
Week 6: Quantum Singular Value Transform

Stacey Jeffery

March 5, 2025

6.1 Introduction: A Grand Unification of Quantum Algorithms

You have no doubt noticed that quantum algorithms are very hard to design. Coming up with truly
new quantum algorithmic ideas is so difficult that it has often been said that there are only two
quantum algorithms: Shor’s factoring algorithm (period finding) and Grover’s search algorithm – and
every other algorithm is just a variation of one of these. This is, of course, incorrect, as there is a
third quantum algorithm: Hamiltonian simulation, which we will see shortly.

However, not so long ago (in 2018), a PhD student in Amsterdam and his collaborators, developed
a framework that could be said to unify the most important ideas underlying many or all quantum
algorithms into a single framework: The Quantum Singular Value Transform (QSVT) Framework. It
was described, in a very nice survey [MRTC21], as a “Grand Unification of Quantum Algorithms.”

6.2 Some Problems we will Consider this Week

We start by defining some problems we will consider in the QSVT framework, as motivating examples.
First, some quick linear algebra background.

A normal matrix is a square matrix A such that A†A = AA†. A matrix is normal if and only if it can
be expressed as

A =
∑
j∈J

λjΠj , (6.1)

where {λj}j∈J are the eigenvalues of A, and Πj is the orthogonal projector onto the λj-eigenspace.
For example, unitary matrices (A†A = AA† = I) are normal, as are Hermitian matrices (A = A†).

A function f : C → C can be extended to normal matrices by

f(A) =
∑
j∈J

f(λj)Πj

where A is as in (6.1). A function f : R → C can be extended to Hermitian matrices – which are
precisely normal matrices with real eigenvalues – in the same way. For example, if A is Hermitian,
and f(x) = eix, then

f(A) =
∑
j∈J

eiλjΠj .

Since the image of f on R is the unit circle, f(A) is unitary.

Exercise 6.2.1. Let f(x) = 1−x. Show that for any normal matrix A ∈ CN×N , f(A) = I−A, where
I is the N -by-N identity.
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6.2.1 Hamiltonian Simulation

Hamiltonian simulation is, loosely speaking, the following problem: Given a Hamiltonian,1 H, which is
a Hermitian operator, and some time t, apply the unitary U = eitH to some input state. This simulates
what happens to a physical system described by H, that starts in the input state, and is left to evolve
for t units of time. There are potential applications of such a simulation, to various problems where
simulating a quantum mechanical system would be useful. These range from simulating experiments
in order to improve our understanding of physical principles, to more practical applications, like
developing new materials, medicines, or catalysts for nitrogen fixation (which is important for making
fertilizer). This is just the sort of problem quantum computers were made for: simulating a 2n-
dimensional (n-qubit) Hamiltonian seems to require classical resources that scale exponentially in n,
whereas an n-qubit quantum system can efficiently simulate itself – if a Hamiltonian on C2n describes
a system that occurs in nature, then simulating it for time t takes . . . n qubits, and t time. So this is
a problem where, at least for special cases, we get an exponential speedup.

Many of the potential applications of Hamiltonian simulation are not algorithms themselves, but
rather, the idea that having a better understanding of certain physical or chemical systems would likely
lead to new scientific and technological breakthroughs. Some of these are well worked out ideas (for
example, nitrogen fixation [RWS+17]), but many of them are very tenuous, which unfortunately does
not stop popular science news, and technology-enthusiasts who have decided to make a career talking
a lot about quantum computing without really understanding it, from treating such applications as
being just around the corner. You will find headlines and ted talks claiming quantum computers can
solve every futuristic-sounding problem, including fixing climate change [mtl], curing cancer [Kak24],
and finding the secret to immortality [Gre20]. I mean, science could solve any of these (but could it?),
and faster Hamiltonian simulation would mean we can do better science, so. . . The reality is, there
probably will be many applications to being able to simulate physical systems, but we do not yet know
what they will be. We will not discuss applications of Hamiltonian simulation in this course, but it
is important to understand that there is a lot of hype around quantum computing, some of which is
justified, and some of which is not.

Before we precisely define Hamiltonian simulation, we need the following.

Definition 6.2.1 (Sparse Access). Let A ∈ CM×N . We say A is s-sparse if every row and column
has at most s non-zero entries. We say we have sparse-access to an s-sparse matrix A if we have
oracles (OA,Or,Oc) – called sparse access oracles – acting as:

∀i ∈ [M ], j ∈ [N ], OA : |i⟩|j⟩|0⟩ 7→ |i⟩|j⟩|Ai,j⟩
∀i ∈ [M ], k ∈ [s] Or : |i⟩|k⟩ 7→ |i⟩|ri,k⟩
∀j ∈ [N ], k ∈ [s], Oc : |j⟩|k⟩ 7→ |j⟩|cj,k⟩,

where ri,k ∈ [N ] is the index of the k-th non-zero entry of row i of A, and cj,k ∈ [M ] is the index of
the k-th non-zero entry of column j of A. If some row (or column) of A has s′ < s non-zero entries,
we could have Or|i⟩|k⟩ return some error symbol when k > s′, but this is not necessary. We simply
need that {ri,k : k ∈ [s]} contains all indices of non-zero entries of row i.

We are ignoring the issue of precision of the entries of A, and simply assuming we have a register large
enough to store a full description of any entry of A.

Problem: HamSim

1In this section, H will be a Hamiltonian, so we will use H for a finite-dimensional Hilbert space (i.e. inner product
space).
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Input: t ∈ Z≥0, sparse access oracles (OH ,Or,Oc) for a Hermitian matrix H ∈ C2n×2n , and a
quantum state |ψ⟩ ∈ C2n

Output: the quantum state eitH |ψ⟩

Unlike problems we have seen so far, this is a quantum problem, with quantum input and quantum
output. Classical computers can also be used to solve a classical version of this problem, in which
the input state |ψ⟩ and output state eitH |ψ⟩ are not quantum states, but rather, classical descriptions
of quantum states. As far as we know, the time required by a classical computer for this problem
scales exponentially with n, whereas we will see in Section 6.5 that quantum computers can do much
better, for example when H is s-sparse for s = poly(n), the required resources scale polynomial in
n. However, being able solve the classical version of this problem could potentially be much more
useful. For example, if you want to know a specific entry of the vector describing the state eitH |ψ⟩,
you cannot learn it with a single copy of the state! We will not consider these details in this course,
leaving it up to the end user of a Hamiltonian simulation algorithm to figure out how to make use of
this state, but it is important to understand this distinction.

6.2.2 Quantum Linear System Solvers

Another example of a quantum problem is the following, called the quantum linear system problem.

Problem: QLSP

Input: sparse access oracles (OA,Or,Oc) for a matrix A ∈ C2n×2n , and a quantum state |⃗b⟩ =
1

∥⃗b∥
∑

i∈[2n] bi|i⟩ ∈ C2n

Output: a quantum state |x⃗⟩ = 1
∥x⃗∥

∑
i∈[2n] xi|i⟩ ∈ C2n such that Ax⃗ = b⃗, where we interpret x⃗ and

b⃗ as column vectors in C2n (not necesarily normalized)

Strictly speaking, we do not need A to be square, but this is without loss of generality. Throughout
these notes, we will assume A is invertible, but if it is not, the techniques mentioned here also apply,
with the output x⃗ being A+b⃗, where A+ is the pseudoinverse. This is a quantum analogue of the
following exremely important classical problem, the linear system problem.

Problem: LSP

Input: sparse access oracles (OA,Or,Oc) for a matrix A ∈ C2n×2n , and a vector b⃗ ∈ C2n , for which
we have a full classical description, for example, an oracle O

b⃗
that allows us to query the entries

of b⃗
Output: a full classical description of x⃗ ∈ C2n such that Ax⃗ = b⃗

Linear system solving is extremely important in a myriad of classical applications, including, to the
delight of hypesters everywhere, many machine learning applications. While a classical computer for
this problem needs Ω(2n) time just to read the input and write the output, a quantum computer can
solve the quantum version in poly(n) time if A is poly(n)-sparse and well-conditioned [HHL09], as we
will see in Section 6.6. However, note the clear differences between these two problems that prevent
a quantum algorithm for QLSP from being directly applicable to LSP:
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Issue 1 Given a classical description of a vector, b⃗ ∈ C2n , even just reading it, in order to generate a
corresponding quantum state |⃗b⟩, would take time 2n.

Issue 2 Given a quantum state |x⃗⟩, the number of copies needed to get a full classical description of
the vector x⃗ is exponential in n.

This was famously detailed in [Aar15], but by that point, there was so much hype around quantum
linear systems solvers that it was hard to reverse.

Nonetheless, algorithms for QLSP are still potentially interesting. For example, an application where
you only want to sample a non-zero entry of b⃗ would not suffer from Issue 2, and such an application
was given in [KP17] for recommender systems, where the non-zero entries of some output vector
represent recommendations (of products, tv shows, etc., based on data about known preferences). In
addition, they tried to get around Issue 1 by describing a way to store data in a special classical
data structure, written in QCRAM, which is memory that stores classical bits, but can be queried
in superposition. They describe a data structure such that if a vector v⃗ ∈ CN is stored in this data
structure (in QCRAM), then the superposition

1

∥v⃗∥
∑
i∈[n]

vi|i⟩

can be prepared in O(logN) local gates and QCRAM reads. Note that actually preparing the data in
such a data structure would require resources that scale like the size of the data set, but it is generally
assumed that this has already been done (perhaps when the data was initially collected) and so this
cost is not counted in an algorithm that uses the data as input. For details, see [KP17]. We will refer
to this as a QCRAM data structure.

The quantum recommender system was an extremely exciting development, because it was the first
proposal for a real application of a quantum linear system solver – that is, it was clearly worked out
how the application would be useful even in light of Issues 1 and 2 – that seemed to get an exponential
speedup over the best classical algorithms. Unfortunately, it turns out that the assumptions made
about the input in order to get to a good quantum algorithm for recommender systems could also be
leveraged to get a better classical algorithm, that is only polynomially worse than the quantum one,
meaning there is no exponential speedup [Tan19]. This technique of “dequantization” has since been
applied to a number of related problems with similar quantum algorithms. So while the quantum
recommender system is still a very interesting algorithm, it also serves as a reminder that a thorough
comparison with classical techniques is needed to truly establish a quantum speedup.

6.3 Block Encodings

Consider the following task:

for a given matrix A ∈ CM×N , and quantum state |ψ⟩ ∈ CN , generate the state A|ψ⟩.[1]

This is not a feasible task, because in general, A is not an isometry, and so A|ψ⟩ could have arbitrary
norm. What we could hope for is to take some matrix that is scaled so that ∥A∥ ≤ 1, and then to
unitarily map |0⟩|ψ⟩ to

|0⟩(A|ψ⟩) + |1⟩|ψ̃⟩, (6.2)

for some |ψ̃⟩ such that ∥A|ψ⟩∥2 +
∥∥∥|ψ̃⟩∥∥∥2 = 1. Then, if we like, we can use amplitude amplification

(see Theorem 2.2.11) to obtain a good approximation to the state:

A|ψ⟩
∥A|ψ⟩∥

.
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If we can generate a state like in (6.2) by some means (the “solution-sample” step in amplitude
amplification), then we can easily reflect around states where the first qubit is |0⟩ (the “check” step
in amplitude amplification), and so we can approximate A|ψ⟩/ ∥A|ψ⟩∥ using 1/ ∥A|ψ⟩∥ repetitions.

We have already seen some examples of problems where we would like to be able to apply a matrix
to a state.

Example 6.3.1 (Quantum linear system solver). The goal of the quantum linear system problem is,
given a state |⃗b⟩, to output a state proportional to A−1 |⃗b⟩, or if A is not invertible, A+ |⃗b⟩, where A+

is the pseudoinverse of A.

We can restrict our attention to square (even Hermitian) matrices, as if A is not square, we can just
use [

0 A
A† 0

]
.

Block Encodings We have not yet said how we are “given” A, but here’s a really naive idea: stick
it in the top left corner of a unitary:

U =

[
A ·
· ·

]
= |0⟩⟨0| ⊗A+ . . . .

This is a naive idea because it is not at all immediate how to implement a unitary U with this structure,
but if we could implement U , then we could apply A to any state |ψ⟩, by simply applying U to |0⟩|ψ⟩.

Of course, this is only possible if ∥A∥ ≤ 1. Otherwise, we can scale A down by some α:

U =

[
A
α ·
· ·

]
.

We call this a block encoding of A, and for even more flexibility, we allow block encodings to have
some error.

Definition 6.3.2 (Block Encoding). For a unitary U on H = H0 ⊗H1, ε ∈ [0, 1), and α ∈ R>0, we
say that U is an (α, ε)-block encoding of A if:

∥A− α(⟨0|H0 ⊗ IH1)U(|0⟩H0 ⊗ IH1)∥ ≤ ε.

If α = 1 and ε = 0, this condition becomes

A = (⟨0|H0 ⊗ IH1)U(|0⟩H0 ⊗ IH1),

and we just say U is a block encoding of A.

This idea is actually not so silly, as we now illustrate with some examples, and constructions.

Example 6.3.3. Any unitary U on H = C⊗H is a block encoding of itself.

Example 6.3.4. Let U0 and U1 be unitaries on H1, and define U on H = C2 ⊗H1 by:

U = |0⟩⟨0| ⊗ U0 + |1⟩⟨1| ⊗ U1.

Then U is a block encoding of U0.

Example 6.3.5 (Random Walk Block Encoding). Fix a graph G and let P be the transition matrix
of a random walk on G. For any u ∈ V (G), define:

|ψ̄⋆(u)⟩ :=
∑

v∈V (G)

√
Pu,v|u, v⟩ and |ψ̄′

⋆(u)⟩ :=
∑

v∈V (G)

√
Pu,v|v, u⟩.
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Note that since for any u ∈ V (G), Pu,v =
wu,v

wu
, the states |ψ̄⋆(u)⟩ are just normalizations of some

version of the star states |ψ⋆(u)⟩ that we saw in Section 3.7.1.2 Recall that in order to reflect around
star states, we needed to be able to generate them. Suppose we have unitaries that act, for all
u ∈ V (G), as:

UA|0, u⟩ = |ψ̄⋆(u)⟩ and UB|0, u⟩ = |ψ̄′
⋆(u)⟩.

Then U †
AUB is called the quantum walk operator, and it relates to what we have seen by:

(2ΠA − I)(2ΠB − I) = UA(2Π0 − I)U †
AUB(2Π0 − I)U †

B

where A = span{|ψ⋆(u)⟩ : u ∈ V (G)}, B = span{|ψ′
⋆(u)⟩ : u ∈ V (G)}, and Π0 = |0⟩⟨0| ⊗∑

v∈V (G) |v⟩⟨v|. Then we have

(⟨0| ⊗ I)U †
AUB(|0⟩ ⊗ I) = (⟨0| ⊗ I)

 ∑
u∈V (G)

|0, u⟩⟨ψ̄⋆(u)|
∑

v∈V (G)

|ψ̄′
⋆(v)⟩⟨0, v|

 (|0⟩ ⊗ I)

=
∑

u,v∈V (G)

⟨ψ̄⋆(u)|ψ̄′
⋆(v)⟩|u⟩⟨v|

=
∑

u,v∈V (G)

√
Pu,vPv,u|u⟩⟨v|.

When P is symmetric,
√
Pu,vPv,u = Pu,v, and this tells us that U †

AUB is a block encoding of P . More
generally, by detailed balance (see Section 3.2) we have πuPu,v = πvPv,u, so

√
Pu,vPv,u =

√
πu
πv
Pu,v,

and U †
AUB block encodes the discriminant of P , defined

D(P ) =
∑

u,v∈V (G)

√
πu
πv
Pu,v|u⟩⟨v| = diag(π)1/2Pdiag(π)−1/2,

where diag(π) =
∑

u∈V (G) πu|u⟩⟨u|. Since diag(π)1/2diag(π)−1/2 = I, D(P ) is similar to P . In early
quantum walk papers, such as [Sze04, MNRS11], the spectrum of D(P ), which is the same as the

spectrum of P , was used to say something about the phases of the unitary U †
AUB.

This last example shows that we can implement block encodings of certain matrices when we can
generate related vectors. The general case of this is captured in the following lemma.

Lemma 6.3.6. A Gram matrix is a matrix of the form
∑

i,j∈[N ] ⟨ψi|ϕj⟩|i⟩⟨j| for some sets of vectors
{|ψi⟩}i∈[N ] and {|ϕj⟩}j∈[N ]. Suppose A is the Gram matrix of orthonormal sets of vectors {|ψi⟩}i∈[N ]

and {|ϕj⟩}j∈[N ], and let UL and UR be a unitaries that generate them, meaning that for all i, j ∈ [N ],

UL : |0, i⟩ 7→ |ψi⟩ and UR : |0, j⟩ 7→ |ϕj⟩.

Then U †
LUR is a block encoding of A.

Using this lemma, we can implement a block encoding of A given sparse access oracles for A, which
means that it is at least as natural to suppose we have a block encoding of A as it is to suppose we
have oracle access.

2The correspondance with the star states we saw is the following. One way of making G bipartite is to make two
copies of G, an A copy and a B copy, and for every edge {u, v} in G add an edge from the copy of u in A to the copy of
v in B, and call it (u, v); and also add an edge from the copy of v in A to the copy of u in B, and call that (v, u). This
is essentially like adding a bit (indicating A copy or B copy) to the description of each vertex, and doing a walk on G
expect that we flip that bit at every step.
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Exercise 6.3.1 (Block Encoding from Sparse Access). Let (OA,Or,Oc) be sparse access oracles for
A ∈ C2n×2n (see Definition 6.2.1). Show how to implement an (s, 0)-block encoding of A, U on
C2a ⊗ C2n for some a = O(n), using O(1) calls to these oracles. Hint: You may use the fact that

you can implement a unitary of the form |0⟩|Ai,j⟩ 7→
(
Ai,j |0⟩+

√
1− |Ai,j |2|1⟩

)
|Ai,j⟩ using 0 queries

(having already queried Ai,j).

The sparse access model assumes we can compute the entries of A, which suggests that they are
somehow structured. This would not generally be true if A is made up of some real world data,
as in many data processing applications that use linear algebra techniques (not to mention the fact
that data is often not sparse). As we mentioned at the end of Section 6.2.2, it is possible to store
a vector v⃗ ∈ CN , possibly corresponding to some data collected in the wild, in a particular classical
data structure, in QCRAM, in such a way that generting a quantum state proportional to

∑
i∈[N ] vi|i⟩

can be done in O(logN) local gates and QCRAM reads (see [KP17] for details). Given such data
structures storing each column of A (or alternatively, each row of A), we can also implement a block
encoding of A, as the following exercise shows.

Exercise 6.3.2. Fix A ∈ CN×N and suppose you can implement a unitary that acts, for every j ∈ [N ],
as:

Uc|0, j⟩ = |0⟩
∑
i∈[N ]

Ai,j

∥A∥
|i, j⟩+ |1⟩|ψ̃j⟩

for some |ψ̃j⟩ – this is possible because ∥A∥ is always an upper bound on the norm of any column of
A. Show how to implement a (∥A∥ , 0)-block encoding of A using a single call to Ur (and a modest
number of local gates).

This makes block encodings a rather general input model, since we can build them from various
different input models, meaning algorithms that work given a block encoding will also apply to these
other input models. However, this doesn’t help us when we want to do something like quantum linear
system solving, as usually then we assume we are given A in some natural way (sparse access, for
example) rather than A−1, which is what we want to apply to the state. However, it turns out that
block-encodings lend themselves well to transformations. We first mention some simple examples,
before seeing more general transformations in Section 6.4.

Modifying Block Encodings Suppose U on H = H0 ⊗H1 is a block encoding of a matrix A on
H1, and V on H′ = H′

0 ⊗H1 is a block encoding of a matrix B, also acting on H1. For clarity, let us
swap the order of the tensored spaces in H′ so that H′ = H1 ⊗H′

0, and we have:

(⟨0|H0 ⊗ IH1)U(|0⟩H0 ⊗ IH1) = A and (IH1 ⊗ ⟨0|H′
0
)V (IH1 ⊗ |0⟩H′

0
) = B.

Then we claim that (U ⊗ IH′
0
)(IH0 ⊗ V ), which is a unitary on H0 ⊗H1 ⊗H′

0, is a block encoding of
AB (up to reordering of the tensored spaces):

(⟨0|H0 ⊗ IH1 ⊗ ⟨0|H′
0
)(U ⊗ IH′

0
)(IH0 ⊗ V )(|0⟩H0 ⊗ IH1 ⊗ |0⟩H′

0
)

= ((⟨0|H0 ⊗ IH1)U ⊗ ⟨0|H′
0
)(|0⟩H0 ⊗ V (IH1 ⊗ |0⟩H′

0
))

= ((⟨0|H0 ⊗ IH1)U ⊗ 1)(|0⟩H0 ⊗ IH1 ⊗ ⟨0|H′
0
)(1⊗ V (IH1 ⊗ |0⟩H′

0
))

= ((⟨0|H0 ⊗ IH1)U)(|0⟩H0 ⊗ IH1)(IH1 ⊗ ⟨0|H′
0
)(V (IH1 ⊗ |0⟩H′

0
))

= AB.

If we reorder the spaces to (H0 ⊗H′
0)⊗H1, we get the usual notion of block encoding.

Exercise 6.3.3. Let U and V be unitaries acting on the same space, H = H0 ⊗H1, and suppose U
is a block encoding of a matrix A acting on H1, and V is a block encoding of B acting on H1. Show
that the unitary U ′ in Figure 6.1 is a (2, 0)-block encoding of A+B.
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...

H

U

X

V

H

U ′

Figure 6.1: A circuit for adding block encodings. Call the resulting unitary (everything inside the
dashed box) U ′.

Remark 6.3.7. The definition of a block encoding is basis dependent, but most of what we say about
block encodings in these notes can be extended to projected unitary encodings, which are unitaries U
such that Π̃UΠ = A, for some projectors Π and Π̃. See [Gil19] for details.

6.4 The Quantum Singular Value Transform

6.4.1 Quantum Signal Processing

Fix a “signal” rotation, that is a function of x on the domain [−1, 1]:

W (x) :=

[
x i

√
1− x2

i
√
1− x2 x

]
.

Let us think of this as an input oracle, through which we access the single variable x (and in fact, it’s
a block encoding of the 1-by-1 matrix [x]). Signal processing takes this unitary and composes it with
unitaries of the form

S(ϕ) := eiϕZ =

[
eiϕ 0
0 e−iϕ

]
= eiϕ

[
1 0
0 e−2iϕ

]
(6.3)

for some ϕ ∈ R. We can think of this as building up a single-qubit quantum circuit using queries to
W (x), and gates of the form (6.3), for any chosen values of ϕ. Concretely, for any ϕ⃗ = (ϕ0, . . . , ϕT ) ∈
RT+1, we let

U
ϕ⃗
(x) := S(ϕ0)W (x)S(ϕ1)W (x)S(ϕ2) . . . S(ϕT−1)W (x)S(ϕT ).

Then let
p
ϕ⃗
(x) := |⟨0|U

ϕ⃗
(x)|0⟩|2,

which is the probability of measuring 0 if we apply U
ϕ⃗
(x) to |0⟩. Continuing to think of U

ϕ⃗
(x) as a

single-qubit circuit, or algorithm, with input |0⟩, and now also thinking of |0⟩ as the unique accepting
state, p

ϕ⃗
(x) is the probability of accepting on input x.

Example 6.4.1. Suppose x ∈ {0, 1}. Then W (x) = (iX)1−x, so we can query the bit value of 1 − x
using a single application of W (x). If we let ϕ⃗ = (ϕ0, ϕ1) = (0, 0), we get U

ϕ⃗
(x) = W (x) = (iX)1−x,

and p
ϕ⃗
(x) = 1 if x = 1, and p

ϕ⃗
(x) = 0 if x = 0. In fact, with this setting of ϕ⃗, p

ϕ⃗
(x) = x2 for any

x ∈ [−1, 1].

On the other hand, suppose x =
(
1− 1√

2

)
b + 1√

2
for some unknown b ∈ {0, 1}. Then this is a

“weaker” signal, so we will need more applications ofW (x) to learn b. For these particular parameters,
2 applications suffice. Choosing ϕ0 = ϕ1 = ϕ2 = 0, we have:

p
ϕ⃗
(x) =

∣∣⟨0|W (x)2|0⟩
∣∣2 = [

x i
√
1− x2

] [ x

i
√
1− x2

]
= x2 − (1− x2) = 2x2 − 1 = 2

((
1− 1√

2

)
b+

1√
2

)2

− 1 = b

for b ∈ {0, 1}, so we can perfectly learn b with 2 uses of W (x).
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Exercise 6.4.1. Chebyshev polynomials of the first kind are defined by the equations, for d ∈ Z≥0,
Td(cos θ) = cos(dθ). Equivalently, they can be defined by the recurrence relation:

T0(x) = 1

T1(x) = x

∀d ≥ 1, Td+1(x) = 2xTd(x)− Td−1(x).

Chebyshev polynomials of the second kind are defined by the equations Ud(cos θ) sin θ = sin((d+ 1)θ).
Equivalently, they can be defined by the recurrence relation:

U0(x) = 1

U1(x) = 2x

∀d ≥ 1, Ud+1(x) = 2xUd(x)− Ud−1(x).

Prove that for any d ≥ 0, ⟨0|W (x)d|0⟩ = Td(x), by showing the stronger statement: for all d ≥ 1,

W (x)d =

[
Td(x) iUd−1(x)

√
1− x2

iUd−1(x)
√
1− x2 Td(x)

]
.

Thus, if ϕ⃗ ∈ Cd+1 is all 0s, p
ϕ⃗
(x) = Td(x). What other functions of x can we “compute” this way?

The answer is any polynomial satisfying certain minor constraints. Recall that C[x] is the set of
polynomials in x with complex coefficients, and for any P ∈ C[x], let P ∗ be obtained by taking the
complex conjugate of each coefficient. Recall that a polynomial is even if and only if it only has terms
of even degree, and a polynomial is odd if and only if it only has terms of odd degree. Then we have
the following.

Theorem 6.4.2 (Quantum Signal Processing). For any ϕ⃗ ∈ RT+1,

U
ϕ⃗
(x) =

[
P (x) iQ(x)

√
1− x2

iQ∗(x)
√
1− x2 P ∗(x)

]
(6.4)

for polynomials P,Q ∈ C[x] such that

1. deg(P ) ≤ T and deg(Q) ≤ T − 1;

2. P is even if and only if T is even, and otherwise it is odd; and Q is even if and only if T is odd,
and otherwise it is odd;

3. for all x ∈ [−1, 1], |P (x)|2 + (1− x2)|Q(x)|2 = 1.

Furthermore, for any polynomials P,Q ∈ C[x] satisfying the above properties, there exists a sequence
ϕ ∈ RT+1 satisfying (6.4). Finally, for any polynomial P of degree d, there exists a polynomial Q such
that P and Q satisfy conditions 1-3 if and only if:

A. P has the same parity as d.

B. For all x ∈ [−1, 1], |P (x)| ≤ 1.

C. For all x ∈ (−∞,−1] ∪ [1,∞), |P (x)| ≥ 1.

D. If d is even, then for all x ∈ R, P (ix)P ∗(ix) ≥ 1.

Thus, for some appropriate choice of ϕ⃗, we can apply any polynomial P to x as long as it satsifies
the conditions A-D. The cost of this construction in terms of queries to W (x) is the degree of P . We
can further extend the class of polynomials achievable by noting that by Exercise 6.3.3, we can also
add block encodings, and a 2-by-2 matrix with P (x) in the top-left corner is a special case of a block
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Figure 6.2: We already know that Chebyshev polynomials of the first kind satisfy conditions A-D.
Pictured is Td(x) for d = 1, . . . , 5. Chebyshev polynomials of the first kind form a basis for the space
of polynomials, so, in particular, any polynomial of degree d can be expressed as a linear combination
of T0, . . . ,Td.

encoding. For example, while Theorem 6.4.2 requires P to be even or odd, any polynomial is the
sum of an even polynomial and an odd polynomial. As a second example, we know that Chebyshev
polynomials satisfy the conditions A-D, and any polynomial of degree d can be expressed as a linear
combination of Chebyshev polynomials of degree at most d.

Remark 6.4.3. For any real polynomial, R ∈ R[x], of degree d, with parity d, and such that for all
x ∈ [−1, 1], |R(x)| ≤ 1, there exists a P ∈ C[x] whose real part is R. (See [Gil19, Corollary 2.2.8]).

We will not prove Theorem 6.4.2, but you will show part of the easier direction as an exercise.

Exercise 6.4.2. Fix any ϕ⃗ ∈ RT+1, and define P (x) = ⟨0|U
ϕ⃗
(x)|0⟩. Prove, by induction on T ≥ 1

that P (x) is a polynomial (in x) of degree T .

6.4.2 Generalization to Block Encodings

In the previous section, we saw how, for any polynomial P satsifying certain conditions, given query
access to a 2-by-2 unitary W (x) with a real number x of magnitude at most 1 in the top-left corner,
we could implement a 2-by-2 unitary with P (x) in the top-left corner using applications of W (x)
alternating with some other rotations. In this section, we will generalize these results to show how,
given query access to a unitary WX with some matrix X in the top-left corner (i.e., a block encoding
of X), we can implement a unitary with P (X) in the top-left corner (i.e. a block encoding of P (X))
using applications of WX alternating with some other rotations.

In analogy with S(ϕ) in (6.3), for ϕ ∈ R, and some implicit space H = H0 ⊗H1, define

SΠ0(ϕ) = eiϕ(2Π0−I) = eiϕΠ0 + e−iϕ(I −Π0), (6.5)

on H, where Π0 = |0⟩⟨0|H0 ⊗ IH1 . For a square matrix X on H1, and a block encoding of X, WX on
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H, and ϕ⃗ ∈ RT+1, define

U
ϕ⃗
(X) :=

{
SΠ(ϕ0)W

†
XSΠ(ϕ1)WXSπ(ϕ2)W

†
X . . . SΠ(ϕn−1)W

†
XSΠ(ϕT )WX if T is even

SΠ(ϕ0)WXSΠ(ϕ1)W
†
XSπ(ϕ2)WX . . . SΠ(ϕn−1)W

†
XSΠ(ϕT )WX if T is odd

We stress that unlike in Section 6.4.1, where W (x) is a function of x, there are many possible block
encodings WX for X, so U

ϕ⃗
(X) is actually a function of WX rather than just X.

Then we have the following generalization of Theorem 6.4.2.

Theorem 6.4.4 ([GSLW19]). Let P be a degree d polynomial satisfying conditions A-D of Theo-
rem 6.4.2. Then there exists ϕ⃗ ∈ Rd+1 (in fact, the same one as in Theorem 6.4.2) such that U

ϕ⃗
(X)

is a block encoding of P (X).

What Theorem 6.4.4 says is that if we are able to implement a block encoding for X, then we can use
T calls to it (or its inverse), as well as T + 1 basic rotations, to implement a block encoding of P (X),
for any degree T polynomial P (·) satsifying certain conditions. We can further extend this to any
polynomial (up to some scaling) by using the fact that we can add block encodings (Exercise 6.3.3).
This is especially powerful, considering that any smooth function can be approximated by a polynomial
of sufficiently high degree.

To give some idea of why the 2-dimensional “qubit” case in Theorem 6.4.2 extends to higher dimensions
to get Theorem 6.4.4, we consider the special case of the following unitary, which is a block encoding
of some Hermitian H with ∥H∥ ≤ 1:

W (H) = |0⟩⟨0|⊗H+i|0⟩⟨1|⊗
√
I −H2+i|1⟩⟨0|⊗

√
I −H2+ |1⟩⟨1|⊗H =

[
H i

√
I −H2

i
√
I −H2 H

]
.

Let H =
∑

j∈J λjΠj . Then

W (H) =
∑
j∈J

(
|0⟩⟨0| ⊗ λjΠj + i|0⟩⟨1| ⊗

√
1− λ2jΠj + i|1⟩⟨0| ⊗

√
1− λ2jΠj + |1⟩⟨1|λjΠj

)

=
∑
j∈J

 λj i
√
1− λ2j

i
√

1− λ2j λj


︸ ︷︷ ︸

W (λj)

⊗Πj .

Thus,W (H) is a direct sum of matrices of the formW (λj), where λj are the eigenvalues of H. For this
special case, the decomposition of H, the space acted on by W (H), is H = H0 ⊗H1 where H0 = C2

and H1 is the space acted on by H, so we have

Π0 = |0⟩⟨0|H0 ⊗ IH1 =

[
1 0
0 0

]
⊗

∑
j∈J

Πj

and

I −Π0 = |1⟩⟨1|H0 ⊗ IH1 =

[
0 0
0 1

]
⊗

∑
j∈J

Πj

so

SΠ0(ϕ) = eiϕΠ0 + e−iϕ(I −Π0) =
∑
j∈J

[
eiϕ 0
0 e−iϕ

]
︸ ︷︷ ︸

S(ϕ)

⊗Πj .

This is a special case of a more general phenomena that follows from a result called Jordan’s lemma.
This allows us to understand the structure of a general block encoding as direct sum of “qubit” block
encodings, which is sometimes referred to as qubitization.
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Example: Grover’s algorithm For x ∈ {0, 1}N , with N = 2n, let G be the Grover iterate from
Section 2.2.1,

G = H⊗nR0H
⊗nO±

x ,

where we recall that R0 = 2|0⟩⟨0| − I. Recall also that |π⟩ = H⊗n|0⟩. Let

G̃ := H⊗nGH⊗n = R0H
⊗nO±

x H
⊗n.

We saw in Section 2.2.1 how to analyze a version of Grover’s algorithm that consists of phase estimation
of this unitary, but the more basic version of Grover’s algorithm consists of measuring

GT |π⟩ = H⊗nG̃T |0⟩

for some appropriate T , in the computational basis, and checking if the result is marked.

Exercise 6.4.3. 1. Show that G̃ is a block encoding of the 1-by-1 matrix [1− 2|x|/N ].

2. Just as we saw in Exercise 6.4.1 that ⟨0|W (x)d|0⟩ = Td(x), where Td(x) is the d-th Chebyshev
polynomial of the first kind, it turns out that for any block encoding U of a square matrix A, Ud

is a block encoding of Td(A). Show that for any d, if |x| = 0, measuring G̃d|0⟩ yields the all 0s
string with probability 1.

3. Suppose |x|/N ≤ 1/2. Show that if you know |x| exactly, there is a choice of d = O(
√
N/|x|)

such that measuring G̃d|0⟩ yields the all 0s string with probability at most 1/2.

4. Describe an algorithm that decides if |x| = 0 or not with one-sided error (your algorithm will have
no error if |x| = 0) using measurements of G̃d|0⟩ for appropriate choices of d, with worst-case
running time O(

√
N).

6.4.3 Example: Quantum Fast-Forwarding

Let P be the transition matrix of a random walk, and suppose, for simplicity, that P is symmetric (for
example, it is a random walk on a regular graph). Then for a distribution σ, which is an ℓ1-normalized
real vector with non-negative entries, we have that3 P tσ is the distribution after t steps of the random
walk, starting from σ. Sampling from this distribution requires, in general, t applications of P . Can
we speed this up with a quantum computer? In some cases. Consider the following quantum version
of this task:4

Given a state |ψ⟩ ∈ span{|u⟩ : u ∈ V (G)} and t ∈ Z≥0, generate a state of the form:

|0⟩P t|ψ⟩+ |1⟩|ψ̃⟩.
[2]

Let us briefly discuss the use of generating such a state. It does not let us sample from the distribution
one would obtain after t steps of a classical walk starting from some state. First, if we measure, we
only obtain a result from the P t|ψ⟩ part of the state with probability

∥∥P t|ψ⟩
∥∥2, which could be much

smaller than 1, for example if |ψ⟩ = |s⟩ for some s ∈ V (G), and P ts is very spread out (as it is
expected to be if t is not too small). And then even if we do get a sample from this part of the state, it
will be distributed as Pr[u] ∝ |⟨u|P t|s⟩|2 rather than ⟨u|P t|s⟩. Nonetheless, this technique has found
applications.

Example 6.4.5. In [AGJK20], it was shown that if t is at least some constant multiple of HT (P,M),
measuring P t|π⟩ (for some modification of P that has self-loops on all marked vertices) yields a

3Because of how we defined transition matrices in Section 3.2, in general we apply P by right-multiplication: σP t.
Since P is symmetric, it doesn’t matter, although we are abusing notation by letting σ denote either a row or a column
vector – it should be clear from context which we mean.

4When P is not symmetric, we want to apply D(P )t, where D(P ) is the discriminant, defined in Example 6.3.5.
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marked vertex with reasonably high probability – and something similar holds for arbitrary initial
states |σ⟩ [AGJ20], yielding an alternative algorithm to the one we saw in Section 3.7.1, which is
actually even stronger, since it finds a marked vertex, rather than just detecting one.

Example 6.4.6. Suppose you want to know, for a pair of vertices s and t in G, not just if they are
connected, but if they are strongly connected. Concretely, imagine G consists of two or more strongly
connected subgraphs, with only a small number of edges between these subgraphs, and you want to
know if s and t are in the same or different subgraphs. The strategy is to generate P k|s⟩ and P k|t⟩ for
some k that is sufficiently large so that P k|s⟩ will be fairly spread out across the subgraph containing
s, and similarly for P k|t⟩. If they are in the same subgraph, these states will be highly overlapping,
which can be detected through a procedure called a swap test.

The problem was first solved without the Quantum Singular Value Transform [AS19], but it can be
easily described within the QSVT framework. If we have a block encoding of P , like the one in
Example 6.3.5, then we can use Theorem 6.4.4 to get a block encoding of P t that uses t calls to
the block encoding for P . However, it turns out we can do better, because we can approximate the
polynomial P t using a polynomial of degree much less than t. The Chebyshev polynomials of the
first kind, Td(x), introduced in Exercise 6.4.1, form a basis for the space of polynomials, and so any
polynomial of degree ≤ d can be expressed as a linear combination of {T0(x), . . . ,Td(x)}. In particular,
we have:

xt =
t∑

k=0

pt,kTk(x), where pt,k =


21−t

( t
t−k
2

)
if k = t mod 2 and k > 0

2−t
(
t
t
2

)
if k = 0 and t = 0 mod 2

0 else.

While xt is, of course, a degree t polynomial, if we truncate the above sum at
√
ct for some constant

c, we can get a
√
ct-degree approximation of xt, which is precisely what we need. Specifically, [AS19,

Lemma 3] show that for any t ≥ 0, ε ∈ (0, 1) and c ≥ 2 ln(2/ε), for all x ∈ [−1, 1]:∣∣∣∣∣∣xt −
√
ct∑

k=0

pt,kTk(x)

∣∣∣∣∣∣ ≤ ε.

This leads to the following.

Theorem 6.4.7. For any ε, there is a (1, ε)-block encoding of P t that can be implemented using
O(

√
t log(1/ε)) calls to the walk operator defined in Example 6.3.5.

Applying this to any |0⟩|ψ⟩ yields |0⟩P t|ψ⟩+ |1⟩|ψ̃⟩, as desired.

6.5 Application to Hamiltonian Simulation

To apply what we have seen to the problem of Hamiltonian simulation, we want to use a block encoding
of H (obtained from sparse access to H, or some other means) to implement a block encoding of eitH .
The function f(x) = eitx is not a polynomial, but we can get a pretty good approximation by truncating
its Taylor series expansion:

eitx =

∞∑
k=0

(itx)k

k!
.

In fact, if we start from an (α, 0)-blocking encoding of H, the function we actually want to apply is
eitαx, obtained by replacing t with αt.

Exercise 6.5.1. 1. Show that for any q ≥ etα, and any x ∈ [−1, 1],∣∣∣∣∣eitαx −
q−1∑
k=0

(itαx)k

k!

∣∣∣∣∣ ≤ 1

1− 1/e

(tα)q

q!
.
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2. Use Stirling’s approximation to conclude that for any q ≥ max{2etα, log(1/ε)},∣∣∣∣∣eitαx −
q−1∑
k=0

(itαx)k

k!

∣∣∣∣∣ ≤ ε.

From this, we can show the following.

Theorem 6.5.1 ([LC19]). Let U on C2a ⊗ C2n be an (α, 0)-block encoding of a Hermitian matrix
H ∈ C2n×2n. Then we can implement a (1, ε)-block encoding of eitH using O(αt + log(1/ε)) calls to
U , and O(a(αt+ log(1/ε))) local gates.5

For example, this means, by Exercise 6.3.1, that we can simulate a Hamiltonian that is s-sparse in
O(n(st+ log(1/ε))) local gates and calls to sparse access oracles. Note that it does not mean we can
simulate any Hamiltonian H ∈ C2n×2n with ∥H∥ ≤ 1 in poly(n) resources – in fact, by a counting
argument, most Hamilltonians require quantum circuits of size 2Ω(n) to simulate. However, the special
case of sparse Hamiltonians, for example, s = poly(n), is easy for quantum computers, but still appears
hard for classical computers.

Remark 6.5.2. The factor of a in the number of local gates comes from the cost of implementing the
intermediate rotations SΠ0(ϕ) in Uϕ⃗

(H), each of which can be reduced to implementing 2Π0− I. Since

Π0 = |0a⟩⟨0a|⊗I, this can be implemented by checking that each of the first a qubits is 0, in cost a. We
have given most complexities in these notes in terms of the number of calls to a block encoding of the
input, and omitted the number of local gates, but the number of local gates in our other constructions
could also be recovered by taking the number of calls to the block encoding of the input and multiplying
it by a = log dimH0.

6.6 Application to Quantum Linear System Solving

For linear system solving, our aim will be to get a block encoding of A−1 from a block encoding of A.
If we try to approximate the function f(x) = x−1 by a polynomial on the interval [−1, 1], we notice
that it has a discontinuity at 0. In general, the complexity of inverting a matrix A scales with its
condition number

κ = ∥A∥
∥∥A−1

∥∥ =
maxj∈J |λj |
minj∈J |λj |

if A is normal with spectrum {λj}j∈J . If A has condition number κ, and ∥A∥ ≤ 1 (which we will
assume) then the eigenvalues of A/ ∥A∥ = A lie in the set D = [−1,−1/κ] ∪ [1/κ, 1], and so we only
need to approximate f on that interval. Another issue is that f(x) = x−1 has values in the range
[−κ, κ] on D, so in order to apply Theorem 6.4.4, we will instead approximate 1

2κx
−1, which will then

give a block encoding of 1
2κA

−1.

Claim 6.6.1 ([GSLW19, MRTC21]). There exists a degree d = O(κ log(κ/ε)) polynomial P that
ε/2κ-approximates f(x) = 1

2κx
−1 on D = [−1,−1/κ] ∪ [1/κ, 1], and such that |P (x)| ≤ 1 for all

x ∈ D.

A corollary of this claim is that if we can implement an (α, 0)-block encoding of A, (that is, a block
encoding of A/α), U , then there exists a (2κ, ε)-block encoding of A−1 that can be implemented using
O(ακ log(κ/ε)) calls to U , using which we can approximately generate:

1

2κ
A−1|b⟩|0⟩+ |ψ̃⟩|1⟩.

We can amplify the |0⟩ part using

2κ ≥
∥∥∥∥ 1

2κ
A−1|b⟩

∥∥∥∥−1

5This complexity can be slightly improved in the log factors, but we omit the details. See, for example, [Gil19].
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repetitions (via Theorem 2.2.11, amplitude amplification), since if we assume A has spectrum in D
(which assumes ∥A∥ ≤ 1), then A−1 has smallest eigenvalue 1. This gives a total cost of

O(κ2α log(κ/ε)).

For example, if A is given via sparse access (Definition 6.2.1), then we can get a block encoding of
A with α = s. The dependence on κ can be improved from quadratic to linear using more involved
techniques [CGJ19].
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