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Abstract. We propose a general security definition for cryptographic quantum protocols
that implement classical non-reactive two-party tasks. The definition is expressed in terms
of simple quantum-information-theoretic conditions which must be satisfied by the protocol
to be secure. The conditions are uniquely determined by the ideal functionality F defining
the cryptographic task to be implemented. We then show the following composition result.
If quantum protocols π1, . . . , π` securely implement ideal functionalities F1, . . . ,F` accord-
ing to our security definition, then any purely classical two-party protocol, which makes
sequential calls to F1, . . . ,F`, is equally secure as the protocol obtained by replacing the
calls to F1, . . . ,F` with the respective quantum protocols π1, . . . , π`. Hence, our approach
yields the minimal security requirements which are strong enough for the typical use of
quantum protocols as subroutines within larger classical schemes. Finally, we show that
recently proposed quantum protocols for oblivious transfer and secure identification in the
bounded-quantum-storage model satisfy our security definition, and thus compose in the
above sense.

Keywords: two-party quantum cryptography, composability, identification, oblivious trans-
fer

1 Introduction

Background. Finding the right security definition for a cryptographic task is a non-
trivial fundamental question in cryptography. From a theoretical point of view, one would
like definitions to be as strong as possible in order to obtain strong composability guaran-
tees. However, this often leads to impossibility results or to very complex and inefficient
schemes. Therefore, from a practical point of view, one may also consider milder security
definitions which allow for efficient schemes, but still offer “good enough” security.

It is fair to say that in computational cryptography, the question of defining security
and the trade-offs that come along with these definitions are by now quite well understood.
The situation is different in quantum cryptography. For instance, it was realized only re-
cently that the standard security definition of quantum key-agreement does not guarantee
the desired kind of security and some work was required to establish the right security
definition [GL03,RK05,BHL+05,Ren05,KRBM07]. In [BM04,Unr04], strong security def-
initions for general quantum protocols were proposed by translating Canetti’s universal-
composability framework and Backes, Pfitzmann and Waidner’s reactive-simulatability
model, respectively, into the quantum setting. The resulting security definitions are very
strong and guarantee full composability. However, they are complex and hard to achieve.
Indeed, so far they have been actually used and shown to be achievable only in a couple of
isolated cases: quantum key distribution [BHL+05] and quantum multi-party computation
with dishonest minority [BCG+05]. It is still common practice in quantum cryptography
that every paper proposes its own security definition of a certain task and proves security
with respect to the proposed definition. However, it usually remains unclear whether these
definitions are strong enough to guarantee any kind of composability, and thus whether
protocols that meet the definition really behave as expected.
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Contribution. We propose a general security definition for quantum protocols that
implement cryptographic two-party tasks. The definition is in terms of simple quantum-
information-theoretic security conditions that must be satisfied for the protocol to be
secure. In particular, the definition does not involve additional entities like a “simula-
tor” or an “environment”. The security conditions are uniquely determined by the ideal
functionality that defines the cryptographic task to be realized. Our definition applies to
any non-reactive, classical ideal functionality F , which obtains classical (in the sense of
non-quantum) input from the two parties, processes the provided input according to its
specification, and outputs the resulting classical result to the parties. A typical example
for such a functionality/task is oblivious transfer (OT). Reactive functionalities, i.e. func-
tionalities that have several phases (like e.g. bit commitment), or functionalities that take
quantum input and/or produce quantum output are not the scope of this paper.

We show the following composition result. If quantum protocols π1, . . . , π` securely
implement ideal functionalities F1, . . . ,F` according to our security definition, then any
purely classical two-party protocol, which makes sequential calls to F1, . . . ,F`, is equally
secure as the protocol obtained by replacing the calls to F1, . . . ,F` with the respective
quantum subroutines π1, . . . , π`. We stress that our composition theorem, respectively
our security definition, only allows for the composition of quantum sub-protocols into a
classical outer protocol. This is a trade-off which allows for milder security definitions
(which in turn allows for simpler and more efficient implementations) but still offers
security in realistic situations. Indeed, current technology is far from being able to execute
quantum algorithms or protocols which involve complicated quantum operations and/or
need to keep a quantum state “alive” for more than a tiny fraction of a second. Thus,
the best one can hope for in the near future in terms of practical quantum algorithms
is that certain small subroutines, like key-distribution or OT, may be implemented by
quantum protocols, while the more complex outer protocol remains classical. From a more
theoretical point of view, our general security definition expresses what security properties
a quantum protocol must satisfy in order to be able to instantiate a basic cryptographic
primitive upon which an information-theoretic cryptographic construction is based. For
instance, it expresses the security properties a quantum OT1 needs to satisfy so that
Kilian’s classical2 construction of general secure function evaluation based on OT [Kil88]
remains secure when instantiating the OT primitive by a quantum protocol. Alternatively,
our security conditions can also be viewed as providing the minimal requirements for a
quantum protocol to behave as expected.

Finally, we show that the ad-hoc security definitions proposed by Damg̊ard, Fehr,
Salvail and Schaffner for their 1-2 OT and secure-identification protocols in the bounded-
quantum-storage model [DFR+07,DFSS07] imply (and are likely to be equivalent) to the
corresponding security definitions obtained from our approach.3 This implies compos-
ability in the above sense for these quantum protocols in the bounded-quantum-storage
model.

1 We are well aware that quantum OT is impossible without any restriction on the adversary, but it
becomes possible for instance when restricting the adversary’s quantum memory [DFSS05,DFR+07].

2 Here, “classical” can be understood as “non-quantum” as well as “being a classic”.
3 Interestingly, this is not true for the definition of Rabin OT given in the first paper in this line of

research [DFSS05], and indeed in the full version of that paper, it is mentioned that their definition poses
some “composability problems” (this problem though has been fixed in the journal version [DFSS08]).
This supports our claim that failure of satisfying our security definition is strong evidence for a security
problem of a quantum protocol.
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Related work. In the classical setting, Crépeau, Savvides, Schaffner and Wullschleger
proposed information-theoretic conditions for two-party secure function evaluation [CSSW06],
though restricted to the perfect case, where the protocol is not allowed to make any er-
ror. They show equivalence to a simulation-based definition that corresponds to the stan-
dard framework of Goldreich [Gol04]. Similar conditions have been subsequently found by
Crépeau and Wullschleger for the case of non-perfect classical protocols [CW08]. Our work
can be seen as an extension of [CSSW06,CW08] to the setting where classical subroutines
are implemented by quantum protocols.

As pointed out and discussed above, general frameworks for universal composability
in the quantum setting have been established in [BM04,Unr04]. The composability of pro-
tocols in the bounded-quantum-storage model has recently been investigated by Wehner
and Wullschleger [WW08]. They propose security definitions that guarantee sequential
composability of quantum protocols within quantum protocols. This is clearly a stronger
composition result than we obtain (though restricted to the bounded-quantum-storage
model) but comes at the price of a more demanding security definition. And indeed,
whereas we show that the simple definitions used in [DFSS05,DFR+07] already guarantee
composability into classical protocols without any modifications to the original parame-
ters and proofs, [WW08] need to strengthen the quantum-memory bound (and re-do the
security proof) in order to show that the 1-2 OT protocol from [DFR+07] meets their
strong security definition. As we argued above, this is an overkill in many situations.

2 Notation

Quantum States. We assume the reader’s familiarity with basic notation and concepts
of quantum information processing [NC00].

Given a bipartite quantum state ρXE , we say that X is classical if ρXE is of the form
ρXE =

∑
x∈X PX(x)|x〉〈x| ⊗ ρxE for a probability distribution PX over a finite set X . This

can be understood in that the state of the quantum register E depends on the classical
random variable X, in the sense that E is in state ρxE exactly if X = x. For any event E
defined by PE|X(x) = P [E|X=x] for all x, we may then write

ρXE|E :=
∑
x

PX|E(x)|x〉〈x| ⊗ ρxE . (1)

When we omit registers, we mean the partial trace over these register, for instance ρE|E =
trX(ρXE|E) =

∑
x PX|E(x)ρxE , which describes E given that the event E occurs.

This notation extends naturally to states that depend on several classical random
variables X, Y etc., defining the density matrices ρXY E , ρXY E|E , ρY E|X=x etc. We tend
to slightly abuse notation and write ρxY E = ρXE|X=x and ρxY E|E = ρY E|X=x,E , as well as
ρxE = trY (ρxY E) and ρxE|E = trY (ρxY E|E). Given a state ρXE with classical X, by saying
that “there exists a classical random variable Y such that ρXY E satisfies some condition”,
we mean that ρXE can be understood as ρXE = trY (ρXY E) for some state ρXY E with
classical X and Y , and that ρXY E satisfies the required condition.4

X is independent of E (in that ρxE does not depend on x) if and only if ρXE = ρX⊗ρE ,
which in particular implies that no information on X can be learned by observing only
E. Similarly, X is random and independent of E if and only if ρXE = 1

|X |I ⊗ ρE , where
1
|X |I is the density matrix of the fully mixed state of suitable dimension.

4 This is similar to the case of distributions of classical random variables where given X the existence of
a certain Y is understood that there exists a certain joint distribution PXY with

P
y PXY (·, y) = PX .
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We also need to express that a random variable X is independent of a quantum
state E when given a random variable Y . This means that when given Y , the state E
gives no additional information on X. Yet another way to understand this is that E is
obtained from X and Y by solely processing Y . Formally, adopting the notion introduced
in [DFSS07], this is expressed by requiring that ρXY E equals ρX↔Y↔E , where the latter
is defined as

ρX↔Y↔E :=
∑
x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρyE .

In other words, ρXY E = ρX↔Y↔E precisely if ρx,yE = ρyE for all x and y. This notation
naturally extends to ρX↔Y↔E|E =

∑
x,y PXY |E(x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρyE|E .

Full (conditional) independence is often too strong a requirement, and it usually suf-
fices to be “close” to such a situation. Closeness of two states ρ and σ is measured in
terms of their trace distance δ(ρ, σ) = 1

2 tr(|ρ − σ|), where for any operator A, |A| is
defined as |A| :=

√
AA†. We write ρ ≈ε σ to denote that δ(ρ, σ) ≤ ε, and we then say

that ρ and σ are ε-close. It is known that ε-closeness is preserved under any quantum
operation; this in particular implies that if ρ ≈ε σ then no observer can distinguish ρ
from σ with advantage greater than ε [RK05]. For states ρXE and ρX′E′ with classical
X and X ′, it is not hard to see that δ(ρXE , ρX′E′) =

∑
x δ(PX(x)ρxE , PX′(x)ρxE′), and

thus δ(ρXE , ρX′E′) =
∑

x PX(x)δ(ρxE , ρ
x
E′) if PX = PX′ . In case of purely classical states

ρX and ρX′ , the trace distance coincides with the statistical distance of the random vari-
ables X and X ′: δ(ρX , ρX′) = 1

2

∑
x |PX(x) − PX′(x)|, and we then write PX ≈ε PX′ , or

X ≈ε X ′, instead of ρX ≈ε ρX′ .
We will make use of the following lemmas whose proofs are given in Appendix A.

Lemma 2.1. 1. If ρXY ZE ≈ε ρX↔Y↔ZE then ρXY ZE ≈2ε ρX↔Y Z↔E.
2. If ρXZE ≈ε ρX ⊗ ρZE then ρXZE ≈2ε ρX↔Z↔E.
3. If ρXZE ≈ε I/|X | ⊗ ρZE, then ρXZE ≈4ε ρX↔Z↔E.

Lemma 2.2. If ρXY E ≈ε ρX↔Y↔E then ρXf(X,Y )Y E ≈ε ρXf(X,Y )↔Y↔E for any function
f .

Lemma 2.3. For an event E which is completely determined by the random variable Y ,
i.e. for all y, the probability Pr[E|Y = y] either vanishes or equals one, we can decompose
the density matrix ρX↔Y↔E into5

ρX↔Y↔E = Pr[E ] · ρX↔Y↔E|E + Pr[E ] · ρX↔Y↔E|E .

3 Protocols and Functionalities

Quantum Protocols. We consider two-party quantum protocols π = (A,B), consisting
of interactive quantum algorithms A and B. For convenience, we call the two parties who
run A and B Alice and Bob, respectively. There are different approaches to formally define
interactive quantum algorithms and thus quantum two-party protocols, in particular when
we restrict in- and outputs (of honest participants) to be classical. For instance such a
formalization can be done by means of quantum circuits, or by means of a classical Turing
machine which outputs unitaries that are applied to a quantum register. For our work, the

5 One is tempted to think that such a decomposition holds for any event E ; however, this is not true. See
Lemma 2.1 of [DFSS07] for another special case where the decomposition does hold.
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specific choice of the formalization is immaterial; what is important is that such a two-
party quantum protocol, formalized in whatever way, uniquely specifies its input-output
behavior. Therefore, in this work, we capture quantum protocols by their input-output
behavior, which we formalize by a quantum operation, i.e. a trace-preserving completely-
positive map, which maps the common two-partite input state ρUV to the common two-
partite output state ρXY . We denote this operation by ρXY = π ρUV or, when we want
to emphasize that π is executed by honest Alice and Bob, also by ρXY = πA,B ρUV . If one
of the players, say Bob, is dishonest and follows a malicious strategy B′, then we slightly
abuse notation and write πA,B′ for the corresponding operator.

Protocols and Functionalities with Classical In- and Output. In this work, we
focus on quantum protocols π = (A,B) with classical in- and output for the honest players.
This means that we assume the common input state ρUV to be classical, i.e. of the
form ρUV =

∑
u,v PUV (u, v)|u〉〈u| ⊗ |v〉〈v| for some probability distribution PUV , and the

common output state ρXY = πA,B ρUV is then guaranteed to be classical as well, i.e.,
ρXY =

∑
x,y PXY (x, y)|x〉〈x| ⊗ |y〉〈y|. In this case we may understand U and V as well as

X and Y as random variables, and we also write (X,Y ) = π(U, V ). Note that the input-
output behavior of the protocol is uniquely determined by the conditional probability
distribution PXY |UV . If one of the players, say Bob, is dishonest and follows a malicious
strategy B′, then we may allow his part of the input to be quantum and denote it as V ′,
i.e. ρUV ′ =

∑
u PU (u)|u〉〈u| ⊗ ρV ′|U=u, and we allow his part Y ′ of the common output

state ρXY ′ = πA,B′ ρUV ′ to be quantum, i.e. ρXY ′ =
∑

x PX(x)|x〉〈x| ⊗ ρY ′|X=x. We write
ρUV ′ as ρU∅ = ρU ⊗ ρ∅ = ρU if V ′ is empty, i.e. if B′ has no input at all, and we write it
as ρUZV ′ if part of his input, Z, is actually classical.

A classical non-reactive two-party ideal functionality F is given by a conditional prob-
ability distribution PF(U,V )|UV , inducing a pair of random variables (X,Y ) = F(U, V ) for
every joint distribution of U and V . We also want to take into account ideal functionali-
ties which allow the dishonest player some additional—though still limited—possibilities
(as for instance in Section 6 or 7). We do this as follows. We specify F not only for the
“proper” domains U and V, over which U and V are supposed to be distributed, but we
actually specify it for some larger domains Ũ ⊇ U and Ṽ ⊇ V. The understanding is that
U and V provided by honest players always lie in U and V, respectively, whereas a dishon-
est player, say Bob, may select V from Ṽ \ V, and this way Bob may cause F , if specified
that way, to process its inputs differently and/or to provide a “more informative” output
Y to Bob. For simplicity though, we often leave the possibly different domains for honest
and dishonest players implicit.

We write (X,Y ) = FÂ,B̂(U, V ) or ρXY = FÂ,B̂ ρUV for the execution of the “ideal-
life” protocol, where Alice and Bob forward their inputs to F and output whatever they
obtain from F . And we write ρXY ′ = FÂ,B̂′ ρUV ′ for the execution of this protocol with a
dishonest Bob with strategy B̂′ and quantum input V ′. Note that Bob’s possibilities are
very limited: he can produce some classical input V for F (distributed over Ṽ) from his
input quantum state V ′, and then he can prepare and output a quantum state Y ′ which
might depend on F ’s reply Y .

Classical Hybrid Protocols. A two-party classical hybrid protocol ΣF1···F` = (Â, B̂)
between Alice and Bob is a protocol which makes a bounded number k of sequential
oracle calls to possibly different ideal functionalities F1, . . . ,F`. We allow Â and B̂ to
make several calls to independent copies of the same Fi, but we require from ΣF1···F`

that for every possible execution, there is always agreement between Â and B̂ on when to
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call which functionality; for instance we may assume that Â and B̂ exchange the index i
before they call Fi (and stop if there is disagreement).

jth q-prot
i; Sj; Uj

X Y 0

U

�SjUjV 0j

�F1���F`Â;B̂0

Xj

i; V 0j
Y

Fi;Â;B̂0 VFi
Y 0jj+1st q-prot

Fig. 1. Hybrid protocol Σ
F1···F`

Â,B̂′

Formally, such a classical hybrid protocol is given
by a sequence of k + 1 quantum protocols formalized
by quantum operators with classical in- and output
for the honest players, see Figure 1. For an honest
player, say Alice, the j-th protocol outputs an index
i indicating which functionality is to be called, classi-
cal auxiliary (or “state”) information information Sj
and a classical input Uj for Fi. The (j+1)-st protocol
expects as input Sj and Alice’s classical output Xj

from Fi. Furthermore, the first protocol expects Al-
ice’s classical input U to the hybrid protocol, and the
last produces the classical output X of the hybrid pro-
tocol. In case of a dishonest player, say Bob, all in- and
outputs may be quantum states V ′j respectively Y ′j . By
instantiating the j-th call to a functionality F (where
we from now on omit the index for simpler notation)
in the obvious way by the corresponding “ideal-life”
protocol FÂ,B̂ (respectively FÂ′,B̂ or FÂ,B̂′ in case of
a dishonest Alice or Bob), we obtain the instantiated
hybrid protocol formally described by quantum oper-
ator ΣF1···F`

Â,B̂
(respectively ΣF1···F`

Â′,B̂
or ΣF1···F`

Â,B̂′
).6

For the hybrid protocol to be classical, we mean
that it has classical in- and output (for the honest players), but also that all commu-
nication between Alice and Bob is classical.7 Since we have not formally modeled the
communication within (hybrid) protocols, we need to formalize this property as a prop-
erty of the quantum operators that describe the hybrid protocol: Consider a dishonest
player, say Bob, with no input, and consider the common state ρSjUjV ′j

at any point dur-
ing the execution of the hybrid protocol when a call to functionality Fi is made. The
requirement for the hybrid protocol to be classical is now expressed in that there ex-
ists a classical Zj—to be understood as consisting of B̂′’s classical communication with
Â and with the Fi′ ’s up to this point—such that given Zj , Bob’s quantum state V ′j is
uncorrelated with (i.e. independent of) Alice’ classical input and auxiliary information:
ρSjUjZjV ′j

= ρSjUj↔Zj↔V ′j . Furthermore, we require that we may assume Zj to be part of
V ′j in the sense that for any B̂′ there exists B̂′′ such that Zj is part of V ′j . This definition
is motivated by the observation that if Bob can communicate only classically with Alice,
then he can correlate his quantum state with information on Alice’s side only by means
of the classical communication.

We also consider the protocol we obtain by replacing the ideal functionalities by
quantum two-party sub-protocols π1, . . . , π` with classical in- and outputs for the hon-
est parties: whenever ΣF1···F` instructs Â and B̂ to execute FiÂ,B̂, they instead execute
πi = (Ai,Bi) and take the resulting outputs. We write Σπ1···π` = (A,B) for the real
quantum protocol we obtain this way.

6 Note that for simpler notation, we are a bit sloppy and give the same name, like Â and B̂′, to honest
Alice’s and dishonest Bob’s strategy within different (sub)protocols.

7 We do not explicitly require the internal computations of the honest parties to be classical.
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4 Security for Two-Party Quantum Protocols

4.1 The Security Definition

Framework. We use the following framework for defining security of a quantum proto-
col π with classical in- and output. We distinguish three cases and consider the respective
output states obtained by executing π in case of honest Alice and honest Bob, in case
of honest Alice and dishonest Bob, and in case of dishonest Alice and honest Bob. For
each of these cases we require some security conditions on the output state to hold. More
precisely, for honest Alice and Bob, we fix an arbitrary joint probability distribution PUV
for the inputs U and V , resulting in outputs (X,Y ) = πA,B(U, V ) with a well defined
joint probability distribution PUV XY . For an honest Alice and a dishonest Bob, we fix an
arbitrary distribution PU for Alice’s input and an arbitrary strategy B′ with no input for
Bob, and we consider the resulting joint output state

ρUXY ′ =
(
idU ⊗ πA,B′

)
ρUU∅ =

∑
u

PU (u)|u〉〈u| ⊗ πA,B′(|u〉〈u|⊗ρ∅)

augmented with Alice’s input U , where U and X are classical and Y ′ is in general quan-
tum. And, correspondingly, for a dishonest Alice and an honest Bob, we fix an arbitrary
distribution PV for Bob’s input and an arbitrary strategy A′ with no input for Alice, and
we consider the resulting joint output state

ρV X′Y =
(
idV ⊗ πA′,B

)
ρV ∅V =

∑
v

PV (v)|v〉〈v| ⊗ πA′,B(ρ∅⊗|v〉〈v|)

augmented with Bob’s input V . Then, security is defined by specific information-theoretic
conditions on PUV XY , ρUXY ′ and ρV X′Y , where the conditions depend on the functionality
F which π is implementing. Definition 4.1 below for a general functionality F , as well as
the definitions studied later for specific functionalities (Definitions 6.1, 7.1 etc.), are to be
understood in this framework. In particular, the augmented common output states are to
be understood as defined above.

We stress once more that the framework assumes that dishonest players have no input
at all. This might appear too weak at first glance; one would expect a dishonest player, say
Bob, to at least get the input V of the honest Bob. The justification for giving dishonest
players no input is that on the one hand, we will show that this “minimalistic approach”
is good enough for the level of security we are aiming for (see Theorem 5.1), and on the
other hand, our goal is to keep the security definitions as simple as possible.

Restricting the Adversary. Since essentially no interesting two-party task can be im-
plemented securely by a quantum protocol against unbounded quantum attacks [May97,LC97,Lo97,Kit03],
one typically has to put some restriction upon the dishonest player’s capabilities. One such
restriction, which proved to lead to interesting results, is to limit the quantum-storage
capabilities of the dishonest player [DFSS05,DFR+07,DFSS07,WST07], but one can also
consider other restrictions like a bound on the size of coherent measurements dishonest
players can do [Sal98].

Throughout, we let A and B be subfamilies of all possible strategies A′ and B′ of a dis-
honest Alice and a dishonest Bob, respectively. In order to circumvent some pathological
counter examples, we need to assume the following two natural consistency conditions on
A, and correspondingly on B. If a dishonest strategy A′ ∈ A expects as input some state
ρZU ′ with classical Z, then for any z and for any ρU ′|Z=z, the strategy A′z,ρU′|Z=z

, which
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has z hard-wired and prepares the state ρU ′|Z=z as an initial step but otherwise runs like
A′, is in A as well. And, if A′ ∈ A is a dishonest strategy for a protocol Σπ which makes
a call to a sub-protocol π, then the corresponding “sub-strategy” of A′, which is active
during the execution of π, is in A as well.

Defining Security. Following the framework described above, we propose the following
security definition for two-party quantum protocols with classical in- and output. The
justification for the proposed definition is that it implies strong simulation-based security
when using quantum protocols as sub-protocols in classical outer protocols (Theorem 5.1),
yet the definition is expressed in a way that is as simple and as weak as (seemingly)
possible, making it as easy as possible to design and prove quantum cryptographic schemes
secure according to the definition.

Definition 4.1. A two-party quantum protocol π ε-securely implements an ideal classical
functionality F against A and B if the following holds:

Correctness: For any joint distribution of the input U and V , the resulting common
output (X,Y ) = π(U, V ) satisfies

(U, V,X, Y ) ≈ε (U, V,F(U, V )) .

Security for Alice: For any B′ ∈ B (with no input), and for any distribution of U , the
resulting common output state ρUXY ′ (augmented with U) is such that there exist8

classical random variables V and Y such that

PUV ≈ε PU · PV , (U, V,X, Y ) ≈ε (U, V,F(U, V )) and ρUXV Y Y ′ ≈ε ρUX↔V Y↔Y ′ .

Security for Bob: For any A′ ∈ A (with no input), and for any distribution of V , the
resulting common output state ρV X′Y (augmented with V ) is such that there exist
classical random variables U and X such that

PUV ≈ε PU · PV , (U, V,X, Y ) ≈ε (U, V,F(U, V )) and ρV Y UXX′ ≈ε ρV Y↔UX↔X′ .

The three conditions for dishonest Bob (and similarly for dishonest Alice) express that,
up to a small error, V is independent of U , X and Y are obtained by applying F , and
the quantum state Y ′ is obtained by locally processing V and Y .

4.2 Equivalent Formulations

As already mentioned, Definition 4.1 appears to guarantee security only in a very restricted
setting, where the honest player has no information beyond his input, and the dishonest
player has no (auxiliary) information at all. Below, we argue that Definition 4.1 actually
implies security in a somewhat more general setting, where the dishonest player is allowed
as input to have arbitrary classical information Z as well as a quantum state which only
depends on Z. For completeness, although this is rather clear, we also argue that not
only the honest player’s input is protected, but also any classical “side information” S he
might additionally have but does not use.

8 as defined in Section 2.
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Proposition 4.2. Let π be a two-party protocol that ε-securely implements F against A

and B. Let B′ ∈ B be a dishonest Bob who takes as input a classical Z and a quantum
state V ′ and outputs (the same) Z and a quantum state Y ′. Then, for any ρSUZV ′ with
ρSUZV ′ = ρSU↔Z↔V ′, the resulting overall output state (augmented with S and U)

ρSUXZY ′ =
(
idSU⊗πA,B′

)
ρSUUZV ′ =

∑
s,u,z

PSUZ(s, u, z)|s, u〉〈s, u|⊗πA,B′(|u〉〈u|⊗|z〉〈z|⊗ρV ′|Z=z)

is such that there exist classical random variables V and Y such that PSUZV ≈ε PSU↔Z↔V ,
(S,U, V,X, Y, Z) ≈ε (S,U, V,F(U, V ), Z) and ρSUXV Y ZY ′ = ρSUX↔V Y Z↔Y ′. The corre-
sponding holds for a dishonest Alice.

Proof. It is rather clear that we can extend the setting from Definition 4.1 by S: We
can view S as an additional input to F , provided by Alice besides U , which is simply
ignored by F . Definition 4.1 then immediately implies that the common output state
ρSUXY ′ allows V and Y such that PSUV ≈ε PSUPV , (S,U, V,X, Y ) ≈ε (S,U, V,F(U, V ))
and ρSUXV Y Y ′ ≈ε ρSUX↔V Y↔Y ′ .

Consider now a dishonest Bob who holds some classical auxiliary information Z. Ap-
plying Definition 4.1 with the above observation to the distribution PSU |Z=z and the
dishonest Bob who has z hard-wired and locally prepares ρV ′|S=s,U=u,Z=z = ρV ′|Z=z im-
plies that the conditioned common output state ρSUXY ′|Z=z allows V and Y such that
PSUV |Z=z ≈ε PSU |Z=zPV |Z=z, PSUV XY |Z=z ≈ε PSUV F(U,V )|Z=z and ρSUXV Y V ′|Z=z ≈ε
ρSUX↔V Y↔V ′|Z=z. As the above holds for any z, it follows that PSUZV ≈ε PSU↔Z↔V ,
PSUV XY Z ≈ε PSUV F(U,V )Z as well as that

ρSUXV Y ZY ′ =
∑
z

PZ(z)|z〉〈z| ⊗ ρSUXV Y Y ′|Z=z

≈ε
∑
z

PZ(z)|z〉〈z| ⊗ ρSUX↔V Y↔Y ′|Z=z

=
∑
z

PZ(z)|z〉〈z| ⊗
∑
suxvy

PSUXV Y |Z(s, u, x, v, y|z)|suxvy〉〈suxvy|ρvyzY ′

=
∑
suxvyz

PSUXV Y Z(s, u, x, v, y, z)|suxvyz〉〈suxvyz|ρvyzY ′

= ρSUX↔V Y Z↔Y ′ .
ut

Note the restriction on the adversary’s quantum input V ′, namely that it is only
allowed to depend on the honest player’s input U (and side information S) “through”
Z. It is this limitation which prohibits quantum protocols satisfying Definition 4.1 to
securely compose into outer quantum protocols but requires the outer protocol to be
classical. Indeed, within a quantum protocol that uses quantum communication, a dis-
honest player may be able to correlate his quantum state with classical information on
the honest player’s side; however, within a classical protocol, he can only do so through
the classical communication so that his state is still independent when given the classical
communication.

The following proposition shows equivalence to a simulation-based definition; this will
be a handy formulation in order to prove the composition theorem.

Proposition 4.3. Let π be a two-party protocol that ε-securely implements F against A

and B. Let B′ ∈ B be a dishonest Bob who takes as input a classical Z and a quantum
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state V ′, engages into π with honest Alice and outputs Z and a quantum state Y ′. Then,
for any ρSUZV ′ with ρSUZV ′ = ρSU↔Z↔V ′ there exists B̂′ such that(

idS ⊗ πA,B′
)
ρSUZV ′ ≈3ε

(
idS ⊗FÂ,B̂′

)
ρSUZV ′ .

The corresponding holds for a dishonest Alice.

Proof. Given that Z = z, B̂′ samples v according to the distribution PV |Z=z, and sends it
to F in order to receive output y. Then, B̂′ prepares and outputs the quantum state ρvyzY ′ .
The resulting common output state ρ̂SUXZY ′ (augmented with S and U) is as follows.

ρ̂SUXZY ′ =
∑
s,u,z

PSUZ(s, u, z)
∑
v

PV |Z(v|z)
∑
x,y

PF(U,V )|UV (x, y|u, v)|s, u, x, z〉〈s, u, x, z|ρvyzY ′

≈ε
∑
s,u,v,z

PSUV Z(s, u, v, z)
∑
x,y

PF(U,V )|UV (x, y|u, v)|s, u, x, z〉〈s, u, x, z|ρvyzY ′

=
∑
s,u,v,z

PSUV Z(s, u, v, z)
∑
x,y

PF(U,V )|SUV Z(x, y|s, u, v, z)|s, u, x, z〉〈s, u, x, z|ρvyzY ′

≈ε
∑

s,u,v,x,y,z

PSUV XY Z(s, u, v, x, y, z)|s, u, x, z〉〈s, u, x, z|ρvyzY ′

= ρSUX↔Z↔Y ′ ≈ε ρSUXZY ′ . ut

Recall that FÂ,B̂′ is the execution of the “ideal-life” protocol, where honest Â relays in-
and outputs, and the only thing dishonest B̂′ can do is modify the input and the output.
Note that we do not guarantee that B̂′ is in B; we will comment on this after Theorem 5.1.

5 Composability

We show the following composition result. If quantum protocols π1, . . . , π` securely im-
plement ideal functionalities F1, . . . ,F` according to Definition 4.1, then any two-party
classical hybrid protocol ΣF1,...,F` which makes sequential calls to F1, . . . ,F` is essen-
tially equally secure as the protocol obtained by replacing the calls to F1, . . . ,F` by the
respective quantum subroutines π1, . . . , π`.

We stress that the Fi’s are classical functionalities, i.e., even a dishonest player Â′ or
B̂′ can only input a classical value to Fi, and for instance cannot execute Fi with several
inputs in superposition. This makes our composition result stronger, because we give the
adversary less power in the “ideal” (actually hybrid) world.

Theorem 5.1 (Composition Theorem). Let ΣF1···F` = (Â, B̂) be a classical two-party
hybrid protocol which makes at most k oracle calls to the functionalities, and for every
i ∈ {1, . . . , `}, let protocol πi be an ε-secure implementation of Fi against A and B. Then,
the following holds.

Correctness: For every distribution of U and V

δ
(
Σπ1···π`

A,B ρUV , Σ
F1···F`

Â,B̂
ρUV

)
≤ kε .

Security for Alice: For every B′ ∈ B there exists B̂′ such that for every distribution
of U

δ
(
Σπ1···π`

A,B′ ρU∅, Σ
F1···F`

Â,B̂′
ρU∅

)
≤ 3kε .
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Security for Bob: For every A′ ∈ A there exists Â′ such that for every distribution of V

δ
(
Σπ1···π`

A′,B ρ∅V , Σ
F1···F`

Â′,B̂
ρ∅V

)
≤ 3kε .

Before going into the proof, we would like to point out the following observations. First
of all, note that the quantification is such that the dishonest hybrid adversary B̂′ (and
correspondingly Â′) does not depend on the distribution of the honest player’s input U ,
and as such we do not need to assume that the adversary knows the honest player’s input
distribution.

Also note that in contrast to typical composition theorems, which per-se guarantee
security when replacing one functionality by a sub-protocol and where in case of several
functionalities security then follows by induction, Theorem 5.1 is stated in such a way
that it directly guarantees security when replacing all functionalities by sub-protocols. The
reason for this is that the assumption that the outer protocol is classical is not satisfied
anymore once the first functionality is replaced by a quantum sub-protocol, and thus
the inductive reasoning does not work directly. We stress that our composition theorem
nevertheless allows for several levels of compositions (see Corollary 5.2 and the preceding
discussion).

Furthermore, note that we do not guarantee that the dishonest hybrid adversary B̂′ is
in B (and similarly for Â′). For instance the specific B̂′ we construct in the proof is more
involved with respect to classical resources (memory and computation), but less involved
with respect to quantum resources: essentially it follows B′, except that it remembers
all classical communication and except that the actions during the sub-protocols are
replaced by sampling a value from some distribution and preparing a quantum state
(of a size that also B′ has to handle); the descriptions of the distribution and the state
have to be computed by B̂′ from the stored classical communication. By this, natural
restrictions on B′ concerning its quantum capabilities propagate to B̂′. For instance if B′

has a quantum memory of bounded size, so has B̂′. Furthermore, in many cases the classical
hybrid protocol is actually unconditionally secure against classical dishonest players and
as such in particular secure against unbounded quantum dishonest players (because every
dishonest quantum strategy can be simulated by an unbounded classical adversary), so
no restriction on B̂′ is needed.

Finally, note that we do not specify what it means for the hybrid protocol to be secure;
Theorem 5.1 guarantees that whatever the hybrid protocol achieves, essentially the same
is achieved by the real-life protocol with the oracle calls replaced by protocols. But of
course in particular, if the hybrid protocol is secure in the sense of Definition 4.1, then so
is the real-life protocol, and as such it could itself be used as a quantum sub-protocol in
yet another classical outer protocol.

Corollary 5.2. If ΣF1···F` is a δ-secure implementation of G against A and B, and if
πi is an ε-secure implementation of Fi against A and B for every i ∈ {1, . . . , `}, then
Σπ1···π` is a (δ+3kε)-secure implementation of G.

Proof (of Theorem 5.1). Correctness is obvious. We show security for Alice; security for
Bob can be shown accordingly. Consider a dishonest B′. First we argue that for every
distribution for Alice’s input U , there exists a B̂′ as claimed (which though may depend
on PU ). Then, in the end, we show how to make B̂′ independent of PU .

Let A’s input U be arbitrarily distributed. We prove the claim by induction on k. The
claim holds trivially for protocols that make zero oracle calls. Consider now a protocol
ΣF1···F` with at most k > 0 oracle calls. For simplicity, we assume that the number of
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oracle calls equals k, otherwise we instruct the players to makes some “dummy calls”. Let
ρSkUkV

′
k

be the common state right before the k-th and thus last call to one of the sub-
protocols π1, . . . , π` in the execution of the real protocol Σπ1,...,π` . To simplify notation in
the rest of the proof, we omit the index k and write ρ

S̄Ū V̄ ′
instead; see Figure 2. We know

from the induction hypothesis for k−1 that there exists B̂′ such that ρ
S̄Ū V̄ ′

≈3(k−1)ε σS̄Ū V̄ ′
where σ

S̄Ū V̄ ′
is the common state right before the k-th call to a functionality in the

execution of the hybrid protocol ΣF1···F`

Â,B̂′
ρU∅. As described in Section 3, S̄, Ū and V̄ ′ are

to be understood as follows. S̄ denotes A’s (respectively Â’s) classical auxiliary information
to be “remembered” during the call to the functionality. Ū denotes A’s (respectively Â’s)
input to the sub-protocol (respectively functionality) that is to be called next, and V̄ ′

denotes the dishonest player’s current quantum state. For simplicity, we assume that the
index i, which determines the sub-protocol πi (functionality Fi) to be called next, is fixed
and we just write π and F for πi and Fi, respectively. If this is not the case, we consider
ρ
S̄Ū V̄ ′|Ī=i and σ

S̄Ū V̄ ′|Ī=i instead, and reason as below for any i, where Ī denotes the index
of the sub-protocol (functionality) to be called. Note that conditioning on Ī = i means
that we allow B̂′ to depend on i, but this is legitimate since Ī is known to the dishonest
party.

πiπi πiπi

Σπ1···π`

AB′

ρS̄X̄Ȳ ′

πi′ Fi′

ρ
S̄Ū V̄ ′ Fi

ΣF1···F`

ÂB̂′

Fi′

≈

τS̄X̄Ȳ ′

σ
S̄Ū V̄ ′

σS̄X̄Ȳ ′

≈

Fig. 2. Steps of the Composability Proof

Consider now the evolution of the state σ
S̄Ū V̄ ′

when executing FÂ,B̂′ (as prescribed
by the hybrid protocol) with a strategy for B̂′ yet to be determined and when executing
πA,B′ instead. Let σS̄X̄Ȳ ′ and τS̄X̄Ȳ ′ denote the corresponding states after the execution
of respectively πA,B′ and FÂ,B̂′ , see Figure 2. We show that σS̄X̄Ȳ ′ and τS̄X̄Ȳ ′ are 3ε-close;
this then proves the result by the fact that evolution does not increase the trace distance
and by the triangle inequality:

ρS̄X̄Ȳ ′ = (idS̄ ⊗ πA,B′) ρS̄Ū V̄ ′ ≈3(k−1)ε (idS̄ ⊗ πA,B′)σS̄Ū V̄ ′ = σS̄X̄Ȳ ′

≈3ε τS̄X̄Ȳ ′ = (idS̄ ⊗FÂ,B̂′)σS̄Ū V̄ ′ .

Let σ
S̄Ū Z̄V̄ ′

, σS̄X̄Z̄Ȳ ′ and τS̄X̄Z̄Ȳ ′ be the extensions of the respective states σ
S̄Ū V̄ ′

,
σS̄X̄Ȳ ′ and τS̄X̄Ȳ ′ when we also consider Z̄ (which collects the classical communication
dictated by ΣF1...,F` as well as B̂′’s classical inputs to and outputs from the previous oracle
calls), which is guaranteed to exist by our formalization of a classical hybrid protocol, so
that Z̄ is without loss of generality contained in V̄ ′ and σ

S̄Ū Z̄V̄ ′
= σ

S̄Ū↔Z̄↔V̄ ′ . It thus
follows from Proposition 4.3 that σS̄X̄Z̄Ȳ ′ and τS̄X̄Z̄Ȳ ′ are 3ε-close for a proper strategy
of B̂′. Note that the strategy of B̂′ may depend on the state σ

S̄Ū Z̄V̄ ′
, but since PU as well

as Â’s behavior are fixed, σ
S̄Ū Z̄V̄ ′

is also fixed.
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It remains to argue that we can make B̂′ independent of PU . We use an elegant
argument due to Crépeau and Wullschleger [CW08]. We know that for any PU there
exists a B̂′ (though depending on PU ) as required. For any value u that U may take on,
let then

εu = δ
(
Σπ1···π`

A,B′ ρU∅|U=u, Σ
F1···F`

Â,B̂′
ρU∅|U=u

)
.

Then,
∑

u PU (u)εu = 3kε. The εu’s depend on PU , and thus we also write εu(PU ). Consider
now the function F which maps an arbitrary distribution PU for U to a new distribution
defined as F (PU )(u) := 1+εu(PU )

1+3kε PU (u). Function F is continuous and maps a non-empty,
compact, convex set onto itself. Thus, by Brouwer’s Fixed Point Theorem, it must have
a fixed point: a distribution PU with F (PU ) = PU , and thus εu(PU ) = 3kε for any u.
It follows that B̂′ which works for that particular distribution PU in fact works for any
specific value for U and so for any distribution of U . ut

6 Example: Secure Identification

We show that the information-theoretic security definition proposed by Damg̊ard et al. for
their secure-identification quantum protocol in the bounded-quantum-storage model [DFSS07]
implies security in our sense for a proper functionality FID; this guarantees composabil-
ity as in Theorem 5.1 for their protocol. In Section 7 and in Appendix B, we show the
corresponding for the 1-2 OT scheme [DFR+07] and for other variants of OT.

A secure identification scheme allows a user Alice to identify herself to server Bob
by securely checking whether the supplied password agrees with the one stored by Bob.
Specifically, on respective input strings WA,WB ∈ W provided by Alice and Bob, the
functionality outputs the bit Y = (WA

?= WB) to Bob. A dishonest server B′ should learn
essentially no information on WA beyond that he can come up with a guess W ′ for WA and
learns whether W ′ = WA or not, and similarly a dishonest user A′ succeeds in convincing
Bob essentially only if she guesses WB correctly. If her guess is incorrect then the only
thing she might learn is that her guess is incorrect. The corresponding ideal functionality
is depicted in Figure 3. Note that if dishonest A′ provides the “correct” input WA = WB,
then FID allows A′ to learn this while she may still enforce Bob to reject (by setting the
“override bit” D to 0). In Appendix C, we study a slightly stronger variant, which does
not allow this somewhat unfair option for A′.9

Functionality FID: Upon receiving strings WA and WB from user Alice and from
server Bob, FID outputs the bit WA

?= WB to Bob.
If Alice is dishonest, then she may input an additional “override bit” D. In this case,
FID outputs the bit WA

?= WB to Alice and the bit (WA
?= WB) ∧D to Bob.

Fig. 3. The Ideal Password-Based Identification Functionality.

We recall the security definition from [DFSS07] for a secure identification scheme. The
definition is in the framework described in Section 4.1; thus, it considers a single execution
of the protocol with an arbitrary distribution for the honest players inputs and with no
input for dishonest players, and security is defined by information-theoretic conditions on
the resulting output states. For consistency with the above notation (and the notation

9 The reason we study here the weaker version is that this corresponds to the security guaranteed by the
definition proposed in [DFSS07], as we show.
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used in [DFSS07]), Alice and Bob’s inputs are denoted by WA and WB, respectively,
rather than U and V . Furthermore, note that honest Alice’s output X is empty: X = ∅.

Definition 6.1 (Secure Identification). A password-based quantum identification scheme
is ε-secure (against A and B) if the following properties hold.

Correctness: For honest user Alice and honest server Bob, and for any joint input
distribution PWAWB

, Bob learns whether their input is equal, except with probability ε.
Security for Alice: For any dishonest server B′ ∈ B, and for any distribution of WA,

the resulting common output state ρWAY ′ (augmented with WA) is such that there
exists a classical W ′ that is independent of WA and such that

ρWAW ′Y ′|WA 6=W ′ ≈ε ρWA↔W ′↔Y ′|WA 6=W ′ ,

Security for Bob: For any dishonest user A′ ∈ A, and for any distribution of WB, the
resulting common output state ρWBY X′ (augmented with WB) is such that there exists
a classical W ′ independent of WB, such that if WB 6= W ′ then Y = 1 with probability
at most ε, and

ρWBW ′X′|W ′ 6=WB
≈ε ρWB↔W ′↔X′|W ′ 6=WB

.

A somewhat more natural functionality (without “override bit”) can be achieved by
slightly strengthening the requirements of Definition 6.1, see Appendix C.

Proposition 6.2. A quantum protocol satisfying Definition 6.1 3ε-securely implements
the functionality FID from Figure 3 according to Definition 4.1.

Proof. Correctness follows immediately.
Security for Alice: Consider W ′ which is guaranteed to exist by Definition 6.1. Let us

define V = W ′ and let Y be the bit WA
?= W ′. By the requirement of Definition 6.1, W ′

is independent of Alice’s input WA. Furthermore, we have that(
WA,W

′, ∅, Y
)

=
(
WA,W

′,FID(WA,W
′)
)

by the definition of FID . Finally, we note that Y completely determines the event E :=
{WA 6= W ′} and therefore, we conclude using Lemma 2.3 that

ρWA∅W ′Y Y ′ = Pr[WA 6= W ′] · ρWA∅W ′Y Y ′|WA 6=W ′ + Pr[WA = W ′] · ρWA∅W ′Y Y ′|WA=W ′

= Pr[WA 6= W ′] · ρWA∅W ′Y Y ′|WA 6=W ′ + Pr[WA = W ′] · ρWA↔W ′Y↔Y ′|WA=W ′

≈ε Pr[WA 6= W ′] · ρWA↔W ′Y↔Y ′|WA 6=W ′ + Pr[WA = W ′] · ρWA↔W ′Y↔Y ′|WA=W ′

= ρWA↔W ′Y↔Y ′ .

Security for Bob: Consider W ′ which is guaranteed to exist by Definition 6.1. Let us
define U and X as follows. We let U = (W ′, D) where we define D = Y if WB = W ′,
and else we choose D “freshly” to be 0 with probability Pr[Y = 0|WB = W ′] and to
be 1 otherwise. Furthermore, we let X = (W ′ ?= WB). Recall that by the requirement of
Definition 6.1, W ′ is independent of Bob’s input WB. Furthermore by construction, D = 0
with probability Pr[Y = 0|WB = W ′], independent of the value of WB (and independent
of whether WB = W ′ or not). Thus, U is perfectly independent of WB.

Since by Definition 6.1 the probability for Bob to decide that the inputs are equal,
Y = 1, does not exceed ε if WB 6= W ′, we have that

PUWBXY = Pr[WB = W ′] · PUWBXY |WB=W ′ + Pr[WB 6= W ′] · PUWBXY |WB 6=W ′
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= Pr[WB = W ′] · PUWBFID(U,WB)|WB=W ′ + Pr[WB 6= W ′] · PUWBXY |WB 6=W ′

≈ε Pr[WB = W ′] · PUWBFID(U,WB)|WB=W ′ + Pr[WB 6= W ′] · PUWBFID(U,WB)|WB 6=W ′

= PUWBFID(U,WB)

Finally, we have

ρWBY UXX′ = Pr[WB 6= W ′] · ρWBYW ′DXX′|WB 6=W ′ + Pr[WB = W ′] · ρWBYW ′DXX′|WB=W ′

In the case WB = W ′, we have by construction that D = Y and therefore, we ob-
tain that ρWBYW ′DXX′|WB=W ′ = ρWBY↔W ′D↔XX′|WB=W ′ . If WB 6= W ′, it follows from
Definition 6.1 and the fact that D is sampled independently that ρWBW ′DX′|W ′ 6=WB

≈ε
ρWB↔W ′D↔X′|W ′ 6=WB

. Furthermore, the bit X is fixed to 0 in case WB 6= W ′ and we only
make an error of at most ε assuming that Bob’s output Y is always 0 and therefore,

ρWBYW ′DXX′|WB 6=W ′ ≈ε ρWB(Y=0)W ′D(X=0)X′|WB 6=W ′

≈ε ρWB(Y=0)↔W ′D(X=0)↔X′|WB 6=W ′

≈ε ρWBY↔W ′DX↔X′|WB 6=W ′

Putting things together, we obtain

ρWBY UXX′

≈3ε Pr[WB 6= W ′] · ρWBY↔W ′DX↔X′|WB 6=W ′ + Pr[WB = W ′] · ρWBY↔W ′D↔XX′|WB=W ′

= ρWBY↔(W ′D)X↔X′ ,

where we used Lemma 2.1 and 2.3 in the last step.
ut

7 Another Example: Randomized 1-2 Oblivious Transfer

Figure 4 below shows the ideal functionality for sender-randomized 1-2 OT. It takes no
input from Alice and an input bit C from Bob, and it outputs two random `-bit strings
S0 and S1 to Alice and an `-bit string Y which stands for the string of his choice SC to
Bob. Note that it allows a dishonest Alice to influence the distribution of S0 and S1, and
a dishonest Bob to influence the distribution of SC ; but this is good enough for many
applications, in particular to build a regular (non-randomized) 1-2 OT in the standard
manner.

We recall the security definition of randomized 1-2 OT from [DFR+07]. The definition
is in the framework described in Section 4.1 and considers a single execution of the protocol
with an arbitrary distribution for honest Bob’s input bit and no input for the dishonest
players. For consistency with common notation, we denote Bob’s input V by C (whereas
Alice input is empty), and Alice’s outputs by X = (S0, S1).

Definition 7.1 (Rand 1-2 OT `). A randomized 1-2 OT protocol is ε-secure (against A

and B) if the following properties hold.

Correctness: If Alice and Bob are honest, then for any distribution of Bob’s input C,
S0 and S1 are ε-close to random and independent of C, and Y = SC except with
probability ε.

Security for Alice: For any dishonest B′ ∈ B, the resulting common output state ρS0S1Y ′

allows a classical binary C such that ρS1−CSCCY ′ ≈ε
1
2` I⊗ ρSCCY ′.
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Functionality F12ROT

Honestly behaving Alice and Bob: Upon receiving no input from Alice and a choice bit
C ∈ {0, 1} from Bob, F12ROT samples two random and independent strings S0, S1 ∈
{0, 1}`, and sends S0 and S1 to Alice and SC to Bob.

Honest Alice and dishonest Bob: Upon receiving no input from Alice and a bit C ∈
{0, 1} and a string SC ∈ {0, 1}` from Bob, F12ROT samples a random independent
string S1−C ∈ {0, 1}`, and sends S0 and S1 to Alice.

Dishonest Alice and honest Bob: Upon receiving two strings S0, S1 ∈ {0, 1}` from
Alice and a bit C ∈ {0, 1} from Bob, F12ROT sends SC to Bob.

Fig. 4. The ideal Randomized 1-2 OT functionality.

Security for Bob: For any dishonest A′ ∈ A, and for any distribution of C, the result-
ing common output state ρX′CY (augmented with C) allows classical S0, S1 such that
Pr
[
Y = SC

]
≥ 1− ε and ρS0S1X′C ≈ε ρS0S1X′ ⊗ ρC .

Note that the correctness condition in Definition 7.1 is somewhat stronger than the cor-
rectness condition in the definition proposed in [DFR+07], which merely requires that
Y = SC except with probability ε. We point out that this difference is not crucial for
Proposition 7.2 below to hold. Indeed, if Y = SC is guaranteed with high probability,
then correctness as in Definition 7.1 can be bootstrapped from the security properties for
dishonest players, albeit with some loss in the error probability: security for Bob guaran-
tees that the distribution of (S0, S1) is close to independent of C, and security for Alice
guarantees that the distribution of S0, which is close to the distribution of S0 conditioned
on C = 1, is random and independent of S1 (conditioned on C = 1 or not), and similar for
S1. Working out the details is tedious10 and does not give any new insight. In most cir-
cumstances, such an argument is not even needed. For any given protocol, the correctness
condition of Definition 4.1 can typically be trivially verified by inspection.

Proposition 7.2. A quantum protocol satisfying Definition 7.1 4ε-securely implements
F12ROT according to Definition 4.1.

Proof. Correctness follows immediately.
Security for Alice: Consider C which is guaranteed to exist by Definition 7.1. Let us

define V = (C, SC) and Y = ∅. As Alice’s input U is empty, V is trivially independent of U .
Note that, ρS1−CSCCY ′ ≈ε 2−`I⊗ρSCCY ′ in particular implies that PS1−CSCC ≈ε 2−`PSCC .
Therefore it follows that(

∅, (C, SC), (S0, S1), ∅
)
≈ε
(
∅, (C, SC),F12ROT(∅, (C, SC))

)
by the definition of F12ROT. Finally, by the third claim of Lemma 2.1, ρS1−CSCCY ′ ≈ε
2−`I⊗ ρSCCY ′ implies that

ρS1−CSCCY ′ ≈4ε ρS1−C↔SCC↔Y ′

10 What makes it particularly tedious is that e.g. the random variable C that is guaranteed to exist by
the security for Alice may a-priori differ from honest Bob’s C, and one has to explicitly argue that they
have to be close.
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from which it follows, by Lemma 2.2, that

ρ∅(S0S1)(CSC)∅Y ′ ≈4ε ρ∅(S0S1)↔(CSC)∅↔Y ′ .

Security for Bob: Consider S0, S1 which is guaranteed to exist by Definition 7.1. Let
us define U = (S0, S1) and X = ∅. ρS0S1X′C ≈ε ρS0S1X′ ⊗ ρC in particular implies that
PS0S1C ≈ε PS0S1PC . Furthermore, it is easy to see that P [Y 6=SC ] ≤ ε implies(

(S0, S1), C, ∅, Y
)
≈ε
(
(S0, S1), C, ∅, SC

)
=
(
(S0, S1), C,F12ROT((S0, S1), C)

)
.

Finally, by Lemma 2.1, ρS0S1X′C ≈ε ρS0S1X′ ⊗ ρC in particular implies ρCS0S1X′ ≈2ε

ρC↔S0S1↔X′ , from which follows by Lemma 2.2 that ρCSCS0S1X′ ≈2ε ρCSC↔S0S1↔X′ .
Using P [Y 6=SC ] ≤ ε, this implies

ρCY (S0S1)∅X′ ≈3ε ρCY↔(S0S1)∅↔X′ .

The last claim follows from the following observation.

δ
(
ρCY S0S1X′ , ρCY↔S0S1↔X′

)
=
∑
cys0s1

PCY S0S1(c, y, s0, s1) δ(ρcys0s1X′ , ρs0s1X′ )

= P [Y =SC ] ·
∑
cys0s1

PCY S0S1|Y=SC
(c, y, s0, s1) δ(ρcys0s1X′ , ρs0s1X′ ) + P [Y 6=SC ] · rest

= P [Y =SC ] ·
∑
cs0s1

PCS0S1|Y=SC
(c, s0, s1) δ(ρcs0s1X′|Y=SC

, ρs0s1X′ ) + P [Y 6=SC ] · rest

where 0 ≤ rest ≤ 1, and similarly for δ
(
ρCSCS0S1X′ , ρCSC↔S0S1↔X′

)
. Subtracting the two

terms results in a value that is upper bounded by P [Y 6=SC ] ≤ ε in absolute value. ut

8 Conclusion

We proposed a general security definition for quantum protocols in terms of simple
quantum-information-theoretic conditions and showed that quantum protocols fulfilling
the definition do their job as expected when used as subroutines in a larger classical pro-
tocol. The restriction to classical “outer” protocols fits our currently limited ability for
executing quantum protocols, but can also be appreciated in that our security conditions
pose the minimal requirements for a quantum protocol to be useful beyond running it in
isolation.
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A Proofs

A.1 Proof of Lemma 2.1

We show that ρX↔Y↔ZE ≈ε ρX↔Y Z↔E , the first claim then follows by triangle inequality.
Since quantum operations do not increase the trace distance, tracing out register E in
ρXY ZE and ρ′XY ZE := ρX↔Y↔ZE implies that

PXY Z ≈ε PX↔Y↔Z = PXY · PZ|Y .

By elementary properties of the trace distance, it follows that

δ
(
ρX↔Y↔ZE , ρX↔Y Z↔E

)
=
∑
x,y,z

PXY (x, y)δ
(
PZ|Y (z|y)ρy,zE , PZ|XY (z|x, y)ρy,zE

)
=

1
2

∑
x,y,z

PXY (x, y)
∣∣PZ|Y (z|y)− PZ|XY (z|x, y)

∣∣ tr∣∣ρy,zE ∣∣ = δ
(
PX↔Y↔Z , PXY Z

)
≤ ε .

The second claim follows by letting Y be “empty”. The third claim holds because by
the triangle inequality, we have

δ(ρXZE , ρX ⊗ ρZE) ≤ δ(ρXZE , I/|X | ⊗ ρZE) + δ(I/|X | ⊗ ρZE , ρX ⊗ ρZE) ≤ 2ε

and we can then use the second claim. ut

A.2 Proof of Lemma 2.2

By elementary properties of the trace distance,

δ
(
ρXf(X,Y )Y E , ρXf(X,Y )↔Y↔E

)
=
∑
x,z,y

PXf(X,Y )Y (x, z, y)δ
(
ρx,yE , ρyE

)
=
∑
x,y

PXY (x, y)δ
(
ρx,yE , ρyE

)
= δ(ρXY E , ρX↔Y↔E) ≤ ε .

ut

A.3 Proof of Lemma 2.3

Let p = Pr[E ] and p = Pr[E ] and define the two sets YE = {y : Pr[E|Y = y] = 1} and
YE = {y : Pr[E|Y = y] = 1}. Then,

ρX↔Y↔Z =
∑
x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρyE

=
∑

x,y∈YE

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρyE +
∑

x,y∈YE

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρyE

=
∑

x,y∈YE

p · PXY |E(x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρyE|E +
∑

x,y∈YE

p · PXY |E(x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρy
E|E

= p · ρX↔Y↔E|E + p · ρX↔Y↔E|E ,

where we used in the third equality that for y ∈ YE , it follows from the assumption over
the event that ρyE = ρyE|E and similarly for y ∈ YE . ut

19



B Other Variants of Oblivious Transfer

In this section, we give analogous “minimal” requirements for composability of other
variants of oblivious transfer. It has been shown [Cré87] that all these variants of oblivious
transfer are equivalent and universal for secure two-party function evaluation [Kil88]. In
fact, the results of this paper show that if the variants are implemented by a quantum
protocol according to our security definitions, these classical results still hold.

B.1 Regular (Non-Randomized) 1-2 OT

Figure 5 shows the ideal functionality for the standard (non-randomized) 1-out-of-2
String-OT. It takes two input strings S0 and S1 of ` bits each from Alice and an in-
put bit C from Bob, and it outputs an `-bit string Y which stands for the string of his
choice SC to Bob.

Functionality F12OT: Upon receiving S0, S1 ∈ {0, 1}` from Alice and a choice bit
C ∈ {0, 1} from Bob, F12OT sends SC to Bob.

Fig. 5. The ideal 1-2 OT functionality.

The definition is in the framework described in Section 4.1 and considers a single
execution of the protocol with an arbitrary distribution for honest Bob’s input bit and no
input for the dishonest players. For consistency with common notation, we denote Alice’s
input U by (S0, S1) and Bob’s input V by C.

Definition B.1 (1-2 OT `). A 1-2 OT protocol is ε-secure if the following properties
hold.

Correctness: If Alice and Bob are honest, then for any joint distribution of Alice’s inputs
S0, S1 and Bob’s input C, it holds that Bob’s output Y = SC except with probability ε.

Security for Alice: If Alice is honest, then for any dishonest Bob and any distribution
of Alice’s inputs S0, S1, Alice does not get any output and the common output state
ρS0S1Y ′ allows a classical binary C such that ρS0S1C ≈ε ρS0S1⊗ρC and ρS1−CSCCY ′ ≈ε
ρS1−C↔SCC↔Y ′.

Security for Bob: If Bob is honest, then for any dishonest Alice and any distribution
of Bob’s input C, the common output state ρX′CY allows classical S0, S1 such that
Pr
[
Y = SC

]
≥ 1− ε and ρS0S1X′C ≈ε ρS0S1X′ ⊗ ρC .

Proposition B.2. A quantum protocol satisfying Definition B.1 3ε-securely implements
F12OT according to Definition 4.1.

Proof. Correctness follows immediately.
Security for Alice: Consider C which is guaranteed to exist by Definition B.1. Let us

define V = C and Y = SC . By the first requirement in the definition, we have that Alice’s
input S0, S1 is ε-close to independent of C.

Furthermore, it holds by definition that

((S0, S1), C, ∅, SC) = ((S0, S1), C,F12OT((S0, S1), C)) .

Finally, by the second requirement in the definition and Lemma 2.2, we have that

ρ(S0S1)CSCY ′ ≈ε ρS0S1↔CSC↔Y ′ .

Security for Bob: as in the proof of Proposition 7.2. ut
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B.2 Fully Randomized 1-2 OT

Figure 6 below shows the ideal functionality for fully randomized 1-2 String-OT (some-
times also called Oblivious Key OK). It takes no input from the players and outputs two
random `-bit strings S0 and S1 to Alice, a random choice bit C and SC to Bob. Note
that it allows a dishonest Alice to influence the distribution of S0 and S1, and a dishonest
Bob to influence the distribution of SC ; but this is good enough for many applications,
in particular to build a regular (non-randomized) 1-2 OT in the standard manner.

Functionality F12OK:

Honestly behaving Alice and Bob: Upon receiving no input from Alice and Bob, F12OK

samples two random and independent strings S0, S1 ∈R {0, 1}` and a choice bit C ∈R
{0, 1}, and sends S0, S1 to Alice and C, SC to Bob.

Honest Alice and dishonest Bob: Upon receiving no input from Alice and a bit C ∈
{0, 1} and a string SC ∈ {0, 1}` from Bob, F12OK samples a random independent
string S1−C ∈R {0, 1}`, and sends S0 and S1 to Alice.

Dishonest Alice and honest Bob: Upon receiving two strings S0, S1 ∈ {0, 1}` from
Alice and no input from Bob, F12OK samples a random bit C ∈R {0, 1} and sends
C, SC to Bob.

Fig. 6. The ideal Randomized 1-2 OT functionality.

The following definition is in the framework described in Section 4.1 and considers
a single execution of the protocol with no inputs for honest or dishonest players. For
consistency with common notation, we denote Alice’s output X by (S0, S1) and Bob’s
output by (C, Y ).

Definition B.3 (Fully Randomized 1-2 OT `). A randomized 1-2 OT protocol is ε-
secure if the following properties hold.

Correctness: If Alice and Bob are honest, then S0, S1 and C are ε-close to random and
independent, and Y = SC except with probability ε.

Security for Alice: If Alice is honest, then for any dishonest Bob, the common output
state ρS0S1Y ′ allows a classical binary C such that ρS1−CSCCY ′ ≈ε

1
2` I⊗ ρSCCY ′.

Security for Bob: If Bob is honest, then for any dishonest Alice, the common output
state ρX′CY allows classical S0, S1 such that Pr

[
Y = SC

]
≥ 1− ε and ρS0S1X′C ≈ε

ρS0S1X′ ⊗ I/2.

Proposition B.4. A quantum protocol satisfying Definition B.3 4ε-securely implements
F12OK according to Definition 4.1.

Proof. Correctness follows immediately.
Security for Alice: as in Proposition 7.2.
Security for Bob: Consider S0, S1 which is guaranteed to exist by Definition 7.1. Let us

define Alice’s input U = (S0, S1) and Alice’s output X = ∅. The requirement ρS0S1X′C ≈ε
ρS0S1X′⊗I/2 in particular implies that PS0S1C ≈ε PS0S1PU . Furthermore, it is easy to see
that P [Y 6=SC ] ≤ ε implies(

(S0, S1), ∅, ∅, (C, Y )
)
≈ε
(
(S0, S1), ∅, ∅, (C, SC)

)
≈ε
(
(S0, S1), ∅,F12ROT((S0, S1), ∅)

)
.
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Finally, by Lemma 2.1, ρS0S1X′C ≈ε ρS0S1X′⊗I/2 implies ρCS0S1X′ ≈4ε ρC↔S0S1↔X′ , from
which follows by Lemma 2.2 that ρCSCS0S1X′ ≈8ε ρCSC↔S0S1↔X′ . Using P [Y 6=SC ] ≤ ε,
this implies

ρ∅(CY )(S0S1)∅X′ ≈9ε ρ∅(CY )↔(S0S1)∅↔X′ .

The last claim follows from the following observation.

δ
(
ρCY S0S1X′ , ρCY↔S0S1↔X′

)
=
∑
cys0s1

PCY S0S1(c, y, s0, s1) δ(ρcys0s1X′ , ρs0s1X′ )

= P [Y =SC ] ·
∑
cys0s1

PCY S0S1|Y=SC
(c, y, s0, s1) δ(ρcys0s1X′ , ρs0s1X′ ) + P [Y 6=SC ] · rest

= P [Y =SC ] ·
∑
cs0s1

PCS0S1|Y=SC
(c, s0, s1) δ(ρcs0s1X′|Y=SC

, ρs0s1X′ ) + P [Y 6=SC ] · rest

where 0 ≤ rest ≤ 1, and similarly for δ
(
ρCSCS0S1X′ , ρCSC↔S0S1↔X′

)
. Subtracting the two

terms results in a value that is upper bounded by P [Y 6=SC ] ≤ ε in absolute value. ut

B.3 Randomized Rabin OT

Figure 7 shows the ideal functionality for (randomized) Rabin Oblivious Transfer. It
samples a uniform random bit C ∈R {0, 1} and a string S ∈R {0, 1}`. It outputs S to
Alice, C to Bob and in case C = 1, also S is output to Bob. If C = 0, Bob receives the
all-0 string.

Functionality FRabinOT:

Honestly behaving Alice and Bob: Upon receiving no input from the players, FRabinOT

samples S ∈ {0, 1}` and C ∈R {0, 1} and sends X := S to Alice and C, Y := C · S to
Bob.

Honest Alice and dishonest Bob: Upon receiving no input from Alice and a string
S ∈ {0, 1}` from Bob, FRabinOT samples a random independent bit C and outputs it
to Bob. If C = 1, FRabinOT sends X = S to Alice. If C = 0, FRabinOT samples a new
string S′ ∈R {0, 1}` and sends X = S′ to Alice.

Dishonest Alice and honest Bob: Upon receiving a string S ∈ {0, 1}` from Alice and
no input from Bob, FRabinOT samples a bit C ∈R {0, 1} and sends C,C · S to Bob
and no output to Alice.

Fig. 7. The ideal Rabin OT functionality.

The following definition is in the framework described in Section 4.1 and considers
a single execution of the protocol with no inputs for honest or dishonest players. For
consistency with common notation, we denote Bob’s output by (C, Y ).

Definition B.5 (Rabin OT). A randomized Rabin-OT protocol is ε-secure if the fol-
lowing properties hold.

Correctness: If Alice and Bob are honest, then X and C are ε-close to random and
independent and Y = C ·X except with probability ε.
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Security for Alice: If Alice is honest, then for any dishonest Bob, the common output
state ρXY ′ allows a classical binary C such that ρXC ≈ε ρX ⊗ I/2 and ρXCY ′|C=0 ≈ε
I/2` ⊗ ρCY ′|C=0.

Security for Bob: If Bob is honest, then for any dishonest Alice, the common output
state ρX′CY allows a classical S such that Y = C · S except with probability ε and
ρCSX′ ≈ε I/2⊗ ρSX′.

Proposition B.6. A quantum protocol satisfying Definition B.5 5ε-securely implements
FRabinOT according to Definition 4.1.

Proof. Correctness follows immediately.
Security for Alice: Consider C which is guaranteed to exist by Definition B.5. Let us

define Bob’s input V := X if C = 1. In case C = 0, sample V ∈R {0, 1}`. Let Bob’s output
be Y = (C,C · V ). As Alice has no input U = ∅, Bob’s input V is trivially independent
of U . Furthermore, the definition requires C to be ε-close to independent from X and to
completely random. In case C = 1, FRabinOT outputs (1, Y ) = (1, 1 ·V ) = (1, 1 ·X) to Bob
and X to Alice. In case C = 0, Bob receives (0, 0) and Alice’s output X is independent
of Bob’s input V . Hence,

(∅, V,X, (C,C · V )) ≈ε (∅, V,FRabinOT(∅, V )) .

From ρXCY ′|C=0 ≈ε I/2`⊗ρCY ′|C=0 follows by third claim of Lemma 2.1 that ρXCY ′|C=0 ≈4ε

ρX↔C↔Y ′|C=0, and as V is sampled at random, also ρXV CY ′|C=0 ≈4ε ρX↔V C↔Y ′|C=0

holds. It follows that

ρXV (C,C·V )Y ′ = Pr[C = 0] · ρXV (C,C·V )Y ′|C=0 + Pr[C = 1] · ρXV (C,C·V )Y ′|C=1

= Pr[C = 0] · ρXV (C,C·V )Y ′|C=0 + Pr[C = 1] · ρX↔V (C,C·V )↔Y ′|C=1

≈4ε Pr[C = 0] · ρX↔V (C,C·V )↔Y ′|C=0 + Pr[C = 1] · ρX↔V (C,C·V )↔Y ′|C=1

≈ε ρX↔V (C,C·V )↔Y ′ ,

where we used Lemma 2.3 for the last approximation.
Security for Bob: Consider S which is guaranteed to exist by Definition B.5. Let us

define Alice’s input to be U := S and let Alice’s output X be empty. As Bob does not
have input V = ∅, Alice’s U is trivially independent of V . Furthermore, since C is ε-close
to uniformly random and independent of S and Y = C · S except with probability ε, we
have

(S, ∅, ∅, (C, Y )) ≈2ε (S, ∅,FRabinOT(S, ∅)) .

From ρCSX′ ≈ε I/2 ⊗ ρSX′ follows that ρCSX′ ≈2ε ρC ⊗ ρSX′ and therefore by
Lemma 2.1, ρCSX′ ≈4ε ρC↔S↔X′ . As Y = C · S except with probability ε, we have
by Lemma 2.2 that

ρ∅CY S∅X′ ≈5ε ρCY↔S↔X′ .

ut

C Secure Identification without Unfairness

The goal of this section is to provide a slightly stronger functionality for secure identifica-
tion than the one presented in Section 6. It is stronger in that we do not allow dishonest
Alice to make Bob reject while she learns whether WA = WB or not, but we still allow
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Functionality FID: Upon receiving strings WA and WB from user Alice and from
server Bob, FID outputs the bit Y = (WA

?= WB) to Bob. In case Alice is dishonest,
she may choose WA =⊥ (which never agrees with honest Bob’s input), and (for any
choice of WA) the bit Y is also output to Alice.

Fig. 8. The Ideal Password-Based Identification Functionality.

Alice to make Bob reject all the time by inputting a symbol ⊥ that never agrees with
Bob’s input, see Figure 8. In order to achieve this functionality, we have to impose a
slightly stricter security definition than Definition 6.1.

The definition is in the framework described in Section 4.1; thus, it considers a single
execution of the protocol with an arbitrary distribution for the honest players inputs
and with no input for dishonest players, and security is defined by information-theoretic
conditions on the resulting output states. For consistency with the above notation (and
the notation used in [DFSS07]), Alice and Bob’s inputs are denoted by WA and WB,
respectively, rather than U and V . Furthermore, note that honest Alice’s output X is
empty: X = ∅.

Definition C.1 (Secure Identification). A password-based quantum identification scheme
is ε-secure if the following properties hold.

Correctness: For honest user Alice and honest server Bob, Bob learns whether their
input is equal, except with probability ε.

Security for Alice: For any dishonest server B′ ∈ B, and for any distribution of WA,
the resulting common output state ρWAY ′ (augmented with WA) is such that there
exists a classical W ′ that is independent of WA and such that

ρWAW ′Y ′|WA 6=W ′ ≈ε ρWA↔W ′↔Y ′|WA 6=W ′ ,

Security for Bob: For any dishonest user A′ ∈ A, and for any distribution of WB, the
resulting common output state ρWBY X′ (augmented with WB) is such that there exists
a classical W ′ (possibly ⊥) independent of WB, such that if WB 6= W ′ then Y = 1
with probability at most ε, and if WB = W ′, Bob’s output is Y = 1. Furthermore, we
have that

ρWBW ′X′|W ′ 6=WB
≈ε ρWB↔W ′↔X′|W ′ 6=WB

.

The only difference to Definition 6.1 from [DFSS07] is that we additionally require for the
security for Bob, that he accepts in case that WB = W ′. This small change allows us to
achieve a more natural functionality compared to the case where we leave undefined what
happens in case WB = W ′. We note that the protocol proposed in [DFSS07] fulfills also
this strengthened Definition C.1. In Step 5 of their protocol, if dishonest Alice sends a
string Z which is inconsistent with any of the possible strings Sj corresponding to Bob’s
passwords, W ′ is set to ⊥. This W ′ is independent of WB and as Bob always rejects,
dishonest Alice does not learn any additional information about WB.

Proposition C.2. A quantum protocol satisfying Definition C.1 ε-securely implements
the functionality FID from Figure 8 according to Definition 4.1.

Proof. Correctness follows immediately.
Security for Alice: as in Proposition 6.2.
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Security for Bob: Consider W ′ which is guaranteed to exist by Definition C.1. Let
U = W ′ and X = (W ′ ?= WB). Recall that by the requirement of Definition C.1, W ′ is
independent of Bob’s input WB.

Since by Definition 6.1 the probability for Bob to decide that the inputs are equal,
Y = 1, does not exceed ε if WB 6= W ′, and Bob accepts, Y = 1, if WB = W ′, we have
that

PW ′WBXY = Pr[WB = W ′] · PW ′WBXY |WB=W ′ + Pr[WB 6= W ′] · PW ′WBXY |WB 6=W ′

= Pr[WB = W ′] · PW ′WBFID(W ′,WB)|WB=W ′ + Pr[WB 6= W ′] · PW ′WBXY |WB 6=W ′

≈ε Pr[WB = W ′] · PW ′WBFID(W ′,WB)|WB=W ′ + Pr[WB 6= W ′] · PW ′WBFID(W ′,WB)|WB 6=W ′

= PW ′WBFID(W ′,WB)

Finally, we have

ρWBY UXX′ = Pr[WB 6= W ′] · ρWBYW ′XX′|WB 6=W ′ + Pr[WB = W ′] · ρWBYW ′XX′|WB=W ′

In the case WB = W ′, we have by construction that X = Y = 1 and therefore, we
obtain that ρWBYW ′XX′|WB=W ′ = ρWBY↔W ′X↔X′|WB=W ′ . If WB 6= W ′, it follows from
Definition C.1 that ρWBW ′X′|W ′ 6=WB

≈ε ρWB↔W ′↔X′|W ′ 6=WB
. Furthermore, the bit X is

fixed to 0 in case WB 6= W ′ and we only make an error of at most ε assuming that Bob’s
output Y is always 0 and therefore,

ρWBYW ′XX′|WB 6=W ′ ≈ε ρWB(Y=0)W ′(X=0)X′|WB 6=W ′

≈ε ρWB(Y=0)↔W ′(X=0)↔X′|WB 6=W ′

≈ε ρWBY↔W ′X↔X′|WB 6=W ′

Putting things together, we obtain

ρWBY UXX′

≈3ε Pr[WB 6= W ′] · ρWBY↔W ′X↔X′|WB 6=W ′ + Pr[WB = W ′] · ρWBY↔W ′X↔X′|WB=W ′

= ρWBY↔W ′X↔X′ ,

where we used Lemma 2.1 and 2.3 in the last step. ut
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