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5.1 Introduction

Quantum query complexity is perhaps the most important measure for understanding the power of
quantum computers, for the following reasons:

1. It is a reasonable (though imperfect) proxy for the time required by a quantum computer to
solve a problem.

2. It is sufficiently simple and structured that we can actually say something about it.

In fact, quantum query complexity is even better understood than its classical counterparts, determin-
istic query complexity and randomized query complexity, because, as we will see, we have a perfect
characterization of it as a semidefinite program (optimization problem, see Appendix .1). Quantum
query upper bounds are obtained from algorithms.! In Section 5.3, we will see several methods of
proving quantum query lower bounds.

More generally, to try to understand the power of quantum computers relative to classical computers,
some concrete questions we can ask are:

1. How does quantum query complexity Q(F') compare to classical measures of complexity? For
example, can we show that for all problems F with a certain property, the quantum query
complexity of F can’t be that much better than, say, the randomized query complexity (or some
other measure)?

2. What is the biggest separation between Q(F) and R(F') (randomized query complexity) for any
F?

We will also study these questions this week.

5.2 Measures of Complexity

In this section, we will define several measures of complexity, and compare them with quantum query
complexity, either in analogy (i.e., they can be derived as somewhat similar looking expressions) or
giving concrete bounds.

We will talk a lot about optimization problems in this section and the next. A review of some basics
can be found in Appendix .1. For the most part, the details of which optimization problems are linear
and which are semidefinite are not too important, but it is useful to understand, at least at a high
level, the concept of duality.

Two natural measures of complexity to compare to Q(F) are deterministic and randomized query
complexity. A deterministic query algorithm is a classical deterministic algorithm that accesses the

'Even algorithms that are not fully worked out, in the sense that only their query complexity is analyzed, such as
those obtained from span programs.



input x € {0,1}" by querying the value of x; for some chosen i € [n] at each step. Deterministic
query complexity is sometimes called decision tree complexity, because a deterministic algorithm can
be viewed as a rooted tree, with root s, where every node has an associated index ¢, and two outgoing
edges, labelled by 0 and 1. Every leaf is either an accepting leaf or a rejecting leaf, and a decision tree
is evaluated by starting from s, and at any node with index i, query x; and use its value to decide
which edge to traverse, until a leaf is reached, which determines whether to accept or reject. A decision
tree is similar to a branching program, except that it must be a tree. In the same way, any input x
induces a unique path from s to a leaf, whose length is the query complexity of the decision tree on
input z. The maximum query complexity over all inputs gives the query complexity of the decision
tree, and the minimum query complexity for any decision tree that decides F is its deterministic query
complexity, denoted D(F). Similarly, we can define the randomized query complexity of F as the
minimum query complexity of any randomized algorithm that decides F with bounded error.

D(F): deterministic query complexity of F
R(F): (bounded-error) randomized query complexity of F
We immediately have

Q(F) < R(F) < D(F)

The natural classical analogue of Q is R, but we can also gain some insight from other classical
measures, as we will see shortly.

5.2.1 From certificates to witnesses

Another measure of complexity called certificate complexity is less operational, but quite intuitive. We
first need the notion of a certificate.

Definition 5.2.1 (Certificate). For a function F : D — {0,1} with D C {0,1}", and input x € {0,1}",
a certificate for x (wrt F) is a set S C [n] such that: for ally € {0,1}" such that for alli € S, y; = z;,

F(y) = F(z). In other words, it’s a set of indices into x such that if you check all those bits of x, you
will know the value of F(z).

Example 5.2.2. Let z € {0,1}" be such that OR(x) = 1. Then for any ¢ such that z; = 1, {i} (or
any set that contains 7) is a certificate for = with respect to OR.

Example 5.2.3. Let G be a graph given in the adjacency matrix model, so we can query G, , for
u < v to learn if {u,v} € E(G). Let F be the problem USTCON, defined in Section 4.4. Then if
S =1ug,...,uy =t is a path from s to ¢ in G, then S = {{up,u1},...,{us—1,ue}} is a certificate for G
with respect to F.

Exercise 5.2.1. Show that for any total F : {0,1}* — {0,1}, if S, is a certificate for x € F~1(0),
and Sy is a certificate for y € F~(1), then S, N Syn{i:a; #yi} #0.

Definition 5.2.4 (Certificate Complexity). For a function ¥ : D — {0,1} with D C {0,1}", and
input © € D, the certificate complexity of x with repect to ¥, C(z,F) is defined as the smallest
|S| such that S is a certificate for x with respect to F. The certificate complexity of F is defined
C(F) = maxzep C(z, F). Forb € {0,1}, we can also define Cp(F) = max,cp-1(;) C(z, F).

Example 5.2.5. In the case of OR,, for any ¢ € [n] such that z; = 1, {i} is a certificate for z, so
Ci1(ORr) = 1. It is easy to see that no set smaller than [n] could be a certificate for 0", so Co(OR) = n.

Certificate complexity could equivalently be called non-deterministic query complexity, since it is pre-
cisely the number of queries needed by a non-deterministic algorithm for F. That is, a non-deterministic
algorithm that tries all sets of C(F') queries will be convinced of the answer in at least one path, for
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every input; and it is also easy to see that if a non-deterministic algorithm has some computation
path that makes at most 1" queries, for every input, then every input has a certificate of size at most
T. This immediately gives the inequality:

VF, C(F) < D(F)

However, certificate complexity is also related to deterministic complexity for total functions by the
inequality:

V total F, D(F) < C(F)%
To prove this inequality, we will show how any set of certificates for F can be used to design a
deterministic algorithm for F (as long as F is total). In fact, we will see something slightly stronger.
For b € {0,1}, we have

Cy(F) = max C(z, F),
x€F~(b)

so that clearly C(F) = max{Cy(F), C1(F)}. We will show the following.

Theorem 5.2.6. For all total functions F : {0,1}" — {0,1},

D(F) < Co(F)Cy(F). (5.1)

Proof. For each x € {0,1}", let S, be a certificate for x with respect to F with |S,| < Cy(F) whenever
F(z) = b. Consider the following algorithm that takes input z € {0, 1}":

Algorithm 1. Certificate Finding

1. Let X « F1(0) and Y« F1(1).
2. While X # () and Y # ():
(a) Choose y € Y and query z; for all i€ S,.
(b) Remove from X any strings x that are not consistent with the queried
values.
(c) Remove from )Y any strings y that are not consistent with the queried
values.
3. If X =0, output 1, otherwise output O.

The algorithm starts with all strings in X' U ) as candidates for z, and every time it queries a bit
of z, it eliminates all strings that are not consistent with that query. It’s clear that this algorithm
computes F(z), since it doesn’t stop until all of F~1(0) or F~!(1) has been eliminated.

We will argue that the total number of queries made by this algorithm is at most Co(F)Cy(F), which
will prove the theorem statement. First notice that any iteration of the while loop makes at most
|Sy| < Ci(F) queries. We claim the folllowing.

Claim 5.2.7. Let Q C [n], Q = [n] \ Q, and define
X={zcF0):VicQ,z =z}

Y={yeF1(1):VicQu =z}
For ally € Y and x € X, there is some i € Sy NSy such that i € Q.

[3]



The set () represents the set of indices already queried at the start of any iteration of the loop — and so
X and Y are precisely as stated in the claim. The y in the claim can be the y chosen in the first step
of the loop. Then the claim says that for each 2 € F~1(0) that remains in X in any given iteration, a
new i € S, is queried — i € @Q means it has not yet been queried, and since it is in Sy, it will now be
queried for the first time. This implies that any = can be in X for at most |S;| < Co(F) iterations.

We now prove the claim. Define Fg : {0, 139 — {0,1} as follows. Fg(z) = F(2'), where 2; = =
for all i € Q, and z} = 2; for all i € [n]\ Q. Here we are using the fact that F is a total function,
because if it were a partial function, the value F(z) would not be defined for all strings 2’ formed
this way. So we have basically defined a total function on a set of shorter strings, where the O-inputs
are in one-to-one correspondance with X', and 1-inputs are in one-to-one correspondance with Y (FQ
is called a sub-function of ). Then Sy \ @ is a certificate for z wrt Fg, and Sy \ Q is a certificate for
T wrt F@’ so we must have

(Sm\Q)ﬂ(Sy\Q):(SxﬂSy)\Q:SzﬂSyﬂé

non-empty by Exercise 5.2.1. O

For reasons that will soon become clear, let us write C(F') for F : D — {0,1}, D C {0,1}", as an
optimization problem:

n

C(F) = minimize: max » wg;
reD “ 1
1=

subject to: Vz € D,i € [n], wy,; € {0,1} (5.2)

V(z,y) €FHO) x FH), [ D way Y wy | =1

X FY; X AY;

Above, wg; represents a bit indicating if ¢ € S, (the certificate for x), and so > . | wg; = |Sg|. The
constraint is equivalent to Sy N {i : z; # y;} # 0 and S, N {3 : z; # y;} # 0, which is equivalent to y
not agreeing with = on S, (otherwise we would have F(z) = F(y)) and x not agreeing with y on S,
(or again, we would have F(z) = F(y)).

For total functions F, we can replace the constraints Zml Ly Wai with the seemingly stronger con-
straints Zi:xi#yi Wy Wy, which is equivalent to Sp NSy N {i : z; # y;} # 0, which we know by
Exercise 5.2.1 is true for certificates of a total function. That is, for all total F:

n

)

i=1
subject to: Yo € D,i € [n], wy,; € {0,1} (5.3)
V(z,y) € F7H0) x FTH1), > wewy, > 1.

LT FYs

Fractional Certificate Complexity A natural relaxation of the definition of C(f) in (5.2) is to
allow the w; ; values to be in R, yielding what we call the fractional certificate complexity of F:

n

FC(F) = minimize: max E Wy i
xeD 4 1
1=

subject to: Vo € D,i € [n], wy; € R>g (5.4)

V(z,y) e FHO) x FH), | ) way > wya| 21

X FY; X AY;
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So a fractional certificate for « with respect to F is a set of non-negative real values {w; ;}; ; such
that for all y with F(z) # F(y), > ;.. 2, Wz,; = 1. The optimization problem in (5.4) is a (linear)
relazation (see Appendix .1) of (5.2), so clearly we have FC(F) < C(F) for all F.

A more operational definition of FC is in terms of a game, played between Alice and a referee. The
referee chooses a bit b € {0,1} and an input pair (z,y) € F~1(b) x F~}(1 — b), and sends z to Alice.
Alice wins if she can output i € [n] such that x; # y;. An optimal (up to constants) strategy for Alice
is to choose ¢ with probability proportional to w; ;, which gives her winning probability 1/FC(F').

Expectational Certificate Complexity Along similar lines, we can define the expectational cer-
tificate complezity as follows:

n
EC(F) = minimize: max g Wy i
i=1

zeD 4
subject to: Vz € D,i € [n], wy; € [0, 1] (5.5)
V(z,y) € F7H0) x FTH1), > weawy, > 1.
X FYs

It is no longer possible to talk about an “expectational certificate for = with respect to f” — it is
necessary to talk about a set of expectational certificates, W = {{w,;}!" }zep, as the constraints
involving « depend on the values w,; for other inputs y.2 While it is possible to define “a certificate
for 27 or (fractional certificate for ) without defining certificates for all other inputs, this is not true
for expectational certificates.

The quantity EC was introduced in [JKK*20] to study other complexities. It is known that
EC(F) < C(F) < EC(F)?

and
FC(F) < EC(F) < FC(F)%/?

for all F. It is an open problem whether or not EC and FC are always equal up to constants.

To try to interpret this quantity in an operational way, note that the w,; are in [0, 1], so we can
interpret them as probabilities. Then, for example, it is shown in [JKK*20] that® for all F, R(F) =
O(EC(F)?). This is accomplished using an algorithm like Algorithm 1, except that the algorithm is
randomized: instead of querying all of Sy, an index is chosen according to the distribution Pr[i] oc wy .
(Showing that O(EC(F)?) iterations are sufficient is non-trivial).

Certificate Game Complexity Consider the following game, for some fixed F : D — {0,1} with
D C {0,1}", played between a referee, and cooperating players Alice and Bob. The referee gives Alice
an input € D, and Bob an input y € D such that F(z) # F(y), and they must both output some
i € [n] (the same i) such that x; # y;. If we view this game as a communication task, we can ask how
many bits of information must be exchanged between Alice and Bob for them to win the game, which
turns out to be characterized, up to constants, by the circuit depth of F for any total F [KW90]. We
will instead be interested in this game in the setting where no communication is allowed, and we will
ask what is the worst-case probability wg, over all inputs, that Alice and Bob win this game using
an optimal strategy. We will not allow Alice and Bob to use any shared resources, such as shared
randomness, or entanglement (although these variations can also be considered) [CGL23]. Then we
let CG(F) = 1/wp. It turns out that CG(F) can be written as the following optimization problem,

*While the constraints in (5.2) and (5.4) also involve an x and y simultaneously, this is because we are stating two
constraints at once. See the equivalent formulation in Figure 5.1.
3In fact, a stronger statement replacing R with one-sided randomized error is shown.



which looks intriguingly similar to expectational certificate complexity in (5.5).

n 2
F) — minimize: .
CG(F) = minimize max ( g Wy, )

i=1
subject to: Yz € D,i € [n], wz; € R>g

V(z,y) € FH0) x FTH(1), D waiwy, > 1.
LT FYs

Let us massage the above optimization problem, ever so slightly, replacing the square of the £1-norm
in the objective function with the square of the f5-norm, to get a quantity we will call W' for now:
n

W/(F) = minimize: max » w?,
rzeD ’

i=1
subject to: Va € D,i € [n], wy; € R (5.6)
V(z,y) e F7H0) x FTH(1), > wewy, > 1.

i3 £y,

While the optimization problem for FC in (5.4) is a linear relaxation of the optimization problem for
Cin (5.2), the above optimization problem is a semidefinite relaxzation of the optimization problem in
(5.3) that defines C(F') whenever F is a total function. To see this, note that if {w, ;},; is any feasible
solution for the optimization problem for C, then since w;; € {0, 1}, w%i = Wy, S0 we could replace
the objective function in (5.2) with max,ep ), w%yi, as in (5.6).

Exercise 5.2.2. Show that for all total functions F, W' (F) < /Co(F)Cy(F).

There are two reasons we are interested in the quantity W’. First, it turns out to be equal to something
somewhat interesting, as we will see in Section 5.3.1. Second, we are building up to something. In
the interest of this building up, you will show that the optimization problem in (5.6) has the same
objective value even if you allow the variables w, ; to be vectors:

Exercise 5.2.3. Show that for any F,

n

W/(F) = minimize: maxz [ |wzi) ||
xzeD

i=1
subject to: Vo € D,i € [n], |wy;) € R? (5.7)
V(z,y) € F71(0) x F~'(1), Z (g i[wyi) > 1.
1T £Y;

Witness Complexity Now we will define what I think of as the true quantum analogue of certifi-
cates (though this is probably somewhat a matter of opinion). Define:

n

W(F) = minimize: maXZ ||z ||
zeD

i=1
subject to: Y € D,i € [n], |w,;) € RY (5.8)
V(x,y) € Fil(o) x F71(1)7 Z <wx,i|wy,i> =L
X #Y;

This is extremely similar to (5.7)%, but it is more constrained, meaning that W(F) > W/(F). In
analogy with certificates — or perhaps expectational certificates, where certificates for all inputs z
must be defined simultaneously — we will say that:

4For easy comparison, we summarize all these optimization problems in Figure 5.1, and the relationship between
various quantities in Figure 5.2.
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a set of vectors W = {|w;)}zep is a set of witnesses for F : D — {0,1} if for each y € F~1(1),

|wy) is of the form
D lisya)lwyy)

i€[n]

for some {|w, ;)} C RY and for each x € F~1(0), |w;) is of the form:

Z |9, Z; & 1)|wg,i)

1€[n]

for some {|w,;)} C R%, and for all (z,y) € F~1(0) x F~1(1),

(walwy) = Z (wa,ilwy) = 1.

LT F Y

n
The complezity of the set of witnesses is then C(W) = max |||w,)||* = max E [ Jwzi) |1
zeD zeD ]

How does this concept relate to the witnesses you have seen so far? It turns out that these are
basically just span program witnesses: that is, a set of witnesses defines a span program (Lemma 5.2.9
below), and any span program’s witnesses can be turned into a set of witnesses as described above
(Exercise 5.2.4 below). One implications of this, by Theorem 4.2.6, is that W(F) = SPC(F) = O(Q(F))
— so unlike in the case of classical certificates which are only loosely related to query complexity,
quantum witnesses capture quantum query complexity perfectly. Let us now see this more precisely.

A real span program is a span program as in Definition 4.2.1, except that H and V are vector spaces
over R instead of C. The following claim shows that we can restrict our attention to real span programs
without loss of generality.

Claim 5.2.8. For any (complex) span program P, there is a real span program P’ such that for any
y that is accepted by P, it is also accepted by P', and wy(y, P") < w4(y, P); and for any x that is
rejected by P, it is also rejected by P’, and w_(z, P') < w_(z, P).

Exercise 5.2.4. Let P be a real span program that decides F. For all x € F~(0), let |w,) be an
optimal negative witness, and define |w;) = ((wz|A)T; and for all y € F~1(1), let |wy) be an optimal
positive wiltness.

1. Show that {|wy)}rep is a set of witnesses for F. (You can assume the span program does not
use the spaces Hipye 0T Hialse ).

2. Show that there is a positive real o such that if we scale all witnesses |wy) for x € F71(0) by
Vva, and all witnesses |w,) for y € F1(1) by 1/\/a, then we get a set of witnesses W with
C(W)=C(P). Thus W(F) < SPC(F).

Lemma 5.2.9. Let W be a set of witnesses for ¥. Then there is a span program P that decides F
with complezity C(P) < C(W). Thus SPC(F) < W(F).

Proof. For any i € [n] and b € {0, 1}, define
H;p, = span{|i,b)} ® RY,

where d is the dimension from W. Thus, for all y € F~1(1),

wy) = Y i yi)lwyi) € H(y), (5.9)

1€[n]

[4]



and for all z € F~1(0),
we) = ) iy 2: @ 1)|wes) € Hx)' (5.10)
i€|n]
Next, define

V =span{|e) :x € FH(0)} and |r)= Y |z).
x€F~1(0)

Finally, define

A= Y [ewl.

x€F~1(0)

We now argue that this span program decides F, and analyze its complexity. First, for any y € F~1(1),
we have |w,) € H(y) (by (5.9)) and:

Awy)= Y le)(wslwy) = Y fa)=17),

z€F~1(0) x€F~1(0)
so |wy) is a positive witness for y, and so

W.(P) < 2,
( )_yeg@;%l)\llwwll

Next, we will show that for any z € F~1(0), |z) is a negative witness for . This follows from (z|7) = 1,
and
(2| All g (2) = (wa gy =0,

by (5.10). Thus
W-(P) < max [(2A]” = max ||(w.]|*.
z€F~1(0) z€F~1(0)

Thus

C(P) < D2 2 < D% =cw). O
( )\/zerb{laf(o)lllw M yé{@}(l)lllwyﬂl J;lg\\!w )M (W)

A span program of the form in the proof of Lemma 5.2.9 is called a canonical form span program, and
by the proof of Lemma 5.2.9 and Exercise 5.2.4, any span program can be converted into canonical
form. The optimization problem in (5.8) is essentially just optimizing over all canonical form span
programs. In Section 5.3.1, we will see that this optimization version of span programs is not only
interesting for its similarity to classical certificate complexity, but also because of its relationship to
query lower bounds.

Let us compare W(F) with C(F). We can relate C(F) to D(F) by using a set of certificates for F to
design a deterministic algorithm for F whose query complexity depends on their sizes. Similarly, we
can use a set of witnesses for F to design a quantum algorithm for F, via span programs, whose query
complexity is precisely (up to constants) their witness complexity, and this is even optimal.

5.3 Lower Bounds

Just as important as finding new quantum algorithms is proving lower bounds, which are limitations
on how fast a quantum computer can solve a certain problem. These tell us what kinds of algorithms
we can possibly hope for, and give us valuable insights into the types of problems for which we can
hope for quantum speedups (and how much those speedups could be).

The easiest way to prove a lower bound on the number of steps needed for a quantum computer to
solve a particular problem F is to show a lower bound on Q(F). Unlike in the case of upper bounds
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C _ inimize: _ 2
(F) = minimize I:?eal})czwx’l max > Wy
i=1 i=1
subject to: Yoz € D,i € [n], wy,; € {0 1}
V(z,y) € FIB) x FH(1=b), > we;>1

©xi Ay

V total F, C(F) = minimize: max Y w?, = max w?},’i

i=1 =1

subject to: Vo € D,i € [n], wy; € {0 1}
V( )EF ( Z wmzwyzzl

FC(F) = minimize: maxz We,i

subject to: Vo € D,i € [n], ws; € R>g
V(z,y) € F71(b) x F71(1 - b), Z wy i > 1.

X Ay,
EC(F) = minimize: maxz Wei

subject to: Vz € D,i € [n], wy; € [O 1]

v( )GF ( Z wwzwyzzl
mﬁéyz

n 2
CG(F) = minimize: max (Z wz,i)
subject to: Yoz € D,i € [n], wy; € ]R>0
V( )EF ( Z wxzwyzzl

X A Y
n

Advt(F) = W/(F) = minimize: max w2
xzeD P

subject to: Vz € D,i € [n], wy,; € ]R>0
V( )GF ( Z wxzwyzzl
sz#yz

= minimize: Inaxz H|wgm>||2
zeD i

subject to: Vo € D,i € [n], |w,;) € RY
V(@ y) FTH0)x FH(1), Y (waslwy) > 1.
T F£Y;

Adv*(F) = W(F) = minimize: maXZ ||wz i)

subject to: Va € D,z € [n], |wy;) € R

V(z,y) € F7H0) x FTH1), > (wailwys) = 1.

(S

Figure 5.1: A summary of optimization problems we have seen so far, including their relationships
with Adv and Adv*, defined in Section 5.3.1.
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Figure 5.2: Known relationships between various complexity measures introduced here (Rg is the
zero-error randomized query complexity) for total functions. An arrow from A to B indicates that
A(F) < B(F) for all total F. The larger quantities are at the top of the figure, and the smallest at
the bottom. Figure based on [CGL"23, Figure 1].

on Q(F), lower bounds on Q(F) are actual lower bounds on the time needed by a quantum computer
to solve F (with bounded error).

The first systematic method for proving quantum query lower bounds was the polynomial method,
developed right here in Amsterdam [BBCT01], although there were quantum query lower bounds
proven before this using more ad hoc methods. We will discuss the polynomial method briefly in
Section 5.3.2. Later, the quantum adversary bound was proposed. We will discuss the adversary
bound in detail in Section 5.3.1.

Progress Measures Before we begin discussing the adversary bound, we outline a general technique
for proving lower bounds, which is the use of a progress measure. A progress measure for an algorithm
A, S; is a function of the algorithm (we leave this dependence implicit) and the number of queries®
made by the algorithm so far. We want to show that:

1. For any algorithm, before any queries have been made, no progress has been made, so Sy = 0;

2. For any algorithm, after its final query, there must have been a lot of progress if we want to get
the right answer, so Sp > B for some B > 0;

3. For any algorithm, a single query can increase the progress by at most J, for some § > 0 — that
is, for all ¢, Siy1 — Sy < 4.

If we can show statements of this form, then they imply that any algorithm must make at least B/
queries — that’s the only way to possibly get from 0 to B progress.

Example 5.3.1. Consider any deterministic algorithm for OR,,. Let S; be the number of distinct 4
such that the algorithm has queried z;, after ¢ queries. Then of course Sg = 0. If the algorithm is to
succeed in the worst case, then we must have S7 = n, because otherwise, there is some ¢ such that the
algorithm has not queried x;, meaning the algorithm cannot distinguish between the all-Os input, and
the input that is 0 everywhere except x; = 1, and so it cannot possibly be correct on both of those
inputs. Finally, it is easy to see that Sy;1 — S¢ <1 — we can’t increase the number of distinct indices

50Or other complexity we’re trying to lower bound.
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queried by more than one with a single query. Thus D(OR,,) > n.

Of course, the same argument works if we don’t require Sy to be 0, but just smaller than some bound
A — we then get a lower bound of (B — A)/d queries; and a similar argument holds if Sy begins high,
and must decrease by St; concretely, if we can show:

1. For any algorithm, before any queries have been made, Sy > A, for some bound A;
2. For any algorithm, after its final query, St < B for some B < A;

3. For any algorithm, a single query can decrease the progress measure by at most J, for some § > 0
— that is, for all ¢, Sy — Sg1 < 9;

then we can give a lower bound on the query complexity of (4 — B)/J.

Example 5.3.2. We will again consider deterministic algorithms. Let F : D — {0, 1} be any problem,
with D C {0,1}", and fix a set R C F~1(0) x F~1(1). For each i € [n], let

A, ={(z,y) € Ffl(O) X Ffl(l) Cx F Yit

be the set pairs (x,y) € F~1(0) x F~1(1) that are distinguished by querying the i-th bit. Let S; be
the number of pairs (z,y) € R for which we have not yet queried some i such that (z,y) € A;. Then
we start off having queried nothing, so Sy = |R|. By the end of any algorithm that decides F, we
must have Sp = 0. Otherwise, if there is some (z,y) € R such that we have not queried any i such
that z; # y;, then our algorithm cannot distinguish them, so it outputs either F(z) = 0 # F(y) on
both inputs, so it is wrong on y, or it outputs 1 on both inputs, so it is wrong on z. Finally, we have
St — Siy1 < max; [RN A;|. Thus we have

B
D(F) > .
(F) = maX;e[p] |RN A

(5.11)

The above examples gives a method for proving lower bounds on D(F'), by exhibiting a set R C
F~10) x F~1(1) for which the right-hand side of (5.11) is large.

Example 5.3.3. Let F : {0,1}"" — {0,1} be the function AND of ORs, defined

where each () € {0,1}". We will show a lower bound on D(F) by exhibiting a set R as in Exam-
ple 5.3.2. Let R be defined

R={(z,y) e F7H0) x F7'(1) : ¥i € [n], [y = 1,30’ € [n], |2'7)] = 0;Vi € [n] \ {'}, 21 =y}

Then we leave it as an exercise to show that |R| = n"! and for all 4,j € [n], |A; ;N R| = n"1. Thus,
we have proven the lower bound D(F) > n?.

5.3.1 The Adversary Bound
The Unweighted Adversary

The first version of the quantum adversary bound was introduced in a paper entitled “Quantum lower
bounds by quantum arguments” [Amb02]. A key feature of this method is that there is a nice quantum
intuition behind why it works, which we will try to convey.
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Entanglement View Suppose you have a quantum algorithm that decides F with bounded error,
consisting of unitaries Uj(x),...,Ur(x) on a space

H 4 = span{]i)|z) : i € [n]U{0},z € Z},

where for any odd ¢, U; = Uy(z) is input independent, and for every even t, Uy(x) = OF is a phase
query. Then, in principle, it would be possible to run this algorithm on a superposition of different
inputs stored in some additional register Z, replacing each call to OF with a call to O acting on
Hr ® Hy as:

Olx)zli, z) 4 = (1) |x)z|i, 2) 4.

Such an algorithm would begin in a state:

> agl)zlvo)a, (5.12)

where [1g) is the input-independent initial state of the algorithm. The state in (5.12) is a separable
state — there is no entanglement between Z and 4. Said another way, if you trace out the register A,
you have the pure state ) o|z) in register Z. However, by the end of the algorithm, there must be
entanglement between the two registers, assuming » o |x) has non-zero overlap with both 0-inputs
and 1-inputs to F. That’s because in order for the algorithm to be correct, the final state must depend
on z. Concretely, fix sets X € F~1(0) and Y € F~1(1) of “hard” inputs, and let

(5.13)

;aml') \[Z\/W fz\/\?

=:|¢o) :¢|¢1>

and suppose the algorithm ends in the state |0, F(x)) (with no error, for simplicity) on input z. Then
the final state is

V2 V2

This is a maximally entangled state — not if we consider entanglement between the systems Z and A,
but if we consider entanglement between the single-qubit subsystem of Z, span{|¢o), |¢1)}, and the
single-qubit subsystem of A, span{|0,0),]0,1)}; so in particular, if we trace out A, we get a mixed
state that is |¢o) with probability 1/2 and |¢1) with probability 1/2. The adversary bound works by
upper bounding how much the entanglement between Z and A can increase with one query, and lower
bounding how much entanglement must have amassed by the end of the algorithm in order for the
algorithm to be correct, which gives a lower bound on the number of queries needed — that is, it is
based on a progress measure that measures the amount of entanglement across Z and A.

S af2)zl0, F(2)) .4 = —=l60)210,0)4 + —=61)2]0, 1) 4

Concretely, let |¢o(z)) = |1bo) be the initial state of the algorithm, which is independent of the input,
and for any t € [T, let [¢¢(x)) = Ug|tpr—1(z)) be the state of the algorithm right after the ¢-th unitary
is performed (so for even ¢, it is the state right after the ¢/2-th query has been performed). Then the
state of the whole system, including the input register, after |¢/2] queries is:

S aula)zibn(e)).a

zeD

Tracing out A gives the mixed state:

pri=Tea | Y agajla)(ylr ® [ (2)) (% = D (W) e (@))]) (ylz.

z,yeD z,yeD
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State Divergence View Let’s view this from a different angle. Suppose again that the initial
superposition is

> 5 Z ﬁ!y

cex 2|X 2|Y|

for some sets X C F1(0) and Y C F~!(1). The entries of p’ for (z,y) € F~1(0) x F7(1) are then
proportional to

Prle,yl = asag (e(@) () o (Ye(@)e(y))-

When t = 0, these are all 1, but by the end of the algorithm, for any (z,7) € F~1(0) x F~1(1),
we should have |¢p(z)) and |¢7(y)) almost orthogonal, because there should be a measurement that
outputs 0 on |¢pr(x)) and 1 on |11(y)), so (¢(z)|¢(y)) must decrease from 1 to sufficiently small as
t increases from 0 to 7. How small is sufficiently small?

Lemma 5.3.4. If [¢p(x)) and |7(y)) are the final states of an algorithm that decides F with bounded
error £, on inputs x and y, respectively, and if F(z) # F(y), then

[(¢r(@)[¢r(y))] < 2ve(l —e).

Proof. If the algorithm has success probability 1 — €, then there is a measurement that outputs F(z)
when applied to |¢r(x)) with probability at least 1 — e, and that measurement outputs something else
with probability at least 1 — ¢ when applied to |7 (y)), meaning there is some orthogonal projector
IT (corresponding to the output F(z)) such that:

ITgpr(@)* =1 -, and (I = Igpr)* =1 -« (5.14)
or equivalently:
I(I =) |eor(2))|* <e, and |r(y))| <e. (5.15)
Then we have:
(o ()7 (y))]
< (o (@) [Tz (y)| + [(Yr(2)[(I = ID[¢r(y))] by the triangle ineq.
= [(¢r(2) Y7 ()] + [(Yr(2) (1 — (I — I)|¢r(y))| since II, I — II are proj.
< Tz @) [T @) + 1 = ID[r @) [ = 1Dz (y))]] by Cauchy-Schwarz
<2¢/e(1—¢) by (5.14) and (5.15). [

For any pair of inputs (z,y) € F~1(0) x F~1(1), it is easy to distinguish = and y with one query —
just query an index where they are not the same. The difficulty is that the algorithm must decrease
|(e () |9 ())] for all (x,y) € F71(0) x F~1(1). It can simplify things to restrict our attention to
some hard to distinguish set of pairs R € F~(0) x F~1(1). Then we will define, as our first progress
measure:

; (e (@) |92 (y))]
S = Z |p7 [z, y]| = Z QoA ot (5.16)
(z.y)ER : (z,y)ER 2y | X Y]

still assuming our initial superposition over inputs is as in (5.13)%. We can immediately see that:

(4o () o ()] (b0 |0)] B
So = Y = , 5.17
’ (%eR 2,/IX]Y] @Z XY 2V X[V (5.17)

[5]
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[6]

and as a corollary to Lemma 5.3.4, any algorithm that decides F with bounded error € must have:

(r@ler ) 2/A=9) _ JAI—9IR
St = = . .
1= 2 SR S A 2K I 19

For example, if ¢ = 1/3, we must have Sy decrease from |R|/(2+/|X]||Y]) to

V2 |R| R

St < — ~ .94

3 VIXIYT  2VIXTYT

The final thing we need for lower bounds on quantum query complexity is an upper bound on the
amount that progress can increase with a single query. This is the most difficult part. We give such
a bound in the proof of the following theorem.

Theorem 5.3.5 ([Amb02]). Fiz any problem F : D — {0,1} with D C {0,1}". Let X C F~1(0),
Y CF (1) and R C X x Y be such that:

1. Forallz € X, {y €Y : (z,y) € R}| >m.
2. ForallyeY, {z € X : (z,y) € R} >m.
3. Forallxe X,ien], {yeY :(x,y) € R,z; #yi}| < L.

4. ForallyeY,ien], {zre X :(z,y) € Ryx; #yi}| <.
Then Q(F) = Q ( ’%7’).
Proof. By (5.17) and (5.18), we have

So— St > (1 -2ye(1 - g))2 ] (5.19)

VIXIYT

Note that |[R| =3 v {y € Y : (z,y) € R}| is at least | X|m, and similarly, |R| is at least |Y'|m/. We
have

|R| > max{|X|m, |Y|m'} > /|X|m|Y|n. (5.20)
Thus, (5.19) and (5.20) combine to give:

So— S > (1—2v/2(1 —e))~ ”;m’.

We will complete the proof by showing that for all ¢ € {0,...,T — 1},

St — Spp1 < VL, (5.21)
from which it follows that we must have
T-1
1—2+/e(1—
2’3( &) il < Sy — Sy = S (S0 — i) < TV
t=0

SWe could just as well have defined the progress measure without the 21/]X|[Y] in the denominator, but we leave the
1/24/|X|Y| = azay for consistency with later definitions.
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Since |T'/2] is the number of queries made by the algorithm, and any bounded error quantum algorithm

for F must have
_ _ / /
- 1 2\/5(1 g) [mm < mm ) ’

2 o o

ar) = (/5.
We now proceed with the proof of (5.21). We have:

1
St — St41 = (;):GR XY ({ee(@) e ()| = [ (@) [Pe41 (m))])
Y (5.22)

S 2’;(””(<¢t(gp)’¢t(y)>]—|<¢t(:v)|Ut+1($)TUt+1(y)Wt(y)>’)
(z,y)eR

If t is even, Upy1(z) = Upy1(y) is an input-independent unitary, so (1 (2)|Upr1(2) Ui (v) |0 (y)) =
(e(x)|1he(y)), and Sy — Si+1 = 0. That is: there is no change in the progress function on steps where
we don’t make a query.

If ¢ is odd, then Uy1(x) = OF is a phase query. For i € [n], let II; = |i)(i| ® I be the orthogonal
projector onto |i) in the query register. Let II, = >, _; TI;. Then we can express OF as OF = 1211,
so:

Up1(2) Ui (y) = OF OF = I — 210, — 211, + 411,11,
=1 —2(I1, — [, I0, + T, — [,11,) = T — 2([, (I — 10,) + (I — II,)1L,)

=I-2( Y @ ZH+Z iYL

i:x;=1 Y= ;= By =1

=7—2 Z II;.

12 #Y;

Continuing from (5.22), and using the triangle inequality, we have:

Sy ey = # S K@) ) - @@l -2 Y o))
|X”Y| (z,y)ER 1T AY;

|X”Y ST 2 3 (@) le(y))] -

(z,y)eER 1:TiFY;

Rearranging terms, and applying Cauchy—Schwarz, we get:

St — St1 < \/W Yoo > Il @) )]l (5.23)

i€[n] (x,y)ER:x; #Y;

By Cauchy-Schwarz (again), we have:

IL; |9y (2 I1L; |9y I |4 () |2 IL; |9y 2
3 [T () || [T e Cy Dl T ([TL; [ (2)) | \l T (11T 31 ()

(z,y)ER:xiFY; \/W \/m - (z,y)ER:ws Ay; |X| |Y’
= Z HH |¢t Z Z |11 W’t Z 1

rzeX y:(z,y)ER: yey z:(z,y)ER:
TiFYi TiFYi

- It Jznwt 2,

(z.y)ER:wi £y

IN

zeX yey
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which we can plug into (5.23) to get, using the AMGM inequality, which upper bounds the geometric
mean by the arithmetic mean:”

ML, [ Iy
s < 32| 5 B 5 B e

€[n] rzeX
1 [TL3 4y (2 |I1L; lz/ft NI
<V =
=i Z AZ T
1€[n] zeX yey
Z Z T () |* + Z Z |ITL; ]2 (y
xEX ze[n] yEY ze[n
o (Bme ) o
establishing (5.21). O

Example 5.3.6. Let F : {0,1}" — {0,1} be defined by F(z) = /\ \/‘f x;; for any x € {0,1}" =
{0,1}V"*V_ That is, an input = consists of \/n blocks of \/n bits each, and we take the OR of each
block to get y/n bits, and output the AND of those bits. Let Y be the set of all n-bit strings in which
each of the y/n blocks contains exactly one 1. Let X be the set of strings such that one block is all
0s, and every other block contains exactly one 1. Let

R ={(z,y) € X xY : 3 a unique i such that z; # y;}.

Then it is not difficult to convince yourself that m = m’ = \/n and £ = ¢’ = 1 satisfy the conditions
of Theorem 5.3.5, and thus Q(F) = Q(y/n).

Exercise 5.3.1. Let PAR,(x) =21 @ --- ® x,. Use Theorem 5.53.5 to show that Q(PAR,) = Q(n).

The Weighted Adversary

The simple idea behind the weighted adversary [Amb03] is to modify the progress function to give
some particularly difficult-to-distinguish pairs (x,) € F~1(0) x F~1(1) more weight than others. This
was already partially captured in the progress measure defined in (5.16), as we selected just a subset
R of F71(0) x F~!(1), but we can take this further by choosing non-negative real numbers I, for
each (z,y) € F~1(0) x F~1(1), and defining the progress measure:

Sy = Z Ly y0h]z, yl. (5.24)
(z,y)eEF~1(0)xF~1(1)

If we restrict I';, to be in {0, 1}, this gives almost the same types of progress measures as (5.16),
except we have dropped the absolute values (this is going to make things a bit cleaner). We can view
I' as a matrix in RP*P with the additional constraints that I' is symmetric and I'zy = 0 whenever
F(x) = F(y), then we have:

=2 ¥ Taydbleal =5 Y Teyaeal @)

z,yeD z,yeD

"That is, VAB < 488,
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where we recall that the a, values are the amplitudes on different inputs in the register Z, from (5.12).
Then similar to (5.17), we have:

1 1 1
So=3 Y Teyaual(o(@)lo®) =5 D Tayazay = 7(alTla),

z,yeD z,yeD [10]

where |a) = > p ag|z)7 is the initial state on Z. To maximize Sp, we can assume that |a) is chosen
to maximize («|I'|a), so that

So= 5l (5.25)
[11]

Above, ||T'|| is the spectral norm of T', which is equal to the largest absolute value of any of its
eigenvalues, since I' is symmetric.® On the other hand, similar to (5.18), we have:

Sr = % > Toyeway($r(@)lpr(y)) < % D Toyeeal2y/e(l1—c) = /e(1—¢)|T|. (5.26)
z,yeD zyeD [12]

For the final property we need to make this a useful progress measure, we claim:

Claim 5.3.7. For any i € [n], let A; = 37, cp.. 2y [2)(yl, and let o denote the entrywise matriz
product: [AoBl[z,y] = Alz,y|Blx,y]. Then for anyt € {0,...,T =1}, [St — Spy1| < maxepy [T 0 Ayl

We will not prove this claim, but we give some intuition. ||I'|| measures the “progress” in the task
of diverging the pairs of state |1(z)), |¥¢(y)) such that I'y, # 0 without making any queries. If we
query i, then this completely distinguishes all such pairs of states for which x; # y;.

Let Q-(F) denote the minimum query complexity of any quantum algorithm that computes F with
bounded error ¢, so Q;/3(F) = Q(F). From (5.25), (5.26), and Claim 5.3.7 we can conclude that

So — St > (% - 6(1 - 5)) “F”
max¢ [Sy — Spr1| T maxepy [T o Al

Q:(F) >
[13]

for any € € (0,1/2).

Thus, if we define”:

[Tl
maxe [y IT o Ayl
subject to: T' € RP*P | symmetric (5.27)
Ve,ye D, 'y, >0
Vz,y € D s.t. F(z) =F(y), I'zy =0,

Adv(F) = maximize:

then we have

®In general, the spectral norm is defined ||T'|| = max|, ||H1“|\u>>”\| (also called the operator norm).

u
For intuition, compare this objective function with (5.11).
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Q(F) = Q (Adv(F)). (5.28)

An important question is then: What is the power of this lower bound technique? Can we always show
an optimal lower bound on Q(F), for any F? Said another way, is it the case that Q(F) = O(Adv(F))
for all F? The answer is no. To understand this, we make note of the following claim.

Claim 5.3.8. For all F, Adv(F) = W/(F), where W' is as in (5.7).

We will not prove this claim, but it follows from the fact that the optimization problem in (5.7), which
is a semidefinite optimization problem, is the dual (see Appendix .1) of the optimization problem in
(5.27) (which is also semidefinte), and moreover, these satisfy the conditions of strong duality.

You have already shown in Exercise 5.2.2 that W/(F) < /Co(F)Cy(F) for all total F. In the following
exercise, you will show that there exist total problems for which 1/Co(F)Ci(F) = o(Q(F)), meaning
Adv(F) = o(Q(F)). Thus Adv is not a tight lower bound in general.

Exercise 5.3.2. Let ED,, be the element distinctness problem, in which we interpret an input x €
{0,1}%n18" g5 n integers x1,...,x, € [n?], and we want to decide if they are all distinct or not. It is
known via a quantum walk algorithm and o matching query lower bound using the polynomial method

that Q(ED,,) = ©(n%*?). Show that /Co(ED,,)C1(ED,,) = o(Q(ED,,)).

Negative Weights Make Adversaries Stronger

If we modify the semidefinite optimization problem in (5.27) by removing the constraint that all entries
of I' be positive, we get:

(1Tl
maxe(y) || o Ayl

Adv*(F) = maximize:

5.29
subject to: I' € RP*P | symmetric (5.29)

Vz,y € Ds.t. F(z) =F(y), I'zy =0.

While using positive weights makes intuitive sense, it turns out that none of the claims we made about
the the progress measure in the previous section relied on the weights being non-negative (although
the proof of Claim 5.3.7 becomes somewhat more complicated when weights can be negative), and
thus, similar to (5.28), we also have [HLS07]:

Q(F) = Q (Adv=(F)) . (5.30)

Let us compare (5.29) with the expression for Adv in (5.27). Adv is more constrained than Adv®, so
it will generally be smaller, making Adv*® a (potentially) tighter lower bound on Q. If we take the
dual of the optimization problem for Adv®, we should get something more constrained than the dual
of Adv, which is W’ (see (5.7)), and in fact, we get precisely the optimization problem for W in (5.8).
It turns out (again, for reasons we will not discuss) that these again satsify strong duality for all F,
meaning that [Rei09]:

Claim 5.3.9. For all problems F, Adv®(F) = W(F).

But we have seen, in Lemma 5.2.9, that any feasible solution for W with objective value T', can be
turned into a span program with complexity 7', meaning

SPC(F) = O(W(F)) = O (AdvE(F)) = O(Q(F)),
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by (5.30). This proves the other direction (that we have not yet seen) of Theorem 4.2.6, and explains
how we can have a proof that SPC(F) = O(Q(F)) that is not constructive, since it goes through
semidefinite program duality.

We summarize what we have seen with the following.
Theorem 5.3.10. For all F,

AdvE(F) = W(F) = SPC(F) = O(Q(F)).

We conclude by remarking that applying the negative weights version of the adversary bound is
generally quite difficult. Despite this, there have been some notable successes, including a tight lower
bound for the k-sum problem [BS13].

Function Composition

Recall from Section 4.3.4 that if F o G denotes the composed function:
(M, 2™y s PG W), ..., G™)),
then Q(F o G) = O(Q(F)Q(G)). This is actually tight:
Q(F o G) = O(Q(F)Q(G)),
which follows from the fact that
AdvE(F o G) = AdvE (F)AdvE(G), (5.31)

and Theorem 5.3.10. That Q(F o G) = Q(Q(F)Q(G)) is not surprising. However, note that (5.31) is
quite strong, since it holds perfectly, without even a constant factor. One implication of this is that
if we let
Fk:FoFo---oF,
k times
then
AdvE(FF) = AdvE(F)*.

This would not hold for non-constant k, even up to constants, if (5.31) only held up to some constant
¢ > 1, since there would be a non-constant factor of c*. So although this implies that

Q(F*) = 6(Q(F))",

we cannot conclude that Q(F¥) = ©(Q(F)*). In the remainder of this section, we will work through
an example that illustrates this subtle difference.

Exercise 5.3.3. Let PAR,, denote n bit parity: PAR,(x) = x1 @ -+ - @® x,. Prove that for any even n,
Qr(PAR,) < § where Qg is the exact query complexity (that is, your algorithm should work without
error). Hint: It is sufficient to look at the n = 2 case.

In the above exercise, you worked out an exact quantum algorithm that computes the parity of 2 bits
in 1 query. It is easy to show that PARr, = PARI;g " for any n that is a power of 2. In other words:
We can express n-bit parity as a log(n)-depth tree of 2-bit @ gates. So it now seems obvious that we
can compute PAR, using 1 query, as follows: Run a quantum algorithm that computes PAR,, using
one query to an oracle for PAR;, /5, which itself uses 1 query to PAR,, /4, etc. until finally PARy makes
one query to the input. This would appear to imply Qg(PAR,,) < 1 from which it would follow that
Q(PAR,,) < 1, however, there is a subtle but crucial flaw to this argument!

The algorithm you derived for PARy in the exercise above did not implement the map

|0) = [z1 ® 22)
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using a single query to O,. Instead, it probably did something like the following;:
A(z) 1 10) = (=1)"|z1 © z2).

From the state (—1)™|z1 @ z2), we can learn x; @ x2 with certainty, but it is not a perfect query
of the bit |x; @ x9), which you will see if you try to use \A(:) as an oracle to compute the parity of
(1 D x2) @ (23 D 24).

There is a standard trick we can use to get rid of the unwanted phase (—1)*: we simply run .4, copy
out the answer, and then uncompute A:

CNOT A(x)terI
H

A(x)RI
10)[0) M3 (1) 21 @ 29)10) DT (—1)71 |21 ® 29) |1 @ @) 10)]21 @ @a).

Since A is exact, this works perfectly. However, we have doubled the query complexity from 1 to 2,
so if we try to compose this new algorithm for PARy to depth log(n) (which will work) we get an
algorithm for PAR,, that uses 2log(n) — p queries, and it turns out we can’t improve this by more than
a constant factor.

Exercise 5.3.4. Use the fact that Q(PAR,,) = O(n) to show that Adv*(PAR,) = n.

5.3.2 Polynomial Lower Bounds

This section closely follows [dW19, Section 11.2]. An n-variate multilinear polynomial p : C* — C is

a function of the form:
p(xla"'axn): E aSHx’b
SCln] €S

for some coefficients ag € C. The degree of p is deg(p) = max{|S| : ag # 0}. Every function
F : {0,1}" — C has a unique representation as an n-variate multilinear polynomial, and we let deg(F)
denote the degree of this polynomial.

Example 5.3.11. The polynomial

p(x1, ..., xn) =x1... 2y

represents the n-bit AND, AND,,. The polynomial

p('rlw"vxn) :1_(1_x1)(1_$n)
represents the n-bit OR, OR,,.

If we are happy with a polynomial that approzimates F, then the representation is no longer unique,
and might have significantly smaller degree. We call the smallest degree of any polynomial e-
approximating F (we have not defined precisely what we mean by this) the approzimate degree,

deg_(F).

Theorem 5.3.12 ([BBC101]). Let Uy,...,Ur be a quantum algorithm where for each odd t, Uy(x) =
U, is independent of the input, and for each even t, Uy(x) = OF. Suppose without loss of generality
that the final measurement M is a computational basis measurement. Let [{r(z)) =3, i ()i, 2)
be the state of a quantum algorithm after the last unitary Ur(x) has been applied. Then for every
i and z, o, .(x) is a multilinear polynomial of degree at most |T/2]. It follows that the acceptance
probability, which is the sum of |a; .(w)|? over some subset of the i, z, is a multilinear polynomial of
degree at most 2|T/2].

We will give a sketch of the proof. For details, see [dW19, Section 11.2] or [BBCT01].

Proof Sketch: The proof is by induction on T. For T' = 0, Note that the amplitudes in |t¢g) are
independent of z, so they are constant functions of x, which are degree 0 polynomials.



5.4. FORRELATION: A MAXIMAL SEPARATION 21

Suppose T' > 0 is odd. In that case, Up(z) = Ur is independent of the input. By the induction
hypothesis,
|hr—1( Zazz )i 2)

for some multilinear polynomials of degree |(T'—1)/2| = (T'—1)/2. Then the amplitudes of |¢r(x)) =
Ur|yr—1(x)) are just linear functions of the amplitudes of |¢p7_1(x)), and so they are also polynomials
of degree at most (T'—1)/2 = [T/2].

Suppose T > 0 is even. In that case, Up(x) = OF. Thus:

[Wr(z)) = OF [r1( Zazz )¥li, z) ZO‘” )1 —22;)|i, 2).

Since o .(z) is a multilinear polynomial of degree | (7'—1)/2] = T/2— 1 by the induction hypothesis,
a; -(z)(1 — 2z;) is a polynomial of degree at most (7/2 — 1)+ 1 = T/2 = |T/2]. It is multilinear
because xf = g, for all 3. O

The other important observation is that for any algorithm that computes a problem F with bounded
error €, the polynomial p that is the acceptance probability of the algorithm is an e-approximating
polynomial for F, so it must be the case that T" > deg(F). The technique is then to prove a lower

bound on deg, /3(F), which is then a lower bound on Q(F).

An important consequence of this technique was to show that for all total F,
D(F) = 0 (Q(F)°),

meaning we cannot get better than polynomial speedups over even deterministic algorithms if we
restrict to total functions [BBCT01]. This result has since been strengthened to [ABDK™21]

D(F) = 0 (Q(F)*). (5.32)

This is tight, as there exists a total function F such that D(F) = Q(Q(F)*) [ABB*17]. Note that
(5.32) also implies that R(F) = O(Q(F)?) for all total functions. It is an open question whether
this can be improved, and by how much. For a while it was conjectured that R(F) = O(Q(F)?)
for all total functions (Grover’s algorithm would be a counter example to any stronger conjecture),

but better separations were found, with the current best being a total function F such that R(F) >
Q(F)2%6 [Tal20].

For partial functions, we can do much better, as we will see shortly.

5.4 Forrelation: A Maximal Separation

Until now we have talked about the limits of quantum computers, and techniques for proving such
limits. What can we say about their power? Concretely, what is the largest possible separation between
Q and R for any F? We will now address this question using a problem called Forrelation. In fact, there
is a version of this problem for any constant k > 2. First, for functions f1,..., fr : {0,1}" — {0,1},
define:

]. 1T 2T Tp—1'T
s RV Z{m} Fr(@a) (=172 fy(wa) (<) (=171 f ),
T1,...,LE€10,1}7

where z -’ =" | x;x}. Then k-fold Forrelation is the following problem.
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Problem: FORRy,

Input: Oracles Oy, ..., Oy, such that either |®f 4| < ﬁ or |®s | > %
Output: 0if [®y  f| < ﬁ, and 1if |®p  p| > %

This is a promise problem (i.e. a partial function), since the condition that either |y, 5| < 155 or
Pl > % excludes many inputs. If it were a total problem, there would be no hope of getting
a superpolynomial separation between Q and R. It is not a problem that comes up in any known
practical scenario, but instead it is designed to be as easy as possible for quantum computers, while
taking advantage of their power as much as possible.

Exercise 5.4.1. Describe a quantum algorithm that decides FORRy, with bounded error using a
single call to each oracle, and prove that it works. (Hint: It’s basically the simplest quantum algorithm
imagineable).

In fact, it is possible for a quantum algorithm to decide FORRy, with bounded error using [k/2]
queries. While this may seem impossible since each of the k oracles must be involved in the algorithm
somehow, we can actually consider the input as a single oracle

k

0= _li)i|® Oy,

=1

If we think of the inputs f; as strings, then this is essentially just viewing the full input as their
concatenation, and indexing into the long string by a pair of indices i € [k] and = € {0,1}". Thus,
we can make fewer than k calls to O, on superpositions of inputs, to get an algorithm that depends
non-trivially on all f;. This algorithm is also not particularly complicated. The much more difficult
thing is showing a classical lower bound. We state the following without proof, where N = 2.

Theorem 5.4.1. For any k > 2, Q(FORRy,) < [k/2] [AA15], and R(FORRy) = Q(N'~1/¥) [BS21].

This is close to the best possible separation we could hope for. Assymptotically, Q(FORRy ) = O(1) is
as small as possible, and since the input size is k2" = kN = O(N), the strongest classical lower bound
possible would be (), and we can get arbitrarily close to that by increasing the constant k. So this
is almost the best we could hope for, but it’s a little worse. Can we do better? Nope [BGGS21]. It
turns out that any quantum algorithm making ¢ queries to a O(N)-bit input can be simulated by a
classical algorithm making O(N 1-1/ (Qt)) queries to the input, meaning this is, in fact, the best possible
separation.
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.1 Linear and Semidefinite Optimization

An optimization problem consists of an objective function on some variables, and a set of constraints
on those variables. The value of the problem is the minimum or maximum value the objective function
may take, over all settings of the variables such that all constraints are satisfied — such a setting of
the variables is called a feasible solution.
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In a linear optimization problem, the objective function is a linear function in the variables, and the
constraints are equalities or inequalities of linear functions. For example:

k
minimize: Zaizi
i=1
subject to: Vi € [k], z; € R (33)
Vi€ ml, > bijz > ¢

i€[k]
where {a; }ic(r), 10ijbick,jepm) and {c;}jepm) are some fixed sets of scalars.

A semidefinite optimization problem is so-called because of its semidefinite constraints. Rather than
explaining what this means, we give the canonical form in which any semidefinite minimization problem
can be written. For n x n matrices A and B, define

(A,B> = Z Ai,sz‘,j-

i,j€[n]

Then for n xn matrices A, { B;} e and scalars {c¢;} jc[m), the following is a semidefinite optimization
problem:

minimize: (A, Z)

subject to: X € R™ ", symmetric
Vj e [m], (Bj,Z) < ¢
70,

(34)

where Z > 0 means that Z is positive semidefinite. The semidefinite optimization problems in this note
look varying degrees of different from this standard form, so I recommend not distracting yourself with
trying to convince yourself something is semidefinite if you are not already familiar with this subject.
Instead, you could consult [Mir23] for more details.

Relaxations Naturally, if we add constraints to a minimization problem, it can only make its value
go up, and if we remove or weaken constraints, it can only make the value go down. Similarly, making a
maximization problem more constrained can only make its value go down, and make it less constrained
can only make its value go up. A relaxation of an optimization problem is a problem with weaker
constraints. Sometimes it is useful to take an optimization problem of an exotic nature, with exotic
constraints, and replace those constraints with weaker ones that are, for example, linear. This gives a
much easier to understand optimization problem, and its value lower bounds the value of the original,
in the case of a minimization problem.

Duality For any linear minimization problem, P, we can define its dual, PT, which is a linear
maximization problem such that if P has an optimal solution, then P has an optimal solution, and
they have the same value. The dual of the optimization problem in (33) is:

m
maximize: chzj
j=1
subject to: Vj € [m], z; € R (35)
Vi € [k}], Z ij'Zj > a.

JE€[m]

Thus any feasible solution to the dual gives a lower bound on its value, and thus on the value of P
(called the primal). If we take the dual of the above program, P!, we get P back. The dual has a
constraint for every variable (i.e. degree of freedom) in the primal, and a degree of freedom for every
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constraint in the primal. That is, the more constrained the primal, the less constrained its dual, and
vice versa.

Similarly, for any semidefinition minimization problem, P, we can define a dual. The dual of the
semidefinite optimization problem in (34) is:

m
maximize: E CjZj

j=1
subject to: Vj € [m], z; € R (36)
Vielkl, Y zBj=A,

J€[m]

where A = B means that A — B is positive semidefinite. This looks quite different from the problem
in (34), but it turns out that it is also a semidefinite optimization problem. The most important point
we will need to understand the contents of this week’s material is the following:

Duality: Let P be a semidefinite minimization problem, and PT its dual. Then it always holds
that the value of P is at least the value of P (weak duality) and if certain conditions are met,
then P and PT have the same value (strong duality).

We will not go into detail on the required conditions, but all semidefinite programs in these notes will
have strong duality. So when we have a minimization problem P, feasible solutions give upper bounds
on the value, and feasible solutions to its dual give lower bounds on its value, and in the case of strong
duality, we can find the optimal value (and be certain we have found it) by exhibiting matching upper
and lower bounds via optimal dual feasible and feasible solutions.

[16]
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