
Week 7: The QMA-Completeness of Local Hamiltonian

Stacey Jeffery

March 19, 2025

7.1 Introduction

While we believe that quantum computers can solve some problems significantly faster than classical
computers, they also have limits, and quantum complexity theory tries to understand these. We
have already seen how we can use quantum query lower bounds to understand these limits. However,
quantum query lower bounds are limited in the following sense. If the oracle is instantiated by an input
string x ∈ {0, 1}N , then a lower bound of q(N) on Q(F) is a real lower bound on the time complexity
of F as a function of its input size, N , but it can’t be larger than N , so we cannot prove super-linear
lower bounds in the input size. On the other hand, if we instantiate the oracle with a function,
fx : [N ] → {0, 1} defined somehow by an input string x of a possibly much smaller length n, then a
lower bound of q(N) ≤ N might be superlinear in n, the input size – it could even be exponential
in n. However, the quantum query lower bound doesn’t strictly apply in such a setting, because
by restricting the size of x, we have restricted the number of possible inputs fx, which introduces
structure to the problem that might be exploited to circumvent the lower bound. This is why, even
though we have a lower bound of Ω(

√
N) on the quantum query complexity of black-box search, this

doesn’t imply a lower bound on satisfiability, which we can see as an instantiation of black-box search,
letting the input oracle be defined by the input formula.

So we actually don’t have good ways to prove non-trivial lower bounds on the quantum complexity
of concrete problems, but we shouldn’t feel too bad about that, since we also can’t prove such lower
bounds classically. Instead, we define complexity classes characterizing different sets of problems we
think might have different difficulties, and make conjectures about these, and even occasionally prove
things. In this chapter, we will see a very small taste of this, as we will consider the quantum analogue
of the class NP, and a complete problem for it. These lecture notes are partly based on [dW19,
Chapter 14].

7.2 Warm up: Satisfiability and NP

A circuit is similar to a formula, which we have already seen, except that a formula is always a
tree, whereas the nodes of a circuit are allowed to have multiple “parents” (i.e. outgoing edges). The
problem of circuit satisfiability is, given a circuit C as input, decide if there exists an input x to the
circuit such that C(x) = 1.

Note that this problem is much more difficult than circuit evaluation, analogous to formula evaluation
EvalC(x), which we have seen: in this problem, a family of circuits C is a parameter of the problem,
and the input consists of an input x to the circuit, and the output is C(x). In contrast, for circuit
satisfiability, the input is C, and we seem to need to search over all possible strings x ∈ {0, 1}n to find
one such that C(x) = 1.

Complexity Classes Recall that a complexity class is a set of languages, which are subsets L ⊆
{0, 1}∗. This is just another way of describing total functions. For example, P is the set of languages
L for which there exists a polynomial-time Turing Machine AL(·) such that AL(x) outputs 1 if and
only if x ∈ L.

1



2

The class NP is defined as the class of problems for which there is a polynomial-time verifier. That is,
it is the set of languages L ⊆ {0, 1}∗ such that there exists a polynomial-time Turing Machine VL(·, ·)
that takes two inputs, x ∈ {0, 1}∗ and w ∈ {0, 1}n(|x|) for some polynomial n, and such that:

Soundness If x ∈ {0, 1}∗ \ L, no witness can convince VL to accept x: i.e. for all w ∈ {0, 1}n(|x|),
VL(x,w) = 0.

Completeness If x ∈ L, there is witness that will convince VL to accept x: i.e. exists w ∈ {0, 1}n(|x|)
such that VL(x,w) = 1.

Equivalently, we could let VL(x, ·) be a polynomial-time circuit that depends on x, and is uniformly
generated, meaning that there is a polynomial-time Turing Machine that writes down the circuit
VL(x, ·) given input x.

The problem Sat is NP-complete, which means that it’s in NP, and if you can solve it in polynomial
time, then you can solve any problem in NP in polynomial time. To see that it’s in NP, note that for
an input C, if V(C, x) takes as input1 the circuit C and an input x to the circuit, and outputs C(x) –
that is, it evaluates the circuit – then it is an NP-verifier for Sat. If there exists x such that C(x) = 1,
that x is a witness that makes V accept. If no such x exists, then V will never accept.

Seeing that every problem in NP can be reduced to Sat is much more involved, but it’s essentially
because Turing Machines and Circuits are equivalent models of computation. If we have any NP
problem, L and an input x, the verifier VL(x, ·) is an instance of Sat.

However, we can actually show something stronger, which is that if we restrict Sat to circuits of
a very specific form, the resulting problem is still NP-complete. A clause C on {x1, . . . , xn} is the
dysjunction (or) of some subset of {x1, . . . , xn, x̄1, . . . , x̄n}, which are called literals. For example,

C = x1 ∨ x6 ∨ x̄7.

We say C is a k-clause if it is a dysjunction of k literals. For example, C above is a 3-clause. We say
C is satisfied by an assignment x to the variables if C(x) = 1.

Problem: k-Sat

Input: Some description of C =
∧m
j=1Cj where each Cj is a k-clause on {x1, . . . , xn}.

Output: 1 if ∃x ∈ {0, 1}n such that C(x) = 1 and 0 if ∀x ∈ {0, 1}n, C(x) = 0.

It turns out that 3-Sat is NP-complete (or k-Sat for any k ≥ 3), whereas 2-Sat can be solved in
polynomial time, so it’s in P (thus, it is not known to NP-complete, and it is NP-complete if and only
if P = NP). We describe at a very high level how to reduce any NP problem instance to an instance
of 3-Sat. Let VL be an NP verifier for any NP problem L. Let

Ψ(x) = (ψ0(x,w), ψ1(x,w), . . . , ψT (x,w))

be the states of VL(x,w) at steps 0 (no computation performed yet) through T (last step of computation
applied). Without loss of generality suppose the answer to the computation is encoded in the first bit
of ψT (x,w), meaning that this bit is 1 if and only if VL(x,w) accepts.

Then Ψ(x) is a string of length n′ = (T + 1)S = poly(n), where S is the number of bits used by VL.
The idea is to define a set of 3-clauses on n′ variables, organized into T + 1 blocks of S variables,
ψt = ψt[1], . . . , ψt[S] for t = 0, . . . , T , such that all clauses are satisfied by the assignment Ψ(x), and
any assignment that satisfies all clauses must represent a run of the algorithm that accepts x.

1Note that here x is the witness rather than the input to the problem.



7.3. QMA 3

Thus, some of the clauses will check that ψ0, . . . , ψT represents a valid run of VL(x, ·). For example,
if the t-th operation in VL is to compute the OR of the first two bits and store the value in the third
bit, we want to check that ψt[3] = ψt−1[1] ∨ ψt−1[2], where we interpret each ψt as the S-bit string
representing the t-th block of variables, that we index into with square brackets. Since the expression
x = y ∨ z only involves three variables, we can write it as a conjunction of 3-clauses. In particular, it
is satisfied whenever:

(x ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ z) ∧ (x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z).

Thus, including these 4 clauses with (x, y, z) = (ψt[3], ψt−1[1], ψt−1[2]), means an assignment to the
variables will only be accepted if the 3-rd bit of the t-th block of S bits is obtained from the (t− 1)-th
block by taking the OR of its first two bits. Using sufficiently many constraints like this, we can ensure
that an assignment to the variables only satisfies all constraints if it does indeed represent a run of
the algorithm VL, and by adding a 1-variable constraint

ψT [1]

we can ensure that we only accept if ψT has a 1 in the first bit, meaning the verifier accepts.

7.3 QMA

There are a number of natural quantum analogues to NP [Gha23], but the most popular one (and
probably the most well-justified) is QMA. This is actually the quantum analogue of a randomized
variant of NP called MA, for Merlin-Arthur. MA and QMA are defined for promise problems, which
generalize languages to disjoint pairs L = (L0, L1) such that L0, L1 ⊆ {0, 1}∗. In such a problem, we
want to decide if x ∈ L0 or x ∈ L1, promised that one of these is true. Like NP, the definition of MA
involves a verifier. We imagine an interaction between Arthur, who is honest, but computationally
bounded, and Merlin, who is computationally unbounded, but can’t be trusted. Arthur gives Merlin
an input x, and Merlin’s goal is to try to convince Arthur that x ∈ L1 by sending him a witness w.
Informally, L is in MA if there is a polynomial-time algorithm Arthur can run such that if x ∈ L1,
Merlin can convince him with high probability to accept x, but if x ∈ L0, then Merlin cannot convince
him with very high probability to accept. Formally, we can define MA as follows.

Definition 7.3.1. Let a, b ∈ [0, 1] be such that b > a. Let MAa,b be the class of problems L = (L0, L1)
such that there exists a uniformly generated polynomial-time circuit VL(x, ·) that takes an input w ∈
{0, 1}n for n polynomial in |x|, such that

Soundness If x ∈ L0, no witness can convince VL(x, ·) to accept, except with small probability: i.e.
for all w ∈ {0, 1}n, Pr[VL(x,w) = 1] ≤ a.

Completeness If x ∈ L1, there is a witness that will convince VL(x, ·) to accept, with high probability:
i.e. exists w ∈ {0, 1}n, such that Pr[VL(x,w) = 1] ≥ b.

Define MA := MA1/3,2/3.

In the quantum version of this class, QMA, we allow the verifier to be a quantum circuit, and the
witness to be a quantum state. Without loss of generality, we can assume the verifier accepts if the
first qubit is |1⟩, and otherwise rejects, so we will

let Πacc be the projector onto having |1⟩ in the first qubit register. [1]

Note that, for any circuit, since its action is unitary, there are states that the circuit will map to
having |1⟩ in the first qubit. Thus, we allow the algorithm to use some auxiliary space, which starts
in the state |0n1⟩. Formally, we have the following:



4

Definition 7.3.2. Let a, b ∈ [0, 1] be such that b > a. Let QMAa,b be the class of problems L = (L0, L1)
such that there exists a uniformly generated polynomial-time quantum circuit VL(x) defined by 2-local
gates U1, . . . , UT on C2n1+n2 for T, n1, n2 all polynomial in |x|, such that

Soundness If x ∈ L0, no witness can convince VL(x) to accept, except with small probability: i.e. for
all |w⟩ ∈ C2n2 , ∥ΠaccVL(x)|0n1⟩|w⟩∥2 ≤ a.

Completeness If x ∈ L1, there is a witness that will convince VL(x) to accept, with high probability:
i.e. exists |w⟩ ∈ C2n2 , such that ∥ΠaccVL(x)|0n1⟩|w⟩∥2 ≥ b.

Define QMA := QMA1/3,2/3.

How important is the choice of a and b to the definition of QMA? It follows from the definition that
whenever a < a′ < b′ < b,

QMAa,b ⊆ QMAa′,b′ . (7.1)

On the other hand, you can take any QMA verifier, repeat it Θ(r) times, and take the majority, to
get a verifier2 with soundness 2−r and completeness 1− 2−r. If r = poly(|x|), then the verifier is still
polynomial. Combined with (7.1), we have that for any polynomial r,

QMA = QMA2−r,1−2−r .

This is convenient, because it allows us to assume the verifier has smaller than constant error, which
we will take advantage of in the next section. On the other side, for any polynomial r, we also have

QMA = QMA 1
2
− 1

r
, 1
2
+ 1

r
.

An interesting case is when b = 1. For b = 1 and a = 1/3 (or some other constant), the resulting class
is called QMA1. It is not known whether QMA = QMA1. On the one hand, the analogous classical
complexity classes are equal. On the other hand, QMA1 doesn’t even have a unique definition, because
it depends on the gate set used. That’s because mapping between different complete quantum gate
sets introduces small errors. So it’s not even clear it makes sense to talk about “one-sided” quantum
complexity classes.

7.4 Local Hamiltonian

As we have seen, a Hamiltonian can define a quantum computation: simulating that Hamiltonian. In
theory, every quantum system (including any computation) is described by a Hamiltonian. Consider
this in analogy to a circuit, which describes a classical computation. Just as we restricted our attention
to circuits consisting of k-clauses, for characterizing QMA, we can restrict our attention to k-local
Hamiltonians. The definition of locality for a Hamiltonian is identical to the definition we already
know for unitaries, but we restate it precisely below.

Definition 7.4.1 (Local Hamiltonian). For a permutation π ∈ Sn on n elements, let S(π) be the
unitary on C2n that permutes the n qubit registers according to π. A Hamiltonian H on C2n is k-local
if there is a permutation π ∈ Sn and a Hermitian matrix H ′ on C2k such that

S(π−1)HS(π) = H ′ ⊗ I2n−k .

In other words, H acts non-trivially on all but k qubits.

We can define the following for a, b ∈ [0,m] such that a < b.

2This is not as trivial as it sounds, since the verifier doesn’t get to have multiple copies of the witness. For details
see [MW05] or [Reg06].



7.5. QMA-COMPLETENESS OF LOCAL HAMILTONIAN 5

Problem: k-LocalHama,b

Input: Some classical description of H =
∑m

j=1Hj where each Hj is a k-local positive semidefinitea

matrix on C2n with ∥H∥ ≤ 1.
Output: 1 if ∃ a unit vector |ψ⟩ ∈ C2n such that ∥H|ψ⟩∥ ≤ a and 0 if for all |ψ⟩ ∈ C2n , ∥H|ψ⟩∥ ≥ b.

aEigenvalues are real and non-negative.

The smallest ∥H|ψ⟩∥ for any |ψ⟩ is just the smallest eigenvalue of H, also called the ground energy,
so this problem is essentially asking for an estimate of the ground energy of H. Since the eigenvalues
of each term Hj are in [0, 1], the eigenvalues of H are in [0,m].

This problem is in QMA whenever b − a ≥ 1
poly(n) . Without going into too many details, given an

appropriate classical description of a Hamiltonian that is the sum of k-local terms, it is possible to
simulate that Hamiltonian. A witness is a state |ψ⟩ such that ∥H|ψ⟩∥ ≤ a.

We can relax the restriction that the terms Hj are positive semidefinite, and merely require them to
be Hermitian, without changing the difficulty of the problem. On the other hand, as we will see in the
following section, even when each Hj is a projector, this problem is QMA-complete for appropriate
choices of k, a and b.

Before we see that k-LocalHam is QMA-complete, let us compare it with k-Sat. Let C =
∧m
j=1Cj

for some clauses Cj on n variables. For each j ∈ [m], we can define an associated projector (which is
a Hermitian matrix) on span{|x⟩ : x ∈ {0, 1}n}:

HCj =
∑

x∈{0,1}n:Cj(x)=0

|x⟩⟨x|.

If Cj is a k-clause, then this will be k-local. We can see this through an example. Suppose Cj =
x1 ∨ x̄2 ∨ x3. Then Cj(x) = 0 when x1 = 0, x2 = 1 and x3 = 0 (and the other bits of x take any
values). Thus:

HCj = |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ I2n−3 ,

which is clearly 3-local. If each clause of C is a k-clause, then

HC =

m∑
j=1

HCj ,

is an instance of k-local Hamiltonian. What does its ground energy have to do with the satisfiability
of C? You will work this out in the following exercise.

Exercise 7.4.1. Show that the ground energy of HC is minx∈{0,1}n |{j ∈ [m] : Cj(x) = 0}|.

So C is satsifiable if and only if the ground energy of C is 0. More generally, this special case of k-
LocalHam allows you to distinguish between formulas in which ≥ m−a clauses can be simultaneously
satisfied, and formulas in which it is not possible to simultaneously satisfy more than m − b clauses.
Even for b− a = Ω(m), this problem is NP-hard.

We summarize the correspondance between classical satisfiability and quantum local Hamiltonian
problems in Figure 7.1.

7.5 QMA-Completeness of Local Hamiltonian

We will show that 5-LocalHama,b is QMA-complete, for some choice of a and b such that b−a = 1
poly(n) .



6

Classical Quantum

n variables n qubits

m clauses m Hamiltonian terms

assignment to the variables, x quantum state, |ψ⟩
number of clauses satisfied by x energy ∥H|ψ⟩∥

Figure 7.1: Correspondance between classical satisfiability problems and local Hamiltonian.

Fix any QMA problem L = (L0, L1), and let VL(x) be a verifier for L, whose action is defined by
2-local unitaries U1, . . . , UT . Let |ψt(x)⟩ be the algorithm states of V(x) when given as witness a state
|wx⟩ that maximizes its acceptance probability:

|ψ0(x)⟩ = |0n1⟩|wx⟩
∀t ∈ [T ], |ψt(x)⟩ = Ut|ψt−1(x)⟩.

We will assume that this verifier has soundness 1
T and completeness 1− 1

5T :

∀x ∈ L0, ∥Πacc|ψT (x)⟩∥2 ≤
1

T

∀x ∈ L1, ∥Πacc|ψT (x)⟩∥2 ≥ 1− 1

5T[2]

In order to reduce L to k-LocalHam, we need to define a local Hamiltonian instance H = H(x)
where the ground energy is low whenever x ∈ L1, and high whenever x ∈ L0. To this end, we will
define a local Hamiltonian instance where the ground state is the (normalized) history state:

|Ψ(x)⟩ := 1√
T + 1

T∑
t=0

|t⟩C |ψt(x)⟩ ∈ span{|t⟩C |z⟩ : t ∈ {0, . . . , T}, z ∈ {0, 1}n1+n2} =: H. (7.2)

We have labelled the clock register, with a C, for clarity. Any unit vector in H has the form
1√
T+1

∑
t |t⟩|ϕt⟩ for some (possibly unnormalized, possibly zero) vectors |ϕt⟩. We will define local

Hamiltonians – in fact, each will be a projector – on H that “penalize” any state of this form that
is not a history state, ensuring it ends up having too high energy (i.e. ∥H|ψ⟩∥ is too big), and thus
ensuring only a history state can be a low energy state. But we will also have a local Hamiltonian,
Hfinal, that penalizes any history state if the final state |ψT (x)⟩ does not accept, ensuring that the
energy is higher if the acceptance probability is too low.

7.5.1 Reduction to (log(T ) + 2)-local Hamiltonian

We first show a simpler reduction from L to (log(T )+2)-LocalHama,b. This contains the main ideas
of the reduction, and in Section 7.5.2, we use some tricks to modify the Hamiltonian terms so that
they are 5-local.

First, define the following projectors, for i ∈ [n1]:

Hinit(i) = |0⟩⟨0|C ⊗ I
⊗(i−1)
2 ⊗ |1⟩⟨1| ⊗ I

⊗(n1−i)
2 ⊗ I2n2 . (7.3)

Clearly, Hinit(i) is (log(T )+1)-local, since C is a log(T )-qubit register, and Hinit(i) acts as the identity
on all but C and one additional qubit. Together, these terms ensure that at time 0 – the only time in
which the clock register is set to |0⟩C – the first n1 qubits are set to |0⟩ – any state not satisfying this
will be mapped to something bigger than 0 by at least one of these projectors, resulting in an “energy
penalty”.



7.5. QMA-COMPLETENESS OF LOCAL HAMILTONIAN 7

Next, define the following projectors, for t = {0, . . . , T − 1}:

Ht =
1

2

∑
z∈{0,1}2n1+n2

(|t⟩|z⟩ − |t+ 1⟩Ut+1|z⟩)
(
⟨t|⟨z| − ⟨t+ 1|⟨z|U †

t+1

)
=

1

2

(
|t⟩⟨t| ⊗ I2n1+n2 + |t+ 1⟩⟨t+ 1| ⊗ I2n1+n2 − |t+ 1⟩⟨t| ⊗ Ut+1 − |t⟩⟨t+ 1| ⊗ U †

t+1

)
since

∑
z∈{0,1}2n1+n2 |z⟩⟨z| = I2n1+n2 . This acts as the identity on every qubit except the log(T ) qubits

in C, and the 2 qubits acted non-trivially on by the 2-local gate Ut+1. Thus it is (log(T )+2)-local. This
term gives an energy penalty to any state of the form |t⟩|ϕt⟩+ |t+ 1⟩|ϕt+1⟩ where |ϕt+1⟩ ̸= Ut+1|ϕt⟩,
so together, these terms ensure that the ground state is some history state, for some run of V(x),
starting from some initial state.

Finally, define

Hfinal = |T ⟩⟨T |C ⊗ |0⟩⟨0| ⊗ I2n1+n2−1 .

This is clearly (log(T ) + 1)-local. This term gives an energy penalty if the final state has |0⟩ in the
answer register.

Together, these give:

H =

n1∑
i=1

Hinit(i) +
T−1∑
t=0

Ht +Hfinal.

Theorem 7.5.1 (Completeness). Let a = 1√
5T (T+1)

. Then for all x ∈ L1, there is a unit vector |Ψ⟩
such that ∥H|Ψ⟩∥ ≤ a.

Proof. We will let |Ψ⟩ = |Ψ(x)⟩ be the history state, defined in (7.2). We first compute:

Hinit(i)|Ψ(x)⟩ = 1√
T + 1

|0⟩C ⊗
(
I
⊗(i−1)
2 ⊗ |1⟩⟨1| ⊗ I

⊗(n1−i)
2 ⊗ I2n2

)
|ψ0(x)⟩

=
1√
T + 1

|0⟩C ⊗
(
I
⊗(i−1)
2 ⊗ |1⟩⟨1| ⊗ I

⊗(n1−i)
2

)
|0n1⟩ ⊗ |wx⟩ = 0

for any i ∈ [n1], since |ψ0(x)⟩ = |0n1⟩|wx⟩ has |0⟩ in the first n1 qubit registers. Next,(
⟨t|⟨z| − ⟨t+ 1|⟨z|U †

t+1

)
(|t⟩|ψt(x)⟩+ |t+ 1⟩|ψt+1(x)⟩) = ⟨z|ψt(x)⟩ − ⟨z|U †

t+1|ψt+1(x)⟩ = 0,

for any t ∈ {0, . . . , T−1} and z ∈ {0, 1}n1+n2 , since ⟨z|U †
t+1|ψt+1(x)⟩ = ⟨z|U †

t+1Ut+1|ψt(x)⟩ = ⟨z|ψt(x)⟩.
Thus we have

Ht|Ψ(x)⟩ = Ht (|t⟩|ψt(x)⟩+ |t+ 1⟩|ψt+1(x)⟩) = 0.

Thus,

∥H|Ψ(x)⟩∥2 = 1

T + 1
∥Hfinal|ψ(x)⟩∥2 =

1

T + 1
∥|T ⟩C ⊗ (|0⟩⟨0| ⊗ I2n1+n2 ) |ψT (x)⟩∥2

=
1

T + 1
∥(I −Πacc)|ψT (x)⟩∥2 ,

since we assume VL(x) accepts if and only if there is a 1 in the first qubit register. By assumption
that |wx⟩ is a witness that maximizes acceptance probability, and since x ∈ L1, we get:

∥H|ψ(x)⟩∥2 = 1

T + 1

(
1− ∥Πacc|ψT (x)⟩∥2

)
≤ 1

5T (T + 1)
.



8

Theorem 7.5.2 (Soundness). Let b = 1√
4T (T+1)

. Then for all x ∈ L0, and any unit vector |Ψ⟩,
∥H|Ψ⟩∥ ≥ b.

Proof. Suppose |Ψ⟩ is a unit vector that minimizes ∥H|Ψ⟩∥2. Then

∥H|Ψ⟩∥2 = ⟨Ψ|H|Ψ⟩ = ⟨Ψ|
n1∑
i=1

Hinit(i)|Ψ⟩+
T−1∑
t=0

⟨Ψ|Ht|Ψ⟩+ ⟨Ψ|Hfinal|Ψ⟩. (7.4)

Without loss of generality, we can assume

|Ψ⟩ = 1√
T + 1

T∑
t=0

|t⟩|ψt⟩

for some vectors |ψt⟩ (not necessarily normalized, possibly 0). While we can’t assume that the vectors
|ψt⟩ have anything to do with a run of the verifier, or even that they’re unit vectors, we will see that
if ∥H|Ψ⟩∥2 is small, they must actually be pretty close. Let

|ψ̃0⟩ =
(|0n1⟩⟨0n1 | ⊗ I2n2 )|ψ0⟩

∥(|0n1⟩⟨0n1 | ⊗ I2n2 )|ψ0⟩∥
,

and for t > 0, let |ψ̃t⟩ = Ut|ψ̃t−1⟩. We will formalize that:

1. |ψ̃0⟩ must be close to |ψ0⟩, or ⟨Ψ|
∑n1

i=1Hinit(i)|Ψ⟩ will be large;

2. |ψt⟩ must be close to Ut|ψt−1⟩, or ⟨Ψ|Ht|Ψ⟩ will be large, meaning that |ψ̃t⟩ must be close to
|ψt⟩;

3. |ψT ⟩ must have high weight on a 1 in the answer register, or ⟨Ψ|Hfinal|Ψ⟩ will be large. But since
|ψ̃T ⟩ is close to |ψT ⟩, |ψ̃T ⟩ must have high weight on a 1 in the answer register.

Since |ψ̃0⟩ = |0n1⟩|w⟩ for some |w⟩, together, these imply that |w⟩ is a witness that is accepted by the
verifier with high probability. If “high probability” is too high, we get a contradiction. Thus, assume
towards a contradiction that

∥H|Ψ⟩∥2 ≤ 1

4T (T + 1)
. (7.5)

For z ∈ {0, 1}n1 , let Πz = |z⟩⟨z| ⊗ I2n2 .

(T + 1)⟨Ψ|
n1∑
i=1

Hinit(i)|Ψ⟩ = ⟨ψ0|
n1∑
i=1

∑
z∈{0,1}n1 :zi=1

Πz|ψ0⟩ ≥ ⟨ψ0|
∑

z∈{0,1}n1\{0}

Πz|ψ0⟩

= ⟨ψ0|(I −Π0n1 )|ψ0⟩ = 1− ⟨ψ0|Π0n1 |ψ0⟩ = 1−
∥∥∥|ψ̃0⟩

∥∥∥2
=
∥∥∥|ψ0⟩ − |ψ̃0⟩

∥∥∥2 .
Then by (7.5), since all terms of (7.4) are non-negative, each term is at most 1

4T (T+1) , so we have:

∥∥∥|ψ0⟩ − |ψ̃0⟩
∥∥∥2 ≤ 1

4T
. (7.6)

The next caclulation we need is a straightforward exercise.

Exercise 7.5.1. Show that for any t ∈ {0, . . . , T − 1}, ⟨Ψ|Ht|Ψ⟩ = 1
2(T+1) ∥Ut+1|ψt⟩ − |ψt+1⟩∥2.



7.5. QMA-COMPLETENESS OF LOCAL HAMILTONIAN 9

From this we can use Cauchy-Schwarz to derive:

(T + 1)

T−1∑
t=0

⟨Ψ|Ht|Ψ⟩ = 1

2

T−1∑
t=0

∥Ut+1|ψt⟩ − |ψt+1⟩∥2

≥ 1

2T

(
T−1∑
t=0

∥Ut+1|ψt⟩ − |ψt+1⟩∥

)2

=
1

2T

(
T−1∑
t=0

∥UT . . . Ut+1|ψt⟩ − UT . . . Ut+2|ψt+1⟩∥

)2

,

where we use the fact that any unitary, including UT . . . Ut+2, doesn’t change the norm. We can
continue by using the triangle inequality (twice):

(T + 1)

T−1∑
t=0

⟨Ψ|Ht|Ψ⟩ ≥ 1

2T

∥∥∥∥∥
T−1∑
t=0

(UT . . . Ut+1|ψt⟩ − UT . . . Ut+2|ψt+1⟩)

∥∥∥∥∥
2

=
1

2T
∥UT . . . U1|ψ0⟩ − |ψT ⟩∥2

≥ 1

2T

(∥∥∥UT . . . U1|ψ̃0⟩ − |ψT ⟩
∥∥∥− ∥∥∥UT . . . U1|ψ̃0⟩ − UT . . . U1|ψ0⟩

∥∥∥)2
=

1

2T

(∥∥∥|ψ̃T ⟩ − |ψT ⟩
∥∥∥− ∥∥∥|ψ̃0⟩ − |ψ0⟩

∥∥∥)2 ≥ 1

2T

(∥∥∥|ψ̃T ⟩ − |ψT ⟩
∥∥∥− 1√

4T

)2

by (7.6). Again, using the fact that each term of (7.4) must be at most 1
4T (T−1) , we get:

1

2T

(∥∥∥|ψ̃T ⟩ − |ψT ⟩
∥∥∥− 1√

4T

)2

≤ 1

4T∥∥∥|ψ̃T ⟩ − |ψT ⟩
∥∥∥ ≤ 1√

2
+

1√
4T

.

(7.7)

For our final calculation, let Πrej = I −Πacc denote the projector onto a 0 in the answer register.

(T + 1)⟨Ψ|Hfinal|Ψ⟩ = ⟨ψT |Πrej|ψT ⟩ = ∥Πrej|ψT ⟩∥2

≥
(∥∥∥Πrej|ψ̃T ⟩

∥∥∥− ∥∥∥Πrej|ψT ⟩ −Πrej|ψ̃T ⟩
∥∥∥)2 ≥ (∥∥∥Πrej|ψ̃T ⟩

∥∥∥− ∥∥∥|ψT ⟩ − |ψ̃T ⟩
∥∥∥)2 ,

where we have once again used the triangle inequality. Combining this with (7.7), and the fact that
each term of (7.4) must be at most 1

4T (T+1) , we get:

(∥∥∥Πrej|ψ̃T ⟩
∥∥∥− (1

2
+

1√
4T

))2

≤ 1

4T∥∥∥Πrej|ψ̃T ⟩
∥∥∥ ≤ 1√

4T
+

1√
2
+

1√
4T

=
1√
2
+

1√
T
.

Thus, whenever T is greater than some sufficiently large constant,∥∥∥Πrej|ψ̃T ⟩
∥∥∥2 ≤ 1

2
+ o(1) and so

∥∥∥Πacc|ψ̃T ⟩
∥∥∥2 ≥ 1

2
− o(1).

This brings us to a contradiction, because, it implies that if we give the verifier input

|ψ̃0⟩∥∥∥|ψ̃0⟩
∥∥∥ = |0n1⟩ |w⟩∥∥∥|ψ̃0⟩

∥∥∥ ,



10

and measure it’s final state |ψ̃T ⟩
∥|ψ̃0⟩∥ , we will get a 1 with probability

≥
1
2 − o(1)∥∥∥|ψ̃0⟩

∥∥∥ = Ω(1),

by the following exercise:

Exercise 7.5.2. Show that
∥∥∥|ψ̃0⟩

∥∥∥ = O(1).

This is a contradiction because x ∈ L0, so the acceptance probability should be at most 1/T . Thus,
our assumption in (7.5) must be false.

7.5.2 Reduction to 5-local Hamiltonian

The reason our previous construction was log(T )-local was because of the clock register. The main
change we make to facilitate making our Hamiltonians more local, is that we will encode the register
C in unary encoding:

|t⟩C = |1⟩C1 ⊗ · · · ⊗ |1⟩Ct ⊗ |0⟩Ct+1 ⊗ · · · ⊗ |0⟩CT .

Above, each register Cj is a qubit register. Encoding a number t by a string of t 1s (followed by 0s)
is called unary. This is not very space-efficient, but that’s not really a priority here. We will ensure
that the register C, which is now a T -qubit register, does in fact encode a number in unary – we will
refer to this as the unary subspace – by including the following additional terms in our Hamiltonian,
for each t ∈ [T − 1]:

Hunary(t) = IC1 ⊗ ICt−1 ⊗ |01⟩⟨01|CtCt+1 ⊗ ICt+2 ⊗ ICT ⊗ I2n1+n2 .

This is clearly 2-local. Moreover, it introduces an energy penalty for any state that has a string in
the clock register that does not encode a number in unary. That’s because a string encodes a unary
number precisely when it consists of zero or more 1s, followed by 0s; which is precisely when there is
never a 0 followed by a 1. If there is a 0 in the t-th clock qubit, and a 1 in the (t+ 1)-th clock qubit,
Hunary(t) will not map such a state to 0, resulting in a non-zero “energy penality”.

We slightly modify Hinit(i), Ht and Hfinal, using the fact that C now has a unary encoding to decrease
the locality. Recall from (7.3) that Hinit(i) should ensure that when C contains |0⟩C , the i-th qubit
of the algorithm is in the state |0⟩. Now we will exploit the fact that |0⟩C is the only state in unary
encoding that has |0⟩ in C1, so as long as we’re in the subspace spanned by unary strings, to “check”
that C contains 0, we need only look at the first qubit, C1. That is, for i ∈ [n1], define:

Hinit(i) = |0⟩⟨0|C1 ⊗ IC2...CT ⊗ I
⊗(i−1)
2 ⊗ |1⟩⟨1| ⊗ I

⊗(n−i)
2 .

Clearly, Hinit(i) is 2-local.

Next, recall that we defined Ht to be the orthogonal projector onto states of the form:

|t⟩C |z⟩ − |t+ 1⟩CUt+1|z⟩
= |1t⟩C1...Ct |0⟩Ct+1 |0T−t−1⟩Ct+2...CT |z⟩ − |1t⟩C1...Ct |1⟩Ct+1 |0T−t−1⟩Ct+2...CTUt+1|z⟩.

We can decrease the locality of Ht by projecting on states of the form (up to reordering of registers):

|ℓ1, . . . , ℓt−1⟩C1...Ct−1 |ℓt+3, . . . , ℓT ⟩Ct+3...CT
(
|1⟩Ct |0⟩Ct+1 |0⟩Ct+2 |z⟩ − |1⟩Ct |1⟩Ct+1 |0⟩Ct+2Ut+1|z⟩

)︸ ︷︷ ︸
|ϕt,z⟩



7.6. EXTENSIONS AND FURTHER READING 11

for any values ℓ1, . . . , ℓt−1, ℓt+3, . . . , ℓT ∈ {0, 1}. Restricting to the unary subspace of C, this does the
same thing, because as long as a number is encoded in unary, the unique location of its 10 encodes its
value. Thus, we can define, for t = {0, . . . , T − 1}:

Ht = IC1...Ct−1Ct+3...CT ⊗
∑

z∈{0,1}2n1+n2

|ϕt,z⟩⟨ϕt,z|,

which is 5-local, because it acts non-trivillay on the qubits in Ct, Ct+1 and Ct+2, as well as the two
qubits acted on by the 2-local gate Ut+1.

Finally, similar to the case of Hinit(i), for Hfinal, as long as we’re in the unary subspace, we can “check”
if C contains T by simply “checking” if CT is set to |1⟩:

Hfinal = IC1...CT−1
⊗ |1⟩⟨1|CT ⊗ |0⟩⟨0| ⊗ I2n1+n2−1 .

Clearly this is 2-local. Then we define

H =
T−1∑
t=1

Hunary(t) +

n1∑
i=1

Hinit(i) +
T−1∑
t=0

Ht +Hfinal,

which is 5-local, since all terms have locality at most 5.

Soundness and completeness can be shown similar to Section 7.5.1. We leave this as an exercise.

7.6 Extensions and Further Reading

We have seen that 5-LocalHama,b is QMA-complete whenever b − a = 1
poly(n) . Using more clever

tricks, this can be improved to show that even 2-LocalHama,b is QMA-complete [KKR06], which
is in contrast to the classical world, where 2-Sat is in P. A long-standing open problem called the
quantum PCP conjecture is to show that 2-LocalHama,b is QMA-complete even when b− a = Ω(m),
for m the number of local Hamiltonian terms.

Bibliography

[Gha23] Sevag Gharibian. The 7 faces of quantum np, 2023. arXiv: 2310.18010 3

[KKR06] Julia Kempe, Alexei Yu Kitaev, and Oded Regev. The complexity of the local hamiltonian
problem. SIAM Journal on Computing, 35(5):1010–1097, 2006. 11

[MW05] Chris Marriott and John Watrous. Quantum Arthur–Merlin games. Computational Com-
plexity, 14(2):122–152, 2005. arXiv: cs/0506068 4

[Reg06] Oded Regev. Witness-preserving amplification of qma, 2006. 4

[dW19] Ronald de Wolf. Quantum computing lecture notes. arXiv: 1907.09415v5, 2019. 1

https://arxiv.org/abs/2310.18010
https://arxiv.org/abs/cs/0506068
https://arxiv.org/abs/1907.09415v5

	7.1 Introduction
	7.2 Warm up: Satisfiability and NP
	7.3 QMA
	7.4 Local Hamiltonian
	7.5 QMA-Completeness of Local Hamiltonian
	7.5.1 Reduction to (log(T)+2)-local Hamiltonian
	7.5.2 Reduction to 5-local Hamiltonian

	7.6 Extensions and Further Reading

