
Week 1 & 2: The Basics and Some Extensions

Stacey Jeffery

February 10, 2025

These notes cover: building blocks of quantum algorithms (local gates, random access gates, queries);
hidden subgroup problems with applications to factoring and discrete log; phase estimation with
application to search, approximate counting, and amplitude amplification.

1.1 Building Blocks

1.1.1 Problems and Algorithms

We start by describing some details about what a problem is, what an algorithm is, and what it means
for an algorithm to solve a problem. You probably already have some idea of what this means, but
here we review this somewhat more precisely.

Problems

(Decision) Problems A problem is a family of functions Fn : {0, 1}n → {0, 1}m, one for each
n ∈ N, where m is some function of n. We will often leave the “family of” part and the subscript
n implicit, and just let F : {0, 1}n → {0, 1}m define the problem. For example, F = Fn might take
an n-bit integer, and output a binary description of its smallest non-trivial factor. When m = 1, we
call F a decision problem. For example, F might take an n-bit integer and output 1 if and only if its
smallest non-trivial factor is greater than 2n/2−1.

We often restrict our attention to decision problems. These largely capture the general case, since
F : {0, 1}n → {0, 1}m can be described by m decision problems Pi : {0, 1}n → {0, 1} for i ∈ [m], where
F(x) = (P1(x), . . . ,Pm(x)). What this means concretely is that we can compute F by computing m
decision problems. In fact, in quantum algorithms, we can do even better.

Exercise 1.1.1. Fix a problem F : {0, 1}n → {0, 1}m. For any z ∈ {0, 1}m, let Fz : {0, 1}n → {0, 1}
be defined Fz(x) = z ·F(x), where y · y′ :=

∑m
i=1 yiy

′
i. Suppose you can efficiently compute Fz for any

z, which we will model by assuming you have query access to a unitary UF,x on span{|z⟩ : z ∈ {0, 1}m}
that acts as UF,x = (−1)Fz(x)|z⟩. Show how to compute F(x) using a single call to UF,x, and O(m)
additional gates.

Partial Functions A partial function is a function (family) Fn : Dn → {0, 1}m for some Dn ⊊
{0, 1}n. That is, the function is only defined on a domain that is a subset of all possible strings. For
example, the Deutsch-Jozsa algorithm ([DJ92] or [dW19, Chapter 2]) decides if a string x ∈ {0, 1}n
is constant or balanced. That is, it decides DJ : Dn → {0, 1} where Dn is the set of n-bit strings of
Hamming weight (number of 1s) |x| = 0, |x| = n/2, or |x| = n, and

DJ(x) =

{
0 if |x| ∈ {0, n}
1 if |x| = n/2.

For |x| ̸∈ {0, n/2, n}, we do not specify the value of DJ(x), and any algorithm for this problem can
behave arbitrarily on such inputs. Partial functions are also called promise problems, since we are
promised that the input has a certain form. Functions that are not partial, meaning Dn = {0, 1}n for
all n, are called total functions.

1

2

Relations We can also consider problems where there is more than one possible correct output for
a given input. Such a problem is captured by a family of relations (we will often call such a problem
a relation) Rn ⊂ {0, 1}n × {0, 1}m, for each n ∈ N, where m is some function of n. Then a “correct”
output on input x is any y ∈ {0, 1}m such that (x, y) ∈ R. We can generally assume that for all
x ∈ {0, 1}n there exists at least one y ∈ {0, 1}m such that (x, y) ∈ R, as otherwise there is no correct
output on input x, and so our algorithm cannot be expected to find one.

For example, the problem of Searchn – finding i ∈ [n] such that xi = 1 – can be described by the
relation:

{(x, i) ∈ ({0, 1}n \ {0n})× {0, 1}logn : xi = 1} ∪ {(0n,⊥)}.

Algorithms

Quantum Algorithms A quantum algorithm {(Un1 (x), . . . , UnT (n)(x), |ψ
n
0 ⟩,Mn)}n∈N consists of

1. for each x ∈ {0, 1}n, Un1 (x), . . . , UnT (n)(x) is a sequence of input-dependent unitaries on some
finite-dimensional complex inner product space Hn,

2. |ψn0 ⟩ ∈ Hn is an initial state,

3. andMn = {Πny}y∈Yn for some finite set Yn is a final measurement.

We will generally let n and/or the dependence on x be implicit unless we want to emphasize it, writing
U1, . . . , UT , for example. Running the algorithm consists of measuring |ψT (x)⟩ := UT (x) . . . U1(x)|ψ0⟩,
withM, and outputting the measurement outcome Y ∈ Y, which is a random variable distributed as
Pr[Y = y] = ∥Πy|ψT (x)⟩∥2.

The unitaries are generally restricted to be from some set of “basic operations” (otherwise they could
be combined into a single unitary), and then T is some measure of the complexity of the algorithm.
The specifics of this set depend on the precise model of computation. We discuss common choices for
what can count as a “basic operation” in the rest of this section, but as an example, the unitaries
might consist of input-independent gates, and input-dependent queries to x.

We often assume |ψ0⟩ = |0⟩ – by |0⟩ we mean some kind of “neutral” or “ground” state (should be easy
to prepare), which may, for example, represent the all 0s string in anM -qubit space. This assumption
is reasonable, because if we actually want to start in another state, we can simply prepare it from |0⟩
using the first few unitaries, or if it is actually not straightforward to prepare, then it was not a very
reasonable initial state to begin with – in that case we have “hidden” a bunch of computation into
preparation of the initial state.

We often assume that there is some answer register, meaning we can express H as H = CY ⊗H ′, and
that Πy = |y⟩⟨y|⊗IH′ , where IH′ is the identity on H ′. That is, we assume the final measurement just
measures the answer register. This assumption is justified by the fact that any measurement can be
expressed this way up to a change of basis, and if the required change of basis is not straightforward
to implement, then this was not a very reasonable final measurement – in that case we have “hidden”
a bunch of computation in the implementation of the final measurement.

Bounded Error Fix ε ∈ (0, 1/2). We say a quantum algorithm solves a problem F : D → {0, 1}m
with bounded error ε if for all x ∈ D, ∥∥ΠF(x)|ψT (x)⟩

∥∥2 ≥ 1− ε,

that is, on input x, the algorithm outputs F(x) with probability at least 1 − ε. If an algorithm
computes F with bounded error 1/3, we simply say it computes F with bounded error. The choice of
1/3 here is arbitrary, as the following exercise shows.

1.1. BUILDING BLOCKS 3

Exercise 1.1.2. Let ε, ε′ ∈ R be such that 0 < ε′ < ε < 1/2. Assuming ε is constant, but ε′ may
vary in n. Fix a quantum algorithm A that computes a problem F with bounded error ε. Describe and
analyze a quantum algorithm that computes F with bounded error ε′. How many calls to A does your
algorithm use (up to constants)?

Similarly, if R ⊂ {0, 1}n×{0, 1}m is a relation, we say a quantum algorithm computes R with bounded
error ε if for all x ∈ {0, 1}n, if Y is the outcome of the algorithm on input x, which is a random variable
on {0, 1}m, Pr[(x, Y) ∈ R] ≥ 1− ε.

One-sided Error Fix ε ∈ (0, 1). We say a quantum algorithm solves a problem F : D → {0, 1}
with one-sided error ε if for all x ∈ F−1(0),

∥Π0|ψT (x)⟩∥2 = 1,

and for all x ∈ F−1(1),

∥Π1|ψT (x)⟩∥2 ≥ 1− ε.

That is, on input x such that F(x) = 0, the algorithm always outputs 0, and on input x such that
F(x) = 1, the algorithm outputs 1 with probability at least 1 − ε. If an algorithm computes F
with one-sided error 1/3, we simply say it computes F with one-sided error. The choice of 1/3 here
is arbitrary, as in the case of bounded error. We sometimes call bounded error two-sided error, to
emphasize its distinction from one-sided error.

The decision version of Grover’s algorithm, which decides, on input x ∈ {0, 1}n if there exists i ∈ [n]
such that xi = 1, is an example of an algorithm with one-sided error. That’s because it only outputs
1 if some i ∈ [n] is found such that xi = 1. If no such i exists, than none can be found.

Exact and Zero Error A quantum algorithm solves a problem F : D → {0, 1}m exactly if for all
x ∈ D, ∥∥ΠF(x)|ψT (x)⟩

∥∥2 = 1.

The Deutsch-Jozsa algorithm and the Bernstein-Vazirani algorithm are examples of exact quantum
algorithms.

Exact quantum algorithms should not be confused with zero-error quantum algorithms. A zero-error
algorithm for F is an algorithm that never outputs an answer that is not F(x). There are two slightly
different ways of looking at this. We could say that the algorithm is allowed to output some ⊥ symbol
indicating it does not know the answer, with probability at most 1/2, and otherwise, it must output
the correct answer. Alternatively, we could consider algorithms that may run forever, but if they
terminate, they will output F(x). Such algorithms don’t fit into the model we have described here,
since we assume an algorithm always applies T unitaries U1, . . . , UT , before outputting. Quantum
algorithms, like classical algorithms, can also be allowed to have variable running time. These can
be modelled by supposing there is some intermediate measurement applied after each unitary Ut that
outputs a bit indicating the algorithm has halted (and so the answer register should be measured) or
the algorithm has not halted and the next unitary should be applied. For a formal definition of such
algorithms, see [Amb12, Section 3.1] or [Jef22, Section 3].

An example of such an algorithm is Simon’s algorithm [dW19, Chapter 3]. Recall that the algorithm
works by sampling values j ∈ {0, 1}n until a basis for {j : j · s = 0 mod 2} is found. The expected
number of samples needed is O(n), but for any T , there is some finite probability that you have not
found a basis yet after T samples (for example, you may have simply measured the same j T times).

A zero-error algorithm’s running time is a random variable with no upper bound on its support, so
its complexity is measured by the expected running time.

4

Sweeping Errors Under the Rug It is natural to assume quantum algorithms have errors. Even
if we make the (incorrect) simplifying assumption that the hardware is perfect, translations between
quantum gate sets introduce errors, so for example, if you want to compile the Bernstein-Vazirani
algorithm into some specific gate set, the resulting circuit will likely no longer be exact. However, it
is often convenient to pretend a quantum algorithm works perfectly. Exercise 1.1.2 helps us justify
such an assumption. Roughly speaking, if an algorithm has error probability ε, then any setting in
which you call the algorithm o(1/ε) can’t distinguish the algorithm from a perfect one, except with
small probability.

1.1.2 Quantum Gates and Circuits

You learned about gates and circuits in [dW19, Section 2.1.2], but we review some basics and notation
here. Fix an M -qubit space H = H1 ⊗ · · · ⊗ HM where for all i ∈ [M], Hi ≡ C2. A local gate is a
unitary on H that acts as the identity on all but at most 2 of the spaces Hi. The choice of 2 here
is arbitrary: we could have chosen any constant at least 2. Often these are just called gates, but
we emphasize “local” to distinguish them from other operations we will sometimes consider “basic
operations” that are not local. In practice, it is sufficient to restrict attention to a finite gate set,
consisting of a constant number of gate types, applied to all possible choices of qubits. For example,
Clifford+T is a universal gate set including the following gate types:

H :=
1√
2

[
1 1
1 −1

]
, T :=

[
1 0

0 eiπ/4

]
, CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


and sometimes also the redundant gate types:

Z :=

[
1 0
0 −1

]
= T4, P :=

[
1 0

0 eiπ/2

]
= T2, X :=

[
0 1
1 0

]
= HZH.

We can extend these types, which are unitaries acting on 1 or 2 qubits, to act on an M -qubit space,

letting H(i) := I
⊗(i−1)
2 ⊗ H ⊗ I⊗(M−i)

2 be H applied to the i-th qubit (I2 is the identity on a single
qubit) and similarly for other 1-qubit gates; and CNOT(i, j) denote CNOT applied so the control is
on the i-th qubit, and the target on the j-th qubit.

In theory, we don’t usually need to worry about restricting to a particular gate set, since the Solovay-
Kitaev theorem allows us to map between different gate sets (see [dW19, Section 2.2]). This mapping
does introduce some error, so if we are discussing a setting with no error, than the choice of gate set
may actually matter.

In the quantum circuit model, quantum algorithms are made up of gates, and the number, T , of gates
is the (gate) complexity of the algorithm. In this strict model, the input is often part of the initial
state, which does not fit in with our definition of algorithms. However, we can recover this setting by
letting the first n gates be conditional X-gates, Xxi |0⟩ = |xi⟩, applied to the i-th qubit, so that the
first n qubits encode the input.

Quantum Fourier Transforms

We can use local gates to build up more complex computations. One important example of a unitary
that can be implemented with a reasonably small number of local gates is a quantum Fourier transform
– perhaps the most important building block of quantum algorithms. A quantum Fourier transform is
defined with respect to a group G (see Appendix A.1.1). We will restrict our attention to finite Abelian
groups. First, consider a cyclic group of the form ZN = {0, . . . , N − 1} for some positive integer N ,
which is a group under addition modulo N (all finite Abelian groups are isomophic to direct products
of groups of this form). Its quantum Fourier transform QFTZN

acts on span{|x⟩ : x ∈ ZN} as

QFTZN
: |x⟩ 7→ 1√

N

∑
z∈ZN

ωxzN |z⟩,

1.1. BUILDING BLOCKS 5

|x1⟩
|x2⟩
|x3⟩
|0⟩
|0⟩

C

≡
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Xx1

Xx2

Xx3 C

Figure 1.1: A circuit C with the input given on n = 3 wires is equivalent to a circuit with all 0s input
where the first n gates are input-dependent Xxis.

where ωN := e2πi/N is an N -th root of unity. For example, QFTZ2 is just a Hadamard gate, H. More
generally, we have the following:

Theorem 1.1.1. For any N = 2n, QFTZN
can be implemented using O((logN)2) local gates (see

e.g. [dW19, Section 4.5]). Alternatively, for any N , and any constant c, QFTZN
can be approximated

with error 1/(logN)c using O(logN log logN) local gates [HH00].

We can extend this definition to other finite Abelian groups by defining

QFTG1×G2 = QFTG1 ⊗ QFTG2 ,

for any pair of finite Abelian groups G1 and G2. For example, this gives:

QFTZℓ
N
|x⟩ = 1√

N ℓ

∑
z∈Zℓ

N

ωx·zN |z⟩,

where x · z =
∑ℓ

i=1 xizi, and in particular, QFTZℓ
2
= H⊗ℓ.

1.1.3 Quantum Random Access

Classical RAM Quantum circuits can be thought of as the quantum analogue of classical circuits,
for example, circuits that use Boolean AND, OR and NOT gates. This gate set is universal for classical
computation, since any Boolean function can be expressed as a circuit in these gates. Another universal
set of operations is addition and multiplication (over some fixed field). However, when analyzing
classical algorithms, we do not only count these basic operations, it is also standard to allow for
random access memory (RAM) reads and writes. What this means is that if we have a memory of
size M (which may depend on the size of the input), we allow an operation that takes any i ∈ [M],
and returns the i-th entry in the memory. This is often assigned unit cost, but there is actually no
way to implement this in O(1) gates from any set of gates that each acts on O(1) bits (why?).

A more reasonable cost for this gate would be O(logM), because we can imagine having a binary
tree of depth logM , called a random access tree, with a memory cell at each of its M leaves, and a
gate at each internal node at depth j that sends an incoming signal encoding index i ∈ [M] to the
left or right child depending on the j-th bit of i, so it eventually reaches the leaf containing xi, which
is triggered to send this bit back up the tree. Note that the total number of gates in this circuit is
actually O(M), it’s just that only O(logM) of them were actually activated, so the time required is
counted as O(logM).

In classical computing, RAM gates are important, not only for things like accessing the bits of some
large string stored in memory, but also just for very basic computations. For example, you may want
to ADD two bits, stored in memory cells i and j. You can do this with a single ADD gate, but only if
i and j are fixed in advance of the computation. If i and j are values that are stored in memory, based
on computations that have been done so far, then if you want to view the computation as a circuit,

6

you need to first use RAM read gates to move the contents of cells i and j into some fixed cells, say
“1” and “2”, and then apply an ADD gate to these cells, and then replace the contents using RAM
write gates. In this way, conditional operations that we take for granted as basic steps of a classical
computation actually do not fit into the standard circuit model.

Quantum RAM This is similar in quantum computing.

We can define a quantum version of random access read and write gates as follows, where x ∈
{0, 1}M , b ∈ {0, 1}, and i ∈ [M].

READ|i⟩|b⟩|x⟩ = |i⟩|b⊕ xi⟩|x⟩ (1.1)

WRITE|i⟩|b⟩|x⟩ = |i⟩|b⟩|x1, . . . , xi−1, xi ⊕ b, xi+1, . . . , xM ⟩. (1.2)

From this, we can get an important gate called a QRAG:

QRAG|i⟩|b⟩|x⟩ = |i⟩|xi⟩|x1, . . . , xi−1, b, xi+1, . . . , xM ⟩. (1.3)
[1]

Exercise 1.1.3. Show that QRAG can be implemented using 3 calls (total) to READ and WRITE.

As in the case of classical computing, READ, WRITE and QRAG are not local gates – they do not act
trivially on all but a constant number of qubits. If we try to argue that the complexity of implementing
a QRAG is O(log n), we must acknowledge that on a single QRAG call, it is possible that all O(n) gates
in a random access tree are activated in some branch of the superposition (whether this means the cost
should be O(n) is a matter for debate). Attempts to give better architectures for quantum random
access memory [GLM08] have met with criticism about tolerance to errors [AGJO+15], and the debate
about the feasibility continues.

It is not in the scope of this course to decide if implementing such a gate is feasible in practice, but
it is important for us to be aware of the controversy surrounding this type of gate. We can do much
more if we allow QRAGs than without, so we will often use them, but it is important to be clear when
we are working in this model. We must also acknowledge that current quantum computer prototypes
cannot implement QRAGs, so computations that require them are not suitable for near-term quantum
computers. An exception is when the memory is small, as a QRAG can be implemented in O(M) local
gates, but for large memory this is usually unacceptably high.

QCROM A related source of controversy is the feasability of quantum-accessible classical read-only
random access memory. This is memory that can only store a classical string x, but such that we can
query the i-th bit of x, for a superposition of different values i ∈ [M]. That is, we can implement a
gate like that in (1.1), with the difference that we assume that the second register contains a classical
string x, and not a superposition, so effectively, we assume that if x is stored in QCROM, we can
implement the x-dependent map

|i⟩|b⟩ 7→ |i⟩|b⊕ xi⟩,

also on superpositions of different |i⟩|b⟩. In the past this type of memory has been referred to as
QRAM, but we call it QCROM to make the distinction from quantum memory with random access
gates, and to emphasize that the classical string x is read only. The additional controversy surrounding
this model is that in some previous work, a QCROM of size M has been equated with a regular
classical memory of size M , along with logM qubits, and so quantum computations that use just a
small quantum memory, in addition to a very large QCROM, have been described as having a small
quantum memory and large classical memory, which is not entirely accurate. While there is reason to
believe QCROM is easier to implement than fully quantum memory – it need only store a classical
state, so, for example, error correction should be easier – it is certainly harder to implement than
fully classical memory, as evidenced by the fact that we do not currently know how to make scalable

1.1. BUILDING BLOCKS 7

QCROM. In fact, as far as I am aware, there is currently no implementation of QCROM that requires
fewer resources than fully quantum memory.

Again, it is not in the scope of this course to work out the precise difficulty of building QCROM, but
it is important for us to be clear about which model our results are in, in order to be precise about
resource requirements of our algorithms.

Select Operators An important use of random access memory that we take for granted in classical
computation is the ability to read a program stored in memory, and decide what computation to
perform. Concretely, we often assume we can look up (or perhaps efficiently compute) what to do
at the t-th step of computation – this may be an instruction like ADD(i, j), meaning add the bit at
memory location i into the bit at memory location j.

Analogously, we may use quantum random access gates to implement a select operator.

A select operator for unitaries U1, . . . , UT is the unitary

Uselect =

T∑
t=1

|t⟩⟨t| ⊗ Ut (1.4)

that conditionally applies one of the T different unitaries. [2]

Note that this also allows us to apply different unitaries in different branches of a superposition, which
we could view as a quantum analogue of doing different classical operations based on some random
choice. The complexity of a select operator in the strict quantum circuit model (i.e. in local gates)
is generally the sum of the (local) gate complexities of all the Ut. That’s because a circuit for Uselect

consists of a sequence of T circuits, for t = 1 to T , where the circuit for Ut is implemented in the
second register, controlled on the first register containing t. This is certainly not how we generally
count costs in classical computation: if we apply one of T classical computations conditioned on the
value of some register, the cost we incur is the maximum cost of any of the T computations. We can
achieve something similar in the quantum case, if we allow random access gates.

Exercise 1.1.4. Fix unitaries U1, . . . , UT on C2M such that for each t ∈ [T], Ut = Gℓ(i, j) where Gℓ
is from a constant-sized set of 1- and 2-qubit gate types, {Gℓ}cℓ=1, and i, j ∈ [M] indicate the qubits to
which Gℓ is applied (j is ignored if Gℓ is a 1-qubit gate). Suppose there is an oracle that indicates the
gate type and wires for each t. That is, we can implement a unitary V that acts, for all t ∈ [T], as:

|t⟩|0⟩|0⟩|0⟩ 7→ |t⟩|ℓ⟩|i⟩|j⟩

where Ut = Gℓ(i, j). Show how to implement Uselect as in (1.4) using O(1) calls to V , QRAGs, and
local gates.

As a corollary, if we allow QRAGs, then we can efficiently implement Uselect for gates U1, . . . , UT
from a finite gate set, if either of the following is true:

� Descriptions of Ut (gate type and location) are stored in QCROM; or

� descriptions of Ut (gate type and location) are efficiently computable from t. [3]

This is similar to conditions needed to be able to run a classical subroutine in a standard classical
computer.

1.1.4 Oracles and Quantum Query Complexity

Another basic operation from which we will build up algorithms is an oracle, also called a query
operator. Although oracles may be general unitaries (or even non-unitary operators), we will usually

8

assume they have one of the following specific forms. Fix a function f : {0, 1}n → {0, 1}. Then there
are two natural ways of encoding f in an oracle. We let Of be a standard oracle for f , which acts on

span{|x⟩|b⟩ : x ∈ {0, 1}n, b ∈ {0, 1}}

as
Of : |x⟩|b⟩ 7→ |x⟩|b⊕ f(x)⟩,

and we let O±
f be a phase oracle for f , which acts on

span{|x⟩ : x ∈ {0, 1}n}

as
O±
f : |x⟩ 7→ (−1)f(x)|x⟩.

Note that the phase oracle itself cannot be used to distinguish between a function f and its complement
1− f , in which every output bit is flipped, because Of and O1−f = −Of are identical up to a global
phase. We will assume that we can also implement a controlled phase oracle cO±

f which acts as

cO±
f : |b⟩|x⟩ = (−1)bf(x)|b⟩|x⟩.

More generally, if f : {0, 1}n → {0, 1}m, its standard oracle may be defined by the action Of |x⟩|y⟩ =
|x⟩|y ⊕ f(x)⟩, where now y ∈ {0, 1}m, and ⊕ denotes bitwise xor. For the phase oracle, if we let
O±
f |x⟩ = (−1)f(x)|x⟩ (interpreting f(x) as an integer), then it actually only depends on the parity of

each f(x), so we are throwing away a large part of f . Instead, a general analog of the controlled phase
oracle can be defined defined:

cO±
f : |y⟩|x⟩ 7→ (−1)y·f(x)|y⟩|x⟩,

where y ∈ {0, 1}m. Alternatively, we could also define Of |x⟩|y⟩ = |x⟩|y + f(x)⟩, where we interpret
y and f(x) as m-bit integers, and addition is modulo 2m; and similarly, we could define cO±

f |y⟩|x⟩ =
ω
yf(x)
2m .

In the following exercise, you will show that it doesn’t really matter which type of query we consider,
standard or phase, as they can be used to implement one another.

Exercise 1.1.5. Let G = ZN1 × · · · × ZNd
be a finite Abelian group, and f : {0, 1}n → [|G|]. Let

OG,f be defined by the action OG,f |x⟩|y⟩ = |x⟩|y + f(x)⟩, where y ∈ G, we interpret f(x) as an
element of G, and + denotes the group operation. Let cO±

G,f be defined by the action cO±
G,f |x⟩|y⟩ =

ω
y1f(x)1
N1

. . . ω
ydf(x)d
Nd

|x⟩|y⟩, where y = (y1, . . . , yd) ∈ G, and we interpret f(x) = (f(x)1, . . . , f(x)d) as

an element of G (for example, if d = m and N1 = · · · = Nd = 2, cO±
G,f |x⟩|y⟩ = (−1)y·f(x)|x⟩|y⟩).

1. Show that OG,f can be implemented using one call to cO±
G,f and one application each of QFTG

and its inverse.

2. Show that cO±
G,f can be implemented using one call to OG,f and one application each of QFTG

and its inverse.

Oracles as Input We often use an oracle as a way of abstracting the input to a problem. An
important example is oracular search, which is the problem solved by Grover’s algorithm, defined as
follows:

Problem: Search2n

Input: An oracle Of for f : {0, 1}n → {0, 1}.
Output: 1 if there exists i ∈ {0, 1}n such that f(i) = 1, and 0 else.

1.1. BUILDING BLOCKS 9

Here f is the input (given by an oracle), not the problem to be solved, which is sometimes confusing.
We could equivalently consider the input to be a string x ∈ {0, 1}N where N = 2n (so [N] ≡ {0, 1}n),
and for each i ∈ [N], xi takes the place of f(i). Either way, by abstracting the input as we have done,
this problem can model multiple settings, including:

1. The input is a string x that is actually stored in memory somewhere, in which case, Of can be
implemented using a random access read, READ as in (1.1).

2. The input is some function f that is described in some way (we have abstracted away the details)
that makes it easy to compute f(i) for any i. For example, if f is described by a formula on n
bits, then oracular search decides if there is a satisfying assignment. Or if there is some string
z ∈ [q]N stored in random access memory, we could define f : {0, 1}2 logN → {0, 1} so that
f(i, j) = 1 if and only if zi = zj , and then oracular search on input f decides a problem called
element distinctness.

Another example is when the input to a problem is a graph, and we want to decide some property
of the graph. There are multiple possible ways we could be given a graph as input. We could, for
example, assume we have an oracle OG that acts as OG|u, i⟩|0⟩ 7→ |u, i⟩|fu(i)⟩, where fu(i) ∈ V is the
i-th neighbour of the vertex u in G. This implicitly assumes we have some way of efficiently computing
this, either because of some nice structure in G, or because G is simply given as an array of n arrays
of neighbours.

Quantum Query Complexity For any problem, F : {0, 1}N → {0, 1}m, we can view its input as
an oracle Ox|i⟩|b⟩ = |i⟩|b ⊕ xi⟩ for some x ∈ {0, 1}N , and consider algorithms for F whose unitaries
Ut are restricted to being either: (1) an oracle query Ut = Ox; or (2) an input-independent unitary –
we call this a quantum query algorithm. If we don’t impose any restrictions on the input-independent
unitaries, then without loss of generality, we may assume that the oracle queries are exactly those Ut
for which t is even. Then the number of oracle queries made by the algorithm is T/2, and we call this
the query complexity of the algorithm.

We can define the bounded-error quantum query complexity of F, Q(F) as the minimum query com-
plexity of any quantum query algorithm that computes F with bounded error. We can define similar
quantities for one-sided error, or exact algorithms, but the bounded-error case is the most standard.

Quantum query complexity is studied in part because it is much easier to only count queries than to
count every operation, but results in query complexity can also be meaningful. For example, a lower
bound on Q(F) is also a lower bound on the total number of operations (time complexity) required
to compute F. While the time complexity – in which we count all basic operations, not just queries
– and query complexity can differ by a lot (the quantum query complexity can never be more than
the input size), for certain problems they are very close. Moreover, while upper bounds on quantum
query complexity are not meaningful in practice, since they say nothing about the time complexity, it
has often been the case that query upper bounds have been the first step to showing more practically
meaningful upper bounds on time complexity.

Oracles Abstracting Subroutines Oracles are different from other gates, in that, not only are
they not generally local, we don’t always assume they can be implemented as a “basic” operation.
Rather, we sometimes use an oracle Of to abstract away the details of some subroutine computing
f . It may be that the cost of this subroutine is not negligible, but we want to consider it as a single
operation so that we don’t have to think about its details. In that case, to obtain the true complexity,
we need to account for this cost. Naively, this means counting every application of Of as T , if T is
the complexity of the subroutine, however, we can sometimes do better. For example, if Of is applied
to a state

√
1− α2|0⟩|ψ0⟩ + α|1⟩|ψ1⟩ controlled on the first qubit, then this need only cost |α|2T – a

fact that is not at all obvious. A corollary is that if we apply
∑

i |i⟩⟨i| ⊗ O(i) to a state
∑

i αi|i⟩|ψi⟩,
where Ti is the complexity of O(i), the cost is the average

∑
i |αi|2Ti (see [Jef22, BJY23]).

10

2.1 Hidden Subgroup Problems

In this section, we will study one of the earliest and most important quantum algorithms, which
solves the hidden subgroup problem – actually a type of problem, parametrized by a family of groups
– for Abelian groups. This section requires some basic group theory, which you can also find in
Appendix A.1.1. Parts of this section borrow heavily from [dW19, Chapter 6].

2.1.1 Period Finding

Before looking at the general case, let us review an algorithm for a problem you have probably seen
before: period finding. In fact, you may recall from [dW19, Chapter 5] that factoring can be reduced
to period finding, which is solved by the main quantum subroutine in Shor’s algorithm.

The period of a function f on the additive group ZN (the integers modulo N) is the smallest positive
integer r such that f(x) = f(x+ r) for all x ∈ ZN (in other words, f repeats every r steps. Note that
this is always true for r = N , since x and x + N are the same element of ZN , r can also be smaller
than N .

Exercise 4.1. What are the possible values of the period r of a function on ZN?

We will call a function f on ZN one-to-one-periodic if it is one-to-one on the set {0, . . . , r− 1}, where
r is the period (that is, it takes r distinct values, and then repeats the sequence. For such a function,
we have:

f(x) = f(x′)⇔ ∃h ∈ Z s.t. x− x′ = hr.

Problem: PeriodN

Input: An oracle Of for a one-to-one-periodic function f : ZN → S for some finite set S.
Output: The period r of f .

The group ZN is a cyclic group, meaning it is generated by a a single element. Any cyclic group of
size N is isomorphic to ZN . By Lagrange’s theorem (see Appendix A.1.1), any subgroup H of ZN
must be of a size that divides N . In particular, we have for any M ≤ N such that M |N , the set

{0,M, 2M, . . . , N −M}

is a subgroup of ZN of size N/M , and all subgroups have this form.

Algorithm 1. Period Finding

1. Initialize two registers of dimension N and |S| to |0⟩|0⟩.
2. Apply QFTZN

to the first register to get 1√
N

∑N−1
z=0 |z⟩|0⟩.

3. Apply Of to get 1√
N

∑N−1
z=0 |z⟩|f(z)⟩.

4. Measure the second register to get some value y ∈ S, and the remaining state
1√
N/r

∑N/r−1
h=0 |x+ hr⟩ for some x.

5. Apply QFTZN
, and then measure and output the result.

Lemma 2.1.1. Algorithm 1 outputs a uniformly random element of {0, N/r, 2N/r, . . . , (r − 1)N/r}.

2.1. HIDDEN SUBGROUP PROBLEMS 11

Proof. Upon measuring y ∈ S in step 4, the remaining state is proportional to:∑
z∈ZN :f(z)=y

|z⟩.

Let x ∈ ZN be such that f(x) = y (we know such an x exists, or we would not have measured y).
Then the z : f(z) = y are precisely those z such that x− z = hr for some integer h. Thus, the state
remaining is (now we write it with normalization):

1√
N/r

N/r−1∑
q=0

|x+ hr⟩,

as claimed. Applying QFTZN
, we get:

QFTZN

1√
N/r

N/r−1∑
h=0

|x+ hr⟩ =
√

r

N

N/r−1∑
h=0

1√
N

N−1∑
z=0

ω
z(x+hr)
N |z⟩

=

√
r

N

1√
N

N/r−1∑
h=0

N−1∑
z=0

ωzxN ω
zhr
N |z⟩

=

√
r

N

1√
N

N−1∑
z=0

ωzxN

N/r−1∑
h=0

ωzhrN

 |z⟩.
Suppose z ∈ ZN is such that N

r |z. Then N |zr, so N |zrh for all h, and so

ωzhrN = e2πizhr/N = (e2πi)zrh/N = 1,

which implies
N/r−1∑
h=0

ωzhrN = N/r.

On the other hand, suppose N
r does not divide z. Then you will show in Exercise 4.2 that

N/r−1∑
h=0

ωzhrN =

N/r−1∑
h=0

ωzhN/r = 0.

Thus

QFTZN

1√
N/r

N/r−1∑
h=0

|x+ hr⟩ =
√

r

N

1√
N

r−1∑
z′=0

ω
z′(N/r)x
N (N/r)|z′(N/r)⟩ = 1√

r

r−1∑
z′=0

ωz
′x
r |z′(N/r)⟩.

Since |ωz′xr | = 1, these do not impact the measurement statistics, so measuring this state yields a
uniformly random element of {0, N/r, 2N/r, . . . , (r − 1)N/r}.

Exercise 4.2. Let M and z be positive integers such that M does not divide z. Show that

M−1∑
h=0

ωzhM = 0.

Hint: You can write z =Mq + ℓ for some integers q and ℓ such that ℓ ∈ {1, . . . ,M − 1}.

12

Running a single iteration of Algorithm 1 doesn’t fully solve the period finding problem. If you obtain
a single value kN/r = (2k)N/(2r), you cannot distinguish between period r, and period 2r. However,
given a small number of samples, we can recover a value that is the correct period with high probability.
We discuss the high-level idea. Suppose you first measure kN/r, from which you can recover a1 = r/k.
Note that a1|N since r|N . Then you have narrowed down the value of r to all the multiples of a1:

r ∈ {a1, 2a1, . . . , N − a1} = K1,

which is a subgroup of ZN . Suppose we measure a second value k′N/r to get a second a2 = r/k′.
Then we have narrowed down

r ∈ {a1, 2a1, . . . , N − a1} ∩ {a2, 2a2, . . . , N − a2} = K1 ∩K2.

The intersection of two subgroups is also a subgroup, and in this case,

K1 ∩K2 = {ℓ, 2ℓ, . . . , N − ℓ}

where ℓ is the least common multiple of a1 and a2. If K1 ⊆ K2, which happens precisely when a1 is a
multiple of a2, then K1 ∩K2 = K1, and so a2 was not helpful at all. Otherwise, K1 ∩K2 is a proper
subgroup of K1, meaning |K1 ∩K2| < |K1|. By Lagrange’s theorem, |K1 ∩K2| must divide |K1|, and
so |K1 ∩K2| ≤ 1

2 |K1|. Thus, we have divided the set of possibilities for r in half. After a logarithmic
number of such moves, we will end up with

K1 ∩K2 ∩ · · · = {r, 2r, . . . , N − r},

which will never get any smaller, and from which we can recover r. We make this more precise for a
more general case in the proof of Lemma 2.1.8.

2.1.2 Hidden Subgroup Problems

We have just seen how quantum algorithms can find periodic structure over cyclic groups. A one-to-
one-periodic function over ZN with period r identifies the subgroup ⟨r⟩ = {0, r, 2r, . . . , N − r} with a
single value, f(0) – we can think of this as a colour – and for each shift of the subgroup ⟨r⟩,

a+ ⟨r⟩ := {a, r + a, 2r + a, . . . , N − r + a},

f assigns a distinct colour.

Not all groups are cyclic. However, for any subgroup H of any group G, H induces a generalization
of this periodic structure, with shifts of H (called cosets) forming the entire group. For any subgroup
H of G, and g ∈ G, the coset g +H is the set:

g +H := {g + h : h ∈ H}.

It is not difficult to see that for all g ∈ G, |g +H| = |H|.

Exercise 4.3. Let H be a subgroup of G, and g, g′ ∈ G. Show that if g − g′ ∈ H, g +H = g′ +H,
and otherwise, g +H and g′ +H are distinct.

What Exercise 4.3 says is that the distinct cosets of H form a partition of G into |G|/|H| disjoint sets
of size |H|. This is illustrated in Figure 2.2. Hidden subgroup problems generalize period finding from
cyclic groups to this more general structure.

Hidden subgroup problems are parametrized by a family of groups. For a family of groups G, the
associated hidden subgroup problem is defined:

2.1. HIDDEN SUBGROUP PROBLEMS 13

Figure 2.2: On the left, the group Z20, and the subgroup H = ⟨4⟩, shown with all its shifts. On the
right, a general group and subgroup induces a similar partition of G into the shifts of H.

Problem: HspG

Input: An oracle Of for f : G → S for some finite set S, with the promise that there is a subgroup
H of G such that f(x) = f(y) if and only if x+H = y+H. That is, f takes a distinct value on
each coset of H.

Output: A set of generators for H⊥.

At first glance, it would have been more natural to output a set of generators for H. However, given a
set of generators for H⊥ (which is what our algorithm will naturally find), it is possible to efficiently
compute a set of generators for H, using standard linear algebra techniques; we will see this in specific
applications.

Before we discuss quantum algorithms for this problem, an important question is how hard the problem
is for classical computers. This depends on G, but we have the following (see [Chi21, Theorem 5.1]):

Theorem 2.1.2. Suppose G has a set of K subgroups whose only common element is the identity.
Then the randomized query complexity of HspG is Ω(

√
K).

Note that there are groups G for which HspG is easy for a classical computer. For example, when p
is prime Zp only has two subgroups, {0} and Zp itself, and a classical algorithm can easily distinguish
these two cases. Some instances of note that are easy for a quantum computer and believed to be
hard classically are mentioned in Section 2.1.5, Section 2.1.6 and Section 2.1.7.

Exercise 2.1.1. Describe a classical algorithm for HspG when G = Z2n for some n ∈ N that uses
only poly(n) queries to Of .

Exercise 2.1.2. What are the possible sizes of S in the definition of HspG?

We will soon see an efficient quantum algorithm for HspG whenever G is Abelian. First, we need some
concepts from representation theory, which studies symmetries (patterns) in groups.

2.1.3 Representations

A representation of a group G (see Appendix A.1.1) is a map ρ : G→ GLn(C), where GLn(C) is
the set of invertible linear transformations of Cn (also called the general linear group), such that
for all g, g′ ∈ G, ρ(g + g′) = ρ(g)ρ(g′) [4]

(i.e., ρ is a group homomorphism). If n = 1 (so GLn(C) = C), then ρ is called a character.

14

Character: representation χ : G→ C[5]

We usually use the letter χ for characters. For any character χ of G and g ∈ G, we must have

|χ(g)| = 1, since |χ(gk)| = |χ(g)|k for all k ∈ Z. Also, since a character χ of G is also a group
homorphism when restricted to any subgroup H of G, its restriction to H is a character of H.

Example 2.1.3. For any G, the map χ : G→ C defined χ(g) = 1 for all g ∈ G is a character.

Example 2.1.4. Let G = ZN for an even number N , and define χ(g) = (−1)g. Then χ is a character.

Example 2.1.5. Let G = ZN for any N ∈ N, and define χ(g) = ωgN = e2iπg/N . Then χ is a character.

We let Ĝ denote the set of all characters of G, which is a group under pointwise multiplication:
(χ · χ′)(g) = χ(g)χ′(g). We call Ĝ the dual group.

Dual group: Ĝ = {χ : χ is a character of G},
a group under pointwise multiplication (χ · χ′)(g) = χ(g)χ′(g)[6]

Suppose G = ZN1 × · · · × ZNℓ
is a finite Abelian group, and as usual, let ωNj = e2iπ/Nj be an Nj-th

root of unity. For any g = (g1, . . . , gℓ), x = (x1, . . . , xℓ) ∈ G, let

χg(x) = ωg1x1N1
. . . ωgℓxℓNℓ

, (2.5)

from which it is immediate that χg(x) = χx(g). Then it is easy to verify that χg is a character.

Exercise 2.1.3. Show that for any g ∈ G = ZN1 × · · · × ZNℓ
, χg as defined in (2.5) is a character

of G.

Moreover, it turns out all characters have this form:

Ĝ = {χg : g ∈ G},

and for all g, g′, x ∈ G, χg(x)χg′(x) = χg+g′(x), so the map g 7→ χg is a group isomorphism from G to

Ĝ. Referring to Section 1.1.2, we can see that

for any finite Abelian group G, we have QFTG|g⟩ = 1√
|G|

∑
h∈G χg(h)|h⟩ =: |χg⟩[7]

It is easy to verify that the characters {|χg⟩}g∈G form an orthonormal basis, which is necessary and
sufficient for QFTG to be unitary.

For a character χ ∈ Ĝ, define its kernel:

kerχ = {g ∈ G : χ(g) = 1}[8]

Finally, for a subgroup H of G, define

H⊥ = {χg : χg(h) = 1 for all h ∈ H}[9]

We can show a correspondance between the elements of H⊥ and the cosets of H, to prove the following.

Lemma 2.1.6. |H⊥| = |G|
|H| .

2.1. HIDDEN SUBGROUP PROBLEMS 15

Proof. Let ϕ be the map from H⊥ to cosets of H, defined by mapping χg to the coset g+H. We will
show that this map is a bijection, establishing the claim in the lemma statement, since the cosets of
H are a partition of G into |G|/|H| disjoint sets.

Let χg, χg′ ∈ H⊥ for distinct g and g′. Then for all h ∈ H,

1 = χh(g)χh(g
′)−1 = χh(g − g′).

If this is true for g − g′ ∈ H, then this would imply g − g′ is the identity, but that is a contradiction,
since g and g′ are distinct. Thus g−g′ ̸∈ H, meaning g+H and g′+H are different cosets, establishing
that ϕ is injective. We leave it as an exercise to establish that every coset x+H contains some g such
that χg ∈ H⊥, proving that ϕ is surjective.

2.1.4 Quantum Algorithm for Abelian Hidden Subgroup

When G is Abelian, there is an efficient quantum algorithm for HspG. The following algorithm was
first described by [Kit96] and worked out further by [ME98].

Algorithm 2. Dual character

1. Initialize two registers of dimensions |G| and |S| to |0⟩|0⟩.
2. Apply QFTG to the first register to get 1√

|G|

∑
g∈G |g⟩|0⟩.

3. Apply Of to get 1√
|G|

∑
g∈G |g⟩|f(g)⟩.

4. Measure the second register to get some value y ∈ S, and the remaining state

|x+H⟩ := 1√
|H|

∑
h∈H |x+ h⟩ where x is any value in f−1(y).

5. Apply QFTG, and then measure, to get some g, and output χg.

We can implement QFTG inO(log2 |G|) local gates, so the total complexity of Algorithm 2 isO(log2 |G|)
local gates, plus a single query to Of .

Lemma 2.1.7. Algorithm 2 outputs a uniformly random element of H⊥.

Proof. Upon measuring y ∈ S in step 4, the remaining state is proportional to:∑
g∈G:f(g)=y

|g⟩.

By assumption on f , {g ∈ G : f(g) = y} is a coset of H, so for any x ∈ G : f(x) = y, that coset can
be written x+H, so we are left with the state |x+H⟩, as claimed. Applying QFTG, we get:

QFTG|x+H⟩ = 1√
|H|

∑
h∈H

1√
|G|

∑
z∈G

χx+h(z)|z⟩

=
1√
|H||G|

∑
h∈H

∑
z∈G

χx(z)χh(z)|z⟩

=
1√
|H||G|

∑
z∈G

χx(z)

(∑
h∈H

χh(z)

)
|z⟩.

Suppose χz ∈ H⊥. Then χz(h) = 1 for all h ∈ H, so χh(z) = 1 for all h ∈ H, and so:∑
h∈H

χh(z) = |H|.

16

On the other hand, suppose χz ∈ Ĝ \H⊥. We have that χz restricted to H is a character of H, and
since it is not in H⊥, its restriction to H is not the character that takes value 1 on all of H, and so it
must be orthogonal to this character, meaning:∑

h∈H
χh(z) =

∑
h∈H

χz(h) = 0.

Thus:

QFTG|x+H⟩ = 1√
|H||G|

∑
z∈G:χz∈H⊥

χx(z)|H||z⟩ =

√
|H|
|G|

∑
z∈G:χz∈H⊥

χx(z)|z⟩.

Since |χx(z)| = 1 for all x and z, measuring this state yields a uniformly random z ∈ G such that
χz ∈ H⊥.

When we find some χg ∈ H⊥, we have narrowed down the possibilities for H, because we know that
H must be a subset of

ker(χg) = {g′ ∈ G : χg(g
′) = 1}.

If we find sufficiently many elements of H⊥, then H is just the intersection of their kernels. This is
the idea behind the following algorithm.

Algorithm 3. Abelian HSP

1. L← ∅.
2. Repeat 4 log |G| times:

(a) Call Algorithm 2 to obtain χ, and add it to L.
3. Output L.

Since Algorithm 2 uses O(log2 |G|) local gates and queries, Algorithm 3 uses O(log3 |G|) local gates
and queries.

Lemma 2.1.8. Let KL =
⋂
χ∈L ker(χ). After 4 log |G| repetitions in Algorithm 3, KL = H with

probability at least 1− |G|−
1

2 ln(2) ≈ 1− |G|−0.72.

Proof. Suppose KL ̸= H. Then H is a proper subgroup of KL, so |H| < |KL|. By Lagrange’s theorem
(see Appendix A.1.1), |H| divides |KL|, so |H| ≤ |KL|/2. Since |H⊥| = |G|/|H|, the probability that
the next uniformly sampled χ ∈ H⊥ is such that KL ⊆ kerχ – i.e., is in K⊥

L – is:

|K⊥
L |

|H⊥|
=
|H|
|G|
|K⊥

L | =
|H|
|G|
|G|
|KL|

≤ 1

2
.

Thus, with probability at least 1/2, we sample χ such that |KL ∩ ker(χ)| < |KL|, and then, again
by Lagrange’s theorem, |KL ∩ ker(χ)| ≤ |KL|/2. Thus, each time we add an element to L, with
probability at least 1/2, we reduce the size of KL by at least 1/2. The number of times this occurs
is a binomial random variable (see Appendix A.1.2) B(k, p) with k = 4 log |G| samples, and success
probability p ≥ 1/2, so by Hoeffding’s inequality (see (A.12)), the probability that there are at least
z = log(|G|/|H|) successes is at least:

1− e−2k(p−z/k)2 ≥ 1− e−2k
(

1
2
− log |G|−log |H|

4 log |G|

)2

≥ 1− e−2k
(

1
2
− log |G|

4 log |G|

)2

≥ 1− e−2k(1
4)

2

= 1− e−k/8 = 1− e−
1
2
log |G| = 1− e−

1
2

ln |G|
ln 2 = 1− |G|−

1
2 ln(2) .

2.1. HIDDEN SUBGROUP PROBLEMS 17

2.1.5 Application to Factoring

Kitaev’s algorithm for Abelian HSP was inspired by Shor’s factoring algorithm, which follows as a
special case. Recall from [dW19, Chapter 5] how factoring can be reduced to period finding, which
we also saw in Section 2.1.1, and which is a special case of Hsp. If M (called N in [dW19] is the
number we want to factor, then Z∗

M is a cyclic group of order N = ϕ(M) (see Appendix A.1.1), so
it’s isomorphic to ZN . If gcd(x,M) = 1, then in order to factor, we want to find the period of the
function f(a) = xa mod M . Since f is efficiently computable, by repeated squaring, we can efficiently
implement Of .

Note that we have no guarantee that xa mod M is one-to-one on its period. Nonetheless, using the
method of continued fractions, it is still possible to recover the period using samples from Algorithm 1.
See [dW19, Section 5.4] for details.

Exercise 2.1.4. Let G and f be as above, and let H = ⟨r⟩. Show that for any a, b ∈ Zϕ(M), f(a) = f(b)
if and only if a− b ∈ H. Thus f hides H.

We have

H⊥ = {χg : g ∈ Zϕ(M), χg(h) = 1, ∀h ∈ ⟨r⟩}

= {χg : g ∈ Zϕ(M), e
2πigh/ϕ(M) = 1, ∀h ∈ ⟨r⟩}

= {χg : g ∈ Zϕ(M), e
2πigcr/ϕ(M) = 1, ∀c ∈ Z}

= {χg : g ∈ Zϕ(M), gr = 0 mod ϕ(M)},

which is the set of integer multiples of ϕ(M)/r. By taking the GCD of a small number of samples
from this set, we can recover ϕ(M)/r, from which we can recover r, assuming ϕ(M) is known.

Recall that in the setting of factoring, we are given M , but we do not know ϕ(M) (in many cases,
computing ϕ(M) is as hard as factoring M). This means that we actually cannot run Algorithm 2 as
stated, because we can’t implement QFTZϕ(M)

without knowing ϕ(M). The solution is to instead use

QFTZq for q ≈ M2. This is precisely what you have seen in Shor’s algorithm ([dW19, Chapter 5]),
and the following exercise asks you to put this in the language of Hsp.

Exercise 2.1.5. Let q = 22 logM . Prove that by running Algorithm 2 a small number of times,
using QFTZq instead of QFTZϕ(M)

(with f(a) = xa mod M), you can recover the period r of x with
probability at least 2/3.

2.1.6 Application to Discrete Log

Another number theoretic problem whose hardness is the basis of important and widely used cryptosys-
tems, such as Diffie-Hellman [DH76], is the discrete log problem. For a family of cyclic multiplicative1

groups C, the associated discrete log problem is

Problem: DlogC

Input: g,A ∈ C such that ⟨g⟩ = C
Output: a ∈ Z such that ga = A.

The condition ⟨g⟩ = C means that g is a generator of C. A cyclic group is precisely a group that
can be generated by a single element, so such a g must exist. It is generally believed that no classical
algorithm can solve this problem in poly(logN) time, where N = |C|, with the best known classical
algorithm requiring 2Θ(

√
logN) time.

1This just means we write the group operation as a multiplication: gh instead of g + h.

18

Shor’s original paper on quantum factoring also described how to solve discrete log (this application
apparently came first), and it also follows as a case of Abelian Hsp, as follows.

Let G = ZN × ZN , and f : G→ C be defined f(x, y) = gxA−y = gxg−ya.[10]

Note that f is efficiently computable by repeated squaring, meaning we can efficiently implement Of .
Then we have:

f(x1, y1) = f(x2, y2)

⇔ gx1−y1a = gx2−y2a

⇔ x1 − x2 = (y1 − y2)a mod N since C = ⟨g⟩ = {g0, g1, . . . , gN−1}.

This is satisfied precisely when y1 − y2 = q for some q ∈ ZN , and x1 − x2 = qa; that is,

(x1, y1)− (x2, y2) = (qa, q).

Thus f hides the subgroup H = ⟨(a, 1)⟩[11]

and so finding the unique generator is equivalent to finding a. More than that, we have the following:

Exercise 2.1.6. Let H = ⟨(a, 1)⟩ ⊂ ZN × ZN , as above. Show that H⊥ = {χ(c,−ac) : c ∈ ZN}.

Thus, even just sampling one element ofH⊥, as is done in Algorithm 2, is sufficient to solveDlog(g,A),
as long as c is invertible in ZN , which happens precisely when c and N are coprime. This happens

with probability at least ϕ(N)/N = Ω
(

1
log logN

)
, where ϕ is Euler’s totient.

2.1.7 Further Directions

Algorithm 3 for HspG over finite Abelian groups can also be extended to infinite Abelian groups, such
as R, where it can be used to give a quantum algorithm for Pell’s equation and the Principal ideal
problem [Hal07, BS16].

There is no known efficient quantum algorithm for HspG over non-Abelian groups, aside from some
special cases, including when H is a normal subgroup of G [HRTS03]; when G is solvable [Wat01,
IMS03]; when G is nil-2 [ISS12].

An efficient algorithm for general non-Abelian Hsp would have some very interesting consequences.
When G = Sn, the symmetric group, then the problem of graph isomorphism can be reduced to
HspG (see [dW19, Section 6.3.1]). Until somewhat recently, this was believed to require 2poly(n) time
classically, but in 2015 Babai gave a quasi-polynomial 2poly(logn) time classical algorithm for graph
isomorphism [Bab16].

Since factoring and discrete log are easy for quantum computers, new cryptosystems based on the
hardness of other problems need to be developed and standardized. This process is well underway,
and the front runner for a hard problem – believed to be hard even for quantum computers – is a
problem called the shortest vector problem, which asks to find the shortest vector in a lattice – the set
of integer linear combinations of some real vectors – given a random basis. A version of this problem
(the unique shortest vector problem) could be efficiently solved if an algorithm like our Algorithm 2
(called the “standard method”) could solve HspG over the dihedral group, Dn, which is the group of
symmetries of an n-sided regular polygon [Reg04a]. More details can be found in [Chi21, Chapter
10]. While no polynomial-time quantum algorithm is known for HspDn , Kuperberg [Kup05] gave an
algorithm that runs in sub-exponential time 2O(

√
n). Later Regev [Reg04b] gave a sub-exponential

time algorithm that uses only polynomial space.

2.2. PHASE ESTIMATION 19

While no efficient algorithm is known for HspG for non-Abelian groups in general, there is a query-
efficient algorithm, which uses poly(log |G|) queries, but poly(|G|) total operations [EHK04] (or
see [dW19, Section 6.3.3]). An implication of this is that while we believe HspG is hard for some
non-Abelian groups, we will not be able to prove that using a query lower bound (which is bad news,
since that is our main way of proving things are hard for quantum computers).

A good source for more details on these directions is [Chi21].

2.2 Phase Estimation

Suppose someone gives you a circuit description for a unitary U , so you can run it, to map |ψ⟩ to
U |ψ⟩ for any given state |ψ⟩, or run controlled-U , by controlling on each gate.

Given: a circuit description for a unitary U on H,
a state |ψ0⟩ ∈ H [12]

Your task is to decide between two distinguishable scenarios.

Task: Decide if:
(1) U |ψ0⟩ = |ψ0⟩
(2) U |ψ0⟩ = −|ψ0⟩

}
promised one of these is true

[13]

Simply applying U to |ψ0⟩ won’t help, because the result in both cases differs only by a global phase,
but fortunately we can also control U on an auxiliary qubit.

|+⟩ H

|ψ0⟩ U

|ψ′⟩ = (H⊗ I) 1√
2
(|0⟩|ψ0⟩+ |1⟩U |ψ0⟩)

Scenario (1): |ψ′⟩ = (H⊗ I) 1√
2
(|0⟩|ψ0⟩+ |1⟩|ψ0⟩) = H|+⟩|ψ0⟩ = |0⟩|ψ0⟩

Scenario (2): |ψ′⟩ = (H⊗ I) 1√
2
(|0⟩|ψ0⟩ − |1⟩|ψ0⟩) = H|−⟩|ψ0⟩ = |1⟩|ψ0⟩ [14]

So we can perfectly distinguish these by measuring the first qubit. Kitaev’s phase estimation [Kit96]
generalizes this idea.

Suppose U |ψ0⟩ = eiθ|ψ0⟩ for some θ ∈ (−π, π].
Task: Estimate θ to ℓ bits of precision, by outputting some θ̃ such that |θ̃ − θ| ≤ π

2ℓ
. [15]

To this end, let T = 2ℓ , and consider running the following circuit, where we let FT denote the
quantum Fourier transform QFTZT

over the cyclic group of order T , and a controlled U t on a wire of
dimension T indicates that U t is applied controlled on the value t on the control wire.

Algorithm 4. Phase Estimation

|0̂⟩ := 1√
T

∑T−1
t=0 |t⟩ F†T

|ψ0⟩ U t

|ψ′⟩ = 1√
T
(F†T ⊗ I)

T−1∑
t=0

|t⟩U t|ψ0⟩ = F†T

(
1√
T

T−1∑
t=0

eitθ|t⟩

)
︸ ︷︷ ︸

(⋆)

|ψ0⟩

20

Fact 2.2.1. For any x ∈ [−π/2, π/2], 4x2

π2 ≤ sin2 x. For any x ∈ R, sin2 x ≤ x2.

The complexity of Algorithm 4 depends on the complexity of preparing |ψ0⟩, which must be done
once, and the complexity of implementing U , which must be done O(T) times (controlled). Additional
overhead, such as implementing FT , is polylogarithmic in T .

For simplicity, suppose θ = 2πz
T for some z ∈ {−T/2 + 1, . . . , 0, . . . , T/2}.

Then (⋆) = 1√
T

∑T−1
t=0 e

2πi zt
T |t⟩ = FT |z⟩ =: |ẑ⟩ is a Fourier basis vector.[16]

So we can perfectly distinguish these cases by measuring the first register in the Fourier basis, which
is precisely what we do when we apply F†T and then measure (in the computational basis).

Exercise 2.2.1. Prove that for any positive integer T and x ∈ R \ {0},
∣∣∣∑T−1

t=0 e
ixt
∣∣∣2 = sin2 Tx

2

sin2 x
2

.

Exercise 2.2.2. Let θ be an arbitrary angle in (−π, π], and suppose U |ψ0⟩ = eiθ|ψ0⟩. Let z be such
that

∣∣θ − 2πz/2ℓ
∣∣ ≤ π

2ℓ
. Show that the probability that Algorithm 4 outputs z, upon measuring the first

register, is at least 4/π2. You may use Fact 2.2.1.

While the above exercise shows that it is reasonably likely to measure the best possible ℓ-bit estimate
of θ, since 4/π2 < 1/2, it does not rule out that there is another terrible estimate that is just as likely
to occur, so this analysis is not really sufficient. The following exercise gives an improved analysis.

Exercise 2.2.3. Let θ be an arbitrary angle in (−π, π], and suppose U |ψ0⟩ = eiθ|ψ0⟩. Let k ∈ Z such
that k ≥ 2, and let θ̃ = 2πz

T where z is the outcome of measuring the first register in Algorithm 4.
Show that the probability that ∣∣∣θ̃ − θ∣∣∣ ≤ 2πk

T

is at least 1 − 1
2(k−1) . Hint: You may use the fact that

∑∞
z=k

1
z2
≤ 1

k−1 . It may be helpful to start by

arguing that we can assume that the closest angle in {2πz/T : z ∈ {−(T − 1)/2, . . . , T/2}} to θ is 0.

The above analysis is sufficient: taking k > 2 guarantees that we have a pretty good estimate of θ
with probability at least 3/4. By repeating this O(log 1

ε) times and taking the median of all outcomes,
we can increase the probabilty of getting a good estimate to 1− ε.

Exercise 2.2.4. In the above reasoning, why is it not sufficient to take the mode of all estimates?

2.2.1 Application to OR and approximate counting

We will show how to use phase estimation to solve the following problem.

2.2. PHASE ESTIMATION 21

Problem: ApproxN,ε

Input: x ∈ {0, 1}N
Output: t̃ ∈ {0, . . . , N} such that

∣∣t̃− t∣∣ ≤ εt where t = |x| is the Hamming weight of x.

For simplicity, assumeN = 2n for some integer n. We will solve this problem by doing phase estimation
on G, the Grover iterate, which you used in [dW19, Section 7.2] to build up Grover’s algorithm. Recall
that G is defined

G = H⊗nR0H
⊗n︸ ︷︷ ︸

=:Rπ

O±
x , (2.6)

where
R0 =: |0⟩⟨0| −

∑
i∈{0,1}n:
i ̸=0

|i⟩⟨i|.

We will assume |x| ≤ N/2, as otherwise we can estimate N − |x| instead.

Exercise 2.2.5. Let t = |x|, and let θ ∈ [0, π/2] be such that sin2 θ = t/N . Suppose t > 0, and define

|ψ±⟩ :=
1√
2

(√
N

t

1√
N

∑
i:xi=1

|i⟩︸ ︷︷ ︸
=:|ψgood⟩

±i
√

N

N − t
1√
N

∑
i:xi=0

|i⟩︸ ︷︷ ︸
=:|ψbad⟩

)
.

Show that G|ψ±⟩ = e±i2θ|ψ±⟩. Hint: Go to the wikipedia page on trigonometric identities.

Exercise 2.2.6. Let |π⟩ :=
∑

i∈{0,1}n
1√
N
|i⟩. Show that |π⟩ ∈ span{|ψ+⟩, |ψ−⟩}.

With the above two exercises, we can estimate t using the following algorithm.

Algorithm 5. Approximate Counting by Phase Estimation

1. Apply Phase Estimation (Algorithm 4) with |ψ0⟩ = |π⟩, T = 2ℓ, and U = G.
2. Meaure the first register to obtain some z ∈ {0, . . . , T − 1}, and output t̃ =

N sin2
(
zπ
T

)
.

Lemma 2.2.2. Let ε ∈ (0, 1), and let t = |x|. Suppose 0 < t ≤ N
2 , and T is such that T ≥ 16π

ε

√
N
t .

Then with probability at least 3
4 , the output of Algorithm 5 satisfies

∣∣t̃− t∣∣ ≤ εt.
Proof. First, note that since |π⟩ ∈ span{|ψ+⟩, |ψ−⟩}, and these two states are orthogonal, we can ana-
lyze the case where each of these two states is used as input, and extrapolate by linearity. Depending
on which state is used, the phase is either 2θ, or −2θ, so we can analyze both cases together.

Let θ̃ = 2πz/T , where z is the measurement outcome, so t̃ = N sin2 θ̃2 . By Exercise 2.2.3, using k = 3,
with probabiliy at least 3

4 , we have∣∣∣θ̃ − 2θ
∣∣∣ ≤ 6π

T
or

∣∣∣θ̃ − (−2θ)
∣∣∣ ≤ 6π

T

−6π

T
≤ θ̃ − 2θ ≤ 6π

T
or − 6π

T
≤ θ̃ + 2θ ≤ 6π

T

θ − 3π

T
≤ θ̃

2
≤ θ + 3π

T
or θ − 3π

T
≤ − θ̃

2
≤ θ + 3π

T
.

22

Assume one of these holds. First, note that if θ − 3π
T ≤

θ̃
2 , we must have θ̃ > 0 by T > 3π

√
N/t; and

similarly, when θ − 3π
T ≤ −

θ̃
2 , we must have θ̃ < 0. Thus, in either case, we have:

θ − 3π

T
≤

∣∣∣∣∣ θ̃2
∣∣∣∣∣ ≤ θ + 3π

T
. (2.7)

Note also that since θ ∈ [0, π/2], and so sin θ ≥ 2
πθ, we have

θ +
3π

T
≤ π

2
sin θ +

3π

16π
ε

√
t

N
=
π

2

√
t

N
+

3

16
ε

√
t

N
=≤ π

2

1√
2
+

3

16

1√
2
<
π

2
.

From here, since sin is an increasing function on [0, π/2] using sin |x| = | sinx|,

sin

∣∣∣∣∣ θ̃2
∣∣∣∣∣ ≤ sin

(
θ +

3π

T

)
∣∣∣∣∣sin θ̃2

∣∣∣∣∣ ≤ sin θ cos

(
3π

T

)
+ cos θ sin

(
3π

T

)
√

t̃

N
≤
√

t

N
+

3π

T
≤
√

t

N
+

3π

16π
ε

√
t

N
,

where we used cosx ≤ 1 and sinx ≤ x for x ≥ 0. Using the inequality (1 + δ)2 ≤ 1 + 3δ for δ ≤ 1, we
have: √

t̃

N
≤
√

t

N

(
1 +

3

16
ε

)
t̃

N
≤ t

N

(
1 +

9

16
ε

)
≤ t

N
(1 + ε).

(2.8)

Similarly, since sin θ ≤ θ we have

θ − 3π

T
≥ sin θ − 3π

16π
ε

√
t

N
=

(
1− 3ε

16

)√
t

N
≥ 0,

and from here, since sin is increasing on [0, π/2], (2.7) implies:

sin

∣∣∣∣∣ θ̃2
∣∣∣∣∣ ≥ sin

(
θ − 3π

T

)
= sin θ cos

3π

T
− cos θ sin

3π

T√
t̃

N
≥ sin θ

√
1− sin2

3π

T
− sin

3π

T
≥
√

t

N

√
1− 9π2

T 2
− 3π

T
,

where we used cos ≤ 1 and sinx ≤ x. Plugging in T , and using the inequalities
√
1− x ≥ 1− x when

x ∈ [0, 1], and (1− x)2 ≥ 1− 2x, we get√
t̃

N
≥
√

t

N

(
1− 9π2

(16π)2
ε2
t

N

)
− 3π

16π
ε

√
t

N

t̃

N
≥ t

N

(
1− 9

64
ε2
t

N
− 3ε

16

)2

≥ t

N

(
1− 9

64

ε

2
− 3ε

16

)2

≥ t

N

(
1− ε

2

)2
≥ t

N
(1− ε) .

Combining this with (2.8), we get t(1− ε) ≤ t̃ ≤ t(1 + ε), implying the claim.

The decision version of Search, which is also called Or, reduces to Approxn,0, however, our analysis
skips the case where t = 0. The following exercise covers this case.

2.2. PHASE ESTIMATION 23

Exercise 2.2.7. 1. Show that if t = 0, |π⟩ is an ei0-eigenvector of G.

2. Let OrN (x) = 1 if and only if |x| > 0, where x ∈ {0, 1}N . Show how to solve OrN with one-
sided error ε, for some ε < 1, using one call to Algorithm 5, with an appropriate choice of T .
What is the query complexity of your algorithm?

2.2.2 Phase Estimation Algorithms for Products of Reflections

It turns out that many, perhaps most, applications of phase estimation only rely on the ability to
distinguish the case θ = 0 from the case θ ̸= 0. We will show how to use Algorithm 4 to decide if θ = 0
or θ ̸= 0 in the special case where U is a product of two reflections. More precisely, we will distinguish
between the case when |ψ0⟩ is close to a 1-eigenstate of U , and the case where it has no overlap with
any 1-eigenvectors, or even eiθ-eigenvectors for small θ. The complexity of this will naturally depend
on what we mean by “close” and “small”. These will be determined by the relationship between |ψ0⟩
and the two reflections that make up U .

Consider the probability of measuring 0 in the first register of Algorithm 4, p0, for the case U |ψ0⟩ =
eiθ|ψ0⟩ for any θ ∈ (−π, π]. In general, |ψ0⟩ need not actually be an eigenvector of U , but it will
always be a linear combination of them.

Probability of measuring 0 in Algorithm 4:

p0 =
∥∥(⟨0| ⊗ I)|ψ′⟩

∥∥2 = ∥∥∥∥∥(⟨0|F†T ⊗ I)
T−1∑
t=0

1√
T
eiθt|t⟩|ψ0⟩

∥∥∥∥∥
2

=

∥∥∥∥∥
(
T−1∑
t=0

1√
T
⟨t|

)
T−1∑
t=0

1√
T
eiθt|t⟩

∥∥∥∥∥
2

=

∥∥∥∥∥ 1T
T−1∑
t=0

eiθt

∥∥∥∥∥
2

=
1

T 2

∣∣∣∣∣
T−1∑
t=0

eiθt

∣∣∣∣∣
2

=

 1 if θ = 0

1
T 2

∣∣∣1−eiθT1−eiθ

∣∣∣2 = 1
T 2

4 sin2 Tθ
2

4 sin2 θ
2

if θ ̸= 0

(2.9)
[17]

When θ = 0, p0 = 1, so we measure 0 in the phase register with probability 1. When θ ̸= 0, we hope

that p0 is small, as long as θ is not too close to 0. The expression
sin Tθ

2

sin θ
2

= UT−1(cos θ), where UT−1 is

the (T − 1)th Chebyshev polynomial of the second kind. We will not use this fact at the moment, but
when strange-looking expressions have a name, it oftens means that very smart people have thought
a lot about how to make sense of them, which is generally quite useful. For now though, to upper
bound p0, it will be enough to use the very useful fact that sin2 x ≈ x2 when x ∈ [−π/2, π/2]. More
precisely, refer to Fact 2.2.1.

So if θ ̸= 0, p0 ≤
1

T 2

1

sin2 θ2
≤ 1

T 2

1
4
π2 (

θ
2)

2
=

π2

(Tθ)2
. This is at most any choice of 1/c2 if θ ≥ π2

cT .
[18]

So Algorithm 4 may confuse some small phases θ with 0, but it’s less likely as θ or T gets larger.

We have been assuming that |ψ0⟩ is an eigenvector of U , but that needn’t be the case. Let us decompose
U in terms of projectors onto its eigenspaces {Πj}j∈J for some finite set of labels J , with eiθj being
the corresponding eigenvalues, for θj ∈ (−π, π]:

U =
∑
j∈J

eiθjΠj for {θj : j ∈ J} ⊂ (−π, π]. (2.10)

24

Then |ψ0⟩ =
∑

j∈J Πj |ψ0⟩, so from (2.9):

p0 =
∑

j∈J :θj ̸=0

1

T 2

sin2
Tθj
2

sin2
θj
2

∥Πj |ψ0⟩∥2 + ∥Λ0|ψ0⟩∥2 (2.11)

where we use Λ0 to denote the projector onto the (+1)-eigenspace of U (so it’s either the Πj for
which θj = 0, or if there is no such j, it’s 0).[19]

As promised, we will constrain U to be a product of two reflections.

Let ΨA,ΨB ⊂ H be finite sets of vectors, A = span{ΨA}, B = span{ΨB} subspaces of H, and

U = (2ΠA − I)(2ΠB − I)

where ΠA and ΠB are the orthogonal projectors onto A and B.[20]

There are two reasons for considering this special case of U . First, we are assuming we have a
description of U that allows us to implement it as a circuit. Suppose ΨA = {|ψ1⟩, . . . , |ψk⟩} is a set of
orthonormal vectors.

Let UA|j⟩|0⟩ = |ψj⟩ for all j ∈ [k], in which case, we say UA generates ΨA. Then

(2ΠA − I) = UA

2
k∑
j=1

|j⟩⟨j| ⊗ |0⟩⟨0| − I


︸ ︷︷ ︸

probably easy

U †
A.

[21]

That is, implementing U is as easy as generating ΨA and ΨB. This is a generalization of how the
reflection Rπ is implemented in Grover’s algorithm (see (2.6)), where H⊗n generates |π⟩.

The second reason for considering this special case is that the additional structure tells us something
about the eigenspaces of U :

We have that the (+1)-eigenspace of U is (A ∩ B)⊕ (A⊥ ∩ B⊥).
We additionally assume |ψ0⟩ ∈ B⊥, so Λ0|ψ0⟩ ∈ A⊥ ∩ B⊥ = (A+ B)⊥.[22]

Exercise 2.2.8. Show that for any two subspaces of H, A⊥ ∩B⊥ = (A+B)⊥. Note that when we fix
the space H, A⊥ is defined as those vectors in H that are orthogonal to everything in A, and similarly
for B⊥.

So to summarize, the parameters of a 0-Phase Estimation Algorithm are (for an implicit input x):

Definition 2.2.3 (Parameters of a 0-Phase Estimation Algorithm). Fix a finite-dimensional complex
inner product space H, a unit vector |ψ0⟩ ∈ H, and sets of vectors ΨA,ΨB ⊂ H. We further assume
that |ψ0⟩ is orthogonal to every vector in ΨB. Let ΠA be the orthogonal projector onto A = span{ΨA},
and similarly for ΠB.

Let us be more specific in qualifying the two scenarios that we will use Algorithm 4 to distinguish.

2.2. PHASE ESTIMATION 25

Positive Case: ∥Λ0|ψ0⟩∥2 ̸= 0 ⇔ ∃ a positive witness [23]

Definition 2.2.4 (Positive Witness). A positive witness (for (H, |ψ0⟩,ΨA,ΨB)) is a vector |w⟩ ∈ H
such that ⟨ψ0|w⟩ ≠ 0 and |w⟩ ∈ A⊥ ∩ B⊥.

That is, a positive witness |w⟩ is exactly a non-zero component of |ψ0⟩ in the (+1)-eigenspace of U .
Demonstrating the existence of a positive witness proves that we are in the positive case2. Moreover,
the smaller the witness relative to its overlap with |ψ0⟩, the “more positive” the case.

Lemma 2.2.5 (Positive Lemma). If |w⟩ is a positive witness, then ∥Λ0|ψ0⟩∥2 ≥ |⟨w|ψ0⟩|2

∥|w⟩∥2 .

Proof.

∥Λ0|ψ0⟩∥2 =
∥∥∥∥ |w⟩⟨w|∥|w⟩∥2

|ψ0⟩+
(
Λ0 −

|w⟩⟨w|
∥|w⟩∥2

)
|ψ0⟩

∥∥∥∥2 ≥ ∥∥∥∥ |w⟩⟨w|ψ0⟩
∥|w⟩∥2

∥∥∥∥2 = |⟨w|ψ0⟩|2

∥|w⟩∥2
.

So |⟨w|ψ0⟩|
∥|w⟩∥ is bigger the more of |ψ0⟩ is in the (+1)-eigenspace. If |w⟩ is the projection of |ψ0⟩ onto the

(+1)-eigenspace, then the proof of Lemma 2.2.5 is tight.

Negative Case: ∥Λ0|ψ0⟩∥2 = 0 ⇔ ∃ a negative witness [24]

Definition 2.2.6 (Negative Witness). A negative witness (for (H, |ψ0⟩,ΨA,ΨB)) is a pair of vectors
|wA⟩, |wB⟩ ∈ H such that |wA⟩+ |wB⟩ = |ψ0⟩, |wA⟩ ∈ A and |wB⟩ ∈ B.

That is there is a negative witness exactly when |ψ0⟩ ∈ A + B = (A⊥ ∩ B⊥)⊥. Since |ψ0⟩ ∈ B⊥ ⊆
(A ∩ B)⊥, this happens if and only if Λ0|ψ0⟩ = 0.

Let ΛΘ =
∑

j∈J :|θj |≤ΘΠj for Θ ∈ [0, π). [25]

Lemma 2.2.7 (Negative Lemma). If |wA⟩, |wB⟩ is a negative witness, then for any Θ ∈ [0, π),

∥ΛΘ|ψ0⟩∥2 ≤ Θ2

4 ∥|wA⟩∥2.

Consider this statement for Θ = 0. That tells us that if there is a negative witness, then there is
no component of |ψ0⟩ in the (+1)-eigenspace of U , which we argued above. This fact on its own
is not enough for an algorithm to distinguish the negative and positive case, because it still leaves
the possibility that |ψ0⟩ has high overlap with eiθ-eigenspaces for tiny θ that are computationally
indistinguishable from 0. That’s why we need a statement in terms of the parameter Θ.

For intuition about Lemma 2.2.7, it is helpful to consider the extreme case where |ψ0⟩ ∈ B⊥∩A, which
is in the (−1)-eigenspace of U . This is as far as possible from the positive case, in which |ψ0⟩ is in the
(+1)-eigenspace. In this case, |wA⟩ = |ψ0⟩, |wB⟩ = 0 is a negative witness, with ∥|wA⟩∥ = 1. As |ψ0⟩
gets further from A, we require larger |wA⟩ (and |wB⟩) to add up to |ψ0⟩. See Figure 2.3.

To prove Lemma 2.2.7, we need the following lemma.

Lemma 2.2.8 (Effective Spectral Gap Lemma). Let Θ ∈ [0, π), and let ΛΘ be the orthogonal
projector onto the eiθ-eigenspaces of U = (2ΠA − I)(2ΠB − I) for |θ| ≤ Θ. If |ψA⟩ ∈ A, then

∥ΛΘ(I −ΠB)|ψA⟩∥2 ≤ Θ2

4 ∥|ψA⟩∥2.

2This is something we will do when analysing a 0-phase estimation algorithm. The algorithm itself does not produce
a positive witness.

26

Figure 2.3: We see two examples of the plane spanning |wA⟩ (blue) and |wB⟩ (red), with |ψ0⟩ =
|wA⟩ + |wB⟩ shown in black. We always have |ψ0⟩ ∈ B⊥ orthogonal to |wB⟩. On the left we see a
case where |ψ0⟩ is almost in A, meaning it’s almost in A ∩ B⊥ which is in the (−1)-eigenspace of U ,
and |wA⟩ is very small. On the right we see a case where |ψ0⟩ is far from A (or at least, far from
span{|wA⟩}), and so |wA⟩ is much larger.

Exercise 2.2.9. Prove the Effective Spectral Gap Lemma. To do so, first express (I − U †)|ψA⟩ in
terms of ΠB (it turns out not to depend on ΠA). Then use a decomposition of (I − U †) as a linear
combination of the Πj (see (2.10)).

Proof of Lemma 2.2.7. Since |wA⟩ ∈ A, by the Effective Spectral Gap Lemma:

∥ΛΘ(I −ΠB)|wA⟩∥2 ≤
Θ2

4
∥|wA⟩∥2

∥ΛΘ (I −ΠB)|ψ0⟩︸ ︷︷ ︸
=|ψ0⟩ since |ψ0⟩∈B⊥

−ΛΘ (I −ΠB)|wB⟩︸ ︷︷ ︸
=0 since |wB⟩∈B

∥2 ≤ Θ2

4
∥|wA⟩∥2 since |ψ0⟩ = |wA⟩+ |wB⟩

∥ΛΘ|ψ0⟩∥2 ≤
Θ2

4
∥|wA⟩∥2 .

Now we can combine the positive and negative lemmas into a main theorem.

Theorem 2.2.9 (0-Phase Estimation on a Product of Reflections). Suppose we can generate |ψ0⟩ in
cost S and implement U in cost A. Let c+ be a constant, and C− a positive real number (which may
scale with some implicit input) such that exactly one of the following is promised to hold:

Positive Condition: There is a positive witness |w⟩ s.t. |⟨w|ψ0⟩|2
∥|w⟩∥2 ≥

1
c+

.

Negative Condition: There is a negative witness |wA⟩, |wB⟩ s.t. ∥|wA⟩∥2 ≤ C−.

Then running Algorithm 4 with T = π2c+
√
C−, measuring the first register, and outputting “positive”

if and only if the result is 0, decides between these two cases with bounded error in cost O(S+
√
C−A).

Proof. For the Positive Case, suppose the Positive Condition holds. Then from (2.11), the proba-
bility of measuring 0 satisfies:

p0 ≥ ∥Λ0|ψ0⟩∥2 ≥
|⟨w|ψ0⟩|2

∥|w⟩∥2
≥ 1

c+

by the Positive Condition and the Positive Lemma (Lemma 2.2.5).

For the Negative Case, suppose the Negative Condition holds. Then from (2.11), letting Θ =

2.2. PHASE ESTIMATION 27

2

π
√
c+C−

, we have:

p0 =
∑

j:|θj |>Θ

1

T 2

sin2
(
θjT
2

)
sin2

(
θj
2

) ∥Πj |ψ0⟩∥2 +
∑

j:0<|θj |≤Θ

1

T 2

sin2
(
θjT
2

)
sin2

(
θj
2

) ∥Πj |ψ0⟩∥2 + ∥Λ0|ψ0⟩∥2

≤
∑

j:|θj |>Θ

1

T 2

1(
θj
π

)2 ∥Πj |ψ0⟩∥2 +
∑

j:0<|θj |≤Θ

1

T 2

(
θjT
2

)2
(
θj
π

)2 ∥Πj |ψ0⟩∥2 + ∥Λ0|ψ0⟩∥2

<
1

T 2

π2

Θ2

∑
j:|θj |>Θ

∥Πj |ψ0⟩∥2 +
π2

4

∑
j:0<|θj |≤Θ

∥Πj |ψ0⟩∥2 +
π2

4
∥Λ0|ψ0⟩∥2

≤ 1

T 2

π2

Θ2
+
π2

4
∥ΛΘ|ψ0⟩∥2

≤ 1

T 2

π2

Θ2
+
π2

4

Θ2

4
∥|wA⟩∥2 Lemma 2.2.7

≤ 1

T 2

π2

Θ2
+
π2

4

Θ2

4
C− by Neg. Cond.

Plugging in Θ = 2

π
√
c+C−

and T = π2c+
√
C−, this becomes:

p0 ≤
1

π4c2+C−
π2

4
π2c+C− +

π2

16

4

π2c+C−
C− =

1

4c+
+

1

4c+
=

1

2

1

c+
.

So in the positive case, p0 ≥ 1
c+

, and in the negative case, p0 ≤ 1
2

1
c+

. Since c+ is constant, we can

distinguish these with bounded error in O(1) repetitions of Algorithm 4, since 1
c+
− 1

2c+
= Ω(1). The

proof is completed by verifying that the full algorithm has the claimed cost.

Further Directions Sometimes we want to distinguish between the case when |ψ0⟩ is almost in
A+B vs. far from being in A+B. This can be handled by an approximate version of Theorem 2.2.9,
which relaxes the condition on both positive and negative witnesses to allow for some deviation [JZ23].

Example: Promise search

For an integer t > 0, possibly a function of N , the decision version of t-promise search is defined:

Problem: OrN,t

Input x ∈ {0, 1}N such that |x| = 0 or |x| ≥ t
Output 1 if |x| ≥ t, 0 if |x| = 0.

This problem is already solved by Algorithm 5 with a correct choice of T , but in this section, we will
also describe a 0-phase estimation algorithm (using Theorem 2.2.9) for this problem.

Exercise 2.2.10. Show that one call to Algorithm 5, with a correct choice of T , can be used to decide
OrN,t with one-sided error. What is the complexity of your algorithm? You may refer to statements
proven in Lemma 2.2.2 without copying their derivations.

Fix the following phase estimation algorithm parameters:

28

H = span{|i⟩ : i ∈ [N]} ⊕ span{|0⟩}

ΨA =

{
|ψA⟩ :=

√
t|0⟩+

N∑
i=1

|i⟩

}
ΨB = {|i⟩ : xi = 0}
|ψ0⟩ = |0⟩.

[26]

We will show that Theorem 2.2.9 with these parameters gives an algorithm that decides OrN,t.

Exercise 2.2.11. Show that there is a choice of constant c+ ∈ [1, 50] such that when |x| ≥ t, there

exists a positive witness |w⟩ such that |⟨ψ0|w⟩|2
∥|w⟩∥2 ≥

1
c+

.

Exercise 2.2.12. Show that there is a choice of C− = O(N/t) such that when |x| = 0, there exists a
negative witness |wA⟩, |wB⟩ such that ∥|wA⟩∥2 ≤ C−.

Thus, with the chosen values of c+ = O(1) and C− = O(N/t), our parameters satisfies the conditions
of Theorem 2.2.9. That is, when |x| = 0, we satisfy the negative condition, and when |x| ≥ t, we
satisfy the positive condition, and so we can distinguish these two conditions with bounded error in
cost

O(S+
√
C−A) = O

(
S+

√
N

t
A

)
.

It remains to analyze S and A. First, S is the cost of generating |ψ0⟩ = |0⟩ = |0logN ⟩, which is 0
queries to x, or O(logN) total operations (for initializing logN qubits). A is the cost of implementing
U = (2ΠA − I)(2ΠB − I). If we only care about query complexity, then we can implement (2ΠA − I)
in 0 queries, and (2ΠB − I) is just a single query, so A = 1. If we care about counting all operations,
then we can implement (2ΠA − I) as follows. First, note that we can implement a unitary V that

performs |0⟩ = |0logN ⟩ 7→
√

t
t+N |0⟩ +

1√
t+N

∑N
i=1 |i⟩ =

1√
t+N
|ψA⟩ in O(logN) gates (Hint: use an

auxillary qubit). Then

V (2|0⟩⟨0| − I)V † = 2V |0⟩⟨0|V † − I = 2
|ψA⟩⟨ψA|
∥|ψA⟩∥2

− I = 2ΠA − I.

Thus, the cost of decidingOrN,t with bounded error3 isO(
√
C−) = O(

√
N/t) queries, andO(

√
C− logN) =

O(
√
N/t logN) time (using queries and local gates).

Exercise 2.2.13. Recall that Q(OrN) = Ω(
√
N), where Q denotes quantum query complexity, and

OrN = OrN,1. Show that for any t ∈ {1, . . . , N}, the algorithm for OrN,t described above has optimal
quantum query complexity.

Example: Amplitude Amplification

Many classical algorithms are based on a subroutine, P, that is only successful in finding a solution
with some small probability ε, but where a solution can be recognized4. Repeating such a procedure
1/ε times, and checking each time if the output is a solution, will find a solution with probability at
least some constant p > 0. We can express this formally as a classical algorithm.

3As you showed in Exercise 2.2.10, this is also possible with one-sided error, but Theorem 2.2.9 only handles bounded
(two-sided) error analyses.

4We stress that here ε is a lower bound on the success probability, rather than an upper bound on the failure
probability.

2.2. PHASE ESTIMATION 29

Algorithm 6. Brute Force Search

1. Repeat 1/ε times:

(a) Run P(x) to obtain outcome z
(b) If z is a solution, output z

2. Output ‘‘no solution found’’

The quantum version of this is called amplitude amplification, and improves the number of calls to
the subroutine quadratically.

Theorem 2.2.10 (Amplitude Amplification [BHMT02]). Let H = span{|z⟩ : z ∈ Z} for some finite
set Z, and M ⊂ Z a marked set. Suppose we can implement the following quantum subroutines:

Solution-sample: Generate a state VP(x)|0⟩ for some unitary VP(x) on H, in cost A

Check: For any z ∈ Z, check if z ∈M , in cost C

Let ε be a lower bound on ∥ΠMVP(x)|0⟩∥2, where ΠM =
∑

z∈M |z⟩⟨z|. Then there is a quantum
algorithm that finds z ∈M with bounded error in complexity

O

(
1√
ε
(A+ C)

)
.

Above, M represents the set of solutions among the potential solutions, Z. Note that we may also
consider the case where Z = S × W where S are potential solutions, and W is some additional
workspace. Then M should include all states (s, w) such that s is a solution.

We could, for example, derive VP from some classical program P that samples a potential solution, in
which case, Theorem 2.2.10 is really just a quadratically faster version of Algorithm 6.

We will use Theorem 2.2.9 to derive a decision version of Theorem 2.2.10, where, instead of finding a
solution, we will decide if a solution exists – we decide whether VP outputs a solution with probability
at least ε, or probability 0 – using O(1√

ε
) calls to the unitary VP and RM = 2

∑
z∈M |z⟩⟨z| − I. Note

that RM can be implemented by checking if z ∈M : Let fM (z) = 1 if and only of z ∈M , and compute:

|z⟩|0⟩
OfM7→ |z⟩|fM (z)⟩ I⊗Z7→ (−1)fM (z)|z⟩|fM (z)⟩

OfM7→ (−1)fM (z)|z⟩|fM (z)⊕ fM (z)⟩ = (RM |z⟩) |0⟩.

We can view VP as a quantum algorithm that solves a problem with one-sided error, but the error need
not be bounded away from 1 by a constant – it can be arbitrarily close to 1. Given such a process,
we could classically repeat it 1/ε times, and output 1 if and only if any of the repetitions yields a 1,
which would give us a one-sided error algorithm with error bounded by a constant less than 1. Here
we will show how to do this with only O(1/

√
ε) repetitions.

Let A = span{|z⟩ : z ∈M} and B = span{VP |0⟩}⊥ so

2ΠA − I = RM and 2ΠB − I = −(2VP |0⟩⟨0|V †
P − I).

By assumption, we can implement these two reflections in costs C and A, respectively. Let |ψ0⟩ =
VP |0⟩ ∈ B⊥. We can generate this state in complexity A.

We will show that Theorem 2.2.9 with these parameters gives an algorithm that decides, with bounded
error5, if ∥ΠMVP |0⟩∥2 = 0 (positive case), or ∥ΠMVP |0⟩∥2 ≥ ε (negative case).

5Theorem 2.2.10 implies that this is also possible with one-sided error, but Theorem 2.2.9 only handles bounded
(two-sided) error analyses.

30

For the Positive Case, suppose ∥ΠMVP |0⟩∥2 = 0. Notice that there is only one possibility for a
positive witness (up to irrelevant scaling): we need |w⟩ ∈ B⊥, so it must be |w⟩ = VP |0⟩. We must
also have |w⟩ ∈ A⊥ = span{|z⟩ : z ̸∈M}, which is satisfied precisely when ∥ΠMVP |0⟩∥2 = 0, which we
are assuming. Finally, we need ⟨w|ψ0⟩ ≠ 0, which is satisfied since |w⟩ = |ψ0⟩. We have:

∥|w⟩∥2

|⟨w|ψ0⟩|2
= 1 =: c+.

For the Negative Case, suppose ∥ΠMVP |0⟩∥2 ≥ ε, and define

|wA⟩ :=
ΠMVP |0⟩
∥ΠMVP |0⟩∥2

=
ΠM |ψ0⟩
∥ΠM |ψ0⟩∥2

∈ A,

|wB⟩ := |ψ0⟩ − |wA⟩ =
(
1− 1

∥ΠM |ψ0⟩∥2

)
ΠM |ψ0⟩+ (I −ΠM)|ψ0⟩,

so by definition, we can see that |ψ0⟩ = |wA⟩ + |wB⟩, and it remains only to show that |wB⟩ ∈ B, by
showing that it is orthogonal to VP |0⟩ = |ψ0⟩, to establish that this is a negative witness. We thus
compute:

⟨ψ0|wB⟩ =
(
1− 1

∥ΠM |ψ0⟩∥2

)
⟨ψ0|ΠM |ψ0⟩+ ⟨ψ0|(I −ΠM)|ψ0⟩

=

(
1− 1

∥ΠM |ψ0⟩∥2

)
∥ΠM |ψ0⟩∥2 + 1− ∥ΠM |ψ0⟩∥2 = 0.

Thus, |wA⟩ and |wB⟩ form a negative witness, and

∥|wA⟩∥2 =
∥ΠM |ψ0⟩∥2

∥ΠM |ψ0⟩∥4
=

1

∥ΠMVP |0⟩∥2
≤ 1

ε
=: C−.

Thus, with the chosen values of c+ = 1 and C− = 1
ε , we satisfy the conditions of Theorem 2.2.9. That

is, when ∥ΠMVP |0⟩∥2 = 0, we satisfy the positive condition, and when ∥ΠMVP |0⟩∥2 ≥ ε, we satisfy
the negative condition, and so we can distinguish these two cases with bounded error in cost

O(A+
√
C−(A+ C)) = O

(
1√
ε
(A+ C)

)
.

We note that this expression is not exactly a fully worked out complexity, as it depends on the
complexities A and C, which might be query complexities, or might count local gates, or local gates
plus random access gates. In any particular setting where we might use amplitude amplification (or
its decision version), we can plug in the values of A and C, which are complexities in some particular
model, to get a complexity in that model.

A more quantum version of the task in Algorithm 6 is where we are looking for a quantum state in
some space HM such that we can implement the reflection 2ΠM − I (ΠM need not be of the special
form ΠM =

∑
z∈M |z⟩⟨z|). A brute force approach to this task would be to repeat 1/ε times, where

ε = ∥ΠMVP(x)|0⟩∥2: (a) Generate VP(x)|0⟩; (b) Measure {ΠM , I − ΠM}, and output the state if the
result is ΠM . However, we can do better with the following generalization of Theorem 2.2.10.

Theorem 2.2.11 (Amplitude Amplification, More General [BHMT02]). Let H be any finite-dimensional
inner product space, and HM ⊂ H a marked space. Suppose we can implement the following quantum
subroutines:

Solution-sample: Generate a state VP(x)|0⟩ for some unitary VP(x) on H, in cost A

Check: Implement the reflection 2ΠM − I, where ΠM is the orthogonal projector onto HM , in cost C

2.2. PHASE ESTIMATION 31

Let ε be a lower bound on ∥ΠMVP(x)|0⟩∥2. Then there is a quantum algorithm that outputs a δ-
approximation to the state proportional to ΠMVP(x)|0⟩ in complexity

O

(
1√
ε
(A+ C) log

1

δ

)
.

Exercise 2.2.14. A block encoding of a Hermitian matrix A on a space H1 with norm at most 1,
is a unitary U on H = H1 ⊗ H2 such that A = (IH1 ⊗ |0⟩⟨0|)U(IH1 ⊗ |0⟩⟨0|). Suppose you have a
quantum algorithm that implements |0⟩ 7→ |ψ⟩ for some state |ψ⟩ ∈ H1, and a quantum algorithm that
implements U . Describe a quantum algorithm for generating a state |ϕ̃⟩ such that∥∥∥∥|ϕ̃⟩ − A|ψ⟩

∥A|ψ⟩∥

∥∥∥∥2 ≤ 1

4
.

Further Directions Just as we can extend Grover’s algorithm to approximating the number of
ones in the input, x, amplitude amplification can be extended to amplitude estimation, where the goal
is to output an estimate p̃ of p = ∥ΠMVP |0⟩∥2 such that |p− p̃| ≤ δp. This can be done in O(1

δ
√
ε
)

calls to VP and RM whenever ε is a lower bound on p [BHMT02].

Bibliography

[AGJO+15] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-O’Connor, Michele Mosca, and
Priyaa Varshinee Srinivasan. On the robustness of bucket brigade quantum RAM. New
Journal of Physics, 17(12):123010, 2015. arXiv: 1502.03450 6

[Amb12] Andris Ambainis. Variable time amplitude amplification and quantum algorithms for linear
algebra problems. In Proceedings of the 29th Symposium on Theoretical Aspects of Computer
Science (STACS), pages 636–647, 2012. arXiv: 1010.4458 3

[Bab16] Laszlo Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the 48th ACM
Symposium on the Theory of Computing (STOC), pages 684–697, 2016. 18

[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude ampli-
fication and estimation. In Quantum Computation and Quantum Information: A Millennium
Volume, volume 305 of Contemporary Mathematics Series, pages 53–74. AMS, 2002. arXiv:
quant-ph/0005055 29, 30, 31

[BJY23] Aleksandrs Belovs, Stacey Jeffery, and Duyal Yolcu. Taming quantum time complexity.
arXiv: 2311.15873, 2023. 9

[BS16] Jean-François Biasse and Fang Song. Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields. In Proceedings of
the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 893–902, 2016. 18

[Chi21] Andrew M. Childs. Lecture notes on quantum algorithms. Available at https://www.cs.

umd.edu/~amchilds/qa/, 2021. 13, 18, 19

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976. 17

[DJ92] David Deutsch and Richard Jozsa. Rapid solutions of problems by quantum computation.
439(1907):553–558, 1992. 1

[EHK04] M. Ettinger, P. Høyer, and M. Knill. The quantum query complexity of the hidden sub-
group problem is polynomial. Information Processing Letters, 91(1):43–48, 2004. arXiv:
quant-ph/0401083 19

[GLM08] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory.
Physical Review Letters, 100(16):160501, 2008. arXiv: 0708.1879 6

[Hal07] Sean Hallgren. Polynomial-time quantum algorithms for pell’s equation and the principal
ideal problem. Journal of the ACM, (1):653–658, 2007. 18

[HH00] L. Hales and S. Hallgren. An improved quantum fourier transform algorithm and applications.
In Proceedings of the 41st IEEE Symposium on Foundations of Computer Science (FOCS),
pages 515–525, 2000. 5

32

https://arxiv.org/abs/1502.03450
https://arxiv.org/abs/1010.4458
https://arxiv.org/abs/quant-ph/0005055
https://arxiv.org/abs/2311.15873
https://www.cs.umd.edu/~amchilds/qa/
https://www.cs.umd.edu/~amchilds/qa/
https://arxiv.org/abs/quant-ph/0401083
https://arxiv.org/abs/0708.1879

A.1. SUPPLEMENTARY MATERIAL 33

[HRTS03] Sean Hallgren, Alexander Russell, and Amnon Ta-Shma. The hidden subgroup problem and
quantum computation using group representations. SIAM Jounral on Computing, 32(4):916–
934, 2003. 18

[IMS03] G. Ivanyos, F. Magneiz, and M. Santha. Efficient quantum algorithms for some instances of
the non-abelian hidden subgroup problem. International Jounral of Foundations of Computer
Science, 14(5):723–740, 2003. 18

[ISS12] G. Ivanyos, L. Sanselme, and M. Santha. An efficient quantum algorithm for the hidden
subgroup problem in nil-2 groups. Algorithmica, 62(1–2):480–498, 2012. 18

[Jef22] Stacey Jeffery. Quantum subroutine composition. arXiv: 2209.14146, 2022. 3, 9

[JZ23] Stacey Jeffery and Sebastian Zur. Multidimensional quantum walks and application to k-
distinctness. In Proceedings of the 55th ACM Symposium on the Theory of Computing
(STOC), pages 1125–1130, 2023. arXiv: 2208.13492 27

[Kit96] Alexei Y. Kitaev. Quantum measurements and the Abelian stabilizer problem. ECCC, TR96-
003, 1996. arXiv: quant-ph/9511026 15, 19

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup
problem. SIAM Journal on Computing, 35(1):170–188, 2005. arXiv: quant-ph/0302112 18

[ME98] Michele Mosca and Artur Ekert. The hidden subgroup problem and eigenvalue estimation
on a quantum computer. In Proceedings of the 1st NASA QCQC conference, pages 174–188,
1998. 15

[Reg04a] Oded Regev. Quantum computation and lattice problems. SIAM Journal on Computing,
33:738–760, 2004. 18

[Reg04b] Oded Regev. A subexponential time algorithm for the dihedral hidden subgroup problem
with polynomial space. arXiv: quant-ph/0406151, 2004. 18

[Wat01] John Watrous. Quantum algorithms for solvable groups. In Proceedings of the 33rd ACM
Symposium on the Theory of Computing (STOC), pages 60–67, 2001. 18

[dW19] Ronald de Wolf. Quantum computing lecture notes. arXiv: 1907.09415v5, 2019. 1, 3, 4, 5,
10, 17, 18, 19, 21

A.1 Supplementary Material

A.1.1 Group Theory

Recall that a group G is a set of elements with an associated group operation, +, that has the following
properties:

Associativity: For all g1, g2, g3 ∈ G, g1 + (g2 + g3) = (g1 + g2) + g3.

Closure under +: For all g1, g2 ∈ G, g1 + g2 ∈ G.

Identity: There is an identity element e ∈ G such that for all g ∈ G, e+ g = g + e = g.

Inverses: For every g ∈ G, there is an inverse −g ∈ G such that g + (−g) = e.

The group is Abelian if it also satsifies:

Commutativity: For all g1, g2 ∈ G, g1 + g2 = g2 + g1.

https://arxiv.org/abs/2209.14146
https://arxiv.org/abs/2208.13492
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/quant-ph/0302112
https://arxiv.org/abs/quant-ph/0406151
https://arxiv.org/abs/1907.09415v5

34 BIBLIOGRAPHY

An example of an Abelian group is ZN , the integers modulo N (for some natural number N). An
example of a non-Abelian group is Sn, the symmetric group, consisting of all permutations of n objects,
with composition as the group operation.

A subgroup H of G is a subset of G that is also a group with respect to the group operation of G. A
(left) coset of H is a set

g +H = {g + h : h ∈ H}

for some g ∈ G. We can also define right cosets, which are the same as left cosets in the Abelian case.
For any g ∈ H, g + H = H, whereas for any g ̸∈ H, g + H is not a subgroup, because it does not
contain the identity. For all g ∈ G, |g +H| = |H|. For any g, g′ ∈ G, g +H = g′ +H if and only if
g− g′ ∈ H, and otherwise, g+H and g′ +H are disjoint. That is, there are |G|/|H| distinct cosets of
H, and they form a partition of G. If T ⊆ G is a set containing exactly one element of each distinct
coset of H, called a set of representatives, then every g ∈ G can be uniquely expressed as g = h + t
for some h ∈ H and t ∈ T .

For a set S ⊂ G, we let

⟨S⟩ =

∑
g∈S

agg : {ag}g∈S ⊂ Z


so S is the smallest subgroup of G containing S. Conversely, for any subgroup H, we say S is a
generating set for H if ⟨S⟩ = H. Adding one more element g ̸∈ ⟨S⟩ to S at least doubles the size of
⟨S⟩, which implies that H always has a generating set of size at most log |H|.

If G and G′ are groups, their direct product, G×G′ is the set

{(g, g′) : g ∈ G, g′ ∈ G′}

under the group operation
(g1, g

′
1) + (g2, g

′
2) = (g1 + g2, g

′
1 + g′2).

Theorem A.1.1 (Fundamental theorem of finite Abelian groups). If G is a finite Abelian group, then
it is isomoprhic to ZN1 × · · · × ZNℓ

for some ℓ ∈ N and N1, . . . , Nℓ ∈ N.

Theorem A.1.2 (Lagrange’s theorem). If H is a subgroup of G, |H| divides |G|.

For any natural number N , let

Z∗
N = {g ∈ ZN : GCD(g,N) = 1}

be the set of elements of ZN that are coprime to N , which is a group under multiplication. Its size
is denoted ϕ(N) = |Z∗

N |. For example, we have ϕ(N) = N − 1 if and only if N is prime. Otherwise,
ϕ(N) < N − 1.

A.1.2 Binomial distribution

A random variable Z representing the number of successes in k independent trials, where each trial
has success probability p is said to have binomial distribution B(k, p). Its mean is kp, and we can
upper bound the probability of deviating too far from this mean by using a tail bound, such as the
following:

Pr[Z ≤ z] ≤ e−
2
k
(pk−z)2 = e−2k(p− z

k)
2

(A.12)

This is a special case of Hoeffding’s inequality, which gives a tail bound for any random variable that is
the sum of independent random variables. Tighter bounds can be obtained from the Chernoff bound,
but the bound in (A.12) will be sufficient for our purposes.

	1.1 Building Blocks
	1.1.1 Problems and Algorithms
	1.1.2 Quantum Gates and Circuits
	1.1.3 Quantum Random Access
	1.1.4 Oracles and Quantum Query Complexity

	2.1 Hidden Subgroup Problems
	2.1.1 Period Finding
	2.1.2 Hidden Subgroup Problems
	2.1.3 Representations
	2.1.4 Quantum Algorithm for Abelian Hidden Subgroup
	2.1.5 Application to Factoring
	2.1.6 Application to Discrete Log
	2.1.7 Further Directions

	2.2 Phase Estimation
	2.2.1 Application to OR and approximate counting
	2.2.2 Phase Estimation Algorithms for Products of Reflections

	A.1 Supplementary Material
	A.1.1 Group Theory
	A.1.2 Binomial distribution

