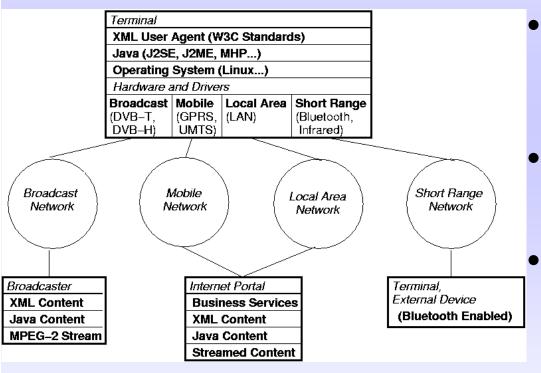
Graphics Architecture for Multimedia Non-Desktop Devices: a Study of Digital Television Receivers

Pablo Cesar
Helsinki University of Technology
Finland


pcesar@tml.hut.fi

http://www.tml.hut.fi/~pcesar

Outline

- Introduction
 - Variety of Devices
- Background
 - Graphics Architectures
 - Content Authoring Formats
 - Digital Television
- Research Questions
- Thesis
- Results / Contributions
- Conclusions

Introduction: Device Chaos

- Variety of multimedia devices
 - Desktop (PCs)
 - Non-desktop (STB)
- Number of networks
 - Broadcast
 - Mobile
- Diversity of Content
 - MPEG-2
 - Java
 - XML based

Introduction: Variety of Devices (1/2)

- Desktop Device (PC):
 - Multipurpose platform
 - Development Environment
- Non-Desktop Devices: User's expectations
 - Information Management: information in an small device (PDA)
 - Person to Person Communication: Mobile Phones
 - Entertainment: game consoles, interactive TV receiver
- All Devices Fall into Information Access Systems:
 - Open: information retrieved from different sources (e.g., WWW)
 - Closed: devices rely on specific providers (e.g., Broadcast)

Introduction: Variety of Devices (2/2)

		PC	Non-Desktop device			
			DTV Receiver	Mobile Phone	PDA	
Development		+++	+	+	++	
Information Access	Open	+++	+	++	++	
	Closed	+	+++	+	++	
Information Management		+++	+	++	+++	
Communication		++	+	+++	++	
Entertainment		+++	+++	+	++	

Background: Graphics Architectures (1/3)

Applications

Higher-level Tools

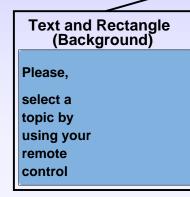
Toolkit

Windowing System

Operating System

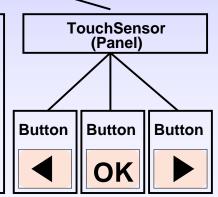
- Myers definition of a layered architecture
- Applications implemented using higherlevel tools
- Toolkit: a library of widgets used by applications
- Windowing System: helps user to monitor and control different contexts (input and output functionality)
- Digital Television as Non-WIMP User Interfaces (based on Green and Chorianpoulos findings):
 - Temporal based nature (Multimedia)
 - Embedded System
 - Hypermedia capabilities

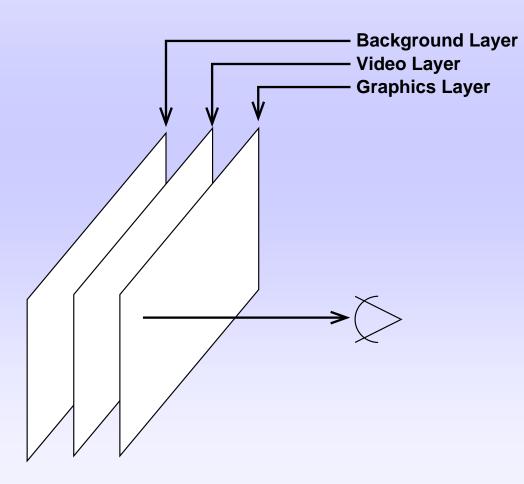
Background: Graphics Architectures (2/3)


Scene Based Architectures

- Can be considered as a subset of windows architectures
- Implies the performance of one task at the time

OrderedGroup (Scene)





Transform2D

(Graphics)

Background: Graphics Architectures (3/3)

- Digital Television Architecture:
 - Three overlapping layers
 - Using transparencies (alpha channel)
 - Background + Video + Graphics
- Graphics Layer:
 - Use of video objects
 - Use of 3D graphics objects
 - Use of 2D graphics objects

Background: Content Formats (1/2)

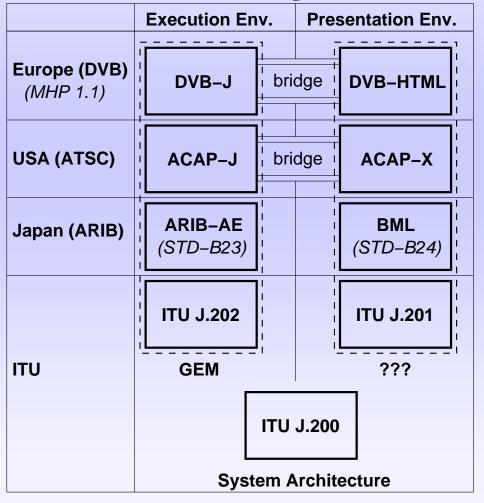
Multimedia (Heller/Purchase)

- Modality: aural and visual
- Nature of the sign: concrete iconic (photorealistic image), abstract iconic (map), symbolic (written word)
- Syntax / Arrangement: spatial and temporal

Interaction (Aleem)

- Passive: only visualization
- Reactive: limited interaction (e.g., Scroll Pane functionality).
- Proactive: choose a path or make selections (e.g., Button).
- Reciprocal: corresponds to user authoring of information

DVD	Broadcast	Web	Interactive	Video	Multimedia	Face-to-Face
טעט	TV	Surfing	TV	Games	Authoring	Communications

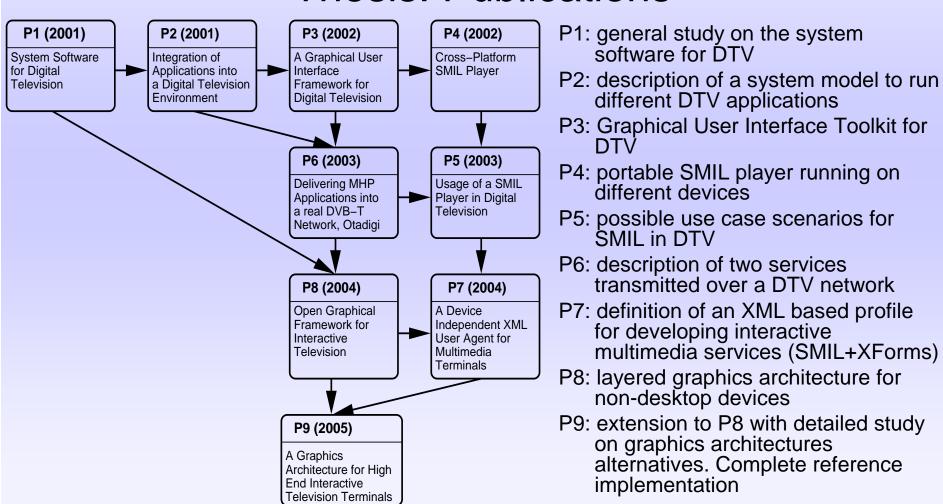

Background: Content Formats (2/2)

Requirements

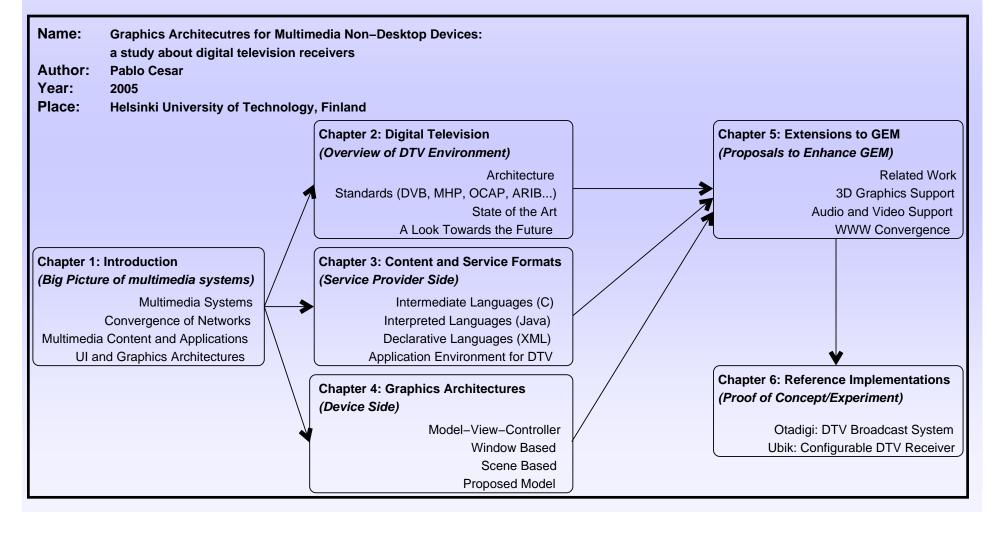
- Supported Media Types: audio, video, text, graphics, and animation
- Arrangement of the signs: spatial and temporal
- Interaction: passive, reactive, proactive, and reciprocal
- Difficulty to use (threshold)
- Expressional power (i.e., ceiling)
- Safety of Distribution
- Interoperability

	Threshold	Ceiling	Interoperability	Safety of Distribution
Procedural Intermediate	+++	+++	+	+
Procedural Interpreted	++	++	++	++
Declarative	+	+	+++	+++

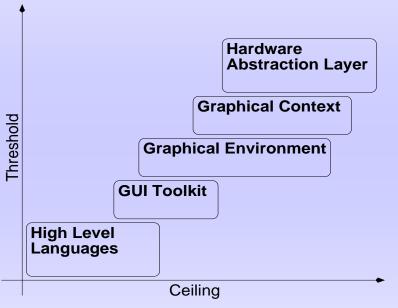
Background: Digital Television


Worldwide Application Environment

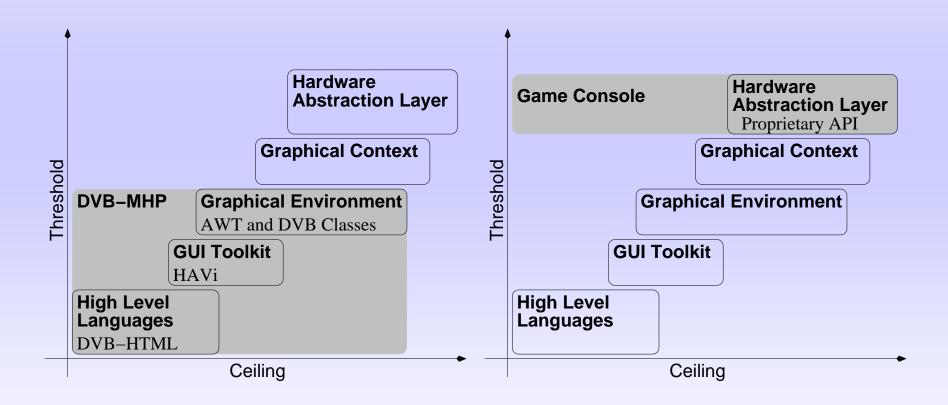
- Procedural Interpreted: GEM (DVB-J)
 - Basic Java (e.g., java.lang)
 - Java TV: applications lifecycle
 - JMF: audio and video
 - HAVi: 2D User Interface
- Declarative: Undecided
 - XHTML: structure of document
 - CSS: look
 - Media types: images, video
 - TV Specific extensions: for example remote control interaction


Research Questions

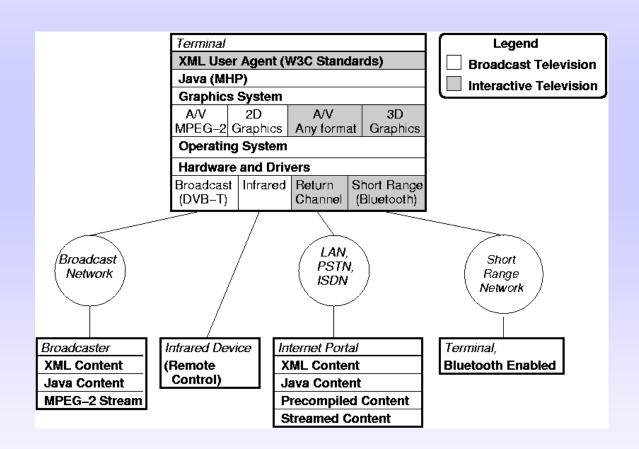
- How Digital Television receivers will technologically evolve?
- 2. Definition of a worldwide application environment for digital television receivers including execution and presentation engines?
- 3. Definition of a valid graphics architecture for Home Media Stations?
- 4. How GEM should graphically evolve to take into account future requirements on time?
- 5. How manufacturers can differentiate their products, following GEM?


Thesis: Publications

Thesis: Introductory Part



Results: Graphics Architecture



- Lack of pointing device
- Usage: One task at the time
- Screen composed of multimedia objects
- Seamless integration of video, 2D and 3D objects
- A layered architecture, so developers can implement at any level
- HAL: renders the final graphics output
- Graphical Context: cross-platform abstraction of the rendering region
- Graphical Environment: means to control different contexts
- GUI Toolkit: "ready-made" user interface widgets
- HLL: to develop simple services

Results: Graphics Architecture Validation

Results: Applicability to Digital Television

Results: Digital Television Profiles (1/2)

Broadcast: Basic

- Requirements:
 - Television usage: sit on the sofa and watch the favourite show at a given time
 - Catch majority of the population
- Proposed profile:
 - Audio Visual Content Digitised
 - Examples: DVB-T/C/S (Europe), ISDB (Japan), ATSC (USA)

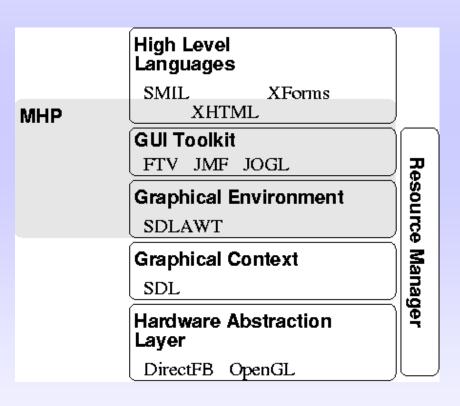
Broadcast: Enhanced

- Requirements:
 - Interactive applications with internal logic
 - Procedural environment: Java
- Proposed profile:
 - DVB-J (as part of GEM, worldwide accepted version of MHP 1.0)

Results: Digital Television Profiles (2/2)

Interactive: Basic

- Requirements:
 - Browse simple XML documents
 - Limited navigation
 - Images, text
- Proposed profile:
 - XHTML + CSS


Interactive: Internet Access

- Requirements
 - Browse XMLCompound Documents(complex)
 - Interactive
 - TemporalSynchronisation
 - Video and audio
- Proposed profile:
 - XHTML 2.0 + Timesheest
 - SMIL + XForms

Interactive: High End

- Requirements
 - Integration of all kinds of multimedia objects
 - Temporal Dimension
- Proposed profile:
 - DVB-J + OpenGL Java Wrappers
 - JMF media player (all kind of formats)

Results: Reference Implementation (Ubik)

- DVB-T reception and visualisation of the A/V stream
- HAL: DirectFB and OpenGL
- Resource Manager: to control the different processes
- Graphical Context: SDL
- Graphical Environment: SDLAWT (java.awt)
- GUI Toolkit
 - FTV: 2D widgets
 - JMF: other video than A/V
 - Java OpenGL: 3D Graphics
- HLL: X-smiles (XHTML, SMIL, XForms)

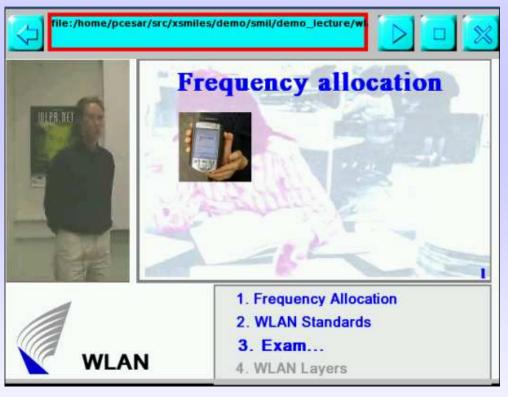
Results: Ubik HAL (1/2)

- Example composition of scenes:
 - 3D graphics object
 - A/V Stream
- Performance
 - Around 60 FPS

Results: Ubik Graphical Context (2/2)

- Example native 3D Graphics
 - Some games downloaded from a portal

Results: Ubik Graphical Environment + GUI Toolkit


- Java Applications
- Profile:
 - Broadcast Enhanced
- Target:
 - Procedural Language
 Applications (internal logic)
- Languages:
 - DVB-J
- Interaction:
 - Colour Buttons
 - HAVi Widgets
- Multimedia Objects:
 - Images/Text
 - Animations
 - Video/audio

Results: Ubik High Level Languages (1/2)

- XML Based Document
- Profile:
 - Interactive Television Basic
- Target:
 - Information Services (e.g., Teletext)
- Languages:
 - XHTML 1.1
- Interaction:
 - Navigation
- Multimedia Objects:
 - Images
 - Text

Results: Ubik High Level Languages (2/2)

- XML Based Document
- Profile:
 - Interactive Internet Access
- Target:
 - Complex Applications (e.g., E-learning Portal)
- Languages:
 - SMIL (or XHTML+Timesheets)
 - XForms
- Interaction:
 - Buttons/Selections...
 - Navigation
- Multimedia Objects:
 - Images/Text
 - Video/Audio

Conclusions

How Digital Television receivers will technologically evolve?	WWW Convergence, Streamed media and 3D graphics
Definition of a worldwide application environment for digital television receivers including execution and presentation engines?	Procedural (GEM), declarative (XHTML, CSS, continuous media objects, TV extensions such as remote control)
Definition of a valid graphics architecture for Home Media Stations?	Five layers proposed model: HAL, Graphical context, Graphical Environment, GUI Toolkit, and HLL
How GEM should graphically evolve to take into account future requirements on time?	GEM procedural extensions (Java bindings of OpenGL), Declarative (XHTML + XForms + SMIL syntax)
How manufacturers can differentiate their products, following GEM?	For example, game console convergence