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Abstract. We study unconditionally secure 1-out-of-2 Oblivious Trans-
fer (1-2 OT). We first point out that a standard security requirement for
1-2 OT of bits, namely that the receiver only learns one of the bits sent,
holds if and only if the receiver has no information on the XOR of the
two bits. We then generalize this to 1-2 OT of strings and show that the
security can be characterized in terms of binary linear functions. More
precisely, we show that the receiver learns only one of the two strings
sent if and only if he has no information on the result of applying any
binary linear function (which non-trivially depends on both inputs) to
the two strings.

We then argue that this result not only gives new insight into the
nature of 1-2 OT, but it in particular provides a very powerful tool for
analyzing 1-2 OT protocols. We demonstrate this by showing that with
our characterization at hand, the reducibility of 1-2 OT (of strings) to a
wide range of weaker primitives follows by a very simple argument. This
is in sharp contrast to previous literature, where reductions of 1-2 OT
to weaker flavors have rather complicated and sometimes even incorrect
proofs.

1 Introduction

1-2 Oblivious-Transfer, 1-2 OT for short, is a two-party primitive which allows a
sender to send two bits (or, more generally, strings) B0 and B1 to a receiver, who
is allowed to learn one of the two according his choice C. Informally, it is required
that the receiver only learns BC but not B1−C (obliviousness), while at the
same time the sender does not learn C (privacy). 1-2 OT was introduced in [28]
(under the name of “multiplexing”) in the context of quantum cryptography,
and, inspired by [25] where a different flavor was introduced, later re-discovered
in [19].

1-2 OT turned out to be very powerful in that it was shown to be sufficient for
secure general two-party computation [22]. On the other hand, it is quite easy to
see that unconditionally secure 1-2 OT is not possible without any assumption.
Even with the help of quantum communication and computation, uncondition-
ally secure 1-2 OT remains impossible [23,24]. As a consequence, much effort
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has been put into constructing unconditionally secure protocols for 1-2 OT us-
ing physical assumptions like (various models for) noisy channels [8,16,12,9], or
a memory bounded adversary [6,17,18]. Similarly, much effort has been put into
reducing 1-2 OT to (seemingly) weaker flavors of OT, like Rabin OT, 1-2 XOT,
etc. [7,3,5,29,4,10].

In this work, we focus on a slightly modified notion of 1-2 OT, which we call
Randomized 1-2 OT, Rand 1-2 OT for short, where the bits (or strings) B0 and
B1 are not input by the sender, but generated uniformly at random during the
Rand 1-2 OT and then output to the sender. It is still required that the receiver
only learns the bit (or string) of his choice, BC , whereas the sender does not learn
any information on C. It is obvious that a Rand 1-2 OT can easily be turned into
an ordinary 1-2 OT simply by using the generated B0 and B1 to mask the actual
input bits (or strings). Furthermore, all known constructions of unconditionally
secure 1-2 OT protocols make (implicitly) the detour via a Rand 1-2 OT.

In a first step, we observe that the obliviousness condition of a Rand 1-2 OT
of bits is equivalent to requiring the XOR B0 ⊕ B1 to be (close to) uniformly
distributed from the receiver’s point of view. The proof is very simple, and
it is kind of surprising that (to the best of our knowledge) this has not been
realized before. We then ask and answer the question whether there is a natural
generalization of this result to Rand 1-2 OT of strings. Note that requiring the
bitwise XOR of the two strings to be uniformly distributed is obviously not
sufficient. We show that the obliviousness condition for Rand 1-2 OT of strings
can be characterized in terms of non-degenerate linear functions (bivariate binary
linear functions which non-trivially depend on both arguments, as defined in
Definition 2): obliviousness holds if and only if the result of applying any non-
degenerate linear function to the two strings is (close to) uniformly distributed
from the receiver’s point of view.

We then show the usefulness of this new understanding of 1-2 OT. We demon-
strate this on the problem of reducing 1-2 OT to weaker primitives. Concretely,
we show that the reducibility of an (ordinary) 1-2 OT to weaker flavors via
a non-interactive reduction follows by a trivial argument from our characteri-
zation of the obliviousness condition. This is in sharp contrast to the current
literature: The proofs given in [3,29,4] for reducing 1-2 OT to 1-2 XOT, 1-2 GOT
and 1-2 UOT (we refer to Section 5 for a description of these flavors of OT) are
rather complicated and tailored to a particular class of privacy-amplifying hash
functions; whether the reductions also work for a less restricted class is left as
an open problem [4, page 222]. And, the proof given in [5] for reducing 1-2 OT
to one execution of a general UOT is not only complicated, but also incorrect,
as we will point out. Thus, our characterization of the obliviousness condition
allows to simplify existing reducibility proofs (and, along the way, to solve the
open problem posed in [4], as well as to improve the reduction parameters in
most cases), but it also allows for new (respectively until now only incorrectly
proven) reductions. Furthermore, our techniques are useful for the construction
and analysis of 1-2 OT protocols in other settings, for instance in the bounded
quantum-storage model [13].
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2 Notation

Let P and Q be two probability distributions over the same domain X . The
variational distance δ

(
P, Q

)
is defined as δ

(
P, Q

)
: = 1

2

∑
x∈X

∣
∣P (x) − Q(x)

∣
∣.

Note that this definition makes sense also for non-normalized distributions, and
indeed we define and use δ

(
P, Q

)
for arbitrary positive-valued functions P and

Q with common domain. In case X is of the form X = U × V , we can expand
δ
(
P, Q

)
to δ

(
P, Q

)
=

∑
u δ

(
P (u, ·), Q(u, ·)) =

∑
v δ

(
P (·, v), Q(·, v)

)
. We write

P ≈ε Q to denote that P and Q are ε-close, i.e., that δ
(
P, Q

) ≤ ε.
For a random variable X it is common to denote its distribution by PX . We

adopt this notation. Alternatively, we also write [X ] for the distribution PX of
X . For two random variables X and Y , whereas [X Y ] naturally denotes the joint
distribution PXY , we write [X ] [Y ] to denote the independent distribution PXY :
(x, y) �→ PX(x)PY (y). Using this notation, X and Y are (close to) independent
if and only if [X Y ] = [X ] [Y ] (respectively [X Y ] ≈ε [X ] [Y ]). We feel that
this notation is sometimes easier to read as it refrains from putting the crucial
information into the subscript.

By unif we denote a uniformly distributed binary random variable (indepen-
dent of anything else), such that Punif(b) = 1

2 for both b ∈ {0, 1}, and unif�

stands for � independent copies of unif.

3 Defining 1-2 OT

3.1 (Randomized) 1-2 OT of Bits

Formally capturing the intuitive understanding of the security of 1-2 OT is a
non-trivial task. We adopt the security definition of [11], where it is argued that
this definition is the “right” way to define unconditionally secure 1-2 OT. In their
model, a secure 1-2 OT protocol is as good as an ideal 1-2 OT functionality.

In this paper, we will mainly focus on a slight modification of 1-2 OT, which
we call Randomized 1-2 OT (although Sender-randomized 1-2 OT would be a
more appropriate, but also rather lengthy name). A Randomized 1-2 OT, or
Rand 1-2 OT for short, essentially coincides with an (ordinary) 1-2 OT, except
that the two bits B0 and B1 are not input by the sender but generated uniformly
at random during the protocol and output to the sender. This is formalized in
Definition 1 below.

There are two main justifications for focusing on Rand 1-2 OT. First, an ordi-
nary 1-2 OT can easily be constructed from a Rand 1-2 OT: the sender can use
the randomly generated B0 and B1 to one-time-pad encrypt his input bits for
the 1-2 OT, and send the masked bits to the receiver (as first realized in [1]).
For a formal proof of this we refer to the full version of [11].1 And second, all
information-theoretically secure constructions of 1-2 OT protocols we are aware
1 The definition of Rand 1-2 OT in [11] differs syntactically slightly from our Defini-

tion 1, in particular in that it involves an auxiliary input Z, but it is not too hard
to see that the two definitions are equivalent. We discuss this in more detail in [15].
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of in fact do implicitly build a Rand 1-2 OT and use the above reduction to
achieve 1-2 OT.

We formalize Rand 1-2 OT in such a way that it minimizes and simplifies
as much as possible the security restraints, while at the same time remaining
sufficient for 1-2 OT.

Definition 1 (Rand 1-2 OT). An ε-secure Rand 1-2 OT is a protocol between
sender S and receiver R, with R having input C ∈ {0, 1} (while S has no input),
such that for any distribution of C, the following properties hold:

ε-Correctness: For honest S and R, S has output B0, B1 ∈ {0, 1} and R has
output BC , except with probability ε.

ε-Privacy: For honest R and any (dishonest) S̃ with output2 V , [CV ] ≈ε [C] [V ].

ε-Obliviousness: For honest S and any (dishonest) R̃ with output W , there exists
a binary random variable D such that [B1−D W BD D] ≈ε [unif] [W BD D].

The privacy condition simply says that S̃ learns no information on C, and obliv-
iousness requires that there exists a choice bit D (supposed to be C) such that
when given the choice bit D and the corresponding bit BD, then the other bit
B1−D is independent and random from R̃’s point of view.

3.2 (Randomized) 1-2 OT of Strings

In a 1-2 String OT the sender inputs two strings (of the same length), and the
receiver is allowed to learn one of the two and only one of the two. Formally,
for any positive integer �, 1-2 OT � and Rand 1-2 OT � can be defined along the
same lines as 1-2 OT and Rand 1-2 OT of bits; for instance for Rand 1-2 OT � the
binary random variables B0 and B1 (as well as unif) in Definition 1 are simply
replaced by random variables S0 and S1 (and unif�) with range {0, 1}�.

4 Characterizing Obliviousness

4.1 The Case of Bit OT

It is well known (and it follows from the obliviousness condition) that in a
(Rand) 1-2 OT the receiver R should in particular learn (essentially) no informa-
tion on the XOR B0 ⊕B1 of the two bits. The following proposition shows that
this is not only necessary for the obliviousness condition but also sufficient.

Theorem 1. The ε-obliviousness condition for a Rand 1-2 OT is satisfied for a
particular (possibly dishonest) receiver R̃ with output W if and only if

[(B0⊕B1)W ] ≈ε [unif] [W ] .

2 Note that S̃’s output V may consist of S̃’s complete view on the protocol.
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Before going into the proof (which is surprisingly simple), consider the following
example. Assume a candidate protocol for Rand 1-2 OT and a dishonest receiver
R̃ which is able to output W = 0 if B0 = 0 = B1, W = 1 if B0 = 1 = B1

and W = 0 or 1 with probability 1/2 each in case B0 �= B1. Then, it is easy to
see that conditioned on, say, W = 0, (B0, B1) is (0, 0) with probability 1

2 , and
(0, 1) and (1, 0) each with probability 1

4 , such that the condition on the XOR
from Theorem 1 is satisfied. On the other hand, neither B0 nor B1 is uniformly
distributed (conditioned on W = 0), and it appears as if the receiver has some
joint information on B0 and B1 which is forbidden by a (Rand) 1-2 OT. But
that is not so. Indeed, the same view can be obtained when attacking an ideal
Rand 1-2 OT: submit a random bit C to obtain BC and output W = BC . And
in the light of Definition 1, if W = 0 we can split the event (B0, B1) = (0, 0)
into two disjoint subsets (subevents) E0 and E1 such that each has probability
1
4 , and we define D by setting D = 0 if E0 or (B0, B1) = (0, 1), and D = 1 if
E1 or (B0, B1) = (1, 0). Then, obviously, conditioned on D = d, the bit B1−d is
uniformly distributed, even when given Bd. The corresponding holds if W = 1.

Proof. The “only if” implication is well known and straightforward. For the “if”
implication, we first argue the perfect case where [(B0⊕B1)W ] = [unif] [W ]. For
any value w with PW (w) > 0, the non-normalized distribution PB0B1W (·, ·, w)
can be expressed as depicted in the left table of Figure 1, where we write
a for PB0B1W (0, 0, w), b for PB0B1W (0, 1, w), c for PB0B1W (1, 0, w) and d for
PB0B1W (1, 1, w). Note that a+b+c+d = PW (w) and, by assumption, a+d = b+c.
Due to symmetry, we may assume that a ≤ b. We can then define D by extend-
ing PB0B1W (·, ·, w) to PB0B1DW (·, ·, ·, w) as depicted in the right two tables in
Figure 1: PB0B1DW (0, 0, 0, w) = PB0B1DW (0, 1, 0, w) = a, PB0B1DW (1, 0, 0, w) =
PB0B1DW (1, 1, 0, w) = c etc. Important to realize is that PB0B1DW (·, ·, ·, w) is
indeed a valid extension since by assumption c + (b − a) = d.

a b

c d

PB0B1W (·, ·, w)

a a

c c

PB0B1DW (·, ·, 0, w)

0 b−a

0 b−a

PB0B1DW (·, ·, 1, w)

Fig. 1. Distributions PB0B1W (·, ·, w) and PB0B1DW (·, ·, ·, w)

It is now obvious that PB0B1DW (·, ·, 0, w) = 1
2PB0DW (·, 0, w) as well as

PB0B1DW (·, ·, 1, w) = 1
2PB1DW (·, 1, w). This finishes the perfect case.

Concerning the general case, the idea is the same as above, except that one
has to take some care regarding the error parameter ε ≥ 0. As this does not give
any new insight, and we anyway state and fully prove a more general result in
Theorem 2, we skip this part of the proof.3 
�
3 Although the special case � = 1 in Theorem 2 is quantitatively slightly weaker than

Theorem 1.
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4.2 The Case of String OT

The obvious question after the previous section is whether there is a natural
generalization of Theorem 1 to 1-2 OT � for � ≥ 2. Note that the straightforward
generalization of the XOR-condition in Theorem 1, requiring that any receiver
has no information on the bit-wise XOR of the two strings, is clearly too weak,
and does not imply the obliviousness condition for Rand 1-2 OT �: for instance
the receiver could know the first half of the first string and the second half of
the second string.

The Characterization. Let � be an arbitrary positive integer.

Definition 2. A function β : {0, 1}�×{0, 1}�→{0, 1} is called a non-degenerate
linear function (NDLF) if it is of the form β : (s0, s1) �→ 〈a0, s0〉 ⊕ 〈a1, s1〉 for
two non-zero a0, a1 ∈ {0, 1}�, i.e., if it is linear and non-trivially depends on
both input strings.

In case � = 1, the XOR is a NDLF, and it is the only NDLF. Based on this notion,
the obliviousness condition of Rand 1-2 OT � can be characterized as follows.

Theorem 2. The ε-obliviousness condition for a Rand 1-2 OT � is satisfied for
a particular (possibly dishonest) receiver R̃ with output W if

[β(S0, S1)W ] ≈ε/22�+1 [unif] [W ]

for every NDLF β, and, on the other hand, the ε-obliviousness condition may be
satisfied only if [β(S0, S1)W ] ≈ε [unif] [W ] for every NDLF β.

Note that the number of NDLFs is exponential in �, namely (2� − 1)2. Never-
theless, we show in Section 5 that this characterization turns out to be very
useful. There, we will also argue that an exponential overhead (in �) in the suffi-
cient condition is unavoidable. The proof of Theorem 2 also shows that the set of
NDLFs forms a minimal set of functions among all sets that imply obliviousness.
In this sense, our characterization is tight.

We would like to point out that Theorem 4 in [4] also provides a tool to
analyze the obliviousness condition of 1-2 OT protocols in terms of linear func-
tions; however, the condition that needs to be satisfied is much stronger than
for our Theorem 2: it additionally requires that one of the two strings is a pri-
ori uniformly distributed (from the receiver’s point of view).4 This difference
is crucial, because showing that one of the two strings is uniform (conditioned
on the receiver’s view) is usually technically involved and sometimes not even
possible, as the example given after Theorem 1 shows. This is also demonstrated
by the fact that the analysis in [4] of the considered 1-2 OT protocol is tailored
to one particular class of privacy-amplifying hash functions, and it is stated as

4 Concretely, it is additionally required that every non-trivial parity of that string
is uniform, but by the XOR-Lemma this is equivalent to the whole string being
uniform.
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an open problem how to prove their construction secure when a different class
of hash functions is used. The condition for Theorem 2, on the other hand, is
naturally satisfied for typical constructions of 1-2 OT protocols, as we shall see
in Section 5. As a result, Theorem 2 allows for much simpler and more elegant
security proofs for 1-2 OT protocols, and, as a by-product, allows to solve the
open problem from [4]. We explain this in detail in Section 5, and the interested
reader may well jump ahead and save the proof of Theorem 2 for later.

The proof for the “only if” part of Theorem 2 is given in the full version of
this paper [15]; in fact, a slightly stronger statement is shown, namely that the
ε-obliviousness condition implies [β(S0, S1)W ] ≈ε [unif] [W ] for any 2-balanced
function (as defined in [15]). The “if” part, which is the interesting direction, is
proven below.

Proof of Theorem 2 (“if” part). First, we consider the perfect case: if
[β(S0, S1)W ] equals [unif] [W ] for every NDLF β, then the obliviousness condi-
tion for Rand 1-2 OT � holds (perfectly).

The Perfect Case: As the case � = 1 is already settled, we assume that � ≥ 2.
Fix an arbitrary output w of the receiver, and consider the non-normalized

probability distribution PS0S1W (·, ·, w). We use the variable ps0,s1 to refer to
PS0S1W (s0, s1, w), and we write o for the all-zero string (0, . . . , 0) ∈ {0, 1}�. We
assume that po,o ≤ po,s1 for any s1 ∈ {0, 1}�; we show later that we may do so.
We extend this distribution to PS0S1DW (·, ·, ·, w) by setting

PS0S1DW (s0, s1, 0, w) = ps0,o and PS0S1DW (s0, s1, 1, w) = po,s1 − po,o (1)

for any strings s0, s1 ∈ {0, 1}�, and we collect the equations resulting from the
condition that PS0S1W (·, ·, w) = PS0S1DW (·, ·, 0, w)+PS0S1DW (·, ·, 1, w) needs to
be satisfied: for any two s0, s1 ∈ {0, 1}� \ {o}

ps0,o + po,s1 = po,o + ps0,s1 . (2)

If all these equations do hold (for any w) then as in the case of � = 1, the
random variable D is well defined and [S1−D SD W D] = [unif�] [SD W D] holds,
since PS0S1DW (s0, s1, 0, w) does not depend on s1 and PS0S1DW (s0, s1, 1, w) not
on s0.

Before moving on, we first justify the assumption that po,o ≤ po,s1 for any
s1 ∈ {0, 1}�. In general, we choose t ∈ {0, 1}� such that po,t ≤ po,s1 for any s1 ∈
{0, 1}�, and we set PS0S1DW (s0, s1, 0, w) = ps0,t and PS0S1DW (s0, s1, 1, w) =
po,s1 − po,t, resulting in the equations ps0,t + po,s1 = po,t + ps0,s1 for s0 ∈
{0, 1}� \ {o} and s1 ∈ {0, 1}� \ {t}. However, these equations follow from the
equations given by (2): subtract equation (2) with s1 replaced by t from equation
(2). Therefore, it suffices to focus on the equations given by (2).

We proceed by showing that the equations provided by the assumed uni-
formity of β(S0, S1) for any β imply the equations given by (2). Consider an
arbitrary pair a0, a1 ∈ {0, 1}� \ {o} and let β be the associated NDLF, i.e.,
such that β(s0, s1) = 〈a0, s0〉 ⊕ 〈a1, s1〉. By assumption, β(S0, S1) is uniformly
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distributed, independent of W . Thus, for any fixed w, and writing ps0,s1 for
PS0S1W (s0, s1, w), this can be expressed as

∑

σ0,σ1:
〈a0,σ0〉=〈a1,σ1〉

pσ0,σ1 =
∑

σ0,σ1:
〈a0,σ0〉�=〈a1,σ1〉

pσ0,σ1 , (3)

where both summations are over all σ0, σ1 ∈ {0, 1}� subject to the indicated
respective properties. Recall, that this equality holds for any pair a0, a1 ∈
{0, 1}� \ {o}. Thus, for fixed s0, s1 ∈ {0, 1}� \ {o}, if we add up over all such
pairs a0, a1 subject to 〈a0, s0〉 = 〈a1, s1〉 = 1, we get the equation

∑

a0,a1:
〈a0,s0〉=〈a1,s1〉=1

∑

σ0,σ1:
〈a0,σ0〉=〈a1,σ1〉

pσ0,σ1 =
∑

a0,a1:
〈a0,s0〉=〈a1,s1〉=1

∑

σ0,σ1:
〈a0,σ0〉�=〈a1,σ1〉

pσ0,σ1 ,

which, after re-arranging the terms of the summations, leads to
∑

σ0,σ1

∑

a0,a1:
〈a0,s0〉=〈a1,s1〉=1
〈a0,σ0〉=〈a1,σ1〉

pσ0,σ1 =
∑

σ0,σ1

∑

a0,a1:
〈a0,s0〉=〈a1,s1〉=1
〈a0,σ0〉�=〈a1,σ1〉

pσ0,σ1 . (4)

We are now going to argue that, up to a constant multiplicative factor, equation
(4) coincides with equation (2).

First, it is straightforward to verify that the variables po,o and ps0,s1 occur
only on the left hand side, both with multiplicity 22(�−1) (the number of pairs
a0, a1 such that 〈a0, s0〉 = 〈a1, s1〉 = 1), whereas ps0,o and po,s1 only occur on
the right hand side, with the same multiplicity 22(�−1).

Now, we argue that any other pσ0,σ1 equally often appears on the right and on
the left hand side, and thus vanishes from the equation. Note that the set of pairs
a0, a1, over which the summation runs on the left respectively the right hand
side, can be understood as the set of solutions to a binary (non-homogeneous)
linear equations system:

⎛

⎝
s0 0
0 s1

σ0 σ1

⎞

⎠
(

a0

a1

)
=

⎛

⎝
1
1
0

⎞

⎠ respectively

⎛

⎝
1
1
1

⎞

⎠ .

Also note that the two linear equation systems consist of three equations and
involve at least 4 variables (as a0, a1 ∈ {0, 1}� and � ≥ 2). Therefore, using basic
linear algebra, one is tempted to conclude that they both have solutions, and,
because they have the same homogeneous part, they have the same number of
solutions (equal to the number of homogeneous solutions). However, this is only
guaranteed if the matrix defining the homogeneous part has full rank. But here
this is precisely the case if and only if (σ0, σ1) �∈ {(o,o), (s0,o), (o, s1), (s0, s1)},
where those four exceptions have already been treated above.

It follows that the equations (3), which are guaranteed by assumption, imply
the equations (2). This concludes the proof for the perfect case.
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The General Case: Now, we consider the general case where there exists
some ε > 0 such that δ

(
[β(S0, S1)W ], [unif] [W ]

) ≤ 2−2�−1ε for any NDLF β.
We use the observations from the perfect case, but additionally we keep track of
the “error term”.

For any w with PW (w) > 0 and any NDLF β, set

εw,β = δ
(
Pβ(S0,S1)W (·, w), PunifPW (w)

)
.

Note that
∑

w εw,β = δ
(
[β(S0, S1)W ], [unif] [W ]

) ≤ 2−2�−1ε, independent of β.
Fix now an arbitrary w with PW (w) > 0. Then, (3) only holds up to an error
of 2εw,β, where β is the NDLF associated to a0, a1. As a consequence, equation
(4) only holds up to an error of 2

∑
β εw,β and thus (2) holds up to an error

of δs0,s1 = 2
22�−2

∑
β εw,β , where the sum is over the 22�−2 functions associated

to the pairs a0, a1 with 〈a0, s0〉 = 〈a1, s1〉 = 1. Note that δs0,s1 depends on w,
but the set of β’s, over which the summation runs, does not. Adding up over all
possible w’s gives

∑

w

δs0,s1 =
2

22�−2

∑

w

∑

β

εw,β =
2

22�−2

∑

β

∑

w

εw,β ≤ 2−2�ε .

Since (2) only holds approximately, PS0S1DW as in (1) is not necessarily a
valid extension, but close. This can obviously be overcome by instead setting

PS0S1DW (s0, s1, 0, w)=ps0,o±δ′s0,s1
and PS0S1DW (s0, s1, 1, w)=po,s1−po,o±δ′′s0,s1

with suitably chosen δ′s0,s1
, δ′′s0,s1

≥ 0 with δ′s0,s1
+ δ′′s0,s1

= δs0,s1 , and with suit-
ably chosen signs “+” or “−”.5 Using that every PS0S1DW (s0, s1, 0, w) differs
from ps0,o by at most δ′s0,s1

, it follows from a straightforward computation that
δ
(
PS1−DSDDW (·, ·, 0, w), PunifPSDDW (·, 0, w)

) ≤ ∑
s0,s1

δ′s0,s1
. The correspond-

ing holds for PS0S1DW (·, ·, 1, w). It follows that

δ
(
PS1−DSDWD, PunifPSDWD

) ≤
∑

w

∑

s0,s1

(δ′s0,s1
+ δ′′s0,s1

) =
∑

s0,s1

∑

w

δs0,s1 ≤ ε

which concludes the proof. 
�

5 Applications

In this section we will show the usefulness of Theorem 2 for the construction
of 1-2 OT �, based on weaker primitives (like a noisy channel, a quantum un-
certainty relation or other flavors of OT). In particular, we will show that the
reducibility of 1-2 OT to any weaker flavor of OT follows as a simple argument
using Theorem 2.
5 Most of the time, it probably suffices to correct one of the two, say, choose δ′s0,s1 =

δs0,s1 and δ′′s0,s1 = 0; however, if for instance ps0,o and po,s1 − po,o are both positive
but PS0S1W (s0, s1, w) = 0, then one has to correct both.
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5.1 Reducing 1-2 OT � to Independent Repetitions of Weak 1-2 OT’s

Background. A great deal of effort has been put into constructing protocols
for 1-2 OT � based on physical assumptions like (various models for) noisy chan-
nels [8,16,12,9] or a memory bounded adversary [6,17,18], as well as into reducing
1-2 OT � to (seemingly) weaker flavors of OT, like Rabin OT, 1-2 XOT, 1-2 GOT
and 1-2 UOT [7,3,5,29,4,10]. Note that the latter three flavors of OT are weaker
than 1-2 OT in that the (dishonest) receiver has more freedom in choosing the
sort of information he wants to get about the sender’s input bits B0 and B1:
B0, B1 or B0 ⊕B1 in case of 1-2 XOT, g(B0, B1) for an arbitrary one-bit-output
function g in case of 1-2 GOT, and an arbitrary (probabilistic) Y with mutual
information I(B0B1; Y ) ≤ 1 in case of 1-2 UOT.6

All these reductions of 1-2 OT to weaker versions follow a specific construction
design (which is also at the core of the 1-2 OT protocols based on noisy channels
or a memory-bounded adversary). By repeated (independent) executions of the
underlying primitive, S transfers a randomly chosen bit string X = (X0, X1) ∈
{0, 1}n × {0, 1}n to R such that: (1) depending on his choice bit C, the honest
R knows either X0 or X1, (2) any S̃ has no information on which part of X R
learned, and (3) any R̃ has some uncertainty in X . Then, this is completed to
a Rand 1-2 OT by means of privacy amplification [2]: S samples two functions
f0 and f1 from a universal-two class F of hash functions, sends them to R, and
outputs S0 = f0(X0) and S1 = f1(X1), and R outputs SC = fC(XC). Finally,
the Rand 1-2 OT is transformed into an ordinary 1-2 OT in the obvious way.

Correctness and privacy of this construction are clear, they follow immediately
from (1) and (2). How easy or hard it is to prove obliviousness depends heavily
on the underlying primitive. In case of Rabin OT it is rather straightforward. In
case of 1-2 XOT and the other weaker versions, this is non-trivial. The problem
is that since R might know X0 ⊕X1, it is not possible to argue that there exists
d ∈ {0, 1} such that R’s uncertainty on X1−d is large when given Xd. This,
though, would be necessary in order to finish the proof by simply applying the
privacy amplification theorem [2]. This difficulty is overcome in [3,4] by tailoring
the proof to a particular universal-two class of hash functions (namely the class of
all linear hash functions). Whether the reduction also works for a less restricted
class of hash functions is left in [3,4] as an open problem, which we solve here
as a side result. Using a smaller class of hash functions would allow for instance
to reduce the communication complexity of the protocol.

In [10], the difficulty is overcome by giving up on the simplicity of the re-
duction. The cost of two-way communication allowing for interactive hashing
is traded for better reduction parameters. We would like to emphasize that

6 As a matter of fact, reducibility has been proven for any bound on I(B0B1; Y )
strictly smaller than 2. Note that there is some confusion in the literature in what
a universal OT, UOT, should be: In [3,29,4], a UOT takes as input two bits and
the receiver is doomed to have at least one bit (or any other non-trivial amount)
of Shannon entropy on them; we denote this by 1-2 UOT. Whereas in [5], a UOT
takes as input two strings and the receiver is doomed to have some Renyi entropy
on them. We address this latter notion in more detail in Section 5.2.
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these parameters are incomparable to ours, because a different reduction is used,
whereas our approach provides a better analysis of the non-interactive reductions.

The New Approach. We argue that, independent of the underlying primitive,
obliviousness follows as a simple consequence of Theorem 2, in combination
with a straightforward observation regarding the composition of NDLFs with
strongly universal-two hash functions (Proposition 1 below). Recall that a class
F of hash functions from, say, {0, 1}n to {0, 1}� is strongly universal-two [27]
if for any distinct x, x′ ∈ {0, 1}n the two random variables F (x) and F (x′) are
independent and uniformly distributed (over {0, 1}�), where the random variable
F represents the random choice of a function in F .

Proposition 1. Let F0 and F1 be two classes of strongly universal-two hash
functions from {0, 1}n0 respectively {0, 1}n1 to {0, 1}�, and let β be a fixed NDLF
β : {0, 1}� × {0, 1}� → {0, 1}. Consider the class F of all composed functions
f : {0, 1}n0 ×{0, 1}n1 → {0, 1} with f(x0, x1) = β(f0(x0), f1(x1)) where f0 ∈ F0

and f1 ∈ F1. Then, F is strongly universal-two.

The proof is straightforward; for completeness, it is given in the full version [15].7

Now, briefly, obliviousness for a construction as sketched above can be argued
as follows. The only restriction is that F needs to be strongly universal-two. From
the independent repetitions of the underlying weak OT (Rabin OT, 1-2 XOT,
1-2 GOT or 1-2 UOT) it follows that R̃ has “high” collision entropy in X . Hence,
for any NDLF β, we can apply the privacy amplification theorem [2] (respectively
the version given in Appendix A) to the (strongly) universal-two hash function
β(f0(·), f1(·)) and argue that β(f0(X0), f1(X1)) is close to uniform for randomly
chosen f0 and f1. Obliviousness then follows immediately from Theorem 2.

We save the quantitative analysis (Theorem 3) for next section, where we
consider a reduction of 1-2 OT to the weakest kind of OT: to one execution of
a UOT. Based on this, we compare in Appendix B the quality of the analysis
of the above reductions based on Theorem 2 with the results in [4]. It turns out
that our analysis is tighter for 1-2 GOT and 1-2 UOT, whereas the analysis in [4]
is tighter for 1-2 XOT; but in all cases, our analysis is much simpler and, we
believe, more elegant.

5.2 Reducing 1-2 OT � to One Execution of UOT

We assume the reader to be somewhat familiar with the notion of Renyi entropy
Hα of order α. Definition and some elementary properties needed in this section
are given in Appendix A. We also refer to Appendix A for the slightly non-
standard notion of average conditional Renyi entropy Hα(X |Y ) we are using.

7 The claim does not hold in general for ordinary (as opposed to strongly) universal-
two classes: if n0 = n1 = � and F0 and F1 both only contain the identity function
id : {0, 1}� → {0, 1}� (and thus are universal-two), then F consisting of the function
f(x0, x1) = β(id(x0), id(x1)) = β(x0, x1) is not universal-two.
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Universal Oblivious Transfer. Probably the weakest flavor of OT is the
Universal OT (UOT) as it was introduced in [5], in that it gives the receiver the
most freedom in getting information on the string X . Formally, for a finite set
X and parameters α ≥ 0 (allowing α = ∞) and r > 0, an (α, r)-UOT(X ) works
as follows. The sender inputs x ∈ X , and the receiver may choose an arbitrary
conditional probability distribution PY |X with the only restriction that for a
uniformly distributed X it must satisfy Hα(X |Y ) ≥ r.8 The receiver then gets
as output y, sampled according to the distribution PY |X(·|x), whereas the sender
gets no information on the receiver’s choice for PY |X . Note that a 1-2 UOT is a
special case of this kind of UOT since “1-2 UOT = (1, 1)-UOT({0, 1}2)”.

The crucial property of such an UOT is that the input is not restricted to two
bits, but may be two bit-strings; this potentially allows to reduce 1-2 OT to one
execution of a UOT, rather than to many independent executions of the same
primitive as for the 1-2 flavors of OT mentioned above. Indeed, following the
design principle discussed in Section 5.1, it is straightforward to come up with
a candidate protocol for 1-2 OT � which uses one execution of a (α, r)-UOT(X )
with X = {0, 1}n × {0, 1}n. The protocol is given in Figure 2, where F is a
(strongly) universal-two class of hash functions from {0, 1}n to {0, 1}�.

OT2UOT (c):
1. S and R run (α, r)-UOT(X ): S inputs a random x = (x0, x1) ∈ X = {0, 1}n×

{0, 1}n, R inputs PY |X with PY |X(x′
c|(x′

0, x
′
1)) = 1 for any (x′

0, x
′
1), and as

a result R obtains y = xc.
2. S samples independent random f0, f1 ∈ F , sends f0 and f1 to R, and outputs

s0 = f0(x0) and s1 = f1(x1).
3. R computes and outputs sc = fc(y).

Fig. 2. Protocol OT2UOT for Rand1-2 OT �

In [5] it is claimed that, for appropriate parameters, protocol OT2UOT is a
secure Rand 1-2 OT � (respectively, the resulting protocol for 1-2 OT is secure).
However, we argue below that the proof given is not correct (and it is not obvious
how to fix it). In Theorem 3 we then show that its security follows easily from
Theorem 2.

A Flaw in the Security Proof. In [5] the security of protocol OT2UOT
is argued as follows. Using (rather complicated) spoiling-knowledge techniques,
it is shown that, conditioned on the receiver’s output (which we suppress to
simplify the notation) at least one out of H∞(X0) and H∞(X1|X0=x0) is “large”
(for any x0), and, similarly, at least one out of H∞(X1) and H∞(X0|X1=x1).
Since collision entropy is lower bounded by min-entropy, it then follows from
the privacy amplification theorem that at least one out of H(F0(X0)|F0) and
H(F1(X1)|F1, X0=x0) is close to �, and similarly, one out of H(F1(X1)|F1) and
H(F0(X0)|F0, X1=x1). It is then claimed that this proves OT2UOT secure.
8 This notion of UOT is even slightly weaker than what is considered in [5], where

Hα(X|Y =y) ≥ r for all y is required.
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We argue that this very last implication is not correct. Indeed, what is proven
about the entropy of F0(X0) and F1(X1) does not exclude the possibility that
both entropies H(F0(X0)|F0) and H(F1(X1)|F1) are maximal, but that
H(F0(X0) ⊕ F1(X1)|F0, F1) = 0. This would allow the receiver to learn the
(bitwise) XOR S0 ⊕ S1, which is clearly forbidden by the obliviousness condi-
tion.

Also note that the proof does not use the fact that the two functions F0 and
F1 are chosen independently. However, if they are chosen to be the same, then
the protocol is clearly insecure: if the receiver asks for Y = X0 ⊕X1, and if F is
a class of linear universal-two hash functions, then R̃ obviously learns S0 ⊕ S1.

Reducing 1-2 OT � to UOT. The following theorem guarantees the security
of OT2UOT (for an appropriate choice of the parameters). The only restriction
we have to make is that F needs to be a strongly universal-two class of hash
function.

Theorem 3. Let F be a strongly universal-two class of hash functions from
{0, 1}n to {0, 1}�. Then OT2UOT reduces a 2−κ-secure Rand 1-2 OT � to a (per-
fect) (2, r)-UOT({0, 1}2n) with n ≥ r ≥ 4� + 3κ + 4.

Using the bounds from Lemma 2 (in Appendix A) on the different orders of Renyi
entropy, the reducibility of 1-2 OT � to (α, r)-UOT(X ) follows immediately for
any α > 1.

Informally, obliviousness for protocol OT2UOT is argued as for the reduction
of 1-2 OT to Rabin OT, 1-2 XOT etc., discussed in Section 5.1, simply by us-
ing Proposition 1 in combination with the privacy amplification theorem, and
applying Theorem 2. The formal proof given in Appendix C additionally keeps
track of the “error term”. From this proof it also becomes clear that the expo-
nential (in �) overhead in Theorem 2 is unavoidable. Indeed, a sub-exponential
overhead would allow � in Theorem 3 to be super-linear (in n), which of course
is nonsense.

6 Generalizations and Further Applications

The general technique described in this section also comes in handy in a quantum
setting. The fact that we do not need to know how the entropy is distributed
over X is fundamental to prove secure a protocol for 1-2 OT � in the bounded
quantum-storage model as introduced in [14]. In upcoming work [13], we present
a protocol for Rand 1-2 OT for which we can use a quantum uncertainty relation
to show a lower bound on the min-entropy of the 2n-bit string X transmitted by
the sender using a quantum encoding. We prove a quantum version of Theorem 2
which enables us to use the result about privacy amplification against quantum
adversaries [26] to conclude that our protocol is oblivious against adversaries
with bounded quantum memory. This application motivates further the use of
(strongly) universal-two hashing, because up to date, no other means of privacy
amplification have been shown secure against quantum adversaries.
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In [15], we show that it is also possible to generalize Theorem 2 to 1-n OT:
it then states that the condition for Rand 1-n OT is satisfied if for any NDLF
β and for any 0 ≤ i < j ≤ n − 1 it holds that β(Si, Si) is (essentially) uniform,
conditioned on the receiver’s output W and on all Sk with k �= i, j. This comes
in handy for the construction and analysis of 1-n OT schemes, as demonstrated
in [13], where also 1-n OT schemes in the bounded quantum-storage model are
considered.

7 Conclusion

We have established a characterization of the obliviousness condition for (a
slightly modified version of) 1-2 OT � (Theorem 2). Using this characterization in
combination with a composition result about strongly universal-two hash func-
tions (Proposition 1), it follows by a very simple argument that when starting
with a 2n-bit string X with enough (collision) entropy, arbitrarily splitting up X
into two n-bit strings X0, X1 followed by strongly universal-two hashing yields
obliviousness as required by a 1-2 OT. This allows for easy analyses whenever
this design principle is used or can be applied, like reductions of 1-2 OT � to
weaker flavors, or 1-2 OT � in the bounded (quantum) storage model, but pos-
sibly also in other contexts like in a computational setting when unconditional
obliviousness is required.

Acknowledgments

We would like to thank Renato Renner for bringing up the idea of characterizing
obliviousness in terms of the XOR, and Jürg Wullschleger for observing that our
earlier results, which were expressed in terms of balanced functions, can also
be expressed in terms of NDLFs. We are also grateful to Claude Crépeau and
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A (Conditional) Renyi Entropy

Let α ≥ 0, α �= 1. The Renyi entropy of order α of a random variable X with
distribution PX is defined as

Hα(X) =
1

1 − α
log

(∑

x

PX(x)α
)

= − log
(( ∑

x

PX(x)α)
1

α−1

)
.

The limit for α → 1 is the Shannon entropy H(X)=− log
( ∑

x PX(x) log PX(x)
)

and the limit for α → ∞ the min-entropy H∞(X) = − log
(
maxx PX(x)

)
. An-

other important special case is the case α = 2, also known as collision entropy
H2(X) = − log

( ∑
x PX(x)2

)
.

The conditional Renyi entropy Hα(X |Y =y) for two random variables X and
Y is naturally defined as Hα(X |Y = y) = 1

1−α log
( ∑

x PX|Y (x|y)α
)
. Further-

more, in the literature Hα(X |Y ) is often defined as
∑

y PY (y)Hα(X |Y =y), like
for Shannon entropy. However, for our purpose, a slightly different definition
will be useful. For 1 < α < ∞, we define the average conditional Renyi entropy
Hα(X |Y ) as

Hα(X |Y ) = − log
( ∑

y

PY (y)
( ∑

x

PX|Y (x|y)α)
1

α−1

)
,

and as H∞(X |Y ) = − log
( ∑

y PY (y)maxx PX|Y (x|y)
)

for α = ∞. This notion
is useful in particular because it has the property that if the average conditional
Renyi entropy is large, then the conditional Renyi entropy is large with high
probability:

Lemma 1. Let α > 1 (allowing α = ∞) and t ≥ 0. Then with probability at
least 1 − 2−t (over the choice of y) Hα(X |Y =y) ≥ Hα(X |Y ) − t.

The proof is straightforward and thus omitted. The following lemma follows from
well known properties of the Renyi entropy which are easily seen to translate to
the average conditional Renyi entropy.
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Lemma 2. For any 1 < α < ∞: H2(X |Y ) ≥ H∞(X |Y ) ≥ α−1
α Hα(X |Y ).

Finally, our notion of average conditional Renyi entropy is such that the privacy
amplification theorem of [2] still provides a lower bound on the average condi-
tional collision entropy as we define it (as can easily be seen from the proof given
in [2]). However, for us it is convenient to express the smoothness in terms of
variational distance rather than entropy, as in [21,20]:

Theorem 4 ([20]). Let X be a random variable over X , and let F be the ran-
dom variable corresponding to the random choice of a member of a universal-two
class F of hash functions from X to {0, 1}�. Then

δ
(
[F (X)F ], [unif�] [F ]

) ≤ 2−
1
2 (H2(X)−�)−1 .

B Quantitative Comparison

We compare the simple reduction of 1-2 OT � to n executions of 1-2 XOT,
1-2 GOT and 1-2 UOT, respectively, using our analysis based on Theorem 2
as discussed in Section 5.1 (together with the quantitative statement given in
Theorem 3), with the results achieved in [4].9 The quality of (the analysis of) a
reduction is given by the reduction parameters clen, csec and cconst such that the
1-2 OT � is guaranteed to be 2−κ-secure as long as n ≥ clen · � + csec · κ + cconst.
The smaller these constants are, the better is the (analysis of the) reduction.
The comparison of these parameters is given in Figure 3 (we focus on clen and
csec since cconst is not really relevant, unless very large).

1-2 XOT 1-2 GOT 1-2 UOT
clen csec clen csec clen csec

BCW [4] 2 2 4.8 4.8 14.6 14.6

this work 4 3 4 3 13.2 10.0

Fig. 3. Comparison of the reduction parameters

The parameters in the first line can easily be extracted from Theorems 5, 7
and 9 of [4] (where in Theorem 9 pe ≈ 0.19). The parameters in the second line
corresponding to the reductions to 1-2 XOT and 1-2 GOT follow immediately
from Theorem 3, using the fact that in one execution of a 1-2 XOT or a 1-2 GOT
the receivers average conditional collision entropy (as defined in Appendix A)
on the sender’s two input bits is at least 1 (in case of 1-2 XOT this is trivial, and
in case of 1-2 GOT this can easily be computed). The parameters for 1-2 UOT
follow from Theorem 3 and the following observation. If for one execution of the
1-2 UOT the receiver’s average (Shannon) entropy is at least 1, then it follows
from Fano’s Inequality that his average guessing probability is at most 1 − pe

9 As mentioned earlier, these results are incomparable to the parameters achieved in
[10], where interactive reductions are used.
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(with pe as above), and thus his average conditional min-entropy, which lower
bounds the collision entropy, is at least − log(1−pe) ≈ 0.3. clen and csec are then
computed as clen ≈ 4/0.3 and csec ≈ 3/0.3.

C Proof of Theorem 3

Define the event E = {y : H2(X |Y = y) ≥ H2(X |Y ) − κ − 1}. By Lemma 1
P [E ] ≥ 1 − 2−κ−1. We will show below that conditioned on E , the obliviousness
condition of Definition 1 holds with “error term” 2−κ−1. It then follows that

δ
�
[B1−D BD W D], [unif][BD W D]

�

≤ δ
�
PB1−DBDWDE , PunifPBDWDE

�
+ δ

�
PB1−DBDWDĒ , PunifPBDWDĒ

�

=δ
�
PB1−DBDWD|E , PunifPBDWD|E

�
P [E ] + δ

�
PB1−DBDWD|Ē , PunifPBDWD|Ē

�
P [Ē ]

≤ 2−κ−1 + 2−κ−1 = 2−κ.

It remains to prove the claimed obliviousness when conditioning on E . To simplify
notation, instead of conditioning on E we consider a distribution PY |X with
H2(X |Y =y) ≥ H2(X |Y )−κ−1 for all y. Note that H2(X |Y )−κ−1 ≥ 4�+2κ+3.
Fix an arbitrary y. Consider an arbitrary NDLF β : {0, 1}� × {0, 1}� → {0, 1}.
Let F0 and F1 be the random variables that represent the random choices of
f0 and f1, and set B = β(F0(X0), F1(X1)). In combination with Proposition 1,
privacy amplification (Theorem 4) guarantees that

δ
(
PBF0F1|Y =y, PunifPF0F1|Y =y

) ≤ 2−
1
2 (H2(X|Y =y)+1) ≤ 2−

1
2 (4�+2κ+4) =2−2�−κ−2.

It now follows that

δ
(
[β(S0, S1)W ], [unif] [W ]

)
= δ

(
PBF0F1Y , PunifPF0F1Y

)

=
∑

y

δ
(
PBF0F1|Y =y, PunifPF0F1|Y =y

)
PY (y) ≤ 2−2�−κ−2 .

Obliviousness as claimed now follows from Theorem 2. 
�
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