
Week 4: Span Programs

Stacey Jeffery

February 23, 2025

4.1 Introduction

Branching programs are a classical model of computation, in which a computation is represented by a
directed acyclic graph with a source (only has outgoing edges) s and a pair of sinks (only has incoming
edges) t0 and t1. Each non-sink node has an associated index i ∈ [n], and two outgoing edges, labelled
by 0 and 1. For any x ∈ {0, 1}n, you can compute the branching program’s value on input x by
starting from s, and whenever you’re at a vertex v with associated variable i, travel down the out-edge
labelled by the bit xi, until you eventually reach tbx for some bx ∈ {0, 1}. We say the branching
program computes a function F : {0, 1}n → {0, 1} if bx = F(x) for all x.

Figure 4.1: A branching program for Orn.

For later analogy, it is useful to think of each edge of a branching program as being labelled by a pair
(i, b) ∈ [n] × {0, 1}, and then we can let E(x) be the set of edges of the graph labelled by (i, xi) for
some i ∈ [n]. Then we can say that x is “accepted” by the span program if and only if there is a path
from s to t1 in the subgraph consisting of only those edges in E(x).

This is a good model for classical determinstic algorithms (there is also a randomized version of the
model) because the number of input queries used to compute F(x) is nicely captured by the length of
the longest path from s to tF(x) for any x, and the amount of memory needed to “run” a branching
program is the logarithm of the number of vertices – the number of bits needed to write down the
label of a vertex. Because of this, branching programs have been used to design algorithms for certain
problems and show lower bounds on the time and space needed to solve certain problems. However,
more than that, branching programs have been used to prove statements about classical deterministic
algorithms in general. For example, the famous Barrington’s theorem uses branching programs to
show how to convert any classical circuit of depth d to a computation that uses O(d) bits of memory
– of which all but 3 bits are only used to encode a counter that starts in the all 0s state, and can only
be read and incremented – and time O(4d).

We’re not going to talk about branching programs, but they are a useful analogy to motivate us as
we wade into the weeds of span programs this week. Like branching programs for classical compu-
tation, span programs are a model of computation that can be used to design quantum algorithms,
or undersand their general properties. As we will see shortly, span programs are fully general for
(bounded-error) quantum algorithms, meaning that without loss of generality, we can always assume
any bounded-error quantum algorithm for a decision problem is actually a span program. Said another
way: there is a correspondance between span programs and bounded-error quantum algorithms that
captures the algorithm’s query complexity, time complexity, and space complexity.

1

2

Span programs were first defined in the context of classical complexity theory [KW93], where they
were studied over various fields (we will study them over R or C, which turn out to be equivalent).
Years later, seemingly unrelated, Ambainis introduced a lower bound technique for quantum query
complexity called the adversary bound [?], which was generalized [HLŠ07] to its modern form (called
the negative weights adversary at the time, but now usually just known as the adversary bound). To
prove a lower bound on Q(F) for a fixed F, one must exhibit an adversary matrix satisfying certain
semidefinite constraints.

From the other side, Reichardt and Špalek [RŠ12] first connected span programs to quantum algorithms
by showing how a span program could be turned into a quantum algorithm, and later Reichardt showed
that the optimization problem of finding an optimal span program (of a certain canonical form) for
some F is precisely the dual of the optimization problem for finding the best lower bound via an
adversary matrix [Rei09]. This showed that both are tight: (1) the adversary bound can be used to
prove tight lower bounds on the quantum query complexity of any problem; and (2) span programs
can be used to give query-optimal quantum algorithms for any problem.

4.2 Span Programs

A span program is defined as follows.

Definition 4.2.1 (Span Program). A span program on {0, 1}n consists of a vector space V over C,
a special target vector |τ⟩ ∈ V , and a set of vectors in V , each labelled by some (i, b) ∈ [n]× {0, 1}:

{|vi,b,ℓ⟩ : i ∈ [n], b ∈ {0, 1}, ℓ ∈ [di,b]}.

Letting

V (x) = span{|vi,xi,ℓ⟩ : i ∈ [n], ℓ ∈ [di,xi]},

we say that the span program accepts x ∈ {0, 1} if |τ⟩ ∈ V (x). We say the span program decides a
function F : D → {0, 1} for D ⊆ {0, 1}n if it accepts x ∈ D if and only if F(x) = 1.

Example 4.2.2 (Span Program for Or). Let Orn : {0, 1}n → {0, 1} be the function that takes
value 0 on the all-0s string, and 1 on all other strings. We will define a span program that evaluates
Orn. Let V = C, and |τ⟩ = 1. For i ∈ [n], let di,0 = 0, di,1 = 1 and |vi,1,1⟩ = |vi,1⟩ = 1. Then
V (x) = span{|vi,1⟩ : xi = 1}. If x is the all 0s string, V (x) = {0}. Otherwise, V (x) = span{1} = C.
Thus, this span program accepts all strings except the all-0s string, so it evaluates Orn.

For easily reasoning about span programs as mathematical objects, going forward it will be useful to
think of a span program as a matrix A with the vectors {|vi,b,ℓ⟩} as its columns. Thus, we will consider
a span program to be characterized by the parameters (H,V,A, |τ⟩), where:

� H is a finite-dimensional inner product space that can be decomposed into pairwise orthog-
onal subspaces: H =

⊕
i∈[n](Hi,0 ⊕Hi,1)⊕ (Htrue ⊕Hfalse) over C. We can think of Hi,b as

span{|i, b, ℓ⟩ : ℓ ∈ [di,b]}. The spaces Htrue and Hfalse are not included in Definition 4.2.1, but
we can add them without really changing the definition by pretending every string has an
n+1-th bit set to 1, and Htrue = Hn+1,1, Hfalse = Hn+1,0. We let H(x) =

⊕n
i=1Hi,xi⊕Htrue.

� V is a vector space over C, and |τ⟩ ∈ V is the target vector.

� A is a linear map H → V , with A =
∑

i∈[n+1],b∈{0,1},ℓ∈[di,b] |vi,b,ℓ⟩⟨i, b, ℓ| in the notation of
Definition 4.2.1.[1]

In the above notation, a span program decides F : D → {0, 1} for D ⊆ {0, 1}n if for every x ∈ D,

4.2. SPAN PROGRAMS 3

F(x) = 1 ⇔ |τ⟩ ∈ A(H(x)). (4.1)
[2]

An input x such that |τ⟩ ∈ A(H(x)) is accepted by the span program, and all other inputs are rejected.

Example 4.2.3 (Span Program for Orn). We will define a span program that evaluates Orn in the
new notation. For i ∈ [n], let Hi,0 = {0}, and Hi,1 = Hi = span{|i⟩} (importantly, these are all
orthogonal), so H = span{|i⟩ : i ∈ [n]}. Let V = C, and |τ⟩ = 1. Let A =

∑n
i=1 ⟨i|.

Note that H(x) = span{|i⟩ : xi = 1}, which is non-trivial as long as x is not the all-0s string. Thus,
as long as x is not the all-0s string, H(x) contains some |i⟩, and A maps this to |τ⟩. Thus, this span
program accepts all strings except the all-0s string, so it evaluates Orn.

To see that the span program in Example 4.2.3 decides Or, we found, for each x ∈ f−1(1), a vector
|i⟩ ∈ H(x) that maps to |τ⟩ under A, which “witnesses” that |τ⟩ ∈ A(H(x)). We also had to argue
that there can never exist such a vector whenever x ∈ f−1(0). One way of doing that is to exhibit a
negative witness, defined below.

Definition 4.2.4 (Span Program Witnesses and Witness Complexity). Let P = (H,V,A, |τ⟩) be a
span program on {0, 1}n, and x ∈ {0, 1}n. A positive witness for x in P is a vector |w⟩ ∈ H(x) such
that A|w⟩ = |τ⟩. The positive witness complexity of x (in P) is defined

w+(x) = w+(x, P) = min{∥|w⟩∥2 : |w⟩ ∈ H(x), A|w⟩ = |τ⟩}.

A negative witness for x in P is a vector |ω⟩ ∈ V such that (⟨ω|A)† ∈ H(x)⊥ (equivalently ⟨ω|AΠH(x) =
0) and ⟨ω|τ⟩ = 1. The negative witness complexity of x (in P) is defined

w−(x) = w−(x, P) = min{∥⟨ω|A∥2 : (⟨ω|A)† ∈ H(x)⊥, ⟨ω|τ⟩ = 1}.

The positive and negative complexities of the span program are defined:

W+(P) = max
x∈F−1(1)

w+(x, P) and W−(P) = max
x∈F−1(0)

w−(x, P)

where F is the unique total function decided by the span program.1 The complexity of the span program
is

C(P) =
√
W+(P)W−(P).

Exercise 4.2.1. Show that there exists a negative witness for x if and only if there is no positive
witness for x.

The definition of negative witnesses may appear puzzling at first, so we make some remarks. Note that
to witness that x is rejected, what we actually require is that ⟨ω|τ⟩ ≠ 0, however, then any multiple of
a negative witness would also be a negative witness, and so the negative witness complexity would not
be defined. Thus, we fix ⟨ω|τ⟩ to be 1. Also note that the negative witness complexity could not have
been defined with ∥|ω⟩∥2 = ∥⟨ω|∥2 instead of ∥⟨ω|A∥2. First: V is an unstructured space, so it has no
specified norm. We could, of course, specify a norm for V , by fixing a basis, but scaling the vectors
in that basis by arbitrary non-zero scalars would allow one to change the values of ∥|ω⟩∥2 arbitrarily.
That is to say: any norm in V is meaningless, and so any meaningful measure of complexity should
instead use the norm in H.

1The span program also decides partial functions defined only on D ⊂ {0, 1}n that agree with F on D. Technically
we can define W+ and W− with respect to any such function, which might be smaller if the x with largest witness sizes
are not in D.

4

You may be wondering if the notion of positive and negative witnesses for span programs are related
to the positive and negative witnesses introduced in in the context of Phase Estimation Algorithms.
In Exercise 4.2.3, you will answer this question in the affirmative.

The complexity of witnesses should be thought of, informally, as representing the difficulty that the
span program has in determining that x is accepted, or rejected, as the case may be. Hopefully the
following example is helpful in illustrating this.

Example 4.2.5 (Span Program for Orn, Witnesses). Recall that in the span program in Exam-
ple 4.2.3, we saw that whenever xi = 1, |i⟩ ∈ H(x). Then |i⟩ is a positive witness for x, since
A|i⟩ = 1 = |τ⟩. This makes, intuitive sense, since an i such that xi = 1 is exactly what’s needed for
Orn(x) = 1. Since ∥|i⟩∥2 = 1, this already tells us that w+(x) ≤ 1. Can we do better? It turns out
we can, when there are multiple indices i such that xi = 1. In that case, a positive witness, which
turns out to be optimal (try proving this) is

∑
i:xi=1

1
|x| |i⟩, where |x| = |{i : xi = 1}| is the Hamming

weight of x. Thus, w+(x) =
∑

i:xi=1
1

|x|2 = 1/|x|. Thus, the positive witnesses are smaller when x has

more 1s, representing an “easier” instance. We still have W+ = maxx:Orn(x)=1w+(x) = 1, but if we
are promised that the Hamming weight of positive instances is at least some threshold, t, then this
can be improved to W+ = 1/t, reflecting that the problem becomes easier as t increases.

What about negative witnesses? There is only one negative input: the all-0s string. When x is the
all-0s string, H(x) = {0}. In that case, 1 ∈ V is a negative witness: it has overlap 1 with |τ⟩ = 1, and
1AΠH(x) = 0, since ΠH(x) = 0. From this we see that W− ≤ ∥1A∥2 = ∥

∑n
i=1 ⟨i|∥

2 = n.

Exercise 4.2.2 (Span Program for Andn). Let Andn : {0, 1}n → {0, 1} be the function that takes
value 1 on the all-1s string, and 0 on all other strings. Give a span program that evaluates Andn with
complexity C ≤

√
n, and prove that it does indeed evaluate Andn with this complexity.

Now you know that a span “program” can “decide” a function F : {0, 1}n → {0, 1}, but you are likely
wondering what that actually means. Is there some kind of realistic machine that can run a span
program on an input x and output F(x)? It turns out that one such machine is a quantum computer
– specifically, a quantum computer running a 0-Phase Estimation Algorithm (as in Theorem 2.2.9),
and the query complexity of this algorithm will be O(C(P)). It also turns out that this particular
type of quantum algorithm can compute any F : {0, 1}n → {0, 1} (or partial function F) with optimal
query complexity. We have the following.

Theorem 4.2.6 (Span Programs and Quantum Algorithms). Let SPC(F) be the minimum C(P) of
any span program that decides F. Then for any problem F, SPC(F) = Θ(Q(F)), where Q(F) is the
bounded-error quantum query complexity of F.

This correspondance is especially remarkable considering that span programs were first introduced in
classical complexity theory with no intended connection to quantum computing.

In the following exercise, you will prove one direction of Theorem 4.2.6.

Exercise 4.2.3 (Span Programs and Phase Estimation Algorithms). Let P = (H,V,A, |τ⟩) be a span
program. Let A = H(x) and B = ker(A). Let |w0⟩ = A+|τ⟩, where A+ is the pseudoinverse of A –
see Appendix .1. You may assume that ∥|w0⟩∥ = 1, and W−(P) is bounded from above by a constant,
because it is always possible to ensure this without changing C(P) by more than a constant factor (you
do not need to show this, but it’s a nice exercise). Let |ψ0⟩ = |w0⟩.

1. Let ΨA and ΨB be orthonormal bases for A and B, respectively. Show that |ψ0⟩ ∈ B⊥, proving
that Φ = (H, |ψ0⟩,ΨA,ΨB) are parameters of a 0-Phase Estimation Algorithm as in Theo-
rem 2.2.9.

2. Show that |w⟩ is a positive witness for x in P if and only if |wA⟩ = |w⟩ and |wB⟩ = |w0⟩ − |w⟩
form a negative witness (Definition 2.2.6) for the Phase Estimation Algorithm with parameters

4.3. SPAN PROGRAM COMPOSITION AND FORMULA EVALUATION 5

Φ. (Hint: What is A+A?).

3. Show that a|ω⟩ is a negative witness for x in P for some scalar a, if and only if (⟨ω|A)† is a
positive witness (Definition 2.2.4) for the 0-Phase Estimation Algorithm with parameters Φ.

4. Show that U = (2ΠA − I)(2ΠB − I) can be implemented with O(1) queries to Ox.

5. Conclude that if F is decided by P , there exists a quantum algorithm that decides F with bounded
error using O(C(P)) queries to x, meaning that Q(F) = O(SPC(F)).

Let us mention some further nice correspondances between span programs and quantum algorithms.
Query complexity is a nice measure because it is mathematically easy to work with, but it does not
always represent the realistic cost of an algorithm, which may use asymptotically more additional
gates than it uses queries. There is no nice measure of a span program that corresponds to the
time complexity of the function it decides, (the reflection (2ΠB − I) used in the 0-Phase Estimation
Algorithm in Exercise 4.2.3 costs 0 queries, but in general there is no detail about how to implement
it in a small number of elementary gates), and such a measure is probably too much to hope for.
However, we have perhaps the next best thing: For any F, there is a span program that can be
evaluated in optimal time complexity – this is because any algorithm for F with time complexity T
can be turned into a span program that can be evaluated in time complexity O(T) [CJOP20]2. This
doesn’t mean it’s easy to find a time-efficient implementation of any span program, though in some
particularly structured cases, the time complexity can be analyzed.

Finally, in addition to the time or number of queries needed to evaluate F, we are sometimes interested
in how much memory is needed. The space complexity of F is related to the smallest log(dimH) of
any span program deciding F [Jef22]. The measure dimH, called the span program size, was the
measure of span programs first studied, in the classical literature, whereas span program complexity,
C(P), was only introduced later in connection with quantum query complexity.

4.3 Span Program Composition and Formula Evaluation

We have tried to drive home the point that span programs are a model of computation that captures
quantum algorithms very well, but why work with span programs instead of a more standard model
like quantum circuits? One reason is that span programs can be combined in some very nice ways.
Here we will see how this can be used to get a span program that decides a Boolean formula.

Boolean Formulas A (Boolean) formula on {0, 1}N is a rooted tree with N leaves, where each non-
leaf node is labelled by ∧ (AND) or ∨ (OR), and the i-th lead is labelled by a Boolean variable xi or its
negation ¬xi = 1−xi. Formulas are similar to Boolean circuits, except that we don’t allow “fan out”,
meaning the output of a gate can only be used as input to one gate (i.e. the graph is a tree). We require
that all negations happen at the leaves, rather than allowing NOT gates anywhere in the formula.
This is without loss of generality, because by de Morgan’s law, ¬(x1 ∨ · · · ∨ xd) = (¬x1) ∧ · · · ∧ (¬xd)
and ¬(x1 ∧ · · · ∧ xd) = (¬x1) ∨ · · · ∨ (¬xd).

Equivalently, formulas can be defined recursively as follows. φ(x1) = x1 and φ(x1) = ¬x1 are formulas
on {0, 1} of depth D = 0. For d a positive integer, and {φi}di=1 formulas on {0, 1}Ni whose maximum
depth is D−1, φ1(x

(1))∨· · ·∨φd(x
(d)) and φ1(x

(1))∧· · ·∧φd(x
(d)) are both formulas on {0, 1}N1+···+Nd

of depth D. A formula on {0, 1}N defines a function {0, 1}N → {0, 1}, which we also refer to as φ,
but the formula is not merely described by this function, as a function is generally described by more
than one formula. For a family of formulas φ = {φN}N , we can define the problem of evaluating it:

2The resulting span program does not decide F, but instead approximately decides it – a notion we will not define.

6

Problem: Evalφ

Input: x ∈ {0, 1}N
Output: φ(x)

For example, if φ(x) = x1 ∨ · · · ∨ xn, then Evalφ is exactly the n-bit OR problem Orn. In this
section, we will describe how to construct a span program that evaluates any formula φ. For example,
if φ(x1) = x1, then the following span program computes φ:

H = H1,1 = C, H1,0 = {0}
V = C, |τ⟩ = 1

A = I1,

(4.2)

where I1 is the identity on C. When φ(x1) = ¬x1, the following span program computes φ:

H ′ = H ′
1,0 = C, H ′

1,1 = {0}
V ′ = C, |τ ′⟩ = 1

A′ = I1.

(4.3)

Exercise 4.3.1. Show that the span program in (4.2) computes the one-bit function φ(x1) = x1, and
the span program in (4.3) computes the one-bit function φ(x1) = ¬x1. Show that the complexity of
both span programs is C(P) ≤ 1.

We will use the span programs in (4.2) and (4.3) as a base case, and show how to combine them to
get span programs for any Boolean formula. Specifically, we will show that for any span programs
P1, . . . , Pd computing functions {fi : {0, 1}ki → {0, 1}}di=1, we can make a span program computing
the function f1 ∨ · · · ∨ fd : {0, 1}k1+···+kd → {0, 1} defined (x(1), . . . , x(d)) 7→ f1(x

(1)) ∨ · · · ∨ fd(x(d)),
where for each i ∈ [d], x(i) ∈ {0, 1}ki . We will show a similar construction replacing ∨ with ∧. These
composition results will allow us to inductively combine formulas of depth D − 1 to get formulas of
depth D.

4.3.1 OR Composition

Fix d span programs P1, . . . , Pd, with Pi = (H(i), V (i), A(i), τ (i)) deciding fi : {0, 1}ki → {0, 1}. We
will describe a span program P that decides f∨ = f1 ∨ · · · ∨ fk : {0, 1}k1+···+kd → {0, 1}. An input x
to f∨ can be expressed as x = (x(1), . . . , x(d)) where x(i) = (xi,1, . . . , xi,ki) ∈ {0, 1}ki . Thus, we need
to define spaces H(i,j),b for i ∈ [d], j ∈ [ki], and b ∈ {0, 1}:

H(i,j),b := span{|i⟩} ⊗H
(i)
j,b .

Then we have:

H =
⊕

i∈[d],j∈[ki],b∈{0,1}

H(i,j),b =
⊕
i∈[d]

span{|i⟩} ⊗
⊕

j∈[ki],b∈{0,1}

H
(i)
j,b =

⊕
i∈[d]

span{|i⟩} ⊗H(i),

and similarly

H(x) =
⊕
i∈[d]

span{|i⟩} ⊗H(x(i)).

For i ∈ [d], let ri = dim(V (i)). Then without loss of generality, we can assume, via isomorphism, that
V (i) has orthonormal basis {|0⟩, |i, 1⟩, . . . , |i, ri − 1⟩}, with |τ (i)⟩ = |0⟩. Then we let:

V = span{|0⟩} ⊕ span{|i, ℓ⟩ : i ∈ [d], ℓ ∈ [ri − 1]}

4.3. SPAN PROGRAM COMPOSITION AND FORMULA EVALUATION 7

and |τ⟩ = |0⟩. Finally, we need to define A : H → V , which we do as follows:

A =
d∑

i=1

⟨i| ⊗A(i)

meaning that
∀i ∈ [d], |h⟩ ∈ H(i), A|i⟩|h⟩ = A(i)|h⟩.

We now argue that P decides f∨, and analyze its complexity. First, suppose f∨(x) = 1. That means
that there is at least one value i ∈ [d] such that fi(x

(i)) = 1, meaning there is a positive witness
|wi⟩ ∈ H(i)(x(i)) for x(i) in P (i). We can define |w⟩ = |i⟩|wi⟩ ∈ H(x), and see that A|w⟩ = A(i)|wi⟩ =
|τ (i)⟩ = |0⟩, since |wi⟩ is a positive witness in P (i). Thus, x is accepted by P , and its positive witness
complexity is at most

w+(x, P) ≤ ∥|w⟩∥2 = ∥|wi⟩∥2 = w+(x
(i), P (i)),

assuming we chose |wi⟩ to be the optimal positive witness. Thus

W+(P) ≤ max
i∈[d]

W+(P
(i)). (4.4)

On the other hand, suppose f∨(x) = 0, meaning that for all i ∈ [d], fi(x
(i)) = 0, so there exists a

negative witness |ωi⟩ for x(i) in Pi. Since we have for all i ∈ [d], 1 = ⟨ωi|τ (i)⟩ = ⟨ωi|0⟩, we can write
|ωi⟩ = |0⟩ + |vi⟩ for some |vi⟩ ∈ span{|i, 1⟩, . . . , |i, dri − 1⟩}. Let |ω⟩ = |0⟩ +

∑n
i=1 |vi⟩. Then clearly

⟨τ |ω⟩ = ⟨0|ω⟩ = 1. We also have, for any |i⟩|h⟩ ∈ H(x), |h⟩ ∈ H(i)(x(i)), so

⟨ω|A|i⟩|h⟩ = ⟨ω|A(i)|h⟩ = (⟨0|+ ⟨vi|)A(i)|h⟩.

This is because A(i) has columnspace V (i), and ⟨ω|ΠV (i) = ⟨0| + ⟨vi|. But since |0⟩ + |vi⟩ = |ωi⟩ is a
negative witness in Pi, and |h⟩ ∈ H(i)(x(i)), this is always 0, so ⟨ω|AΠH(x) = 0. We thus conclude
that |ω⟩ is a negative witness for x in P . It has complexity:

w−(x) ≤ ∥⟨ω|A∥2 =

∥∥∥∥∥(⟨0|+ ⟨v1|+ · · ·+ ⟨vd|)
d∑

i=1

⟨i| ⊗A(i)

∥∥∥∥∥
2

=
d∑

i=1

∥∥∥(⟨0|+ ⟨vi|)A(i)
∥∥∥2

=

d∑
i=1

∥∥∥⟨ωi|A(i)
∥∥∥2 = d∑

i=1

w−(x
(i), P (i)),

assuming we chose all negative witnesses |ωi⟩ to be optimal, and thus

W−(P) ≤
d∑

i=1

W−(P
(i)). (4.5)

Combining (4.4) and (4.5), we would get complexity
√∑d

i=1W−(P (i))maxi∈[d]W+(P (i)), but it turns

out this is not optimal – it is particularly bad when there is a lot of variation in W+(P
(i)) over i ∈ [d].

We can improve this by scaling the span programs P (i). In any span program, but replacing A with
αA for some scalar α, you can get a span program P ′ with

W+(P
′) =

1

|α|2
W+(P), and W−(P

′) = |α|2W(P).

This does not change the overall complexity C(P), but simply shifts it between W+ and W−.

Exercise 4.3.2. By scaling each A(i) in the above construction, describe a span program P ′ for f∨

with complexity C(P ′) =
√∑d

i=1 C(Pi)2.

8

4.3.2 AND Composition

Fix d span programs P1, . . . , Pd, with Pi = (H(i), V (i), A(i), |τ (i)⟩) deciding fi : {0, 1}ki → {0, 1}. We
will describe a span program P that decides f∧ = f1∧ · · ·∧fd : {0, 1}k1+···+kd → {0, 1}. As in the case
of OR, we can describe an input x to f∧ as x = (x(1), . . . , x(d)) where x(i) = (xi,1, . . . , xi,ki) ∈ {0, 1}ki .
Thus, we need to define, for each i ∈ [d], j ∈ [ki] and b ∈ {0, 1}:

H(i,j),b := |i⟩ ⊗H
(i)
j,b ,

which is just like in the OR construction. Thus, as in the OR construction, we get

H =
⊕
i∈[d]

span{|i⟩} ⊗H(i) and H(x) =
⊕
i∈[d]

span{|i⟩} ⊗H(i)(x).

Next, we define:

V :=
⊕
i∈[d]

|i⟩ ⊗ V (i), |τ⟩ :=
d∑

i=1

|i⟩ ⊗ |τ (i)⟩, and A :=

d∑
i=1

|i⟩⟨i| ⊗A(i).

Exercise 4.3.3. Suppose f∧(x) = 1. Describe a positive witness for x in P , and use it to show that
W+(P) ≤

∑
i∈[d]W+(P

(i)).

Exercise 4.3.4. Suppose f∧(x) = 0. Describe a negative witness for x in P , and use it to show that
W−(P) ≤ maxi∈[d]W−(P

(i)).

Just as in Exercise 4.3.2, we can slightly modify the construction of P to get a span program P ′ as
follows.

Lemma 4.3.1. There exists a span program P ′ for f∧ with complexity C(P ′) ≤
√∑d

i=1 C(P (i))2.

The proof is left as an exercise.

4.3.3 Formula Evaluation

We now prove the following:

Theorem 4.3.2. For any family of formulas φ on {0, 1}N , Q(Evalφ) = O(
√
N).

We will show, by induction on D ≥ 0, that for any formula φ on {0, 1}N of depth D, there is a span
program Pφ with complexity C(Pφ) ≤

√
N , which will suffice to prove Theorem 4.3.2.

Base Case: For the base case, if D = 0, then either φ(x1) = x1, in which case the span program
in (4.2) computes φ; or φ(x1) = ¬x1, in which case the span program in (4.3) computes φ. By
Exercise 4.3.1, the complexity in either case is 1.

For the induction step, suppose φ has depth D > 0. There are two cases.

OR Case: If φ(x) =
∨d

i=1 φi(x
(i)) for some formulas of depth at most D− 1, then by the induction

hypothesis, there are span programs Pφ1 , . . . , Pφd
computing each φi with complexity C(Pφi) ≤

√
Ni,

where Ni is the number of variables of φi. Applying the OR composition construction from Sec-
tion 4.3.1, we can get a span program Pφ that computes φ with complexity

C(Pφ) ≤
√∑

i∈[d]

C(Pi)2 =

√∑
i∈[d]

Ni =
√
N,

by Exercise 4.3.2.

4.4. SPAN PROGRAMS FOR ST -CONNECTIVITY 9

AND Case: Otherwise, φ(x) =
∧d

i=1 φi(x
(i)) for some formulas of depth at most D − 1. Again, by

the induction hypothesis, there are span programs Pφ1 , . . . , Pφd
computing each φi with complexity

C(Pφi) ≤
√
Ni, where Ni is the number of variables of φi. Applying the AND composition construction

from Section 4.3.2, we can get a span program Pφ that computes φ with complexity

C(Pφ) ≤
√∑

i∈[d]

C(Pi)2 =

√∑
i∈[d]

Ni =
√
N,

by Lemma 4.3.1.

4.3.4 Function Composition

You have no doubt noticed that the span program for Or in Exercise 4.3.2 resembles the construction
we use to combine span programs P1, . . . , Pd in OR composition (and similarly for AND, if you worked
out a span program for And in Exercise 4.2.2). It turns out we can do a similar composition replacing
OR or AND with any function we have a span program for. Specifically, let f : {0, 1}n → {0, 1}, and g :
{0, 1}m → {0, 1}, and define f ◦ g : {0, 1}nm → {0, 1} by f ◦ g(x(1), . . . , x(n)) = f(g(x(1)), . . . , g(x(n))).
Span programs can be used to show that [Rei09]

Q(f ◦ g) = O(Q(f)Q(g)). (4.6)

Note that if we replace Q with exact query complexity, QE , then this result becomes obvious. If P is
a quantum algorithm that computes f , and P ′ is a quantum algorithm that computes g with no error,
then we can simply run P, and every time it makes a query to its input, we instantiate that query
by running P ′. If P ′ has bounded error, say 1/3, this doesn’t work, because an expected 1/3 of the
results returned by P ′ will be wrong. We can remedy this by amplifying the success probability of P ′

to 1 − 1/Q(f), so that with constant probability, none of the Q(f) calls to P ′ is incorrect, but this
gives a total query complexity O(Q(f)Q(g) logQ(f)). The fact that we can remove this log factor is
quite surprising. The expression in (4.6) also turns out to be tight for all f and g.

4.4 Span Programs for st-Connectivity

In this section, we will see a very nice example of a span program that evaluates a kind of problem
called (undirected) st-connectivity. It takes as input a graph G on V = [n], where s, t ∈ [n] are two
fixed vertices (without loss of generality, you can assume s = 1 and t = n).

Problem: Ustconn

Input: An oracle OG that outputs, for any u, v ∈ [n], a bit indicating if {u, v} ∈ E(G) – called an
adjacency matrix oracle for G.

Output: A bit indicating whether there is a path from s to t in G.

We can consider a variation of this problem in the edge-list model that we saw in the context of random
walks, where for each vertex, its neighbours are given as a list that we can query. In that case, it
is natural to solve the problem with a quantum walk [AJPW23]. In the adjacency matrix model, as
defined here, we are not able to efficiently walk on the graph, because even finding neighbours may
be difficult. Instead we will give a span program for this problem, and then use Theorem 4.2.6 (or
Exercise 4.2.3) to upper bound Q(Ustconn).

For this problem, the “indices” that we query have the form (u, v) ∈ [n] × [n], so we need to define
H(u,v),b for b ∈ {0, 1}. In fact, since the graph is undirected, we always have OG(u, v) = OG(v, u), so

10

we can restrict to queries (u, v) ∈ [n]× [n] where u < v (OG(u, u) has no bearing on whether s and t
are connected). We let

H(u,v),0 = {0} and H(u,v),1 = Hu,v = span{|u, v⟩}

for all u, v ∈ [n] such that u < v. We define A by the action

A|u, v⟩ = |u⟩ − |v⟩ (4.7)

so we are implicitly defining V = span{|u⟩ : u ∈ [n]}. Finally, we let

|τ⟩ = |s⟩ − |t⟩.

This completes the definition of the span program, which we now argue decides Ustcon.

Positive Analysis Suppose Ustcon(G) = 1, meaning there is a path from s to t: s = u0, . . . , uℓ = t
such that for all i ∈ [ℓ], {ui−1, ui} ∈ E(G). Suppose for simplicity that for all i, ui−1 < ui. Then

|w⟩ :=
d∑

i=1

|ui−1, ui⟩ ∈ H(G) = span{|u, v⟩ : {u, v} ∈ E(G), u < v} (4.8)

and

A|w⟩ =
d∑

i=1

(|ui−1⟩ − |ui⟩) =
d−1∑
i=0

|ui⟩ −
d∑

i=1

|ui⟩ = |u0⟩ − |ud⟩ = |s⟩ − |t⟩ = |τ⟩

meaning that |w⟩ is a positive witness for G. In the case where there are some values i for which
ui−1 > ui, we can get the same thing by simply replacing |ui−1, ui⟩ (which is then not in H) with
−|ui, ui−1⟩ (here, just as when we studied quantum walks, a minus sign can be seen as reversing the
direction of an edge). This is a logical positive witness, since a path from s to t is precisely what is
needed for s and t to be connected (it is a 1-certificate for Ustcon). That means that if G has an
st-path of length ℓ, then

w+(G) ≤ ∥|w⟩∥2 = ℓ.

If there is an st-path in G, then there must be one of length at most n− 1 (i.e., it visits every vertex
at most once, so it has at most n− 1 edges), so we get

W+ ≤ n− 1. (4.9)

Note that for graphs G where s and t are connected by a shorter path, we get a smaller witness size.
This means that we should think of these as easier instances of Ustcon, and concretely, if we are
promised that the input is such that either s and t are not connected, or they are connected by a path
of length at most ℓ, then W+ and thus the overall complexity will be smaller as ℓ gets smaller. It is
somewhat intuitive that it is easier to decide that s and t are connected if the path connecting them
is shorter, but there is another factor that might make the problem easier: many paths between s and
t. It turns out that we can also take advantage of this. If there are multiple paths, we can also get a
witness by taking a linear combination of states like the one in (4.8). A linear combination of paths
from s to t is exactly an st-flow (Definition 3.6.1).

Exercise 4.4.1. Let θ be a unit st-flow in G, and define

|w⟩ =
∑

{u,v}∈E(G):u<v

θ(u, v)|u, v⟩

1. Show that |w⟩ is a positive witness for G.

2. Conclude that w+(G) ≤ Rs,t(G).

3. Show that every positive witness for G can be seen as some st-flow, and therefore conclude that
w+(G) = Rs,t(G).

In the worst case over all input graphs G, (4.9) is still tight, but if we have a promise on the input,
we can sometimes use Exercise 4.4.1 to do better.

4.4. SPAN PROGRAMS FOR ST -CONNECTIVITY 11

Negative Analysis Suppose Ustcon(G) = 0, meaning there is no path from s to t. When s and t
are connected, there is an st-path. What do we need to see to convince ourselves that s and t are not
connected? The dual of a path is a cut, which is a set of missing edges in G that separate the vertices
into two disconnected sets, one of which contains s and one of which contains t. That is, let S ⊂ [n]
be such that:

� s ∈ S.

� There is no {u, v} ∈ E(G) such that u ∈ S and v ∈ [n] \ S.

� t ∈ [n] \ S.

Then we can define a negative witness as follows:

|ω⟩ :=
∑
u∈S

|u⟩.

To prove that this is a negative witness, we need to show that ⟨ω|A has no overlap with H(G), and
that ⟨ω|τ⟩ = 1. The latter easily follows from the fact that |τ⟩ = |s⟩ − |t⟩ and s ∈ S but t ̸∈ S. For
the former, we have for any |u, v⟩ ∈ H(G) (meaning {u, v} ∈ E(G) and u < v):

⟨ω|A|u, v⟩ = ⟨ω|u⟩ − ⟨ω|v⟩.

Since {u, v} ∈ E(G), either u, v ∈ S, in which case ⟨ω|A|u, v⟩ = 1− 1 = 0, or u, v ∈ [n] \ S, in which
case ⟨ω|A|u, v⟩ = 0− 0 = 0. Thus |ω⟩ is a negative witness, and we can conclude that:

w−(G) ≤ ∥⟨ω|A∥2 =

∥∥∥∥∥∥⟨ω|
∑

u,v∈[n]:u<v

(|u⟩ − |v⟩)⟨u, v|

∥∥∥∥∥∥
2

=
∑

u,v∈[n]:u<v

|⟨ω|u⟩ − ⟨ω|v⟩|2

=
∑

u∈S,v∈[n]\S

|1− 0|2 = |S|(n− |S|) ≤ n2,

(4.10)

so

W−(G) ≤ n2. (4.11)

Conclusion From (4.9) and (4.11), we have

C(P) =
√
W+W− ≤

√
n3 = n1.5,

from which we can conclude that

Q(Ustcon) = O(n1.5).

As mentioned, we can do better in the case that there is a promise on the input, such as the promise
that if there is a path from s to t, there is one of length at most ℓ, or if there is a path from s to t,
then the effective resistance is upper bounded by some known quantity. In fact, a particular kind of
promise might be that G is always a subgraph of some fixed G, meaning that instead of querying the
adjacency matrix, which is like a string with indices (u, v) ∈ [n] × [n] : u < v, we can query a string
indexed by the edges of G to ask if they are also present in G (as we are promised that no other edges
are present). This gives us something called a switching network.

4.4.1 Switching Networks

A switching network is a graph G on n vertices, two of which are s and t, with Boolean variables
associated with the edges that can switch the edges on or off. Originally used to model certain hardware
systems, including automatic telephone exchanges, and industrial control equipment, a switching
network has an associated function F that is 1 if and only if s and t are connected by a path of “on”
edges.

12

Formally, for every e ∈ E(G), there is a literal φe(x) = xi or φe(x) = ¬xi for some i ∈ [N]. Define G(x)
to be the subgraph of G that includes the edge e if and only if φe(x) = 1. Then we can define a span
program for F : {0, 1}N → {0, 1} from any switching network for F as follows. Let w : E(G) → R>0

be any weight function. This is not part of the input, as the weights have no bearing on whether or
not s and t are connected, but the weights are parameters of the span program that will impact its
complexity. Define for every i ∈ [N]:

Hi,0 = span{|u, v⟩ : {u, v} ∈ E(G), u < v, φu,v(x) = ¬xi}
and Hi,1 = span{|u, v⟩ : {u, v} ∈ E(G), u < v, φu,v(x) = xi}.

(4.12)

Then

H(x) = span{|u, v⟩ : {u, v} ∈ E(G(x)), u < v}.

We generalize A from (4.7) using the weight function w, defining, for all {u, v} ∈ E(G) such that u < v

A|u, v⟩ = √
wu,v(|u⟩ − |v⟩), (4.13)

so as before we have V = span{|u⟩ : u ∈ [n]}. Finally, as before we define |τ⟩ = |s⟩ − |t⟩.

Positive Analysis The positive analysis is identical to the case of a complete graph (i.e. standard
Ustcon): a path from s to t gives a positive witness, or more generally, an st-flow, as in Exercise 4.4.1.
However, now that we have allowed edges to take non-unit weights, we need to take these into account
in the witnesses, by using 1√

wu,v
|u, v⟩, in place of |u, v⟩. For example, now a path s = u0, . . . , uℓ = t

with ui−1 < ui for all i ∈ [ℓ] gives the witness:

ℓ∑
i=1

1
√
wui−1,ui

|ui−1, ui⟩
A7→

ℓ∑
i=1

1
√
wui−1,ui

√
wui−1,ui(|ui−1⟩ − |ui⟩) = |s⟩ − |t⟩ = |τ⟩.

More generally, a flow θ gives the positive witness

|w⟩ :=
∑

{u,v}∈E(G(x)):u<v

θ(u, v)
√
wu,v

|u, v⟩

whose norm is the energy E(θ) in the weighted graph. Thus, w+(x) ≤ Rs,t(G(x)) (which implicitly
depends on the choice of edge weights).

Negative Analysis The negative analysis can be quite different from the complete graph case,
because s and t not being connected depends on the absence of edges, and the only edges that can
possibly occur in G(x) are those in G. For example, if G has some edge e whose removal would
disconnect s from t, then the absence of this one edge would be enough to witness that s and t are not
connected. More generally, suppose EC ⊆ E(G) \ E(G(x)) is a set of edges not present in G(x) such
that their removal from G would cause s and t to be disconnected. Said another way: every st-path
in G uses an edge in EC . Then let S ⊂ [n] be a set containing s, and exactly one endpoint of each
edge in EC . Then we can define a negative witness:

|ω⟩ :=
∑
u∈S

|u⟩,

and then similar to (4.10), we have

w−(x) ≤ ∥⟨ω|A∥2 = |EC |,

which could potentially be very small. In fact, if we have multiple sets of the form of EC , we can take
linear combinations of their corresponding negative witnesses to get even smaller witnesses.

4.4. SPAN PROGRAMS FOR ST -CONNECTIVITY 13

Example 4.4.1. While a branching program is a directed graph, if you remove the directions on
the edges, you get a switching network that computes the same function. This gives us a quantum
algorithm from any branching program, but we should of course not expect this to lead to a speedup
in general.

For example, if you do this with the branching program in Figure 4.1 for Or, then you get a switching
network for Or. There is always a unique path from s to either t0 or t1. When Or(x) = 1, the
length of the path from s to t1 is ℓ, where ℓ is the smallest value in [n] such that xℓ = 1, so W+ = n.
When Or(x) = 0, meaning x is the all 0s string, then there is a unique path from s to t0, but this
path is not a span program witness – instead, the cut consisting of all the n edges labelled by 1 is the
(unique) negative witness, so we get W− = n, and so the overall complexity of the span program is
C =

√
n · n = n, which is not optimal for Or. We will soon see that a more clever switching network

gives us a span program for Or with the optimal
√
n complexity.

Extension to Multigraphs Sometimes it is useful to allow a switching network to be based on a
multigraph G, meaning a pair of vertices u and v might have multiple edges connecting them in G,
with different literals labelling different edges. In that case, we can assume these different edges have
distinct labels λ, and we can modify Hi,b in (4.12) to:

Hi,0 = span{|u, v, λ⟩ : φu,v,λ(x) = ¬xi}
and Hi,1 = span{|u, v, λ⟩ : φu,v,λ(x) = xi},

(4.14)

and modify A in (4.13) to
A|u, v, λ⟩ = √

wu,v,λ(|u⟩ − |v⟩).

Formulas from Switching Networks Switching networks based on graphs of a particular kind
– called series-parallel graphs – correspond to Boolean formulas. This leads to an alternative way of
designing span programs for formula evaluation.

A series-parallel graph is a multigraph, defined by the following rules. A single edge between endpoints
s and t is a series-parallel graph. If G1 and G2 are series-parallel graphs, their serial connection – in
which the vertex labelled t in G1 is identified with the vertex labelled s in G2 – is a series parallel
graph. For example, if G1 and G2 each consist of an edge with endpoints s and t, then connecting
them in series yields a path of length two from s to t. If G1 and G2 are series-parallel graphs, their
parallel connection – in which the vertices labelled s in G1 and G2 are identified, and the vertices
labelled t in G1 and G2 are identified – is a series parallel graph. For example, if G1 and G2 are each
a path of length 2 from s to t, then connecting them in parallel yields a graph that consists of two
parallel paths from s to t (see Figure 4.2).

We now describe how to obtain a switching network for φ by induction on the depth. First, suppose
φ has depth 0. A switching network G consisting of a single edge from s to t labelled by x1 decides
the formula φ(x1) = x1, since s and t are connected in G(x) if and only if x1 = 1, which is if and only
if φ(x1) = 1. Similarly, a switching network consisting of a single edge from s to t labelled by ¬x1
decides the formula φ(x1) = ¬x1.

If φ has depth D > 0, there are two cases. If φ(x) =
∨d

i=1 φi(x
(i)), then we can obtain a switching

network Gφ by connecting switching networks Gφ1 , . . . ,Gφd
in parallel, meaning we connect the graphs

in parallel, and edges of the resulting graph inherit their edge labels from the graph they came from.
This means that for any x, Gφ(x) is just the parallel connection of Gφ1(x

(1)), . . . ,Gφd
(x(d)), which has

a path from s to t if and only if at least one of the Gφi(x
(i)) has a path from s to t, which is if and

only if φi(x
(i)) = 1.

The other case is where φ(x) =
∧d

i=1 φi(x
(i)). Then we can obtain a switching network Gφ by connect-

ing Gφ1 , . . . ,Gφd
in series. Then for any x, Gφ(x) is just the serial connection of Gφ1(x

(1)), . . . ,Gφd
(x(d)),

which has a path from s to t if and only if all of the Gφi(x
(i)) have a path from s to t, which is if and

only if φi(x
(i)) = 1 for all i.

14

Figure 4.2: s and t are connected in a subgraph of G∨ if and only if the edge x1 or the edge x2 is
present. s and t are connected in a subgraph of G∧ if and only if the edge x1 and the edge x2 are
present. s and t are connected in a subgraph of Gφ if and only if the formula φ(x) = (x1∧x2)∨(x3∧x4)
evaluates to 1. Note that Gφ can be obtained by connecting two copies of G∧ in parallel.

Figure 4.3: Two switching networks, Gφ1 and Gφ2 can be connected in parallel (center), or in series
(right). In the parallel connection, s and t are connected in G(x) if and only if there is an st-path in
Gφ1(x) or Gφ2(x). In the series connection, s and t are connected in G(x) if and only if there is an
st-path in Gφ1(x) and Gφ2(x).

For any formula φ, we can construct a span program from the switching network Gφ, from which
we can also obtain a quantum algorithm for evaluating φ. In the next exercise, you will analyze the
complexity of this span program in the special case when φ is a symmetric formula.

Exercise 4.4.2. Fix a symmetric formula φ on {0, 1}N , which is a formula of depth 0, or a formula
of depth d > 0 of the form φ(x) =

∨d0
i=1 φ

′(x(i)) or φ(x) =
∨d0

i=1 φ
′(x(i)), for some symmetric formula

φ′, where x(i) is the i-th block of N/d0 bits of x. That is, a formula is symmetric if it is the OR or
AND of identical sub-formulas that are also symmetric. Then there are positive integers d0, . . . , dD−1

and some set S∨ ⊆ {0, . . . , D− 1} such that for all ℓ ∈ S∨, every node at distance ℓ from the root is a
∨ gate with dℓ children, and for all ℓ ∈ S∧ := {0, . . . , D − 1} \ S∨, every node at distance ℓ from the
root is a ∧ gate with dℓ children. Note that we must have N = d0 . . . dD−1. Let Gφ be the switching
network for φ described above, and let Pφ be the span program derrived from this switching network
as in (4.12) and (4.13), using wu,v = 1 for all edges.

1. Show that W+(Pφ) ≤
∏

ℓ∈S∧
dℓ.

2. Show that W−(Pφ) ≤
∏

ℓ∈S∨
dℓ.

From this we can conclude that Q(Evalφ) = O(
√
N).

The same construction works for arbitrary formulas, also giving complexity O(
√
N), but in that case,

non-unit edges weights must be used to balance the relative weights when combining graphs in series
or parallel to account for the graphs being different.

A Superpolynomial Speedup There exists a family of formulas and promises on the input, yield-
ing a formula evaluation problem called k-fault trees for which there is a superpolynomial separation
between its quantum and classical query complexities [ZKH12]. It is possible to achieve the optimal
quantum query upper bound using switching networks [JK17], which shows that switching networks
can be used to achieve superpolynomial speedups.

4.5. SPAN PROGRAMS FROM ALGORITHMS 15

4.5 Span Programs from Algorithms

In this section, we will see how to turn a quantum query algorithm into a span program, using a
construction from [Rei09], which almost proves the other direction of Theorem 4.2.6. The reason it
only “almost” proves it, is that the construction we give will only work for quantum algorithms with
one-sided error. To prove one direction of Theorem 4.2.6, we would need a construction that makes a
span program out of any bounded-error quantum algorithm, and these are generally allowed to err on
both 1-inputs and 0-inputs. There is no known construction that takes any bounded-error quantum
algorithm for F and converts it into a span program for F (even though we know from Theorem 4.2.6
that one exists). However, a similar construction to the one shown here can turn any bounded-error
quantum algorithm for F into a span program that approximates F, a relaxed notion defined in [IJ19].
This construction for bounded-error algorithms can be found in [Jef22].

The algorithm Fix a quantum algorithm U1, . . . , UT , |ψ0⟩,M, on the space

HA = span{|i⟩|z⟩ : i ∈ [n] ∪ {0}, z ∈ Z}

for some finite set Z, where for simplicity we assume:

� |ψ0⟩ = |0, 0⟩

� T is odd

� for every odd t ∈ [T], Ut is an input-independent unitary

� for every even t ∈ [T], Ut = O±
x , which acts as O±

x |i⟩|z⟩ = (−1)xi |i⟩|z⟩, where we interpret x0
as 0. Note that this is similar to a controlled query, previously denoted cO±

x , but it acts as the
identity on |0⟩ in the query register, instead of conditioned on a particular qubit.

We will suppose that this algorithm computes a problem F with one-sided error ε, meaning that if
F(x) = 1, then with probability 1, the algorithm outputs 1, and if F(x) = 0, then with probability at
least 1 − ε, the algorithm outputs 0. (Note that this is slightly different from how one-sided error is
usually defined, as the error is more commonly in the 1 case rather than the 0 case).

We will also assume that there is a unique accepting state |ψacc
T ⟩, which is justified by the following

exercise.

Exercise 4.5.1. Fix any quantum algorithm that computes F with one-sided error ε using T unitaries
from some set of allowed basic operations U that is closed under inverses, and includes CNOT; and
assume for simplicity that its final measurement M just measures the last qubit in the computational
basis. Show that there is another quantum algorithm that computes F with one-sided error at most ε
using 2T + 1 unitaries from the set U , and additional qubit of memory, and such that if F(x) = 1,
then the final state is |0̄1⟩ – the state that is 0s everywhere, but has a 1 in the answer register.

For any input x, we can define states for the algorithm:

|ψ0(x)⟩ := |ψ0⟩
∀t ∈ [T], |ψt(x)⟩ := Ut|ψt−1(x)⟩.

(4.15)

Then we have the following guarantees on |ψT (x)⟩:

if F(x) = 1, |ψT (x)⟩ = |ψacc
T ⟩

if F(x) = 0, ∥|ψT (x)⟩ − |ψacc
T ⟩∥2 ≥ 1− ε.

(4.16)

The Span Program We now define a span program that decides F based on the quantum algorithm
for F. First define, for every i ∈ [n] ∪ {0} \ {1} and b ∈ {0, 1},

Hi,b := span{|t⟩|i, b, z⟩ : t ∈ [T − 1], z ∈ Z}.

16

Let Htrue = H0,0 and Hfalse = H0,1. Then we have H =
⊕

i∈[n],b∈{0,1}Hi,b ⊕H0,0. Define

V := span{|t⟩|i, z⟩ : t ∈ {0, . . . , T}, i ∈ [n], z ∈ Z}

and

A|t⟩|i, b, z⟩ :=
{

|t⟩|i, z⟩ − (−1)b|t+ 1⟩|i, z⟩ if t is odd
|t⟩|i, z⟩ − |t+ 1⟩Ut+1|i, z⟩ if t is even.

Notice then that for any t ∈ [T − 1], i ∈ [n] ∪ {0} and z ∈ Z,

A|t⟩|i, xi, z⟩ = |t⟩|i, z⟩ − |t+ 1⟩Ut+1|i, z⟩, (4.17)

because when t is odd, Ut+1|i, z⟩ = O±
x |i, z⟩ = (−1)xi |i, z⟩. Finally, let

|τ⟩ := |0⟩|ψ0⟩ − |T ⟩|ψacc
T ⟩.

The definition of this span program should remind you of the span program for Ustcon (or more
generally, switching networks) in Section 4.4: |t⟩|i, b, z⟩ encodes a transition, analogous to an edge,
from the state |t⟩|i, z⟩ to |t+1⟩Ut+1|i, z⟩ (at least in the case of even t), and the starting state |0⟩|ψ0⟩ (a
register containing a timer set to 0, and another register with our initial state) represents |s⟩; while the
final state of an accepting computation |T ⟩|ψacc

T ⟩ represents |t⟩. We want to know if our computation
induces a path from the starting state to this accepting state.

Positive Analysis Just as a path from s to t gives a positive witness for the span program in
Section 4.4, a “computation path” gives a positive witness here. For any x, let Mx be the isometry
that maps V to H(x) as follows:

Mx|t⟩|i, z⟩ = |t⟩|i, xi, z⟩,

where we let x0 = 0. Then

|w⟩ :=Mx

T−1∑
t=0

|t⟩|ψt(x)⟩ ∈ H(x).

The state
∑

t |t⟩|ψt(x)⟩ is called a history state (of the algorithm on input x), and it plays an important
role in quantum computational complexity. We will show that |w⟩ is a positive witness by showing
that A|w⟩ = |τ⟩. To see this, note that

AMx|t⟩|i, z⟩ = A|t⟩|i, xi, z⟩ = |t⟩|i, z⟩ − |t+ 1⟩Ut+1|i, z⟩,

by (4.17). Thus, for any |ψ⟩ ∈ span{|i, z⟩ : i ∈ [n] ∪ {0}, z ∈ Z},

AMx|t⟩|ψ⟩ = AMx|t⟩
∑
i,z

⟨i, z|ψ⟩|i, z⟩ = |t⟩
∑
i,z

⟨i, z|ψ⟩|i, z⟩ − |t+ 1⟩
∑
i,z

⟨i, z|ψ⟩Ut+1|i, z⟩

= |t⟩|ψ⟩ − |t+ 1⟩Ut+1

∑
i,z

⟨i, z|ψ⟩|i, z⟩ = |t⟩|ψ⟩ − |t+ 1⟩Ut+1|ψ⟩.

Thus:

A|w⟩ =
T−1∑
t=0

(|t⟩|ψt(x)⟩ − |t+ 1⟩Ut+1|ψt(x)⟩)

=

T−1∑
t=0

(|t⟩|ψt(x)⟩ − |t+ 1⟩|ψt+1(x)⟩)

= |0⟩|ψ0(x)⟩ − |T ⟩|ψT (x)⟩.

We have |ψ0(x)⟩ = |ψ0⟩ for all x, and for all x such that F(x) = 1, |ψT (x)⟩ = |ψacc
T ⟩, so when F(x) = 1,

we have A|w⟩ = |τ⟩, so |w⟩ is a positive witness. We can thus upper bound:

w+(x) ≤ ∥|w⟩∥2 =
T−1∑
t=0

∥Mx|t⟩|ψt(x)⟩∥2 = T,

4.5. SPAN PROGRAMS FROM ALGORITHMS 17

since Mx|t⟩|ψt(x)⟩ still has |t⟩ in the first register (making them orthogonal for different t), Mx is an
isometry, and |ψt(x)⟩ is a unit vector. Thus

W+ ≤ T. (4.18)

Negative Analysis A negative witness will also be based on a history state. Let x ∈ F−1(0), and
define

|ω̃⟩ :=
T∑
t=0

|t⟩|ψt(x)⟩.

First, note that

⟨ω̃|τ⟩ = ⟨ψ0|ψ0(x)⟩ − ⟨ψacc
T |ψT (x)⟩.

We have |ψ0(x)⟩ = |ψ0⟩, and since F(x) = 0, by (4.16), ⟨ψacc
T |ψT (x)⟩ ≠ 1, so we can conclude ⟨ω̃|τ⟩ ≠ 0.

Thus

|ω⟩ := 1

⟨τ |ω̃⟩
|ω̃⟩ satisifes ⟨ω|τ⟩ = 1.

We will show that it is a negative witness by showing ⟨ω|A (and thus ⟨ω̃|A) has no overlap with H(x).
We have for any t ∈ [T − 1], i ∈ [n] ∪ {0}, and z ∈ Z, using xi = 0, and (4.17):

⟨ω̃|A|t⟩|i, xi, z⟩ = ⟨ω̃|(|t⟩|i, z⟩ − |t+ 1⟩Ut+1|i, z⟩)

= ⟨ψt(x)|i, z⟩ − ⟨ψt+1(x)|Ut+1|i, z⟩ = ⟨ψt(x)|i, z⟩ − ⟨ψt(x)|U †
t+1Ut+1|i, z⟩ = 0

where we used that |ψt+1(x)⟩ = Ut+1|ψt(x)⟩, by (4.15). This completes the proof that |ω⟩ is a negative
witness, to compute its complexity, we first note that by (4.16),

1− ε ≤ ∥|ψT (x)⟩ − |ψacc
T ⟩∥2 = ∥|ψT (x)⟩∥2 + ∥|ψacc

T ⟩∥2 − 2Re⟨ψT (x)|ψacc
T ⟩

= 2(1− Re⟨ψT (x)|ψacc
T ⟩) ≤ 2 |1− ⟨ψT (x)|ψacc

T ⟩| = 2|⟨ω̃|τ⟩|.
(4.19)

Next, to compute ∥ω̃A∥2, we first note that for even t ∈ [T − 1], we always have (for any b, not just
b = xi):

⟨ω̃|A|t⟩|i, b, z⟩ = ⟨ω̃|(|t⟩|i, z⟩ − |t+ 1⟩Ut+1|i, z⟩) = 0.

Thus, we have,

∥⟨ω̃|A∥2 =
∑

t∈[T−1],odd

∑
i∈[n]∪{0},z∈Z

|⟨ω̃|A|t, i,¬xi, z⟩|2

=
∑

t∈[T−1],odd

∑
i∈[n]∪{0},z∈Z

|⟨ω̃| (|t⟩|i, z⟩ − (−1)¬xi |t+ 1⟩|i, z⟩)|2

=
∑

t∈[T−1],odd

∑
i∈[n]∪{0},z∈Z

|⟨ψt(x)|i, z⟩+ ⟨ψt+1(x)|(−1)xi |i, z⟩|2

=
∑

t∈[T−1],odd

∑
i∈[n]∪{0},z∈Z

|⟨ψt(x)|i, z⟩+ ⟨ψt(x)|i, z⟩|2

= 4
∑

t∈[T−1],odd

∑
i∈[n]∪{0},z∈Z

|⟨ψt(x)|i, z⟩|2

= 4
∑

t∈[T−1],odd

∥|ψt(x)⟩∥2 = 4

(
T − 1

2

)
= 2(T − 1)

(4.20)

Combining (4.19) and (4.20), we see

w−(x) ≤ ∥⟨ω|A∥2 = ∥⟨ω̃|A∥2

|⟨ω̃|τ⟩|2
≤

(
2

1− ε

)2

2(T − 1)

18

Figure 4.4: Relationships between one-sided error algorithms, bounded-error algorithms, span pro-
grams, and approximate span programs. A red arrow indicates two objects either both exist, or both
don’t exist. A blue arrow indicates a construction from one to the other.

and so

W− ≤ 8

(1− ε)2
(T − 1). (4.21)

Thus, by (4.18) and (4.21), this span program has complexity

C(P) ≤

√
8

(1− ε)2
T (T − 1) = O(T)

for any constant ε < 1. This is exactly what we should expect. We could not hope to improve on
the query complexity of an arbitrary quantum algorithm by getting something smaller than (T − 1)/2
(the number of queries), but we also know by Theorem 4.2.6 that there exists a span program whose
complexity matches the best possible query complexity, so converting any (T − 1)/2-query algorithm
to a span program with complexity O(T) is not too much to hope for. Of course, this construction only
works for one-sided error algorithms, whereas Theorem 4.2.6 would also leave open the possibility for
such a construction that works for bounded (two-sided) error algorithms. While no such construction
is known, it is possible to use a construction like the one we saw here to turn a bounded-error algorithm
for F into a span program that approximately decides F [IJ19]. A span program that approximately
decides F is almost as good as one that decides F, in that it can also be turned into a bounded-error
quantum algorithm for F. See Figure 4.4 for a summary.

4.6 Further Directions

As mentioned in the previous section, a span program can be useful even if it doesn’t perfectly decide
F, but only approximately decides it. By this we mean that for all x ∈ F−1(1), not only does there
exist a positive witness, but it is less than some bound W+, whereas for any x ∈ F−1(0), it is not
necessarily the case that it has a negative witness, but if it instead has a positive witness, that positive
witness must have size at least 2W+. This turns out to be equivalent to saying that there is a vector
|ω⟩ that is close to being a negative witness for x in the sense that

∥∥⟨ω|AΠH(x)

∥∥ is small (whereas
we have been requiring that it be 0). This is described in [IJ19], where this idea is also used to turn
any span program into a quantum algorithm that, on input x, outputs an estimate of w+(x, P). So
for example, if this construction is used with the span program for Ustcon, it yields a quantum
algorithm for estimating Rs,t(G).

Span programs can also be turned into quantum algorithms for generating a quantum state propor-
tional to the optimal positive witness. For example, using the span program for Ustcon, we can get

BIBLIOGRAPHY 19

a quantum algorithm that generates a superposition over edges with amplitudes proportional to the
optimal flow. Sampling the edges can be used to find a path from s to t (although this is only efficient
in special cases) [JKP23].

Bibliography

[AJPW23] Simon Apers, Stacey Jeffery, Galina Pass, and Michael Walter. (no) quantum space-
time tradeoff for USTCON. In Proceedings of the 31st Annual European Symposium on
Algorithms (ESA), pages 10:1–10:17, 2023. arXiv: 2212.00094 9

[CJOP20] Arjan Cornelissen, Stacey Jeffery, Maris Ozols, and Alvaro Piedrafita. Span programs
and quantum time complexity. In Proceedings of the 45th International Symposium on
Mathematical Foundations of Computer Science (MFCS), pages 21:1–26:14, 2020. arXiv:
2005.01323 5

[HLŠ07] Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger.
In Proceedings of the 39th ACM Symposium on the Theory of Computing (STOC), pages
526–535, 2007. arXiv: quant-ph/0611054 2

[IJ19] Tsuyoshi Ito and Stacey Jeffery. Approximate span programs. Algorithmica, 81(6):2158–
2195, 2019. arXiv: 1507.00432 15, 18

[Jef22] Stacey Jeffery. Span programs and quantum space complexity. Theory of Computing,
18(11):1–49, 2022. arXiv: 1908.04232 5, 15

[JK17] Stacey Jeffery and Shelby Kimmel. Quantum algorithms for graph connectivity and for-
mula evaluation. Quantum, 1(26), 2017. arXiv: 1704.00765 14

[JKP23] Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita. Quantum algorithm for path-edge
sampling. In Proceedings of the 18th Conference on the Theory of Quantum Computation,
Communication, and Cryptography (TQC), pages 5:1–5:28, 2023. arXiv: 2303.03319 19

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the IEEE
8th Annual Conference on Structure in Complexity Theory, pages 102–111, 1993. 2

[Rei09] Ben W. Reichardt. Span programs and quantum query complexity: The general adver-
sary bound is nearly tight for every Boolean function. In Proceedings of the 50th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 544–551, 2009. arXiv:
0904.2759 2, 9, 15

[RŠ12] Ben W. Reichardt and Robert Špalek. Span-program-based quantum algorithm for eval-
uating formulas. Theory of Computing, 8(13):291–319, 2012. 2

[ZKH12] B. Zhan, S. Kimmel, and A. Hassidim. Super-polynomial quantum speed-ups for Boolean
evaluation trees with hidden structure. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference (ITCS 2012), pages 249–265, 2012. 14

.1 Singular value decomposition and Pseudoinverse

Every linear map A : H → H ′ has a singular value decomposition:

A =
r∑

i=1

σi|ψi⟩⟨ϕi|

for some positive real singular values σ1, . . . , σr, orthonormal left singular vectors |ψ1⟩, . . . , |ψr⟩ ∈ H,
and orthonormal right singular vectors |ϕ1⟩, . . . , |ϕr⟩ ∈ H ′. From this, we can define the pseudoinverse

https://arxiv.org/abs/2212.00094
https://arxiv.org/abs/2005.01323
https://arxiv.org/abs/quant-ph/0611054
https://arxiv.org/abs/1507.00432
https://arxiv.org/abs/1908.04232
https://arxiv.org/abs/1704.00765
https://arxiv.org/abs/2303.03319
https://arxiv.org/abs/0904.2759

20 BIBLIOGRAPHY

of A:

A+ =
r∑

i=1

1

σi
|ϕi⟩⟨ψi|.

The right singular vectors are an orthonormal basis for the rowspace of A, which is the orthogonal
complement of its kernel. The left singular vectors are an orthonormal basis for the columnspace of
A, which is the image of A.

	4.1 Introduction
	4.2 Span Programs
	4.3 Span Program Composition and Formula Evaluation
	4.3.1 OR Composition
	4.3.2 AND Composition
	4.3.3 Formula Evaluation
	4.3.4 Function Composition

	4.4 Span Programs for st-Connectivity
	4.4.1 Switching Networks

	4.5 Span Programs from Algorithms
	4.6 Further Directions
	.1 Singular value decomposition and Pseudoinverse

