification scheme as given
in [7], since it is not a BB84-type protocol. The protocol does start with a
preparation phase in which Alice sends BB84 qubits to Bob, but Bob does not
measure them in a random basis but in a basis determined by his password
wB ∈ W ; specifically, Bob uses as basis the encoding c(wB) of wB with respect
to a code c : W → {+,×}n with “large” minimal distance. However, it is easy
to transform the original protocol from [7] into a BB84-type protocol without
affecting security: We simply let Bob apply a random shift κ to the code, which
Bob only announces to Alice in the post-processing phase, and then Alice and
Bob complete the protocol with the shifted code. The resulting protocol QID is
described in Figure 7, where F and G are suitable families of (strongly) universal
hash functions (we refer to [7] for the exact specifications). It is not hard to see
that this modification does not affect security as proven in [7] (and [10]).

Protocol QID :

Preparation: A chooses x ∈R {0, 1}n and θ ∈R {+,×}n and sends |x〉θ to B, and

B chooses θ̂ ∈R {0, 1}n and obtains x̂ ∈ {0, 1}n by measuring |x〉θ in basis θ̂.

Post-processing: 1. B computes a string κ ∈ {+,×}n such that θ̂ = c(w)⊕κ (we
think of + as 0 and × as 1 so that ⊕ makes sense). He sends κ to A and
we define c′(w) := c(w) ⊕ κ.

2. A sends θ and f ∈R F to B. Both compute Iw := {i : θi = c′(w)i}.
3. B sends g ∈R G.
4. A sends z := f(x|Iw ) ⊕ g(w) to B.
5. B accepts if and only if z = f(x̂|Iw ) ⊕ g(w).

Fig. 7. Protocol for Secure Password-Based Identification

Theorem 5.3. If the code c : W → {+,×}n can correct at least δn errors in
polynomial-time for a constant δ, then protocol QID is unconditionally secure
against β-benign Bob for any β < δ

4 .

Proof. For any given benign Bob B′, we construct B̂′ as follows. B̂′ runs locally
a copy of B′ and simulates Alice’s actions by running A faithfully except for the
following modifications. After the preparation phase, B̂′ gets θ̂ and κ from B′ and
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attempts to decode θ̂⊕ κ. If this succeeds, it computes w′ such that c(w′) is the
decoded codeword. Otherwise an arbitrary w′ is chosen. Then, B̂′ submits w′ as
Bob’s input wB to FID and receives output y ∈ {0, 1}. If y = 1 then B̂′ faithfully
completes A’s simulation using w′ as w; else, B̂′ completes the simulation by
using a random z′ instead of z. In the end, B̂′ outputs whatever B′ outputs.

We need to show that the state output by B̂′ (respectively B′) above is sta-
tistically close to the state output by B′ when executing QID with real A. Note
that if w′ = wA, then the simulation of A is perfect and thus the two states
are equal. If w′ �= wA then the simulation is not perfect: the real A would use
z = f(x|IwA

)⊕g(wA) instead of random z′. It thus suffices to argue that f(x|Iw )
is statistically close to random and independent of the view of B′ for any fixed
w �= w′. Note that this is also what had to be proven in [7], but under a different
assumption, namely that B′ has bounded quantum memory, rather than that he
is benign; nevertheless, we can recycle part of the proof.

Recall from the definition of a benign Bob that the common state after the
preparation phase is statistically close to a state for which it is guaranteed that
H∞(X |I) ≥ dH(θ|I , θ̂|I)−βn for any I ⊆ {1, . . . , n}, and H0(ρER) ≤ βn. By the
closeness of these two states, switching from the real state to the “ideal” state
(which satisfies these bounds) has only a negligible effect on the state output by
B̂′; thus, we may assume these bounds to hold.

Now, if decoding of θ̂ ⊕ κ succeeded, it is at Hamming distance at most δn
from c(w′). Since the distance from here to the (distinct) codeword c(w) is greater
than 2δn, we see that θ̂ ⊕ κ is at least δn away from c(w). The same is true if
decoding failed, since then θ̂⊕κ is at least δn away from any codeword. It follows
that c′(w) = c(w) ⊕ κ has Hamming distance at least δn from θ̂. Furthermore,
for arbitrary ε > 0 and except with negligible probability, the Hamming distance
between θ|Iw = c′(w)|Iw and θ̂|Iw is at least essentially (δ/2 − ε)n. Therefore,
we can conclude that H∞(X |Iw ) ≥ (δ/2 − ε − β)n and H0(ρER) ≤ βn. But
now, if such bounds hold such that H∞(X |Iw ) −H0(ρER) is positive and linear
in n, which is the case here by the choice of parameters, then we can step into
the proof from [7] and conclude by privacy amplification [17] that z is close to
random and independent of E. This finishes the proof. 
�

By combining Theorem 5.3 with Theorem 4.2, and the results of [7] with Theo-
rem 4.5, we obtain the following hybrid-security result.

Corollary 5.4. Let 0 < α < 1 and |W| ≤ 2νn. If the code c : W → {+,×}n

can correct δn errors for a constant δ > 0 in polynomial-time, then protocol
Cα(QID) is computationally secure against dishonest Bob and unconditionally
secure against γ(1−α)-BQSM Bob with γ < δ

2 − ν.

Families of codes as required in these results, correcting a constant fraction of
errors efficiently and with constant information rate are indeed known, see [18].

In the full version [3], we discuss how to obtain hybrid security against man-
in-the-middle attacks by means of incorporating the techniques used in [7] to
obtain security in the BQSM against such attacks.
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6 Doing without a Common Reference String

We can get rid of the CRS assumption by instead generating a reference string
from scratch using a coin-flip protocol. In [9], such a coin-flip protocol is de-
scribed and proved secure against quantum adversaries using Watrous’ quantum
rewinding method [19]. Note that for our compiler, we want the CRS to be an
unconditionally hiding public key, and when using Regev’s cryptosystem, a uni-
formly random string (as output by the coin-flip) does indeed determine such a
key, except with negligible probability.
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