Secure Multi-Player Protocols:
Fundamentals, Generality, and Efficiency

Serge Fehr

PhD Dissertation

N @ 0

G
P
£
&

N
TAs ARW

BRICS

BRICS
Department of Computer Science
University of Arhus
Denmark

n-So
“*\ LIO(/

June 2, 2003 Supervisors: Ronald Cramer

lvan Damgard

Secure Multi-Player Protocols:
Fundamentals, Generality, and Efficiency

A Dissertation
Presented to the Faculty of Science
of the University of Arhus
in Partial Fulfilment of the Requirements for the
PhD Degree

by
Serge Fehr
June 2, 2003

iii

Abstract

While classically cryptography is concerned with the problem of private communication
among two entities, say players, in modern cryptography multi-player protocols play an
important role. And among these, it is probably fair to say that secret sharing, and
its stronger version wverifiable secret sharing (VSS), as well as multi-party computation
(MPC) belong to the most appealing and/or useful ones. The former two are basic tools
to achieve better robustness of cryptographic schemes against malfunction or misuse by
“decentralizing” the security from one single to a whole group of individuals (captured by
the term threshold cryptography). The latter allows—at least in principle—to execute any
collaboration among a group of players in a secure way that guarantees the correctness of
the outcome but simultaneously respects the privacy of the participants.

In this work, we study three aspects of secret sharing, VSS and MPC, which we denote
by fundamentals, generality, and efficiency. By fundamentals we mean the quest for
understanding why a protocol works and is secure in abstract (and hopefully simple)
mathematical terms. By generality we mean generality with respect to the underlying
mathematical structure, in other words, minimizing the mathematical azioms required
to do some task. And efficiency of course deals with the improvement of protocols with
respect to some meaningful complexity measure.

We briefly summarize our main results. (1) We give a complete characterization of black-
boz secret sharing in terms of simple algebraic conditions on the integer sharing coefficients,
and we propose a black-box secret sharing scheme with minimal expansion factor. Note
that, in contrast to the classical field-based secret sharing schemes, a black-box secret
sharing scheme allows to share a secret sampled from an arbitrary Abelian group and
requires only black-box access to the group operations and to random group elements.
Such a scheme may be very useful in the construction of threshold cryptosystems based
on groups with secret order (like RSA). (2) We show that without loss of efficiency, MPC
can be based on arbitrary finite rings. This is in sharp contrast to the literature where
essentially all MPC protocols require a much stronger mathematical structure, namely a
field. Apart from its theoretical value, this can lead to efficiency improvements since it
allows a greater freedom in the (mathematical) representation of the task that needs to be
securely executed. (3) We propose a unified treatment of perfectly secure linear VSS and
distributed commitments (a weaker version of the former), and we show that the security
of such a scheme can be reduced to a linear algebra condition. The security of all known
schemes follows as corollaries whose proofs are pure linear algebra arguments, in contrast

to some hybrid arguments used in the literature. (4) We construct a new unconditionally
secure VSS scheme with minimized reconstruction complexity in the setting of a dishonest
minority. This improves on the reconstruction complexity of the previously best known
scheme without affecting the (asymptotic) complexity of the sharing phase. In the context
of MPC with pre-processing, our scheme allows to improve the computation phase of earlier
protocols without increasing the complexity of the pre-processing. (5) Finally, we consider
commitment multiplication proofs, which allow to prove a multiplicative relation among
three commitments, and which play a crucial role in computationally secure MPC. We
study a non-interactive solution which works in a distributed-verifier setting and essentially
consists of a few executions of Pedersen’s VSS. We simplify and improve the protocol, and
we point out a (previously overlooked) property which helps to construct non-interactive
proofs of partial knowledge in this setting. This allows for instance to prove the knowledge
of ¢ out of m given secrets, without revealing which ones. We also construct a non-
interactive distributed-verifier proof of circuit satisfiability, which—in principle—allows to
prove anything that can be proven without giving away the proof.

vi

Acknowledgements

First and foremost I'm deeply indebted to Ronald Cramer for having been my unofficial
supervisor throughout my doctoral study. He supported me extensively, he shared his
knowledge and insights with me, and he encouraged me whenever necessary. Without
him, this work would not exist.

Special thanks go to Ivan Damgard for having been my (official) supervisor here in Arhus,
and to Ueli Maurer who introduced me to this fascinating world named “cryptography”.

I'm very thankful to Yuval Ishai for many helpful comments and suggestions that helped
to improve the presentation of this thesis.

I would also like to thank all my other co-authors, team mates and colleagues, Masayuki
Abe, Jesus Almansa, Kasper Dupont, Stefan Dziembowski, Matthias Fitzi, Jens Groth,
Martin Hirt, Clemens Holenstein, Mads Jurik, Olaf Keller, Reto Kohlas, Maciej Koprowski,
Thomas Kiihne, Eyal Kushilevitz, Julien Marcil, Lennart Meier, Kirill Morozov, Jesper
Buus Nielsen, Bartosz Przydatek, Renato Renner, Louis Salvail, and Stefan Wolf, for many
interesting discussions and amusing chats. Especially with Clemens and Louis I always
had heaps of fun.

Last but definitely not least, a very special thank you goes to my family: to my mother,
Heide-Marie, for putting me “onto the right track”, and to my wife, Rebecca, for her love
and support and for going through thick and thin with me.

Serge Fehr,
Arhus, June 2, 2003.

vii

Contents

Abstract v
Acknowledgements vii
1 Introduction 1
1.1 Secret Sharing 3
1.2 Verifiable Secret Sharing Lo . 4
1.3 Multi-Party Computation oo 6

1.4 Contributions of this Thesis 7

2 Preliminaries 11
2.1 Access Structures and Adversary Structures 11
2.2 Communication Model L L Lo 12
2.3 Adversary Model L 12
2.4 Groups, Ringsand Fields 13
2.5 Modules and Algebraso Lo o 14
2.6 Asymptotic Complexity Notation 15

3 Secret Sharing over Groups and MPC over Rings 17
3.1 Imtroduction. L e e 17
3.2 Secret Sharing 19
3.3 Span Programsover Rings 21
3.3.1 Definitions 21

3.3.2 Span Programs and Linear Secret Sharing 22

3.3.3 A Geometric View of Secret Sharing and Span Programs 23

3.4 Black-Box Secret Sharing and ISP’s 24
3.5 Secure MPCover Rings 26

ix

3.5.1 Model e 26

3.5.2 Multiplicative Span Programs 26
3.5.3 Secure MPCover Rings 27
3.5.4 Achieving Security Against an Active Adversary 29
3.6 Defining and Proving the Security of MPC 32
3.6.1 Definition of Secure MPC 32
3.6.2 Proof of Theorem 3.2 34
3.7 Application: Securely Computing MIN and MAX 38
3.8 Open Problems e 39
Optimal Black-Box Threshold Secret Sharing 41
4.1 Imtroduction. L L e e e 41
4.2 Lower Bounds for Threshold ISP’s 43
4.2.1 Lower Boundson the Size, 43
4.2.2 Lower Bounds on the Column Dimension 45
4.3 Some Variations of Secret Sharing and Span Programs 47
4.3.1 Solid Secret Sharing 47
4.3.2 Weak (Solid) Secret Sharing and Weak Span Programs. 48
4.4 On the Construction of Threshold Span Programs 49
4.4.1 The Lenstra Constants 49
4.4.2 Threshold Span Programs 50
4.5 Span Programs over Integral Extensionsof Z 52
4.6 Optimal Black-Box Threshold Secret Sharing 54
4.6.1 Low-Degree Integral Extensions of Z with Lo(A) >mn 54
4.6.2 Some Modificationso oL oo 56
4.7 Simulatability and Application to Threshold Crypto 57
4.7.1 Share Completion Lo o 57
4.7.2 Uniformity 58
4.7.3 Application: Threshold RSA 59
4.8 An Example Implementation0 L. 60
4.8.1 The Bit Length of the Involved Numbers 61
4.8.2 The Complexity of the Number-Multiplication 62
4.8.3 The Implementation and Its Analysis 63
4.9 Concluding Remarks L o o 65
4.9.1 Black-Box Secret Sharing for Non-Abelian Groups 65

492 OpenProblems L oL

5 A Framework for Linear VSS and Distributed Commitments

5.1
5.2

5.3

5.4

5.5
5.6

Introductiono
Preliminaries oL
5.2.1 Model e e e e
5.2.2 Definitionof VSSand DC
523 Notation.
VSS and DC Based on Secret Sharing and Checking
53.1 Comsistencyo e
5.3.2 Pairwise Consistency
5.3.3 Achieving Secure VSSand DC
Application I: Proving the Security of the CDM Scheme
54.1 The CDM Scheme
5.4.2 The Security Proof Lo oo
Application II: Reducing the Number of Checks in the BGW Scheme
Concluding Remarks
5.6.1 Mixed Adversaries
56.2 OpenProblemso oo

6 On the Cost of Reconstructing a Shared Secret

6.1
6.2
6.3

6.4

6.5

Introduction L.

Single-Round Honest-Dealer VSS
6.3.1 Definition oL e
6.3.2 Two Impossibility Lemmas
Bounds for Single-Round Honest-Dealer VSS
6.4.1 Lower Bound on Reconstruction Complexity
6.4.2 Tightness of the Lower Bound
Upper Bound in the Presence of a. Corrupted Dealer
6.5.1 Definitiono
6.5.2 Towards VSS with Optimized Reconstruction
6.5.3 The CDDHR VSS Sharing Protocol
6.5.4 Computing Tags by a Specialized MPC
6.5.5 The VSS Protocol,

xi

67
67
68
68
68
69
70
70
71
72
75
75
76
7
79
79
80

6.6 Applications to MPC with Pre-processing 97
6.6.1 MPC with Pre-processing 97
6.6.2 Applying Our VSS to MPC with Pre-processing 98

6.7 Concluding Remarks 99
6.7.1 General Adversaries oo 99
6.7.2 The Power of Rushing (Honest Dealer Case) 100
6.7.3 Open Problems 101

Non-interactive Distributed-Verifier Proofs 103

7.1 Introduction. e e 103

7.2 Preliminaries L e e e e e e e 104
7.2.1 Model 104
7.2.2 Commitments and Pedersen’s Commitment Scheme 104
7.2.3 Pedersen’s Verifiable Secret Sharing Scheme 106

7.3 Distributed-Verifier Proofs o 000000000 107
7.3.1 Definition 107
7.3.2 Pedersen’s VSS as a Distributed-Verifier Proof 108
7.3.3 Distributed-Verifier Proof versus Adapted Two-Party Proofs 109

7.4 Constructing Distributed-Verifier Proofs 110
7.4.1 An Improved Commitment Multiplication Proof 110
7.4.2 Proofs or Partial Knowledge 111
7.4.3 General Circuit Evaluation Proofs 113

7.5 Concluding Remarks: General Adversaries 114

xii

Chapter 1

Introduction

Ezxpecting the world to treat you fairly because you are a good person is a little
like expecting the bull not to attack you because you are a vegetarian.

— Dennis Wholey

Classically, reaching back to the Egyptians some 4000 years ago, cryptography deals with
the problem of “hidden writing”, as the origin “kryptos graphia” (kpvnToo ypadia) of the
term cryptography translates: A party, Alice, wants to accord another party, Bob, with
a message m such that a possible eavesdropper, Eve, who intercepts the communication
between Alice and Bob, does not get to see m. The means of achieving this have of course
changed drastically. The old Romans are said to have tattooed a secret message onto
the shaved scalp of a slave, who then was sent to the recipient after his hair had grown
again. More sophisticated, in order to privately communicate with his generals in the
field, Julius Caesar encrypted his orders by substituting each letter of the message with
the letter that is third-next in the alphabet (where “A” follows “Z”). In the first half of the
20th century, mechanical encryption devices where common, the most famous one being
Enigma, used by the German army in World War II and broken by the Allies. Since the
advent of the computer area in the second half of the 20th century, encryption has been
done by complex algorithms like the Data Encryption Standard DES, and possibly based
on involved mathematical techniques like the famous public-key encryption scheme RSA
due to Rivest, Shamir and Adleman.

A milestone (if not to say the milestone) in the history of cryptography was set in 1976
by Diffie and Hellman with their ground breaking paper New Directions in Cryptography.
They not only revolutionized the classical problem of cryptography by introducing the idea
of public-key encryption, but they also extended the domain of cryptology beyond that
of private communication by introducing the concept of digital signatures, the electronic
equivalent of ordinary handwritten signatures. Starting with this work, researchers began
to realize that there are many other interesting problems related to information security
than “hidden writing”. In particular, they began to also study problems that involve more
than just two parties Alice and Bob (or three, counting Eve as well), but a whole group
of parties, typically called players. We distinguish between the following two motivations.

2 Chapter 1. Introduction

On one hand, it was realized that certain problems simply do involve a group of players by
their nature. A popular example for that is secret-ballot voting, where a group of players,
voters, want to accept or reject, say, a new statute by a majority decision, in such a way
that each individual vote remains private, but that nevertheless the correctness of the
result of the vote can be verified by any voter or external observer. Another example is
that of sealed-bid auctions, where some good should be sold to the highest bidder, but
where the losing bidders don’t want the auctioneer or the other bidders to learn their bid.
Both examples can be viewed as instantiations of a very general problem, called multi-party
computation (MPC). In MPC, a group of players want to compute an arbitrary specified
function on their private inputs. The computation must guarantee the correctness of the
result while preserving the privacy of the players’ inputs, even if some of the players are
malicious and behave in an arbitrary unpredictable way.

On the other hand, it was realized that one can achieve robustness of cryptographic
schemes against malfunction or misuse by “spreading” security among a group of players
rather than concentrating it in one single player. For example a company might want its
staff to be able to sign documents on its behalf. However, giving the signing key to all
(or some) staff members is very vulnerable with respect to misuse by individual members.
The idea now is to share the signing key among the stuff members in such a way that a
certain number of members have to collaborate in order to issue a signature. This concept
is called threshold cryptography. Another, though macabre, example is the access control
for the American nuclear arsenal. It is set up in such a way that, on one hand, no single
individual has access authorization, and, on the other hand, individuals which should turn
out to have “ethical concerns” cannot block the access. The cryptographic primitive that
achieves this functionality is called secret sharing. It allows to share a secret among a set of
players such that the players of any large enough subset can jointly reconstruct the secret
(without the help of the remaining players) while the players of any smaller subset have
no joint information about it. A stronger version of secret sharing, called verifiable se-
cret sharing (VSS), incorporates robustness against malicious behavior of the participants.
Even though the motivations, as given here, for (verifiable) secret sharing and for MPC
are rather distinct, it turned out that the solutions are heavily related, in that (verifiable)
secret sharing is a major building block for the construction of MPC protocols, and, on
the other hand, VSS may in fact be viewed as a special case of MPC.

Nowadays, multi-player protocols play an important role in practical and theoretical cryp-
tography, and not only because of the above mentioned applications it is probably fair
to say that among them (verifiable) secret sharing and MPC belong to the most appeal-
ing and/or useful ones, and indeed an immense range of literature can be found treating
various issues.

We proceed by giving more precise descriptions as well as some background information
on secret sharing, VSS and MPC. We also point to some open problems that we address
in this work. In Section 1.4, we summarize our contributions.

1.1. Secret Sharing 3

1.1 Secret Sharing

The concept of secret sharing was introduced in 1979 independently by Shamir [Sha79]
and Blakley [Bla79] as a means to protect a secret simultaneously from exposure and from
being lost. It allows a so called dealer to share the secret among a set of entities, called
players, in such a way that certain specified subsets of the players are able to to reconstruct
the secret without the help of the remaining players (correctness), while smaller subsets
have no information about it (privacy).

The solution presented by Shamir is very elegant: To share a secret s among n players,
where s is an element of a finite field K of cardinality |K| > n, the dealer chooses a
random polynomial f(X) = ap+a1 X +---+a; X" € K[X] with constant coefficient ag = s
and degree at most ¢, where ¢ is a public parameter in the range 0 <t < n — 1. Then,
he hands privately to each player P; the share s; = f(w;) € K, where wq,...,w, are
publicly-known, pairwise-distinct, non-zero elements of K. It now follows from Lagrange
polynomial interpolation that ¢+ 1 (or more) players can reconstruct the polynomial f(X)
and hence the secret s, while up to t of the players have no information about s, in the
sense that the collection of their shares is statistically independent of s.

The access structure of Shamir’s secret sharing scheme, meaning the subgroups of players
than can reconstruct the secret, is characterized by the threshold t. Secret sharing schemes
for general (non-threshold) access structures were first proposed in [ISN87, BL88, Brig9].

Shamir’s secret sharing scheme as well as most other schemes proposed in the literature
belong to a particularly nice class of secret sharing schemes, where every share s; is com-
puted as a fixed linear combination of the secret s and randomly chosen values a1, ..., as
(the coefficients being 1, wj, ..., w! in case of Shamir’s scheme). This is obviously sufficient
(and, as is well known, also necessary) for the scheme to be linear (or homomorphic) in the
sense that if s1,...,s, and s},...,s), are sharings of two secrets s,s’ € K, and if A € K,
then s + s},...,8, + s}, is a sharing of s + s’ and Asy,..., As, is a sharing of As. This
property is very useful in particular in multi-party computation (see Section 1.3), as it
immediately allows to compute (linear functions) on shared values. On the other hand, it
has been shown in [BI01] that non-linear schemes allow more efficient solutions for certain

access structures. Nevertheless, in this work we only consider linear schemes.

Most linear secret sharing schemes proposed in the literature (see e.g. [Bla79,Sha79,Bri89,
BI93, BL88, KW93, G4l95, Bei96, CDMO0]) require and rely on the fact that the secret is
sampled from a finite field K. Shamir’s scheme for instance heavily relies on Lagrange
interpolation which does not hold in general over, say, a ring. On the other hand, as
pointed out by Desmedt and Frankel in the context of threshold cryptography [DF89], it
is desirable to have secret sharing schemes that allow to share secrets that are sampled
from a finite Abelian group G.! In particular, it is desirable to have a black-boz secret
sharing scheme whose security is regardless of the group G from which the secret is chosen,

!The obvious approach of sharing a group element by identifying its bit representation with a field
element of some large enough field (of characteristic 2) is unsatisfactory, both from a theoretical and a
practical point of view, as it depends on the encoding of the secret and the resulting scheme fails to be
linear (with respect to the group operation).

4 Chapter 1. Introduction

and which requires only black-box access to the group operations and to random group
elements, i.e., where the computation of the shares (and the reconstruction of the secret) is
by taking Z-linear combinations of the secret and of random group elements (respectively
of the shares).

Desmedt and Frankel proposed in 1994 a black-box threshold secret sharing scheme [DF94].
Their solution is related to Shamir’s secret sharing scheme; however, in order to circumvent
the problem that polynomial interpolation over the integers does not work as over fields,
they pass to an integral extension ring of Z where polynomial interpolation works “good
enough”. More precisely, they pass to an integral extension ring of Z which contains a list
of n+1 elements wy, . .., w, such that all pairwise differences w; —w; (i # j) are invertible.
The maximal number of such elements is called the Lenstra constant of the ring. It can be
shown that polynomial interpolation works if wy, ..., w, are taken as interpolation points.
The scheme is then constructed using the fact that sufficiently many copies of G can be
seen as a module over the extension ring.

The concrete choice of the extension ring made in [DF94] is the ring of p-th cyclotomic
integers. For any prime p, the Lenstra constant for the ring of p-th cyclotomic integers is p.
Hence, a black-box secret sharing scheme for threshold parameters ¢ and n is constructed
by choosing p as the smallest prime greater than n. The ezpansion factor of that scheme,
i.e., (average) number of group elements per player as part of his share, lies between n
and 2n.

This is the best previous general approach to the problem. Further progress on the black-
box secret sharing problem via the approach of [DF94] depends on the problem of finding
for each n an integral extension of Z whose degree is substantially smaller than n and
whose Lenstra constant is greater than n. To the best of our knowledge, this is an open
problem of algebraic number theory (see also [DF94] and the references therein).

And indeed, except for some quite special cases, namely when t is constant or when ¢
(respectively n — t) is small compared to n [DDB94, BBDW96|, or the constant factor
gain from [DKKKO98], no substantial improvement on the general black-box secret sharing
problem has been reported since.

1.2 Verifiable Secret Sharing

Secret sharing “only” guarantees correctness against players that “refuse to hand in
their shares”. Its stronger version verifiable secret sharing, VSS for short, introduced
in [CGMASS5], is secure against dishonest players and a (possibly) dishonest dealer that
are corrupted by a central malicious entity, called the adversary. A corrupted player hands
all information to the adversary and, following the adversary’s instructions, may deviate
arbitrarily from the protocol that he is supposed to run. The number of corrupted players
is typically restricted by a threshold ¢t. More general, the corrupted players must form a
set that is contained in a prescribed list of possible corrupted player sets, the so called
adversary structure [HM97]. Security of a VSS scheme requires the following.

1.2. Verifiable Secret Sharing 5

* Privacy: If the dealer remains uncorrupted, then the adversary gains no information
about the shared secret s as a result of the sharing procedure.

» Correctness: After the secret is shared, there exists a unique value s’ that can be
reconstructed by the players (no matter how the corrupted players behave), and, in
case the dealer remains uncorrupted during the sharing procedure, s’ is equal to the
shared secret s.

Depending on the computational power of the adversary and whether one tolerates a small
failure probability or not, there are different flavors of the security of VSS:

» Computational security: The adversary is restricted to be a probabilistic poly-time
Turing machine and some computational problem is assumed to be hard.

» Unconditional security: The adversary is computationally unbounded, but one toler-
ates a negligibly small failure probability.

 Perfect security: The adversary is computationally unbounded, and no non-zero failure
probability is tolerated.

Furthermore, there are different variations of VSS. Relevant for this work are the following
two. In the first, the dealer is guaranteed to remain uncorrupted and to share his secret as
prescribed. This we call honest-dealer VSS (and is also known as robust secret sharing). In
the second variation, the efficient reconstruction of the secret requires the cooperation of
the (possibly corrupted) dealer. As a consequence, by refusing to take part, the dealer can
prevent the (efficient) reconstruction of the secret (but he cannot achieve that a different
secret is reconstructed). This is called a distributed commitment, or DC for short, as it
has the same functionality of a cryptographic commitment.

While threshold secret sharing schemes can (and do) exist for arbitrary threshold parame-
ters t and n (with 0 < ¢ < mn—1), the privacy and correctness conditions of a VSS obviously
contradict each other if the adversary can corrupt ¢ > n/2 players: privacy requires that
t shares (the shares of the corrupted players) give no information about the secret, while
correctness requires in particular that n — ¢ shares (the shares of the uncorrupted players)
allow to recover the secret. Furthermore, if ¢ is in the range n/3 < ¢ < n/2 then the
existence of a broadcast channel has to be assumed, and still a non-zero failure probabil-
ity is unavoidable, as has been stated informally in [CCD88] (and will also be shown in
this work). On the other hand these bounds are tight in that there exist VSS schemes
for t < n/2 (e.g. [Fel87,Ped91] for computational and [RB89, CDD*99] for unconditional
security), respectively for ¢ < n/3 in case of perfect security (e.g. [BGW88]). The same
bounds also apply to honest-dealer VSS and DC’s.

Similarly to the case of (ordinary) secret sharing schemes, one important measure for the
efficiency of a VSS scheme is the (average) size of the information held by the players as
their share, and related to that is the communication complexity of the reconstruction. For
computationally secure VSS, or for a threshold ¢ < n/3, standard methods immediately
give optimal solutions, where the size of a share equals the size of the secret (plus the
security parameter in case of computational security). Somewhat surprisingly, little work

6 Chapter 1. Introduction

seems to have been done on the case of n/3 < ¢t < n/2 with unconditional security.
The first scheme that achieves this level of security was proposed in 1989 by Rabin and
Ben-Or [RB89]. In this scheme, the size of a share is proportional to n? and the security
parameter k, and as a consequence the reconstruction complexity is (kn?). Ten years later,
a scheme was proposed in [CDD"99] which considerably improved the communication
complexity of the sharing procedure; however, it failed to improve the size of the shares
or the reconstruction complexity. To the best of our knowledge, no other improvements
have been reported since.

1.3 Multi-Party Computation

The goal of multi-party computation, MPC for short, as introduced in 1982 by Yao [Yao82],
is to enable a set of players to evaluate an arbitrary function F on their private inputs.
Informally, the computation must guarantee the correctness of the result while preserving
the privacy of the players’ inputs, even if some of the players are corrupted by an adversary
and misbehave in an arbitrary way. A formal definition of secure MPC will be given in
Section 3.6. As in the VSS setting, the set of corrupted players is restricted in that its
size is upper bounded by a threshold ¢, or, more generally, in that it is contained in a
given adversary structure, and security can be computational, unconditional or perfect.
Furthermore, the same tight bounds on ¢ hold as for secure VSS.

Since the initial plausibility results in this area [Yao86, GMW87, BGW88, CCD88, RB89],
much effort has been put into enhancing these results, and nowadays there is a wide range
of literature treating issues like improving the communication complexity (e.g., [FY92,
GRRY8,CDN01,HMO01]) or the round complexity (e.g., [BB89, BMRI0, Bea00,IK00]), and
coping with more powerful (e.g., [0OY91, CFGN96, DN03]) or more general (e.g., [HM97,
FHM98, CDMO00]) adversaries. For an up-to-date overview over unconditionally and per-
fectly secure MPC we refer to [Hir01].

A common restriction on these results is that the function F is always assumed to be
represented by an arithmetic circuit (or formula or branching program) over a finite field,
and hence all computations “take place” in this field. Thus, it is natural to ask whether
MPC can also be efficiently implemented over a richer class of structures, such as arbitrary
finite rings. This question makes sense from a theoretical point as well as from a practical
point of view. Unfortunately, general rings do not enjoy some of the useful properties
of fields on which standard MPC protocols rely: non-zero ring elements may not have
inverses (in fact, a ring may even not contain 1, in which case no element is invertible),
there might exist zero-divisors, and the multiplication may not be commutative.

The known MPC protocols that are not restricted to fields [BW98, Mau03] are based on
“additive secret sharing with replication” and either do not work or are not efficient for the
important case of a threshold adversary structure. Also the obvious approach of simulating
each ring operation by an arithmetic or boolean circuit computing it is unsatisfactory, both
from a theoretical point of view (as its complexity grows super-linearly in the length of a

1.4. Contributions of this Thesis 7

ring element) and from a practical point of view.?

A step in a satisfactory direction was taken by the study of secret sharing schemes for
arbitrary Abelian groups (see Section 1.1). However, this step falls short of providing
a complete solution to our problem, and so the question of MPC over rings remains
unanswered, even for “nice” rings (e.g. commutative and with 1).

Another open question is that of the efficiency of unconditionally secure MPC for a thresh-
old ¢ in the range n/3 <t < n/2 (with broadcast). There exist rather efficient protocols
for computationally secure MPC [CDNO01] as well as for ¢ < n/3 with perfect or uncon-
ditional security [HMP00, HM01]. The currently most efficient protocol covering uncon-
ditional security and a threshold n/3 < t < n/2 is the protocol from [CDD*99], whose
communication complexity is proportional to n* per multiplication gate in (the circuit
representation of) F.2 Even if pre-processing is allowed, the communication complexity
of the actual computation is still proportional to n® per multiplication gate.

1.4 Contributions of this Thesis

In this work, which is based on [CDF01, CF02, FM02, ACF(02, CFIK03], we address and
contribute to three aspects of the theory of secure multi-player protocols:

FUNDAMENTALS GENERALITY EFFICIENCY

The first, fundamentals, is concerned with the quest for understanding why a protocol
works and is secure. What are the fundamental principles behind a protocol and its
security? Due to the complex environment in which multi-player protocols take part, it is
important to identify underlying principles and express or characterize them in (hopefully
simple) mathematical terms, such that they can be rigorously analyzed. By generality we
especially mean generality with respect to the underlying mathematical structure. This
can also be viewed as the quest for analyzed the mathematical azioms required to do some
task. This is in particular motivated by the fact that essentially all multi-player protocols
“take part” over a field. And efficiency of course deals with the improvement of protocols
with respect to various kinds of complexity measures.

In Chapter 3, we first attack the problem of (black-box) secret sharing for finite Abelian
groups. We generalize the notion of span programs over a finite field, as introduced by
Karchmer and Wigderson in [KW93], to span programs over a (possibly infinite) commuta-
tive ring A with 1. This has to be done in a careful way, as a straightforward generalization
would not result in a convenient notion. We show how this notion gives rise in a natu-
ral way to secret sharing schemes for finite Abelian groups. In particular we completely
characterize black-box secret sharing for finite Abelian groups in terms of integer span

2Due to the lack of provable lower bounds in complexity-theory, one cannot tell for sure whether this
is an inherent phenomenon or just a limitation of currently known techniques.

3The communication complexity as stated in [CDD+99] is proportional to n°. However, as we pointed
out (see e.g. [Dzi00]), one factor n can be saved.

8 Chapter 1. Introduction

programs. This is the first characterization of black-boz secret sharing in terms of simple
linear-algebra conditions on the integer sharing coefficients. This can be seen as an ana-

logue to the well known equivalence between linear secret sharing and span programs over
fields.

Then, we consider the problem of doing MPC over rings instead of over fields. We propose
a framework that allows to do MPC over an arbitrary finite ring. In particular, we present
an MPC protocol that requires only black-box access to the ring operations and to random
ring elements. It is perfectly secure with respect to an adversary corrupting up to t < n/3
players, and its complexity essentially coincides with the classical field-based solutions.
This is not only the first efficient MPC protocol for rings, but it is also the first efficient
MPC protocols that is “universal” in the sense that it can be applied to any finite ring
(and in particular any finite field). Maybe somewhat surprisingly, our framework is based
on the same building blocks as standard (field-based) MPC protocols. As a consequence,
it is compatible with various improvements and generalizations that apply to the standard
field-based protocols, such that, loosely speaking, essentially everything that can be done
over a field in the context of MPC can also be done over an arbitrary ring. We stress that
we pose no restriction on the ring besides being finite.

We conclude Chapter 3 with an example that shows the potential usefulness of the possibil-
ity of embedding useful computational tasks into the richer structure of rings. Specifically,
we show how to efficiently compute the maximum of n integers with better round com-
plexity than using alternative approaches.

In Chapter 4, we show that for arbitrary threshold parameters ¢ and n there exists a
black-box secret sharing scheme with expansion factor O(logn). Recall that all previous
schemes (for a general t) had an expansion factor of order n. Using a result of Karchmer
and Wigderson [KW93], we show that the expansion factor of our scheme is minimal up
to a small additive constant.

As an application of our black-box secret sharing scheme, and in order to show its use-
fulness in the context of threshold cryptography, we propose an RSA threshold signature
scheme. In contrast to Shoup’s famous scheme [Sho00], our solution has a considerably
more expensive signature generation phase, however it allows a small public exponent like
e = 3 and is therefore superior in a setting where the complexity of signature verification
has to be minimized.

The goal of Chapter 5 is a unified treatment of perfectly secure (linear) VSS and distributed
commitment schemes. We present a very natural and general sharing protocol which
converts an arbitrary given linear secret sharing scheme into a DC (or VSS) scheme,
provided of course that this is possible at all, by enforcing pairwise consistency among the
shares of the (honest) players, i.e., by enforcing that pairwise linear dependences among
the shares that should hold do hold. This is done by private pairwise checking and public
clarification in case of inconsistencies, as in the classical BGW VSS scheme [BGW88]. This
seems to be not only a very natural but the only possible approach for the construction
of perfectly secure DC and VSS schemes, and indeed, all known schemes can be seen as
concrete instances of this general approach.

1.4. Contributions of this Thesis 9

We then provide an understanding of the security of the scheme in terms of pure linear
algebra. As a consequence, the security of all known schemes (and possibly even all future
ones) follow as corollaries whose proofs are linear-algebra arguments, in contrast to some
hybrid arguments used in the literature. This is demonstrated for two schemes, for the
CDM DC scheme of [CDMO00] and for the classical BGW VSS scheme of [BGW88].

Our approach, establishing the minimal conditions for security, may very well lead to the
design of ad-hoc VSS or DC schemes for general adversary structures which are more
efficient than the schemes resulting from generic constructions (e.g. [CDMO00]).

In Chapter 6 we investigate the share size and related to that the reconstruction complexity
of threshold VSS. The only interesting case is n/3 <t < n/2 with unconditional security.
We first consider the weaker version of VSS where the dealer is assumed to remain honest,
and we show a lower bound on the reconstruction complexity of Q(kn?/(n — 2t)) bits, un-
der the assumption that the protocol is designed in such a way that (1) the reconstruction
is completed in one round, and (2) that every player either reconstructs the correct secret
or outputs failure, where the latter happens with probability at most 2~ k) (and is
unavoidable). This may be seen as an answer to the question “what does it cost to get the
best possible security (with respect to an honest dealer) in a minimal number of rounds?”.
This lower bound meets the upper bound resulting from the honest-dealer VSS scheme
from [RB89] for and only for maximal ¢, i.e., t = |[(n — 1)/2]. We propose a protocol
whose complexity meets the bound for all t in the considered range.

Next we incorporate security against a possibly dishonest dealer. The honest-dealer
VSS establishing the upper bound can—at least in principle—be turned into a VSS by
replacing the dealer by a multi-party computation using generic methods (e.g. [RB89,
CDD%99]). The resulting scheme would improve on the reconstruction complexity of all
known schemes; however, the sharing phase would become extremely inefficient in com-
parison. We close this gap and present a new VSS scheme where the complexity of the
sharing phase matches that of the previously best known VSS for our scenario [CDD99],
but where the reconstruction meets our lower bound (for honest-dealer VSS). This beats
previous VSS schemes by a factor n for maximal ¢ and by a factor n? for t < g - n with
1/3 <g<1/2.

The idea of pre-processing in MPC, introduced by Beaver in [Bea91], is to do as much work
as possible in a pre-processing phase, before the inputs to the function F' to be computed
(and possibly even F' itself) are known. This is to reduce the work in the computation
phase when the inputs (and the function) have become available. More specifically, the
work of sharing the inputs and securely multiplying shared values is done in the pre-
processing phase by doing it on random values, while the computation phase degenerates
to reconstructing the differences of the random values used in the pre-processing and
the actual values. It is therefore not surprising that MPC in the pre-processing model
benefits from our VSS scheme with optimized reconstruction. Indeed, assuming broadcast,
we propose an unconditionally secure MPC protocol with pre-processing for a threshold
n/3 <t < n/2 with a communication complexity of the computation phase O(kn?/(n—2t))
per multiplication gate in (the circuit representation of) F. This improves the complexity
of the computation phase of earlier similar protocols by a factor of at least n without

10 Chapter 1. Introduction

increasing the asymptotic complexity of the pre-processing.

In the final Chapter 7. We consider the well know Pedersen threshold VSS scheme [Ped91].
It is based on Pedersen’s homomorphic commitment scheme and is computationally secure
for t < n/2. In [Abe99], Abe used Pedersen’s VSS scheme in an elegant way to construct
a commitment multiplication proof, which allows to prove to a group of n players, veri-
fiers, a multiplicative relation among three committed values without revealing anything
beyond, even if up to ¢ of the verifiers are corrupted. This is an important building block
for computationally secure MPC protocols, but was also used in [Abe99] to construct a
provably secure threshold encryption scheme. In comparison with the standard approach
of adopting a single verifier interactive zero-knowledge proof of a multiplicative relation
among committed values [CD98] to the distributed-verifier setting by jointly generating
the random challenge, the advantage of Abe’s solution is on one hand its simpleness, it
only consist of a few (parallel) executions of the Pedersen VSS sharing phase, and that it
is non-interactive (in some sense).

While investigating Abe’s protocol, we make two observations: (1) a building block used
in its construction already comstitutes a secure commitment multiplication proof, and
(2) it inherits an extra property that has previously been overlooked. The former not
only leads to a simplified exposition but also saves on the required number of invocations
of Pedersen’s VSS, while the latter allows to construct non-interactive proofs of partial
knowledge in the considered distributed-verifier setting, as we show. This can be used for
instance to prove the knowledge of £ out of m given secrets, without revealing which ones.
We also show how to construct efficient non-interactive zero-knowledge proofs for circuit
satisfiability in the distributed-verifier setting.

Chapter 2

Preliminaries

2.1 Access Structures and Adversary Structures

Let n be a positive integer, and consider the set {1,...,n}.

Definition 2.1 A non-empty collection T' of subsets A C {1,...,n} is called an access
structure on {1,...,n} if 0 ¢ T and if T is closed under taking supersets: for all A € T
and all A" C{1,...,n} with A C A’ it holds that A’ € T.

A collection A of subsets A C {1,...,n} is called an adversary structure on {1,...,n} if
0 €T and if A is closed under taking subsets: for all A € A and all A" C {1,...,n} with
A' C A it holds that A’ € A.

Remark 2.1 There is a natural one-to-one correspondence between all access structures
and all adversary structures on {1,...,n}: the complement I' = {4 C {1,...,n} | A ¢T}
of an access structure I' is an adversary structure, and vice versa the complement A of an
adversary structure A is an access structure, and T' = T respectively A = A. However,
in the context of secret sharing it will be convenient to consider an access structure, the
“collection of player sets that are allowed to reconstruct the secret”, while in the context of
VSS and MPC it will be more convenient to consider an adversary structure, the “collection
of player sets that the adversary may corrupt”.

Definition 2.2 Let t be an integer in the range 0 < t < m — 1. The threshold access
structure Ty, is the collection of all subsets A C {1,...,n} with |A| > t. The threshold
adversary structure Ay, is the collection of all subsets A C {1,...,n} with |A| <t, i.e.,
At,n = f‘t,n-

Remark 2.2 Some authors define I';;, as consisting of all sets of size at least . Our
definition adheres to a convention in the multi-party computation literature.

Definition 2.3 An adversary structure A on {1,...} is called to be Q? if no two sets of
A cover {1,...,n}: AUA"#{1,...,n} for all A, A’ € A. Similarly, A is called to be Q?
if no three sets of A cover {1,...,n}: AUA'UA" #{1,...,n} for all A, A", A" € A.

11

12 Chapter 2. Preliminaries

Remark 2.3 The Q? (respectively Q®) condition was introduced in [HM97] and generalizes
the threshold condition ¢t < n/2 (respectively ¢ < n/3) for threshold adversary structures
to arbitrary adversary structures.

2.2 Communication Model

A secret sharing scheme is described simply by a probabilistic poly-time sharing algorithm
(polynomial in the parameter n and in a possible security parameter), which describes how
to compute the shares given a secret, and a (typically deterministic) poly-time reconstruc-
tion algorithm, which describes how to reconstruct the secret given enough shares. For
VSS (including its variations mentioned in Section 1.2) and MPC, the matter is more
complex. VSS and MPC are described by interactive protocols, executed among a set of n
entities, denoted by Py,..., P, and called players, (and a so called dealer D = P, in case
of VSS) for which we have to specify their means of communication. This is done below.

We assume that every pair of entities is connected by a secure (meaning authentic and
private) channel. For the protocols in Chapter 6 it is also necessary to assume the existence
of a broadcast channel.! Formally, the players (and the dealer) are probabilistic poly-time
interactive Turing machines. Each entity has a read-only input tape, a write-only output
tape, and a read-write working tape. The secure communication from an entity P; to
another entity P; is modeled by a communication tape that is write-only for P; and
read-only for P; (while all other entities have neither read nor write access). A possible
broadcast channel is modeled by another communication tape for each entity P;, for which
P; has write-only and all other entities have read-only access.

Furthermore, we assume the entities to be fully synchronous, meaning that the protocol
execution is divided up into globally clocked rounds. In each round, every entity reads all
messages that have been sent to him (or broadcasted) in the previous round, i.e., he reads
all communication tapes (for which he has read access), and, based on these messages
and some local computations, he sends off new messages, i.e., writes new messages to all
communication tapes (for which he has write access). Exceptions are the first and the last
round. In the first round, every entity reads his input tape instead of the communication
tapes, and in the last round, every entity writes to his output tape instead of to the
communication tapes.

2.3 Adversary Model

As has been informally discussed in the introduction, security of a VSS or MPC protocol
involves an additional entity: the adversary. The adversary can corrupt entities and take
over their control, such that he can read their memory, and act on their behalf in an
arbitrarily malicious way.

L All other protocols are in a setting where the broadcast channel can be implemented from the bilateral
channels. Nevertheless, for simplicity, we often treat it as a given primitive.

2.4. Groups, Rings and Fields 13

Formally, the adversary is modeled by another probabilistic Turing machine. Whether
the adversary is poly-time or not depends on the flavor of security considered. If he is,
then we say the adversary is computationally bounded, and if not, then we say that he
is computationally unbounded. Per se, the adversary has only (read and write) access
to his own working tape and read access to the communication tapes that model the
broadcast channel (if existing). This models the assumption that the channels are secure.
However, the adversary may corrupt some entities. Corrupting an entity P; means that
the adversary gets to see P;’s internal state and inherits all of P;’s read and write accesses,
and P;’s program is halted. Furthermore, modelling a system where participants are not
trusted to effectively erase local data, the adversary learns for any prior time P;’s internal
state and the content of all tapes to which P; has read access. This information may for
instance be stored on some memory tape associated with P;. An entity that is (currently)
uncorrupted is also called honest.

At some points we also consider a passive adversary. Upon corrupting F;, such an adversary
can monitor F;’s internal states, working tape and incoming messages, but P; continues
to correctly execute his program. We also say that the adversary eavesdrops F;.

The adversary is restricted in the players that he can corrupt. Either by a threshold ¢ in
that the number of corrupted players must not be greater than ¢, or, more generally, by
an adversary structure A on {1,...,n} in that the set {P;,,..., P, } of corrupted players
must correspond to a set in A in the sense that {i1,-..., i} € A.2 In the former case, we
call the adversary a threshold adversary (and otherwise a general adversary). If A is Q?
(respectively Q?), then we call the adversary a Q? (respectively Q3) adversary.

In case of VSS, where besides the players there is also a dealer, we take it as understood
that the adversary may corrupt the dealer in addition to the players he is allowed to
corrupt. However, if one of the players executes the dealer’s part (besides his own), this
e.g. holds in the context of MPC, corrupting the dealer is included in the player corruptions.

Furthermore, the adversary may be static or adaptive, the former meaning that he has to
corrupt the players before the execution of the protocol and the latter that he can corrupt
players at his will during the protocol execution, depending on what he has seen so far.
We consider per default an adaptive adversary, except in Chapter 7 where we have to
restrict to a static one.

Finally, we assume the adversary to be rushing. This means that he can read the messages
(sent by the uncorrupted to the corrupted players) already in the same round as they have
been sent, rather than in the next following round, and thus before having to decide on
the messages for the corrupted players in this round.

2.4 Groups, Rings and Fields

We assume the reader to be familiar with basic concepts of group, ring and field theory.
We fix some notation and terminology.

*We often fail to distinguish between a set {P;,, ..., P;,,} of players and the set {i1,...,4x} of indices.

14 Chapter 2. Preliminaries

In this work, we mainly consider groups that are finite and Abelian. We typically use
additive notation and denote the neutral element by 0. The exponent of a finite group G
is the smallest integer m > 0 such that a +---+a =0 for all a € G.
—_———
m times

Let R be an arbitrary ring (not necessarily with 1). The set of units (i.e. invertible
elements) of R is denoted by R*. If R is finite then the ezponent of R is the exponent of
the additive group of R.

Consider now a (possibly infinite) commutative ring with 1 (which may be the trivial ring
{0} where 1 = 0). Typically, we denote such a ring by A. For A1,...,\ € A, we write
(A,..., A1) for the ideal in A generated by Aq,...,N\. If A is clear from the context, we
simply write (A1,...,);). Let I be an ideal in A, and let A — A/I, X — X be the canonical
projection from A to the ring of residue classed modulo I. Then a lift of h € A/I is an
element A € A such that A = h. Finally, two ideals I and J in A are called co-prime if
I+ J = A, and two elements A and p of A are called co-prime if the ideals (\) and ()
are, i.e., if (A, u) = A. Note that A and y are co-prime if and only if the residue class of A
modulo (the ideal generated by) p is a unit: X € (A/(p))*.

Let g be a prime power. The unique field K with ¢ elements is denoted by F;. Elements
of a field K or of a commutative ring A with 1 are also called numbers.

2.5 Modules and Algebras

Let A be a commutative ring with 1.
Definition 2.4 An (additive) Abelian group G is called a module over A, or simply a
A-module, if a number-multiplication A X G — G, (A, a) — - a, is given such that
l-a = a

Ai(a+bd) = (A-a)+(A-D)

At+p)-a = (A-a)+(u-a)

A-p)-a = X(p-a)
forall \,u € A and a,b € G.

Hence, loosely speaking, a module is a vector space over a ring (instead of over a field).

Remark 2.4 We have two kinds of addition (addition in A and in G) and two kinds of
multiplication (multiplication in A, and in G). It should always be clear from the context,
which addition or multiplication is meant.

Definition 2.5 An arbitrary ring R is called an algebra over A, or simply a A-algebra if
(the additive group of) R is a A-module and

(A-a)-b = XA-(a-b) = a-(A-b)
holds for all A € A and a,b € R.

2.6. Asymptotic Complezity Notation 15

If G is a A-module (respectively R a A-algebra), then we also write Aa or aX instead of
a-Xfor A € A and a € G (respectively a € R).

Example 2.1 Every Abelian group G is a Z-module and every ring R is a Z-algebra; the
number-multiplication is given by 0-a =0, A\-a =a+ ... + a (A times) for A > 0 and
Ara=—((=X)-a) for A <0.

Example 2.2 Let G be an Abelian group (respectively R a ring) with exponent m. Then
G (respectively R) is a Zp,-module (algebra). The number multiplication A - a for A € Z,,
is (well) defined by A-a=£-a=a+ ...+ a (¢ times), where 0 < £ € Z is a lift of A.

Below, we give an informal definition of the tensor product of two modules or algebras.
For a formal definition we refer to [Lan97].

Definition 2.6 (informal) Let G and G’ be two A-modules. The tensor product of G
and G', denoted as G ® G', is a A-module whose elements are finite sums of the form
Y ai ®a) with a; € G and o) € G' such that

a®d +a®l = a®(a+¥)
a®d +b®d = (a+b)®@d
A(@a®ad) = (A-a)®d = a®(X-ad)
for all a,b € G, a',b' € G' and)\ € A.

For two A-algebras R and R', the tensor product RQ R’ of R and R’ is defined in a similar
way, except that additionally

(a®d)-(bRV) = ab®d't
is required to hold for all a,b € G, a',b' € G'.

2.6 Asymptotic Complexity Notation

We briefly introduce the standard asymptotic complexity notation which we use in this
work. Consider two non-negative real-valued functions f(k) and g(k) over the positive
integers k € N.

Definition 2.7 We write g(k) < O(f(k)) if there exists ¢ > 0 and ko € N such that
g(k) < cf(k) forall k>kg.
We write g(k) > Q(f(k)) if there exists ¢ > 0 and ko € N such that

1
“f(k) < g(k) Jorall k> k.
And we write g(k) = O(f(k)) if there ezists ¢ > 0 and ko € N such that

%f(k) < gk) < cf(k) forall k>ko.

16 Chapter 2. Preliminaries

This can be generalized to multi-variable functions f(k) and g(k) over k € N x --- x N by
defining a partial ordering “<” on N X --- x N in the obvious way.

Definition 2.8 We write g(k) < negl(k) if for every ¢ > 0 there exists kg € N such that

1
gk) < e for all k> ky.

Convention. By slight abuse of notation, we also write O(f(k)) to represent some function
g(k) with g(k) < O(f(k)), and accordingly for Q(f(k)), ©(f(k)) and negl(k).

Chapter 3

Secret Sharing over Groups and MPC over Rings

3.1 Introduction

There are two kinds of people, those who do the work and those who take the
credit. Try to be in the first group; there is less competition there.

— Indira Gandhi

We are motivated by the following restriction on “standard” linear secret sharing schemes
and multi-party computation protocols found in the literature. Most of the proposed
schemes and protocols “take place” over a finite field, and rely on the nice mathematical
structure that distinguishes a field from other mathematical objects like groups or rings.
This means in the context of secret sharing that the secret has to be an element of a finite
field, and in the context of MPC that the function F' to be computed has to be represented
as an arithmetic circuit over a finite field. Indeed, already over a relatively “harmless”
ring like Z,,, Shamir’s secret sharing scheme for instance (which also serves as standard
building block for MPC) is not secure a-priori. For instance, if m is even and if f(X) is
a polynomial over Z,, hiding a secret s as its free coefficient, then the share sy = f(2) is
odd if and only if the secret s is odd.

It is therefore natural to ask whether linear secret sharing and MPC can be based upon
weaker algebraic objects like groups or rings. This question makes sense from a theoretical
point of view, where it may be viewed as a quest for minimizing the azioms for linear secret
sharing and MPC, but also from a practical point of view, as a positive answer would for
instance in the case of MPC allow greater freedom in the representation of F', which in
turn can lead to efficiency improvements. Note that it is obviously always possible to
share the bit representation of an arbitrary secret by identifying it with a field element
of some large enough field (of characteristic 2). However, this approach is unsatisfactory
from a theoretical point of view, as it depends on the encoding of the secret, and from a
practical point of view, as the resulting scheme is not linear. A similar objection applies
to basing MPC on, say, rings by implementing the ring operations using field operations.

The idea of sharing a secret from a group rather than a field was considered by Desmedt
and Frankel in the context of threshold cryptography [DF89]. The reason being that for

17

18 Chapter 3. Secret Sharing over Groups and MPC over Rings

certain cryptosystems, like for instance RSA, the secret key does not come from a field
but from a (typically Abelian) group. In particular, they pointed out the need for a
black-box secret sharing scheme that allows to share a secret from an arbitrary Abelian
group G, requiring only black-box access to the group operations and to random group
elements. In such a scheme, the shares are computed as Z-linear combinations of the secret
and of random group elements, and, similarly, the secret is reconstructed by a Z-linear
combination of the shares, where the integer sharing and reconstruction coefficients are
designed independently of the group G from which the secret is sampled, and privacy and
correctness hold regardless of G.

Desmedt and Frankel then showed in [DF94] how to construct for every finite Abelian G
with publicly known exponent a linear threshold secret sharing scheme that allows to
share secrets from G. Furthermore, they proposed a (less efficient) black-box threshold
secret sharing scheme for arbitrary Abelian groups. However, they did not address non-
threshold access structures, neither did they give necessary conditions for (black-box)
secret sharing, which seem to be important in proving lower bound results. Besides the
work of [Kin00, Kin01], these issues remained unconsidered. And even though [Kin00]
does give some characterization of black-box threshold secret sharing, this characterization
is still in terms of secret sharing and thus still quantifies over all finite Abelian groups,
rather than providing simple algebraic conditions on the integer sharing and reconstruction
coefficients.

On the MPC front, to the best of our knowledge, the only result dealing with (uncondition-
ally secure) MPC over non-fields is due to [Mau03], where a MPC protocol was proposed
which works for non-field rings. However, in the important case of a threshold adversary
structure A; ,, its complexity is exponential in {.

In this chapter, we propose a framework for (black-box) secret sharing for finite Abelian
groups, as well as for unconditionally secure MPC over arbitrary finite rings. In particular,
on one hand, we give a characterization of black-box secret sharing in terms of our notion
of integer span programs (Section 3.4), which generalizes the well-known correspondence
between span programs over fields [KW93] and linear secret sharing schemes over fields.
On the other hand, we present an MPC protocol over an arbitrary finite ring which requires
only black-boz access to the ring operations (addition, subtraction and multiplication) and
the ability to sample random ring elements (Section 3.5). It is perfectly secure with respect
to an adversary corrupting up to t < n/3 players, and its complexity is comparable to
the classical field-based solutions. This is a two-fold improvement over the classical field-
based MPC results. It shows that MPC can be efficiently implemented over a much richer
class of structures, namely arbitrary finite rings, and it shows that there exists in fact
one “universal” protocol that works for any finite ring. We stress that besides being
finite, we pose no restriction on the ring: there may exist zero-divisors, the ring may not
contain 1 (and thus no units at all), and the multiplication may not be commutative.
Furthermore, the framework is compatible with various improvements and generalizations
that apply to the classical field-based protocols, except that it is not compatible with the
standard methods to achieve constant-round MPC.! This gap is closed in [CFIK03], where

!The reason being that these methods typically require a randomly chosen element to have a good
chance of being invertible, which does not hold for general rings, which might contain no units at all.

3.2. Secret Sharing 19

a constant-round black-box MPC protocol is proposed.

We conclude the chapter with an example for the potential usefulness of secure MPC
over non-field rings. Specifically, we show how to efficiently compute the maximum of n
integers with better round complexity than using alternative approaches.

The material in this chapter is based on [CF02, CFIK03].

3.2 Secret Sharing

Throughout this section, let A be a (not necessarily finite) commutative ring with 1, and
let n be a positive integer.

Definition 3.1 Let M be a matriz over A with, say, d rows, and let ¢ : {1,...,d} —
{1,...,n} be a surjective function. The quadruple M = (A, M,,n) is called a labeled
matrix (over A, on {1,...,n}). Its size is defined as size(M) = d, the number of rows of
M, and its expansion factor is defined as size(M)/n.

Definition 3.2 Let M = (A, M,4,n) be a labeled matriz over A. We write d(M) and
e(M) for the number of rows and columns, respectively, of M. For A C {1,...,n}, we
write do(M) for the size of the set p~1(A) C {1,...,d(M)}.

Convention. If the labeled matrix M is clear from the context, then we simply write d,
d4 and e instead of d(M), d4(M) and e(M), respectively. Sometimes, we also write e or
d even if M is not yet clear, but will become later on.

Let M = (A, M,1,n) be a labeled matrix. 1 is called labeling function, and we say that
the j-th row m; (j = 1...d) of M is labeled by 1(j). For 0 # A C {1,...,n}, M4 € Adaxe
denotes the restriction of M to the rows m; with (j) € A. Similarly, for an arbitrary
d-vector x = (z1,...,z4) (with entries not necessarily in A), x4 denotes the restriction of
x to the coordinates z; with 9(j) € A. If A = {3} for some i € {1,...,n}, we write M;
and x; instead of M4 and x4, respectively.

Definition 3.3 Let M = (A, M,1,n) be a labeled matriz and T an access structure on
{1,...,n}. M is called a linear secret sharing scheme (over A) for the access structure T,
respectively for the adversary structure A = T, if the following holds. Let G be an arbitrary
finite A-module, and let A C {1,...,n} be a non-empty set. For arbitrarily distributed
s € G, letb=(by,...,b.)T € G® be drawn uniformly at random, subject to by = s, and
define s = Mb.

« Correctness: If A €T, then there exists a reconstruction vector A € A% (for A), not
depending on G, such that AT -s = s.

o Privacy: If A&7, then sq contains no Shannon information on s.

20 Chapter 3. Secret Sharing over Groups and MPC over Rings

We introduce some terminology: For s, b and s as in the above definition, we call s the
secret, s a sharing and sy, . .., s, shares (of s), and b the sharing vector. In a setting where
shares are not guaranteed to be correctly computed, we call s and s1,...,s, as above a
correct sharing, respectively correct shares. Finally, the entries of a reconstruction vector
are called reconstruction coefficients.

Note that these schemes are indeed linear in the sense that the sum s + s’ of two sharings
s and ', is a sharing for the sum s + s’ of their corresponding secrets s and s’. We also
note that only requiring reconstruction to be linear, as some authors do, results in an
equivalent definition. This is an easily proved consequence of Lemma, 4.1.

Since every Abelian group can be seen as a Z-module, a secret sharing scheme over the
integers allows to share a secret s from an arbitrary finite Abelian group G, requiring
only black-box access to the group operations and to random group elements, and where
correctness and privacy hold regardless of G. Note that the number-multiplication can be
done by standard double-and-add.

Definition 3.4 A linear secret sharing scheme M = (Z,M,,n) over the integers is
called a black-box secret sharing scheme.

While linearity is an additional property that a general secret sharing scheme may have
(and the schemes considered here do have), it is an inherent property of a secret sharing
scheme that allows to share a secret from an arbitrary Abelian group, having only black-
box access the the group operations and to random elements: there is no other possibility
to compute the shares as by taking Z-linear combinations.

Example 3.1 Let n = 2. The labeled matrix M = (Z, M,,2), given by the matrix
11 —- 1
M= (0 1) - 2
with the indicated labeling 1, is a black-box secret sharing scheme for the threshold access
structure I'1 . Indeed, for any finite Abelian group G, the shares of a secret s € G are

81 = s+ g9 and sy = go for a random gy € G, and thus both are independent of s while
on the other hand s; — s3 = s. The expansion factor is 1.

Example 3.2 Let n = 3. The labeled matrix M = (Z, M, 1, 3), given by the matrix

I
O = O = =
OO = O
_— = O = O
1144l
W DN DN ==

with the indicated labeling 1, is a black-box secret sharing scheme for the threshold access
structure I'; 3. The expansion factor is 5/3.

3.8. Span Programs over Rings 21

Example 3.3 Let p > n be a prime. Consider the ring A = Z,, (which is in fact the field F,)

and let wy,...,w, € Z, be pairwise distinct non-zero elements. For 0 <t < n — 1, define
the labeled matrix M = (Zy,, M, 1, n) as follows. M consists of n rows, where the i-th row
equals (1,w;, ... ,wf) and is labeled by i. It is not hard to verify that M is a linear secret

sharing scheme over Z,, for ', ,. When applied to G = Z, (which trivially is a Z,-module),
it coincides with Shamir’s secret sharing scheme. The expansion factor is 1.

Note that a group G is a Zy-module if and only if its exponent is p. Threshold secret
sharing schemes for groups with non-prime exponent can be constructed using Chinese
Remainder Theorem, as in [DF94].

3.3 Span Programs over Rings

3.3.1 Definitions

In this section, we introduce the notion of span programs over rings. This is a certain vari-
ation of span programs over finite fields, introduced by Karchmer and Wigderson [KW93].
These are well-known to have a natural one-to-one correspondence with linear secret shar-
ing schemes over finite fields (see e.g. [G4l95, Bei96]). Span programs over rings will turn
out to have a similar correspondence with linear secret sharing schemes over rings, as
introduced in the previous section. In particular, integer span programs (ISP’s) will turn
out to be equivalent to black-boz secret sharing.

Let A be a commutative ring with 1.

Definition 3.5 Let M = (A, M,1,n) be a labeled matriz over A. The (column) vector
(1,0,...,0)" € A“M) s called the target vector for M, and is denoted by e(M).

Convention. If the labeled matrix M is clear from the context, then we simply write &
instead of e(M).

Definition 3.6 Let M = (A, M,v,n) be a labeled matriz over A, and let A C {1,...,n}
be non-empty. We say that

+ M accepts A if € € imM7 (and otherwise M rejects A), and

« M strongly rejects A if there exists k € kerMy with €Tk = 1.

Let in addition I" be an access structure on {1,...,n}. Then M is a span program (over A)
for the access structure T', respectively for the adversary structure A =T, if it accepts the
sets A € T' and rejects the sets A € I'. In that case, we also say that M computes I,
respectively A.

Convention. If the linear secret sharing scheme M = (A, M, 1), n) is clear from the context,
and if M accepts A, then A(A) stands for some arbitrary (but fixed) vector A € A% with

22 Chapter 3. Secret Sharing over Groups and MPC over Rings

MEX = e. If M strongly rejects A, then k(A) denotes some arbitrary (but fixed) vector
Kk € kerM 4 with e’k = 1.

If A is a field, then rejection and strong rejection are equivalent, and our definition is
identical to the computational model of (monotone) span programs over fields [KW93].
Indeed, this model is characterized by the condition that A € I' if and only if € € imMZ.
The equivalence follows from the remark below.

Remark 3.1 By basic linear algebra, in case A is a field, € ¢ imM 7 if and only if there exists
k € kerM 4 with e’k # 0, which holds if and only if there exists k € kerM 4 with e’k = 1.
In case A is not a field, the implications from the right to the left do not necessarily hold:
Consider for example the integer matrix M = (2 0) or M = (1 2), respectively. As a
consequence, as opposed to the case of fields, a labeled matrix M = (A, M,4,n) with
e € imM7' need not compute any access structure. The implications from the left to the
right trivially hold regardless of A.

Remark 3.2 If M’ is a span program for an access structure T, but with respect to a
non-standard target vector & # (1,0,...,0)7 € AM) then it can be transformed into
a span program M with d(M) = d(M’) and e(M) = e(M'), computing the same access
structure I', but with respect to the standard target vector (M) = (1,0,...,0)T € AeM),

if (and in general only if) the vector €’ can be extended to a basis of the A-module A¢M").

Remark 3.3 Using (generally less inefficient) representations of access structures as mono-
tone Boolean formulas and using induction in a similar style as in e.g. [BL88], it is straight-
forward to verify that for every access structure I'" and for every commutative ring A with
1, there is a span program over A that computes I'.

Definition 3.7 A span program M = (Z, M,,n) over the integers is called an integer
span program, ISP for short.

3.3.2 Span Programs and Linear Secret Sharing

Let A be a commutative ring with 1.

Proposition 3.1 Let M = (A, M,1,n) be a span program for an access structure T' on
{1,...,n}. Then, M is a linear secret sharing scheme over A for T

Remark 3.4 The reciprocal of the claim of Proposition 3.1 does not hold in (very) general,
i.e., for certain rings A, a linear secret sharing scheme over A need not necessarily be a
span program over A. A (pathological) example is A = Q. It is easy to see that the
only finite group that is a module over Q is the trivial group G = {0}. Therefore, any
labeled matrix over Q is a linear secret sharing scheme over QQ for any access structure,
while of course a labeled matrix over QQ is a span program for at most one (and in fact,

3.8. Span Programs over Rings 23

since Q is a field, exactly one) access structure. Unfortunately, we are not aware of any
example ring A which allows a non-trivial group G as module and still separates linear
secret sharing schemes from span programs, neither were we able to prove that the only
separating examples are of the above type (see also Remark 3.6).

Remark 3.5 In Theorem 3.1 we will show that for the important case A = Z, the reciprocal
of the claim of Proposition 3.1 does hold. This is also true in case of a finite ring A, as
can easily be verified by applying the linear secret sharing scheme to the (additive) group
G = A.

The proof of Proposition 3.1 is along the lines of the corresponding claim in the case of
span programs and linear secret sharing schemes over finite fields [KW93]:

Proof. Consider an arbitrary set A C {1,...,n} and an arbitrary finite A-module G.
Define s = Mb for arbitrary b = (s,bs,...,b.)T € G¢. Suppose A € I. It follows that

sIA(A) = (Msb)TA(4) = bTMIX() = ble = s.

Thus the correctness condition from Definition 3.3 is satisfied. Suppose now that A ¢ I'.
For arbitrary s’ € G, define

b" = b+ (s —s)-k(A)

and 8’ = Mb'. The secret defined by s’ equals s’ (i.e. the first coordinate of b’ is s'),
while on the other hand s’y = s4. This implies perfect privacy: the assignment b’ =
b + (s’ — s) - k(A) provides a bijection between the set of possible vectors of “random
coins” (group elements) consistent with s4 and s, and the set of those consistent with s 4
and s’. Therefore, the privacy condition from Definition 3.3 is also satisfied. O

Remark 3.6 This proof allows to read off the main potential gap between linear secret
sharing schemes and span programs over rings (as indicated in Remark 3.4 above): The
privacy condition of a linear secret sharing scheme requires that if A ¢ ', then for every
finite Abelian group G and all s,s’ € G there exists a vector k € G¢ with s’ — s as
first entry and such that M,k = 0. On the other hand, a span program promises the
existence of k € A® such that for every finite Abelian group G and all s, s’ € G the vector
k = (s’ — s) - k is as required. So the (potential) difference lies essentially in the order of
the quantifiers.

3.3.3 A Geometric View of Secret Sharing and Span Programs

Sometimes it is convenient to have a more geometric though equivalent view of linear
secret sharing and span programs as defined above.

Let A be a commutative ring with 1. For x,y € A€, (x,y) denotes the standard in-product
of x and y. By identifying x € A® with Fyx : A° — A such that Fx(y) = (x,y), there is a

24 Chapter 3. Secret Sharing over Groups and MPC over Rings

one-to-one correspondence between the vectors in A€ and the linear functionals A¢ — A.
If G is a A-module, then (x,y) € G is well-defined for x € G¢ and y € A°. Furthermore,
similar to above, identifying x € G¢ with Fyx : A® — G such that Fx(y) = (x,y) provides
a one-to-one correspondence between the vectors in G¢ and the linear functions A¢ — G,
which we also call linear functionals to emphasize the similarity to the case where x € A°.

It is obvious that we may change the definition of secret sharing (Definition 3.3) and span
programs (Definition 3.6) as follows, without changing their meaning. In the definition of
linear secret sharing, we may consider s not as being computed by applying the integer
matrix M to the vector b, but by applying the corresponding functional Fy, : A® — G to
the rows of M. And, using V4 as a short hand for imMz, the “space owned by A”, we
may replace in Definition 3.6 the definition of acceptance and the strong rejection by

* M accepts A if € € Vy, i.e. if the target vector lies in the space owned by A, and

« M strongly rejects A if there exists k € A® with F,(V4) = {0} and F.(e) = 1, ie.
if there exists a functional that maps the target vector to 1 and simultaneously the
space owned by A to 0.

This view allows for instance a more intuitive and less technical proof of Proposition 3.1
above: For the correctness condition, note that by linearity s4 uniquely defines how Fy,
acts on Vy4, and hence, if € € V4, uniquely defines the shared secret s = Fy(g). For
the privacy condition, note that the functional F, allows to change the secret arbitrarily
without changing the shares belonging to A.

3.4 Black-Box Secret Sharing and ISP’s

In this section, we give a full characterization of black-box secret sharing in terms if
integer span programs. We note that [Kin00] also gives a characterization of black-box
secret sharing. However, the conditions stated there are still in terms of the black-box
secret sharing scheme and quantify over all finite Abelian groups, rather than by providing
simple algebraic conditions on the matrix M as we do. Therefore, we feel that our approach
based on integer span programs is perhaps more useful and insightful, especially since span
programs over finite fields have since long been known to be equivalent to linear secret
sharing schemes over finite fields.

We first introduce some terminology and basic facts concerning the theory of Z-modules
(see e.g. [Lan97]), and we prove a Lemma that puts some light on the strong rejection
property of ISP’s.

Consider the Z-module Z°¢, and let V be an arbitrary submodule. Then there exists a
basis for V. The size of such a basis is called the rank, denoted by rank(V'). We say that
V is closed if any basis of V' can be completed to a basis of Z¢. If this is the case, then
any basis of V' can in fact be completed to any module lying in-between V' and Z°. The
closure of V' is the smallest closed submodule W C Z¢ that contains V. It holds that if
W is the closure of V' then ¢cW C V for some non-zero integer ¢ (and W is maximal with

3.4. Black-Bozx Secret Sharing and ISP’s 25

that property). In particular, rank(W) = rank(V'). Finally, for an arbitrary vector x € Z¢
and an arbitrary non-zero integer m, we write x € V' (mod m) if there exists v € V such
that x = v (mod m), and we write x ¢ V' (mod m) if not.

Lemma 3.1 Let V be a submodule of Z¢ and W its closure, and lete = (1,0,...,0)T € Ze.
Then the following statements are equivalent.

1. There ezists k € Z° with F.(V) = {0} and F.(e) = 1.
2. e ¢ W (mod p) for all primes p.
3. egW, and W + Ze is closed.

Proof. For the implication from 1. to 2., note that F, (V) = {0} implies that F. (W) = {0}.
The implication is now immediate by reducing modulo an arbitrary prime p.

For the implication from 2. to 3., let {by,...,b;} be an arbitrary basis of W and let
b;;1 complete this basis to a basis of the closure of W + Ze. Write (e1,...,&4+1) for the
coordinates of € with respect to this basis. By 2. it holds that ¢;4; = £1. This implies
that also {bi,...,b;,e} is a basis for the closure of W + Ze, and hence that W + Ze is
closed.

Finally, the implication from 3. to 1. is obvious, using that by 3., a basis for W together
with € can be completed to a basis of Z°. O

We are now ready to prove

Theorem 3.1 Let M = (Z,M,1,n) be a labeled matriz over Z, and let T' be an access
structure on {1,...,n}. Then M is a black-boz secret sharing scheme for T if and only if
it s an ISP for I.

Proof. Tt remains to show the “only if” direction. Let M = (Z, M,,n) be a black-
box secret sharing scheme for " according to Definition 3.4. Consider an arbitrary set
A C{1,...,n}. Suppose A € T'. For an arbitrary prime p, set G = Z,. By the correctness
condition from Definition 3.3, it follows that (1,0,...,0) = A(A)TMAI = A(A)T M4
(mod p), where I € Z;*° is the identity matrix. This holds for all primes p. Hence,
MEX(A) = (1,0,...,0)T = . Therefore, M accepts the sets A € T.

To conclude the proof we show that the privacy condition from Definition 3.3 implies that
M strongly rejects the sets A € I'. Suppose A ¢ I'. Assume that M does not strongly
reject A. We show that this contradicts the privacy condition. Write V4 = imM7 and
W4 for the closure of V4, and let ¢ > 0 be such that ¢cW4 C V4. By Lemma 3.1, there
exists a prime p such that € € W4 (mod p), i.e., such that € + pk € W4 for some k € Z°.
It follows that ce + cpk € ¢cW4 C V4, and hence that ce € V4 (mod p™*?!), where m is
maximal such that p™ divides c¢. Finally, since ¢/p™ is invertible modulo p™, it holds that
p™e € V4 (mod p™*t1). However, similar to the the proof of Proposition 3.1, this implies
that when the black-box secret sharing scheme M is applied to the group G = Zym+1,

26 Chapter 3. Secret Sharing over Groups and MPC over Rings

then the players in A can compute a p™-multiple of the shared secret, which contradicts
the privacy condition. O

For a span program M over a field it is known that one can assume without loss of
generality that e < d. The following lemma shows that the same holds for ISP’s.

Lemma 3.2 Let M = (Z,M,v,n) be an ISP for an access structure ' on {1,...,n}.
Then there exists an ISP M' = (Z, M’ 1, n) of equal size and computing the same access
structure T’ such that the number of columns of M' is at most the number of rows.

Proof. Using the basic theory of Z-modules, the straightforward dimension argument
in the field case can be closely followed. Write V. = Vi) and let W C Z° be its
closure. The rank e’ of W, seen as a Z-module, is at most d. Since {1,...,n} € T and
hence € € M, and since Ze is obviously closed, € can be completed to a basis of W,
which itself can be completed to a basis of Z¢. It follows that there exists a Z-linear map
¢ : Z¢ — 7€ whose restriction to W is bijective and which maps € = (1,0,...,0)” € Z¢
to €' = (1,0,...,0)" € Z¢. Consider the labeled matrix M’ = (Z, M’,4,n), where the
matrix M’ results from M by replacing each row m by ¢(m). We show that M’ accepts
and strongly rejects the same sets A C {1,...,n} than M. Clearly, € € V4 implies that
e’ € V), where V) is defined as the span of the rows of M/. On the other hand, if M
strongly rejects A, then via the equivalence between 1. and 3. in Lemma 3.1, and observing
that since ¢|w is bijective it preserves closeness, it holds that M’ strongly rejects A. O

3.5 Secure MPC over Rings

3.5.1 Model

We assume a communication network among n players Pi,..., P, as described in Sec-
tion 2.2. We consider a computationally unbounded adversary that is adaptive and rush-
ing. The security of the protocols will require the adversary to be Q3. Our goal is to
obtain a protocol for securely computing a function given by an arithmetic circuit over
an arbitrary finite ring R. Such a protocol is black-box if its description is independent
of R and it only makes black-box calls to the ring operations (addition, subtraction and
multiplication) and to random ring elements, and if its security holds regardless of the
underlying ring R. Formal security definitions can be found in Section 3.6.

3.5.2 Multiplicative Span Programs

The multiplication property for a span program over a field has been introduced in
[CDMOO]. It essentially requires that the product of two shared secrets can be written as
a linear combination of locally computable products of shares. However, in our setting
(where, given the span program, it is not clear from what ring the secret and shares are

3.5. Secure MPC over Rings 27

sampled) we define the multiplication property as a sole property of the span program
matrix.

Let A be a commutative ring with 1.

Definition 3.8 Let M = (A, M,4,n) be a span program. M is called multiplicative if
there exists a block-diagonal matriz D € A% such that M' DM = ee”, where block-
diagonal is to be understood as follows. Let the rows and columns of D be labeled by 1,
then the non-zero entries of D can be collected in blocks D1, ..., D, such that for every i
the rows and columns in D; are labeled by P;.

M is called strongly multiplicative if, for every strongly rejected set A, there exists a
matriz D as above with D; = 0 (the zero-matriz) for i € A.

As in the case of span programs over fields (see [CDMO00]), for every adversary structure
A there exists a (strongly) multiplicative span program M over A for A if and only if A is
Q? (Q3). Furthermore, there exists an efficient procedure to transform any span program
M over A for a Q? adversary structure A into a multiplicative span program M’ (over A)
for the same adversary structure A, such that the size of M’ is at most twice the size of
M. Unfortunately, a similar result concerning the strong multiplication property is not
known to exist, not even in the field case.

Corresponding to the field case, the multiplication property allows to securely compute a
sharing of the product of two shared secrets. Indeed, let R be a finite ring which can be
seen as an algebra over A, and let s = Mb and s’ = Mb' be two sharings of two secrets s
and s’ of R. Then, the product ss’ of the shared secrets can be written as

n
ss'’ = bTee™® = b"MTDMY' = (Mb)"'DMb = s"Ds' =) s]Dss;
i=1

i.e., by the special form of D, as a linear combination (in fact as the sum) of locally
computable values. Hence the multiplication protocol from [GRR98] can be applied: To
compute securely a sharing s” = MDb"” of the product ss’, every player P; shares p; =
siTDz-sg, and then every player P; adds up his shares of pi,...,p,, resulting in F;’s share
s of ss'.

3.5.3 Secure MPC over Rings

Given a multiplicative span program M over A for a Q? adversary structure A (where the
multiplication property can always be achieved according to a remark above), it follows
that if R is a A-algebra, then any circuit over R can be computed securely with respect
to a passive adversary that can (only) eavesdrop the players of an arbitrary set A € A.

Namely, every player shares his private input(s) using the linear secret sharing scheme M,
and then the circuit is securely evaluated gate by gate, the addition gates non-interactively
based on the linearity of the secret sharing scheme, and the multiplication gates using the
above mentioned multiplication protocol. Finally, the (shared) result of the computation

28 Chapter 3. Secret Sharing over Groups and MPC over Rings

is reconstructed. We show in the following Section 3.5.4 how to achieve security against
an active Q® adversary. Note that, as in the field case [CDMO00], perfect security requires
a strongly-multiplicative span program, while an (ordinary) multiplicative span program
is sufficient for unconditional security.

Theorem 3.2 Let A be a commutative ring with 1, let M be a (strongly) multiplicative
span program over A for a Q3 adversary structure A, and let C be an arithmetic circuit.
Then there exists a (perfectly) A-secure MPC protocol to evaluate C over an arbitrary
finite ring R which can be seen as a A-algebra. Its communication complexity (in terms
of the number of ring elements to be communicated) is polynomial in n, size(M) and |C|,
the number of multiplication gates in C.

Remark 3.7 So far, we have not yet formally defined what is an A-secure MPC protocol.
We make up for this in Section 3.6.2, where we also show how to prove Theorem 3.2.
Informally, an MPC protocol is called A-secure if an adversary that corrupts (at most)
the players of a set A € A “cannot achieve more” than in an ideal setting where the circuit
is evaluated by an uncorruptable entity.

Remark 3.8 For simplicity, we restrict to MPC in the sense of secure function evaluation,
where the players provide the inputs during the input phase, compute securely an agreed-
upon function (given as arithmetic circuit) on the inputs in the computation phase and
reconstruct the result in the output phase. However, at least in case of a strongly multi-
plicative span program M, Theorem 3.2 also holds with respect to MPC understood as
an on-going computation, where the environment (as formalized in Section 3.6.2) specifies
“on the fly” which player provides an input at what time, what is computed on those
inputs, and which player gets what output at what time.

A formal proof is given in Section 3.6.2. Combining this theorem with the fact that every
ring R can be seen as a module over Z yields

Corollary 3.1 Let M be a (strongly) multiplicative ISP for a Q* adversary structure A,
and let C be an arithmetic circuit. Then there exists a (perfectly) A-secure black-box MPC
protocol to evaluate C over an arbitrary finite ring R. Its communication complexity is
polynomial in n, size(M) and |C|.

Note that viewing R as an algebra over Z, the corresponding number-multiplication can
efficiently be computed using standard “double and add”, requiring only black-box access
to the addition in R. In Chapter 4 we show how to construct size-optimal threshold ISP’s,
leading to polynomial-time threshold black-box MPC protocols:

Corollary 3.2 Let C be an arithmetic circuit. For 0 < t < n/3, there ezists a perfectly
Ay n-secure black-box MPC protocol to evaluate C over an arbitrary finite ring R. Its
communication complezity is polynomial in n and |C|.

3.5. Secure MPC over Rings 29

It turns out that using a broadcast protocol with optimal message complexity O(n?)
(but O(n) rounds), e.g. [BGP89], this MPC protocol requires O(|C|n®logn) elements of
R to be communicated. Hence, the communication complexity coincides asymptotically
with the classical protocols of [BGW88, Bea91, FY92], up to a possible loss of a factor
log n (which is due to the fact that there exist smaller threshold span programs over large
fields). Furthermore, our protocol is compatible with improvements to the communication
complexity of non-black-box MPC over fields [HMP00, HMO01], as well as with methods
achieving security against a mized adversary ([FHM98, FHM99] and Section 5.6.1).

3.5.4 Achieving Security Against an Active Adversary

Following the paradigm of [CDMO00], security against an active adversary can be achieved
by means of a linear distributed commitment (DC) and three corresponding auxiliary
protocols: a commitment transfer protocol (CTP), a commitment sharing protocol (CSP)
and a commitment multiplication protocol (CMP). A linear distributed commitment allows
a player to commit to a secret, however, in contrast to its cryptographic counterpart, a
distributed commitment is perfectly hiding and binding. A CTP allows to transfer a
commitment for a secret from one to another player, a CSP allows to (verifiably) share
a committed secret such that the players will be committed to their shares, and a CMP
allows to prove that three committed secrets s, s’ and s” satisfy the relation s” = ss’, if this
is indeed the case. These protocols allow to modify the passively secure MPC protocol,
sketched in the above section, in such a way that at every stage of the MPC every player is
committed to his current intermediary results. This guarantees that dishonest behaviour
will be detected, and thus leads to a MPC protocol that achieves security against an active
adversary.

We extend the field based solutions of [CDMO00] to our more general setting of MPC over
an arbitrary ring. Note, as in [CDMO00], for a perfectly secuare CMP we require a strongly
multiplicative span program. Furthermore, these protocols require broadcast. We refer
to [FM98] for a perfectly secure broadcast protocol for an arbitrary Q* adversary structure.
However, for simplicity, we pretend that broadcast channels are given as primitives.

Throughout this section, let A be a commutative ring with 1, and let M = (A, M, 4, n)
be a span program for a Q> adversary structure A. Write I" for the corresponding access
structure T' = A. In the perfect CMP part, we additionally assume M to be strongly
multiplicative. Finally, R is an arbitrary finite A-algebra. The following protocols are

secure with respect to an adversary corrupting the players corresponding to an arbitrary
set A € A.

Linear Distributed Commitment. A commitment C of a secret s € R consists of a
correct sharing s = Mb with respect to the linear secret sharing scheme given by the span
program M. To open such a commitment C, the committer reveals the corresponding
sharing vector b and every player reveals his share s;, and the opening is accepted if and
only if M;b =s; for all players P;, except those corresponding to a set A € A. The hiding
property follows from the privacy of the secret sharing scheme, and the binding property

30 Chapter 3. Secret Sharing over Groups and MPC over Rings

can be verified using the Q3 property of A (see also Lemma 5.1). To commit to a secret
s, it is of course not enough to just let the committer share this value, as the correctness
of the shares has to be guaranteed. This can be achieved as follows. Instead of the vector
b, the dealer/committer chooses a random symmetrical matrix B with the secret s in
the upper left corner and sends U; = M;B to player P;. By pairwise checking, public
complaining and accusing it is then guaranteed that M;U! = U;M/! for every pair P;, P,
of honest players. This then implies that there exists a vector b such that s; = M;b for
every honest player P;, where s; denotes the first column of U;, meaning that the honest
players hold a correct sharing of some secret s. Indeed, if A collects the honest players,
and hence A € T', then MAUZ; = UAMZ; implies that

sqg = Uge = UsMIXNA) = MuUIA(A) = Mub

for b = UTA(A). If, for every set A € T, the span program not only fulfils € € imM7
but in fact imM7] = A€ (this e.g. holds for the threshold span programs resulting from
Corollary 4.2), then it even follows that Uy = M 4B for some matrix B.

An alternative security proof can be found in Section 5.4, based on the framework for
linear VSS and distributed commitments proposed in Chapter 5.

Commitment Transfer Protocol (CTP). The purpose of a CTP is to allow a player
P; to transfer a commitment of a secret s to another player P such that Py is committed
to the same secret s and is able to open the commitment (to s). It must be guaranteed
that this protocol leaks no information to the adversary if P; and Py are honest, but also
that the new commitment contains the same value as the old, even if P; and P, are both
corrupt.

If, for every set A € T, the span program not only fulfils € € imM£ but in fact imM£ = A°
(this holds for instance for the threshold schemes resulting from Corollary 4.2), then
the CTP works as simple as with cryptographic commitments. Namely, to transfer a
commitment C, which in our case is nothing else than a correct sharing s = Mb of the
secret s, distributed among the players, C' is opened privately to P;. This means that P;
sends b and every P; sends s; privately to Py, and Py accepts the opening if (and only if)
s; = M;b holds except for i € A for some set A € A. P;’s commitment for s is now the
same sharing s, and b is the corresponding “opening information”.

However, in the general case, this would not lead to a secure CTP, as the adversary could
achieve that an honest player P, would not be able to open the commitment that has
been transfered to him by a corrupted player P;. This can be overcome as follows (see
also [CDMO00]). Py does not adopt P;’s commitment C' but he generates a new commitment
C' for s by the commit protocol, and he opens the difference C' — C to zero (and if he
does not succeed, P; has to open C’ in public).

Commitment Sharing Protocol (CSP). A CSP allows a dealer, who is committed
to a secret s, to share s such that every player will be committed to his share, and, on the
other hand, it is guaranteed that indeed s is correctly shared. A CSP can generically be

3.5. Secure MPC over Rings 31

constructed from the linear distributed commitment and the corresponding CTP. Namely,
the dealer chooses a random sharing vector b with s as first entry and commits to the
random entries (he is already committed to s), and he transfers the by linearity resulting
commitments for the shares s = Mb to the corresponding players, using the CTP. Clearly,
this also works for an (arbitrary) span program matrix that is different than M, on which
the distributed commitment is based.

Commitment Multiplication Protocol (CMP). A CMP allows a player P;, who is
committed to secrets s, s’ and to the product s” = ss’, to prove that indeed s” = ss’. The
first solution is based on a multiplicative span program, but is “only” unconditional secure,
while the second is perfectly secure but requires a strongly multiplicative span program.

Unconditional CMP: Let C, C' and C"” be the commitments of s, s’ and s” = ss’, respec-
tively. In order to prove that s” = ss’, the prover chooses a random d € R, and commits to
d and ds'. Let D and F denote the resulting commitments. The players jointly generate a
random challenge ¢ € {0, 1} using standard techniques (see e.g. Section 7.3.3). Then, the
prover opens the commitment ¢C + D to r = c¢s’ + d and the commitment 7C’' — F — cC"
to 0. The proof is accepted if both openings are accepted.

It is easy to see that the opened values give no extra information to the adversary, while
the proof is rejected if s # ss’ except with probability 1/2 (which can be made negligible
small by repetition).

Perfect CMP: First,we introduce some notation. Let x = (z1,...,2z4) and y = (y1,---,Yq)
be two d-dimensional row (or column) vectors over an arbitrary ring R. Then x®y denotes
the d2-dimensional row (or column) vector consisting of all products Ty

xX®y = (T1Y1,- -, T1Yd; T2YLy -« - T2Yd5 - - - - - S TAY1s - - TdYd)

Let now ¢ : {1,...,d} = {1,...,n} be a labeling function. Then x ®, y denotes the row
(or column) vector consisting of all products z;y; with (i) = ¥ (j):

XQpy = X ®Y1--»Xn @ Yp)
We also say that x ®, y consists of the locally computable products of the entries of x
and y.

Now, the perfectly secure CMP is based on the fact that if M = (A, M,1,n) is strongly
multiplicative, then there exists an span program Mg such that

1. if s and s’ are sharings of s and s’ with respect to M, then s” = s ®,, s is a sharing
of s = ss' with respect to Mg, and

2. if a set A is rejected by M, then its complement A = {1,...,n}\ A4 is accepted by M.

For instance, in the threshold case, when s and s’ have been shared using two polynomials
of degree t, multiplying corresponding shares of s and s’ yields a sharing of ss’, but with
respect to a polynomial of degree 2t. In general, Mg = (A, Mg, g, n) is constructed as

32 Chapter 3. Secret Sharing over Groups and MPC over Rings

follows. For every i € {1,...,n}, and for every pair of (not necessarily different) rows m
and m’ of M that are labeled by i, let m® m’ be a row of Mg, labeled by i. It is not hard
to verify that condition 1. follows by construction and 2. from the strong multiplication
property.

The CMP now works as follows. The prover applies the CSP to M to share s and ¢,
resulting in sharings s = Mb and s’ = Mb', respectively, and commitments for all shares.
Furthermore, he applies the CSP to Mg to share s” = ss’, resulting in a sharing s” = Myb"
and corresponding commitments. However, he chooses b” in such a way that s” = s®ys'.
Every player P; now verifies whether indeed s} =s; ® s}, and, in case this does not hold,
shows the dishonestness of the dealer by opening the commitments for s;, s} and s/. If
no such triple is opened, the proof is accepted. Therefore, if the proof is accepted, then
SZT =57 ®y SIA, where A € A collects the corrupted players, and since A is accepted by
Mg, the secret “behind” s'} is uniquely defined and thus equal to ss'.

3.6 Defining and Proving the Security of MPC

3.6.1 Definition of Secure MPC

We define the security of an MPC protocol 7 in the universal composability framework
of [Can01], adapted to a synchronous network as in [DN03] and to unconditional security.
In essence, the security definition requires that for any real-life adversary Adv attacking
the real-life execution of the protocol m, there exists an ideal-life adversary Sim which
“achieves exactly the same” as Adv by attacking a so called ideal-life execution. In this
real-life execution, the players simply send their private inputs to a MPC functionality
Furpc, which is an uncorruptable entity that computes the specified function F on given
inputs, and hands the output to the (or some specified) players. The requirement that
Sim “achieves exactly the same” as Adv is formalized by introducing another entity, the
environment Env, whose goal is to distinguish the real-life execution from the ideal-life
execution. The environment provides the inputs to and receives the outputs from the
honest players and communicates arbitrarily with the adversary (either Adv or Sim), and
it produces a binary output. For the protocol 7 to be secure, it is required that for every
Adv there exists Sim such that for all Env the output of Env is (essentially) the same in
both cases, when talking with Adv and the players of a real-life execution and when talking
with Sim and the players of an ideal-life execution.

While this formulation seems to capture the “right” security requirement, it will be conve-
nient to use a slightly simpler though equivalent formulation: As pointed out in [Can01],
the real-life adversary Adv can be eliminated from the definition of secure MPC by view-
ing it as part of the environment Env. In this formulation, Env (instead of Adv) corrupts
players. And, it is required that there exists an ideal-life adversary Sim (now called sim-
ulator) that simulates the corrupted players in the real-life execution to the environment
Env while in fact running the ideal-life execution, such that for any Env, its output in the
ideal-life execution is indistinguishable from its output in the real-life execution. We will
distinguish between perfect and statistical indistinguishability.

3.6. Defining and Proving the Security of MPC 33

Definition 3.9 If X and Y are two binary random wvariables (over possibly non-identical
but fized probability spaces), then we write X ~ Y if X and Y have the same distribution.
If X and Y are two families of binary random variables, indexed by a security parameter
k €N, then we write X ~ Y if

max |[P[X; =0]— P[v, =0]| < negl(k)

In the former case X and Y are said to be perfectly and in the latter case statistically
indistinguishable.

In contrast to [Can01] where Env is restricted to be poly-time, we put no computational
restriction on Env (though we still require Sim to be poly-time). This allows to define
unconditional as well as perfect (rather than computational) security. Let REAL; g,y de-
note Env’s output bit in the real-life execution, when talking with the real players, and let
IDEALF,, »,Sim,Env denote Env’s output bit in the ideal-life execution, when talking with
the simulated corrupted players.

Definition 3.10 Let w be an n-party protocol, and let A be an adversary structure. Fur-
thermore, let Farpc be the functionality for evaluating the function F. If there exists a
poly-time simulator Sim such that for any (possibly computationally unbounded) environ-
ment Env, which corrupts the players of a set A € A, it holds that

REALz Env ~ IDEALF), po,Sim,Env)

then m is called a perfectly A-secure MPC protocol. If REALy gny ,f, IDEALF,, p(,Sim,Env;
then is called an (unconditionally) A-secure MPC protocol.?

In the literature, the function F' is typically specified by an arithmetic circuit C over some
fized (finite) field. Theorem 3.2 generalizes this paradigm not only in that it allows C to
be a circuit over a (finite) ring, but also in that it achieves some sort of “universality”,
in the sense that the same protocol can be used for a whole class of rings over which C
can be considered. In the extreme, it can be used for any finite ring. In order to make
this precise, we use the following terminology. We call a protocol 7 generic with respect
to all finite rings if “it can be applied to any finite ring” in the following sense: 7’s input
and output are binary encodings of elements of a finite ring R, where R as well as the
encoding function are arbitrary and not know to w, and m may consult an oracle in order
to compute the elementary ring operations (addition, subtraction and multiplication) on
encodings of elements of R and in order to generate encodings of random elements of R.3
Similarly, for a fixed commutative ring A with 1, we can define what it shall mean for a
protocol to be generic with respect to all finite A-algebras, the difference being that R is
restricted to be a A-algebra, and that 7 may consult the oracle also in order to compute
the number-multiplication on encodings of elements of R.

2This can only be meaningfully applied to a protocol that takes a security parameter k as input.

3The difference with the notion of a generic algorithm used in [Sho97] is the additional quantification
over the considered algebraic objects (here the finite rings) while in [Sho97] only the encoding function is
variable.

34 Chapter 3. Secret Sharing over Groups and MPC over Rings

Definition 3.11 Let 7 be an n-party protocol, let A be an adversary structure on {1,...,n},
let C be an arithmetic circuit, and let A be a commutative ring with 1. We call w a perfectly
(or unconditionally) A-secure black-box MPC protocol to evaluate C over an arbitrary fi-
nite ring R, respectively a perfectly (or unconditionally) A-secure MPC protocol to evaluate
C over an arbitrary finite ring R which can be seen as a A-algebra, if 7 is generic with
respect to all finite rings, respectively with respect to all finite A-algebras, and if 7 is per-
fectly (or unconditionally) A-secure in the sense that there exists a generic simulator Sim
(generic with respect to all finite rings, respectively all finite A-algebras) satisfying the
requirement from Definition 3.10, independent of R and the encodings of its elements.

Note that in contrast to m and Sim, the environment Env is not required to be generic,
but may depend on R and the encodings of the elements of R.

3.6.2 Proof of Theorem 3.2

The proof is organized as follows. First, we prove Theorem 3.2 in a hybrid model where
we assume the existence of an ideal commitment scheme, given by a functionality Foom,
and then we prove secure an implementation of Fgyp,. Theorem 3.2 then follows by a
general composition theorem (see [Can01] and [DN03]). Without loss of generality, we
may assume that a broadcast channel is available.*

Let R be an arbitrary finite ring which can be seen as a A-algebra. It will be clear from
the exposition below that the MPC protocol as well as the simulator do not make use of
the concrete choice of R or of the encodings of the elements, and therefore are generic
with respect to all finite A-algebras.

We start by describing the functionality Foom that shall implement the ideal commitment
scheme on which upon we will base the MPC protocol. A player P; commits to a value
s € R by sending s to Fcom who simply records s together with the identity of P;, the
owner of s, and sends a confirmation to all the players (and the adversary). And it releases
a recorded value s by sending it to all the players as soon as he receives a corresponding
open-command from the owner of s. Obviously, this implements an ideal commitment
scheme. However, we require some additional properties of Fcom. Let s,s’,s” be three
committed values with owner P;. On P;’s request, Fcoom records (As + \'s', P;) for given
parameters A and). We say that “P; computes a commitment for As + \'s’”. Also, on
P;’s request, Fcom sends an affirmation to all players that s” = s - s if this indeed the
case. We say that “P; proves that s” = s-s”. And finally, on P;’s request, Fcom records
(s, P;) for a different player, owner, P;, and sends s to P;. We say that “P; transfers the
commitment for s to P;”.

To simplify notation, we take the following as implicitly understood: first, for any executed
action, Foom sends a confirmation to all the players (and the adversary), and, second,

“Existing broadcast protocols like [BGP89], or [FM98] for a general adversary, are universally com-
posable, and therefore implementing a broadcast channel by such a protocol preserves security by the
composition theorem.

3.6. Defining and Proving the Security of MPC 35

in order to identify committed values, every committed s is associated with a unique
identifier.

We now describe the input, the computation and the output phase of the hybrid-model
MPC protocol that has access to the ideal commitment scheme given by Feoom:

Let M = (A, M,%,n) be a multiplicative span program for A. To simplify the notation,
we assume that size(M) = n and (i) = ¢ for 1 = 1,...,n. Furthermore, let D be the
diagonal matrix with M7 DM = ee’, gnaranteed by the multiplication property, and let
r1,...,7q € A be its diagonal entries.

INPUT PHASE

For every player F;, and for every input s of P;, the following is done:
First, P; chooses b = (by,...,b.)7 € R® at random subject to b, = s and
commits to all entries of b. Then, P; computes commitments for the entries
of s = Mb and, for every P;, transfers the commitment for s; to P;.

If some (corrupted) player refuses to commit to his input s and to compute commitments
for shares of s as instructed, then a default input value is taken and the player’s part of
the protocol is executed in public with default randomness.

COMPUTATION PHASE

C is securely evaluated gate by gate as follows on the shared inputs:

Addition: To securely add two shared values s and s, every player P,
simply adds his respective shares s; and s, and computes a commitment
for s; + s.

Multiplication with constant: To securely multiply a constant ¢ with a
shared value s, every player P; simply multiplies ¢ with his share s;
and computes a commitment for ¢ - s;.

Multiplication: First, for every player F;, the following is done.
* P; computes and commits to p; = s;s}, and proves that p; = s;s..
» P; chooses b; = (b;1,...,bie)T € R at random subject to b;; = p;
and commits to all entries of b; but the first.
» P; computes commitments for the entries of p; = Mb;.

» For j from 1 to n, P; transfers the commitment for p;; to P;.

Then, every player P; computes 3;-' = >, 7ipij and a commitment for it.

Note that by the use of the commitment scheme, it is guaranteed that dishonest behavior
will be detected by all honest players. In such a case, the players can simply restart the

36 Chapter 3. Secret Sharing over Groups and MPC over Rings

computation phase, but with the detected corrupted player P; excluded. F;’s input is
reconstructed, and his part of the protocol is executed in public with default randomness.
If M is strongly multiplicative, then it is not hard to see that the computation can be
continued without player F; and it is not necessary to restart the computation phase. In
that case, the MPC protocol is not restricted to do secure function evaluation, but its
building blocks allow to do MPC in the sense of an on-going computation as discussed in
Remark 3.8.

OUuTPUT PHASE

Every player F;, holding a share s; of the result of the secure evaluation of
the circuit, does the following: It opens the commitment for s;, and then,
receiving s; for players P; from a set A € I, it computes the reconstruction
vector A(A) and output s = A(A)T's 4.

Proposition 3.2 The above MPC protocol is A-secure in the hybrid model with Fcom,-

Proof. First note that using the linearity of the secret sharing scheme, the observations
in Section 3.5.2, as well as the properties of the ideal commitment scheme, it is straight-
forward to verify that the MPC protocol satisfies correctness in the sense that it has
the same input-output behavior as Fupc, i.e., that the output of the (honest) players
coincides with the evaluation of the circuit C on the players’ inputs. This value is well
defined as the players have to commit to their inputs, i.e. send them to Fcom, and hence
the inputs not only of honest but also of corrupted players are well defined.

In order to prove security according to Definition 3.10, we need to construct a simulator
Sim that runs an ideal-life execution and simulates a hybrid-model execution, such that
for any environment Env it looks as if the hybrid-model execution was running. In order
to do that, Sim generates virtual hybrid-model players Py, ..., P, as well as a copy of the
ideal functionality Foom, and it runs as follows the MPC protocol among those players.

First, the input phase. Every player P; follows the protocol with a default input, say
s = 0 € R, until the input phase is done or Env asks to corrupt P;, and Sim stores the
corresponding sharing vector b. If at some point Env does ask to corrupt P;, Sim proceeds
as follows. First, it corrupts the ideal-life player P; and gets P;’s input s, and it updates
Py’s sharing vector b to a sharing vector for s (rather than 0) by adding s - k(A), where
A € A contains the currently corrupted players. Accordingly, it updates the corresponding
shares of the players not in A. Then, it gives Env control over P; with its updated memory,
as specified by a corruption. By construction, P;’s sharing vector has the same distribution
as in a hybrid-model execution (with the same environment). If the corruption takes place
before P; could commit to its (default) input, the simulator awaits the value s’ that the
now adversary-controlled player P, commits to as input (note that the simulator controls
Fcom) and instructs the corrupted ideal-life player P; to submit s’ to Faspc as its input.

3.6. Defining and Proving the Security of MPC 37

In the computation phase, Sim keeps track of all the sharing vectors used by the honest
and the corrupted players P; during the secure multiplications, as well as of the resulting
sharing vector of any shared intermediary result. If at some point Env asks to corrupt
some player P;, Sim corrupts the ideal-life player P; and gets its input s, and it updates
as above Py’s sharing vector b and the corresponding shares without changing the shares
of the currently corrupted players. In a similar manner, Sim updates all sharing vectors
and all shares that need to be adapted. Note that this concerns only sharing vectors or
shares held by honest players. Then, it gives Env control over P; with its updated memory.
Again, the information Env receives has exactly the same distribution as in a hybrid-model
execution.

Finally, when it comes to the output phase, Sim holds a sharing vector for the shares of
the incorrect result of the computation, incorrect because some players P; used default
inputs. Sim now simply takes the correct result from the corrupted ideal-life players and
updates the sharing vector and the shares of the (honest) players P; accordingly, before
letting them execute the output phase.

Since the information Env receives from the corrupted players has exactly the same distri-
bution as in a hybrid-model execution, the output of Env must have the same distribution
when running an hybrid-model execution and when running a ideal-life execution with
Sim as described above. O

In the following proposition, a A-secure implementation of the functionality Feoom is de-
fined in the spirit of Definition 3.10.

Proposition 3.3 The distributed commitment scheme described in Section 3.5.4 is a A-
secure implementation of Foom.-

Depending on the CMP protocol, the security is unconditional or perfect.

Proof sketch. The arguments given in Section 3.5.4 show that the distributed commitment
scheme satisfies correctness, in the sense that it has the same input-output behavior as
Fcom- For the formal proof, we need to construct a simulator Sim that simulates to the
environment Env a real-life while running an ideal-life execution, such that Env cannot
tell the difference. This can be done similarly to the proof of Proposition 3.2 above. Sim
runs the protocol among virtual real-life players Py, ..., P,, using default values for the
unknown inputs of the honest players, and updating them and any related information
without changing the view of Env whenever Env asks to corrupt some player and Sim learns
the inputs by corrupting the corresponding ideal-life player. Note that in order to be able
to update a sharing matriz B used to commit to a value as described in Section 3.5.4, Sim
needs for any set A € A a symmetrical matrix K € A®*¢ with entry 1 in the upper left
corner and M4K = 0. It is easy to see that Sim can take the matrix K = x(A4)k(A)T. O

38 Chapter 3. Secret Sharing over Groups and MPC over Rings

3.7 Application: Securely Computing MIN and MAX

Aside from its theoretical value, the study of MPC over non-field rings is motivated by the
possibility of embedding useful computation tasks into their richer structure. In this sec-
tion we demonstrate the potential usefulness of this approach by describing an application
to the round-efficient secure computation of the minimum and maximum function.

Suppose there are n players, where each player P; holds an integer y; from the set
{0,1,...,M}. (We consider M to be a feasible quantity.) Our goal is to design pro-
tocols for securely evaluating min(y;,...,y,) and max(yi,...,y,) with the following op-
timization criteria in mind. First, we would like the round complexity to be as small as
possible. Second, we want to minimize the communication complexity subject to the latter
requirement.

Obviously, a protocol for one function implies a protocol for the other. Therefore, it suffices
to concentrate on one of the two: the minimum function as we do here, or the maximum
function as it is done in [CFIKO03]. Let k be a (statistical) security parameter, and fix a
ring R = Zgm where () is a k-bit prime. We denote the elements of R by 1,2,... ,QM =0.
We utilize the following property of the ring R: R contains (exactly) M + 1 ideals, and
these ideals are totally ordered with respect to containment:

0 = (@) c @) c -~ Cc (@ c (1) = R.

We call j € {0,..., M} the indez of the ideal (Q7), and, for any = € R, we call the index
of the smallest ideal of R that contains x the indez of z. Consider the degree-2 polynomial

n
P(T1y e Ty Ty ey Tp) = E T T;
i=1

over R, with input wvariables z1,...,z, and randomizing variables ri,...,r,, and let
P(zy,...,z,) denote the distribution of p(x1,...,2zp,71,...,7r,) for uniformly distributed
T1,.-.,7n € R. It is not hard to verify that the distribution P(z1,...,z,) is uniform over
the smallest ideal of R that contains at least one z;, i.e., over the ideal (Q7) whose index
j coincides with the smallest index of the elements z1,...,z,.

We are now ready to describe the protocol. First, each player ¢ maps its input y; to a
ring element z; with index y;, i.e. ; = QY. Next, the players securely sample an element
z from the output distribution P(z1,...,z,). This task can be reduced to the secure
evaluation of the deterministic degree-2 polynomial

P(T1, -y Ty 11+ T 10, oy Trl+e - T0n)

over R, where 1;1,...,7;, € R are randomly chosen and provided as input by player F;.
Finally, the output of the computation is defined by the minimal ideal of R that contains
z; concretely, the output is the largest j € {0,..., M} such that z € (Q7), i.e. @7 divides
z. Note that the value of z reveals no information about the inputs y; except what follows
from their maximum, and the protocol produces the correct output except with probability

3.8. Open Problems 39

1/Q < 2-(k=1) " We stress that a corrupted player P; cannot pick an “invalid” value for
x;: every x; € R is consistent with a possible input y; € {0,..., M}.

We turn to analyze the protocol’s efficiency. Recall that our main optimization criterion
was the round complexity. The protocol requires the secure evaluation of a single degree-2
polynomial over R. Using a MPC protocol for rings as developed in Section 3.5, this
requires fewer rounds than evaluating degree-3 polynomials or more complex functions.®
The communication complexity of the protocol is linear in M and polynomial in the
number of players. In [CFIK03] several alternative approaches are discussed for securely
evaluating the minimum respectively maximum function. All of these alternatives either
require more rounds, require a higher communication complexity (quadratic in M), or fail
to remain secure against an active adversary.

The polynomial p(z1,...,Zn,71,...,7,) in the above construction is a so called random-
izing polynomial in the randomizing-polynomial framework introduced in [IK00]. In this
framework, functions are represented by (lists of) low degree polynomials, similar to how
the polynomial p(x1,...,Tpn,71,...,7,) represents the minimum function.® This is very
convenient for the construction of constant-round MPC protocols. We refer to [IK00,IK02]
and to [CFIKO03] for more details.

3.8 Open Problems

The main open question of the chapter is probably that of the (non-)equivalence of linear
secret sharing and span programs over arbitrary commutative rings with 1. We know that
these notions coincide if A is finite (Remark 3.5) and if A = Z (Theorem 3.1). On the
other hand we have seen that they do not coincide for A = Q (Remark 3.4). A complete
characterization of the rings A for which these two notions coincide would definitely round
off this work. For instance it might be the case that the equivalence of linear secret sharing
and span programs hold for a commutative ring A with 1 if and only if A can be finitely
generated as a Z-algebra.

Interesting would also be to find further examples of useful computational tasks that allow
efficient representations over rings by exploiting the richer structure that rings provide in
comparison to fields.

5The exact number of rounds being saved depends on the specific setting, e.g. on whether a broadcast
channel is available.
5To be precise, p(z1,...,%n,T1,...,rs) represents the minimum-indez function.

40

Chapter 3. Secret Sharing over Groups and MPC over Rings

Chapter 4

Optimal Black-Box Threshold Secret Sharing

4.1 Introduction
Light is the task where many share the toil. — Homer

A black-boz secret sharing scheme as introduced in the previous chapter is one which works
over any finite Abelian group G. Briefly, the sharing and the reconstruction procedures
consist of taking Z-linear combinations of group elements, and correctness and privacy are
guaranteed regardless of which group G is chosen. The idea of black-box (threshold) secret
sharing was first considered by Desmedt and Frankel [DF89] in the context of distributed
cryptosystems based on groups with secret order. There is no immediate adaptation of
Shamir’s polynomial based secret sharing scheme over finite fields [Sha79] to the setting of
black-box secret sharing, due to the fact that polynomial interpolation over the integers
does not work as over large enough finite fields.

In [DF94], Desmedt and Frankel proposed a black-box threshold secret sharing scheme for
Abelian groups that elegantly circumvents the problem of polynomial interpolation over Z
by passing to an integral extension ring of Z where polynomial interpolation works “well
enough”. More precisely, they pass to an integral extension ring of Z which contains a list
of n+1 elements wy, . . . ,wy, such that all pairwise differences w; —w; (i # j) are invertible.
The maximal number of such elements is called the Lenstra constant of the ring. It can be
shown that polynomial interpolation works if wg, ..., w, are taken as interpolation points.
The scheme is then constructed using the fact that sufficient many copies of G can be seen
as a module over the extension ring.

The concrete choice of the extension ring made in [DF94] is the ring of p-th cyclotomic
integers. For any prime p, the Lenstra constant for the ring of p-th cyclotomic integers
is p. Given arbitrary threshold parameters ¢ and n, and choosing p as the smallest prime
greater than n, this leads to a black-box secret sharing scheme for arbitrary Abelian groups
with expansion factor between n and 2n.

On the other hand, it was also shown in [DF94] that for every finite Abelian group there
exists a (non-black-box) secret sharing scheme, tailored for that particular group, with a
worst-case expansion factor O(logn), leaving a significant a gap between black-box and
non-black-box secret sharing.

41

42 Chapter 4. Optimal Black-Box Threshold Secret Sharing

There are several applications of black-box secret sharing. In the previous chapter, black-
box secret sharing schemes are applied in protocols for black-box multi-party computation
over arbitrary (finite) rings. The result of [DF94] is exploited in [DDFY94] to obtain
an efficient and secure solution for sharing any function out of a certain abstract class
of functions, including RSA. The interest in application of black-box secret sharing to
practical distributed RSA-based protocols seems to have decreased somewhat due to recent
developments, see for instance [Sho00] and the references therein. However, apart from
the fact that black-box secret sharing is perhaps interesting in its own right, black-box
secret sharing may very well be relevant to new distributed cryptographic schemes.

Except for some quite special cases, namely when ¢ (or n—t) is constant or small compared
to n [DDB94,BBDW96] or the factor-2 gain from [DKKK98], no substantial improvement
on the problem of constructing black-box secret sharing schemes has been reported since
the initial results by Desmedt and Frankel. And, further progress via the their approach
depends on the problem of finding for each n and integral extension of Z whose degree is
substantially smaller than n and whose Lenstra constant is greater than n. To the best of
our knowledge, this is an open problem of algebraic number theory (see also [DF94] and
the references therein).

In this chapter, we construct for arbitrary threshold parameters 0 < ¢ < n —1 a black-box
secret sharing scheme with expansion factor O(logn), closing the gap between non-black-
box and black-box secret sharing. Furthermore, we show this to be optimal. Note that the
case t = 0 is trivial and that the case t = n —1 is easily solved by “additive sharing”, both
resulting in a minimal expansion factor 1. The crucial difference with our approach to
the black-box secret sharing problem is that we avoid dependence on Lenstra’s constant
as defined above. First, we observe that a sufficient condition for black-box threshold
secret sharing is the existence (over an integral extension of Z) of two lists «y,. .., a, and
Bo, - - -, Bn such that all pairwise differences o; — o and Sy, — f3; are co-prime (Section 4.4).
And, second, we show how to construct low degree integral extensions of Z satisfying this
condition (Section 4.6). For an arbitrary given threshold access structure I';,, this leads
to a black-box secret sharing scheme with expansion factor [log(n+1)]+1. Using a result
of Karchmer and Wigderson [KW93], we prove that this is minimal up to an additive
factor 2 (Section 4.2).

Furthermore, we show that our black-box secret sharing scheme satisfies certain simulata-
bility properties, which are of importance in the context of threshold cryptography, and
we sketch how our scheme allows to construct an RSA threshold signature (or encryp-
tion) scheme (Section 4.7). In contrast to Shoup’s scheme [Sho00], our solution has a
considerably more expensive signature generation phase, however it allows a small public
exponent like e = 3 and is therefore superior in a setting where the complexity of signature
verification has to be minimized. Finally, we propose a concrete implementation of our
black-box secret sharing scheme and analyze its complexity with respect to bit and (black-
box) group operations (Section 4.8). This shows that our scheme not only minimizes the
size of the shares but also that it is practical with respect to computing the shares as well
as reconstructing the secret.

The material in this chapter is based on [CF02].

4.2. Lower Bounds for Threshold ISP’s 43

4.2 Lower Bounds for Threshold ISP’s

4.2.1 Lower Bounds on the Size

Definition 4.1 For any access structure I' and for any commutative ring A with 1,
msp, (') denotes the minimal size of a span program over A computing T'. If A = Z,
we write isp(T').

This is well defined by Remark 3.3.

Proposition 4.1 For allt,n with0 <t<mn—1,

> nlogn —nl.

In order to compare the expansion factor of our black-box secret sharing scheme, the
following bound will be convenient.

Corollary 4.1 The expansion factor of a black-box secret sharing scheme M for I'y ;, with
0<t<mn—1islower bounded by

log(n+3)—1 > |log(n+1)].

Proposition 4.1 follows quite directly from the bound shown in Theorem 4.1 for binary span
programs, as proved in [KW93]. Before we give the details of the proof of Proposition 4.1,
we include a detailed proof of their bound in order to make constants for their asymptotic
bound explicit.

Definition 4.2 The dual I'* of a access structure I' on {1,...,n} is the collection of sets
A CA{1,...,n} whose complement A={1,...,n}\ A is not in I

Note that I'* is an access structure on {1,...,n}, that (I')* = T, and that (I';,)* =
I'y—t—1,n. The lemma below generalizes a similar property shown in [KW93] for the case
of fields.

Lemma 4.1 Let A be a commutative ring with 1, and let I' be an access structure. Then,
mspg(T) = mspp(™).

In the case of span programs over fields, this has been shown in [G4l95]: there exists an
explicit though in general inefficient construction that transforms a span program M into
a span program M* for the dual access structure with size(M) = size(M*). The following
proof, due to [Feh99], proposes a construction that is efficient.

44 Chapter 4. Optimal Black-Box Threshold Secret Sharing

Proof. Let M = (A, M,1,n) be a span program for I'. Select an arbitrary generating
set of vectors by,...,b; for ker M’ and choose A with M7 X = ¢. Let M* be the matrix
defined by the [+ 1 columns (A, by, bo,...,b;), and use 9 to label M* as well. Define
M* = (A, M*,9,n). Note that size(M*) = size(M). We claim that M* computes I'*.
This is easy to verify. If A ¢ T', then there exists & € A® such that M x = 0 and x; = 1.
Define * = Mak. Then MiTA* = M3"Mak = M "Mk = (M M*)"k = €*, where
e* € A is the target vector for M*. The latter equality holds by construction of M*
and by the fact that x; = 1. On the other hand, if A € T, then there exists A e Al
such that MTA = & and 5\,4 = 0. By definition of M*, there exists & € A‘*! such that
M*k = X and k1 = 1. Hence, M}k = ;\A = 0 and k; = 1. This concludes the proof. O

Remark 4.1 As a side result of this dual-construction, we get the following. If A is an
integral domain (i.e. has no zero divisors), and if M is a span program over A for an
access structure I' with e linear independent columns, then there exists a span program
M* of equal size for the dual access structure I'* with e* = size(M) — e + 1 columns.

The following two propositions are due to [KW93] (though we make constants for their
asymptotic bound explicit). We write mspy(I") instead of mspp, (I').

Proposition 4.2 mspy(T'y,) > n - logn.

Proof. Consider a span program M = (IFy, M, 4, n) with T'(M) =Ty ,. Without loss of
generality, assume that the rows of each M; are linearly independent over Fy, i =1,...,n.
Let H; collect the vectors in F§ with first coordinate equal to 1. Since {i} ¢ I'; ,, we have
kerM; N H; # (. By assumption on M;, |kerM; N Hy| = 2¢71=% for 4 = 1...n. On the
other hand, {i,5} € I'1,. Hence, we have kerM; NkerM; N Hy = kerMy; jy N Hy = §, for
all i, with 1 < i < j < n. By counting and normalizing, 2~% + ... 4279 < 1. By the
Log Sum Inequality (see e.g. [CT91]), d =d; +--- + d, > nlogn. O

Theorem 4.1 For all t,n with 0 <t <n — 1, it holds that

n-Nlog(n +1)] > mspy(Te) > n-log "t

Proof. The upper bound, which is not needed for our purposes, follows by considering an
appropriate Vandermonde matrix over the field Fou , where u = [log(n+ 1)]. This is easily
turned into a binary span program for I'; ;, using an adaptation of some of the techniques
detailed in Section 4.5.

Concerning the lower bound, note that since mspy(I't) = mspy(I',—4—1,) by Lemma 4.1,

4.2. Lower Bounds for Threshold ISP’s 45

we may assume t > (n — 1)/2. We have the following estimates.

E

mspy (L) > t+2'mSP2(Ft,t+2)
n
= 132 mspy (T 142)
n
> —— - (t+2)-log(t+ 2
> T (+2) Toglt 12
> n-logn—;3

The first inequality is argued as follows. Consider an arbitrary span program M =
(2, M,4,n) for T'y,,. Assume without loss of generality that the number of rows in M; is
at most the number of rows in M; 1,7 =1,...,n — 1. The first ¢+ 2 blocks M1, ..., Mo
clearly form a span program for I'; ;5. Hence, the total number of rows in these blocks is
at least mspy(I'y ¢42). Each other block M; with j > t+2 has at least as many rows as any
of the first ¢ + 2 blocks. Therefore, M; has at least mspy(I'; 142)/(t + 2) rows. Summing
up over all ¢ according to the observations above gives the first inequality. The equality
is implied by Lemma, 4.1, the second to last inequality follows from Proposition 4.2, and
the last one from ¢ > (n — 1)/2. O

For the proof of Proposition 4.1, let an ISP for I'; ;, be given, and consider the ISP matrix,
but with all entries reduced modulo 2. This way, a binary span program for I';,, is
obtained. The argument is concluded by applying Theorem 4.1. The statement about
black-box secret sharing follows from Theorem 3.1.

Note that our lower bound on black-box secret sharing can also be appreciated without
reference to Theorem 3.1, by essentially the same argument as above. Namely, setting
G = Zs in Definition 3.3, we clearly obtain a binary linear secret sharing scheme. This is
well-known to be equivalent to a binary span program, as mentioned before. Hence, we
can directly apply the bound from Theorem 4.1.

4.2.2 Lower Bounds on the Column Dimension

In this section we give some lower bounds on the number of columns of threshold ISP’s.
These obviously translate to lower bounds on the randomness needed for black-box thresh-
old secret sharing. Similar bounds were shown in [Kin00,Kin01]; however, our derivation
is much simpler. Since these bounds seem to be rather far away from being tight, we
conjecture at the end of the section what we think is the “right” lower bound.

Let 0 <t <n—1, and let M = (Z, M,1,n) be an ISP for T';,.

Proposition 4.3 The number of columns of M is lower bounded by

46 Chapter 4. Optimal Black-Box Threshold Secret Sharing

Proof. Using similar reasoning as for the lower bound on the size of a threshold ISP, it
is sufficient to prove the claim for a threshold span program M = (Fy, M,,n) over the
field Fy. Let V = F5, and, for any A C {1,...,n}, let V4 C V be the subspace spanned
by the rows of M 4. Clearly, the number of proper subspaces of V is upper bounded by
2¢(e=1)/2_ Furthermore, for A, A’ C {1,...,n} of size |A| = |A!| = t, the two spaces Vi
and V4 must be different, as € is neither in V4 nor in V4 but in the span of the union.
It follows that (}) < 2¢(e=1)/2 which implies the claim. 0

Using that (7}) < 2" it is easy to see that the given lower bound is of order O(y/n). The
following bound is (asymptotically) better for instance when ¢ is linear in n.

Proposition 4.4 The number of columns of M is lower bounded by

e > log(n+3)+t—1.

Proof. Again, it suffices to prove the claim for a threshold span program M over F,. It
follows from the lower bound on the size of M, Theorem 4.1, that there exists ¢ € {1,...,n}
such that M; consists of at least d; > log(n + 3) — 1 rows. Without loss of generality, we
may assume that the rows of M; are linear independent. Using the notation from the proof
above, it follows that dim(Vj;3) > log(n + 3) — 1. On the other hand, it is obvious that
dim(Vy4) < dim(Vyyy;y) for any A C {1,...,n} of size |A| <t and j ¢ A. Both together
imply that for A C {1,...,n} with i € A and |A| =t + 1, the dimension of V4 and hence
e is at least e > log(n +3) +t — 1. O

If in this proof it were guaranteed that dim(Vy,y;3) = dim(Vy4) + dim(Vy;y), rather than
just dim(Vy4) < dim(V4yy;), then it would prove the following more realistic lower bound,
stated as

Conjecture 4.1 The number of columns of M is lower bounded by e > tlogn — O(n).

The validity of this conjecture, together with the upper-bound results (on d and on e)
from the Section 4.6, would have the following implications.

1. The ISP constructed in Section 4.6 is not only (asymptotically) optimal in terms of
its size but also in terms of its number of columns. In other words, the bound is tight.

2. Applying the dual-construction from the proof of Lemma 4.1 to an ISP M which is
(asymptotically) optimal in terms of its size, say size(M) = nlogn £+ O(n), as well as
in terms of its number of columns, e(M) = tlogn + O(n), results in an ISP (for the
dual access structure) with the same optimality property:

size(M*) = size(M) = nlogn £ O(n) and

e(M*) = size M) —e(M)+1 = (n—t—1)logn £ O(n).

4.8. Some Variations of Secret Sharing and Span Programs 47

4.3 Some Variations of Secret Sharing and Span Programs

In this section we present some variations of the concepts of linear secret sharing and
span programs as introduced earlier. Even though those variations do have some stand-
alone motivation to be considered, we will only use them as tools to argue about the well
motivated concepts of (ordinary) linear secret sharing and span programs.

4.3.1 Solid Secret Sharing

Let A be a commutative ring with 1, let M = (A, M,%,n) be a labeled matrix, and
let T" be an access structure on {1,...,n}. If M is a span program for I according to
Definition 3.3, then M allows to share a secret s from any finite A-module G such that
the correctness and privacy conditions of Definition 3.3 are satisfied. In particular, if A
is finite, M allows to share a secret from A itself. On the other hand, it has been shown
in [CK89] that it is impossible to share a secret from A with perfect privacy if A is infinite
but countable, like Z. The following definition specifies when M allows to share a secret
from A with some degraded privacy condition when A is infinite.

Definition 4.3 For any s € A let us call s € A? to be a sharing of s (with respect to M)
if it is of the form s = Mb for some b € A® with by = s. Then, M is called a solid secret
sharing scheme over A (respectively a solid black-box secret sharing scheme in case A = 7Z)
for T if the following holds.

« Correctness: If A € T', then there exists a reconstruction vector A € A% (for A) such
that for any s € A and any sharing s of s, it holds that ATsy = s.

e Privacy: If A&7, then there erists a sharing s of 1 € A such that s, = 0.

The privacy condition is equivalent to saying that if A ¢ T', then for any s,s’ € A and for
any sharing s of s, there exists a sharing s’ of s’ with s’y = s4. Loosely speaking, it says
that every s’ is possible to be the shared secret given s4 with A € T', though not every s’
is necessarily equally likely.

Definition 4.4 A solid secret sharing scheme M = (A, M,1,n) is called multiplicative
if for any s,s' € A and any sharings s and s’ of s and s', respectively, ss' can be computed
as a fized linear combination of the locally computable products of the shares of s and s',
i.e., of the entries of s ®y s’ (as defined in Section 3.5.4).

M is called strongly multiplicative if for every strongly rejected set A, there exists such a
linear combination that does not require the shares associated with A.

The proof of the following characterization of span programs in terms of solid secret sharing
follows easily by comparing the two definitions.

Proposition 4.5 The labeled matriz M is a span program for T if and only if it is a solid
secret sharing scheme for T'. Furthermore, if M is a span program, then it is (strongly)

48 Chapter 4. Optimal Black-Box Threshold Secret Sharing

multiplicative as a span program if and only if it is (strongly) multiplicative as a solid
secret sharing scheme.

In combination with Proposition 3.1, this shows that every solid secret sharing scheme is
a linear secret sharing scheme according to Definition 3.3 (respectively 4.5), while a linear
secret sharing scheme is solid if and only if it is a span program.

4.3.2 Weak (Solid) Secret Sharing and Weak Span Programs

Let A be a commutative ring with 1, and let I be an access structure. Let v, delta € A.

Definition 4.5 A §-weak (solid) secret sharing scheme over A for T is defined as in
Definition 3.8 (respectively 4.3), the only difference being the weaker reconstructability
condition that, for all A € T, § - s is reconstructed from sa, rather than s itself.

A d-weak (solid) secret sharing scheme over Z is called a §-weak (solid) black-box secret
sharing scheme.

Definition 4.6 A possibly weak solid secret sharing scheme is called y-weak (strongly)
multiplicative if it is (strongly) multiplicative according to Definition 4.4, with the exception
that -y - ss' rather than ss' can be computed as a fized linear combination of the locally
computable products of the shares of s and s'.

Definition 4.7 A §-weak span program over A for I' is defined as in Definition 3.6, the
only difference being the weaker acceptance condition that, for all A €T, §-€ € imMz;,
rather than € € imM:{.

A d-weak span program over Z is called a 6-weak integer span program or a §-weak ISP.

Definition 4.8 A possibly weak span program M = (A, M,,n) is called y-weak (strongly)
multiplicative if it is (strongly) multiplicative according to Definition 3.8, with the ezcep-
tion that MT DM = g™ is replaced by the weaker requirement that MT DM =~ -ee”.

It is straightforward to verify that Proposition 3.1, Theorem 3.1 as well as Proposition 4.5
generalize to the weak versions of the primitives involved. In summary, this means that

» Every d§-weak span program is a J-weak secret sharing scheme (for the same T').

» Every §-weak integer span program is a d-weak black-box secret sharing scheme (for
the same I') and vice versa.

» Every §-weak span program is a d-weak solid secret sharing scheme (for the same I)
and vice versa.

» Every §-weak span program is y-weak (strongly) multiplicative if and only if it is
v-weak (strongly) multiplicative as §-weak solid secret sharing scheme.

4.4. On the Construction of Threshold Span Programs 49

4.4 On the Construction of Threshold Span Programs

4.4.1 The Lenstra Constants

Let A be an arbitrary commutative ring with 1.

Definition 4.9 The Lenstra Constant of A, denoted as L(A), is defined as the largest
integer | such that there exists an I-tuple w = (wy,...,wi—1) € Al with the property that
w; —w; € A* for all i # j. If | is unbounded then L(A) = oco.

Some trivial examples are L(K) = |K| for any field K, L(Z) = 2, L(Zn,) equals the
smallest prime factor of m, and £({0}) = co. The Lenstra constant was developed to
provide a method to find new Euclidean fields [Len77].

Definition 4.10 For any positive integer | and any I-tuple w = (w, - ..,w; 1) € AL, V(w)
denotes the [-dimensional Vandermonde matrix

1 wo cee wéfl
-1
1 wl Y wl
V(w) - : : : ’
-1
1 wl*l e wl*l

and A(w) its determinant, which is well known! to be

Aw) = JJ(wi—w)).

>7

Remark 4.2 An I-tuple w = (wy,...,w;_1) € Al satisfies the property that w; — w; € A*
for all ¢ # j if and only if A(w) € A*.

Definition 4.11 We define the 2nd-order Lenstra Constant of A, denoted as L2(A), as
the largest integer | such that there exist two I-tuples o, € A with the property that
A(a) and A(B) are co-prime. If [is unbounded then Lo(A) = co.

Remark 4.3 For any I-tuple w = (wp, ...,w; 1) € Al it holds that
Alw) = A(0,w1 —wp,...,wi—1 — w)-

Lemma 4.2 Let I C A be a properly contained ideal. Then 2 < L(A) < Lo(A) < |A/I].

Proof. It is obvious that 2 < £(A) < L2(A). For the remaining inequality, let e, 8 be two
tuples of length [> |A/I|. Then, A(a) and A(B) and hence the ideal (A(a), A(B)) are
contained in I # A. Therefore, A(a) and A(S3) are not co-prime. O

!See e.g. [Lan97].

50 Chapter 4. Optimal Black-Box Threshold Secret Sharing

4.4.2 Threshold Span Programs

Let A be an arbitrary commutative ring with 1, and let 0 <t < n — 1.

Proposition 4.6 Let w = (wp,...,w,) € A"T! be an arbitrary (n + 1)-tuple with wy = 0.
Then there ezxists a A(w)-weak span program M = (A, M,v,n) for T'vy of size n. Fur-
thermore, M is A(w)?-weak (strongly) multiplicative if and only if t < n/2 (respectively
t<n/3).

We describe the claimed weak span program M in terms of weak solid secret sharing. A
sharing s = (s1,...,5,)7 € A" of a secret s € A is given by

S8 = b(wz)

where b(X) € A[X] is a polynomial, the sharing polynomial, with degree at most ¢ and
constant coefficient
b(0) = wy - wp-s.

Le., fori =1,...,n, the i-th row of M is labeled by i and equals (w; - - - Wy, wj, w2, . .. ,wt).

If A is an integral domain (i.e. has no zero-divisors), then the weak correctness condition
follows from Lagrange interpolation in the fraction field of A, and dividing out denomi-
nators by multiplying the Lagrange interpolation coefficients with all differences w; — w;
where 1 < 7 <4 < n. The general case is treated at the end of this section.

For privacy note that for an arbitrary set A C {1,...,n} of size ¢, the polynomial

r(X) = [Jwi [-x)

jéA icA

has degree at most ¢, constant coefficient k(0) = wy ---wy, - 1, and satisfies x(w;) = 0 for
every i € A.

Concerning the multiplication property, note that ifs = (s1,...,s,)? ands’ = (s},...,s,)T
are sharings of s and s’ with sharing polynomials b(X) and b'(X), respectively, then
(518%,...,8n8,)T is a sharing of wy -+ - wy, - s’ with respect to the degree-2¢ sharing poly-
nomial b(X) - b'(X). By the weak correctness property (for an arbitrary t), it follows that
M is A(w)?-weak multiplicative if 2¢ < n and that it is A(w)2-weak strongly multiplicative
if 3t < n.

Together with Remark 4.2, Proposition 4.6 implies

Corollary 4.2 If L(A) > n then there ezists a span program M = (A, M,,n) of size n
for the threshold access structure I'y,,. Furthermore, M is (strongly) multiplicative if and
only if t < n/2 (respectively t <n/3).

The first part of this corollary has also been proven in [DF94, DDFY94] and was the basis
for the proposed black-box secret sharing scheme, which we briefly recall here. Consider

4.4. On the Construction of Threshold Span Programs 51

the ring A of p-th cyclotomic integers, where p is the smallest integer prime greater than n.
Concretely, A = Z[X]/®,(X), where ®,(X) = XP~1 +... + X + 1. Tt is well-known that
L(A) = p. Indeed, let w € C be a root of ®,, i.e., w is a primitive p-th root of unity.
Define w; = 1+ w+ -+ +w™ ! fori =1,...,p — 1. It is straightforward to verify that
A(0,w1,...,wp—1) € A*. Thus L(A) > p. On the other hand, by basic algebraic number
theory, the integer prime p totally ramifies in this particular ring A. This implies that
there is a unique prime ideal p C A with pNZ = (p)z and |A/p| = p. Thus, by Lemma 4.2,
L(A) < p. Applying above Corollary 4.2 results in an ideal secret sharing scheme over A
for I'; ,. By the construction presented in the next section, this can be transformed into
a black-box secret sharing scheme for I';,,. However, the expansion factor of that scheme
equals p — 1, the degree of ®,(X), which is lower bounded by n (and upper bounded by
2n by Bertrand’s Postulate).

In order to construct a black-box secret sharing scheme with minimal expansion factor
O(logn), we make use of

Corollary 4.3 If Lo(A) > n then there exists a span program M = (A, M,v,n) of size
2n for the threshold access structure I'y . Furthermore, M is (strongly) multiplicative if
and only if t < n/2 (respectively t < n/3).

Proof. The claim is rather obvious from the point of view of (weak) solid secret sharing.
Choose a, 8 € A" such that A(a) and A(B) are co-prime. A sharing of a secret s € A
with respect to M is given by two independent sharings of s, one with respect to the A(a)-
weak and the other with respect to the A(3)-weak solid secret sharing scheme guaranteed
by Proposition 4.6. The claim about the size is obvious. The same holds for the privacy
condition. As to correctness, s can be reconstructed from the shares held by any set A € T’
by first reconstructing A(a) - s and A(B) - s separately, and finally computing

u-(Ala)-s)+v-(A(B)-s) = s

where u,v € A are such that u-A(a) +v-A(B) = 1. The (strong) multiplication property
can be shown by a similar argument, using that A(a)? and A(B)? are co-prime if (and
only if) A(a) and A(B) are. O

To finalize the proof of Proposition 4.6, we need the following remark.

Remark 4.4 Tt is well known? that for any square matrix A € A¥*¥ there exists a matrix
adj(A) € AF** such that A - adj(A) = det(A) - I. This implies that the linear equation
system Ax =y is solvable at least if y is a multiple of det(A). The matrix adj(A) is the
so called adjoint? of A, which is the transpose of the cofactor matrix. The cofactor matrix
is the matrix of determinants of the minors A;; multiplied by (—1)**/, where the (i, j)-th
minor of A is the matrix A without the i-th row or the j-th column.

2See e.g. [Lan97].
3Some authors, like [Lan97], use the expression adjoint to denote what is also known as the conjugate
transpose or the adjugate matrix of A.

52 Chapter 4. Optimal Black-Box Threshold Secret Sharing

Proof of Proposition 4.6. It remains to show the correctness property of the proposed
solid secret sharing scheme for the case where A is not necessarily an integral domain.
Let A be a subset of {1,...,n} of cardinality ¢t + 1. We show that A(w)-& € imM?3.
We assume without loss of generality that A = {1,...,¢ + 1}. The matrix My is the

(t+ 1)-dimensional Vandermonde matrix V(ws, ..., w+1) with the first column multiplied
by w1 ---wp, and hence its determinant is det(M4) = wi---wp - A(wi, ..., wi+1) which
divides A(w). By Remark 4.4 it follows that indeed A(w) - € € imM7. O

4.5 Span Programs over Integral Extensions of 7Z

The following observations hold in a more general context; however, for simplicity, we
tailor them to our need and restrict our attention to extensions over the integers.

Definition 4.12 Let A be an extension ring of Z. We call A an integral extension of Z if
A is of the form A = Z[X]/(f(X)) for some monic, irreducible polynomial f(X) € Z[X].*
We define the degree of the extension ring A, denoted by [A:Z], to be the degree of f(X).

Let A = Z[X]/(f(X)) be an integral extension of Z, and write m = [A :Z]. Note that
A is a commutative ring with 1 and that it has no zero divisors, i.e., it is an integral
domain, but that it is not a field. Furthermore, let G be either an arbitrary finite Abelian
group, or G = Z. In any case, G is a Z-module. We will now argue that there is a group
which contains G as a subgroup, and which is a module over A. This has also been used
in [DF94]. As A and G are both Z-modules, the tensor product A @ G is a well defined
Z-module too. Consider the (unique) Z-bilinear map A x (A ® G) - A ® G that maps
(A n®g) to Au®g. It is easy to verify that this map makes A ® G into a module over A,
which is called the extension of G over A and is denoted by A ®z G [Lan97]. Note that
by identifying ¢ € G with 1 ® g € A ®y, G, the group G can be viewed as a subgroup of
A ®z G.5 Finally, if G = Z then A ®7 G is isomorphic to A, and hence we will identify
A ®z G with A in that case.

Intuitively, these observations immediately imply that a (solid) secret sharing scheme over
A induces a (solid) black-box secret sharing scheme: to share a secret s € G, where G is an
arbitrary finite Abelian group (respectively G = Z), view s as an element of A ®z G and
apply the (solid) secret sharing scheme over A. However, in order to fit into the framework
of our formal definition of (solid) secret sharing, we need to take a closer look at how to
represent the elements of A ®z G.

For that, fix w € A such that f(w) = 0 (such as w = X, the residue class of X mod-
ulo f(X)) and thus A = Z[w]. Then for each A € A, there exists a unique coordinate-vector
A= (Ao,...,Amfl)T € Z™ such that A= Xg-14+ X -w+ -4+ Ap_1 - w™ L. In other

“In standard terminology from algebraic number theory, A corresponds to an order in the ring Zx of
algebraic integers in the number field K = Q[X]/(f(X)). Note that A C Zk, but not necessarily with
equality.

®We sometimes fail to distinguish between g and 1 ® g.

4.5. Span Programs over Integral Extensions of Z 53

words, {1,w,...,w™ '} is a basis for A when viewed as a Z-module. Similarly, for each
g € A ®z G, there exists a unique coordinate-vector § = (go,...,9m—1)7 € G™ such that
g can be written in a unique way as ¢ = 1® go + w® g1 + - - + w™ ' ® gm_1. Note that
in case G = Z, and thus A @z G ~ A, the coordinate vector of an element A\ € A coincides
with the coordinate vector of A when viewed as an _elgment of A ®7 G. Finally, for every
A € A, there exists a matrix [\] € Z™*™ such that A - g = [A]g holds for every g € A®zG.
The columns of [\] are simply the coordinate vectors of A, A\-w, ..., A-w™ ! as can easily
be verified.

Remark 4.5 In the special case where G is a finite ring R or G = R = Z, the extension
A®z R of R over A is in fact a A-algebra, and R is a subring of A ®z R. Also, for a,b € R,
the entries of the coordinate vector of ab are Z-linear combinations of the pairwise products
a;b; (0 <14,7 < m — 1) of the entries of the coordinate vectors @ = (ao, ... ,am—1)" and
b= (bo,...,bm_1)T of a and b.

It follows

Lemma 4.3 Consider an integral extension A of Z. Let M be a span program over A for
an access structure I'. Then there exists an ISP M for T' with size(M) = [A:Z] - size(M).
Furthermore, if M is (strongly) multiplicative then this also holds for M.

Proof. Write m = [A:Z]. M = (Z,M,),n) is constructed from M = (A, M,v,n) by
replacing each entry A € A of M by the matrix [A] € Z™*™, and then removing the 2nd
up to the m-th leftmost columns. Hence, if M consists of d rows and e columns, then
M results in dm rows and (e — 1)m 4+ 1 columns. The labeling 1) is extended to ¥ in
the obvious way: if a row of M is labeled by some i € {1,...,n}, then the rows it is
substituted with in M are labeled by 4 too.

We show that M is a solid secret sharing scheme if M is. Consider s € Z and s € A%,
and let § € Z9™ denote the vector s with each entry replaced by its coordinate vector. It
follows by construction of M that s is a sharing of s, viewed as an element of A, with
respect to M, if and only if § is a sharing of s with respect to M. Tt is now easy to see that
the correctness, the privacy and the possible (strong) multiplication property carry over
from M to M: The privacy condition is obvious. As for correctness, note that if \”'s 4 = s

for some A = (A1,...,Aq,)T € A%, then ATS, = s, where AT stands for the first row
of the matrix ([A1],...,[Ag,])- The claim concerning the (strong) multiplication property
follows by using a similar argument in combination with the second part of Remark 4.5
above. O

Remark 4.6 A similar construction obviously applies to weak span programs: a dJ-weak
span program over A with § € Z (rather than in A) results in a d-weak ISP, while a é-weak
span program over A with § € A results in a §y-weak ISP, where § is the first coordinate
of §’s coordinate vector 4.

54 Chapter 4. Optimal Black-Box Threshold Secret Sharing

4.6 Optimal Black-Box Threshold Secret Sharing

In this section, we prove the main result of this chapter:

Theorem 4.2 For all integers t,n with 0 < t < n — 1, there erists an ISP M for I'y,
of size O(nlogn), and hence isp(T'yn) = O(nlogn). Furthermore, M is (strongly) multi-
plicative if and only if t < n/2 (respectively t < n/3).

Corollary 4.4 For all integers t,n with 1 < t < n — 1, there exists a black-box secret
sharing scheme M for Iy, with expansion factor O(logn), which is minimal.

The minimality follows from Proposition 4.1. In order to prove the existence it suffices
by Corollary 4.3 and Lemma, 4.3 to construct an integral extension A of Z with 2nd-order
Lenstra Constant L9(A) > n and degree [A:Z] = O(logn).

As an aside, both the scheme from [DF94] as well as ours allow that the secret s is in fact
chosen as a vector of group elements, rather than just a single group element. Specifically,
instead of identifying the secret s € G with 1 ® s € A ®z G, we may as well choose
s € A ®z G arbitrarily. It is easily verified that, with this change, reconstructability and
privacy are still satisfied. Thus, from that point of view, both schemes are “ideal,” since
the entropy of each individual share s; is equal to the entropy of the secret. The important
difference to note, however, is that a smaller expansion factor is a significant advantage
for instance in a setting where the secret is a single group element s € G for some given
“black-box group” G, such as is the case for distributed cryptosystems and for secure
general multi-party computation protocols.

4.6.1 Low-Degree Integral Extensions of Z with L3(A) > n

Before we finalize the proof of Theorem 4.2 in Proposition 4.7 below, we state some
elementary properties of the Lenstra constants £ and Lo. The following three lemmas
hold for an arbitrary commutative ring A with 1.

Lemma 4.4 If A is the direct product of rings A1, ..., Ay, i.e., A=Ay X -+ X Ay, then
L(A) = min L(A;).

1<i<m

The proof of this lemma is trivial.

Lemma 4.5 If I is an ideal in A, and j > 1 is an arbitrary integer, then

L(AJT) = L(A/T).

Proof. The natural ring homomorphism ¢ : A/I/ — A/I has the elementary property
that ¢(x) € (A/I)* if and only if z € (A/I7)*. The lemma follows. O

4.6. Optimal Black-Box Threshold Secret Sharing 55

Lemma 4.6 Lo(A) > n+1 if and only if there exists o € A" with L(A/(A(a))) > n+1.

Proof. L2(A) > n + 1 holds if and only if there exist o, 3 € A™*! such that A(a) and
A(pB) are co-prime, i.e., such that A(B) € (A/(A(a)))*. This, though, is equivalent to the
existence of a € A"T! with L(A/(A(e))) > n+ 1. 0

Proposition 4.7 For any n > 1, there is an integer extension A such that Lo(A) > n+1
and [A:Z] = [log(n + 1)].

Proof. Fix a = (0,1,...,n) € Z"*!. Let II, denote the set of integer primes p with
2 < p < n. Note that A(e) factors as an integer completely over the primes p € II,,, and

let
II »*
p€ll,

denote its prime factorization.

For the moment, let A = Z[X]/(f(X)) be an arbitrary integer extension. Then the ideals
(p') of A with p € II,, are pair-wise co-prime. Therefore, using the Chinese Remainder
Theorem for general rings,

A(A@) ~ TT 8/6™)

pelly,

For p € II,, let f,(X) € Fp[X] denote the polynomial f(X) with its coefficients reduced
modulo p, and let

lp
- H fp o (X)PF
k=1

denote its factorization in IF,[X]. Furthermore, for each p € II,,, define r, ;, = deg(fpx)
and let r, denote the minimum taken over the 7, ;’s.

Using the Chinese Remainder Theorem for general rings, it follows that, for each p € II,,,
A/(p) = Z[X]/(p, f(X)) = Fp[X]/(H Fp [X1/ (fp,p(X)P*)

Applying Lemmas 4.4 and 4.5 twice, and using the fact that

L(E [X]/(fpr(X)) = L(Epor) = [Fyrox| = p'ok,
it follows that
L(A/(A(a))) = minp'™

pEll,

Now let f(X) € Z[X] be a monic, irreducible polynomial f(X) € Z[X] such that

56 Chapter 4. Optimal Black-Box Threshold Secret Sharing

1. for all p € II,,, it holds that p™ > n + 1.
2. deg(f) = [log(n +1)].

Applying Lemma 4.6, it follows that the ring A = Z[X]/(f(X)) satisfies Lo(A) > n + 1
and [A:Z] = [log(n + 1)].

We conclude by arguing that such polynomials f(X) can be constructed (efficiently). Set
m = [log(n + 1)]. For all p € II,,, select an arbitrary monic polynomial f,(X) € F,[X] of
degree m such that p"™» > n+1. As a special case, the f,(X) can be chosen as irreducible
polynomials of degree m, which is possible by the theory of finite fields. In all cases, the
Chinese Remainder Theorem can be applied to each of the coefficients separately and an
arbitrary lift to a monic polynomial f(X) € Z[X] of degree m can be selected such that
[(X) = fp(X) mod p, for all p € II,,. By construction, f(X) is irreducible, since if not,
the condition p™ > n + 1 does not hold for p = 2. O

Remark 4.7 As an aside, the proof can be easily adapted such that for given m > 1, the
constructed ring A has degree m and Lo(A) = 2™, which is maximal by Lemma 4.2 with

I=(2)n.

4.6.2 Some Modifications

Consider A = Z[X]/(f(X)), o = (0,1,...,ap) and B = (0,01,...,5,) as guaranteed
by Proposition 4.7. Since a1,...,a, € Z, the corresponding A(a)-weak secret sharing
scheme can be defined over Z, rather than over A, and thus has expansion factor 1. It
follows

Corollary 4.5 For all t,n with 0 < t < n — 1, there exists a black-bozx secret sharing
scheme for Ty, with expansion factor [log(n + 1)] + 1.

By the explicit lower bound from Corollary 4.1, it follows that the expansion factor of this
scheme is minimal, up to an additive factor of 2.

The next and last two modifications, Corollaries 4.6 and 4.7, do not modify the scheme
per se but the way to reconstruct the shared secret s € G. Note that so far it is guaranteed
that s can be reconstructed by reconstructing A(e) - s and A(B) - s, both in A ®7 G, and
computing s as a A-linear combination of the two.

Definition 4.13 For arbitrary w € A"!, §(w) denotes the unique non-negative integer
such that the ideal generated by A(w) in A, intersected with Z, is generated by §(w) as an
ideal in Z: (A(w))A NZ = (§(w))z.

Lemma 4.7 For a and 8 as above, 6(a) and §(B) are non-zero and co-prime.

Proof. Since A(ex) € Z, we have §(a) = A(a) # 0. Concerning 6(83), let h(X) € Z[X] be
an arbitrary lift of A(3). Since f(X) is irreducible and does not divide h(X), applying the

4.7. Simulatability and Application to Threshold Crypto 57

extended Euclidean algorithm and clearing denominators results in wo(X),w; (X) € Z[X]
and a non-zero integer a such that wo(X) - f(X) + wi(X) - h(X) = a. It follows that
0(B) # 0. Now, assume that §(a) and 6(8) are not co-prime. Then, there exists a prime
p € II, that divides 6(8). Let u € A be such that u- A(B) = 6(8). Since A(B) is
invertible modulo p, ;4 must be a multiple of p. Hence, we can write 4 = p - v for some
v € A. Consider v - A(B) € A. It holds that p- v - A(B) = 6(8). It is now easy to
see that this implies that v - A(B) = 6(B)/p € Z: if p- g(X) = §(B) + k(X)f(X) for
some ¢g(X),k(X) € Z[X], then k(X) must be a multiple of p, and hence g(X) = §(B)/p
(mod f(X)). However, v- A(B) = §(B)/p contradicts the definition of §(3). This finishes
the proof. O

As a consequence, we have

Corollary 4.6 In the black-box secret sharing scheme from Theorem 4.2, as well as in
the one from Corollary 4.5, the secret can be reconstructed by reconstructing é(a) - s and
0(B) - s, and computing

s = u-(0(a)-s)+v-(6(B)-s)

for integers u and v such that u - d(a) +v-06(B) = 1.

Finally, it is not hard to verify (see [Sho00]), that in order to clear the denominators
of the Lagrange reconstruction coefficients in the A(w)-weak secret sharing scheme from
Proposition 4.6 with w = e, it suffices to multiply them with n! rather than with A(a) =
§(a). Thus, this scheme is in fact a (n!)2-weak (black-box) secret sharing scheme. This
does not apply to the A(3)-weak (respectively §(3)-weak) scheme. It follows

Corollary 4.7 In the black-box secret sharing scheme from Theorem 4.2, as well as in the
above modifications, the secrets can be reconstructed by reconstructing (n!)?-s and A(B)-s
respectively 6(B) - s, and computing s as a linear combination of the two.

4.7 Simulatability and Application to Threshold Crypto

4.7.1 Share Completion

The black-box secret sharing scheme from Theorem 4.2 as well as the above mentioned
modifications additionally satisfy the following share-completion property, which is helpful
when proving the security of certain threshold cryptosystems. Using the terminology and
notation from the definition of (black-box) secret sharing, this property requires additional
elements sJ,...,s; such that

* each s} is obtained by taking fixed linear combinations (only depending on 7) over the
coordinates of the s;.

» the reconstructability property also holds with respect to the s}’s (for appropriate
reconstruction vectors).

58 Chapter 4. Optimal Black-Box Threshold Secret Sharing

e for any set A ¢ T' that is maximal in the sense that A U {j} € T for any j ¢ A, the
elements s7,...,s} are uniquely determined by taking fixed linear combinations (only
depending on A) over the coordinates of the s; with 7 € A and the secret s.

This definition is inspired by an argument developed in [Sho00]. We also define the share-
completion property for é-weak black-box secret sharing schemes, with obvious modifica-
tion to the definition above.

Proposition 4.8 The black-bozx secret sharing scheme from Theorem 4.2, as well as its
modifications from Section 4.6.2, satisfy the share-completion property.

Proof. The proposition follows from the fact that the A(w)-weak secret sharing schemes
implied by Proposition 4.6 satisfy the share-completion property: Define s} = A(w) - s;
and note that any ¢+ 1 elements s} allow to reconstruct A(w)?- s, while similar arguments
as in the proof of Proposition 4.6 imply that ¢ shares s; together with the secret s allow
to compute s} for any j. O

4.7.2 TUniformity

Another additional property a secret sharing scheme may have, is uniformity. By this we
mean that for all sets A C {1,...,n} with |A| = ¢, the shares {s;};c4 are distributed
uniformly at random. This property is not satisfied by our schemes. However, we show
how to achieve some sort of uniformity if an upper bound on the exponent of the group
is known. This is in particular the case when an upper bound on the size of the group
is known. We note that the black-box secret sharing scheme from [DF94] has the share-
completion as well as the uniformity property.

Let A be an arbitrary integral extension of Z. For threshold parameters 0 < ¢t < n — 1,
consider the A(w)-weak secret sharing scheme over A resulting from Proposition 4.6,
which in particular is a d(w)-weak secret sharing scheme over A and hence gives rise to a
d(w)-weak black-bozx secret sharing scheme by Remark 4.6.

Lemma 4.8 The considered 6(w)-weak black-boz secret sharing scheme satisfies the uni-
formity property when applied to a group G whose exponent is co-prime with §(w).

Proof. Note that for any Abelian group G, the exponent of A ®7 G equals the exponent of
G, and the coordinate vector of a random element of A ®7 G consists of random elements
of G. Therefore, it suffices to show that the A(w)-weak secret sharing scheme over A
satisfies the uniformity property when applied to a A-module G whose exponent is co-prime
with §(w). Write M = (A, M, 1, n) for the considered A(w)-weak secret sharing scheme.
Recall that M € A"+, Let A C {1,...,n} be of size |A| = t. Consider the square
matrix obtained by adding the target vector € of M as new row to the matrix M 4. This
matrix is invertible modulo the exponent of G: by construction, its determinant divides

4.7. Simulatability and Application to Threshold Crypto 59

Aw) which is co-prime with (s exponent by assumption. It follows that for any secret
s € G’ there exists a one-to-one correspondence between the shares s, = M4b € Gt and
the randomly chosen vector b € G with first entry being s. Therefore, s 4 is distributed
uniformly at random over Gt. O

It follows that, for any positive integer B, the considered d(w)-weak black-box secret
sharing scheme gives rise to a 6§ (w) B+ -weak black-box secret sharing scheme which satisfies
the uniformity property when applied to a group G whose exponent is upper bounded
by 2B: to share s € G simply share d(w)? - s over the subgroup §(w)? - G using the
0(w)-weak black-box secret sharing scheme. By the restriction on G, it is guaranteed that
the exponent of §(w)? - G is co-prime with §(w). Note that if additional information on
G’s exponent is known like the factors in common with §(w) (see e.g. Section 4.7.3), then
it is not necessary to use the full generality of this construction.

Let now the integral extension A as well as @ = (0,1,...,n) and 8 = (0,81,...,0n)
be as guaranteed by Proposition 4.7, and consider the corresponding §(a)B+!-weak and
§(B)B*1-weak black-box secret sharing schemes which satisfy the uniformity property
when applied to a group G whose exponent is upper bounded by 28. It follows that
sharing a secret simultaneously using the J(a)®*!-weak and the §(8)5+!-weak black-box
secret sharing scheme results in a black-box secret sharing scheme such that applied to a
group G whose exponent is upper bounded by 28 it satisfies uniformity over §(c)? - G for
the shares resulting from the §(a)®*!-weak and uniformity over §(8)Z - G for the shares
resulting from the J(a)B*!-weak black-box secret sharing scheme.

4.7.3 Application: Threshold RSA

We show the potential usefulness of our black-box secret sharing scheme for threshold
cryptography by indicating how it can be used to construct a secure threshold RSA signa-
ture (or encryption) scheme. In comparison with Shoup’s RSA signature scheme [Sho00],
it is less efficient (in terms of the share size and complexity of the signature generation),
however it is less tailored to the RSA setting and may very well be applicable in a sim-
ilar manner to new cryptographic schemes. Note that the secret sharing scheme used
in [Sho00] to share the secret RSA exponent is not black-box in that correctness and pri-
vacy are only guaranteed under specific assumptions, which are satisfied in the considered
RSA setting. Furthermore, our threshold RSA signature scheme allows an arbitrary public
RSA exponent e, in contrast to Shoup’s scheme which requires e to be a prime larger than
n, the number of signing servers. Therefore, since signatures are typically much more often
verified than generated, it might in some cases even be advantageous from a complexity
point of view to use our approach which allows a small exponent, say e = 3.

The threshold RSA signature scheme based on our black-box secret sharing scheme is
very similar to Shoup’s scheme. In the following, we assume the reader to be familiar
with the latter. The difference is that to share the secret exponent d and to reconstruct
a signature from the signature shares, we use our black-box secret sharing scheme, with
the above modifications in order to achieve uniformity. Note that restricting the RSA

60 Chapter 4. Optimal Black-Box Threshold Secret Sharing

modulus N to the product of two strong primes as in [Sho00], the exponent of Z) and
() share the only common factor 2 and thus the exponent of 2 - Z,y) and J(ax) are
co-prime, whereas the exponent of LNy and d(B) are co-prime per se. Hence, we do not
have to incorporate the full construction from the previous section to achieve uniformity.
Also note the following technical issue. The shares of the secret exponent d are elements
of A®zZ,(ny (rather than of Z,(y)), where A = Z[X]/(f(X)) is constructed according to
the proof of Proposition 4.7. Therefore, we need to be able to compute a signature share
“z" for z € Zy (the hash of a message to be signed) and 7 € A®zZ,(n) (a share). This is
done using the fact that z € Z%; can be identified with 1® z € A®z Z}, and that A ®z Z}
is a module (not only over A but also) over A ®z Zy(y): the number-multiplication is
given by “multiplication in the first and exponentiation in the second coordinate”. Hence,
writing r = 1®rg +w® 71 + -+ + w™ ' @ rpy_1, where w = X (the residue class of X
modulo f(X)) and m = [A:Z] = deg f(X), “z"” is given by

r-(1®z) = 1@z +wz™ +---+w™ @z € AQyZYy

Finally, in order to recognize incorrect signature shares, the signing servers can do random-
oracle based non-interactive zero-knowledge proofs of the signature share’s correctness,
similar to [Sho00].

The security proof is also very similar to the proof given in [Sho00]. The shares of the
dishonest signing servers can be simulated using the uniformity property, and, given a
signature on a message, the complete set of signature shares can be computed using the
share-completion property. Finally, the proofs of the correctness of the signature shares
can be simulated by having control over the random oracle.

4.8 An Example Implementation

So far we were primarily interested in the asymptotically optimal result from Theorem 4.2.
Several choices in its proof have been made to simplify the mathematical exposition, while
suppressing computational aspects. There are a number of possible practical implementa-
tions of black-box secret sharing based on our result. In this section we show one possibility
and analyze its complexity. We summarize the results in

Proposition 4.9 There exists an implementation for the optimal black-box secret shar-
ing scheme with the following complexity bounds. Computing the shares uses O(n3 log? n)
group operations and no bit operations, and the reconstruction of the secret uses O(n> log? n)
group operations and O(n* log® n) bit operations.

Let us compare these complexity bounds with the bounds proven in [DF94] for their
scheme, which is not optimal in terms of the expansion factor.® Two possible implementa-

5For this comparison, we assume that ¢ = ©(n). Furthermore, note that in [DF94] the work of the
reconstruction is divided up among the players (shareholders), and the complexity is given by the number
of operations per player, while we understand by the complexity of the reconstruction the total number of
operations, since dividing up the work of the reconstruction only makes sense in a restricted model where
the players know in advance which shares are available.

4.8. An Ezample Implementation 61

tions are presented in [DF94]. The first one (Corollary 6.2) takes O(n®) group operations
to compute the shares and O(n*) group operations to reconstruct the secret (and no bit
operations at all). The second one (Corollary 6.3) takes O(n*logn) group and O(n” log? n)
bit operations to compute the shares and O(n? logn) group and O(n® log? n) bit operations
to reconstruct the secret.

Before we present the implementation that meets the claimed complexity bounds, we
analyze below the size of the involved numbers and the complexity of some elementary
operations.

For the rest of the section, let A = Z[X]/(f(X)) and B = (Bo,B1,---,06n), Bo = 0, be as
guaranteed by (the proof of) Proposition 4.7, and write m = [A:Z] = [log(n + 1)]. Note
that for a given parameter n, both f(X) and B can be fixed once and for all.

4.8.1 The Bit Length of the Involved Numbers

Recall from Section 4.5 that any number A € A can be represented by its coordinate vector
X = (Aos -+ s me1)T € Z™ such that A= Xg-1+ A -w+---4+ Ayt -w™ !, where w = X
(the residue class of X modulo f(X)). Equivalently, A can be represented by the integer
polynomial A(X) = Xg-1+ A1 - X + -+ A\p_1 - X™ 1, whose residue class modulo f(X)
equals A. We call A(X) the canonical (polynomial) representation of A\. At some point it
will be convenient to use a non-canonical (polynomial) representation, which is an integer

polynomial of degree m or larger whose residue class modulo f(X) equals A.

Fix some off-the-shelf binary encoding schemes for integers and for integer polynomials.
To binary encode a number A € A, encode some polynomial representation of .

Definition 4.14 Let x be a variable representing either an integer, an integer polynomial,
or a number from A. We write £(x) for the length of the binary encoding of x, and we call
it the bit length of x.

The ambiguity of £()\) for A € A caused by the ambiguity of the representation is resolved
at each case by either specifying the considered representation or otherwise taking the
canonical representation.

Lemma 4.9 The polynomial f(X) € Z[X] and the numbers B1,...,B, € A can be chosen
such that £(f(X)) = O(nlogn) and £(B;) = O(nlogn) fori=1,...,n.

Proof. By the constructive method from the proof of Theorem 4.2, f(X) € Z[X] can
be chosen such that each of its [log(n + 1)] coefficients has bit length smaller than
log(I1,cm, p)- By the Prime Number Theorem, this is O(n). Thus the length of an
encoding of f(X), which is essentially the sum of the bit lengths of the coefficients, is
£(f(X)) = O(nlogn).

If f(X) is chosen to be irreducible modulo every prime p € II,, then a simple possible
choice for the B;’s, respectively their canonical polynomial representations, is to select n

62 Chapter 4. Optimal Black-Box Threshold Secret Sharing

distinct, non-zero integer polynomials §;(X) of degree smaller than m, such that each of
the coefficients is either 0 or 1. For instance, £;(X) can point to ¢ by basing it on the
binary representation of the integer i. In this case, £(8;) = O(logn).

In general, the (3;(X)’s can be chosen as follows. For each p € II,, choose n distinct
non-zero polynomials ﬁy’) (X),... ,ﬂ,(lp) (X) € F,[X] of degree smaller than r,, where 7,
is defined as in the proof of Proposition 4.7. This is possible by the choice of f(X).
Using the Chinese Remainder Theorem and an arbitrary lift, compute integer polynomials
B1(X),...,Bn(X) of degree smaller than deg(f) such that £;(X) = ﬁz-(p) (X) mod p, for

i =1,...,n and for all p € II,,. Similar to the encoding of the polynomial f(X), this
results in an encoding with bit length £(5;) = O(nlogn). O

Lemma 4.10 Consider B = B; — Bj € A for some 0 < j < i < n. Then, there exist
(degree-O(log n) representations of) u,v € A with u- B +v - (n!)? = 1 such that both £(u)
and £(v) are upper bounded by O(nlog?n). Furthermore, u and v can be computed using
O(n?log®n) bit operations.

Proof. Recall that 3 and (n!)? are co-prime. It follows that there exist u(X), w(X) € Z[X]
of degree at most m such that

u(X) - B(X) +w(X)- f(X) = 1 (mod (n!)?),

where B (X) is the canonical polynomial representation of B . They can be computed for
instance by solving a system of linear equations modulo (n!)2.” This requires O(n? log® n)
bit operations, and the coefficients can be chosen to have bit length O(nlogn). Note that
1 —u(X)-B(X) —w(X) - f(X) is a multiple of (n!)2, and hence

1
—|
¢
is an integer polynomial. Its degree is at most 2m, and its coefficients have bit length
O(nlogn). By construction,

w(X) - B(X) +v(X)-(n)? = 1 (mod f(X)),
and £(u(X)) and £(v(X)) are upper bounded by O(nlog?n). This proves the claim. O

v(X) = —u(X) - B(X) — w(X) - (X))

4.8.2 The Complexity of the Number-Multiplication

Let G be an arbitrary finite Abelian group, and let A®z G be its extension over A. Similar
to the representation of numbers in A, an element g € A ®7 G can be represented by its
coordinate-vector § = (go, ..., gm_1) € G™ such that g = 1Qgo+w®gi+---+uw™ 1 ®gy, 1
for w =X € A.

"Solving a I x I linear equation system with entries modulo a k-bit integer using Gauss elimination
requires O(I*k?) bit operations. Another possibility is to apply the extended Euclidean algorithm modulo
all prime factors of (n!)?, lift the solution to solutions modulo the prime powers and combine them to a
solution modulo (n!)? using Chinese Remainder Theorem. This approach might be slightly more efficient.

4.8. An Ezample Implementation 63

Lemma 4.11 Let u be an integer. Let A be a number from A, represented by a polyno-
mial of degree r = O(logn). Multiplying u with an element of G requires O(€(p)) group
operations (i.e., addition and subtraction) and no bit operations. And multiplying A with
an element of A ®z G requires O(£()\) logn + nlog®n) group operations in G and no bit
operations.

Proof. The first claim is obvious, using the standard double-and-add technique based on
the binary representation of p.

Concerning the second claim, write f(X) = fo + -+ + fm_1 - X™ ! + X™. Note that for
9=10gp+w®g + - +w" ' ®gn1€AR2G

w-g = wG+ - +W"®gn-1 = WG+ +w" ®gm-1— f(w) " g1
= 1®(—fo gm-1) +w® (90— fi - gm-1)+ -+ w" " @ (gm—-2 — frm—1" Gm—1)

It follows that computing (the representation of) A - g from (the representations of) A and
g requires O(£(A) logn + rnlogn) group and no bit operations using Horner’s rule based
on \’s polynomial representation A\(X) = Ag-14+ A1 - X +--- 4+ A - X7, i.e., computing
A-gas

Ag = gtCOri-gtOreg)-w-) w

4.8.3 The Implementation and Its Analysis

Now we are equipped to present an implementation of the optimal black-box secret sharing
scheme and show that it meets the complexity bounds claimed in Proposition 4.9. As
basis, we use the scheme guaranteed by (the proof of) Theorem 4.2 in combination with
the modifications given by Corollaries 4.5 and 4.7.

Let G be an arbitrary finite Abelian group, and write & for its extension A ®7 G over A.
The sharing phase is rather straightforward:

SHARING PHASE

To share a secret s € G, choose g1,...,9: € Gand §1,...,0: € G at random,
and compute

s; = nles+i-g+--+it-geq
and

A

4 = PrBuns+Pi-in+ - +pl-GeC
for i = 1,...,n, where in the latter s € G is identified with 1 ® s € G.

By the observations in the previous section, using Horner’s rule, and computing 81 -+ - 8, s
(and similarly n!-s) as B1-(B2- (--- (B -s)--)), this requires O(n?log? n) group operations

64 Chapter 4. Optimal Black-Box Threshold Secret Sharing

and no bit operations. In the remainder, we show how to reconstruct a shared secret with
complexities as claimed in Proposition 4.9.

First, compute (n!)%-s € G and A(B) - s € G from, say, the first ¢ + 1 shares. Computing
the latter in the obvious way as

t+1 t+1 ,Bl
AB)-s = Z(H(ﬂi—ﬁj)-ﬂﬁl_ﬁk-§k>

k=1 \1<j<i<n 1=1
I#£k

t+1 t+1
= % H(ﬁi—ﬂj)'z< 11 (5i_/8j)'H,8l'§k)

1<j<i<n k=1 \ 1<j<i<t+1 1=1
i>t41 1,57k l#k
requires O(n*log?n) group operations, assuming that ¢ = O(n). Namely, every 3 has
to be multiplied with the O(n?) factors 8; — 8; where 1 < j < i < t+ 1 and 4,5 # k.
Note that it is well defined (and straightforward to compute) in what cases the sign in the
above expression changes, but for simplicity we do not make this explicit.

We show how to compute A(B)-s using O(n?log® n) group operations. For that, we define
74 € G for any set AC {1,...,t+ 1} by

t4+1
Pa o=y (11 (ﬂi—ﬂj)'Hﬁl'ék)

keA \ 1<j<i<t+1 1=1

i,jFk 1#k

jorjin A

Note that 7{; ;1) coincides with the sum in the second expression for A(B) - s above.
Furthermore, if A = A’UA" for two disjoint A’, A”, then 74 can be computed by multiply-
ing 74 with at most 2|A”|n and 74~ with at most 2|A’|n appropriate factors §; — §; and
adding the two results. It follows that 7(; ;1) can be computed inductively, starting
with 7(13,...,7(;41) and always combining pairs of #’s. This requires [log(t + 1)] steps.
In the k-th step, there are at most 2(¢ + 1)/2¥~! elements #4 that have to be multiplied
with at most 2¢n factors §; — B;j. In total this results in O(n? log® n) group operations.

A(B) - s can then be computed from #¢; ;.13 by another O(n?log? n) group operations.
Second, compute s from (n!)2-s and A(B)- s as follows by inductively removing all factors
of A(B) from A(B)-s. To simplify notation, write I = n(n+1)/2, and write 1, ..., for
an arbitrarily ordered sequence consisting of all differences 8; —8; € A with 0 < j <14 <,
such that A(B) = HBZ Also, write s, = (n!)? - s € G, and write Bk = By --- B and
§,§ =Bk .se G for k=0,...,l. Note that §L9 = s and §£, = A(B) - s. First, pre-compute
the list () - s,,..., B0~ . s,. This requires O(n?log?n) group operations. Then, for k
from [down to 0, compute ug, vy € A such that

uk-gk—f—vk-(n!)Q =1

~k—1 - . ke
and compute 8~ inductively from §; as

§§_1 = u- §§ + o - (BEY L g)

4.9. Concluding Remarks 65

Note that the right hand side equals wuy - B - BED s + v Bk-1) . (n!)? - s, which
indeed coincides with 8(:~1) . s by the choice of u; and vg. All in all, by the observations
in the previous section, this requires O(n®log3n) group operations and O(n*log®n) bit
operations.

4.9 Concluding Remarks

4.9.1 Black-Box Secret Sharing for Non-Abelian Groups

We briefly address the problem of black-box secret sharing for non-Abelian groups. For a
threshold access structure with threshold ¢ = n —1, there exists a simple solution: to share
s € G the dealer chooses the first n — 1 shares s1, ..., $,—1 randomly from G and computes
the last share s, as s, = —(s1 + -+ + Sp—1) + 8. In combination with the technique of
Tto et al. [ISN8T7], this allows to construct a black-box secret sharing scheme (for arbitrary
finite groups) for any access structure. However, this construction leads to schemes that
are inefficient—in general, but in particular in the important threshold-case: if ¢ is linear
in n then the expansion factor of the scheme is exponential in n.

Threshold black-box secret sharing schemes (for arbitrary groups) with polynomial expan-
sion factor can be constructed by combining the above “sum-sharing” with the technique
of Benaloh-Leichter [BL88] and the classical result of complexity theory that all mono-
tone threshold functions are representable by poly-size monotone Boolean formulas. An
alternative solution is given in [DF99].

4.9.2 Open Problems

One open problem is that of further improving the computational complexity of the sharing
and the reconstruction phase, by finding a better implementation and/or by finding a way
to construct a polynomial f(X) € Z[X], as guaranteed by Proposition 4.7, with coefficients
of size strictly less than O(n), for instance of size O(y/n). Alternatively, one might be able
to prove a lower bound on the size of the coefficients of f(X), showing that the constructive
method from the proof of Theorem 4.2 is (asymptotically) optimal.

Recall that our black-box secret sharing scheme does not have full uniformity, though
“some sort of uniformity” can be incorporated if an upper bound on the size of the group
is known. It would definitely be nice to have an optimal black-box secret sharing scheme
with full uniformity (as well as the share-completion property).

Finally, a line of research could be in the construction of non-threshold black-box secret
sharing schemes. Very vaguely speaking, the main problem in trying to adopt the tech-
niques used here to general-access-structure schemes is that the A-value, appropriately
defined as smallest common multiple of sub-determinants of the span program matrix,
seems in general to be exponential in its bit length. This even holds for access struc-
tures that are related to threshold access structures, like the multi-level access structure
proposed in [Sim88] and studied in [Bri89].

66

Chapter 4. Optimal Black-Box Threshold Secret Sharing

Chapter 5

A Framework for Linear VSS and Distributed
Commitments

5.1 Introduction

A man can’t be too careful in the choice of his enemies. — Oscar Wilde

Secret sharing schemes, as studied in the previous two chapters, guarantee that the shared
secret can be correctly reconstructed even if some of the n shares are missing. Its stronger
version, verifiable secret sharing (VSS), introduced in [CGMAS85], guarantees the correct
reconstruction of the secret even if some shares are incorrect, and even if the dealer tries
to distribute incorrect shares. Informally, the security of a VSS scheme requires that after
the distribution of the shares, which may now be an interactive protocol among the dealer
and the players, there exists a unique secret, the dealer’s secret in case of an honest dealer,
which can be reconstructed by the players, even if some players hand in incorrect shares.
If the (efficient) reconstruction of the secret requires the cooperation of the dealer, then
such a scheme is called a distributed commitment (DC) scheme.

VSS is a fundamental cryptographic primitive, and its applications range from secure data
storage over threshold cryptography to multi-party computation (see e.g. Section 3.5.4). A
DC achieves the same functionality as a cryptographic commitment (see e.g. Section 7.2.2):
having shared a secret, the dealer is committed to it in that he can only refuse to help
to reconstruct it, but he cannot achieve that a different secret is reconstructed. However,
in contrast to its cryptographic counterpart, a distributed commitment can be perfectly
secure, both with respect to privacy and correctness.

The goal of this chapter is a unified treatment of perfectly secure linear VSS and DC
schemes. We present a very natural and general sharing protocol which converts an arbi-
trary given linear secret sharing scheme into a DC (or VSS) scheme, provided of course that
this is possible at all, by enforcing pairwise consistency among the shares of the (honest)
players (Section 5.3). Namely, by pairwise checking, complaining and accusing, it ensures
that pairwise linear dependencies among the shares that should hold do hold. This seems
to be not only a very natural but the only possible approach for the construction of per-

67

68 Chapter 5. A Framework for Linear VSS and Distributed Commitments

fectly secure (linear) DC and VSS schemes, and indeed, all known schemes can be seen as
concrete instances of this general approach (e.g. [BGWS88, CDM00, GTIKR01, Mau03]).

Then we state the condition under which such a scheme is a secure DC (or VSS) scheme.
This characterization is in terms of pure linear algebra, depending only on the parameters
of the underlying secret sharing scheme and of the sharing protocol.

As a consequence, the security of all known schemes (and possibly even all future ones)
follow as corollaries whose proofs are linear-algebra arguments, in contrast to some hybrid
arguments used in the literature. This is demonstrated for two schemes, for the CDM DC
scheme of [CDMO00] and for the classical BGW VSS scheme of [BGW88]. We show how
the security of the CDM DC scheme can be proven by a simple linear-algebra argument
(Section 5.4). For the BGW VSS scheme, we show that some of the checks between players
are superfluous, i.e., the scheme is not optimal (Section 5.5). This also shows that arguing
about the security of such schemes becomes conceptually simpler.

Finally, our approach, establishing the minimal conditions for security, may lead to the de-
sign of ad-hoc VSS or DC schemes for general adversary structures which are more efficient
than the schemes resulting from generic constructions as for instance that of [CDMO0O].

The material in this chapter is based on [FM02]. However, in order to synchronize with
the other chapters, we do not consider a mized adversary here (but merely mention it
in Section 5.6.1), in contrast to [FM02]. On the other hand, we generalize the results
of [FMO02] by not restricting to schemes over fields.

5.2 Preliminaries

5.2.1 Model

Throughout this chapter, we assume a communication network among a dealer and n
players Pi,...,P, as described in Section 2.2. We assume a general (not necessarily
threshold) adversary that is adaptive and rushing. Furthermore, he may be computation-
ally unbounded, and we allow no non-zero failure probability. The security of the protocols
will require the adversary to be Q3.

5.2.2 Definition of VSS and DC

Let n be a positive integer, and let A be an adversary structure on {1,...,n}. We recall
the definition of a perfectly secure VSS and DC scheme.

Definition 5.1 A verifiable secret sharing (VSS) scheme is a pair of protocols (phases),
the sharing phase, where the dealer shares a secret s, and the reconstruction phase, where
the players try to reconstruct s. It is called perfectly A-secure if the following two properties
hold (with probability one), even if a computationally unbounded adversary corrupts the
players of a set A € A:

5.2. Preliminaries 69

e Privacy: If the dealer remains honest, then the adversary gains no information about
the secret s during the sharing phase.

» Correctness: After the secret is shared, there erists a unique value s’ that can be
reconstructed by the players, and, in case the dealer remains honest during the sharing
phase, s' is equal to the shared secret s.

If the (efficient) reconstruction of the secret requires the cooperation of the dealer, then
such a scheme is called a perfectly A-secure distributed commitment (DC) scheme, and
the sharing and reconstruction phases are also called committing phase and opening phase,
respectively.

In a DC scheme, a corrupted dealer can prevent the (efficient) reconstruction by refusing
to cooperate correctly, but he cannot achieve that a different secret is reconstructed, not
even with the help of the corrupted players. Note that if one would define a default
value for the case the dealer refuses to reconstruct, then a corrupted dealer would not be
committed because he could open a sharing in two different ways: as the real or as the
default value.

We call the space from which the secret s is sampled the domain of the VSS (or DC) scheme.
In case where it is a group G, the VSS (or DC) is called linear if from VSS (respectively
DC) sharings of two secrets s and s’, the players can non-interactively compute a sharing
of s + . This implies in particularly that they can compute a sharing of a + s for any
publicly known ¢ € G. In case where the domain is a ring R, it is convenient to additionally
required that the players can compute a sharing of a - s for any publicly known a € R.

5.2.3 Notation

Let A be a commutative ring with 1. Let M = (A, M,%,n) be a linear secret sharing
scheme over A for an access structure I" on {1,...,n}. For an arbitrary vector x € A,
supp(x) denotes the set

supp(x) = {i|x; #0} C {1,...,n}

For E C A? and A C {1,...,n}, E|4 denotes the subset E|4 = {y € E | supp(y) C A}.
As usual in linear algebra, for E as above, span(E) C A% denotes the subspace consisting
of all A-linear combinations of vectors in E, and we write x L E to denote that (x,y) =0
for all y € E, where (x,y) denotes the standard in-product of x and y, and where x may
be in A or in G¢ for an arbitrary A-module G.

In this chapter, it will be convenient to change the notation and terminology introduced
in Definition 3.3 (and 4.3) slightly. Namely, we define a reconstruction vector for a set
A €T to be a vector A € A% with supp(A) C A such that ATs = s (rather then A € A%
such that A”s4 = s). Furthermore, we write A”'s as in-product (},s).

70 Chapter 5. A Framework for Linear VSS and Distributed Commitments

5.3 VSS and DC Based on Secret Sharing and Checking

For this section, let A be a commutative ring with 1, and let G be a finite A-module.
Furthermore, let M be a linear secret sharing scheme over A for an access structure T,
and let A =T be the corresponding adversary structure. We write # for the collection of
sets H of the form H = {1,...,n} \ A where A € A, i.e., H is the dual access H = I'*.
The intuition behind H is that if the adversary is restricted to corrupt the players of a set
A € A then the players of a set H € H are guaranteed to remain honest.

5.3.1 Consistency

It is rather well known (at least for the threshold case) and straightforward to verify that
if Ais Q3 (respectively ¢ < n/3 in case A = Ay,,), then a sharing s € G whose restriction
sy to some set H € H is guaranteed to be a correct sharing of a secret s € G uniquely
defines s, in the sense that quantifying over all H' € H, sy cannot be a correct sharing
of a secret s’ # s. All currently known VSS (and DC) schemes rely on this observation.
We show below that in fact a seemingly weaker condition than correctness of the shares
in H suffices for the uniqueness of s.

By definition, for any set A € T there exists at least one reconstruction vector A € A%
for A. Let R C A% be an arbitrary set consisting of reconstruction vectors (for possibly
different A’s).

Definition 5.2 We call R complete if for every A € T there exists a reconstruction vector
A for A that is contained in R.

Definition 5.3 Let A € T and s € G (not necessarily of the form s = Mb). We call s
a consistent sharing for A with respect to R if (A, 8) = (N, s) for all \, N € R|a, i.e., if

s L (A=XN|ANeR|4).

We also say that s is a consistent sharing of s (for A), where s is given by s = (\,s) for
any A € R|a, or that the s;’s for i € A, are consistent shares of s.

Remark 5.1 Obviously, correct shares are always consistent (with respect to any set R of
reconstruction vectors). On the other hand, if A is a field, then it is easy to see that shares
which are consistent with respect to the set of all reconstruction vectors must be correct.

Lemma 5.1 Let R be a complete set of reconstruction vectors. The following holds if and
only if A is Q. Quantifying over all H € H, an arbitrary vector s € G% is a consistent
sharing for H (with respect to R) of at most one s € G.

Remark 5.2 Defining consistency in an appropriate way, Lemma 5.1 also holds for non-
linear secret sharing schemes, as shown in [FM02].

5.8. VS8S and DC Based on Secret Sharing and Checking 71

Proof. As can easily be seen, A is Q2 if and only if the intersection H N H' of any two sets
H, H' € H is contained in I'. The latter, however, is equivalent to the uniqueness of s: Let
H,H' € H. If HN H' € T then there exists a reconstruction vector A € A% for H N H’,
and hence if s is a consistent sharing of s € G for H and simultaneously of s’ € G for H',
then s = (X, s) = s’. On the other hand, if H N H' ¢ T then it follows from privacy that
one can construct s € G? in such away that sz is a correct sharing of some secret s while
sy is a correct sharing of some secret s’ # s. O

5.3.2 Pairwise Consistency

According to the above, if A is @3, and if by some means it is checked, as part of the
sharing procedure, that the dealer distributes a consistent sharing s for the honest players
(with respect to some complete set R of reconstruction vectors), then no matter what are
the shares of the corrupted players, there is only one secret s that can be “explained” by s.
However, it seems to be impossible to directly check this kind of consistency, i.e. to verify
whether (A, s) = (X', s) for two different reconstruction vectors A and X', without violating
privacy. The only kind of consistency that can be checked without violating privacy is
pairwise consistency, i.e. whether (some) pairwise A-linear dependences (7y,s) = 0 with
~ € A% and supp(y) = {i,j} that should hold indeed do hold; namely by comparing
in private the respective contributions (-y;,s;) and (v,,s;) (which, up to the sign, are
supposed to be equal) of the two involved players P; and P;. In case of an inconsistency,
the players complain and the dispute is resolved with the help of the dealer, in such a way
that finally the shares of all honest players are guaranteed to be pairwise consistent and
privacy is not violated. This is described in full detail in the protocol in the next section.
Below, a simple linear-algebra condition is given that is sufficient (and also necessary)
in order for the pairwise consistency to imply consistency with respect to a given set of
reconstruction vectors.

Counsider the set
Checks(M) = {v € kerMT | |supp(v)| < 2} C A¢

of all possible (pairwise) checking vectors: for any correct sharing s = Mb of a secret
s € G, we have (v,s) = (v, Mb) = (MT~,b) = (0,b) = 0 for every v € Checks(M).
And let C be a subset of Checks(M).

Definition 5.4 Lets € G¢ (not necessarily of the form s = Mb). We say that the share
s; is pairwise consistent with a share s; (with respect to C) if (v,s) = 0 for all v € Cly; ;-
For A C{1,...,n}, we call s pairwise consistent for A (with respect to C) if (y,s) =0 for
all v € Cla, i-e., if

s L C|A.

The following lemma is now trivial.

72 Chapter 5. A Framework for Linear VSS and Distributed Commitments

Lemma 5.2 Let A € I'. Then, a pairwise consistent sharing for A with respect to C is
guaranteed to be a consistent sharing for A with respect to some given set R of reconstruc-
tion vectors if and only if

IA=XN AN eR|a} C span(Cla).

5.3.3 Achieving Secure VSS and DC

For an arbitrary but fixed subset C € Checks(M), the following sharing protocol enforces
pairwise consistency with respect to the checking vectors v € C among the players that
remain honest during the execution, without revealing any information about the shared
secret. It is similar to (and in fact generalizes) the sharing phase of the BGW VSS
scheme [BGWS8], though the concrete choice of the protocol is somewhat arbitrary, in
that it can be modified in different ways without losing its functionality and without
nullifying the outcoming results. For instance, techniques from [GIKRO1] can be applied
to improve the round complexity (at the cost of an increased communication complexity),
and some linear secret sharing schemes M allow “early stopping”.

SHARING (or COMMITTING) PHASE

1. To share (respectively commit to) a secret s € G, the dealer chooses a
random b = (by,be,...,b.) € G such that by = s, computes s = Mb
and sends to every player P; the corresponding share s;.

2. For every checking vector v € C, it is checked whether (vy,s) = 0:
If supp(y) = {i¢}, then player P; verifies whether (v;,s;) = 0, and he
broadcasts an “accusation” against the dealer if it does not hold.
If supp(y) = {i,j} with ¢ < j, then player P; sends ¢;; = (;,s;) to P;
who verifies whether c¢;; + (7,,s;) = 0 and broadcasts a “complaint” if
it does not hold. The dealer answers such a complaint by broadcasting
cij = (i, 8i), and if this value does not coincide with P;’s ¢;; respectively
if it does not fulfill ¢;; + (v;,s;) = 0, then player P; respectively P;
broadcasts an “accusation” against the dealer.

3. The following is repeated until there is no further “accusation” or the
dealer is declared faulty (which requires at most n rounds). For every
“accusation” from a player P;, the dealer answers by broadcasting P;’s
share s;, and F; replaces his share by this s;. If this share contradicts
the share of some player Pj, in the sense that (v;,s;) + (7;,8;) # 0 for
some v € C with supp(y) = {7,7}, then P; broadcasts an “accusation”
(if he has not yet done so in an earlier step). If this share s; contradicts
itself, in the sense that (v;,s;) # 0 for some v € C with supp(y) = {i},
or it contradicts a share s; that has already been broadcast, then the
dealer is publicly declared to be faulty.

5.8. VS8S and DC Based on Secret Sharing and Checking 73

Convention. In the above protocol, as well as in all other protocols in this work, we take
it as understood that whenever a player expects to receive a message from another player,
but no message arrives or it is not in the right format, he takes some fixed default value
as the received message.

It is easy to see that if the dealer remains honest, then, on one hand, no matter what the
corrupted players do, nobody learns anything beyond his share, and hence an adversary
corrupting the players of a set A € A learns nothing about the shared secret, and, on the
other hand, the shares of the honest players H = {1,...,n} \ A form a correct sharing of
s as computed by the dealer in step 1: sy = Mygb. Furthermore, in case of a corrupted
dealer, the protocol achieves pairwise consistency for H: s L C|y. Note that this is well
defined even though s 4, the shares of the corrupted players, is not in general.

In combination with Lemma 5.1 and 5.2 this leads to

Theorem 5.1 Let A be a commutative ring with 1. Let M be a secret sharing scheme over
A for an adversary structure A. Write T = A and H = T*. Finally, let C C Checks(M)
be a subset of all possible checking vectors. Then the considered sharing phase together
with the opening phase below forms a perfectly A-secure linear DC scheme with domain
an arbitrary finite A-module if (and only if) A is Q* and if the condition

IAN=XN|A\ XN eR|g} C span(C|lg) for every H € H (*)

holds for some complete set R of reconstruction vectors.

OPENING PHASE

1. The dealer broadcasts the vector b = (by, ba, ..., b.)” used in the sharing
phase, and every player P; broadcasts the share s; he agreed on in the
sharing phase. Let A be the set of i € {1,...,n} with s; # M;b.

2. If A € A then the output is s = b;. Else, the opening is rejected.

Proof of Theorem 5.1. Linearity follows from the linearity of the underlying secret sharing
scheme. Privacy and correctness in case of an honest dealer follow straight from the above
observations. Concerning correctness in case of a corrupted dealer, let H € H collect the
honest players. Furthermore, let b = (by,...,b.)7 € G¢ denote the vector broadcast by
the dealer, and let s € G? consist of the shares s; broadcast by the players, both during
the opening phase. As mentioned above, it is guaranteed by the sharing protocol that
s is pairwise consistent for H (with respect to C). If condition (x) is satisfied, then by
Lemma 5.2 this implies that s is a consistent sharing of some secret s € G for H (with
respect to R). On the other hand, in case the opening phase is not rejected, there exists
H' € H such that sy = My/b. In particular, s is a consistent sharing of b; for H'.
Lemma 5.1 implies that b; = s is guaranteed if (and only if) A is Q3. O

74 Chapter 5. A Framework for Linear VSS and Distributed Commitments

In order to have an efficient reconstruction procedure, we need an additional property:

Proposition 5.1 If additionally

Cligy € span(Clyua UCIGua)

for alli,j and every A € T, then the sharing phase together with the reconstruction phase
below forms a perfectly A-secure linear VSS scheme.

RECONSTRUCTION PHASE

1. Every player P; broadcasts the share s; he agreed on in the sharing
phase. Such a share s; is said to be “good” if it is pairwise consistent
(with respect to the checking vectors in C) with all shares s; except
maybe those belonging to a set A € A.

2. The secret s is reconstructed from the “good” shares using some suitable
reconstruction vector from R.

Proof of Proposition 5.1. 1t is straightforward to verify that correctness holds in case of an
honest dealer. Privacy follows from the privacy of the DC scheme. Concerning correctness
in case of a corrupted dealer, let H € # collect the honest players. Furthermore, let s € G¢
consist of the shares s; broadcast by the players during the reconstruction phase. Recall
that s is pairwise consistent for H and hence the share of any honest player is “good”. Let
s; be a “good” share, i.e., pairwise consistent with all shares belonging to some set H € H.
For A = H N H and an arbitrary j € H, it follows that s L Clgiyua and s L Clua- If
A is @3 then A € T. Using the assumption in the claim, it follows that s L Clgijy- As
j € H is arbitrary, this means that s; is pairwise consistent with all shares from honest
players. Hence, s is pairwise consistent for H U {i}. Inductively, it follows that s is
pairwise consistent for the set H' pointing to all “good” shares. Correctness follows now
using similar arguments as in the proof of Theorem 5.1. O

The following lemma will be helpful in the next section.
Lemma 5.3 Condition (%) from Theorem 5.1 is fulfilled if every pair X, X' € R satisfies

A= € Span(c|supp()\) Usupp()\')) :

Proof. Let H € H be arbitrary but fixed. Then, for A\,\' € R|g C R, we have by
assumption A — A’ € span(C |supp() Usupp(X))’ which is contained in span(C|g). O

5.4. Application I: Proving the Security of the CDM Scheme 75

5.4 Application I: Proving the Security of the CDM Scheme

We now demonstrate the power of Theorem 5.1 and prove the security of the CDM DC
scheme [CDMOO] by proving a pure linear-algebra statement. We have to show that the
condition (*) from Theorem 5.1 holds, or, and that is what we are going to do, that the
condition from Lemma 5.3 holds.

5.4.1 The CDM Scheme

In [CDMOO0], a generic construction was presented to convert any linear secret sharing
scheme over a finite field into a (linear) DC scheme. It is straightforward to generalize
this construction to solid secret sharing schemes over rings:

Let A be a commutative ring with 1. Let M, = (A, M,,1,,n) be a solid secret sharing
scheme over A for an access structure I', on {1,...,n}. For simplicity, we assume that
d(M,) = n and 9,(i) =i for all 4 € {1,...,n}. Write e, = e(M,) and e, = €(M,). The
CDM DC scheme works as follows. Let G be an arbitrary finite A-module. To share (or
commit to) a secret s € G, the dealer chooses a random symmetric matriz B € G®*¢
with s in the upper left corner and sends the share U; = M,;B € G'*® to player P;. Now,
every pair P;, P; of players verifies whether M, - U]-T = M,; - Ul-T and, in case it does not
hold, start complaining and accusing exactly as in the sharing protocol from the above
section.

The rule how to compute the shares U; defines a new solid secret sharing scheme M =
(A, M,,n). To fit into the formal Definition 3.3, the upper triangular part of the matrix
B (which completely determines B) and the matrix U = M,B € G™** have to be written
as vectors in Ge(&©11)/2 and G"e | respectively, using some fixed ordering for the entries.
The entries of M are then determined by the entries of M,. Their positions as well
as the labeling function depend on how exactly the matrices B and U are arranged as
vectors. However, it will be convenient to keep this obviously equivalent “matrix view”,
for instance in showing that M is indeed a solid secret sharing scheme. Note that in
this view, a reconstruction vector A for some set A is seen as a matrix in A"*% and the
inproduct (X, U) is given by the sum of the pairwise products of all corresponding entries
of Aand U.

Lemma 5.4 M as above is a solid secret sharing scheme for the access structure I' = T',.

Proof. By construction of M, the first row of a sharing U = M,B € A™*% of a secret
s € A with respect to M is a sharing of the same secret with respect to M,. It follows
correctness. In particular, if A, € A" is a reconstruction vector for a set A € I', with
respect to M,, then the matrix A = [A,| 0] € A™* is a reconstruction “vector” for A
with respect to M. For privacy, note that by assumption on M,, for every A ¢ I, there
exists k(A) € A% such that s = M,k(A) is a sharing of 1 with s4 = 0. It follows that
U = M,(k(A)x(A)T) is (with respect to M) a sharing of 1 with U4 = 0 (the zero matrix).
O

76 Chapter 5. A Framework for Linear VSS and Distributed Commitments

It can now easily be seen that the [CDMO00] DC scheme is a concrete instance of the class
of schemes described in the previous section. Indeed, it coincides with the sharing protocol
from the previous section for M as above, and for C given by

C = {vW=p’—p"|1<i<j<n}
where p* € A"*% has M, ;j as i-th row and zero-entries otherwise, i.e.,

0
+ i-th row

0

pv =

Note that (y¥,U) = (u¥,U) — (u'*,U) = M,;UT — MinJT =0 for U = M B, and hence
C is a “valid” set of checking vectors. We stress once more that we describe and view the
reconstruction vectors A and the checking vectors v* as matrices.

5.4.2 The Security Proof

As mentioned in the proof of Lemma 5.4, if A, € A™ is a reconstruction vector for a set
A €T, with respect to the original scheme M,, then the matrix A = [A,| 0] € A"*% is a
reconstruction vector/matrix for A with respect to M. Since I' = T',, the set R consisting
of all such A’s is complete. Furthermore, we will show the following linear-algebraic fact.

Lemma 5.5 For every pair A\, \' € R,
A-X € Span(c|supp()\) Usupp(X)) :
The following corollary now follows directly from Theorem 5.1 and Lemma 5.3.

Corollary 5.1 The CDM DC scheme based on a solid secret sharing scheme with adversary
structure structure A is A-secure if and only if A is Q3.

Proof of Lemma 5.5. Let A, = (Ao1,...,)" and A, = (X4,...,AL,)” be reconstruc-
tion vectors with respect to M, (for possibly two different sets from I',), such that
A= [A] 0]and X = [A] 0], both in A"*¢_ are reconstruction vectors from R. We

have Zj)\f,jMoj =)\LT M, =¢,7 =(1,0,...,0) and hence

0 0

S - T, _ (o
J J

5.5. Application II: Reducing the Number of Checks in the BGW Scheme 7

where the non-zero row is at the ¢-th position, and hence A can be written as

0

A= o] = o B S [| = S A
i 0 i J i

Similarly A" = 37,5 Al @t and therefore

A= = Z >‘oz')\<l>j (I""ij - “ji) = Z Aoz'>\I;]"7ij € Spa'n(c|supp()\)Usupp()\’)))

which proves the claim. O

5.5 Application II:
Reducing the Number of Checks in the BGW Scheme

Theorem 5.1 tells us that as long as the set {A—X'|A\, X' € R|g} is contained in span(C|y),
where H € H collects the honest players, the corresponding scheme is secure. By this it
is obvious that if the vectors in C|g are not linearly independent, then C|g contains more
vectors than actually needed. We will now use this simple observation to reduce the
number of checks in the (symmetric version of the) BGW VSS scheme [BGW88].

For simplicity, we restrict to the classical case where A is a finite field. However, in
combination with the threshold span program constructions from Section 4.4.2, the results
of this section can be generalized to commutative rings with 1.

The variation of the scheme of [BGWS88] where a symmetric bivariate polynomial is used
instead of an arbitrary one can be seen as a special case of the CDM scheme, where the
matrix M, is a Vandermonde matrix, i.e., M,; = (1, w;, wZ-Q, .- ,wf) for disjoint and non-zero
wi,--.,w, € A. We have the following fact.

Lemma 5.6 Let B€T;, ={ACP||A| >t} and H D B. Then

span({y” € C|y |i € B or j € B}) = span(C|y).

Similarly, it can be shown using linear algebra that Cy; j3 C span(C|;ua UClj04) for all
1,7 and every A with |A| > ¢ + 1. The following corollary follows now from Theorem 5.1,
showing that (the symmetric version of) the classical VSS scheme of [BGWS8] is not
optimal with respect to the number of required pairwise checks.

Corollary 5.2 The symmetric version of the BGW VSS scheme is Ay, -secure if and only
if n > 3t, even if C is replaced by

C = {(y7ecC|j>t}.

78 Chapter 5. A Framework for Linear VSS and Distributed Commitments

Proof. Let H be the set of honest players, hence |H| > n —t > 2¢. Clearly, the set
B={ie€ H|i>t}isinT and hence C|g = {y” € C|y|i € Borj € B} fulfills
span(C|g) = span(C|g). O

Alternatively, this shows that the classical BGW VSS scheme allows “early stopping”, as
it is also used in the 4-round VSS of [GIKRO1].

The proof of Lemma 5.6 is purely technical and does not give any new insight. Neverthe-
less, for completeness, it is given below. Recall that the checking vectors v% € C (which
are actually matrices) are of the following form: The i-th row is M, j, the j-th row is —M,;,

and all remaining entries are zero, i.e., 'y::j = M,; and ’7j-j = —M,; and ’7? =0 forl #1,j.

Proof of Lemma 5.6. We assume without loss of generality that B = {n —t,...,n}.
Consider an arbitrary but fixed checking vector 407 with ig, jo € H and ig < jo < n —t,
i.e. ig,jo ¢ B (otherwise, nothing needs to be shown). We have to show that % is
contained in span({y*” € C|g |i € B or j € B}. This will be done by the following

Claim: For 1 <i<nandn—-t<I[<mnlet I/li # 0 be such that ;' VliMol = M,;.!

Then, there exists a sequence 6" *~!,..., 6" € span({v% € C|g |i € B or j € B}) such
that forevery n —t—1<i<mn

si— L " ik <i
g quél:iﬂ(’//?’/ljo - VZZOV,]CO)MOl otherwise

Truly, we can set

n
" = N (0 —[°y!) € span({y7 € Clu |i € Q" or j € Q*})
l=n—t

Then for k < n —t — 1 we indeed have 527“1 = ~v’°, namely
snt=1 — Z LYY - . _ Afodo
io = 1 Mot = BMojo = Ty
l
—t—1 ' i0j
o7 = — ZU;OMol = —M,, = 'yj‘;” and
l

S =0 = W itk # oo

while for £k > n — ¢t — 1 we have

n n
n—t—1 _ Jo io — Jjo i0 io Jo
0y = V' M,y +vP M, = —v%(Z V" M) + v (Z v]° M)
l=n—t l=n—t
n n
— io, Jo io, Jo _ io, Jo io, Jjo
= Z (Vv — v)M, = Z (V) — 1) My,
l=n—t I=n—t
£k

! This is well known to exist.

5.6. Concluding Remarks 79

And inductively for i =n—t—1,...,n — 1, given 8’ as demanded, we can set

n
&t = § — Z (o v° — ufoygj’rl)'yzﬂ’l € span({y7 € Cly |i € Q" or j € Q*})
l=i+2

Then, clearly, for ¥ < i+ 1 we have 5?’1 = 5}; = 'yZOjO. Furthermore, we have

n
i+l gt io ,,J0 _ . ,i0,,J0 _ _ ~%0Jo
071 = 0 E:(Vi—i—lyl Vvl)My = 0 = 4%
I=i+2

while for k >4+ 1

n

i+l gt i0 ,J0 io, Jo _ 10,0 io. Jo

0, = 5k—(l/i+11/k — vy Vi+1)Moi+1 = E (2v° = 1%) My,
I—it2
1£k

as required. O

5.6 Concluding Remarks

5.6.1 Mixed Adversaries

In [FMO02] we considered a more general adversary, a so called mized adversary, introduced
in [FHM98, FHM99]. A mixed adversary can make two types of corruptions: active and
passive ones. An active corruption is an ordinary corruption as considered in this work,
and as defined in Section 2.3. A passive corruption is a weaker kind of corruption, in
that the adversary can “only” see all private information of a corrupted player, but the
corrupted player continues to correctly execute his program. In other words, a passive
corruption allows the adversary to eavesdrop a player. A mixed adversary is characterized
by two adversary structures: A and A such that A C A, with the intended meaning that
the adversary can corrupt the players of a set D € A, of which he may corrupt a subset
A C D with A € A actively while the remaining players in D he may corrupt passively.
In the context of a mixed adversary, the following notation is convenient. For adversary
structures A4 and A, we define a new adversary structure A Ll A by

AUA = {AUD|A€ A, D€ A}.

On the other hand, the results in [FM02] are restricted to the case where A is a finite field.
Combining both leads in particular to the following generalizations of Theorem 5.1 and
Corollary 5.1.

Generalized Theorem 5.1 Let A be a commutative ring with 1. Let M be a secret
sharing scheme over A for an adversary structure A. Finally, let C C Checks(M) be

80 Chapter 5. A Framework for Linear VSS and Distributed Commitments

a subset of all possible checking vectors. Then the considered DC scheme is a perfectly
(A, A)-secure DC scheme for an adversary structure A C A if (and only if)

{1,...,n} ¢ AUAUA

and if condition (x) of Theorem 5.1 holds for some complete set R of reconstruction vectors.

To our knowledge, the condition {1,...,n} ¢ AU AU A for VSS to be possible, which
generalizes the Q3 condition, has not been stated previously in the literature, although
the condition for secure MPC computation has been given in [FHM99].

Generalized Corollary 5.1 The CDM DC scheme based on a solid secret sharing scheme
with adversary structure structure A is (A, A)-secure for an adversary structure A C A

if and only if {1,...,n} ¢ AL AUA.

In combination with the MPC techniques from [CDMO00] (respectively Section 3.5) this
allows for efficient MPC protocols, secure against a mixed adversary, with respect to a
much broader class of pairs (A, A) in comparison to [FHM99]. Note that the complexity
of the protocol from [FHM99] is polynomial in the number of subsets contained in A and

A, while our approach leads to a complexity that is polynomial in the span program size
of A.

5.6.2 Open Problems

The main open problem of this chapter is to find linear secret sharing schemes M for Q?
adversary structures (possibly even for a small n) which

1. have enough redundancy among the shares, such that there exists C C Checks(M)
which satisfies condition (%) from Theorem 5.1 for some complete set R of reconstruc-
tion vectors, and which

2. do not come from generic constructions as that of [CDMO00] and therefore have the
potential of being more efficient.

Chapter 6

On the Cost of Reconstructing a Shared Secret

6.1 Introduction

One of the secrets of life is to make stepping stones out of stumbling blocks.

— Jack Penn

In this chapter, we consider VSS schemes that are secure with respect to a threshold
adversary structure A;,. First, we consider a relaxed version where the dealer is guar-
anteed to be honest, which we call honest-dealer V5SS, and we ask the following question.
How much information must be sent in order to reconstruct a shared secret? This question
is interesting only if n/3 < ¢t < n/2 and if the adversary is computationally unbounded,
since otherwise the problem is either "too hard” or ”too easy”: if ¢ > n/2 the prob-
lem clearly cannot be solved, and if ¢ < n/3 or computational security suffices, standard
methods ([BGW88] and [Ped91]) immediately give optimal solution.

Somewhat surprisingly, nothing seems to be known for n/3 <t < n/2, besides the upper
bound that follows from the “secret-sharing-when-the-dealer-is-a-knight” protocol from
Rabin and Ben-Or [RB89]. It is easy to see that for ¢ in this range, one cannot construct
a scheme where the correct secret is always reconstructed. At best one can make a scheme
where every honest player outputs the correct secret or failure, where the latter happens
with probability only 2~%*) where k is a security parameter. For schemes that achieve
this and where the reconstruction is completed in a single round, we show a lower bound
of Q(kn?/(n — 2t)) bits on the amount of information sent in the reconstruction, for
(1+¢€)-n/3<t<mn/2and any € > 0, i.e. essentially all of the range that was previously
open (Section 6.4). This may be seen as an answer to the question “what does it cost
to get the best possible security in a minimal number of rounds?”. No such bound was
known previously, and it holds even for schemes that are not efficient (with respect to
communication and/or private computation), and trivially applies also to ordinary VSS
(we cannot expect to do better in a more adversarial situation). Finally, it meets the upper
bound from the [RB89] protocol for and only for ¢ (close to) maximal, i.e., t = [(n—1)/2].

81

82 Chapter 6. On the Cost of Reconstructing a Shared Secret

For an honest dealer, we use known results on authentication codes to show that the lower
bound is tight up to a constant factor for all ¢ in the considered range (even if we count
the total information sent).

This scheme establishing the upper bound is computationally efficient and can—at least
in principle—be turned into a VSS, since the honest dealer could always be replaced by a
secure multi-party computation using generic methods (e.g. [RB89,CDD™99]). This, how-
ever, is not a satisfactory solution: while reconstruction would be the same complexity as
before, the sharing phase would become extremely inefficient in comparison. In particular,
since multi-party computation uses VSS as a subroutine, the complexity of the resulting
sharing phase is condemned to be a magnitude larger than that of the best VSS.

To close this gap, we present a new VSS protocol where the complexity of the sharing
phase matches that of the previously best known VSS for our scenario [CDD"99], but
where the reconstruction meets our lower bound (Section 6.5). This beats previous VSS
protocols by a factor of at least n.

We show an application of this to multi-party computation with pre-processing, introduced
in [Bea91], where the n players want to compute a function on private inputs (Section 6.6).
In order to do this more efficiently than starting from scratch, the players are allowed to a
pre-processing phase and store some information obtained in this phase before the function
and the inputs become known. The computation phase of our protocol has communication
complexity O(n?k|C|/(n—2t)), where |C| denotes the number of multiplication gates in the
circuit to be computed. This improves the computation phase of earlier similar protocols
[RB89,CDD"99] by a factor of at least n without increasing the complexity of the pre-
processing.

We conclude the chapter as follows (Section 6.7): Using methods from [CDMO00], we show
how to generalize our schemes to provide security against a general Q2 adversary, im-
proving known results by a factor of at least n. And we look at the case where the
reconstruction is allowed to use more than one round of interaction and observe, using
results from [CPS99], that the amount of information sent by the honest dealer can be
brought down to n(n + k) bits, at the expense of a significantly more inefficient recon-
struction phase.

The material in this chapter is based on [CDFO01].

6.2 Model

Throughout this chapter, we consider a communication network among a dealer and n
players Py,..., P, as described in Section 2.2 with a broadcast channel.! The adversary
is considered to be computationally unbounded. We allow some small failure probability,
although we try to minimize the type of failure. We restrict to a threshold adversary with

!Broadcast is necessary for VSS. Indeed, VSS obviously implies broadcast. However, it is well known
that broadcast cannot be (unconditionally secure) implemented using bilateral channels only in case of
t > n/3 corrupted players.

6.3. Single-Round Honest-Dealer VSS 83

threshold ¢ < n/2, though some results carry over to a general Q? adversary (see Sec-
tion 6.7.1). In order to put some light on the role of adaptiveness and rushing, we consider
static and adaptive as well as non-rushing and rushing adversaries. However, all proposed
protocols are secure against an adaptive and rushing adversary.

6.3 Single-Round Honest-Dealer VSS

6.3.1 Definition

We first model the general communication pattern for VSS schemes where the dealer is
guaranteed to be honest and whose reconstruction phase consists of a single round of
communication. We will call such a scheme single-round honest-dealer VSS. Our main
point of interest is the communication complexity of the reconstruction phase of such a
scheme. Consider schemes of the following general form, and assume an adversary who
corrupts up to t of the n players P;, but not the dealer.

SHARING PHASE

Given a secret s, the honest dealer generates shares s; = (k,¥;), 1 =1...n.
Privately he sends s; to player P;.

RECONSTRUCTION PHASE

Each player P; is required to broadcast y;. Locally and by some fixed
(possibly probabilistic) method, each player P; decides on the secret s based
on his private k; and on the broadcast y1,...,¥y, i.e., either outputs a value,
hopefully equal to s, or failure.

It is not difficult to see that in fact we may always and without loss of generality assume
our schemes of interest to be of this form. Indeed, by the assumption that the dealer is
honest, we may assume without loss of generality that the sharing phase only consists
of the dealer sending private information s; to each of the players F;, i.e., any secure
distributed computation carried out by the players in the sharing phase could as well
be carried out by the honest dealer. Similarly, we may assume that in the reconstruction
phase each player P; merely broadcasts a piece of information, y;, that only depends on the
private information s; received from the dealer. Namely, at the cost of at most a constant
factor of increased communication, private channels can be simulated by one-time pads,
the keys of which are distributed by the honest dealer. In fact, it can be assumed that in
general s; = (k;,y;), where y; is required to be broadcast in the reconstruction phase, and
each player P; makes a local (possibly probabilistic) decision on the secret s based on the
broadcast information and his private ;. We will call k; the key and y; the public share
of player F;.

84 Chapter 6. On the Cost of Reconstructing a Shared Secret

For each of the at most ¢ corrupted players P;, the adversary can broadcast a manipu-
lated y;, which may depend arbitrarily on the private information s; = (k;,y;) of those
corrupted players, or broadcast nothing at all in some cases. Note though that for at
least n — t of the y;’s are correct. If additionally the adversary is rushing, he can choose
to “speak last” in the reconstruction phase. This means that in principle any corrupted
shares may additionally depend on the information broadcast by the honest players, in
particular they may depend on the secret s. By contrast, a non-rushing adversary is one
who selects the corrupted shares before the start of the reconstruction phase. Note that
security against non-rushing adversaries makes sense in a communication model enhanced
with a “simultaneous broadcast channel”, i.e., one by means of which all players broadcast
their information at the same time.

We define our notion of security. Assume a computationally unbounded adversary that
corrupts at most ¢ of the n players but not the dealer. Additionally, the adversary can be
static or adaptive, and rushing or non-rushing.

Definition 6.1 A single-round honest-dealer VSS scheme is called (t,n,1 — §)-secure if
the following holds.

e Privacy: The adversary gains no information about the shared secret s as a result of
the sharing phase.

* (1—6)-Correctness: In the reconstruction phase, each honest player outputs either the
correct secret s or failure, where for every player the latter happens with probability
at most 6 < 1, independent of s.

As mentioned earlier, the case ¢t > n/2 is not interesting and the case ¢ < n/3 is completely
understood: zero failure probability and optimally efficient communication can be achieved
by a combination of Shamir’s secret sharing scheme and standard efficient error correction
techniques [BW86, BGWSS].

We stress that our definition of security captures the best one can achieve in this setting.
Negligible error 6™ is achieved by m parallel repetitions. More importantly, it only differs
from perfect security in the sense that there is a (small) probability that some player
does not reconstruct the secret and outputs failure instead. This is unavoidable in the
presence of a (not necessarily rushing) active adversary, as we show in Lemma 6.1 below.
Furthermore, existing honest-dealer VSS schemes like [RB89] (“secret sharing when the
dealer is a knight”) fulfill our security definition without any changes in the required
communication.

A seemingly stronger security definition would require agreement among the honest players
in all cases, i.e., they all recover the correct secret or they all output failure, where the
latter would happen with probability at most §. However, this is impossible to achieve in
a single round reconstruction phase with a rushing adversary, as we show in Lemma 6.2
below.?

’In Section 6.7.2, it is argued that agreement is possible in the presence of a non-rushing adversary.
Agreement can be achieved in all cases by adding one extra round of communication.

6.3. Single-Round Honest-Dealer VSS 85

Note also that the reconstruction procedure in our definition is completely general in that
it does not dictate how the correct secret is recovered by the honest players. The definition
merely states that from all broadcast and from his private information, an honest player
can reconstruct the secret. In particular, in our definition it need not be the case that an
honest player, using his private information, “filters out” false shares and reconstructs the
secret from the “good” ones, as it is the case for known schemes [RB89,CDD199] and the
one we present later.

6.3.2 Two Impossibility Lemmas

Consider a single-round honest-dealer VSS as defined in the previous section.

Lemma 6.1 There exists a static, non-rushing adversary such that with non-zero proba-
bility some honest players output failure in the reconstruction phase.

Proof. Given that ¢t > n/3, let B, Ag, A; be an arbitrary disjoint partition of {1,...,n}
such that |[B| =t and 1 < |Ay|, |A1]| < t. We show a strategy for the adversary that forces
all players in B to output failure with non-zero probability. The adversary corrupts the
players in Ag, selects a random secret § and randomly guesses the shares s; = (K4, y;) held
by the players in B. By the privacy of the scheme and assuming that he guessed the shares
correctly and that s # § (which both happens with non-zero probability), he can sample
random shares §; for the corrupted players, so that these, together with the shares of the
players in B, are consistent with the secret §, and have the same distribution as when sent
by the honest dealer. It is now clear that in the reconstruction phase (assumed that the
adversary guessed the shares correctly and that s # §), every player in B has to output
failure. Indeed, the players in B must definitely not output the incorrect secret 5. On
the other hand, if some player in B outputs the correct secret s (with positive probability),
then by corrupting the players in A; instead of Ay, but otherwise playing the corresponding
game, the adversary creates the same view for the players in B, however with the correct
and the incorrect secrets exchanged, and hence this player would now output the incorrect
secret (with positive probability), which is a contradiction. O

Lemma 6.2 There exists a static, rushing adversary such that with non-zero probability
some honest player recovers the secret in the reconstruction phase, while some other honest
player outputs failure.

Proof. Consider the case t > n/3. Let B, Ay, A1 be an arbitrary disjoint partition of
{1,...,n} such that 1 < |4Ap| < t—1and 1 < |4;] < t. Note that 2 < |B| < t. Let
P; and P; be distinct members of B. We consider the same adversary as before, except
that in the reconstruction phase, the adversary “rushes”, and waits until the players in
B have broadcast their public shares. He then makes a guess for player P;’s private s,
and broadcasts random public shares for the players in Ay, consistent with x; and with

86 Chapter 6. On the Cost of Reconstructing a Shared Secret

the public shares of the players in B and a random secret different from the correct one
(which he knows by now). For similar reasons as before we conclude that player P; does
not reconstruct the secret if the guess for x; was correct. However, in that case player P;
must reconstruct the secret with positive probability: for if not, corrupting Ay and player
P; (note that this amounts to at most ¢ corruptions), the adversary would not have to
guess k; anymore, and hence there would be a strategy that makes at least one honest
player output failure in the reconstruction with probability equal to 1. This contradicts
correctness. O

6.4 Bounds for Single-Round Honest-Dealer VSS

6.4.1 Lower Bound on Reconstruction Complexity

We prove the following lower bound. Note that the standard definitions of entropy, condi-
tional entropy, mutual information and conditional mutual information are used through-
out this section. We refer to [Bla87] for an introduction to information theory.

Theorem 6.1 For any single-round honest-dealer VSS scheme, indezed by a security pa-
rameter k € N, which is (t,n,1 — §)-secure against a rushing adversary, the following
holds. If 6 < 27%K) and n/3- (1 +¢€) < t < n/2 for some constant € > 0, then the total
number of bits broadcast in the reconstruction phase is lower bounded by

Q(kn?/(n — 2t)).

In particular, fort = |(n—1)/2] and fort > q-n with 1/3 < q < 1/2, the total information
broadcast in the reconstruction phase is lower bounded by Q(kn?) and Q(kn), respectively.

Note that it is immaterial whether the adversary is adaptive or not. Note also that
according to this lower bound an arbitrary small linear gap between ¢ and n/2 potentially
allows to reduce the communication complexity of the reconstruction by a factor of n. It
is shown in the next section that this is indeed achievable.

Theorem 6.1 follows immediately from the following proposition and the well known fact
(see e.g. [Bla87,CT91]) that the entropy H(X) of a random variable X is a lower bound on
the expected bit length of any binary encoding of X.

Proposition 6.1 Let the random variables s1 = (K1,Y1),. ..,y = (Kn, Yp) be distributed
according to the shares si,...,S, in the single-round honest-dealer VSS scheme. Then,
for any set of n — 2t public shares Y;,,...,Yi, _,,,

H(Yil T Yin72t) > Q(kn) .

Before going into the proof, consider the lemma below, which states a well known result
from authentication theory, which can be found in various literature starting with [Sim84].

6.4. Bounds for Single-Round Honest-Dealer VSS 87

Let K,M,Y and z be random variables (typically key, message, tag and public information
of an authentication scheme) with joint probability distribution Pyyyz such that M is
independent of K and Z but uniquely defined by Y and z.

Lemma 6.3 Given only z, one can compute Y which is consistent with X and Z, in the
sense that Pxyz(K,Y,Z) > 0, with probability

p, > 2—I(K;Y\Z) .
Also, given Z and Y, one can compute Y which is consistent with K and z and a M # M
with probability

ps > 9—H(K|z)

In the context of authentication theory, ¥ describes an impersonation and Y a substitution
attack, and p, and pg are the corresponding success probabilities.

In the proof of Proposition 6.1, we apply the following corollary, which follows from the
fact that a successful impersonation attack is also a successful substitution attack with
probability at least 1/2, assumed that M is uniformly distributed among a set of cardinality
at least two.

Corollary 6.1 Let M be uniformly distributed among a non-trivial set. Then, given Z,
one can compute Y which is consistent with K and Z and a M # M with probability

Py > 2—I(K;Y\z)—1_

Proof of Proposition 6.1. Let the random variable s represent the secret, uniquely defined
by S1,...,Sp. Since by the privacy of the scheme the public shares v;,...,v; ,, are
independent of s and hence H(Y;,,..., Y, ,,) does not depend on the distribution of s,
we can assume S to be the uniformly distributed. Furthermore, for symmetry reasons, we
can focus on the public shares of the players Piy1,..., P, ;. Finally, we assume that en is
an integer (otherwise we replace it by [en]). Note that en + (n —2¢) < (1 +¢€)n — 2t < t.

Let i € {1,...,en} be arbitrary but fixed, and consider an adversary corrupting the first
1 — 1 players Pi,..., P, as well the n — 2t players P;;1,...,P, . One of the goals
of the adversary could be to substitute the public shares Yii1,...,Y,_; by false shares
Yii1,-.-,Yn—t that are consistent with the public shares Y1, ..., Y; of the first ¢ players and
player P;’s key K; (and maybe even the keys Ki,...,K;_1), but that leads to an incorrect
secret § # S. Indeed, if the adversary succeeds in this attack, from player P;’s point of view,
the n — t public shares Y1,..., Yy, Yei1,. .., Yot could come from honest and the ¢ shares
Y¢42,...,Yy from corrupted players. Hence, P; clearly cannot compute the correct secret
with certainty, and so outputs failure. Therefore, the success probability of this attack is
at most § < 2=%k)_ On the other hand however, according to the above corollary, applied
to K =K;, M =S, Y = (Yt41,---,Yn—¢) and Z = (Ky,...,K;—1,Y1,...,Yy), the success
probability is at least pg > 27 IIiVer1Yn—e[Ki-Ki—1 Y1-Ye)=1 Therefore, we have

I(Ki; Yeqr - Yo gKi - K1 Y1---Yy) > Q(k).

88 Chapter 6. On the Cost of Reconstructing a Shared Secret

This holds for every 7 € {1,...,en}, and hence, using the chain rule for mutual information,
we get

en

I(Kl"'Kt;Yt+1"'Yn—t|Y1"'Yt) — ZI(Ki;Yt—i-l"'Yn—t'Yl"'YtKl"'Kz'—l) > Q(kn)
=1

and therefore H(Yt+1 v Yn—t) > I(Kl et Ky Yegpp e Yn—t‘Yl v Yt) > Q(k'n,) O

Remark 6.1 As S1,...,S; gives no information about s, but Si,...,S¢ Yiq1,--.,Yp—t OD
the other hand uniquely determines S, we also have H(Y;y1---Yp—¢) > H(S).

In Section 6.7.2 we illustrate the power of rushing by giving an example of a concrete
scheme secure against a non-rushing adversary, that beats the lower bound, and sketch a
tight lower bound result. We also briefly discuss the minimal complexity of the sharing
phase of schemes secure against a non-rushing adversary.

6.4.2 Tightness of the Lower Bound

We first describe a very natural, generic construction of a single-round honest-dealer VSS
and then present a particular instantiation that meets the lower bound from the previous
section. Rabin and Ben-Or [RB89] first considered a solution of this type. Their scheme
reaches our bound in the special case of ¢t = [(n — 1)/2]. The scheme below differs from
theirs in the choice of the authentication code (which will be relevant later on) and in the
fact that it optimizes the reconstruction also for non-maximal .

Let a threshold secret sharing scheme be given as well as an authentication scheme, e.g.
based on a family of strongly universal hash functions {h }rex (see e.g. [Sti95]). To share
a secret s, the dealer generates shares si,...,s, according to the secret sharing scheme,
and, for each pair of players P;, P;j, he selects a random authentication key x;; € K which
will be sent to P; who will later use it to verify a share contributed by F;. Then the
dealer computes for each share s; and for each P; the authentication tag y;; = h,w(si)
that should be revealed by F; at reconstruction time to convince P; that FP;’s share s; is
valid. The dealer then simply sends shares, tags and keys privately to the players who own
them. Le., player F; receives the share s;, the tags ;1,--., ¥, and the keys K1, .., Kn;-
To reconstruct, every player first broadcasts his share together with the tags, and then
“filters out” incorrect shares by verifying the authenticity of the received shares using his
keys.

Remark 6.2 The security of this kind of scheme obviously does not rely on the fact that
the shares and tags are broadcast, i.e., that there is agreement on the received values
among the honest players. Therefore, as an alternative to broadcasting s; and y;1, . - -, Yin,
player P; could send s; and y;; to P}, for every P;, using a bilateral (not necessarily secure)
channel. In order to emphasize this ambiguity, we say that P; publishes his share and tags.

6.4. Bounds for Single-Round Honest-Dealer VSS 89

We use Shamir’s secret sharing scheme [Sha79] over a large field K (with “interpolation
points” wy,...,wy,), and the well-known family of hash functions h(, g)(X) = aX + 8
defined over K. While the resulting sharing phase should be clear form the above, we
describe the reconstruction phase in more detail.

RECONSTRUCTION PHASE

First, every player P; publishes his share s; and tags ;1,...,%n- Then,
upon receiving $1,...,S, and yij,...,Yn;, every P; does the following. He
accepts those shares s; with y;; = «;j - s; + (i, and he uses the decoding
algorithm of [BW86] to recover a polynomial f(X) of degree at most ¢ such
that f(w;) = s; for at least n — ¢ accepted shares s;. If the algorithm fails,
or if the number of accepted shares s; with f(a;) # s; is n — 2t or more,
then P; outputs failure, while otherwise s = f(0).

The success probability of a substitution attack of the authentication scheme is 1/|K|. It
follows that the probability of player P; accepting a false share s; from player P; is 1/|K]|.
On the other hand, it is not had to see that as long as P; accepts less than n — 2t false
shares, the correct secret is still uniquely defined by the accepted (correct and incorrect)
shares. Namely, accepting at most n — 2¢ — 1 false shares, P; holds n — ¢ correct shares
leading to the correct secret while any set of shares leading to a false secret has cardinality
at most n—t—1, namely the n—2t—1 false and ¢ correct shares. Furthermore, in this case,
the correct secret can be computed efficiently using the decoding algorithm of [BW86].3
Finally, by comparing all the accepted shares with the reconstructed polynomial, P; makes
sure not to output an incorrect secret in case he has accepted n— 2t or more many incorrect
shares. Namely, if the decoded polynomial is not correct, then at most ¢ of the n—¢ correct
shares lie on the polynomial, and hence at least n — 2¢ of the (correct) shares do not.

Theorem 6.2 For n/3 <t < n/2 and k > Q((n — 2t)logt), there ezists a single-round
honest-dealer VSS scheme, (t,n,1 — 2~ %)) _secure against an (adaptive and rushing)
adversary, with a total communication complezity of O(kn?/(n — 2t)) bits.

In particular, fort = [(n—1)/2| and fort < q-n with 1/3 < q < 1/2, the communication
complezity is O(kn?) and O(kn), respectively.

Note that the restriction on k is reasonable and essentially disappears in the case of
maximal ¢. Furthermore, note that the communication complexity holds regardless of
whether P; broadcasts s; and ;1,..., ¥, or whether he sends s; and y;; to P; using a
bilateral channel, for every P;.

Proof. As argued above, an honest player fails to reconstruct the secret only if he accepts
n — 2t or more of the ¢ incorrect shares. The probability that this happens is upper

3 Alternatively, taking powers of an n-th root of the unit as the interpolation points of the sharing
polynomial in the Shamir scheme, one can take the decoding algorithm used in [BGW83].

90 Chapter 6. On the Cost of Reconstructing a Shared Secret

bounded by

t 1 tn—2t
. < — 9(n—2t)logt—(n—2t)log |K]|
n—2t) K2 = K2 d

while the communication complexity is O(n?log|K|). Hence, choosing the field K in such
a way that Q(k) + (n — 2t) logt < (n — 2t)log |K| < O(k) gives an error probability 2 ¥*)
and a communication complexity of O(kn?/(n — 2t)). O

Remark 6.3 The choice of the code is not completely arbitrary, since it is important for
our later purposes that computation of tags has low arithmetic complexity (here one
multiplication and one addition over K) and that the tags are linear if « is fixed. Indeed,
if y and y' are authentication tags for m and m' with keys («, 3) and (a, 8'), respectively,
then for every A € K, A-y + ' is an authentication tag for the message X\ - m + m' with
key (a, A - B+ (). Namely,

a-A-m+m)+N-B+B) = A (@a-m+pf)+(a-m'+8) = Ay+y.

Analogue, it can additionally be shown that y is an authentication tag for the message
m + X with key (a,8 — a - A). Furthermore, it is not difficult to see by induction that
after [authentications and verifications with the same «, the substitution probability still
isl/(|K|—1+1) (see e.g. [CDD199]).

6.5 Upper Bound in the Presence of a Corrupted Dealer

In this section, we present a VSS scheme with a one-round reconstruction, where the
complexity of the sharing phase matches that of the previous best known VSS for our
scenario [CDD199], but where the reconstruction phase meets our lower bound up to a
constant factor. This is at least a factor of n better than previous VSS protocols.

6.5.1 Definition

Since now the dealer might be corrupt as well and so the sharing of the secret takes the
form of an interactive protocol, the adversary can not only intrude faults in the recon-
struction, but also in the sharing phase. Therefore, our definition operates with two error
probabilities, which for a concrete scheme do not have to be equal: first the probability
that the distribution of the shares fails to work as supposed, and second the probability
that the reconstruction fails, even though the sharing phase succeeded.

Assume an adversary that may corrupt at most ¢ of the n players and the dealer. Addi-
tionally, the adversary can be static or adaptive, and rushing or non-rushing. Consider
a VSS scheme with an arbitrary sharing phase which results in every player P; holding
a share consisting of a key x; and a public share y; and with a one-round reconstruction
phase as in the honest dealer case.

6.5. Upper Bound in the Presence of a Corrupted Dealer 91

Definition 6.2 We call such a scheme (t,n,1 — 3,1 — §)-secure if the following holds,
with probability 1 if the dealer remains honest during the sharing phase, and otherwise
with probability at least 1 — B (taken over the coin flips during the sharing phase).

» Privacy: As long as the dealer remains honest, the adversary gains no information
about the shared secret s as a result of the sharing phase.

(1 —9)-Correctness: After the secret is shared, there exrists a unique value s’ such that
in the reconstruction phase each honest player outputs either s' or failure, where for
every player the latter happens with probability at most 6 < 1, independent of s'. If
the dealer remains honest during the sharing phase then s’ = s.

Remark 6.4 We stress that the standard definition of unconditionally secure VSS is slightly
weaker than ours in that it allows honest players to reconstruct (with small probability) an
incorrect value of the secret, even if the dealer was honest in the sharing phase. However, all
known VSS schemes essentially fulfill our stronger definition, in particular the most efficient
solution known, [CDD*99], fulfills it without any changes in the required communication,
while the [RB89] protocol requires some straightforward modifications.

6.5.2 Towards VSS with Optimized Reconstruction

The security of the scheme from the last section evidently completely breaks down in
case the dealer is corrupted. In the sharing phase, he could hand out inconsistent shares
and inconsistent authentication tags, and, in the reconstruction phase, since he knows
all the keys, he could compute correct tags for false shares. This would allow him to
disrupt the reconstruction and even to actually cause different secrets to be reconstructed
(see the analysis in [CDD"99] of WSS from [RB89]). To remedy this, we have to ensure
that the players that remain honest receive consistent shares, and that they accept each
others shares at reconstruction, while rejecting false shares. Of course, as mentioned in
the introduction, this could in principal be achieved by replacing the dealer of the honest-
dealer VSS by a general MPC. This, however, would result in a rather inefficient sharing
phase. Also the following approach seems to be no satisfactory solution because of the
same reason. We force the dealer to distribute consistent shares si,...,s, by doing a
“two-dimensional sharing” as in [BGW88] or [CDD"99] and then every tag y;; for a share
s; is computed in a multi-party fashion, such that it is guaranteed to be correct and the
corresponding key is only known to the verifier P;. Again, doing general MPC would result
in a rather inefficient sharing phase; however, the following points provide some intuition
as to why the full generality of MPC protocols is not needed, and instead we can do a
specialized MPC.

1. The “two-dimensional sharing” from [BGW88] or [CDD*99] not only ensures that the
honest players hold consistent shares, but also that every share s; is again correctly
shared. Hence, one input to the MPC, s;, is already correctly shared.

2. We only have to guarantee that a tag is computed correctly, if the player who will later
verify it is honest during the sharing phase. At reconstruction, a corrupted player can

92 Chapter 6. On the Cost of Reconstructing a Shared Secret

always claim a tag to be invalid, even if it were good. For this reason, full VSS of the
authentication key will not be necessary.

3. The function to be computed uses only one multiplication and one addition. This will
allow us to do the distributed multiplication locally, i.e. no re-sharing as in [GRR98|
will be needed.

6.5.3 The CDDHR VSS Sharing Protocol

To describe the sharing protocol from [CDD*99], we start by reviewing the concept of
information checking (IC), introduced in [RB89]. In essence, an IC scheme provides un-
conditionally secure “signatures” with limited transferability. More concretely, it allows
a sender S to provide a transmitter T (also called intermediary) with a message m and
a “signature” o, such that T can later pass (m,o) on to a recipient R, claiming that
m originates from S. The signature o enables R to verify this. We use the notation
om (S, T; R) to refer to such a signature. Although in reality the “signing” procedure is an
interactive protocol involving all three players and using a broadcast channel, we abuse
language slightly and simply say that S “sends the signature o,,,(S,T; R) to T”. IC must
fulfill the following requirements, except with some small error probability. If 7" and R
are honest, then R indeed accepts T’s message m (consistency). If, on the other hand, S
and R are honest, then R rejects any message m' # m (correctness). Finally, if S and T
are honest, then R gets no information on m before T passes (m,o) on to him (secrecy).
It is easy to extend this concept and the corresponding protocols to multiple recipients,
say Ri,..., Ry, by simply executing the single recipient protocol for each possible recipi-
ent. We then use the notation 0,,,(S,T) = (6 (S,T; R1),-..,0m(S,T; Ry)). For a formal
definition and technical details, please refer to [RB89, CDD*99].

One possible implementation is based on the authentication code used in Section 6.4.2.
Let K be a large finite field. An IC signature 0,,(S,T; R) of a message m € K is simply
an authentication tag y = a - m + B, where a and 8 are given to R. By a cut-and-choose
technique it can be guaranteed that y is correct (except with small probability), as long as
T and R are honest. We refer to [CDD*99] for more details.* As argued in Remark 6.3,
it does not harm the security of the authentication code to fixed the value « (individually
for each R), and, on the other hand, provides the following linearity properties. If T' holds
two signatures 0,,(S,T; R) and o,y (S,T; R) and if X is known to R and 7', then T can
compute a signature o, 4, (S,T;R) for m + m' and a signature o), (S,T;R) for Am.
This holds analogously in the multi-recipient case. As to efficiency, generating a signature
om(S,T; R) costs O(log | K|) bits of communication (see [CDD"99]), generating a signature
om(S,T) with n recipients costs O(nlog|K|) bits of communication. Furthermore, the
secrecy condition holds perfectly while correctness and consistency hold with probability
1 — 27 18K] for a single-recipient and 1 — 2~ 108|K|+o8(n) for 5 multi-recipient signature.

We present the sharing phase of the VSS sharing protocol from [CDD*99], which we will

4Note that a different authentication code was chosen in [CDD*99] in order to have a more geometric
interpretation, but it is straightforward to adapt their techniques to our choice of the code.

6.5. Upper Bound in the Presence of a Corrupted Dealer 93

call PreShare, in a slightly modified version. Namely, for ease of exposition, we use a
symmetrical polynomial and we omit the signatures made by the dealer (since these are
needed only to catch a corrupted dealer early on). Let K be a finite field of size |[K| > n
and wy,...,w, € K pairwise different and non-zero.

ProTocoL Pre Share

1. To share a secret s € K, the dealer chooses a random symmetrical
bivariate polynomial f of degree at most ¢ in both variables with s as
constant coefficient, i.e. f(0,0) = s.

2. To every player P;, the dealer privately sends the share s; = f(w;,0)
and the sub-shares s;1 = f(w;, 1), .., Sin = f(ws, wy) of s;.

3. For every two players P; and P;, the following is done. P; sends s;;
together with a signature

o-s,'j(-Pian) = (Usij(-ljia-Pj;Pl)a' e 708”(-PZaPJaPn))

to P;. If s;; # sj;, then P; broadcasts a complaint, to which the dealer
has to answer by broadcasting s;;. If this value does not coincide with
Pj’s sj;, then P; accuses the dealer publicly who then has to broadcast
Pj’s share s; and subshares sj1,...,5sj,.

4. If at some point, the broadcast information is inconsistent, the players
take some publicly known default sharing.

This protocol stands as a VSS sharing protocol on its own, but with “expensive” recon-
struction: O(n3log|K]|) bits (all subshares s;; together with their signatures) need to be
communicated in order to reconstruct the secret. The fact that it is nevertheless a VSS
sharing protocol is based on the following observations.

Proposition 6.2 After the execution of PreShare, every honest player P; holds a share
s; and signed sub-shares s;i ... S;, such that

1. If the dealer remains honest, then the adversary has no information about s.

2. The sub-shares s;1...Si, of any honest player P; are a correct sharing of s;, and
sij = sj; holds for all P; and P; who remain honest.

3. The shares s; of the honest players are correct shares of a unique value s', which is
the secret s if the dealer remains honest.

4. For any (corrupted or honest) player Pj, the sub-shares s;; of the honest players P;
are correct shares of P;’s share s;, which is well defined by the shares s; of the honest
players.

94 Chapter 6. On the Cost of Reconstructing a Shared Secret

The communication complexity of this Pre Share protocol is O(n®log|K|) bits, the dealer
essentially distributes n? sub-shares and each of these sub-shares is signed, where signing
costs O(nlog |K|) bits of communication per signature.

Proof.

1. First note that the adversary does not gain any new information by making players
complain. Let A be the set of players who have been corrupted during the execution
of Pre Share. The existence the symmetrical polynomial

ax,y) = JJ Gl -w)

P,cA wi

of degree at most ¢, with d(0,0) = 1 and d(w;,*) = d(-,w;) = 0 for all 7 € A, shows
that the privacy condition of a solid secret sharing scheme (Definition 4.3) is satisfied.
This together with the secrecy property of the signatures proves the claim.

2. If this was not the case, then there would have been complaining.

3. Let the set A consist of £ + 1 honest players. Their shares define a unique secret s'.
Let now A’ consist of the players in A and a further honest player (if there are only
t + 1 honest players, then we are finished anyway). Let)A;, ¢ € A, be reconstruction
coefficients for the players in A and X;, 7 € A', for the players in A". So we have
s' = > ica Nisi and (according to 2.) sp = D4 AiSki = djear A;-skj for all k €
A’ Tt follows that D, 4 NpSk = D pear Ap Doica NiSki = Dic AN D pear NpSki =
YicaNi Dpear NpSik = 2 ica Aisi = s', hence the shares of the players in A’ are still
consistent. Inductively, it follows that the shares of all honest players are consistent
and hence correct by Remark 5.1.

4. Can be shown with a similar argumentation as above using the fact that every share
sj can be written as a fix linear combination), ugsy of the shares of the honest
players Pj. O

6.5.4 Computing Tags by a Specialized MPC

Consider now a fixed player P; after the execution of Pre Share, holding his share s; and
the corresponding sub-shares s;1, . .., si, with signatures o, (P1, F;), ..., 0s,, (Pn, P;). We
now want to compute authentication tags y;; = «;; - s; + 3;; for s; as they are computed
by the dealer in the honest-dealer VSS protocol, but without letting the dealer know the
keys, (cij, Bi;) should only be known to P;.

At the heart, there is the following problem. A player P wants to compute the tag
y = a-m + [for his secret message m with respect to a player V’s secret key «, 8. As
already mentioned earlier, this will be done by a specialised MPC.

We assume that P’s message m is already correctly shared by shares mi,..., m, and
that P holds signatures oy, (P1,P;V),...,0m, (Pn, P; V), verifiable by V. If the protocol

6.5. Upper Bound in the Presence of a Corrupted Dealer 95

Pre Share from the previous section has been executed, and if P’s message m stands for
Py’s share s;, then this is fulfilled with my = s;; and oy, (P, P; V) = o, (Pk, Pi; Pj).

ProTocoL MP Auth

1. V chooses a random polynomial f, of degree at most ¢ with f,(0) = «
and a random polynomial fg of degree at most 2t with f3(0) = . For
every player Py, V sends the shares ay = fo(wy) and B = fg(wyg) to
P, together with signatures oq, (V, Py; P) and og, (V, Py; P), verifiable
by P.

2. Every player Py, having received the shares ay and S; with the cor-
responding signatures and holding the share mj of m, computes y =
ay, + my + Br and, using the linearity property of the signatures, the
corresponding signature o, (V, Py; P) and passes y; and oy, (V, Py; P)
on to P, who verifies the signature (see point 3. in Section 6.5.2).

3. If P receives all the y; and all the signatures are good, then he can
reconstruct y by interpolation, i.e. by computing a polynomial f, of
degree at most 2t with fy(wy) = y for all £ and computing y = f,(0).
If some signature oy, (V, Py; P) is not correct, then before computing
y as above, P passes my and oy, (P, P; V) on to V, who verifies the
signature and in case of a good signature returns yy = oy - my + B to
P (see point 2. in Section 6.5.2 for the case V refuses).

Proposition 6.3 Under the assumptions stated before the protocol, the following holds

except with probability 2~ 108 |K|+0(ogn)

1. If P and V remain honest during the execution, then y = a-m + .
2. If P remains honest, then the adversary learns nothing about m.

3. If V remains honest, then the adversary learns nothing about «.

Hence, the tag y can be thought of being computed by some honest player.

Proof. We will prove 1., 2. and 3. under the assumption that the security properties of
the signatures hold without error probability; this proves the claim.

1. Let f, be the polynomial of degree at most ¢ with f,,(k) = my and hence f,,,(0) = m.
The n shares y; = oy - my + B define a unique polynomial f, of degree at most 2t
with fy(wx) = yx and fy(0) =y = a- m + B, namely fy = fo - fm + f3. So, if all n
players Pj behave and send gy, with the correct signature to P, then P can compute
[y and hence y. If on the other hand some corrupted player P, misbehaves and sends
an incorrect yx to P (or an incorrect signature or nothing at all), then P recognizes
this and gets the correct y; from V. Hence, even in this case P gets all the correct
yr’s and can therefore reconstruct y.

96

2.

Chapter 6. On the Cost of Reconstructing a Shared Secret

We assume wlog that V is corrupted. If all the corrupted players Py, follow the protocol,
then the adversary definitely gets no information at all. If some corrupted player Py
misbehaves (e.g. by sending a bad), then the adversary only learns my, which he
already knows.

. We assume that P is corrupted. Note that the adversary does not learn anything new

by asking V for a yj, in step 3., since the correct value mj, must be sent to V' (otherwise
V would not accept the signature and return nothing).

We have to show that the adversary’s view of this protocol gives no information
about . The adversary’s view, excluding the signatures, consists of m, m1,...,mn,
Y1,.--,Yn and o and B for k € A, where A is the set of corrupted players, with
Yk = ap - my + Pg. Consider the polynomial do(X) = [[ca(wr — X)/wy of degree
t and the polynomial dg = —d, - fim of degree at most 2¢t. Note that d,(0) = 1
and dg(0) = —m and do(wx) = 0 = dg(wg) for all k¥ in A. This implies that
if fo and fz are the sharing polynomials for a and f, then for any o,p' with
o -m + B =y, the polynomials fy = fo + (¢ — a)d, and fg = fg + (¢! — @)dp are
sharing polynomials for o' and (', consistent with the adversary’s view. Note that
fr(0)=B8—(o/ —a)m=y—ao -m = p'. Since f, and fz are randomly chosen with
fa(0) = o and f3(0) = B, the adversary’s view of the protocol, excluded the signa-
tures, is independent of a. This together with the secrecy property of the signatures
proves the claim. O

The communication complexity of one execution of MP Auth is O(n log |K]|) bits. Namely,
V essentially shares « and . Note that the signatures involved are signatures verifiable
by one player, hence they only cost O(log|K]|) bits of communication.

6.5.5 The VSS Protocol

The VSS sharing protocol now works as follows. First, Pre Share is applied to the secret
and then, by applying MP Auth to the shares, the sub-shares and signatures are stripped
off and replaced by tags for the actual shares:

SHARING PHASE

1. The above protocol Pre Share is executed on the secret s. As a result,

every player P; holds a share s;, sub-shares s;1,. .., $;j, and signatures
asn(Pla]Dz')a e ao-sin(Pna-Pi)'
2. For every player P;, tags yi1,---,Yin for s; are computed by executing

MP Auth with every player P; on the message s; and P;’s randomly
chosen key (aij, Bij)-

Note that all the sub-shares s;; and signatures o, (P;, P;) are only temporarily used and
can be deleted at the end of the protocol. For the reconstruction, which works as in the

6.6. Applications to MPC with Pre-processing 97

honest-dealer case (see Section 6.4.2), only the shares, the tags and the keys are needed.

Theorem 6.3 For n/3 < t < n/2 and k > Q((n — 2t)logt), there exists a single-
round VSS scheme, (t,n,1 — 27%k) 1 — 2=%k))_secure against an (adaptive and rush-
ing) adversary, with a sharing complezity of O(kn3) and a reconstruction complexity of
O(kn?/(n — 2t)) bits.

In particular, for t = |(n —1)/2] and for t < q-n with 1/3 < q < 1/2, the reconstruction
complezity is O(kn?) and O(kn), respectively.

Proof sketch. In the case of a maximal ¢, i.e. t = [(n — 1)/2], we can take the above
scheme over a field K with log |K| = O(k). Privacy and correctness follow from Proposi-
tions 6.2 and 6.3. The communication complexity of the Pre Share protocol is O(kn?), of
the MP Auth protocol it is O(kn). Therefore, the communication complexity of the sharing
protocol, which calls Pre Share once and MP Auth n2-times, is O(kn3). The communication
complexity of the reconstruction is as in the honest-dealer VSS O(kn?) bits.

In the case of an arbitrary ¢, we take the above scheme over a field K with (n—2t) log | K| =
O(k). However, to keep the error probabilities from Proposition 6.2 and 6.3 at 2~ () the
signatures (but not the shares) used in the protocols Pre Share and MP Auth are computed
in an extension field K’ D K of degree n — 2t, such that log |K'| = ©(k). O

6.6 Applications to MPC with Pre-processing

As an application of the above described VSS scheme, we will now present a general MPC
protocol in the pre-processing model [Bea91]. Our protocol is secure against an adversary
who can corrupt up to ¢ of the players, where ¢ < n/2.

6.6.1 MPC with Pre-processing

The idea behind MPC with pre-processing, introduced by Beaver [Bea91], is to do as
much work as possible in a pre-processing phase, before the inputs and even the function
respectively the circuit to be computed are known. This is to reduce the work and the
assumptions on the communication network required in the computation phase when the
inputs and circuit have actually become available.

This is based on circuit randomization and a generic construction that can be applied
to any MPC protocol based on a linear VSS. The computation phase doesn’t require
secure channels, it only consists of broadcasting information and performing the local
computations necessary for VSS reconstructions. It should therefore be clear that MPC
in the pre-processing model benefits from VSS with optimized reconstruction.

We sketch the generic protocol for MPC with pre-processing. Assume that adequate
upper bounds on the number of inputs and multiplication gates in the future circuit are
known. In the pre-processing phase, each player chooses a sufficient number of independent

98 Chapter 6. On the Cost of Reconstructing a Shared Secret

random values a and VSS’es them. Next, the players jointly prepare a sufficient number
of random triples r, v’ and 7" such that 7" = rr’ and such that each of these values is
VSS’ed. Note that mutual randomness is easily achieved by having players VSS random
values, and taking the sum of those as a mutually random value. By the linearity property,
this random value is effectively VSS’ed. By invoking the general MPC protocol, products
can be securely computed with the result VSS’ed.

In the computation phase, inputs and circuit are known. Assume for simplicity that each
player has a single private input value. Each player then takes his actual private input s,
and simply broadcasts the difference € = a — s between this input s and the random value
a he VSS’ed in the pre-processing phase. Subsequently, all players locally compute their
shares in s from the shares in a they hold and the now public value €. In the computation
phase, the addition gates are handled locally while to multiply two shared values s and
s', a fresh precomputed random triple (r,7’,7") is taken, the differences § = s — r and
0’ = s’ — r' are revealed by invoking the reconstruction phase. Since

s = (r+8&)F" +8) = r'+8r+5r"+68 = " +6r+ 0" + 66

every player P; can locally compute a share of ss’ from the shares of r, 7’ and 7" and the
values ¢ and §’. Note that linearity of the VSS facilitates these steps.

6.6.2 Applying Our VSS to MPC with Pre-processing

We first argue that our VSS can be made to have the required linearity properties. Note
that Shamir shares trivially possess these properties, so it suffices to focus on the authen-
tication code. As shown in Section 6.4.2, the only thing we need to do is to fix throughout
the computation for each individual player the values « that are part of his verification
keys (a,).

For a field K with log |K| = ©(k)/(n — 2t), the protocol now works as follows. In the pre-
processing phase, the random input values a are treated just as above, based on our VSS.
In order to prepare the random triples, we use the general MPC techniques of [CDD™99]
to prepare triples 7, ' and " with " = rr' as described earlier, except that, for non-
maximal ¢, the signatures are computed in an extension field K’ O K of degree n — 2t,
as described in the proof of Theorem 6.3. This results in a VSS of these values according
to [CDD™99] (i.e. according to the protocol Pre Share from Section 6.5.3). We can convert
these to sharings as they would have been produced by our VSS, we simply apply the
protocol MP Auth (see Section 6.5). Hence, all necessary pre-processing information will
be shared according to our VSS. The computation phase can now proceed based on the
reconstruction phase of our VSS.

As to efficiency, generating the sharings of r and 7’ consists essentially of O(n) executions
of Pre Share, and thus this has complexity O(kn3) bits. The computation of the sharing
of r" costs according to [CDD199] O(kn*) bits of communication, assuming everyone
coorperates. Multi-party computing the tags is negligible compared to the rest, namely
O(kn3). Hence, we have a best case complexity of O(kn*). If a corrupted player P; refuses
to coorperate at some point during the computation of a triple (r,7’,7"), then this triple

6.7. Concluding Remarks 99

is recomputed while player P;’s part of the protocol is executed in public (with default
randomness) till the end of the pre-processing. This way, the adversary cannot slow down
the computation substantially. Hence we have

Theorem 6.4 Let C be an arithmetic circuit over a field K with |C| multiplication gates,
where log |[K| = ©(k)/(n — 2t) and n/3 < t < n/2. Communicating O(|C|kn*) bits in a
pre-processing phase, there exists a MPC protocol, secure against an adversary who can
corrupt up to t of the n players, computing the circuit C with O(|C|kn?/(n — 2t)) bits of
communication. The failure probability of the MPC protocol is 2~ UK+l

In particular, for t = |(n —1)/2] and for t < q-n with 1/3 < q < 1/2, the computation
phase requires O(|C|kn?) and O(|C|kn) bits of communication, respectively.

The most efficient previously known protocol for MPC with pre-processing in our model is
based on [CDD'99]. Note that this would result in a pre-processing phase with complexity
of the same order as in our case. However, due to VSS with optimized reconstruction, we
gain an efficiency improvement of a multiplicative factor of at least n in the computation
phase of our protocol.

6.7 Concluding Remarks

6.7.1 General Adversaries

We now go beyond threshold security by sketching how to adjust our VSS and MPC
protocols to be secure against a general Q2 adversary.

By replacing the bivariate polynomial sharing in Pre Share by the span program based
distributed commitment scheme from [CDMO00] (see Section 3.5.4 or 5.4), we are in the
same position as described by Proposition 6.2, except that 4. is not guaranteed, i.e. the
share s; of a corrupted player P; is not necessarily correctly shared by the sub-shares s;;
of the honest players P;. But this can easily be achieved by doing another level of sharing:
every player P; shares his share s; with the DC protocol from [CDMO00] where every player
P; insists that the share they get of s; is the sub-share sj;.

In the MP Auth protocol, replacing the threshold sharings of the values o and S by sharings
based on mutliplicative span programs, Proposition 6.3 remains intact.

This results in a VSS scheme secure against a general Q? adversary. Furthermore, the
sharing and reconstruction complexities are O(knd?) and O(knd) bits, respectively, where
d > n is the size of the span program, while the respective complexities of the general
adversary VSS scheme suggested in [CDD199] are both O(knd®) bits (even though one
could achieve O(knd?) using their techniques in a more elaborate way).

Based on this general adversary VSS scheme, similar to the previous section, one can
achieve a general MPC protocol, secure against a general Q? adversary, which in the
pre-processing model has a communication complexity of O(|C|knd) bits, compared to
O(|C|knd®) which would be achieved by the general adversary MPC protocol from [CDD*99]
(respectively O(|C|knd?) using their techniques in a more elaborate way).

100 Chapter 6. On the Cost of Reconstructing a Shared Secret

6.7.2 The Power of Rushing (Honest Dealer Case)

We show that our tight lower bound from Section 6.4.1 does not hold if the adversary does
not rush, and instead selects the corrupted shares he will broadcast in the reconstruction
phase before it has started. We also sketch a lower bound and outline some applications,
namely to a scenario in which the amount of information sent in the sharing phase is to
be minimized.

Let K be a finite field with |K| > n, and take Shamir’s threshold scheme defined over
K with threshold parameters ¢t and n. Cabello, Padr6 and Sdez [CPS99] have proposed
the following so-called robust secret sharing scheme. To share a secret s in this scheme,
the honest dealer selects a random field element p, independently generates full sets of
Shamir-shares for the secrets s, p and p - s, and privately distributes the shares to the
players.

Given a set A of at least ¢ + 1 shares (which possibly contains corrupted shares), consider
the three values s’, p’ and 7’/ that are computed by applying the reconstruction procedure
of Shamir’s scheme to the shares in A. The crucial observation is that if s # s’ and if the
corrupted shares are independently distributed from p, the probability that s’-p’ = 7’ is at
most 1/|K|. Hence, given for instance a trusted party available for reconstruction, con-
nected with each player by an independent private channel, the independence requirement
is satisfied and although the secret may not always be reconstructed from a qualified set,
an incorrect secret is detected with high probability.

We note the following application of this scheme in our scenario of a non-rushing adversary.
By assumption, this is an adversary who chooses the corrupted shares before the recon-
struction phase. This ensures that the independence requirement stated before is satisfied.
Let k be a security parameter and ¢ < n/2 and assume additionally that |K| > 2"*k. Let
the sharing phase be according to the scheme of [CPS99]. The reconstruction works as
follows. Every player publishes his shares s;, p; and 7;. Then, every player reconstructs
for every set A of size t + 1 from the shares of the players in A s’, p’ and 7/, supposedly
equal to s, p and 7, respectively. If all such triples which additionally satisfy s’ - p' = 7/
coincide in s’, then this s’ is output and otherwise failure. This way, the probability
with which an honest player outputs failure is at most 2" - 27""% = 27 Note however,
that the computational complexity of the reconstruction phase is exponential in n.

For the case that £ > n and n = 2t 4+ 1, we now sketch an argument showing that the
sharing phase of this scheme is optimal, up to constant factors. A basic result in secret
sharing says, informally speaking, that the size of individual shares is at least the size
of the secret, and hence the question that remains is whether the error probability e of
the above scheme is optimal. We define an adversary who flips a random coin and either
corrupts the first ¢ players, or the last ¢ players. In either case, he makes a random guess
S¢4+1 for the share s;y1 that player Piy; received from the honest dealer in the sharing
phase (consisting of s¢11, pi+1 and 7441 in the above scheme), deletes the correct shares
received from the dealer by the corrupted players, and instead chooses random corrupted
shares, consistent with his guess §;y1 and with a random secret 5. Assuming that the
correct secret s was chosen at random by the honest dealer, if the adversaries’ guess for

6.7. Concluding Remarks 101

player P;1’s share is correct, then there is no way for any reconstruction procedure to
distinguish between s and 5. Hence, in order for € to be upper bounded by 2-Uk) the
size of each individual share must be Q(k).

Although it is generally not very realistic to assume that the adversary is not rushing, it is
possible to construct a “simultaneous broadcast” channel on top of the “secure channels
with broadcast model”. Namely, simply have each player first VSS their values, e.g. by us-
ing the schemes of [RB89,CDD™99], after which all VSSes are opened. Using the concrete
scheme above, this procedure would ensure that shares are “broadcast simultaneously”,
and hence that the required independence is achieved, at the cost of increased complexity
of the reconstruction phase and use of private channels in that phase. The advantage,
however, is that the efficiency of the sharing phase has been substantially improved.

6.7.3 Open Problems

The lower bound proof from Section 6.4.1 only applies to single-round honest-dealer VSS
schemes where it is guaranteed that no incorrect secret is reconstructed (the worst that
can happen is that some player outputs failure). It would be nice to find a lower bound
for schemes which are somewhat more liberal in that with small probability anything may
happen, even that players reconstruct an incorrect secret (without detecting it). We have
been able to prove the same lower bound for this larger class of schemes assuming that
the keys k1, ..., k, are independently distributed given all public shares y1,...,y,. Even
though this is satisfied by all known schemes it is by no means clear that this can always
be assumed. Hence, the problem is still unsolved.

With respect to the above section, another open problem is that of finding an (honest-
dealer) VSS scheme with cheap sharing phase as above, but where the reconstruction is
still efficient.

102 Chapter 6. On the Cost of Reconstructing a Shared Secret

Chapter 7

Non-interactive Distributed-Verifier Proofs

7.1 Introduction

All truth passes through three stages. First, it is ridiculed. Second, it is
violently opposed. Third, it is accepted as being self-evident.

— Arthur Schopenhauer

Commitment schemes play an important role as a primitive in cryptographic protocols.
Applications are found for instance in the construction of zero-knowledge proofs and ar-
guments, MPC and threshold cryptography. Using a commitment scheme, a player can
commit to a secret value s by publishing a commitment C, in such a way that the com-
mitment C' reveals nothing about the secret s, i.e., the scheme is hiding. The player can
later open C to reveal s in a way verifiable by everyone else, i.e., it is binding in the sense
that the player can’t open C to any other value than s.

Many protocols using commitments require a player at some point to prove certain rela-
tions among a set of committed values, without revealing these committed values in the
process. Assuming that addition or multiplication of secret values is well-defined, a player
committed to s,s’ and s” will typically be required to prove that s” = s + s’ or that
s" = ss'. If the commitment scheme is homomorphic, as is the case with many known
commitment schemes, the additive relation is trivial to handle, even non-interactively.
A commitment multiplication proof, i.e., a secure protocol to handle the multiplicative

relation, is generally less trivial to design.

In the two-player setting, there exist efficient interactive zero-knowledge protocols for all
known homomorphic schemes [CD98]. These protocols can be adapted in a natural way
to a distributed setting with n players acting as verifiers (and where up to ¢ of them might
be corrupted) using standard methods, for instance by simply letting each of the players
be engaged in a separate run of the two-player protocol with the prover, or by letting the
players jointly generate the random challenge for the zero-knowledge proof.

An elegant alternative approach was proposed in [Abe99] by taking advantage of the fact
that sufficiently many players are guaranteed to be honest. Namely, it was shown how to

103

104 Chapter 7. Non-interactive Distributed- Verifier Proofs

handle commitment multiplication proof in this distributed setting non-interactively in the
case of Pedersen’s discrete logarithm based commitment scheme. This commitment mul-
tiplication proof essentially consists of a few Pedersen VSS’s and is non-interactive (from
the prover’s point of view) in case everyone plays honestly, while the prover might have
to answer accusations otherwise. We call this non-interactive with accusing. Moreover, it
is totally non-interactive if ¢ < n/3.

In this chapter, we first introduce the notion of zero-knowledge distributed-verifier proofs
(Section 7.3), which shall capture the security properties of Abe’s commitment multipli-
cation proof protocol. We then improve that protocol by proving that a building block
used in its construction in fact already constitutes a commitment multiplication proof
(Section 7.4). This not only leads to a simplified exposition, but also saves on the required
number of invocations of Pedersen’s VSS. Next we show a new technique to construct
non-interactive proofs of partial knowledge in this distributed-verifier setting, thereby ex-
tending the results of [CDS94] for the interactive two-player case. This allows for instance
to prove non-interactively the knowledge of £ out of m given secrets, without revealing
which ones. As an application, it allows to make the proof of correctness of a ballot in
the [CFSY96] voting scheme non-interactive without resorting to random oracles. We also
show how to construct efficient non-interactive zero-knowledge proofs for circuit satisfia-
bility in the distributed setting.

The material in this chapter is based on [ACF02].

7.2 Preliminaries

7.2.1 Model

We consider a communication network among a dealer and n players Pi,..., P, as de-
scribed in Section 2.2. However, due to the somewhat different context, we also refer to
the dealer as prover and to the players as verifiers. We assume the adversary to be static,
meaning that he has to corrupt the players before the execution of the protocol. For sim-
plicity, we only consider a threshold adversary, where either ¢ < n/3 or t < n/2, though all
results carry over to general Q% and Q* adversaries (see Section 7.5). Some of the proto-
cols are computationally and some are perfectly secure; depending on this, the adversary
is assumed to be computationally bounded or unbounded. In case of a computationally
bounded adversary, the requirements on the network may be relaxed, since secure channels
as well as broadcast can be implemented from insecure channels by cryptographic means.
But since the adversary is restricted to be static, we may without loss of generality treat
the cryptographically implemented channels as being perfect.

7.2.2 Commitments and Pedersen’s Commitment Scheme

Informally, a commitment scheme (of the kind we consider) is given by a function family

comp,: SxR = C

7.2. Preliminaries 105

indexed by a public key pk, where S, R and C are finite sets that may depend on pk. In
a set-up phase, a concrete public key pk and thus function comyy, is fixed in a prescribed
manner. By publishing a commitment C' = com,y(s,r) for a random r € R, such a scheme
allows a party, P;, to commit herself to a secret s € S, such that the commitment C reveals
nothing about the secret s (hiding property) while on the other hand P; can open C to s
by publishing (s,7) but only to s (binding property).

More formally, a commitment scheme consists of two poly-time algorithms: A key-generation
algorithm which takes as input 1%, where k is a security parameter, and outputs a public
key pk; and an algorithm which allows to compute C' = comy(s,) given a public key pk,
s € § and r € R. The hiding property requires that no distinguisher (on input pk) can
distinguish C = comy (s, r) from C’ = comy(s’, ') with non-negligible advantage, where
s,s' € S8 are chosen by the distinguisher and r,7' € R are chosen at random. The binding
property requires that no forger (on input pk) can compute s € S and r,7/ € R such
that comy (s,) = comy(s,r’). If the distinguisher respectively the forger is restricted to
be poly-time, then the scheme is said to be computationally hiding respectively binding,
while without restriction on the distinguisher respectively the forger, it is said to be un-
conditionally hiding respectively binding. It is well known, and easy to see, that only one
of the two properties, hiding and binding, can be unconditional, while the other can at
most be computational.

For a public key pk, generated by the key-generation algorithm, we call comp, : SXR — C
an instantiation of the commitment scheme.

If S is a field K (or, more generally, a ring), then such a commitment scheme is called
homomorphic, if the following holds: There exists a poly-time algorithm which takes as
input the public key pk, commitments C' = comp(s,r) and C' = compy(s',7'), and a
number A € K, and outputs a commitment C”, and there exists a poly-time algorithm
which take as input pk, s, s’,r,r" and A, and outputs r” such that C" = comp (s + As',r").

A well known homomorphic commitment scheme is the Pedersen commitment scheme
[BKK87,BCC88, Ped91]: The public key consists of a description of a (multiplicative)
group G of prime order ¢, in which the DL-assumption holds, i.e., in which computing
discrete logarithms is (assumed to be) hard, and of two randomly chosen generators g and
h of G. G could for instance be a suitable subgroup of I} for a prime p, or a suitable
subgroup of an elliptic curve. For such a public key pk, com,, is then given by

compp: Fy xFp — G
(s,r) = g°A"

To simplify notation, we leave G implicit and simply write pk = (g,h). This scheme is
unconditionally hiding and computationally binding, based on the underlying hardness of
computing discrete logarithms in G. Furthermore, it is homomorphic: If C' = comg (s,),
C' = com, ,(s',7') and A € K, then comg p(As + ', Ar +1') = C*- C.

Note that the group G is a module over F; (and, as I, is a field, it is even a vector space
over F,) where the number multiplication is given by exponentiation. Because of that,
and because it will be convenient, we will from now on view G as an additive group, even

106 Chapter 7. Non-interactive Distributed- Verifier Proofs

though this is very uncommon in the considered context. Therefore, for C' = comg(s,7),
now given by comg ;(s,7) =s-g+r-h, and C' = comgp(s',7’), we can write

comgp(As+ s, Ar+7') = AMC+C'.

7.2.3 Pedersen’s Verifiable Secret Sharing Scheme

We recall Pedersen’s VSS scheme [Ped91] which is based on Shamir’s secret sharing scheme
and (an instantiation of) Pedersen’s commitment scheme comy j : F; x F; — G. Let t and
n be threshold parameters, and let w1, ...,w, € IF; be pairwise distinct and non-zero.

SHARING PHASE

1. To share a secret s € [F;, the dealer chooses a random polynomial
[s(X) =ap+a1 X +...+a; Xt € F,[X] of degree at most ¢ with constant
coefficient ag = s, and he commits to this sharing polynomial fs(X) by
broadcasting commitments Ay,...,A; of ag,...,as, respectively. For
every player P;, the dealer computes the share

si = fs(w) = s+aiwi+ -+ awl € F,
and he opens the corresponding commitment
C; = Ag+Aw;i+---+Awled
privately to P;, using the homomorphic property of the commitment

scheme.

2. If P; does not accept the opening, then P; broadcasts an accusation
against the dealer.

3. To any accusation of a player P;, the dealer responds by opening Cj
publicly.

4. If he fails to do this correctly then the sharing is rejected, otherwise it
is accepted.

After the execution of this protocol, assumed that it has been accepted, every player
P; is committed to his share s; by the commitment Cj, and he holds the corresponding
information to open it. Hence, the reconstruction works as follows.

RECONSTRUCTION PHASE

Every player P; publicly opens C; to s;. The shares s; that have been
correctly opened are then taken to reconstruct the secret by interpolation.

7.8. Distributed- Verifier Proofs 107

The above sharing and reconstruction phases form a computationally secure VSS if (and
only if) ¢ < n/2. Privacy holds perfectly while correctness holds under the assumption
that computing discrete logarithms is hard.

The scheme can be made completely non-interactive from the dealer’s point of view in
case t < n/3 by replacing the steps 3. and 4. by

3.” If the number of accusations is larger than ¢, then the sharing is rejected, otherwise
it is accepted.

Namely, in this case, if the sharing is accepted then there are at least ¢t + 1 honest players
that have not accused the dealer in step 2. and hence have a consistent sharing that allows
to reconstruct the secret (see also the proof of Proposition 7.1).

Remark 7.1 Using the notation from Chapters 3 and 4, Shamir’s secret sharing scheme is
given by M = (F,, M, ,n) where, fori = 1,...,n, the i-th row of M equals (1, w;, ...,w!)
and is labeled by i (see Example 3.3). It is interesting to note that not only s =
(51,...,80)7 € [y is computed as a sharing of s but also C = (C1,...,C)T € G™ is
a sharing of Ap. This makes sense (with respect to Definition 3.3) as G is a Fy-module.
However, in contrast to the s;’s, the C;’s are a priory guaranteed to be correct, since they
are publicly computed.

Remark 7.2 Consider an accepted execution of the sharing protocol. By correctness, a
secret value s’ is fixed that can later be reconstructed. Since the information used by the
players in the reconstruction originated with the dealer, we can conclude that the dealer
knows this secret. In fact, it is straightforward to show, as we do later on, that the dealer
not only knows s’ but he also knows how to open the commitment Ay used in the sharing
protocol (to s').

7.3 Distributed-Verifier Proofs

7.3.1 Definition

Consider two sets W and Z and an efficiently verifiable relation R C W x Z. Given some
public information I € T, the prover wants to convince the verifiers Pi,..., P, that he
knows a witness w € W with (w,I) € R.

Definition 7.1 A distributed-verifier proof (of knowledge) for relation R is a protocol
among the prover and the verifiers Pi,..., P,, with a common input I, a private input
w by the prover and a public output accept or reject, such that the following security
properties hold, even if up to t of the n verifiers as well as the prover might be corrupted
by the adversary.

 Correctness: If the prover remains honest and (w,I) € R, then the output is accept.

108 Chapter 7. Non-interactive Distributed- Verifier Proofs

e Soundness: There exists a knowledge extractor that can efficiently compute from the
joint view of the honest verifiers a witness w' satisfying (w',I) € R, assuming that the
output of the protocol is accept.

This soundness condition can come in three flavors: perfect, unconditional, or computa-
tional. Meaning that the condition holds with probability 1, with overwhelming probability,
or with respect to a computationally bounded adversary under some computational assump-
tion, respectively.

A distributed-verifier proof is called non-interactive, if the structure of the protocol is as
follows. The prover sends to every verifier one message, a personal partial proof, and then
every verifier votes to either accept or reject the proof, depending on whether he accepts
or rejects his partial proof, and the outcome of the protocol is accept if and only if not
more than t verifiers vote for rejection.

It is called non-interactive with accusing, if it is non-interactive except that in case there
are some rejections, the prover must broadcast the corresponding partial proofs, and the
outcome of the protocol is accept if and only if none of these broadcast proofs is rejected.

Finally, it is called zero-knowledge, if the adversary can simulate his view of the protocol.

The above soundness condition highlights the power of the distributed-verifier setting in
two ways: (1) The prover is not given to the knowledge extractor as a rewindable black-
box. Thus, no rewinding argument is needed to prove the soundness of a protocol. (2) In
case of perfect soundness it asserts that there is no knowledge error. Hence, acceptance
of the proof always implies the knowledge of a witness w'. Of course, one can relax the
definition by allowing to rewind the prover so that it becomes seamless with the standard
definition of proof of knowledge [BG92] with a single verifier.

7.3.2 Pedersen’s VSS as a Distributed-Verifier Proof

Let comyy : F; x F; — G be an instantiation of Pedersen’s commitment scheme. For a
commitment C' = comy (s,) let Proof, ;(C) denote an execution of the sharing phase
of Pedersen’s VSS scheme with secret s, except that in step 1. of the protocol, 49 = C
is taken as commitment of ag = s. Then, Proof, ;(C) is a zero-knowledge proof that the
dealer can open the commitment C. More formally, for relation

Rg,h = {((S,T),C) | 8T € IF(I’C = Comg,h(s’rr)} g (]F(I)2 X G
we have
Proposition 7.1 Protocol Proof j, is a perfectly sound zero-knowledge distributed-verifier

proof for relation Ry p, non-interactive in case t < n/3 and non-interactive with accusing
in case t < n/2.

We stress that we have soundness and zero-knowledge independent of the quality of the
commitment scheme comg . In fact, this holds even in case the discrete logarithm log, h
is known and hence the binding property does not hold at all.

7.8. Distributed- Verifier Proofs 109

Proof of Proposition 7.1. Since, to any possible accusation, the honest prover only broad-
casts correct information, the proof will be accepted. It remains to show soundness and
zero-knowledge.

Soundness: Assume that the proof has been accepted, and let A be the set of honest
players, respectively, in case of t < n/3, the set of honest players who have not accused
the dealer. In any case, |A| > ¢+ 1 and every player P; in A can open his commitment C;
to, say, s;. Write C = (C1,..., Cp)" and let X €]FgA be a reconstruction vector for A (as
defined in Definition 3.3). By the homomorphic property, the players in A can jointly open
the commitment C' = AT - C 4, on the other hand, by the observations from Remark 7.1,
it holds that AT - C4 = C.

Zero-knowledge: We make use of the following well known property of Shamir’s secret
sharing scheme. Any ¢ shares together with the secret allow to reconstruct the sharing
coefficients (by taking F,-linear combinations). This not only holds when the secret and the
sharing coefficients are sampled from [, but also when sampled from a finite F;-module.

Let A be the set of corrupted players. We may assume that |A| = ¢. Given the commitment
C for s, the players in A can simulate their view of the protocol as follows. For every
i € A they choose s; € F, at random and compute a (random) commitment C; € G for s;.
Clearly, the s; and C;’s are distributed as in the protocol. Then, viewing the computed
Cj’s as shares of C, they compute the corresponding sharing coefficients A4;,...,4;. O

7.3.3 Distributed-Verifier Proof versus Adapted Two-Party Proofs

The standard approach to construct a zero-knowledge proof in a distributed-verifier set-
ting is to take a two-party public-coin interactive zero-knowledge proof (see e.g. [BCC88]
for general or [CD98] for efficient special-purpose proof protocols) and adapt it to the
distributed-verifier setting by letting the players/verifiers jointly generate the random
challenge required for the interactive proof. For this, all players simultaneously share
a random value using a VSS scheme. Then, all these values are reconstructed and the sum
is taken as the random challenge. Therefore, this solution involves about n VSS execu-
tions. Note that this approach does not take into account that the number of corrupted
players is limited.

On the other hand, we have seen that there exists a zero-knowledge distributed verifier
proof which consists of one single VSS execution. Also all distributed-verifier proofs from
the coming Section 7.4 essentially consists of a constant (in n) number of VSS executions.

However, this advantage vanishes in the typical application to MPC, where for the secure
multiplication of two shared values (with committed shares) usually all players have to
invoke a commitment multiplication proof simultaneously. Namely, in that case, it suffices
in the above standard solution for the players to jointly generate one random challenge,
valid for all simultaneous executions. Hence, the expensive part of the proof protocol has
to be executed only once, while the commitment multiplication proof protocol from the
coming section needs to be executed n times in that same situation.

110 Chapter 7. Non-interactive Distributed- Verifier Proofs

Nevertheless, besides the advantages pointed out in Section 7.3.1, the proof protocols
presented below seem to be superior from a complexity point of view in a setting where
only one proof has to be executed, or where proofs are executed in sequence rather than
parallel, for instance when a party sets up a distributed key for a threshold cryptosystem
and needs to prove correctness of the key.

7.4 Constructing Distributed-Verifier Proofs

7.4.1 An Improved Commitment Multiplication Proof

Consider two instantiations of Pedersen’s commitment scheme over the same group G:
comgp : Fy x Fy — G and comer p, : Fy x F; — G. Note that

comer p(s,7) = s-C' +comgyp(0,7)

and that breaking the binding property of com¢r p,, which is equivalent to computing the
discrete logarithm of C’ with respect to h, is equivalent to opening C’ to 0 as a commitment
with respect to comg j.

Lemma 7.1 Let C" € G. Being able to open (wrt. comgp) C' and C" to values s’ and
s", respectively, allows to open C" wrt. comer j, to a value s satisfying ss' = s”, and being

able to open C" to 0 wrt. comgy, allows to open C" to 0 wrt. comer p,.

Proof. Let s,s',s",r',r" € By satisfy C' = comgp(s',7"), C" = comg p(s",r") as well as
ss' = s". Then, for r* = 7" — sr’ we have comy(s” — ss',7*) = C" - C'* and therefore
comer p(s,7*) = C"° - comg p(0,7*) = C”. This also holds if s = 0 and thus s” = 0, in
which case r7* = r". O

This gives rise to the following commitment multiplication proof, which allows the prover
to prove that he can open commitments C, C' and C” to values s, s’ and s” = ss/,
respectively. Note that the 4 steps can be executed in parallel.

ProTOCOL MultProof(C,C"; C")

1. The prover executes Proof, ,(C).

2. The prover executes Proofcr ,(C") using the same sharing polynomial
fs(X) as in the above step (but new independent commitments with
respect to comer p).

3. Every player verifies whether his shares from step 1. and 2. coincide and
accuses the dealer if it does not hold. In case t < n/2 (but not t < n/3)
the dealer responds by opening the two corresponding commitments in
public.

4. The prover executes Proofy ,(C").

7.4. Constructing Distributed- Verifier Proofs 111

This protocol also appeared in [Abe99]. However, the security proof given there did not
cover the case where the prover can open C' to s’ = 0, and therefore the protocol was
extended to “also deal with the case s’ = 0” by essentially adding another Pedersen VSS
sharing. OQur analysis shows that this is superfluous, and that the protocol as it stands is
secure also in case s’ = (0. Furthermore, we show that the case s = 0 is somewhat special.
Namely, we show that if the prover can open the commitment C' to s = 0, then he can
execute the protocol even without being able to open C', as long as he can open C” to
s" = 0. This of course also guarantees that s” = ss’ (no matter what s’ is), but, as we
will see in the next section, it also opens the door for new constructions in this setting like
proofs of partial knowledge.

Theorem 7.1 The above protocol MultProof (C, C'; C") is a perfectly sound zero-knowledge
distributed-verifier proof, non-interactive in case t < n/3 and non-interactive with accus-
ing in case t < n/2, that the prover can open C, C' and C" to values s, s’ and s" = sd/,
or that he can open both C and C" to 0.

Proof. Correctness: Follows from Lemma 7.1 and the correctness of the protocol Proof j.

Soundness: According to Proposition 7.1, from the information received during Step 1.,
the honest players can compute s and r with C' = comg ;(s,r). Also, from the information
received during Step 2., the honest players can compute the same s and some r* with
C" = comer p(s,7*) = sC' + comg ,(0,7*). Finally, from the information received during
Step 3., the honest players can compute s” and 7’ with C" = comg ,(s”,7"). It now follows
that either s = 0 and hence C” = comg ;,(0,7*), which means that the honest players can
open C" to zero, or that

C' = (C"—comyp(0,7%))/s
= (comgp(s",r") — comy p(0,7%))/s

comg n(s"/s, (r" —1%)/s),

which means that the honest players can open C' to s’ = s"/s.

Zero-Knowledge: The adversary can simulate his view of the protocol by simulating in-
dependently the protocols Proof, (C), Proofcr ,(C") and Proof, ,(C"), as described in
the proof of Proposition 7.1, ezcept that he chooses the same shares for the simulation of
Proof, ,(C) and of Proofcr ,(C"). O

7.4.2 Proofs or Partial Knowledge

In [CDS94], an efficient solution was presented to construct proofs of partial knowledge in
the two-players setting. Such a proof of partial knowledge allows for instance to prove the
knowledge of (at least) £ out of m committed secrets without revealing which £ secrets. We
will now present corresponding non-interactive protocols in the distributed-verifier setting.
While the proof protocols of [CDS94] rely on concepts like the dual access structure and

112 Chapter 7. Non-interactive Distributed- Verifier Proofs

the simulation of protocols, our distributed-verifier proof protocols are based on the fact
that the commitment multiplication proof MultProof, 5 (C, C'; C") can be executed by the
prover even if he does not know s’ (as long as s = s = 0).

Let comgy : F; x F; — G be an instantiation of Pedersen’s commitment scheme, and let,
to begin with, Cy,C; € G be two commitments (with respect to comg). Let w € {0, 1}.
Assume that the proven can open Cy, i.e., that he knows s, and 7, in [F; such that
Cuw = comg (8w, Tw). Consider the following protocol.

OR-PROOF

The prover sets b, = 1 and b1_,, = 0 as well as d, = s, and d1_,, = 0, and
he commits to by, b1, dy and d; by By, By, Dy and Dy, respectively. Then, he
executes in parallel MultProof(By, Cy; Dg) and MultProof (B, C1; D1) such
that f,(X) + fp, (X) = 1, i.e. using sharing polynomials for by and b; that
add up to 1. The latter is locally verified by the players as part of the
parallel executions of MultProof(By, Cy; Dy) and MultProof (B, Cy; Dy).

According to Theorem 7.1, the prover can execute MultProof, ,(B1_y, C1—y; Di—y) even
without being able to open Ci_,, as long as he can open B;_,, and Di_,, to zero. On
the other hand, consider a possibly corrupted prover. From the two proofs MultProof, the
knowledge extractor can compute openings for By and B; such that the resulting opening
for B = By + B; is 1. Hence, By is not opened to zero for at least one w € {0,1}.
Therefore, the extractor can compute an opening for Cy from MultProof, ;,(Bg, Cy; D).
Finally, the (perfect) hiding property of the commitment scheme and the zero-knowledge
property of MultProof allow to show that the protocol is zero knowledge, in particular it
reveals no information about w.

This can easily be generalized to f-out-of-m proofs: Let Ci,...,C,, be a list of com-
mitments. The following protocol allows the prover to prove in zero-knowledge that he
can open (at least) £ of them. Let E = comy;(1,0) and O = comg;(0,0) be default
commitments for 1 and 0, respectively.

/-0UT-OF-m-PROOF

For i+ = 1,...,m, the prover sets b; = 1 and d; = s; if he can open Cj
(to s;) and b; = d; = 0 otherwise, and he commits to b; and d; by B; and
D;, respectively. He proves that for all ¢ indeed b; € {0,1} by executing
MultProof (B;, E — B;; O). Finally, he executes MultProof (B;, C;; D;) for all
i € {1,...,m} such that). f,(X) = £ (which is verified by the players).

The following protocol is a general access structure proof, which allows the prover to
prove in zero-knowledge that he can open some subset {C;,,...,C; } out of the set of the

7.4. Constructing Distributed- Verifier Proofs 113

m commitments such that the subset belongs to a given access structure I on {1,...,m},
ie., {i1,...,i;} € I'. The resulting ¢-out-of-m proof when applied to the threshold access
structure I'y_; ;,, is somewhat more efficient than the above solution.

Let M = (F;, M,%,m) be a span program over F, for I'. We assume for simplicity that
d = m, and that (i) =i foralli € {1,...,m}. Let A C {1,...,m} be the set that points
to the commitments the prover can open, and let A = (Ar,...,)7 € F;* be such that
MTX=¢and \; =0 for i ¢ A. Clearly, such a X exists if and only if A € T.

I'-PROOF

For 4 = 1,...,m, the prover puts b; = X\; and d; = b;s;. Note that if
i1 & A then b; = d; = 0, independent of s;. And, he generates commit-
ments Bi,...,By, and Diq,..., Dy, for by,...,by and di,...,dn,, respec-
tively. Then he executes MultProof(B;, C;; D;) for all i such that MTf = ¢
for £ = (fy, (X),..., f5, (X))T (which is verified by the players).

Note that soundness of the above protocol relies on the binding property of the Pedersen
commitment scheme, and hence only holds computationally.

Theorem 7.2 Let C1,...,Cp, be a list of commitments, and let T’ be an access structure
on {1,...,m}. There ezists a perfectly sound zero-knowledge distributed-verifier proof,
non-interactive in case t < n/3 and non-interactive with accusing in case t < n/2, that

the prover can open a subset C;,...,C;, of the commitments C1,...,Cy, for some set
A:{’il,...,’ig} el.

Concerning complexity, the distributed-verifier proof essentially consists of 3 - mspy, (T
executions of Pedersen’s VSS.

7.4.3 General Circuit Evaluation Proofs

Let C be a binary circuit consisting of NAND gates.

Theorem 7.3 Under the DL-assumption, there exists a computationally sound zero-knowledge
distributed-verifier proof, non-interactive in case t < n/3 and non-interactive with accusing
in case t < n/2, that the prover knows a satisfying input to the circuit C.

Proof sketch. Let comgy : Fy X Ff; — G be an instantiation of Pedersen’s commitment
scheme, set up once and for all e.g. by a trusted party or jointly by the verifiers. Let
b = (b1,...,by) be a satisfying input for the circuit C. To prove knowledge of b, the
prover generates a commitment B; for every input bit b; and proves that b; € {0,1}
by executing MultProof, ,(B;, E — B;; O). Inductively, for every NAND gate with input

114 Chapter 7. Non-interactive Distributed- Verifier Proofs

bits b; and b, to which he has already computed corresponding commitments B; and B,,
respectively, the prover computes a commitment B,,; for the output bit b,,; = b NAND b,
and proves its correctness by executing MultProof ;(B;, Br; E — Byy). Finally, he opens
the commitment of the circuit-output bit to 1. O

Note that in contrast to the well-known two-party non-interactive zero-knowledge proofs
in the common-reference-string model [BFM88], where the simulation is with respect to a
correctly distributed but new common-reference-string, the simulation of the distributed-
verifier proof is with respect to the given public-key pk = (g, h).

7.5 Concluding Remarks: General Adversaries

It is straightforward to generalize the results of this chapter to a general adversary. For
that, simply replace Shamir’s secret sharing scheme in Pedersen’s VSS scheme by an
secret sharing scheme M = (IF,, M,1),n) for a general access structure I'. The threshold
conditions ¢ < n/2 and t < n/3 translate to the Q? and Q? conditions, respectively.

Bibliography

[Abe99]

[ACF02]

[BB89)

[BBDWY6]

[BCCSS]

[Bea91]

[Bea00]

[Bei96]

[BFMSS]

Masayuki Abe. Robust distributed multiplication without interaction. In Ad-
vances in Cryptology—CRYPTO 99, volume 1666 of Lecture Notes in Com-
puter Science. Springer, 1999.

Masayuki Abe, Ronald Cramer, and Serge Fehr. Non-interactive distributed-
verifier proofs and proving relations among commitments. In Advances in
Cryptology—ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer
Science. Springer, 2002.

Judit Bar-Tlan and Don Beaver. Non-cryptographic fault-tolerant computing
in a constant number of rounds of interaction. In 8th ACM Symposium on
Principles of Distributed Computing (PODC). ACM Press, 1989.

Simon Blackburn, Mike Burmester, Yvo Desmedt, and Peter Wild. Ef-
ficient multiplicative sharing schemes. In Advances in Cryptology—
EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science.
Springer, 1996.

Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. Journal of Computer and System Science, 37(2), 1988.

Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Advances in Cryptology— CRYPTO ’91, volume 576 of Lecture Notes in
Computer Science. Springer, 1991.

Donald Beaver. Minimal-latency secure function evaluation. In Advances in
Cryptology— EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science. Springer, 2000.

Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD
thesis, Technion, Haifa, 1996.

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-

knowledge and its applications. In 20th Annual ACM Symposium on Theory
of Computing (STOC), 1988.

115

116

[BG92]

[BGP8Y)

[BGWSS]

[BI93]

[BIO1]

[BKK87]

[BLSS]

[Bla79]

[Blag87]

[BMRY0]

[Bri8y]

[BW86]

[BW9S]

Bibliography

Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ad-
vances in Cryptology—CRYPTO 92, volume 740 of Lecture Notes in Com-
puter Science. Springer, 1992.

Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal dis-
tributed consensus (extended abstract). In 30th Annual Symposium on Foun-
dations of Computer Science (FOCS). IEEE, 1989.

Michael Ben-Or, Shari Goldwasser, and Avi Widgerson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation. In 20th
Annual ACM Symposium on Theory of Computing (STOC), 1988.

Michael Bertilsson and Ingemar Ingemarsson. A construction of practical
secret sharing schemes using linear block codes. In Advances in Cryptology—
AUSCRYPT 92, volume 718 of Lecture Notes in Computer Science. Springer,
1993.

Amos Beimel and Yuval Ishai. On the power of nonlinear secret-sharing. In
Annual IEEE Conference on Computational Complezity, volume 16, 2001.

Joan F. Boyar, Mark W. Krentel, and Stuart A. Kurtz. A discrete logarithm
implementation of zero-knowledge blobs. Technical Report TR-87-02, Depart-
ment of Computer Science, University of Chicago, March 1987.

Josh Benaloh and Jerry Leichter. Generalized secret sharing and monotone
functions. In Advances in Cryptology— CRYPTQO ’88, volume 403 of Lecture
Notes in Computer Science. Springer, 1988.

George R. Blakley. Safeguarding cryptographic keys. In National Computer
Conference 79, volume 48 of AFIPS Proceedings, 1979.

Richard E. Blahut. Priciples and Practice of Information Theory. Addison-
Wesley, 1987.

Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In 22nd Annual ACM Symposium on
Theory of Computing (STOC), 1990.

Ernest F. Brickell. Some ideal secret sharing schemes. In Advances in
Cryptology—EUROCRYPT ’89, volume 434 of Lecture Notes in Computer
Science. Springer, 1989.

Elwyn R. Berlekamp and Lloyd R. Welch. Error correction of algebraic block
codes. US Patent Number 4,633,470, 1986.

Donald Beaver and Avishai Wool. Quorum-based secure multi-party computa-
tion. In Advances in Cryptology—EUROCRYPT ’98, volume 1403 of Lecture
Notes in Computer Science. Springer, 1998.

[Can01]

[CCDSS]

[CDYS]

[CDD99]

[CDFO1]

[CDMO0]

[CDNO1]

[CDS94]

[CF02]

[CFGNY6]

117

Ran Canetti. Universally composable security: a new paradigm for
cryptographic protocols. In 42nd Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, 2001. Full version available from
http://eprint.iacr.org/2000/067.ps.

David Chaum, Claude Crepeau, and Ivan Damgard. Multiparty unconditional
secure protocols. In 20th Annual ACM Symposium on Theory of Computing
(STOC), 1988.

Ronald Cramer and Ivan Damgard. Zero-knowledge proofs for finite field
arithmetic or: Can zero-knowledge be for free? In Advances in Cryptology—
CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science. Springer,
1998.

Ronald Cramer, Ivan Damgard, Stefan Dziembowski, Martin Hirt, and Tal Ra-
bin. Efficient multiparty computations secure against an adaptive adversary.
In Advances in Cryptology— EUROCRYPT ’99, volume 1592 of Lecture Notes
in Computer Science. Springer, 1999.

Ronald Cramer, Ivan Damgard, and Serge Fehr. On the cost of reconstruct-
ing a secret, or VSS with optimal reconstruction phase. In Advances in
Cryptology— CRYPTO 01, volume 2139 of Lecture Notes in Computer Sci-
ence. Springer, 2001.

Ronald Cramer, Ivan Damgard, and Ueli Maurer. General secure multi-
party computation from any linear secret-sharing scheme. In Advances in
Cryptology—EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science. Springer, 2000. Full version available from the authors.

Ronald Cramer, Ivan Damgard, and Jesper B. Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In Advances in Cryptology—
EUROCRYPT 01, volume 2045 of Lecture Notes in Computer Science.
Springer, 2001.

Ronald Cramer, Ivan Damgérd, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Advances in
Cryptology—CRYPTO ’94, volume 839 of Lecture Notes in Computer Science.
Springer, 1994.

Ronald Cramer and Serge Fehr. Optimal black-box secret sharing over ar-
bitrary Abelian groups. In Advances in Cryptology—CRYPTO 02, volume
2442 of Lecture Notes in Computer Science. Springer, 2002.

Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure
multi-party computation. In 28th Annual ACM Symposium on the Theory of
Computing (STOC), 1996.

118

[CFIK03]

[CFSY96]

[CGMASS]

[CK8Y]

[CPS99]

[CT91]

[DDBY4]

[DDFY94]

[DF8Y]

[DF94]

[DF9Y]

Bibliography

Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient muti-
party computation over rings. In Advances in Cryptology—EUROCRYPT 03,
volume 2656 of Lecture Notes in Computer Science. Springer, 2003.

Ronald Cramer, Matthew Franklin, Berry Schoenmakes, and Moti Yung.
Multi-authority secret-ballot elections with linear work. In Advances in
Cryptology—EUROCRYPT 96, volume 1070 of Lecture Notes in Computer

Science. Springer, 1996.

Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults (extended

abstract). In 26th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 1985.

Beny Chor and Eyal Kushilevitz. Secret sharing over infinite domains. In
Advances in Cryptology—CRYPTO 89, volume 435 of Lecture Notes in Com-
puter Science. Springer, 1989.

Sergio Cabello, Carles Padrd, and German Sidez. Secret sharing schemes with
detection of cheaters for a general access structure. In 12th International
Symposium on Fundamentals of Computation Theory (FCT), volume 1233 of
Lecture Notes in Computer Science. Springer, 1999.

Thomas M. Cover and Joy A. Thomas. FElements of Information Theory.
Number ISBN 0-471-06259-6. John Wiley & Sons, Inc., 1991.

Yvo Desmedt, Giovanni Di Crescenzo, and Mike Burmester. Multiplicative
non-abelian sharing schemes and their application to threshold cryptography.
In Advances in Cryptology—ASIACRYPT 9/, volume 917 of Lecture Notes
in Computer Science. Springer, 1994.

Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share
a function securely. In 26th Annual ACM Symposium on the Theory of Com-
puting (STOC), 1994.

Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances in
Cryptology—CRYPTO ’89, volume 435 of Lecture Notes in Computer Science.
Springer, 1989.

Yvo Desmedt and Yair Frankel. Homomorphic zero-knowledge threshold
schemes over any finite Abelian group. SIAM Journal on Discrete Mathe-
matics, 7(4), 1994.

Giovanni Di Crescenzo and Yair Frankel. Existence of multiplicative secret
sharing schemes with polynomial share expansion. In A CM-SIAM Symposium
on Discrete Algorithms (SODA). ACM Press, 1999.

119

[DKKK98] Yvo Desmedt, Brian King, Wataru Kishimoto, and Kaoru Kurosawa. A com-

[DNO3]

[Dzi00]

[Feh99]

[Fel87]

[FHM98]

[FHM99]

[FMY8]

[FM02]

[FY92]

[G4195]

ment on the efficiency of secret sharing scheme over any finite Abelian group.
In 4th Australasian Conference on Information Security and Privacy (ACISP),
volume 1438 of Lecture Notes in Computer Science. Springer, 1998.

Ivan Damgard and Jesper Buus Nielsen. Universally comopsable efficient mul-
tiparty computation from threshold homomorphic encryption. In Advances
in Cryptology—CRYPTO 03, Lecture Notes in Computer Science. Springer,
2003.

Stefan Dziembowski. Multiparty Computations Information-Theoretically Se-
cure Against an Adaptive Adversary. PhD thesis, University of Arhus, 2000.

Serge Fehr. Efficient construction of the dual span program. Manuscript, May
1999.

Paul Feldman. A practical scheme for noninteractive verifiable secret sharing.
In 28th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 1987.

Matthias Fitzi, Martin Hirt, and Ueli Maurer. Trading correctness for pri-
vacy in unconditional multi-party computation. In Advances in Cryptology—
CRYPTO 98, volume 1462 of Lecture Notes in Computer Science. Springer,
1998. Corrected proceedings version.

Matthias Fitzi, Martin Hirt, and Ueli Maurer. General adversaries
in unconditional multi-party computation. In Adwvances in Cryptology—
ASIACRYPT °99, volume 1716 of Lecture Notes in Computer Science.
Springer, 1999.

Matthias Fitzi and Ueli Maurer. Efficient Byzantine agreement secure against
general adversaries. In 12th International Symposium on Distributed Com-
puting (DISC), volume 1499 of Lecture Notes in Computer Science. Springer,
1998.

Serge Fehr and Ueli Maurer. Linear VSS and distributed commitments
based on secret sharing and pairwise checks. In Advances in Cryptology—
CRYPTO 02, volume 2442 of Lecture Notes in Computer Science. Springer,
2002.

Matthew Franklin and Moti Yung. Communication complexity of secure com-
putation. In 24th Annual ACM Symposium on the Theory of Computing
(STOC), 1992.

Anna Gal. Combinatorial Methods in Boolean Function Complezity. PhD
thesis, University of Chicago, 1995.

120

[GIKRO1]

[GMW?87]

[GRRYS]

[Hir01]

[HMY7]

[HMO1]

[HMP00]

[TK00]

[TK02]

[ISN87]

[Kin00]

[Kin01]

Bibliography

Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round
complexity of verifiable secret sharing and secure multicast. In 33rd Annual
ACM Symposium on Theory of Computing (STOC), 2001.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In 19th
Annual ACM Symposium on Theory of Computing (STOC), 1987.

Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-
track multiparty computations with applications to threshold cryptography.
In 17th ACM Symposium on Principles of Distributed Computing (PODC).
ACM Press, 1998.

Martin Hirt. Multi- Party Computation: Efficient Protocols, General Adver-
saries, and Voting. PhD thesis, ETH Ziurich, 2001.

Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolera-
ble in secure multi-party computation (extended abstract). In 16th ACM Sym-
posium on Principles of Distributed Computing (PODC). ACM Press, 1997.
Final version appeared in Journal of Cryptology 2000.

Martin Hirt and Ueli Maurer. Robustness for free in unconditional multi-
party computation. In Advances in Cryptology— CRYPTO ’01, volume 2139
of Lecture Notes in Computer Science. Springer, 2001.

Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party
computation. In Advances in Cryptology—ASIACRYPT 2000, volume 1976
of Lecture Notes in Computer Science. Springer, 2000.

Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new represen-
tation with applications to round-efficient secure computation. In 41st Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 2000.

Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation
via perfect randomizing polynomials. In 29th International Colloguium on
Automata, Languages and Programming (ICALP), volume 2380 of Lecture
Notes in Computer Science. Springer, 2002.

Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes real-
izing general access structures. In IEEE/IEICE Global Telecommunications
Conference (GLOBECOM Tokyo ’87). IEEE Computer Society Press, 1987.

Brian King. Some Results in Linear Secret Sharing. PhD thesis, University
of Wisconsin-Milwaukee, 2000.

Brian King. Randomness required for linear threshold sharing schemes defined
over any finite Abelian group. In 6th Australasian Conference on Information
Security and Privacy (ACISP), volume 2119 of Lecture Notes in Computer
Science. Springer, 2001.

[KW93]

[Lan97]

[Len77]

[Mau03]

[0Y91]

[Ped91]

[RBSY]

[Sha79]

[Sho97]

[Sho00]

[Sim84]

[Sim88]

[Sti95]

[Yao82]

121

Maurizio Karchmer and Avi Wigderson. On span programs. In 8th Annual
Conference on Structure in Complexity Theory (SCTC ’93). IEEE, 1993.

Serge Lang. Algebra, 3rd ed. Addison-Wesley Publishing Company, 1997.

Hendrik W. Lenstra. FEuclidean number fields of large degree. Inventiones
Mathematicae, 38, 1977.

Ueli Maurer. Secure multi-party computation made simple. In 8rd Conference
on Security in Communication Networks (SCN ’02), volume 2576 of Lecture
Notes in Computer Science. Springer, 2003.

Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks.
In 10th ACM Symposium on Principles of Distributed Computing (PODC).
ACM Press, 1991.

Torben P. Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Advances in Cryptology—CRYPTO ’91, volume 576 of
Lecture Notes in Computer Science. Springer, 1991.

Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty pro-
tocols with honest majority (extended abstract). In 21st Annual ACM Sym-
posium on Theory of Computing (STOC), 1989.

Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11), 1979.

Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Advances in Cryptology— FEUROCRYPT 97, volume 1233 of Lecture Notes in
Computer Science. Springer, 1997.

Victor Shoup. Practical threshold signatures. In Advances in Cryptology—
CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science. Springer,
2000.

Gustavus J. Simmons. Authentication theory/coding theory. In Adwances
in Cryptology: Proceedings of CRYPTO 84, volume 196 of Lecture Notes in
Computer Science. Springer, 1984.

Gustavus J. Simmons. How to (really) share a secret. In Advances in
Cryptology—CRYPTO ’88, volume 403 of Lecture Notes in Computer Science.
Springer, 1988.

Douglas R. Stinson. Cryptography — Theory and Practice. Number ISBN
0-8493-8521-0. CRC Press, 1995.

Andrew C. Yao. Protocols for secure computations. In 23rd Annual Sympo-
sium on Foundations of Computer Science (FOCS). IEEE, 1982.

122 Bibliography

[Yao86] Andrew C. Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science (FOCS). IEEE,
1986.

size(-), 19
supp(-), 69
(), 19

negl(-), 16

123

access structure, 11
dual ~, 43
threshold ~, 11
adversary, 12
Q2 (Q%) -, 13
adaptive ~, 13
computationally (un)bounded ~, 13

general ~, 13
ideal life ~, 32
mixed ~, 29

passive ~, 13

real life ~, 32

rushing ~, 13

static ~, 13

threshold ~, 13
adversary structure, 11

threshold ~, 11
algebra, 14

bit length, 61

checking vector, 71
co-prime
elements, 14
ideals, 14
commitment, 105
homomorphic ~, 105
Pedersen’s ~, 105
complete
set of reconstruction vectors, 70

distributed commitment (DC), 69
linear ~, 69

distributed-verifier proof (DVP), 107
non-interactive (with accusing) ~, 108
zero-knowledge ~, 108

124

environment, 32
execution

ideal life ~, 32

real life ~, 32
expansion factor, 19
exponent, 14
extension of a module, 52

functionality, 32

indistinguishable

perfectly ~, 33

statistically ~, 33
information checking (IC), 92
integral extension, 52

degree of ~, 52

key, 83

labeled matrix, 19
size of ~, 19
labeling function, 19
Lenstra Constant, 49
2nd-order ~, 49
lift, 14
locally computable products, 31

module, 14

multi-party computation (MPC), 6
black-box ~, 34
secure ~, 33
with pre-processing, 97

number, 14
multiplication, 14

polynomial representation
(non-)canonical ~, 61
protocol
generic ~, 33
interactive ~, 12
public share, 83

rank, 24

Index

reconstruction
coefficients, 20
vector, 19, 69
round, 12

secret, 20

secret sharing, 3
black-box ~, 20
linear ~, 19
Shamir’s ~, 3

solid ~, 47

weak ~, 48
share-completion, 57
shares, 20

consistent ~, 70
correct ~, 20
sharing, 20
consistent ~, 70
correct ~, 20
polynomial, 50, 106
vector, 20
simulator, 32
span program, 21
(strongly) multiplicative ~, 27

integer ~, 22

weak ~, 48
submodule

closed ~, 24

closure of ~, 24

target vector, 21
tensor product, 15

uniformity, 58
unit, 14

Vandermonde matrix, 49

verifiable secret sharing (VSS), 4
(t,n,1 —B,1— §)-secure ~, 91
domain of ~, 69
linear ~, 69
Pedersen’s ~, 106
perfectly secure ~, 68
single-round honest-dealer ~, 83

125

