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Abstract

We consider monotone span programs as a tool for representing,
we will say computing, general access structures. It is known that if an
access structure Γ is computed by a monotone span program M, then
the dual access structure Γ∗ is computed by a monotone span program
M∗ of the same size. We will strengthen this result by proving that
such an M∗ not only exists, but can be efficiently computed from M.

1 Introduction

Monotone span programs, introduced by Karchmer and Wigderson
in [KW93], are a model of computation, based on linear algebra, for
computing monotone functions. Since there is a natural one-to-one
correspondence between monotone functions {0, 1}n → {0, 1} and ac-
cess structures over the set P = {1, . . . , n}, every access structure Γ
can be represented, we will say computed, by a monotone span pro-
gram M.

Every access structure Γ has a natural dual access structure Γ∗.
This concept was first defined in [SJM91] and found various occurances
like e.g. in partial knowledge proofs [CDS94] or general-adversary
multi-party computation [CDM99].

The following question naturally arises. Given a monotone span
program M of reasonable size computing an access structure Γ, does
there exist a monotone span program M∗ of reasonable size computing
the dual access structure Γ∗, and, if yes, can it be efficiently computed?
The first part of the question has been answered in the confirmative
in [Gál95], we will show in the following that also the second part can
be answered by yes.
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2 Definitions and Basic Properties

Let n be some positive integer and Γ a set of subsets of P = {1, . . . , n}.

Definition 1 Γ is called an access structure over P, if it is closed
under taking supersets, i.e. if A ∈ Γ, B ⊃ A ⇒ B ∈ Γ.
The set Γ∗ = {A | Ac 6∈ Γ} is called the dual access structure to Γ. 1

Let Γ be an access structure over P = {1, . . . , n}. Further, let K be
some field, M a (d × e)-matrix over K, ϕ : {1, . . . , d} → {1, . . . , n} a
(surjective) function and ε a vector in K e.

Definition 2 The quadrupel M = (K,M,ϕ, ε) is called a monotone
span program, MSP for short, with labeling ϕ and target vector ε.
The j-th row of M is said to be labeled by k if ϕ(j) = k.
The MSP M is said to compute the access structure Γ, if

A ∈ Γ ⇐⇒ ε ∈ imMT
A

where the matrix MA consists of the rows of M which are labeled by a
number in A. 2

If ε ∈ imMT
A

holds for some A ⊆ P, then we say that M accepts A.
The size of M is d, the number of rows of M .

The claims of the following proposition are known and/or easy to
verify. We therefore omit the proof.

Proposition 2.1 Let M = (K,M,ϕ, ε) be a MSP computing an ac-
cess structure Γ. Then the following holds.

1. It is easy to transform M into a MSP, computing the same access
structure Γ, of equal size and with target vector (1, 0, . . . , 0).

2. For any A ⊆ P, ε 6∈ imMT
A
⇔ ∃ k : MAk = 0, 〈k, ε〉 = 1.

3. Deleting a column of M (and the corresponding entry of ε),
which can be expressed as a linear combination of the other columns,
does not change the access structure computed by the MSP.
Therefore, we can always assume that e ≤ d.

1It is easy to see that Γ∗ indeed is an access structure.
2Also for a vector v = (v1, . . . , vd) we let vA be the vector consisting of the entries vj

with ϕ(j) ∈ A.
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3 Existence

As already mentioned, the following result is proven in [Gál95].

Theorem 1 Let M = (K,M,ϕ, ε) be a MSP computing some access
structure Γ. Then there exists a MSP M∗ = (K,M∗, ϕ, ε∗) of the
same size computing the dual access structure Γ∗.

Even though the proof given in [Gál95] is constructive, the con-
struction is not efficient.

4 Efficient Construction

We now state and prove the main result of this report.

Theorem 2 Let M = (K,M,ϕ, ε) be a MSP computing some access
structure Γ. Then a MSP M∗ = (K,M∗, ϕ, ε∗) of the same size,
computing the dual access structure Γ∗, can be efficiently computed.
Furthermore, M and M ∗ satisfy MT M∗ = εε

∗T .

Proof: Let d and e be the number of rows and columns of the matrix
M (whose columns are wlog linear independent) and assume that the
target vector ε is ε = (1, 0, . . . , 0) ∈ Ke. Let v0 be a solution of the lin-
ear equation system MTx = ε and w1, . . . ,we−d a basis for ker(MT ).
Set M∗ = [v0,w1, . . . ,we−d] and ε

∗ = (1, 0, . . . , 0) ∈ Ke−d+1.
Note that M ∗ is a d × (d − e + 1)-matrix which fulfills M T M∗ = E

where E’s first column equals ε and all other entries are zero, hence
E = εε

∗T . Further, every solution of MTx = ε is a linear combina-
tion of the columns of M ∗ in which the first column, v0, occurs exactly
once.
We will show now that the MSP M∗ = (K,M∗, ϕ, ε∗) computes Γ∗.
Consider a set A ∈ Γ. So there exists a vector λ with λAc = 0 and
MT

λ = ε. Therefore, λ must be of the form λ = M ∗k with the first
entry of k being one. But since M ∗

Ack = λAc = 0 and 〈k, ε∗〉 = 1, Ac

is not accepted by M∗.
Consider now a set A such that Ac is not accepted by M∗. This means
that ε

∗ is not in the span of the rows of M ∗

Ac or, equivalent, there exists
a vector k with M ∗

Ack = 0 and 〈k, ε∗〉 = 1. If we set a = M ∗k, then
aAc = 0 and hence MT

A
aA = MTa = MT M∗k = Ek = ε. Therefore

A ∈ Γ.
Hence, A ∈ Γ if and only if Ac is not accepted by M∗.

3



Acknowledgments

We would like to thank Ronald Cramer for many interesting and help-
ful discussions concerning this and other topics and for his support.

References

[CDM99] Ronald Cramer, Ivan Damg̊ard, and Ueli Maurer. General
Secure Multi-Party Computation from any Linear Secret-
Sharing Scheme. In preparation, 1999.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers.
Proofs of partial knowledge and simplified design of wit-
ness hiding protocols. In Yvo G. Desmedt, editor, Advances
in Cryptology—CRYPTO ’94, volume 839 of Lecture Notes
in Computer Science, pages 174–187. Springer-Verlag, 21–
25 August 1994.

[Gál95] A. Gál. Combinatorial Methods in Boolean Function Com-
plexity. PhD thesis, University of Chicago, 1995.

[KW93] Maurizio Karchmer and Avi Wigderson. On span programs.
In 8th Annual Conference on Structure in Complexity Theory
(SCTC ’93), pages 102–111, San Diego, CA, USA, May 1993.
IEEE Computer Society Press.

[SJM91] G.J. Simmons, W.A. Jackson, and K. Martin. The geom-
etry of shared secret schemes. Bulletin of the Institute of
Combinatorics and its Applications, 1:71–88, 1991.

4


