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Abstract

Due to the difficulty of constructing new quantum algorithms, frameworks that facilitate
this construction are of great importance in quantum computing. These frameworks reduce the
problem of coming up with a quantum algorithm to that of constructing some combinatorial object
that is often much simpler to reason about. The implementation and analysis of an algorithm
for the specified problem follow from the properties of this object. A number of such frameworks
have been extremely successful in leading to the development of numerous quantum algorithms
for a variety of problems. In this thesis, we build on two of these frameworks, the quantum walk
search framework, and the span program framework, extending their algorithmic potential.

The quantum walk search framework gives a generic quantum analogue to a specific type of
classical algorithm based on random walks. If one can construct a classical algorithm of this
form, a corresponding quantum algorithm with better complexity immediately follows. In this
framework, a generic algorithm is constructed from several subroutines for which implementations
must be given for each application. One of these subroutines, a checking subroutine, is run
many times throughout the algorithm. This subroutine may be implemented by any quantum
algorithm that satisfies the required functionality, including another quantum walk algorithm.
By making a slight modification to the quantum walk framework, we can show how to nest a
quantum walk algorithm in the checking subroutine of another quantum walk algorithm in a way
that gives better complexity than the naive nesting. This modification allows us to reproduce a
number of upper bounds previously obtained in another framework, the learning graph framework,
including upper bounds for triangle finding, and more generally, subgraph finding for constant-
sized subgraphs. Porting these upper bounds over to the setting of quantum walks is desirable
because the algorithms achieved in the quantum walk search framework are much more explicit
than those of the learning graph framework, making them easier to work with, modify, and build
on, as needed. Our efficient nested checking idea has already been used to come up with new
quantum algorithms for finding sub-hypergraphs.

Another subroutine that is called repeatedly by the generic quantum walk search algorithm
is the update subroutine. It was not clear how to use a quantum walk algorithm to perform this
step, but by making another slight modification to the quantum walk search framework, we are
able to show how to nest a quantum walk in the update step of another quantum walk in an
efficient way. Our technique for doing this is a special case of a technique that allows the update
to be implemented with garbage — i.e., some unwanted data in an auxiliary register, entangled
with the desired state. This technique may have other applications.

Using the nested update technique, we are able to improve the best known upper bounds
on the time complexity of k-distinctness. Previously the best known upper bound on the time
complexity was nk/(k+1), due to Ambainis. Belovs had recently improved the query complexity of
k-distinctness to o(n3/4) for all k, but since this upper bound was obtained in a framework called
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span programs, which only gives upper bounds on quantum query complexity, there was no known
time efficient implementation of his k-distinctness algorithm. We use ideas from his construction
and our nested update technique to get a quantum time upper bound for 3-distinctness of n5/7,
matching his quantum query upper bound. We can generalize our algorithm get a time upper
bound of n(k−1)/k for any k > 3, slightly improving on the best previous upper bound.

Another framework, the span program framework, is known to be equivalent to quantum
query complexity, in the sense that for any Boolean decision problem, there exists a span program
construction that yields a tight upper bound on its quantum query complexity. We explore several
variations of this framework. First, we slightly modify the definition of a span program so that
we can show that for any (not necessarily Boolean) decision problem, there is a span program
construction that yields a tight upper bound on its quantum query complexity. Previously this
was only known up to logarithmic factors. We also explore several approximate versions of span
programs, and show them to be equivalent. Finally, we explore the structure of span program
witnesses, and use this structure to present an algorithm for evaluating span programs that is
straightforward and intuitive. We also show how to evaluate approximate span programs, opening
the possibility for the construction of new upper bounds using approximate span programs.
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Chapter 1

Introduction

Due to the difficulty of conceptualizing the behaviour of quantum mechanical systems, inventing
new ways for quantum computers to solve tasks faster than any classical computer is extremely
difficult. As such, there are only a small number of completely “new” quantum algorithms — two
famous examples being Shor’s factoring algorithm and Grover’s search algorithm [Sho97, Gro96]
— most other quantum algorithms are built upon already existing quantum algorithms, and
their main contributions often stem from coming up with clever ways to apply known quantum
techniques in a novel way.

A quantum algorithmic framework provides a formal way for doing this. Such a framework
breaks down the problem of coming up with a quantum algorithm to constructing some combina-
torial object, which is typically much easier to conceptualize. The implementation and analysis
of the algorithm then follow directly from some properties of this object. A very large number of
quantum algorithms have been created in this way, through frameworks such as amplitude am-
plification, which generalizes Grover search so that a generic squareroot speedup can be obtained
for any unstructured search problem.

Some of these frameworks, such as amplitude amplification, also have the advantage that
they can be applied with essentially no background in quantum algorithms. The quantum walk
search framework [MNRS11, Sze04] can also be applied with little understanding of the underlying
quantum algorithm, as algorithms in this framework are analogous to a class of classical algorithms
based on random walks. Generally speaking, given a classical algorithm of this particular form,
there is an analogous quantum algorithm with smaller complexity. Thus, to apply this framework,
one simply needs to come up with a classical algorithm of a particular form, for which one only
needs an understanding of the classical theory of random walks.

Quantum Walk Search The MNRS quantum walk search framework [MNRS11] is built on
a similar framework due to Szegedy [Sze04], which in turn can be seen as a generalization of an
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algorithm due to Ambainis [Amb04]. For any random walk on a finite state space, this framework
gives a quantum algorithm for finding a marked state that requires access to three subroutines.
The first, the setup subroutine, must create a superposition over all states in the search space. The
second, the checking subroutine, must check if a state is marked. Finally, the update subroutine
must create a superposition over all states that are adjacent to the current state. If the respective
costs of implementing these subroutines are S, C, and U, ε is the probability a state is marked,
and δ is the spectral gap of the random walk, then the complexity of the algorithm scales like

S +
1√
ε

(
1√
δ

U + C

)
.

This framework makes it quite simple to construct and analyze a quantum search algorithm, by
choosing some appropriate random walk, implementing the specified subroutines, and computing
their costs.

The framework can be seen as a generalization of an algorithm for element distinctness, where
the input is a list of integers, and we want to find two that are the same [Amb04]. More generally,
Ref. [Amb04] gives a quantum walk algorithm for k-distinctness, in which we want to find k copies
of the same integer in the input, with quantum time complexity Õ(nk/(k+1)), for any k ≥ 2. When
k = 2, Ambainis’s upper bound is tight [AS04, Amb05, Kut05]. The best known lower bound for
any k > 2 is also O(n2/3).

Another early algorithm in the quantum walk search framework was an algorithm for triangle
finding, the problem of finding a triangle in an input graph, given by its adjacency matrix [MSS07].
Ref. [MSS07] used a quantum walk search algorithm to give an upper bound of O(n13/10) on the
query complexity of triangle finding.

Learning Graphs A subsequent quantum algorithmic framework, the learning graph frame-
work [Bel12b], constructs a quantum algorithm from a combinatorial object called a learning
graph. The query complexity of this algorithm is then given by an expression that is simple to
compute for structured learning graphs. However, the framework does not give an upper bound
on the time complexity. The underlying algorithm consists of alternating two reflections. One
of these, although it is known to be implementable with query complexity 0, because it is in-
dependent of the input, may take a very general form, and no implementation is specified by
the framework, so it is not clear how to implement this reflection in a time-efficient manner.
Nonetheless, the framework has been very successful in proving upper bounds on quantum query
complexity. The first was an upper bound on triangle finding [Bel12b], improving the previous
quantum walk upper bound to O(n35/27) = O(n1.296). The combinatorics of this construction are
similar to those of the quantum walk algorithm for triangle finding, but with one extra idea, which
we call edge sparsification. It is possible to use this technique in the quantum walk algorithm,
but doing so yields no improvement.
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A subsequent learning graph construction further improved the quantum query complexity of
triangle finding to O(n9/7) = O(n1.286) [LMS13].1

Span Programs A final framework of note is the span program framework, first used in the
context of quantum query complexity in [RŠ12]. This framework is very general for quantum
query complexity: For every Boolean decision problem, there exists an algorithm in this frame-
work with optimal quantum query complexity [Rei09, Rei11]. However, this generality makes
the framework somewhat difficult to apply. Furthermore, it suffers from the same drawback as
learning graphs, learning graphs being a specialization of span programs: it does not generally
give upper bounds on the time complexity, since, as with learning graphs, the underlying algo-
rithm is specified by a pair of reflections with no implementation given. Despite the difficulty
of applying the framework, Belovs was able to use it to improve the quantum query complexity
of k-distinctness for all k > 2, to o(n3/4) [Bel12a], improving upon Ambainis’s previous upper
bound, which had been the best known for many years. However, since this algorithm could not
be analyzed for time complexity, Ambainis’s upper bound on the time complexity of k-distinctness
was still the best known, before the work presented in this thesis.

1.1 Contributions in this Thesis

This thesis presents extensions to two important frameworks in the design of quantum algorithms:
the quantum walk search framework, and the span program framework.

Quantum Walks The major work of this thesis is an extension to the MNRS quantum walk
search framework, along with a number of applications. The extension to the quantum walk
framework is based on two publications. The first publication, [JKM13b], in collaboration with
Robin Kothari and Frédéric Magniez, presents a modification to the MNRS quantum walk search
framework that allows the implementation of a technique for efficiently nesting one quantum walk
search algorithm in the checking step of another. Suppose a quantum walk search algorithm has
setup cost S, update cost U, spectral gap δ, and probability of a state being marked ε. It may be
possible to implement the checking subroutine using a quantum walk algorithm. If this algorithm

has costs (S′,U′,C′, δ′, ε′), then the checking cost is C = S′ + 1√
ε′

(
1√
δ′

U′ + C′
)

, so the total cost

of the algorithm becomes:

S +
1√
ε

(
1√
δ

U + S′ +
1√
ε′

(
1√
δ′

U′ + C′
))

,

1Following the submission of this thesis, Le Gall used the MNRS quantum walk search framework to give an
upper bound of Õ(n5/4) on the quantum query complexity of triangle finding [Le 14].
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up to logarithmic factors incurred from amplifying the success probability of the checking sub-
routine. We show a method for improving this cost to (up to logarithmic factors):

S + S′ +
1√
ε

(
1√
δ

U +
1√
ε′

(
1√
δ′

U′ + C′
))

.

Since there are no longer any multiplicative factors on S′, this can decrease the cost. As an
application, we show how to implement the edge sparsification idea used by Belovs to obtain
the O(n35/27) upper bound on triangle finding as a quantum walk search algorithm, reproducing
his upper bound up to logarithmic factors. We are also able to use the ideas of [LMS13] to
reproduce their triangle finding upper bound of O(n9/7) up to logarithmic factors, as well as a
more general construction they give for finding any constant-sized subgraph. Although neither of
these applications gives a new upper bound for triangle finding, the quantum walk framework leads
to an explicit algorithm that is easy to analyze and modify, making it subjectively more desirable
to work with. In addition, the simplicity of the nested-checking quantum walk search algorithmic
technique will hopefully facilitate the construction of new upper bounds. Our framework has
already been used to generalize the work of [LMS13] to obtain new upper bounds on the quantum
query complexity of finding sub-hypergraphs [FLT14].

The second publication consisting of work from Part II, Ref. [BCJ+13], is a merger of two
manuscripts: [CJKM13], which is joint work with Andrew Childs, Robin Kothari, and Frédéric
Magniez; and [Bel13], by Aleksandrs Belovs. This work shows two different means of obtaining
a new quantum time upper bound of n5/7 for 3-distinctness. In this thesis, we will only be
presenting the work in Ref. [CJKM13]. In this work, we make a further modification to the
quantum walk framework that allows us to efficiently nest one quantum walk search algorithm
in the update step of another, just as we did for checking, to obtain a cost expression (in most
cases) like:

S + S′ +
1√
ε

(
1√
δ

1√
ε′

(
1√
δ′

U′ + C′
)

+ C

)
,

up to logarithmic factors. Accomplishing this type of nesting is significantly more difficult than
nested checking. The technique we use to accomplish this is a special case of a technique that
allows us to do updates with garbage, which may be of independent interest. As an application of
this technique, we prove the aforementioned upper bound on the time complexity of 3-distinctness
of Õ(n5/7), improving upon the previous best time complexity upper bound of Õ(n3/4), and
matching the best known query complexity.

Additionally, in Section 6.2, we show how to generalize the algorithm for 3-distinctness to k-
distinctness, obtaining a nested-update quantum walk search algorithm that solves k-distinctness
in time Õ(n(k−1)/k), for any k > 3, improving upon the best previous upper bound of Õ(nk/(k+1)).
On the one hand, this improvement is only slight, and still does not match the best known upper
bound on the quantum query complexity, of o(n3/4) for all k. However, this is the first progress
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on the time complexity of this problem in 10 years, and our algorithm may serve as a starting
point for another, better algorithm.

The modifications to the quantum walk framework, as well as their applications, appear in
Part II. To begin, in Chapter 4, we present a new quantum walk search framework, generalizing
[MNRS11], that includes the extensions of both Ref. [JKM13a] and Ref. [CJKM13]. In Chapter 5,
we show how to use this new framework to achieve the algorithmic technique of nested checking,
and the applications of this technique to triangle finding and more general subgraph finding.
Finally, in Chapter 6, we present the nested update technique from Ref. [CJKM13], and its
application to 3-distinctness, and more generally, k-distinctness.

Span Programs In Part III, we explore extensions to the span program framework, based
on collaboration with Tsuyoshi Ito. We first make a very slight modification to the definition
of a span program that allows span programs to be used to obtain tight upper bounds on the
quantum query complexity of any decision problem, not only those over a Boolean alphabet,
which we prove in Section 7.1. This is not of huge practical importance, since another formalism,
the dual adversary bound, is equivalent to span programs, and can already obtain tight upper
bounds for problems on non-Boolean alphabets, however, as with other results in this Chapter,
the main motivation is theoretical interest.

Another theoretical problem we consider, is that a very natural construction for converting
quantum algorithms to span programs, presented in Section 7.2, only works for algorithms with
one-sided error, which is theoretically unsatisfying, since it is known that for every Boolean
decision problem, there exists a span program for that problem whose complexity matches the
two-sided error quantum query complexity. This motivates us to consider various notions of
approximate span programs in Section 7.3. In a very satisfying turn of events, we are able to
show that all of these notions are actually equivalent.

In Section 7.4, we investigate the underlying structure of witnesses in span programs, uncov-
ering a structure that facilitates a more straightforward algorithm for evaluating span programs,
and in Section 7.5, we present a general transformation that allows us to put any span program
in a specific form. These results allow us to present a simple and easy to analyze algorithm for
evaluating span programs in Section 7.6.1, as compared with previous span program evaluation
algorithms. Finally, in Section 7.6.2, we show that our definition of approximate span programs is
meaningful by giving an algorithm to evaluate an approximate span program. This opens up the
possibility for new upper bounds on quantum query complexity to be proven in our approximate
span program framework.
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1.2 Other Contributions

During my PhD, I have been involved in several research projects whose results I have opted not
to include, in the interest of coherence. Several of these relate to quantum algorithms. The first
of these is a quantum algorithm for Boolean matrix multiplication that has optimal quantum
query complexity, up to logarithmic factors, O(n

√
`), where ` is the number of 1s in the output.

This algorithm was joint work with Robin Kothari and Frédéric Magniez, and appears in Ref.
[JKM13a].

The second quantum algorithmic result is a quantum walk algorithm for subset sum, which
is joint work with Dan Bernstein, Tanja Lange, and Alex Meurer [BJLM13]. We speed up a clas-
sical heuristic algorithm [HGJ10], to obtain a quantum heuristic algorithm whose average case
complexity is exponential, but with the smallest known constant in the exponent. Since such al-
gorithms can be used to attack code-based cryptosystems, the best known achievable complexity
is important in the field of cryptography. The speedup is obtained by a straightforward modifi-
cation of Ambainis’s element distinctness algorithm, which is time-efficient when an appropriate
quantum data structure is used. Ambainis uses a data structure that is a combination of a hash
table and a skip-list. In contrast, we modify a simpler data structure, called a radix tree, to the
quantum setting. We will use this data structure for time-efficient algorithms in this thesis. Its
description can be found in Section 3.3.4.

The final algorithmic result gives matching upper and lower bounds on the parallel quantum
query complexities of element distinctness, and k-sum for all k > 1. We show that for any
p ≤ n, the p-parallel quantum query complexity of element distinctness, in which we can make p
queries at each time step, is Θ((n/p)2/3), and the p-parallel quantum query complexity of k sum
is Θ((n/p)k/(k+1)). Our upper bounds are obtained in the quantum walk search framework, and
our lower bounds are obtained by applying the adversary method. This result is joint work with
Frédéric Magniez and Ronald de Wolf, and appears in [JMd14].

In addition, I have been involved in two projects related to quantum cryptography. The first
project is joint work with Gorjan Alagic and Stephen Jordan, and proposes an obfuscation scheme
for both classical and quantum circuits based on braid group representations. This work appears
in [AJJ14].

The second quantum cryptography project is a homomorphic encryption scheme for quantum
circuits, in which the size of the evaluation circuit scales with the number of non-Clifford gates.
This work is in collaboration with Anne Broadbent, and is currently in preparation.
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Part I

Preliminaries
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Chapter 2

Mathematical Preliminaries

In this section, we give some miscellaneous mathematical preliminaries required for understanding
the results of this thesis. We begin by mentioning some standard notation that will be used
throughout this thesis for linear algebraic objects. We then give the required background on
random walks that will be used in Part II. Finally, in Section 2.3 we present a collection of tail
bounds and other facts from probability theory that will be used throughout this thesis.

2.1 Linear Algebra Notation

In this section we outline some common notation that will be used throughout this thesis.

For any vector v in an inner product space H = span{|i〉 : i ∈ [n]}, we define

‖v‖ :=

√∑
i∈[n]

|〈i|v〉|2.

For vector spaces H1 and H2, we let L(H1, H2) denote the set of linear maps from H1 to H2. For
any operator A ∈ L(H1, H2) for inner product spaces H1 and H2, we define

‖A‖ := max
|h〉∈H1:‖|h〉‖=1

‖A|h〉‖ .

Let V be a subspace of H. Then we will use ΠV to denote the orthogonal projector onto
the space V (where H should be clear from context), and RefV = 2ΠV − I, the reflection
about V . When V = span{|ψ〉} is a one-dimensional space, we will often write ΠV as Π|ψ〉 and
RefV = Ref{|ψ〉}.

For subspaces H1 and H2 of an inner product space H, we let H1 + H2 be the span of all
vectors in H1 and H2. For orthogonal spaces H1 and H2, we write this as H1 ⊕H2.

8



2.2 Random Walks

For a thorough introduction to the subject of random walks, see [LPW09]. We now outline those
properties of random walks and Markov processes that will be used in this thesis.

Random Walks on Graphs For a graph G with vertex set Ω and (possibly weighted) edges
E, a random walk is a random process that models a “walker” on some vertex (or distribution
of vertices) of the graph. At every step of the process, the walker choose a neighbour of the
current vertex at random and moves to that neighbour. Concretely, if u is the current state, and
Γ(u) = {v ∈ Ω : {u, v} ∈ E} is the neighbourhood of u, then the probability that the next state
will be v is given by 0 if v 6∈ Γ(u), and 1

deg(u) if v ∈ Γ(u), where deg(u) = |Γ(u)|. A random walk
on a graph is a kind of Markov process.

Markov Processes A Markov process is a random process that takes a distribution on some
(in this thesis, finite) state space Ω, and maps it to another distribution on Ω, such that the
distribution of the next state depends only on the current state. A Markov process on the state
space Ω can be specified by a stochastic transition matrix, P ∈ RΩ×Ω, where for any u, v ∈ Ω,
P (u, v) gives the probability of moving to the state v from the state u. A random walk is one
type of Markov process, in which P (u, v) is 1/ deg(u) if u and v are adjacent, and 0 otherwise.

A Markov process is irreducible if for any pair of states u, v ∈ Ω, there exists an integer t such
that starting from u, the probability of reaching v after t steps is non-zero — that is, every state
is reachable from every other state.

The period of a state u ∈ Ω with respect to P is the minimum positive integer k such that the
probability of being in state u after t > 0 steps starting from u is nonzero if and only if k divides
t. For example, in a random walk on a bipartite graph, every state has even period k ≥ 2. The
period of a Markov process P is the greatest common divisor of the period of every state. For
example, the period of a random walk on a bipartite graph is always an even integer k ≥ 2. A
Markov process with period 1 is called aperiodic.

A Markov process is ergodic if it is irreducible and aperiodic.

Stationary Distribution A stationary distribution of P is a probability distribution π ∈ RΩ

such that πP = π — that is, π is a left 1-eigenvector of P . This means that if the current state
is distributed according to π, the next state will also be distributed according to π.

Fact 2.2.1. An irreducible Markov process has a unique stationary distribution.

If π is a stationary distribution for P , then whenever the state is distributed according to
π, it will stay that way. For many Markov processes, it is actually the case that for any initial
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distribution, each step of the Markov process brings us closer to some unique π. This is not
always the case: consider a random walk on a bipartite graph with classes A and B. If we start
in a particular state u ∈ A, then for odd t, after t steps, all weight is on B, but for even t, after
t steps, all weight is on A. Thus, starting from u, we will not converge towards any particular
distribution. However, it turns out that this sort of periodicity is the only thing that can prevent
us from converging to a unique stationary distribution.

Fact 2.2.2 (Convergence Theorem). If P is ergodic, then there exists a distribution π ∈ RΩ such
that for any initial distribution ρ ∈ RΩ,

lim
t→∞

∑
u∈Ω

∥∥ρP t − π∥∥
tv

= 0.

An irreducible Markov process P such that for every pair of states u, v ∈ Ω, π(u)P (u, v) =
π(v)P (v, u) is said to be reversible. A random walk on an undirected graph is always reversible.

A question of central importance in the study of Markov processes is the question of just how
many steps are needed to get within ε of the stationary distribution.

Definition 2.2.3 (Mixing Time). Let P be ergodic. The mixing time, τmix, of P , is the minimum
t such that for any initial distribution ρ ∈ RΩ,∥∥ρP t − π∥∥

tv
≤ 1

3
.

Here ‖·‖tv is the total variation distance, defined ‖ρ1 − ρ2‖tv = 1
2

∑
u |ρ1(u)− ρ2(u)|.

Definition 2.2.4 (Spectral Gap). Let λ1, . . . , λn be the complete set of eigenvalues of P , with
multiplicity, and suppose 1 = λ1 ≥ |λ2| ≥ · · · ≥ |λn|. Then the spectral gap of P is defined as
δ := 1− |λ2|.
Fact 2.2.5. If P is ergodic, then the spectral gap of P is > 0.

The spectral gap is important because of its relationship with the mixing time.

Fact 2.2.6 (Relaxation Time). If P is reversible and ergodic with spectral gap δ and stationary
distribution π, with πmin := minu∈Ω π(u), then(

1

δ
− 1

)
log

3

2
≤ τmix ≤

1

δ
log

3

πmin
.

A number of other quantities measure how quickly weight moves between states under P .

Definition 2.2.7 (Hitting Time). For two states u, v ∈ Ω, the hitting time from u to v, H(u, v),
is defined as the expected number of steps to hit v when starting from u.

Definition 2.2.8 (Commute Time). For two states u, v ∈ Ω, the commute time between u and
v is defined as

C(u, v) := H(u, v) +H(v, u).
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Random Mapping Representation An alternative to representing a Markov process on a
state space Ω as a stochastic transition matrix P ∈ RΩ×Ω is called a random mapping represen-
tation. A random mapping is a function f : Ω × Λ → Ω for some finite set Λ, which we call the
coin space of P , and a random variable R on Λ. Then f represents P if for all u, v ∈ Ω,

Pr
R

[f(u,R) = v] = P (u, v). (2.1)

Intuitively, we can think of implementing the Markov process P by tossing a |Λ|-sided coin, and
then choosing the next state v as a function of the current state u and the coin outcome r,
according to f . Then whenever the coin lands on side r, we move to the state f(u, r). The
condition in (2.1) ensures that the resulting distribution is exactly P (u, ·), the row of P labelled
by the current state u.

As an example, consider a random walk on state space Z/nZ, the cyclic group of n elements,
defined as

P (u, v) =

{
1
2 if v ∈ {u− 1, u+ 1}
0 else.

A much more succinct and intuitive way to describe this random walk is that at each step, with
probability 1/2 we add 1 to the current state, and with probability 1/2 we subtract 1 from
the current state. In the much more natural random mapping representation, this looks like
f(u,R) = u + R, where R is the uniform distribution on {−1, 1}. If we do not restrict Λ to
be finite, then every Markov process given by a transition matrix P has a random mapping
representation.

Our interest in random mapping representations is due to their potential for providing a

succinct encoding of a transition from one state to another: if we consider some (u, v) ∈
−→
E (P ),

where
−→
E (P ) is the set of pairs (u, v) ∈ Ω2 such that P (u, v) > 0, we can encode this edge by

explicitly writing down both states, as (u, v), or we can encode this edge as (u, r) for some r
such that f(u, r) = v. A function f need not be, strictly speaking, a random mapping in order
to accomplish this task. For example, let Λ = Ω, and define f : Ω × Λ → Ω by f(u, v) = v and
Pr[R = v] = P (u, v). This is not a random mapping, because the distribution of R depends on
u, but it still fulfills our requirements in terms of representing a state. We define a non-strict
random mapping representation of P to be a function f : Ω × Λ → Ω and random variables
{Ru : u ∈ Ω} on Λ. The transition representation, given by the matrix P , satisfies this definition,
with Λ = Ω, f = P , and Ru distributed according to P (u, ·), the uth row of P , but there may be
more succinct non-strict random mapping representations for P .

Johnson Graphs For positive integers n and r with r < n, the Johnson graph, J(n, r), is the
graph on vertex set Ω = {S ⊆ [n] : |S| = r}, with edges E = {{S, S′} ⊂ Ω : |S ∩ S′| = r − 1}.
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The random walk on J(n, r) has the following transition matrix:

P (S, S′) =

{ 1
r(n−r) if |S ∩ S′| = r − 1

0 else.

The random walk on J(n, r) is more intuitively described by saying that at every step, if S is
the current state, we move to a new state by removing an element from S, and adding a new
element to S, to obtain S′. We can formalize this as a non-strict random mapping representation,
f : Ω× Λ→ Ω, and random variables {RS}S∈Ω. Define Λ = {(i, j) ∈ [n]2}, and for every S ∈ Ω,
let RS be the distribution on Λ with uniform weight on (i, j) such that i ∈ S and j 6∈ S. Then
we set f(S, (i, j)) = (S \ {i})∪{j}. In this way, we can succinctly represent the transitions of the
random walk on J(n, r).

We can further generalize the graph J(n, r). For positive integers m < r < n, let J(n, r,m)
denote the graph on vertices Ω = {S ⊂ [n] : |S| = r} with edges E = {{S, S′} ⊂ [n] : |S ∩ S′| =
r −m}. In this case, transitions can be done by removing m elements from the current state S,
and then adding m new elements. For any m < r < n, the unique stationary distribution of the
walk on J(n, r,m) is uniform, because J(n, r,m) is a degree-regular graph. Furthermore, we have
the following fact about the spectral gap.

Fact 2.2.9 (See for example [God10]). For all n and r in N with r < n, the spectral gap of the
random walk on J(n, r) is at least 1

r . For all n, r,m ∈ N with m < r < n, the spectral gap of the
random walk on J(n, r,m) is at least m

r .

2.3 Probability Theory and Tail Bounds

We will make use of several tail bounds in order to lower bound the weight of a distribution
around the mean. The following tail bounds apply to random variables distributed according to
a hypergeometric distribution.

Fact 2.3.1 (Hypergeometric Tail Bounds [JLR11]). Let Z be a random variable distributed ac-
cording to a hypergeometric distribution with m draws, population N , and k possible successes.
Let µ = mk

N . Then for every z ≥ 7µ:

Pr[Z ≥ z] ≤ e−z.

Furthermore, for any t ≥ 0:
Pr[Z ≥ µ+ t] ≤ e−2t2/m.

Finally, for any ε > 0:

Pr[|Z − µ| ≥ εµ] ≤ 2 exp{−((1 + ε) log(1 + ε)− ε)µ}.
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The next tail bound can be applied to any sum of negatively correlated random variables.

Fact 2.3.2 (Tail Bound for Negative Correlation). Let {Zi}i∈[n] be a set of random variables
on {0, 1}, such that for each i, Pr[Zi = 1] = p, and for each i 6= j, Pr[ZiZj = 1] ≤ p2. Let
Z =

∑n
i=1 Zi. Then for any ε > 0:

Pr[Z < np− ε] ≤ e−ε2/(2np).

We will require the use of a k-wise independent partition, defined below.

Definition 2.3.3. A random partition of [n] into k disjoint sets A1, . . . , Ak is called uniform
k-wise independent if for every t ≤ k, and distinct i1, . . . , it ∈ [n], and any j1, . . . , jt ∈ [k]

Pr[i1 ∈ Aj1 , . . . , it ∈ Ajt ] =
1

kt
.

It is often useful in randomized or quantum algorithms to randomly partition some set [n]. A
k-wise independent partition is sufficiently random for many purposes, but as we will now see, it
can have the desirable property of being easy to compute. We can construct a k-wise independent
partition using a k-wise independent function.

Definition 2.3.4. A random function, F : [n]→ [`], is said to be k-wise independent if for any
t ≤ k and distinct i1, . . . , it ∈ [n], and any (j1, . . . , jt) ∈ [`]t,

Pr[(F (i1), . . . , F (it)) = (j1, . . . , jt)] =
1

`t
.

When n = ` is a prime power, a simple example of a k-wise independent function is a uniform
random polynomial of degree k − 1 over the finite field GF(n) [WC81]. Each such polynomial
can be represented using O(k log n) bits and evaluated using O(k) additions and multiplications
over GF(n). More efficient constructions exist, but the polynomial construction suffices here. It
can be extended to any integer n by allowing a small statistical distance between the distribution
(F (i1), . . . , F (ik)) and the uniform distribution over [n]k.

For simplicity, we now assume that we have at our disposal a (perfect) k-wise independent
function F : [n]→ [n]. We can use this to construct an efficiently computable k-wise independent
partition by defining i ∈ Aj whenever F (i) = j (mod n).
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Chapter 3

Survey of Quantum Algorithmic
Frameworks

In this chapter, we survey the state of the art in frameworks that facilitate the construction
of quantum algorithms. The new work presented in Parts II and III will build on the MNRS
quantum walk search framework, presented in Section 3.3.2, and the span program framework
presented in Section 3.4. The algorithms we present in Sections 5.2, 5.3, 5.4 and 6.2 are based
on algorithmic examples presented in this chapter.

This chapter is organized as follows. In Section 3.1, we begin by describing some preliminary
material on quantum algorithmics that will be used throughout this thesis, including the phase
estimation technique in Section 3.1.1, and methods for dealing with errors in quantum subroutines
in Section 3.1.2. Next, in Section 3.2, we describe the first quantum algorithmic framework, the
amplitude amplification framework.

In Section 3.3, we describe the MNRS quantum walk search framework, upon which the work
of Part II of this thesis is based. After describing this framework, we present several applications
of the framework. The first is an algorithm for k-distinctness, due to Ambainis [Amb04], presented
in Section 3.3.3. Our improved k-distinctness algorithm in Section 6.2 will use a variation of this
algorithm as a subroutine. In Section 3.3.4, we will present a quantum data structure, first used
in [BJLM13], called a quantum radix tree, that will allow us to make Ambainis’s k-distinctness
algorithm time-efficient (Ambainis did this using a different quantum data structure). The data
structure presented in Section 3.3.4 will also be used in our improved k-distinctness algorithm
in Section 6.2. The final quantum walk application, in Section 3.3.5, is an algorithm for triangle
finding. Subsequent improvements to triangle finding can be seen as extensions to this algorithm.

In Section 3.4, we will briefly describe the span program framework, on which the work of Part
III is based. In Section 3.5, we will discuss the learning graph framework, which facilitates the
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construction of a restricted class of span programs. A new upper bound on the quantum query
complexity of triangle finding using the learning graph framework was the inspiration for the
nested-checking quantum walk framework. We briefly describe the ideas underlying this learning
graph upper bound, as we will apply those same ideas to reproduce this upper bound in Section
5.2.

3.1 Quantum Algorithms Preliminaries

We assume the reader is familiar with the basics of quantum computation. For an introduction,
see [KLM06] or [NC00]. In this thesis, we will consider algorithms for search problems, and
decision problems, which can be defined as follows.

Definition 3.1.1. A search problem, f , on a finite set Ω, is a collection of sets {Mx ⊂ Ω}x∈D
where D is some finite domain.

We say that an algorithm A solves f with bounded error if, for any x ∈ D, if Mx 6= ∅,
Pr[A(x) ∈Mx] ≥ 2

3 , and if Mx = ∅, Pr[A(x) = ∅] ≥ 2
3 .

We say that an algorithm A solves f with one-sided error if, for any x ∈ D, if Mx 6= ∅,
Pr[A(x) ∈Mx] ≥ 2

3 , and if Mx = ∅, Pr[A(x) = ∅] = 1.

Definition 3.1.2. A decision problem, f : D → {0, 1}, is a function on finite domain D.

We say that an algorithm A solves f with bounded error if, for any x ∈ D, Pr[A(x) = f(x)] ≥
2
3 .

We say that an algorithm A solves f with one-sided error if, for any x ∈ D, if f(x) = 1,
Pr[A(x) = 1] ≥ 2

3 , and if f(x) = 0, Pr[A(x) = 0] = 1.

In the remainder of this section, we will present some details necessary to understand the
work presented in this thesis. In Section 3.1.1, we will describe an important quantum algorith-
mic primitive called phase estimation, and in Section 3.1.2, we will describe how we deal with
subroutines that have some error.

3.1.1 Phase Estimation

An important quantum algorithmic primitive is phase estimation, developed by [Kit95] and fur-
ther explored in Ref. [CEMM98], which is a procedure for estimating the phase of a unitary on
a particular state using controlled calls to an implementation of the unitary. For some inuition,
fix a unitary U , and a state |ψ0〉. Suppose U |ψ0〉 = |ψ0〉, and for all other eigenstates of U , |ψ〉,
we have U |ψ〉 = −|ψ〉, so U is simply Ref{|ψ0〉}, the reflection about |ψ0〉. Intuitively, since U
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has such different behaviour on |ψ0〉 as on any orthogonal state, U can allow us to “detect” |ψ0〉,
distinguishing it from all orthogonal states. The following circuit accomplishes this “detection”
of |ψ0〉, where H is a Hadamard gate:

|0〉

|ψ〉

H

U

H

This circuit acts as

|0〉|ψ〉 H7→ 1√
2

(|0〉+ |1〉) |ψ〉 U7→ 1√
2

(|0〉|ψ〉+ |1〉U |ψ〉) .

If the input state |ψ〉 is equal to |ψ0〉, then U has no effect, and the final Hadamard acts as
(|0〉|ψ0〉+|1〉|ψ0〉)/

√
2 7→ |0〉|ψ0〉. On the other hand, if |ψ〉 is orthogonal to |ψ0〉, then U adds a−1-

phase, and so the final Hadamard acts as (|0〉|ψ〉− |1〉|ψ〉)/
√

2 7→ |1〉|ψ〉. For a more general state
|φ〉 = α|ψ0〉+β|ψ⊥0 〉, with |ψ⊥0 〉 orthogonal to |ψ0〉, the circuit acts as |0〉|φ〉 7→ α|0〉|ψ0〉+β|1〉|ψ⊥0 〉.
Essentially, the circuit “marks” the part of the state that is orthogonal to |ψ0〉.

More generally, suppose U is not necessarily a reflection, but rather has many eigenvalues
eiθ for θ ∈ (−π, π]. If |ψ0〉 is the only 1-eigenstate of U , then U still distinguishes |ψ0〉 from
orthogonal vectors, but possibly not as well, since if U |ψθ〉 = eiθ|ψθ〉 for some θ very close to 0,
then the action of U on |ψθ〉 is not that different from its action on |ψ0〉. However, for any positive
integer k, we have Uk|ψθ〉 = eikθ|ψθ〉. If kθ is close to π, then the unitary Uk does distinguish
|ψ0〉 from |ψθ〉, so we can use Uk in the above circuit to distinguish these states. The smaller θ,
the larger we need to set k so that Uk almost reflects |ψθ〉. We can turn this intuition into an
algorithm that distinguishes states based on their phase with respect to some unitary U . The
closer together the phases, the more times we will need to use U to accurately distinguish the
states. The following Theorem describes such an algorithm.

Theorem 3.1.3 (Phase Estimation [CEMM98]). Let U be a quantum algorithm that implements
some 2m-dimensional unitary U . Then for any s ≥ 1, there exists a quantum algorithm PhaseU1/2s
such that

1. PhaseU1/2s acts on m+ s qubits;

2. PhaseU1/2s consists of O(s2) elementary gates, and 2s+1 controlled calls to U;

3. if U |ψ〉 = |ψ〉 then PhaseU1/2s(|ψ〉|0
s〉) = |ψ〉|0s〉;

4. and if U |ψ〉 = eiθ|ψ〉, for θ ∈ (−π, 0) ∪ (0, π], then PhaseU1/2s(|ψ〉|0
s〉) = |ψ〉|ω〉 for some

state |ω〉 such that |〈0s|ω〉| = sin(2s−1θ)

2s sin θ
2

≤ π
|θ|2s .
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We say that PhaseU1/2s estimates the phase of U with precision 1
2s .

Item 3 says that if |ψ〉 is a 1-eigenstate of U , then the state of the auxiliary register of the
output is |0s〉, and Item 4 says that if |ψ〉 is an eigenstate of U with a phase that is sufficiently
far from 0, the state of the auxiliary register of the output will be far from |0s〉, allowing us to
distinguish these two cases. What we mean by “sufficiently far from 0” is determined by the
precision, 1/2s. By Item 4, if U |ψ〉 = eiθ|ψ〉 for θ such that |θ| ≥ π

2
1
2s , then |〈0s|ω〉| ≤ 1

2 .

This algorithmic primitive will be an important subroutine in virtually all of the algorithms
presented in this thesis, as it plays a central role in the algorithms underlying the MNRS quantum
walk framework, and the span program framework.

3.1.2 Tolerating Errors

We will sometimes want to implement some specific unitary map U , but will instead be able to
implement a quantum algorithm that only approximates the functionality described by U . The
following definition quantifies this approximation.

Definition 3.1.4 (Approximating a unitary). Let U be a unitary on a finite-dimensional inner
product space H, and let Ũ be another operator on H. For any subspace H ′ ⊆ H, we say that Ũ
approximates U with error ε on H ′ if for all |ψ〉 ∈ H ′ such that ‖|ψ〉‖2 = 1,∥∥∥Ũ |ψ〉 − U |ψ〉∥∥∥ ≤ ε.

We may have a quantum algorithm in which we approximate many unitaries, in which case,
we will still want the error to remain small. The following fact is simply an elementary statement
about the operator norm of the difference of two unitaries, and gives an upper bound on the total
error of an algorithm consisting of multiple approximate unitaries.

Fact 3.1.5. Let U1, . . . , Ut be unitaries acting on a finite-dimensional inner product space H,
and let U = UtUt−1 . . . U1. For each j ∈ [t], let Ũj be an operator on H such that for all |ψ〉 ∈ H
with norm 1,

∥∥∥Ũj |ψ〉 − Uj |ψ〉∥∥∥ ≤ ε. Then if Ũ := ŨtŨt−1 . . . Ũ1, for all unit vectors |ψ〉 ∈ H,∥∥∥Ũ |ψ〉 − U |ψ〉∥∥∥ ≤ tε.
In order to keep the overall error low when using t unitaries with error, we will need the error

of each individual unitary to be less than 1
t . Given a unitary U with error ε, we can often reduce

this error at the cost of multiple uses of U . The following Theorem gives one type of unitary for
which this is possible.
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Theorem 3.1.6 (Error reduction). Let H = span{|u〉 : u ∈ Ω} for some finite set Ω be an
inner product space, and let M ⊂ Ω. Let A be a quantum algorithm on H ⊗ C2, and p < 1 some
constant, such that for all u ∈ M , A|u〉|0〉 = |u〉|ω〉 with |〈0|ω〉|2 ≤ p, and for all u ∈ Ω \M ,
|〈0|ω〉|2 ≥ 1− p. Then for any ε < 1

2 , there exists an algorithm Aε such that:

� Aε uses O
(
log 1

ε

)
applications of A;

� for all u ∈M , there exists |ω〉 such that Aε|u〉|0〉 = |u〉|ω〉 with 〈0|ω〉 ≤ ε and;

� for all u 6∈M , there exists |ω〉 such that Aε|u〉|0〉 = |u〉|ω〉 with 〈0|ω〉 ≥ 1− ε.

The error reduction procedure uses the standard classical technique of computing A|u〉|0〉 for
many different auxiliary registers |0〉, and taking the majority. One application of this error
reduction technique is to reduce the error in the phase estimation algorithm of Theorem 3.1.3:

Theorem 3.1.7 (Phase Estimation with Small Error). Let U be a quantum algorithm that im-
plements some 2m-dimensional unitary U . Then for any s ≥ 1 and ε ∈ (0, 1/3), there exists a
quantum algorithm PhaseU1/2s,ε such that

� PhaseU1/2s,ε acts on m+ s+O(1/ε) qubits;

� PhaseU1/2s,ε consists of O(s2 log 1
ε ) elementary gates and O(2s log 1

ε ) controlled calls to U;

� if U |ψ〉 = |ψ〉 then PhaseU1/2s,ε(|ψ〉|0〉)− |ψ〉|0〉;

� and if U |ψ〉 = eiθ|ψ〉, for θ ∈ (−π, 0) ∪ (0, π], then PhaseU1/2s,ε(|ψ〉|0〉) = |ψ〉|ω〉 for some

state ω such that |〈0|ω〉|2 ≤ ε.

We say that PhaseU1/2s,ε estimates the phase of U with precision 1
2s and error ε.

It is easy to see that if instead of a computation, we have a reflection with some error, we
can use phase estimation on the reflection and apply the same majority trick, which gives us the
following.

Theorem 3.1.8 (Error reduction for reflections). Let H = span{|u〉 : u ∈ Ω} for some finite set
Ω be an inner product space, and let V be a subspace of H. Let A be a quantum algorithm on
H such that A approximates RefV with error p for some constant p < 1/2. Then for any ε > 0,
there exists an algorithm Aε such that:

� Aε uses O
(
log 1

ε

)
applications of A;

� Aε approximates RefV with error ε.
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3.2 Amplitude Amplification

We will now present the first quantum search framework, amplitude amplification. This was
developed in [BBHT98] and [BHMT02] as a generalization of Grover’s famous quantum search
algorithm [Gro96].

For intuition, consider a very simple classical algorithm that searches for a particular “marked”
object by sampling from some distribution of objects, checking if the sampled object is one of
the marked objects, and repeating until a marked object is found. More concretely, let M be
some set of marked objects, and suppose we have the ability to sample from some distribution
π on Ω, where Ω is a finite set containing M . Then each time we sample according to π, we
have probability pM =

∑
u∈M π(u) of drawing a marked object. If we are promised that pM ≥ ε

whenever M 6= ∅, then with high probability, we expect to find a marked object after at most 1
ε

samples. We can formalize this algorithm as follows:

GuessAndCheck(x)

1. Repeat 1
ε times:

(a) Sample u from Ω according to π

(b) Check if u ∈Mx

If the cost of the procedure to sample according to π is S, and the cost of the procedure
to check if u ∈ Mx is C, then GuessAndCheck has cost 1

ε (S + C). Here cost can mean time
complexity, query complexity, or various other means of counting operations.

The quantum analogue of this very general type of classical algorithm is a framework called
Amplitude Amplification [BHMT02], based on Grover search [Gro96]. This framework allows
one to construct a similarly general type of quantum algorithm, whose cost is smaller than the
corresponding classical algorithm. This framework is very simple to apply, and has been used to
obtain quantum algorithms with improved time or query complexity for a number of problems
including collision finding [BHT98], and Boolean matrix multiplication [JKM13a]. The framework
is stated in the following theorem.

Theorem 3.2.1 (Amplitude Amplification [BHMT02, Gro96]). For some set Ω, let {Mx}x∈D
be a search problem. Let |πx〉 ∈ HΩ := span{|u〉 : u ∈ Ω} be any state. Let S be the cost of
constructing the state |πx〉; C the cost of checking, for any u, if u ∈Mx; and ε > 0 a lower bound
on
∑

u∈Mx
|〈u|πx〉|2 for all x such that Mx 6= ∅. Then there is a quantum algorithm that, on input

x, finds an element in Mx or reports that none exists, with bounded error, in cost

O

(
1√
ε

(S + C)

)
.
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We can summarize the framework described in Theorem 3.2.1 in the following table. We have
included a data function d that acts on Ω. The idea is that we will always store some information
d(u) with the state u, which may help us to implement the procedure C that checks if a state is
marked.

Amplitude Amplification

Parameters: Ω Finite set of objects
(for each x ∈ D) Mx ⊂ Ω Set of marked objects

dx : Ω→ Sd Function from Ω to some finite set Sd
|πx〉 ∈ span{|u, dx(u)〉 : u ∈ Ω} Initial state

Properties: ε ∈ R+ Lower bound on pMx
:=
∑

u∈Mx
|〈πx|u, dx(u)〉|2 for all x s.t. pMx 6= 0

Subroutines: Setup, S(x), with cost S |0〉 7→ |πx〉

Checking, C(x), with cost C |u, dx(u)〉 7→
{
−|u, dx(u)〉 if u ∈Mx

|u, dx(u)〉 else

Cost:
1√
ε

(S + C)

In order to apply the amplitude amplification framework, we must choose parameters Ω,
M ⊂ Ω, d a function on Ω, and |π〉 some superposition over states |u, d(u)〉. We choose Ω and M
based on the search problem we want to solve, and d(u) may contain some information that will
help us check if u ∈ M . Next we implement setup and checking subroutines with the specified
functionalities. This leads directly to a quantum algorithm, with the specified cost, that uses the
setup and checking procedures as subroutines.

The quantum algorithm of Theorem 3.2.1, which implements the amplitude amplification
framework, begins with the state |π〉, and alternatively applies Ref{|π〉} and −RefHM , where
HM = span{|u, d(u)〉 : u ∈M}, on the order of 1√

ε
times. We measure the state, to obtain some

u, and check if u ∈M . If so, we return u, and if not, we return ∅.

We can implement −RefHM using C in cost C, and Ref{|π〉} by S · Ref{|0〉} · S�, in cost 2S,

so this algorithm certainly has cost O
(

1√
ε

(S + C)
)

.

To see that this algorithm works, first note that if M = ∅, then clearly applying G :=
−Ref{|π〉}RefHM to |π〉 has no effect, but if M 6= ∅, then one application of G moves |π〉 closer

to ΠHM |π〉, its projection onto the marked states. More precisely, if |ψM 〉 :=
ΠHM |π〉
‖ΠHM |π〉‖

and

|ψM 〉 :=
(I−ΠHM )|π〉
‖(I−ΠHM )|π〉‖ , and a ∈ [0, π) is such that sin a = ‖ΠHM |π〉‖, so sin2 a = pM , we can

write:
|π〉 = sin a|ψM 〉+ cos a|ψM 〉.
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Define |ψθ〉 := sin θ|ψM 〉 + cos θ|ψM 〉. It is a simple exercise to show that for any θ, G|ψθ〉 =
|ψθ+2a〉. Thus, we can see that Gt|π〉 = Gt|ψa〉 = |ψ(2t+1)a〉. To have constant probability of

measuring a marked state, we need to choose t such that (2t+ 1)a is constant, so t = Θ( 1
a). For

all a ∈ (−π, π), we have a ≤ π
2 sin a = π

2

√
pM , thus, choosing t = Θ

(
1√
pM

)
is sufficient. If ε is a

lower bound on pMx for all x such that Mx 6= ∅, then even if ε is not known, we can still get an

algorithm that uses O
(

1√
ε

)
applications of G, for a total cost of O

(
1√
ε

(S + C)
)

, using standard

techniques, in which we begin by estimating ε as 1
2 , and repeatedly halve our estimate and run

the algorithm, until a marked item is found.

3.2.1 Amplitude Amplification with Reflection Errors

It is possible to implement amplitude amplification even when one of the two reflections cannot
be implemented perfectly with no additional asymptotic cost. In particular, we will make use of
the following theorem when discussing the quantum walk search framework in Chapter 4.

Theorem 3.2.2 ([MNRS11], Lemma 1). Let HM be a subspace of some finite-dimensional inner
product space H, and let |π〉 ∈ H. Let RM be a procedure that implements RefHM exactly, with
cost R1. For all Θ ∈ (0, 1), let R̃Θ be a circuit that can be implemented in cost R2 log 1

Θ such that:

� R̃Θ (|π〉|0s〉) = |π〉|0s〉, and

� for all |ψ〉 orthogonal to |π〉,
∥∥(R̃Θ + I)|ψ〉

∥∥ ≤ Θ.

Let pM = ‖ΠHM |π〉‖
2. Then there exists a quantum algorithm A with cost O

(
1√
pM

(R1 + R2)
)

such that ‖ΠHMA|π, 0s〉‖ ≥ 2
3 .

Note that the condition ‖ΠHMA|π, 0s〉‖ ≥ 2
3 is exactly what we need to solve a search problem

with bounded error.

3.3 Quantum Walk Search

Discrete time quantum walks can be traced back to the work of Meyers on cellular automata,
[Mey96a, Mey96b], leading up to the work of Watrous [Wat01]. The potential for applications to
search problems was uncovered by Shenvi, Kempe, and Whaley, [SKW03], who showed how to
simulate Grover’s search algorithm using a discrete time quantum walk.

In 2003, Ambainis was able to extend the ideas behind amplitude amplification to get a quan-
tum walk algorithm for the problem of element distinctness with complexity better than the best
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possible classical algorithm [Amb04]. Later, Szegedy generalized the ideas behind this algorithm
to get a general framework for speeding up similar algorithms based on different reversible Markov
processes [Sze04]. This framework was later improved by Ref. [MNRS11] to what we now call the
MNRS quantum walk search framework. In this section we will first describe Szegedy’s frame-
work, and then the improved MNRS quantum walk search framework. Finally, we show several
applications of the framework. In Section 3.3.3, we present Ambainis’s element distinctness algo-
rithm and its generalization to k-distinctness in the MNRS quantum walk search framework, and
analyze its quantum query complexity. In Section 3.3.4, we discuss how careful use of quantum
data structures lets us upper bound the time complexity of the k-distinctness algorithm. Finally,
in Section 3.3.5, we present a quantum walk algorithm for triangle finding, due to [MSS07].

3.3.1 Szegedy’s Quantum Walk Search Framework

Consider a classical algorithm based on a Markov process P on Ω, which begins in a state drawn
from the stationary distribution of P , and repeatedly samples a new state according to P , checking
each time if a state from some marked set Mx ⊆ Ω, has been reached. We can write this algorithm
as follows.

RandomWalkSearchI(x)

1. Sample u ∈ Ω according to π

2. Check if u ∈Mx

3. Repeat T times:

(a) Sample v according to P (u, ·) and set u to v

(b) Check if u ∈Mx, and if so, return u

4. Return “no marked items”

We would like this algorithm to find a marked state, if there is one, with high probability, so
we need to make T sufficiently large so that we can be fairly confident that we will find a marked
state after T steps beginning from the stationary distribution. This is satisfied by setting T at
least the hitting time of M , or the expected number of steps before a random walk reaches a state
in M , beginning from the stationary distribution. It turns out that if δ is the spectral gap of P ,
then the quantity 1

δπ(M) , where π(M) =
∑

u∈M π(u), is an upper bound on the hitting time of

M (see, for example, [Sze04]). Thus, if we know a lower bound ε on π(M), we can set T to be a
constant multiple of 1

δε and expect to find a marked state within this time, with high probability.
Thus, if S is the cost of sampling a state u ∈ Ω, C is the cost of checking if a state is marked, and
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U is the cost of sampling from P (u, ·) for any u ∈ Ω, then we can find a marked state with high
probability in asymptotic cost S + 1

εδ (U + C).

Generalizing the ideas from Ambainis’s element distinctness algorithm, Szegedy was able to
show a quantum analogue of this very generic search algorithm. He showed that for any symmetric
Markov process, P , if S is the cost to construct the superposition |π〉 :=

∑
u∈Ω

√
π(u)|u〉, C is

the cost to checking if a state is marked, and U is the cost to construct, for any u ∈ Ω, the
superposition |P (u, ·)〉 :=

∑
v∈Ω |v〉, then we can find a marked state with high probability in

asymptotic cost S + 1√
εδ

(U + C).

3.3.2 The MNRS Quantum Walk Search Framework

In [MNRS11], Magniez, Nayak, Roland and Santha generalized and improved the ideas of Szegedy,
extending his results to a broader class of Markov processes, and obtaining an often faster generic
algorithm that can be applied to a variety of search problems. To illustrate their algorithm,
consider the following very generic classical algorithm for solving a search problem {Mx}x∈D,
where dx : Ω → Sd is some arbitrary data function, which may be helpful in determining if
u ∈Mx; P is a reversible ergodic Markov process with stationary distribution π; and τmix is the
mixing time of P .

RandomWalkSearchII(x)

1. Sample u ∈ Ω according to π, and compute dx(u)

2. Check if u ∈Mx using dx(u)

3. Repeat 1
ε times:

(a) Repeat τmix times:

i. Sample v according to P (u, ·), compute dx(v) and set u to v

(b) Check if u ∈Mx using dx(u), and if so, return u

4. Return “no marked items”

Recall that τmix, the mixing time of a random walk, is the minimum number of steps after
which a walker is close to the stationary distribution of P , no matter the starting state. Thus, step
3a has the effect of sampling a new state approximately according to π. So RandomWalkSearchII

is essentially acting as the algorithm GuessAndCheck from Section 3.2. It repeatedly samples a
state u, and checks if u is marked. Then if ε ≤ π(Mx), S is the cost of sampling according to π,
C is the cost of deciding if a state u is marked from u, dx(u), and U is the cost of sampling from

23



P (u, ·), and δ is the spectral gap of P , the algorithm finds a marked state with high probability
after S + 1

ε (τmixU + C) = O
(
S + 1

ε

(
1
δU + C

))
operations, since τmix = O(1

δ ).

The MNRS framework gives a quantum analogue of this very generic classical algorithm.
They show the following.

Theorem 3.3.1 (MNRS Framework [MNRS11]). Let P be a reversible, ergodic Markov process
with stationary distribution |π〉 and spectral gap δ. Let d be any function on Ω. Let S be the cost
of constructing the state |π〉 =

∑
u∈Ω

√
π(u)|u, d(u)〉, U the cost of constructing, for any u ∈ Ω,

the state |P (u, ·)〉 =
∑

v∈Ω

√
P (u, v)|v, d(v)〉 using |d(u)〉, and C the cost of deciding if a state u

is in Mx using d(u). Let ε be a lower bound on π(Mx) for all x such that Mx 6= ∅. Then the cost

of solving the search problem {Mx}x with bounded error is S + 1√
ε

(
1√
δ

U + C
)

.

The resulting framework is summarized in the table below. We note that allowing all param-
eters, even the set Ω, to depend on the input makes sense when we are solving a search problem
that is not identical to {Mx}x. For example, in the next section, we will present an algorithm
for k-distinctness in which the elements of Mx will be sets that contain a k-collision, whereas the
problem we are actually trying to solve is finding a k-collision itself.

MNRS Quantum Walk Search Framework

Parameters: Ωx Finite set of objects
(for all x ∈ D) Mx ⊂ Ωx Set of marked objects

dx : Ωx → Sd Function from Ωx to some finite set Sd
Px A reversible, ergodic Markov Process on Ωx

Properties: πx : Ω→ R The stationary distribution of Px
ε ∈ R A lower bound on πx(Mx) whenever Mx 6= ∅
δ ∈ R The spectral gap of Px

Subroutines: Setup, S, with cost S |0〉 7→ |π〉 :=
∑
u∈Ω

√
π(u)|u, d(u)〉

Checking, C, with cost C |u, d(u)〉 7→
{
−|u, d(u)〉 if u ∈M
|u, d(u)〉 else

Update, U, with cost U |u, d(u)〉|0〉 7→ |u, d(u)〉
∑
v∈Ω

√
Pu,v|v, d(v)〉

Cost: S +
1√
ε

(
1√
δ

U + C

)
In order to apply this framework, we must specify parameters (Ω,M, d, P ), determine the

associated properties, and implement and analyze subroutines with the required functionalities.
This immediately gives an algorithm for solving the associated search problem with bounded
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error, whose cost can be easily analyzed using the cost formula. For the remainder of this
section, we will present example applications of the MNRS quantum walk search framework. The
applications presented in Chapters 5 and 6 are based on these examples.

3.3.3 Application to k-Distinctness

In this section, we present a quantum walk algorithm that solves 2-distinctness, also known as
element distinctness. This algorithm is due to Ambainis [Amb04], and predates either the MNRS
or Szegedy quantum walk search framework. However, the Szegedy framework is a generalization
of this algorithm, so it is easily presented in the framework. Element distinctness is the following
problem.

Element Distinctness, 2-Distn

Input: x ∈ [q]n

Output: i, j ∈ [n] such that i 6= j and xi = xj or ∅ if no such pair of indices exists

This problem arises naturally as a subproblem of many classical applications, but its query
complexity is also important to the general understanding of quantum query complexity. Grover’s
search algorithm can solve any search problem on a space of size n in

√
n without exploiting any

structure of the problem, but this is only useful when the problem has no structure to exploit. If
we try to solve element distinctness using Grover’s algorithm, then since we would be searching
the space of pairs (i, j) ∈ [n]2, Grover’s search would cost

√
n2 = n. However, since element

distinctness does exhibit some structure, this is not much better than the best classical algorithm,
which simply queries everything into a database and sorts it in n queries and n log n time steps.

It was therefore natural to ask if there is a different quantum algorithm that can exploit some
of the structure and does get a speedup over the best classical algorithm. This problem was a
natural next step after Grover search, having some amount of structure, but almost as little as
possible. The first quantum algorithm for this problem used only amplitude amplification, but
in a more clever way, to get an upper bound of Õ

(
n3/4

)
quantum time complexity by searching

for a set of r indices that contains a collision, for some very large r related to n [BDH+05].
Later Ambainis went beyond amplitude amplification, presenting a quantum walk algorithm that
proved the following theorem.

Theorem 3.3.2 (Ambainis [Amb04]). The quantum query complexity of 2-Distn is at most
O(n2/3), and the quantum time complexity of 2-Distn is at most Õ(n2/3).

Ambainis’s upper bound on the quantum query complexity of element distinctness is known
to be tight [AS04, Amb05, Kut05].

One natural generalization of element distinctness is the following family of problems.
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k-Distinctness, k-Distn

Input: x ∈ [q]n

Output: distinct i1, . . . , ik ∈ [n] such that xi1 = · · · = xik or ∅ if no such k-tuple of indices exists

Ambainis also showed upper bounds for k-distinctness for k > 2.

Theorem 3.3.3 (Ambainis [Amb04]). For any k ≥ 2, the quantum query complexity of k-Distn
is at most O(nk/(k+1)), and the quantum time complexity of k-Distn is at most Õ(nk/(k+1)).

These upper bounds are not tight. The best known lower bound is Ω(n2/3), and follows from
the element distinctness lower bound. The query complexity of this problem has subsequently
been shown to be o(n3/4) for any k, but this was the best known upper bound on the time
complexity prior to improvements we will present in Section 6.2.

In the remainder of this section, we will construct quantum walk algorithms that prove The-
orems 3.3.2 and 3.3.3 in the MNRS quantum walk search framework. To begin, we will present a
very straightforward construction from which query complexity upper bounds will follow immedi-
ately. We will subsequently discuss the time complexity of this construction, which is much more
technical, and involves careful use of quantum data structures. In all discussions of quantum time
complexity, we will mean time complexity in a quantum RAM model, in which we can access a
quantum memory of size n in cost O(log n).

Quantum Walk for k-Distinctness

Parameters Let Ω =
(

[n]
r

)
be the state space of the walk, for some r < n to be specified later.

Each set S ∈ Ω will correspond to a set of indices into the input. We will define the marked set
as

M = {S : ∃ distinct i1, . . . , ik ∈ S such that xi1 = · · · = xik}.

To this end, we define the data
d(S) := {(i, xi) : i ∈ S}.

The walk will be on a Johnson graph J(n, r), with vertex set Ω, and edges between two vertices
S and S′ whenever |S ∩ S′| = r − 1. This walk is governed by the reversible Markov process

P (S, S′) =

{ 1
n(r−r) if |S ∩ S′| = r − 1

0 else.

Properties The stationary distribution of P is π(S) = 1

(nr)
for all S ∈ Ω, the uniform distri-

bution on Ω. The proportion of marked states, π(M), increases as the number of k-collisions in
the input increases, with π(M) = 0 if and only if there are no k-collisions in the input. Thus, if
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π(M) > 0, then π(M) is lowest when there is exactly one k-collision in the input, in which case,
all indices of this k-collision must be in S for it to be marked. We can thus compute a lower
bound on π(M) whenever it is nonzero as:

π(M) =
|M |
|Ω|
≥
(
n−k
r−k
)(

n
r

) =
r(r − 1) . . . (r − k + 1)

n(n− 1) . . . (n− k + 1)
=: ε.

Finally, the spectral gap of a random walk on J(n, r) is δ ≥ 1
r , by Fact 2.2.9.

Setup Subroutine We need to set up the state |π〉 =
∑

S∈Ω
1√
(nr)
|S, d(S)〉, where we can

encode S as a list of sorted indices, and d(S) as a list of sorted elements of the form (i, xi). Since
we only care about query complexity, the encoding is not important. Constructing this state
costs S = O(r) queries, since we must query every i ∈ S to compute d(S).

Checking Subroutine If a state is marked, we can detect this with no additional queries; we
need only scan d(S) for k-collisions. Thus, we can implement the checking subroutine with C = 0
queries.

Update Subroutine To implement the update subroutine,

|S, d(S)〉|0〉 7→ |S, d(S)〉
∑

S′∈Ω:|S∩S′|=r−1

1√
r(n− r)

|S′, d(S′)〉,

we need to construct d(S′) from d(S), which we can do by querying the unique index in S′ \ S.
All other query values of indices in S′ are known, since they are stored in d(S). Thus U = O(1).

Now we can compute the query complexity of the resulting quantum algorithm using Theorem
3.3.1:

S +
1√
ε

(
1√
δ

U + C

)
= O

(
r +

√
nk

rk
(√
r + 0

))

= O

(
r +

nk/2

r(k−1)/2

)
.

This is optimized by using r = nk/(k+1), in which case, we get an algorithm with query complexity
O(nk/(k+1)), as claimed in Theorems 3.3.2 and 3.3.3. To complete the proof, we need to analyze
the time complexity of the subroutines, however, we would not immediately get a matching time
upper bound. Consider for example the checking subroutine, which simply inspects d(S) to see if
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there are k colliding indices. If we store the members (i, xi) of the set d(S) as a list sorted in xi,
then members of a k-collision would appear together, but we would still have to read through a
list of r = nk/(k+1) entries, bring the checking cost up from 0 to r, and completely destroying the
quantum speedup. In the next section, we describe a data structure in which we can encode the
sets S and d(S) so that the time complexity of this algorithm will match the query complexity
up to logarithmic factors.

3.3.4 Quantum Radix Trees for Time-Efficient k-Distinctness

In order to make the k-distinctness algorithm presented in the previous section time-efficient, we
need a data structure such that we can perform each of the following operations in worst case
time logarithmic in n:

� inserting a new (i, xi) into the data structure;

� removing some (i, xi) from the data structure, for a specified i;

� constructing a superposition over all i such that (i, xi) is in the data structure;

� determining if a particular (i, xi) is in the data structure; and

� determining if there is a collision (i, xi), (j, xj) such that i 6= j and xi = xj , in the data
structure.

Furthermore, in order for quantum interference to occur correctly in the quantum walk, we require
that for any S, the encoding of S, d(S) by the data structure is unique. For example, it may not
depend on the order in which elements are added to S or previously removed elements.

Such a data structure was defined by Ambainis in Ref. [Amb04] in order to prove Theorem
3.3.2, based on a combination of a hash table and a skip-list. We will use a simpler data structure,
called a radix tree, first used in the quantum walk setting in Ref. [BJLM13]. The details of the
data structure are not as important as the fact that it satisfies the above properties, however, we
describe it here for completeness, as we will also make use of this data structure in Section 6.2.2.

Radix Trees A radix tree is binary rooted tree that stores key-value pairs in which the keys
are `-bit strings. Each leaf is labelled by a key, and each edge is labelled by a substring, such that
the concatenation of all substrings along the path from the root to the leaf yields the key stored
at the leaf. A radix tree storing a set of strings S is the unique such tree in which the labels of
the children of any non-leaf node start with different bits. An example of a radix tree appears in
Figure 3.1.
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Figure 3.1: The unique radix tree storing {0000, 0010, 1001, 1011, 1111}.

LetR(S) denote the radix tree storing a set S. We will want to implement reversible operations
of the form:

Insert : |i〉|R(S)〉 7→ |i〉|R(S ∪ {i})〉;

Delete : |i〉|R(S)〉 7→ |i〉|R(S \ {i})〉;

and Lookup : |i〉|R(S)〉|0〉 7→ |i〉|R(S)〉|vi〉,

where vi is the value stored with key i if i ∈ S, or 0 if i 6∈ S. The standard radix tree operations
can easily be made into reversible operations of this form. We roughly describe each operation
on a radix tree R:

Lookup To lookup a string z, we simply start at the root and traverse the tree downwards, each
time choosing an edge such that the concatenation of labels along the path taken is a prefix
of z. We either find a leaf labelled by z, or we end up at a node with no valid outgoing
edge, in which case z is not in R.

Insert(z) Attempt to lookup z in R until we hit a node with no outgoing edge still consistent
with z. If it’s a leaf, it must already store z (or be a substring of z, which is not permitted
when all keys are the same length). Otherwise, there must be an outgoing edge labelled
by a substring that shares a non-empty prefix with the remaining substring of z. Split
this edge into two edges with a new node in the middle: eold 7→ e1νnewe2. The first edge,
e1 is labelled by the common prefix of z and the old label. The second edge is labelled
by the remainder of the old label. The new node’s other outgoing edge is labelled by the
unmatched part of z.

Delete Run the insertion procedure in reverse.

All of these operations can be done in cost `:

Lemma 3.3.4. Let R be a radix tree storing r strings of length ` = log n. We can lookup a
string in R in cost at most O(log n), we can insert a new string into R, or delete a string in R,
reversibly, in cost O(log n).
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Quantum Radix Trees A tree is encoded as a set of nodes, {(ν, p)}, in memory, where ν
stores the node, and p is some vector of pointers to the memory locations of other nodes, in this
case, a parent and two children. In general these nodes can be stored anywhere in memory, but
since we want a unique encoding, we cannot allow the decision of where in the memory array we
place each node to depend on things like which elements we have added so far, etc. Thus, we
will consider the memory array as an array of cells, each large enough to store a single node, and
whenever we insert a new element in our data structure, we will choose from all available cells in
superposition.

Definition 3.3.5 (Quantum Radix Tree). Fix positive integers m and `. Let S ⊂ {0, 1}`×Σ be a
set of key-value pairs of size at most m−1

2 . Let N be the set of valid tree nodes encoding elements
of {0, 1}` × Σ:

N := {0, 1}` × Σ× ({0, 1}≤` × [m])3

so a node has the form (z, v, L1, p1, L2, p2, L3, p3), with p1, p2, p3 pointers to the parent, left
child, and right child, in a memory of m cells, and L1, L2, L3 the labels of the corresponding
edges. Define

HN := span{|ν〉 : ν ∈ N ∪ {0}}, and H := H⊗mN .

A quantum radix tree storing S in H is a uniform superposition over all m-tuples τ ∈ (N ∪ {0})m
such that the non-zero cells of τ encode S as a valid radix tree, with the root node in the first
entry.

Augmented Quantum Radix Trees To use this data structure for k-distinctness, we will
need to be able to efficiently check if a tree storing items of the form (i, xi) contains a k-collision,
and later we will even want to count the number of k-collisions being stored. In addition, we may
even like to exclude k-collisions that fail to satisfy some extra predicate ρ. For example, in Section
6.2, we will partition [n] into A1, . . . , Ak, and only count k-collisions that are in A1×· · ·×Ak. In
that case, we will only consider a k-tuple a true k collision if xi1 = · · · = xik and ρ(i1, . . . , ik) = 1.
We augment the data structure to make these operations possible.

In order to be able to count the number of k-collisions being stored, we will augment each
node with an extra cell that stores the number of k-collisions in the subtree below it. We will
also store, at each node, a counter recording the size of the subtree below it. This will allow us to
construct a uniform superposition of all elements stored in the tree. To allow a tree to store two
items with the same key, but different value, we will allow a leaf, which necessarily has a unique
key, to store a sorted list of up to k values. Figure 3.2 shows an augmented quantum radix tree.

Definition 3.3.6 (k-Augmented Quantum Radix Tree). Fix positive integers m and `. Let
S ⊂ {0, 1}` × Σ be a set of key-value pairs of size at most m−1

2 . Let N be the set of valid tree
nodes encoding elements of {0, 1}` × Σ, with up to k distinct values per key:

N := {0, 1}` × (Σ ∪ {0})k × {0, . . . ,m} × ({0, 1}≤` × [m])3.
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A node has the form (z, v1, . . . , vk, c, L1, p1, L2, p2, L3, p3), where c is a count of the number of
leaves in the node’s subtree that store k non-zero values; p1, p2, p3 pointers to the parent, left
child, and right child, in a memory of m cells; and L1, L2, L3 are the labels of the corresponding
edges.

A root node has L1 = ∅, root and internal nodes have v1 = · · · = vk = 0, and leaves have
p2 = p3 = L2 = L3 = 0.

Define
HN := span{|ν〉 : ν ∈ N ∪ {0}}, and H := H⊗mN .

An augmented quantum radix tree of size m, storing S is a uniform superposition over all (τ, µ(τ))
such that: τ ∈ (N ∪ {0})m and the non-zero cells of τ encode S as a valid radix tree, with the
root node in the first entry; and µ(τ) is a bit map encoding the empty memory cells of τ .

Lemma 3.3.7. Let |R〉 be a k-augmented quantum radix tree of size m < n, for some constant
k, storing r < n strings of length ` = log n. Then we can lookup an element in R, insert a
new element into R, or delete an element from R in time complexity O(log n). Furthermore,
we can check the number of k-collisions in R in time complexity O(1) and construct a uniform
superposition over elements of R or k-collisions in R in time complexity O(log n).

Proof. The quantum data structure is just a superposition of classical data structures, so we just
need to define classical operations that keep the superposition uniform over all valid orderings
of memory. The only other difference is that we need to maintain correct count registers at each
node when we insert and delete. Lookup does not change the data structure, so this is clear.
For checking the number of k-collisions, it’s easy to see that we can simply read the count of the
root node in cost O (1), which also does not change the data structure, so this is fine as well.

Constructing a uniform superposition of elements in R can be done by traversing the tree from
the root downwards. At any node, we can read the counter of each child to find out how many
elements are stored in each sub-tree. If the left-child’s counter has value n0, and the right child’s

counter has value n1, then we create the superposition
√

n0
n0+n1

|0〉 +
√

n1
n0+n1

|1〉 in an auxiliary

register, and use the value in that register to choose the path, so that we take each path with
the correct amplitude. Creating a uniform superposition over k-collisions is similar.

Suppose we want to insert a new element (z, v). If there is already a leaf labelled by z, we simply
insert v into its list of values, in the appropriate sorted position, in cost O(log n), since k is
constant, O(log n) is the cost to lookup z (if there are already k values we simply fail to insert
(z, v)). If the list previously had k− 1 members, and now after adding v has k, then we traverse
back up the tree to the root, incrementing the counter of each node we pass, in cost O(log n).

Suppose there is no leaf labelled by z. Then we proceed as in the standard radix tree insertion,
with the following changes:
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6,1

2,0

4,1

3,1

1111, i60000,i1 0010,i2 1001,i3, i4 1011, i5

1
00

00 10 01 11

0

111

Figure 3.2: An augmented radix tree storing key-value pairs. The key 1001 has two associated
values, and represents a 2-collision. Each node has counters recording the number of values stored
below, and the number of 2-collisions stored below.

� When we create a new internal node, its counter is set to the counter of its child (it has
just one child at first, we add a second one).

� When we create a new leaf node, its counter is set to 0.

� After we have created any new node, we construct a uniform superposition of all addresses
of empty memory cells, and then put the new node in the cell specified by this register
and update the bitmap keeping track of free memory cells to indicate that this cell is now
occupied.

We create at most O(1) new nodes, so the cost of inserting is still O(log n). Since we always
choose from the available memory positions in uniform superposition, we always maintain a
uniform superposition over possible memory configurations.

Finally, in order to delete an index, we run the insertion procedure in reverse.

Time-Efficient k-Distinctness Using a quantum radix tree to store S, with indices being
both key and value, and a k-augmented quantum radix tree to store d(S), with i being the value
and xi the key of (i, xi), Ambainis’s algorithm can be made time-efficient. The setup now requires
r insert operations to S and r insert operations to d(S), costing S = O(r(log n + log q)). The
update now requires an insert and a delete in each of S and d(S), to obtain S′ and d(S′) for S′

such that |S ∩ S′| = r − 1, costing U = O(log n + log q). Finally, the checking procedure can be
done in cost C = O(1). By Theorem 3.3.1, this gives complexity:

S +
1√
ε

(
1√
δ

U + C

)
= O

((
r +

√
nk

rk
(√
r + 1

)
(log n+ log q

))

= O

((
r +

nk/2

r(k−1)/2

)
(log q + log n)

)
.
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This is optimized by using r = nk/(k+1), in which case, we get an algorithm with time complexity
O(nk/(k+1)(log n+ log q)).

3.3.5 Application to Triangle Finding

Another important problem in quantum query complex is triangle finding, in which we want to
find a triangle in an input graph, or decide the graph is triangle-free.

Triangle Finding, Trianglen

Input: The adjacency matrix of an undirected graph G ∈ {0, 1}n×n
Output: i, j, k ∈ [n] such that |{i, j, k}| = 3 and Gi,j = Gj,k = Gi,k = 1, or ∅ if no such triple of
vertices exists

Although upper bounds on the query complexity of triangle finding do not yield practical
applications, it is of interest in the general study of quantum query complexity as being a problem
with slightly more structure than element distinctness. It was therefore a natural candidate for
a quantum walk algorithm. Using the quantum walk search framework, Magniez, Santha and
Szegedy obtained the following upper bound on the quantum query complexity of triangle finding.

Theorem 3.3.8 ([MSS07]). The quantum query complexity of Trianglen is at most Õ(n1.3).

This beats the classical query complexity of triangle finding of Θ(n2). The true quantum
query complexity of triangle finding is still unknown; although we will present improved upper
bounds in subsequent chapters, none matches the best known lower bound of Ω(n).

In the remainder of this section we will prove Theorem 3.3.8 by constructing a quantum
algorithm in the MNRS quantum walk search framework.

Parameters Let Ω =
(

[n]
r

)
, as in the algorithm for k-Dist. This time, a set S ∈ Ω will

correspond to a subset of the vertices of the input graph. We will define the marked set as

M := {S ∈ Ω : ∃i, j ∈ S such that Gi,j = 1 and ∃k ∈ [n] such that Gi,k = Gj,k = 1}.

In other words, a set S is marked if it contains two vertices that are part of a triangle. With each
set S, we will store

d(S) := {(i, j, Gi,j) : i < j and i, j ∈ S}.

That is, we will store the full subgraph induced by S, denoted GS . Once again, P will be defined
by the random walk on the Johnson graph J(n, r).
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Properties As before, π is the uniform distribution over Ω, and δ = Ω(1/r). The marked set
is non-empty if and only if the input graph G contains a triangle. In that case, let {i, j, k} be a
triangle in G. Then the probability that S is in M is at least the probability that i, j ∈M , so

π(M) =
|M |
|Ω|
≥
(
n−2
r−2

)(
n
r

) =
r(r − 1)

n(n− 1)
.

Thus ε := r(r−1)
n(n−1) is a lower bound on π(M) for all non-empty M .

Setup Subroutine To construct the state |π〉 =
∑

S∈Ω:|S|=r
(
n
r

)−1/2|S〉|d(S)〉, we must query

Gi,j for every pair of i, j ∈ S. This costs S =
(
r
2

)
queries.

Checking Subroutine In order to check if a set S contains two vertices i and j that are part
of a triangle, we must search for a third vertex k, such that i, j, k is a triangle in the input graph.
To check if a state S contains two vertices that form a triangle with some particular k, we will
use a quantum algorithm, which we will call GraphCollision, after the problem this algorithm
was originally designed to solve. The following theorem describes this algorithm.

Theorem 3.3.9 (Graph Collision Algorithm). Let G be a graph with vertex set [n]. Let K be a
known subgraph of G with r vertices, and k ∈ [n]. Then there exists an algorithm, GraphCollisionK,k,
that decides if there exists an edge {i, j} in K such that {i, j, k} is a triangle in G, with bounded
error, using O

(
r2/3

)
quantum queries.

Proof. We will accomplish this task using a quantum walk almost identical to the one for
element distinctness presented in Section 3.3.3. We will have P a walk on J(r,m) for m < r,
Ω = {T ⊂ V (K) : |T | = m}, as in the element distinctness walk, but the marked set will be
defined:

M := {T ∈ Ω : ∃i, j ∈ T : Ki,j = Gi,k = Gj,k = 1},

and the data will be:
d(T ) := {(i, Gi,k) : i ∈ T}.

To construct d(T ) initially costs S = m, and to update d(T ) after replacing one index costs U = 2.
To check if d(T ) is marked costs 0 queries, since for all edges {i, j} of K such that i, j ∈ R, Gi,k
and Gj,k are part of d(T ), and Ki,j is known. Finally, just as in the element distinctness walk,

we have δ = 1
m , and ε ≥ m2

r2
, so we have query complexity:

S +
1√
ε

(
1√
δ

U + C

)
= m+

r

m

(√
m+ 0

)
= m+

r√
m
.
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Plugging in the optimal value of m = r2/3 gives query complexity O
(
r2/3

)
.

We can check if S contains two endpoints of a triangle by searching for k ∈ [n] such that
GraphCollisionGS ,k returns true, using

√
n calls to GraphCollisionGS ,k, each of which costs

O
(
r2/3

)
queries, since GS is known. However, since GraphCollision is only correct with bounded

error, and we will call it a number of times polynomial in n, we must reduce the error to inverse
polynomial to keep the overall error small, using Theorem 3.1.6, at the expense of a multiplicative
factor of O (log n). The total cost of the checking subroutine becomes Õ

(√
nr2/3

)
.

Update Subroutine The update step requires us to implement the map

|S, d(S)〉 7→ |S, d(S)〉
∑
S′∈Ω

√
P (S, S′)|S′, d(S′)〉

for any S ∈ Ω. Since P (S, S′) is only nonzero when |S ∩ S′| = r − 1, there is exactly one vertex
in each of S′ \ S = {i′} and S \ S′ = {i}. To compute d(S′) from d(S), we must query Gi′,j for
all j ∈ S, and unquery Gi,j for all j ∈ S. This costs U = O(r) queries to G.

Final Analysis Putting all of these costs together, and applying Theorem 3.3.1, we have the
following upper bound on the quantum query complexity of triangle finding:

S +
1√
ε

(
1√
δ

U + C

)
= r2 +

n

r

(√
rr + Õ(

√
nr2/3)

)
= Õ

(
r2 + n

√
r +

n3/2

r1/3

)
.

Plugging in the optimal value of r = n3/5 gives an upper bound of Õ(n1.3), as claimed in Theo-
rem 3.3.8.

3.4 Span Programs

The span program framework does not easily yield upper bounds in quantum time complexity,
however in the area of quantum query complexity, it is of incredible theoretical importance, since
Reichardt proved that there is an optimal span program for every decision problem over a Boolean
alphabet [Rei11, Rei09], and used this result to show that the quantum adversary lower bound,
a method of lower bounding the quantum query complexity, can always give an optimal lower
bound. The span program framework is outlined in the following table.
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Span Program Framework

Parameters: {Hj,b}j∈[n],b∈{0,1}, Htrue, Hfalse Finite-dimensional inner product spaces

V A vector space
τ ∈ V The target vector
A ∈ L(

⊕
j∈[n],b∈{0,1}Hj,b ⊕Htrue ⊕Hfalse, V ) A linear operator

Properties: H(x) =
⊕

j∈[n]Hj,xj ⊕Htrue The space of x

wsize+(x) = min|w〉∈H(x):A|w〉=τ ‖|w〉‖2 Positive witness size of x

wsize−(x) = minω∈L(V,C):ω(τ)=1,ωAΠH(x)=0 ‖ωA‖2 Negative witness size of x

W+ = maxx:wsize+(x)6=∞wsize+(x) Positive complexity

W− = maxx:wsize−(x)6=∞wsize−(x) Negative complexity

Output:

{
1 if ∃|w〉 ∈ H(x) s.t. A|w〉 = τ
0 else

Query Complexity:
√
W+W−

We will go into greater detail on this framework in Chapter 7. In brief, a span program
is said to “accept” an input x if the pre-image of τ under A intersects H(x), and it is said to
“reject” x otherwise. If a span program accepts x, then there is some vector |w〉 ∈ H(x) such
that A|w〉 = τ , and such a vector is called a positive witness. Otherwise, there must be some
linear function ω : V → C such that ωτ = 1, and ωAΠH(x) = 0.

The algorithm that implements the span program framework involves two reflections, which
we describe in more detail in Section 7.6. One of these reflections depends only on the span
program, and not the input, so it can be implemented with query complexity 0, however, since
no implementation for this reflection is actually given by the framework, the framework does not
yield time upper bounds. In some cases, the reflections that result from the span program have
enough structure that they can be implemented time-efficiently, for example [BR12], however, in
other cases, analyzing these reflections is not feasible. One example is an upper bound on the
quantum query complexity of k-distinctness proven by Belovs [Bel12a]. He improves Ambainis’s
query upper bound of O

(
nk/(k+1)

)
, outlined in Section 3.3.3, to o(n3/4) for any k, using span

programs. However, there is no known way to implement the reflections in the resulting algorithm,
so the best known time complexity was still Ambainis’s Õ

(
nk/(k+1)

)
prior to the improvements

presented in Section 6.2.

3.5 The Learning Graph Framework

Span programs are sufficiently general that it is very difficult to construct an optimal span
program. With this motivation, in 2011, Belovs developed a restricted class of span programs
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[Bel12b], which can be elegantly described by objects called learning graphs.

A learning graph is a weighted graph on vertex set 2[n], and edge set E = {{S, S′} : S ⊂
S′, |S′ \S| = 1}. In some sense, a learning graph algorithm can be viewed as a quantum analogue
of the most general kind of random walk query algorithm, in which at every step, we randomly
query a new index or unquery an already queried value, according to some specified distribution,
until we find a 1-certificate for the function being decided.

We want to be sure that we find a 1-certificate for x, if one exists, so we must choose t
sufficiently large. Let M = {S ⊆ [n] : S contains a certificate for x}. The expected time before
we reach a state in M , if M is non-empty, is captured by the hitting time from ∅ (our natural
starting state) to M , H(∅,M). Thus, for any choice of edge weights, by making t = Θ(H(∅,M))
steps on the graph (which depends on the choice of weights), we get a classical algorithm that
decides f with one-sided bounded error in Θ(H(∅,M)) queries.

We now define the learning graph framework. In order to get an algorithm from a learning
graph, we construct a span program (or a dual adversary solution), which we can then “evaluate”,
in the manner outlined in Section 7.6. The result of this conversion is that the final algorithm is
generally not easy to analyze in any model other than the query model, as is the case with span
programs.

Learning Graph Framework

Parameters: f : [q]n → {0, 1} A decision problem

(for all x ∈ [q]n) Mx ⊆ 2[n] A set of 1-certificates for x w.r.t. f

wx :
−→
E → R≥0 A weight function on the edge set,−→

E := {(S, S′) : S ⊂ S′ ⊂ [n], |S′ \ S| = 1}

Properties: W+ := maxx∈F1 minp
∑

e∈
−→
E

p(e)2

wx(e) The positive complexity, where p ranges over
all unit flows from ∅ to Mx

W− := maxx∈F0

∑
e∈
−→
E
wx(e) The negative complexity

Output: f(x)

Query Complexity:
√
W+W−

The query complexity upper bound yielded by a learning graph may appear strange, but it
can be understood to be quite natural by Theorem 3.5.1, which comes from the beautiful theory
of electrical networks, and can be found, for example, in [DS84]. Before stating the theorem,
recall that for vertices s and t, C(s, t) denotes the commute time from s to t; the expected time
to hit t, when starting from s, and return to t.
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Theorem 3.5.1. Let G = (V,E) be a weighted graph with weight function w : E → R≥0. Then

C(s, t) = min
p

∑
e∈
−→
E

p(e)2

w(e)

∑
e∈
−→
E

w(e),

where p ranges over all unit flows with source s and sink t.

Thus, the learning graph framework gives us an upper bound that is the squareroot of the
commute time from the starting state to the marked set.

3.5.1 Application to Triangle Finding

Belovs demonstrated the power of the learning graph framework by improving upon the best
known upper bound on the query complexity of triangle finding, proving the following theorem.

Theorem 3.5.2 ([Bel12b]). The quantum query complexity of triangle finding is at most O(n35/27).

His construction had a similar combinatorial structure to the quantum walk algorithm for
triangle finding presented in Section 3.3.5, in the sense that his learning graph had paths from
∅ to sets representing sets S of r vertices. However, he had an additional technique, of edge
sparsification. He did not query every pair of vertices in a set S, but rather some subset of m of
them.

To illustrate this idea, rather than presenting Belovs’ construction, let us try to apply it to
the quantum walk algorithm of [MSS07], presented in Section 3.3.5. Recall that this quantum
walk search algorithm walks on sets S ⊂ [n] of size r, representing subsets of the vertices of G,
and keeps data d(S) = {(i, j, Gi,j) : i, j ∈ S}, which encodes the subgraph of G induced by S.
The idea of edge sparsification is to use some sparsification parameter s ∈ (0, 1], and only query
sr2 of the edges.

Note that this reduces the setup cost to S = sr2, from r2, and the update cost to U = sr,
from r, (under some assumptions about average costs) since when we replace a vertex in S, it
is incident to sr edges on average that must be requeried. However, a state is only marked if
it contains a triangle edge (we cannot detect a state that has two triangle vertices but does not
encode the corresponding edge), and this probability has decreased by a factor of s, so we now

have ε = s r
2

n2 compared with r2

n2 previously. Since we still have δ ≥ 1/r and C =
√
nr2/3, we can

compute the total cost as:

S +
1√
ε

(
1√
δ

U + C

)
= sr2 +

n

r
√
s

√
rsr +

n

r
√
s

√
nr2/3 = sr2 + n

√
rs+

n3/2

r1/3
√
s
.

This is optimized by setting s = 1 and r = n3/5, yielding no improvement.
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It would appear then that the learning graph framework is somehow more powerful than the
quantum walk search framework, however, in Chapter 4 we give a very small modification of the
framework that allows us to gain a speedup using the edge sparsification technique in a quantum
walk algorithm, which we present in Section 5.2.

A subsequent improvement to the triangle finding upper bound also used learning graphs:

Theorem 3.5.3 ([LMS13]). The quantum query complexity of triangle finding is at most O(n9/7).

Their learning graph construction does not use the edge sparsification idea, but rather, looks
for an edge between two vertex sets of unbalanced sizes. We also reproduce this upper bound as
a quantum walk, in Section 5.3.

At the time that this thesis was submitted, this was the best known upper bound for triangle
finding, however, Le Gall has since improved this to Õ(n5/4) using the MNRS quantum walk
search framework [Le 14].
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Part II

Nested Quantum Walks
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Chapter 4

Extension of the Quantum Walk
Search Framework

The main task in designing a quantum walk algorithm in the MNRS quantum walk search frame-
work is the implementation and analysis of the setup, update and checking operations. The
functionality that must be implemented for each task depends on the chosen parameters of the
walk, W = (Ω,M, P, d). The prescribed functionality may be trivial to implement, as in the
checking step of the algorithm presented in Section 3.3.3 for element distinctness, in which we
need only examine the data of a state to determine if it is marked. On the other hand, the
prescribed functionalities of these operations may require nontrivial quantum algorithms to im-
plement, as in the checking step for the quantum walk algorithm for triangle finding, presented
in Section 3.3.5, in which a quantum walk search algorithm based on graph collision is used to
implement the checking step.

In this chapter, we will give a slightly more general version of the quantum walk search
framework, that will allow us to implement several useful algorithmic techniques, including nested
checking, in which we efficiently use a quantum walk search algorithm as the subroutine in the
checking step of another, described in Section 5.1; and nested updates, in which we efficiently use
a quantum walk search algorithm to implement the update step of another, described in Section
6.1. The nested update technique relies on a special case of a technique we can implement in
our new framework — updates with garbage. Although efficient nested updates are the only
application of updates with garbage we have discovered thus far, it looks like it could be a useful
technique in general.

This chapter, Chapter 5, and Chapter 6 are based on two publications. In the first publication,
Ref. [JKM13a], we show how one small modification of the MNRS quantum walk search framework
— allowing the data function to encode a quantum state — allows us to implement nested
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checking. This might not even be called a change to the framework, strictly speaking, as it was
not precluded by the MNRS quantum walk search framework, however, it was not explicitly
allowed, and it had never been done before. As applications of this technique, we are able to
give quantum walk algorithms that reproduce all known learning graph upper bounds up to
logarithmic factors. In particular, we present quantum walk algorithms matching the best known
upper bounds for triangle finding and subgraph finding, up to logarithmic factors. The nested
checking technique and its applications are presented in Chapter 5.

In the second publication, Ref. [CJKM13], we make a further modification to the quantum
walk search framework. We now modify the data function by allowing it to depend, not only on
a state u ∈ Ω, but on an edge (u, v). More specifically, for a Markov process P on Ω, define

−→
E (P ) := {(u, v) ∈ Ω× Ω : P (u, v) 6= 0} .

Whereas before we had a data function d : Ω → Sd for some finite set Sd, we now have a data

function d :
−→
E ∪(Ω×0)→ Hd for some finite-dimensional inner product space Hd. Since we often

call the register encoding v the coin register, since v tells us the next step of the walk, we refer
to data that depends on not only u, but also v, as coin-dependent data. This modification allows
us to implement nested updates, and in [CJKM13], we also show how to apply this technique to
get new upper bounds on the quantum time complexity of k-Distn for all k ≥ 3. We present the
nested updates technique and its applications in Chapter 6.

In this chapter, we present a new version of the quantum walk framework that includes both
the modification from [JKM13a], and the modifications from [CJKM13].

4.1 The New Framework

In this section, we will present our new quantum walk search framework, and present and analyze
the algorithm that implements it. Our analysis follows that of the MNRS quantum walk search
framework [MNRS11], which in turn is based on [Sze04]. The only parts of our analysis that
differ from [MNRS11] are those pertaining to the data, since our data may be a quantum state
that depends on the coin register.

A quantum walk search specification specifies a problem, as well as an algorithm for solving
this problem, given access to certain subroutines. Given a family {Wx = (Ωx,Mx, P

x, dx)}x∈D,
for some finite domain D, we consider the problem as having input x and the output should be
some element of the marked set Mx, or “Mx = ∅” if there are no marked states. The subroutines
that need to be implemented in order to solve this problem will all take x as input, and the
functionality they must implement will depend on the parameters ofWx. We will often not make
the dependence on x explicit, and instead write W = (Ω,M, P, d).
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We will first discuss the parameters that specify the quantum walk search algorithm, W =
(Ω,M, P, d), and the inner product space on which the algorithm acts. Next, we will define the
functionalities of subroutines that our final algorithm will make use of. We will then construct
the full algorithm from these. The complexity of this algorithm will depend on the complexity
of the various subroutines it calls. Because these subroutines dominate the complexity of the
algorithm, we are fairly free in choosing whatever notion of complexity we are interested in, be it
quantum time complexity, quantum query complexity, or some other measure — we must simply
analyze the subroutines with respect to this measure of complexity. However, in the interest of
rigor, we will only make claims for quantum time complexity, and quantum query complexity.
We will refer to the cost of a subroutine, by which we mean, the reader’s choice of quantum time
complexity, or quantum query complexity. Our statements will hold for many other measures of
complexity of quantum algorithms, and should be simple to verify, for any particular measure.

The algorithm is very similar to amplitude amplification. We first construct an initial state, |π〉
by some setup procedure S. In amplitude amplification, we would then alternate two reflections:
a checking reflection, C, and a reflection about |π〉, which is implemented by reversing the setup
to get |π〉 7→ |0〉, reflecting about |0〉, and then performing the setup, |0〉 7→ |π〉. We will also have
a checking reflection, however, we will simulate a reflection about |π〉 in a different manner. We
will show how to implement a walk operator U(W), using an assumed procedure U. This walk
operator will have |π〉 as a unique 1-eigenvector, and its other eigenvalues, eiθ, will have θ not
too small, so we will be able to distinguish |π〉 from orthogonal vectors in order to reflect about
|π〉 by applying phase estimation on U(W).

4.1.1 The Parameters and Workspace

Parameters A quantum walk search problem, W, is specified by:

� a state space, Ω, which is a finite set of objects;

� a marked set, M ⊆ Ω, which specifies which objects we are searching for;

� a reversible, ergodic Markov process, P , acting on Ω; and

� a data function d :
−→
E (P )∪ (Ω×{0})→ Hd for some finite-dimensional inner product space

Hd.

Each of these objects may depend on some input x ranging over a finite domain D, so the full spec-
ification for a quantum walk search problem is given by some family {Wx = (Ωx,Mx, Px, dx)}x∈D.
However, it will often be convenient to omit the explicit x subscripts, and simply keep in mind
that these objects depend on the input.
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We require that P be ergodic so that it has a unique stationary distribution, π. We further
require that the discriminant of P have non-zero spectral gap, δ (see Section 2.2). Reversibility
is a sufficient condition for this to hold, although it is not a necessary condition.

For any quantum walk search specification {Wx}x, the quantum walk search framework spec-
ifies a number of subroutines that must be implemented. Given implementations for these, the
quantum walk search framework gives an explicit algorithm for finding a marked element or
determining that Mx = ∅, built from the implemented subroutines.

Workspace The algorithm will work on a space HE ⊗Hd, where HE := span{|u, v〉 : (u, v) ∈
−→
E ∪ (Ω× {0})}. It will be convenient to write HE = HΩ ⊗HC , where HΩ := span{|u〉 : u ∈ Ω}
encodes the current state, and HC encodes the next state, or coin space (see Section 2.2). We can
always set HC = HΩ, to encode an edge |u, v〉 as |u〉|v〉, but this might not always be necessary,
or desirable. To encode an edge |u, v〉 as |u〉Ω|r〉C , it need not be the case that r fully specify v,
it need only be the case that (u, r) specifies (u, v) — in other words, r should specify v given u,
so there must be some fixed function f such that f(u, r) = v. For example, if there is some fixed
random mapping representation of P , f : Ω × Λ → Ω, for a finite set Λ, such that f(u, r) = v,
then r specifies v, given u. In order to avoid explicitly introducing a random mapping or similar
function (in the interest of remaining consistent with historical notation) we will write the coin
register as |v p u〉C when we want to be explicit that the coin register may not fully specify the
state, v.

It will be useful to consider a part of the data, d1, that is coin-independent ; it depends only
on a state, and not on an edge. Explicitly, suppose we can decompose the data function as, for

any (u, v) ∈
−→
E :

|d(u, v)〉 = |d1(u)〉|d2(u, v)〉

for some functions d1 : Ω→ Hd1 and d2 :
−→
E ∪ (Ω×{0})→ Hd2 . We can always do this in a trivial

way by taking d2 = d and d1 = 1, but it may be possible, and desirable, to do this in a nontrivial
way. We can think of the data d1 as being the “checking data”, that will facilitate deciding if a
state is marked, and d2 may have some other purpose. The data d2 introduces some extra costs,
and the data d1 facilitates the checking procedure, so both of these factors will determine the
optimal decomposition of d.

We will often permute the order of the tensor product spaces for convenience of notation.
When there is ambiguity, we will specify the spaces with subscripts; for examples: |u〉Ω|v p u〉C .

We will work in a subspace of HΩ ⊗HC ⊗Hd1 ⊗Hd2 , defined:

H :=
⊕
u∈Ω

Hu, where Hu := span {|u〉|d1(u)〉 : u ∈ Ω} ⊗HC ⊗Hd2 .
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4.1.2 The Subroutines

The Setup The initial state in the algorithm will be

|π〉 :=
∑
u∈Ω

√
π(u)

∑
v∈Ω

√
P (u, v)|u, v〉|d(u, v)〉.

However, a slightly simpler state

|π〉0 :=
∑
u∈Ω

√
π(u)|u〉|d1(u)〉|0〉C |d2(u, 0)〉,

can be mapped to |π〉 by one application of the update operation U, defined below. Thus, we can
consider the setup operation as merely constructing |π〉0. Thus, our algorithm requires access to
a setup subroutine, that acts as:

S : |0〉 7→ |π〉0.

The setup cost of the walk specified by W, S = S(W), is the cost of the subroutine S.

The Checking We assume access to a subroutine that reflects about the marked states. The
coin-independent part of the data may be used to facilitate this checking. Specifically, the sub-
routine acts on span{|u, d1(u)〉 : u ∈ Ω} as:

C : |u, d1(u)〉 7→
{
−|u, d1(u)〉 if u ∈M
|u, d1(u)〉 if u ∈ Ω \M.

The checking cost of the walk specified by W, C = C(W), is the cost of the subroutine C.

The Update: Local Diffusion The update operation, U, is analogous to taking a step of
the random walk P . Classically, we can think of doing this by drawing the next state from the
distribution P (u, ·), where u is the current state. The quantum analogue of this distribution is
the coin state of u, defined as:

|P (u, ·)〉 :=
∑
v∈Ω

√
P (u, v)|v p u〉.

If we want to include some coin-dependent data, d2, we write:

|P (u, ·)d2〉 :=
∑
v∈Ω

√
P (u, v)|v p u〉|d2(u, v)〉.

For every u ∈ Ω, let Uu be any operator on the space HC ⊗Hd2 that acts as

Uu : |0〉C |d2(u, 0)〉d2 7→ |P (u, ·)d2〉 :=
∑
v∈Ω

√
P (u, v)|v p u〉|d2(u, v)〉.
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We assume access to a subroutine U that acts on H as:∑
u∈Ω

|u, d1(u)〉〈u, d1(u)| ⊗ Uu.

In other words, U implements the mapping

|u, 0〉|d1(u)〉|d2(u, 0)〉 7→
∑
v∈Ω

√
P (u, v)|u, v〉|d1(u)〉|d2(u, v)〉

in a way that is controlled on |u, d1(u)〉; it does not alter this part of the state. This requirement
ensures that we remain in H.

The Update: Data Swap We will also assume access to a subroutine SWAP that acts on the

space span
{
|u, v〉|d(u, v)〉 : (u, v) ∈

−→
E
}
⊆ H as:

SWAP : |u, v〉|d(u, v)〉 = |u〉Ω|v p u〉C |d(u, v)〉d 7→ |v〉Ω|u p v〉C |d(v, u)〉d = |v, u〉|d(v, u)〉.

The update consists of the two subroutines U and SWAP. The update cost of the walk specified
by W, U = U(W), is the maximum of the cost of U and the cost of SWAP.

We note that it will usually be trivial to map: |u, v〉 7→ |v, u〉 for an edge (u, v) under a
reasonable encoding of the edges. The two tasks required to implement the data swap that are
non-trivial are the maps

|d2(u, v)〉 7→ |d2(v, u)〉 and |d1(u)〉 7→ |d1(v)〉

for an edge (u, v).

The (Ω, 0)-Phase Flip The final subroutine that we will need access to is specific to our new
framework, and is the only substantial difference between the implementation of a quantum walk
search algorithm specified in our framework versus one specified in the MNRS framework. We
require access to a subroutine Φ that acts on HΩ ⊗Hd2 as

|u〉|d2(u, 0)〉 7→ −|u〉|d2(u, 0)〉

and for any |ψ〉 ∈ Hd2 such that 〈ψ|d2(u, 0)〉 = 0,

|u〉|ψ〉 7→ |u〉|ψ〉.

This operation essentially checks that the data is correct. We only need to check this for d2, since
d1 is always correct, as long as we stay in the space H.

The phase flip cost of the walk specified by W, Φ = Φ(W), is the cost of the subroutine Φ.
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4.1.3 The Quantum Walk Algorithm

The Walk Operator We are now ready to define and implement the walk operator. Define
two subspaces of H:

A := span

{
|ψu〉 :=

∑
v∈Ω

√
P (u, v)|u, v〉|d(u, v)〉 : u ∈ Ω

}
,

and B := span

{
|φv〉 :=

∑
u∈Ω

√
P (v, u)|u, v〉|d(u, v)〉 : v ∈ Ω

}
.

Note that |ψu〉 = |u〉|P (u, ·)d〉 = |u〉|d1(u)〉|P (u, ·)d2〉. To see that these are indeed subspaces of
H, we note that

|u, v〉|d(u, v)〉 = |u〉|v p u〉|d1(u)〉|d2(u, v)〉.

We can now define the walk operator :

U(W) := RefB · RefA.

We will show that U(W) can be used to approximate Ref{|π〉}, but first, we consider its imple-
mentation.

Theorem 4.1.1. Let R be an operator on H that acts as the (Ω, 0)-phase flip, Φ, on HΩ ⊗Hd2,
controlled on the state of HC being 0. Then URU� acts as RefA on H.

Proof. First we note

(URU�)|ψu〉 = URU�(|u〉|d1(u)〉|P (u, ·)d2〉) = UR(|u〉|d1(u)〉U�u|P (u, ·)d2〉)
= UR(|u〉|d1(u)〉|0〉C |d2(u, 0)〉) = U(−|u〉|d1(u)〉|0〉C |d2(u, 0)〉)
= −|ψu〉.

Thus, for any |ψ〉 ∈ A, (URU�)|ψ〉 = −|ψ〉.

Suppose on the other hand that |ψ⊥〉 =
∑

u∈Ω |u, d1(u)〉|αu〉, and |ψ⊥〉 ∈ A⊥, so 〈ψ⊥|ψu〉 = 0 for
all u ∈ Ω. We have

0 = 〈ψ⊥|ψu〉 = 〈ψ⊥|(|u〉|d1(u)〉|P (u, ·)d2〉) = 〈αu|P (u, ·)d2〉

= 〈αu|UuU �
u|P (u, ·)d2〉 = 〈αu|Uu(|0〉C |d2(u, 0)〉),
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and so R|u〉U �
u|αu〉 = |u〉U �

u|αu〉. Thus, we have:

URU�|ψ⊥〉 =
∑
u∈Ω

URU�(|u〉|d1(u)〉|αu〉) =
∑
u∈Ω

UR(|u〉|d1(u)〉U �
u|αu〉)

=
∑
u∈Ω

U(|u〉|d1(u)〉U �
u|αu〉) =

∑
u∈Ω

|u〉|d1(u)〉|αu〉 = |ψ⊥〉.

So for all |ψ⊥〉 ∈ H ∩A⊥, URU�|ψ⊥〉 = |ψ⊥〉, completing the proof.

We can now implement the walk operator U(W), by noticing that A and B are related by
the swap operation:

SWAP|ψu〉 = SWAP
∑
v∈Ω

√
P (u, v)|u, v〉|d(u, v)〉

=
∑
v∈Ω

√
P (u, v)|v, u〉|d(v, u)〉 = |φu〉.

We can therefore implement RefB as SWAP · RefA · SWAP, so we can implement U(W) by the
procedure:

WalkW := U · R · U� · SWAP · U · R · U� · SWAP.

The only small issue is that U · R · U� is only equal to RefA on the subspace H. This is sufficient
for our purposes, because we will begin with initial state |π〉 ∈ H, and no operation we do will
take us out of H. Thus, we have the following corollary about the cost of implementing U(W).

Corollary 4.1.2. We can implement U(W) on H in cost O (U(W) + Φ(W)).

Proof. We need only observe that the operator R, can be implemented by a conditional applica-
tion of Φ. Thus, the cost of R is Θ(Φ). The result follows.

Using U(W) to Approximate Ref{|π〉} We now describe how to use the walk operator,
U(W), to approximate the reflection about |π〉. Recall that

|π〉 =
∑
u∈Ω

√
π(u)

∑
v∈Ω

√
P (u, v)|u, v〉|d(u, v)〉.

Since |π〉 ∈ A∩B, it is a 1-eigenvector of U(W). If we could show that any vector orthogonal to
|π〉 is a −1-eigenvector of U(W), or in other words, that U(W) only has ±1 eigenvalues, this would
show that U(W) implements Ref{|π〉} exactly, however, this is generally far from true. Generally,
U(W) has eigenvalues eiθ for many different values θ, some of them close to 0. Thus, it will take
multiple applications of U(W) to distinguish |π〉 from its orthogonal vectors. Intuitively, the
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closer to 0 the next smallest phase, the more difficult it will be to distinguish |π〉 from orthogonal
vectors, since some of them are affected by U(W) in a very similar way. We formalize this with
the notion of the phase gap.

Definition 4.1.3. Let U be a unitary operator with a nontrivial 1-eigenspace. Let {eiθ1 =
1, eiθ2 , . . . , eiθr} be an enumeration of the eigenvalues of U , ordered such that 0 = |θ1| ≤ |θ2| ≤
· · · ≤ |θr| ≤ π. Then the phase gap of U is defined ∆(U) := |θ2|.

In order to estimate the number of iterations of U(W) required to distinguish |π〉 from any
orthogonal states, we must show that |π〉 is the only 1-eigenvector of U(W), and lower bound the
phase gap of U(W).

To facilitate the spectral analysis of U(W), we use the following theorem, derived from Jor-
dan’s lemma [Jor75] (or see [Bha93]), first used in this context by Szegedy [Sze04]. The version
below is taken from [Chi13].

Theorem 4.1.4. Let U := (2ΠA − I)(2ΠB − I) be a unitary on some finite-dimensional inner
product space H, where ΠA =

∑a
j=1 |ψj〉〈ψj | is the orthogonal projector onto some subspace A of

H, and ΠB =
∑b

j=1 |φj〉〈φj | is the orthogonal projector onto some subspace B of H. Define the

discriminant of U , D ∈ Ca×b by D(j, k) = 〈ψj |φk〉. Define isometries corresponding to these two
projectors:

ΛA =

a∑
j=1

|ψj〉〈j| ∈ L(Ca, A), and ΛB =

b∑
j=1

|φj〉〈j| ∈ L(Cb, B).

Then we have D = Λ�
AΛB. Let D =

∑
j cos θj |αj〉〈βj | for θj ∈ [0, π2 ], |αj〉 ∈ Ca, |βj〉 ∈ Cb be

the singular value decomposition of D. Then the spectrum of U is completely specified by the
following:

1. For every θj ∈ (0, π2 ), span{ΛA|αj〉,ΛB|βj〉} is invariant under U .

2. The eigenvalues of U on span{ΛA|αj〉,ΛB|βj〉} are {e2iθj , e−2iθj} with eigenvectors ΛA|αj〉−
e−iθjΛB|βj〉 and ΛA|αj〉 − eiθjΛB|βj〉 respectively.

3. In addition, U has −1-eigenspaces A ∩ B⊥ and A⊥ ∩ B; and 1-eigenspaces A ∩ B and
A⊥ ∩B⊥. The space A ∩B is spanned by the left and right 1-singular vectors of D.

We can use Theorem 4.1.4 to analyze the spectrum of U(W). In our case, we have

ΛA :=
∑
u∈Ω

|ψu〉〈u|, and ΛB =
∑
u∈Ω

|φu〉〈u|.
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The discriminant of U(W) is

D(P ) :=
∑
u,v∈Ω

〈ψu|φv〉|u〉〈v|.

We can compute 〈ψu|φv〉 =
√
P (u, v)P (v, u) =

√
π(v)
π(u)P (v, u), by the reversibility of P . Thus,

D(P ) =
∑
u,v∈Ω

√
π(u)

π(v)
P (u, v)|v〉〈u| =

∑
v∈Ω

1√
π(v)

|v〉〈v|P
∑
u∈Ω

√
π(u)|u〉〈u|,

so P and D(P ) are similar and therefore have the same spectrum.

It is enough to analyze the spectrum of U(W) on the space A + B, because we start in this
space, and although we may leave this space during our implementation of U(W), at every point
where we apply phase estimation of U(W), we will be in a state that lies in A+B.

Lemma 4.1.5. The state |π〉 is the unique 1-eigenstate of U(W) in A+B.

Proof. Since |π〉 is clearly in A ∩B, and so a 1-eigenvector of U(W), we need only show that it
is the only such vector in A+B.

By the Perron-Frobenius theorem, since P is a positive real-valued square matrix, its largest
eigenvalue has multiplicity 1. Since P is stochastic, all of its eigenvalues have absolute value at
most 1, and since it has a 1-left-eigenvector, π, 1 is necessarily its largest eigenvalue.

Since D(P ) is similar to P , it follows that D(P ) has 1 as an eigenvalue with multiplicity 1. By
Theorem 4.1.4, the only 1-eigenvectors of U(W) in A+B are in A∩B, and this space is spanned by
the right and left 1-eigenvectors of D(P ). It is not difficult to verify that |π̂〉 :=

∑
u∈Ω

√
π(u)|u〉

is a left and right singular vector of D(P ). It follows that A ∩B is spanned by ΛA|π̂〉 = |π〉 and
ΛB|π̂〉 = |π〉. Thus |π〉 is the unique 1-eigenvector of U(W) in A+B.

This shows that the only 0-phase eigenvector of U(W) on A+ B is |π〉, so we can use phase
estimation to distinguish |π〉 from its orthogonal vectors (for any state in A + B), however, in
order to upper bound the number of calls to U(W) needed for the phase estimation to succeed,
we need to show a lower bound on the absolute value of the phase closest to 0, by lower bounding
the phase gap of U(W).

Lemma 4.1.6. Let ∆ be the phase gap of U(W). Then ∆ ≥
√
δ, where δ is the spectral gap of

P .

Proof. Suppose the phases in the statement of Theorem 4.1.4 are ordered so that θ1 ≤ θ2 ≤ · · · ≤
θ`. Then the phase gap of U(W) is 2θ1. Furthermore, since θ1, . . . , θ` ∈ (0, π/2), we have

cos θ1 ≥ · · · ≥ cos θ`,
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Ω(
√
δ)

δ

Figure 4.1: The phase gap scales like the square root of the spectral gap.

so δ = 1− cos θ1 is the spectral gap of P , since P has the same spectrum as D(P ). Thus, using

the inequality cos θ ≥ 1− θ2

2 , we have

δ = 1− cos θ1 ≤
θ2

1

2
,

so U(W) has phase gap ∆ = 2θ1 ≥ 2
√

2δ, giving the desired bound.

We can therefore use phase estimation with precision like
√
δ (see Section 3.1.1) to identify

and reflect states orthogonal to |π〉. In particular, the following Theorem shows how we can
approximate Ref{|π〉} to any error using phase estimation.

Theorem 4.1.7. Assume U + Φ ≥ 1. For any p ∈ (0, 1), there exists a unitary R̃ that approxi-

mates Ref{|π〉} on A+B with error p, and can be implemented in cost O
((

log 1
p

)
1√
δ

(U + Φ)
)

.

Proof. We will use phase estimation to estimate the phase of the input state |ψ〉 ∈ A+B, under
the action of U(W), with precision Θ = 1

8π

√
δ. Let Ha be the auxiliary space, and suppose

we begin by initializing it to |0〉a. After applying phase estimation, we will apply a −1 phase,
conditioned on the state of Ha being nonzero. We will then uncompute the phase estimation.

Suppose |ψ〉 ∈ A+B is an eigenstate of U(W) — the result will follow by linearity. If |ψ〉 = |π〉,
since U(W)|π〉 = ei0|π〉, the phase estimation will put a 0 in the auxiliary register, acting as
|π〉|0〉a 7→ |π〉|0〉a. The conditional reflection will do nothing, since the auxiliary register is in the
state 0. Applying the phase estimation in reverse will similarly do nothing. Thus we will leave
the state unchanged.

On the other hand, suppose |ψ〉 is an eigenstate of U(W) orthogonal to |π〉. Suppose U(W)|ψ〉 =
eiθ|ψ〉 for θ such that |θ| ∈ (0, π]. Then by Theorem 3.1.3, applying phase estimation acts as

|ψ〉|0〉a 7→ |ψ〉|ω〉a,
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for some state |ω〉 such that |〈0|ω〉| ≤ Θ π
|θ| =

√
δ

8|θ| . The conditional reflection acts as 2IH⊗|0〉〈0|−
I, so we get:

|ψ〉|ω〉a 7→ |ψ〉 (2〈0|ω〉|0〉a − |ω〉a) .

Finally, let Φ be the unitary that is implemented by phase estimation. Applying the phase
estimation algorithm in reverse gives:

2〈0|ω〉|ψ〉|0〉a − |ψ〉|ω〉a 7→ 2〈0|ω〉Φ�|ψ〉|0〉a − |ψ〉|0〉a.

Thus, if R̃ denotes the implemented unitary, and R denotes Ref{|π〉}:∥∥∥R̃|ψ〉 −R|ψ〉∥∥∥ =
∥∥2〈0|ω〉Φ�|0〉

∥∥ = 2|〈0|ω〉| ≤
√
δ

4|θ|
≤ 1

4

where the last inequality follows from Lemmas 4.1.5 and 4.1.6, since |ψ〉 is in A+B and orthogonal
to |π〉, so it must have phase |θ| ≥

√
δ. Thus, we have error at most 1

4 . Using Theorem 3.1.8, we
can decrease this error to p with a multiplicative factor of log 1

p in the asymptotic cost.

To complete the proof, we simply note that implementing phase estimation to precision Θ uses

O
((

log 1
Θ

)2)
= O

((
log 8π√

δ

)2
)

elementary gates, and 2
Θ = 16π√

δ
controlled calls to U(W), each

of which costs O(U + Φ). The total cost becomes

O

(
log

1

p

(
1√
δ

(U + Φ) +

(
log

1√
δ

)2
))

.

Assuming U+Φ ≥ 1, the second term is subsumed by the first, giving the desired complexity.

The Full Algorithm We now have all necessary ingredients to present the full algorithm. A
very simple algorithm would be to construct |π〉, and then repeatedly alternate Ref{|π〉} and the
checking procedure, which reflects about the marked states, about 1√

ε
times, just as in amplitude

amplification. However, unlike in amplitude amplification, we cannot implement Ref{|π〉} exactly,
so we would need to reduce the error of our approximation of Ref{|π〉} to O (

√
ε) in order to

keep the overall error of the algorithm below 1
3 , at a cost of a multiplicative factor of log 1

ε . We
can avoid this additional cost using the search-with-errors procedure, presented in Section 3.2.1,
Theorem 3.2.2. This procedure takes an approximate implementation of Ref{|π〉}, and an exact
implementation of a reflection about marked states, and maps the state |π〉 to its projection onto
the marked states. We use this procedure to prove the following theorem.

Theorem 4.1.8. Let P be a reversible Markov process on state space Ω, with stationary distri-
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bution π. Let M ⊆ Ω. Then we can approximate the mapping:

W : |π〉 7→

{
|M〉 :=

∑
u∈M

√
π(u)
π(M)

∑
v∈Ω

√
P (u, v)|u, v〉|d(u, v)〉 if M 6= ∅

|π〉 else,

with error 1/3 in cost

O

(
1√
ε

(
1√
δ

(U + Φ) + C

))
.

Proof. Define a subspace of H, HM , by:

HM := span{|u, d1(u)〉 : u ∈M} ⊗HC ⊗Hd2

and let ΠM be the orthogonal projector onto HM .

By Theorem 3.2.2, if we can implement −RefHM in cost R1, and we can approximate the
reflection about |π〉 with error q in cost R2 log 1

q for any q ∈ (0, 1/2), then we can approximate

W with constant error in cost O
(

1√
pM

(R1 + R2)
)

, where pM is a lower bound on ‖ΠM |π〉‖2

whenever this quantity is nonzero. We have

‖ΠM |π〉‖2 =

∥∥∥∥∥∑
u∈M

∑
v∈Ω

√
π(u)P (u, v)|u, v〉|d(u, v)〉

∥∥∥∥∥
2

=
∑
u∈M

π(u)
∑
v∈Ω

P (u, v) = π(M),

so we can set pM = ε.

Next, notice that the checking operation implements RefHM . By assumption, we can implement
the checking operation in cost R1 = C, and by Theorem 4.1.7, we can approximate Ref{|π〉} with
error q in cost R2 log 1

q = 1√
δ

(U + Φ) log 1
q . Thus, we can implement W with error 1/3 in cost

O

(
1√
ε

(
1√
δ

(U + Φ) + C

))
.

Letting ApproxAmpAmpU,Φ,C denote the procedure from Theorem 4.1.8, which uses U, Φ and C

as subroutines, our algorithm is simply:
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QuantumWalkSearch
S,U,Φ,C
Ω,M,P,d

1. Repeat 2 times:

(a) Construct |π〉0 using S

(b) Map |π〉0 to |π〉 using U

(c) Run ApproxAmpAmpU,Φ,C on |π〉 to get a state |M̃〉

(d) Measure the state register of |M̃〉 to get some state u

(e) Check if u is marked, and if so, output u

2. Output “M = ∅”

Corollary 4.1.9. Let {Wx = (Ωx,Mx, Px, dx)}x∈[q]n specify a quantum walk search problem. Let
πx denote the stationary distribution of Px. Let ε ∈ R+ be some (possibly unknown) parameter
such that for all x such that Mx 6= ∅, πx(Mx) ≥ ε. Let δ be a lower bound on the spectral gap of
every Px. Then the query complexity of finding an element of Mx or deciding Mx is empty with
bounded error is

O

(
S +

1√
ε

(
1√
δ

(U + Φ) + C

))
.

Proof. The complexity of the algorithm QuantumWalkSearch is clear from Theorem 4.1.8, since
we use constant p. To see that the algorithm solves the problem with bounded error, first note
that if M = ∅, we will not find a marked state, so we will output the correct answer with
probability 1.

For the case M 6= ∅, we need only notice that since we run ApproxAmpAmp, the error of |M̃〉 is at

most 1
3 , so

∥∥∥|M〉 − |M̃〉∥∥∥ ≤ 1
3 . Let |err〉 := |M〉 − |M̃〉. We can compute

∣∣∣〈M |M̃〉∣∣∣ = |1− 〈M |err〉| ≥ 1− ‖|err〉‖ ≥ 1− 1

3
=

2

3
.

The probability that we measure a marked state in any given iteration is given by∥∥∥ΠM |M̃〉
∥∥∥2
≥
∣∣∣〈M |M̃〉∣∣∣2 ≥ (2

3

)2

>
4

9
.

Thus the probability that in both iterations we do not output a marked state is (1 − 4/9)2 =
25/81 < 1/3. Thus, the probability that we find a marked state in one of the two rounds is at
least 2/3.
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We summarize this new framework below. We have made the separation between coin-
independent and coin-dependent data explicit, and will now writeW = (Ω,M, P, d1, d2) when we
would like to explicitly define this decomposition.

New Quantum Walk Search Framework

Parameters: Ωx Finite set of objects
(for each x ∈ D) Mx ⊆ Ωx Set of marked objects

Px A reversible, ergodic Markov Process on Ωx

dx,1 : Ωx → Hd1 Coin-independent data

dx,2 :
−→
E (Px) ∪ (Ωx × {0})→ Hd2 Coin-dependent data

Properties: πx : Ωx → R The stationary distribution of Px
ε ∈ R+ A lower bound on πx(Mx) for all x such that Mx 6= ∅
δ ∈ R+ A lower boun on the spectral gap of Px for all x

Subroutines: Setup, S(x)
with cost S

|0〉 7→ |πx〉0 :=
∑
u∈Ωx

√
πx(u)|u, 0〉|dx,1(u)〉|dx,2(u, 0)〉

Checking, C(x)
with cost C

|u, dx,1(u)〉 7→
{
−|u, dx,1(u)〉 if u ∈M
|u, dx,1(u)〉 else

Local Diffusion, U(x)
with cost U

|u, 0〉|d2(u, 0)〉 7→
∑
v∈Ωx

√
Px(u, v)|u, v〉|d2(u, v)〉

Data Swap, SWAP(x)
with cost U

|u, v〉|dx,1(u)〉|dx,2(u, v)〉

7→ |v, u〉|dx,1(v)〉|dx,2(v, u)〉, ∀(u, v) ∈
−→
E (Px)

Phase Flip, Φ(x)
with cost Φ

|u〉|dx,2(u, 0)〉 7→ −|u〉|dx,2(u, 0)〉, ∀u ∈ Ωx

Cost: S +
1√
ε

(
1√
δ

(U + Φ) + C

)
If the data is completely coin-independent, as in the previous framework, then the cost of the

phase flip is negligible.

55



Chapter 5

Nested Checking

Consider implementing the checking subroutine of a quantum walk specified by W by using
another quantum walk,W ′. One example of this is the implementation of the checking subroutine
in the quantum walk algorithm for triangle finding, due to [MSS07], and outlined in Section 3.3.5.
In this quantum walk algorithm, the checking step is implemented by a quantum algorithm,
which consists of a quantum search, and a quantum walk, although for convenience, we can view
the full checking algorithm as a quantum walk search algorithm. This gives rise to a checking

subroutine with cost C = O
(

S′ + 1√
ε′

(
1√
δ′

U′ + C′
))

, where (δ′, ε′,S′,U′,C′) are the parameters

and costs associated with the implementation of W ′. If the remaining parameters and costs of
the implementation of W are (δ, ε,S,U), then the full algorithm implementing W costs:

Õ

(
S +

1√
ε

(
1√
δ

U + S′ +
1√
ε′

(
1√
δ′

U′ + C′
)))

,

where the suppressed logarithmic factors occur because to naively use a bounded-error subroutine
for checking, we must apply error reduction to get inverse polynomial error on the checking
subroutine.

In this Section, we will show how to use our new quantum walk search framework to implement
this type of nesting more efficiently. We will show how to achieve nesting with a cost like:

Õ

(
S + S′ +

1√
ε

(
1√
δ

U +
1√
ε′

(
1√
δ′

U′ + C′
)))

.1

Since we now have no multiplicative factors in front of S′, this cost may be cheaper.

The idea of our efficient nested checking is simple: since the setup step simply constructs the
initial state, we would like to do this once at the beginning of the algorithm, rather than each time

1The cost U could change when we bring S′ to the front of the expression, but in our applications, it does not.
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the checking subroutine is called. In order to implement this within the quantum walk search
framework, we simply include the checking subroutine’s initial state, |π′〉 in the data structure of
the outer state — this data can then be used to perform the inner checking step. We present the
details of this technique as a “framework” in Section 5.1.

The first application, and also the original motivation, for the framework is an algorithm for
triangle finding, presented in Section 5.2. This algorithm is based on the learning graph upper
bound of Ref. [Bel12b], and has matching quantum query complexity, up to logarithmic factors.

Although the quantum walk algorithm for triangle finding gives a nice illustration of the power
of the framework, it is not the best known algorithm. A later learning graph upper bound, from
[LMS13], gives an even better upper bound on the quantum query complexity of triangle finding,
which, at the time of this writing, is the best known. We are also able to very simply reproduce
this upper bound in our framework using nested checking, and this is the subject of Section 5.3.
Finally, in Section 5.4, we give a generalized nested quantum walk algorithm for subgraph finding
problems, based on the similar learning graph upper bound of [LMS13].

5.1 Nested Checking via Quantum Data Structures

The technique of efficient nested checking is simply one particular way in which we can apply
the new quantum walk search framework. However, to illustrate how to use this technique, we
write it explicitly as its own framework below. We suppose that we are given a quantum walk
specification, W = (Ω,M, P, d), that we want to implement, and along with W, we are given, for
each u ∈ Ω, a specification for an inner quantum walk, Wu = (Ωu,Mu, P u, du), whose purpose
is to help check if u is marked. In order to use Wu to accomplish this task, we require that
Mu be non-empty exactly when u ∈ M . We can then use the inner walk Wu to check if Mu is
non-empty, which exactly checks if u is marked.

Since we will need to run both the outer walk W and the inner walks Wu, our full workspace
will look like:

H = HΩ ⊗HC ⊗Hd ⊗HΩ′ ⊗HC′ ⊗Hd′ ,

where HΩ⊗HC ⊗Hd is the workspace of W, HΩ′ must be able to encode any state in Ωu for any
u ∈ Ω, HC′ must be able to encode any coin state |P u(s, ·)〉 for u ∈ Ω, s ∈ Ωu, and all inner data
functions, du, must have domain Hd′ .

In order to implement the full algorithm, we will need some subroutines for both the outer
and inner walks. For the outer walk, we do not need a checking subroutine, since checking will
be accomplished by the nested quantum walks. The outer setup and update are nearly identical
to those of the standard framework, with the change that the initial state of the inner walk Wu,
|πu〉, will now be include as part of the data of each u. Finally, we will need update and checking
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subroutines for the inner walks. The setup step of the inner walks are taken care of by the outer
setup subroutine S. Its cost, S, will include the cost of two tasks. It will include the cost of
constructing

|πd〉0 :=
∑
u∈Ω

√
π(u)|u, 0〉|d(u)〉,

which is the initial state of W without nesting — call the cost of constructing this Sd. In
addition, it will include the cost of constructing (maximized over u) the initial state for Wu,
|πu〉0 =

∑
s∈Ωu

√
πu(s)|s, 0〉|du(s)〉, which we can call S′. The full setup cost ends up being

S = Sd + S′.

We have chosen to give the nested checking framework in terms of coin-independent data, for
simplicity, since this is all that is required by our applications. Thus, we suppose that the given
walk specifications all include only coin-independent data d : Ω→ Hd for some finite-dimensional
inner product space Hd. Of course, the idea is easily extended to walks that use coin-dependent
data (with the additional associated costs).
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Nested-Checking Quantum Walk

Parameters: Wx = (Ωx,Mx, Px, dx) An outer quantum walk, with coin-
independent data

(for each x ∈ D) {Wu
x = (Ωu

x,M
u
x , P

u
x , d

u
x)}u∈Ω A family of inner quantum walks with coin-

independent data, such that for all u ∈ Ωx,
Mu
x 6= ∅ if and only if u ∈Mx

Properties: ({πx}x, ε, δ) The inner walk properties
{πux : Ωu

x → R}u∈Ω The stationary distribution of P ux
ε′ ∈ R A lower bound on πux(Mu

x ) for all u ∈ Ω such that Mu
x 6= ∅

δ′ ∈ R The minimum spectral gap of P ux over all u ∈ Ω, x ∈ D

Subroutines: Setup, S(x)
with cost S

|0〉 7→
∑
u∈Ωx

√
πx(u)|u, 0〉|dx(u)〉

∑
s∈Ωux

√
πux(s)|s, 0〉|dux(s)〉

Local Diffusion, U(x)
with cost U

|u, 0〉 7→
∑
v∈Ωx

√
Px(u, v)|u, v〉, ∀u ∈ Ωx

Data Swap, SWAP(x)
with cost U

|u, v〉|dx(u)〉
∑
s∈Ωux

√
πux(s)|s, 0〉|dux(s)〉

7→ |v, u〉|dx(v)〉
∑
s∈Ωvx

√
πvx(s)|s, 0〉|dvx(s)〉, ∀(u, v) ∈

−→
E (Px)

Inner Local Diffu-
sion, Uu(x)
with cost U′

|s, 0〉 7→
∑

t∈Ω′x

√
P ux (s, t)|s, t〉, ∀s ∈ Ωu

x

Inner Data Swap,
SWAPu(x)
with cost U′

|s, t〉|dux(s)〉 7→ |t, s〉|dux(t)〉, ∀(s, t) ∈
−→
E (P ux )

Inner Checking, Cu(x)
with cost C′

|s, dux(s)〉 7→
{
−|s, dux(s)〉 if s ∈Mu

x

|s, dux(s)〉 else

Cost: Õ

(
S +

1√
ε

(
1√
δ

U +
1√
ε′

(
1√
δ′

U′ + C′
)))

Theorem 5.1.1. Let N = {(Wx = (Ωx,Mx, Px, dx), {Wu
x = (Ωu

x,M
u
x , P

u
x , d

u
x)}u∈Ω)}x∈D specify

a nested-checking quantum walk. Let (δ, ε, δ′, ε′) be the associated parameters. Then the cost of
finding an element of Mx or deciding Mx = ∅ with bounded error is

Õ

(
S(N ) +

1√
ε

(
1√
δ

U(N ) +
1√
ε′

(
1√
δ′

U′(N ) + C′(N )

)))
.
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Proof. We will prove the statement by recasting the nested walk as a standard quantum walk
search. Define a new coin-independent data function by

|d̂(u)〉 = |d(u)〉|πu〉0, ∀u ∈ Ω ∪ {0}

where |πu〉0 =
∑

s∈Ω′

√
πu(s)|s, 0〉|du(s)〉. Then we will describe how to implement the subrou-

tines for the quantum walk Ŵ = (Ω,M, P, d̂).

Setup Subroutine We must prepare the state

|πd̂〉
0 :=

∑
u∈Ω

√
π(u)|u〉|d̂(u)〉 =

∑
u∈Ω

√
π(u)|u〉|d(u)〉|πu〉0,

which is exactly, what S accomplishes in the nested checking framework, so the setup cost is
S(Ŵ) = S(N ).

Update Subroutines The local diffusion part of the update for Ŵ must achieve:

|u, 0〉|d̂(u)〉 = |u, 0〉|d(u)〉|πu〉0 7→
∑
v∈Ω

√
P (u, v)|u, v〉|d̂(u)〉 =

∑
v∈Ω

√
P (u, v)|u, v〉|d(u)〉|πu〉0,

which is exactly what the local diffusion of N accomplishes. Furthermore, the data swap for Ŵ
must achieve

|u, v〉|d̂(u)〉 = |v, u〉|d(u)〉|πu〉0 7→ |v, u〉|d̂(v)〉 = |v, u〉|d(v)〉|πv〉0,

which is exactly the data swap of N . Thus U(Ŵ) = U(N ).

Checking Subroutine We will implement the checking operation using a nested quantum
walk algorithm. Let Wu be the mapping

Wu : |πu〉0 7→

{
|Mu〉 :=

∑
s∈Ωu

√
πu(s)
πu(Mu) |s, 0〉|d(s)〉 if Mu 6= ∅

|πu〉0 else,

We first show how to use this mapping to implement the outer checking operation. We first
apply Wu:

|u, d̂(u)〉 = |u〉|d(u)〉|πu〉0 7→
{
|u〉|d(u)〉|Mu〉 if Mu 6= ∅
|u〉|d(u)〉|πu〉0 else.
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Next, using the inner checking, Cu, we perform{
|u〉|d(u)〉|Mu〉 7→ −|u〉|d(u)〉|Mu〉
|u〉|d(u)〉|πu〉0 7→ |u〉|d(u)〉|πu〉0 when Mu = ∅.

Finally, applying W �
u gives:{
−|u〉|d(u)〉|Mu〉 7→ −|u〉|d(u)〉|πu〉0 = −|u〉|d̂(u)〉
|u〉|d(u)〉|πu〉0 7→ |u〉|d(u)〉|πu〉0 = |u〉|d̂(u)〉.

By Theorem 4.1.8, we can approximate Wu with error p in cost
(

log 1
p

)
1√
ε′

(
1√
δ′

U′(N ) + C′(N )
)

.

By Fact 3.1.5, if we call our approximation of this map t times, the overall error in the final state
will be tp. Since we will call the checking map on the order of 1√

ε
times, in order to keep the

overall error below 1
3 , we will need 1

p ∈ O
(

1√
ε

)
. Each call to the approximation of Wu with error

p then costs

C(Ŵ) = O

((
log

1

ε

)
1√
ε′

(
1√
δ′

U′(N ) + C′(N )

))
.

Finally, we notice that, since Ŵ only differs from W in its data, it has the same spectral gap, δ,
and lower bound on the proportion of marked states, ε. Thus, by Corollary 4.1.9, we can find
an element of M or decide that M is empty in cost (up to constants):

S(Ŵ)+
1√
ε

(
1√
δ

U(Ŵ) + C(Ŵ)

)
= S(N )+

1√
ε

(
1√
δ

U(N ) +
1√
ε′

(
1√
δ′

U′(N ) + C′(N )

)
log

1

ε

)
.

5.1.1 Nesting to Arbitrary Depth

The simple two-level nesting from Theorem 5.1.1 can be generalized in a straightforward way to
k levels of nesting.

Let x be the input, from some domain D, and u1, . . . , ui be a list of states from the i outermost
walks. Then we will use a quantum walk parametrized by x, u1, . . . , ui to check if ui is marked in
the walk parametrized by x, u1, . . . , ui−1. To make this precise, we recursively define the following
sets:

Ω(0) := D, and ∀i > 0, Ω(i) := {(x, u1, . . . , ui) : u(i−1) := (x, u1, . . . , ui−1) ∈ Ω(i−1), ui ∈ Ωu(i−1)

i }.

Then there will be one i-depth walk defined for each element of Ω(i−1).
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Define the outermost walk family, parametrized by the input x, by:

{Wx
0 = (Ωx

0 ,M
x
0 , P

x
0 , d

x
0)}x∈D

Then for i = 1, . . . , k − 1, let the ith level of nested walk be specified by:{
Wu(i)

i = (Ωu(i)

i ,Mu(i)

i , P u
(i)

i , du
(i)

i )
}
u(i)∈Ω(i)

with the condition that for all i ∈ [0, k − 2], u(i) ∈ Ω(i),

Mu(i)

i = {ui+1 ∈ Ωu(i)

i : M
(u(i),ui+1)
i+1 6= ∅}.

The situation simplifies immensely when all Markov processes at the ith level are the same Markov
process, Pi. Even when we allow them to vary slightly, there must, of course, be some structure
for the analysis to be feasible.

Let δi be a lower bound on the spectral gap of P u
(i)

i over all u(i) ∈ Ω(i), and εi be a lower

bound for non-empty πu
(i)

i (Mu(i)
i ) for all u(i) ∈ Ω(i), where πu

(i)

i is the stationary distribution of

P u
(i)

i .

We recursively define, for each u(k−1) ∈ Ω(k−1),

|πu(k−1)

k−1 〉 :=
∑

uk−1∈Ωu
(k−1)

k−1

√
πu

(k−1)

k−1 (uk−1)|uk−1〉|du
(k−1)

k−1 (uk−1)〉

and for i = 0, . . . , k − 2, and each u(i) ∈ Ω(i):

|πu(i)i 〉 :=
∑

ui+1∈Ωu
(i)

i

√
πu

(i)

i (ui+1)|ui+1〉|du
(i)

i (ui+1)〉|π(u(i),ui+1)
i+1 〉.

Let S denote the cost of constructing |πx0 〉. For i = 0, . . . , k−1, let Ui be the maximum update

cost of the ith walk, that is, for each u(i) ∈ Ω(i), ui+1 ∈ Ωu(i)
i , the cost of implementing:

|ui+1〉|du
(i)

(ui+1)〉|0〉 7→
∑

u′i+1∈Ωu
(i)

i

√
P u

(i)

i (ui+1, u′i+1)|ui+1, u
′
i+1〉|du

(i)
(ui+1), du

(i)
(u′i+1)〉

and for each (ui+1, u
′
i+1) ∈

−→
E (P u

(i)

i ),

|ui+1, u
′
i+1〉|du

(i)

i (ui+1), du
(i)

i (u′i+1)〉 7→ |u′i+1, ui+1〉|du
(i)

i (u′i+1), du
(i)

i (ui+1)〉.
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Let C be the maximum cost of implementing, for u(k−1) ∈ Ω(k−1), and uk ∈ Ωu(k−1)

k ,

|uk〉|du
(k−1)

k−1 (uk)〉 7→

{
−|uk〉|du

(k−1)

k−1 (uk)〉 if uk ∈Mu(k−1)

k−1

|uk〉|du
(k−1)

k−1 (uk)〉 else.

Then we have the following.

Corollary 5.1.2. We can decide whether Mx
0 is non-empty with bounded error in

Õ

S +

k−1∑
i=0

 i∏
j=0

1
√
εj

 1√
δi

Ui +

k−1∏
j=0

1
√
εj

C

 (5.1)

queries.

This deeper nesting is applied in Section 5.4 to subgraph finding.

5.2 First Application to Triangle Finding

A relatively new framework for quantum query upper bounds is the learning graph framework of
Belovs [Bel12b]. Belovs demonstrated the power of this new framework by demonstrating a new
upper bound on the quantum query complexity of triangle finding of O(n35/27) compared with
the previous Õ(n1.3) quantum walk upper bound [MSS07], presented in Section 3.3.5. On the
surface, there are a number of similarities between these two upper bounds, but Belovs’ upper
bound employed a new ingredient, edge sparsification, which, although easily applicable in the
learning graph setting, did not seem to work in the setting of the quantum walk search framework.

There are several reasons why it might be desirable to implement the idea as a quantum walk.
Unlike with learning graphs, whose evaluation is done by first converting the learning graph to
a span program, which is then converted to a quantum algorithm, quantum walk algorithms
have a very explicit structure that is easy to work with. This is useful for understanding the
resulting algorithms, but it also facilitates combining and modifying algorithms to construct new
algorithms.

Our new quantum walk search framework allows us to implement Belovs’ edge sparsification
idea to reproduce Belovs upper bound by a quantum walk algorithm that solves triangle finding
in Õ(n35/27) quantum queries, proving the following theorem.

Theorem 5.2.1. There exists a quantum walk search algorithm that solves Trianglen with
bounded error using Õ(n35/27) quantum queries.

In the remainder of this section, we will present this algorithm by specifying a quantum walk
with nested checking, (W = (Ω,M, P, d), {Wu = (Ωu,Mu, P u, du)}u∈Ω), and implementing and
analyzing its subroutines.
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Parameters As usual, we will work with a Johnson graph, so our states will be subsets of [n]
of some size r to be specified later:

Ω := {S ⊂ [n] : |S| = r}.

The states S correspond to subsets of the vertex set of G. We will say that a state is marked if
it contains two triangle vertices, that is

M = {S ∈ Ω : ∃i, j ∈ S, k ∈ [n] such that Gi,j = Gj,k = Gi,k = 1}.

The walk will be the Johnson graph walk:

P (S, S′) =

{ 1
r(n−r) if |S ∩ S′| = r − 1

0 else.

The outer walk will not have any data of its own (aside from |πS〉, the initial state of an inner
walk, WS , which is implicitly part of the data of S), so we set d = 1.

For each S ∈ Ω, the inner walk WS will have as its Markov process, PS , the random walk
on the Johnson graph J(r2,m), for some m such that r < m < r2, to be specified later. We will
have

ΩS := {T ⊂ S2 : |T | = m}.

Each element (i, j) ∈ T will correspond to a potential edge in the subgraph of G induced by S.
We can define s so that m = sr2. Then s is analogous to Belovs’ sparsification parameter.

Let GS(T ) denote the subgraph of G with vertex set S and edge set T ∩E(G). Then we will
define

dS(T ) := GS(T );

that is, dS(T ) will encode {(i, j, Gi,j) : (i, j) ∈ T}.

We will say that a state T is marked if T contains an edge that is part of a triangle; that is:

MS := {T ∈ ΩS : ∃(i, j) ∈ T, k ∈ [n] \ {i, j} s.t. Gi,j = Gi,k = Gj,k = 1}.

If S ∈M , then S contains a pair of triangle vertices, i and j, so any T ∈ ΩS containing (i, j)
will be in MS , so MS 6= ∅. On the other hand, if S 6∈ M , then there is no pair of vertices i and
j in S such that {i, j} is a triangle edge, so no T ∈ ΩS can contain such an (i, j). Thus, we can
use the family {WS = (ΩS ,MS , PS , dS)}S∈Ω to implement the checking subroutine of W.
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Properties As usual, the walk on the Johnson graph has the uniform distribution on Ω as its
stationary distribution: π(S) =

(
n
r

)−1
. Furthermore, P has δ ≥ 1/r. Finally, M is non-empty

whenever the input graph contains a triangle, in which case, it has at least 2 triangle vertices, so:

π(M) =
|M |
|Ω|
≥
(
n−2
r−2

)(
n
r

) =
(n− 2)!r!

n!(r − 2)!
=
r(r − 1)

n(n− 1)
.

Thus, ε := r(r−1)
n(n−1) ∈ Ω

(
r2

n2

)
is a lower bound on π(M) whenever M 6= ∅.

Similarly for the inner walk, PS has spectral gap δ′ ≥ 1
m , and πS the uniform distribution

on ΩS . Suppose MS is non-empty. Then let i, j ∈ S be two vertices of some triangle. Then any
T ∈ ΩS containing (i, j) is in M , so we have:

πS(MS) =
|MS |
|ΩS |

≥
(
r2−1
m−1

)(
r2

m

) =
m

r2
.

Thus, ε′ = m
r2

is a lower bound on πS(MS) whenever MS 6= ∅.

Workspace The algorithm will work on the space

HΩ ⊗HC ⊗Hd ⊗HΩ′ ⊗HC′ ⊗Hd′ ,

where each of these spaces will be defined presently. First, we have:

HΩ = span{|S〉 : S ⊂ [n], |S| = r} and HΩ′ = span{|T 〉 : T ⊂ [n]2, |T | = m}.

Since we are only concerned with query complexity, we need not worry about how we encode
each set S or T . A naive encoding of S or T as a sorted list will not affect the query complexity
of any operations.

The coin space, HC , should be such that HΩ⊗HC can encode directed edges of J(n, r). Since
any directed edge (S, S′) of J(n, r) has |S∩S′| = r−1, we can uniquely specify (S, S′) by (S, i, i′),
where S \ S′ = {i}, and S′ \ S = {i′}. We will thus use coin spaces:

HC := span{|i, i′〉 : i, i′ ∈ [n]}, and HC′ := span{|(i, j), (i′, j′)〉 : i, i′, j′, j′ ∈ [n]}.

Then for any S ∈ Ω, the respective coin state looks like

|P (S, ·)〉 =
∑

i∈S,i′∈[n]\S

1√
r(n− r)

|i, i′〉,
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and for any T ∈ ΩS , the coin state looks like

|PS(T, ·)〉 =
∑

(i,j)∈T,(i′,j′)∈S2\T

1√
m(r2 −m)

|(i, j), (i′, j′)〉.

Finally, since the outer walk has no data, we have Hd = 1, and since the data functions of the
inner walk are defined dS(T ) = GS(T ), the space Hd′ can simply encode lists of m objects of the
form (i, j, Gi,j), that is:

Hd′ := span{|E〉 : E ⊂ {(i, j, b) : i, j ∈ [n], b ∈ {0, 1}} : |E| = m}.

Setup Subroutine We must implement the construction of the state

|π〉0 =
∑
S∈Ω

1√(
n
r

) |S〉|d(S)〉 =
∑
S∈Ω

1√(
n
r

) |S〉|πS〉 =
∑
S∈Ω

1√(
n
r

) |S〉 ∑
T∈ΩS

1√(
r2

m

) |T 〉|dS(T )〉.

To do this, we must query all members (i, j) of T , which has cost S = m quantum queries.

Update Subroutines To implement the update, we must implement the local diffusion forW:

|S, 0〉 7→
∑
S′∈Ω

√
P (S, S′)|S, S′〉;

and the data swap for W:

|S, S′〉
∑
T∈ΩS

√
πS(T )|T, 0〉|dS(T )〉 7→ |S′, S〉

∑
T ′∈ΩS′

√
πS′(T ′)|T, 0〉|dS′(T ′)〉,

for any S, S′ ∈ Ω such that |S ∩ S′| = m− 1.

To implement the local diffusion, we need only be able to construct, for any S ∈ Ω, the coin
state |P (S, ·)〉. This can be constructed in 0 queries, since it is input independent.

Fix some edge (S, S′). To implement the data swap, since πS(T ) = πS
′
(T ′) =

(
r2

m

)−1
for any

T ∈ ΩS , and T ′ ∈ ΩS′ , we need only show a bijection ϕ : ΩS → ΩS′ , and show how to implement
a map D with the action

∑
T∈ΩS

(
r2

m

)−1/2

|T 〉|dS(T )〉 7→
∑
T∈ΩS

(
r2

m

)−1/2

|ϕ(T )〉|dS′(ϕ(T ))〉.

66



Let S \ S′ = {i} and S′ \ S = {i′}. Define γ : S → S′ by γ(i) = i′, and for all j ∈ S ∩ S′,
γ(j) = j. Then define

ϕ(T ) := {(γ(j), γ(k)) : (i, j) ∈ T}.

It is easy to verify that ϕ is a bijection from ΩS to ΩS′ . Furthermore, we can map |T 〉 to |ϕ(T )〉
in 0 queries to the input, since mapping depends only on i and i′, which are encoded by (S, S′).

Let DT be a unitary map with the action:

|dS(T )〉 = |{(j, k,Gj,k) : (j, k) ∈ T}〉 7→ |dS′(ϕ(T ))〉 = |{(γ(j), γ(k), Gγ(j),γ(k)) : (j, k) ∈ T}〉,

and note that D =
∑

T∈ΩS |T 〉〈T | ⊗DT has the desired action to implement the data swap for
(S, S′). In order to implement DT , we must query Gγ(j),γ(k) and unquery Gj,k for every (j, k) ∈ T
such that (γ(j), γ(k)) 6= (j, k). In other words, we must perform 2 queries for every edge (j, k) ∈ T
incident to vertex i. The number of such pairs is exactly the degree of i in the graph with vertex
set S and edge set T , which we denote KT . Let qT = 2 degKT (i), where degKT (i) is the degree
of i in the graph KT , so that qT is the query complexity of implementing DT . For a uniform
random T , degKT (i) is a random variable with a hypergeometric distribution and mean 2m

r , so
for a random T , we expect the cost of DT to be about 4m

r . However, in the worst case, i may have
degree r in KT , in which case, the cost of DT is r. We would certainly rather pay the average
cost than the worst case. We can accomplish this in the following manner.

Let q := 28m
r + c lnn for come constant c ≥ 1. We will implement D approximately, using

just q queries, by instead implementing

D̃ :=
∑

T∈ΩS :qT≤q

|T 〉〈T | ⊗DT +
∑

T∈ΩS :qT>q

|T 〉〈T | ⊗ I.

In other words, we only implement the correct map when it is not too expensive, otherwise
we simply don’t bother. It is clear that D̃ has query complexity q, so we now consider its error

on |ψ〉 =
∑

T

(
rs

m

)−1/2|T 〉|dS(T )〉, the only state to which it will be applied. We have:

∥∥∥(D̃ −D)|ψ〉
∥∥∥2

=

∥∥∥∥∥∥
∑

T∈ΩS :qT>q

(
r2

m

)−1/2

|T 〉(I −DT )|dS(T )〉

∥∥∥∥∥∥
2

≤ 2
∑

T∈ΩS :qT>q

(
r2

m

)−1

,

which is just twice the probability that qT > q when T is uniformly chosen. Since qT is distributed
according to a hypergeometric distribution with mean µ = 4m

r , by Fact 2.3.1, since q ≥ 7µ, we
can bound this as ∥∥∥(D̃ −D)|ψ〉

∥∥∥2
≤ 2e−

28m
r
−c lnn ≤ 2e−c lnn =

2

nc
.

Since this operation will be called o(n2) times, this is certainly sufficiently small error to keep the
overall error at most 1

3 (see Fact 3.1.5).

67



Thus, we can implement the update procedure with total query complexity:

U = q =
28m

r
+ c log n = O

(m
r

)
,

since m and r will be set such that m
r = nk for some k > 0.

Inner Checking In order to check if a state T is marked, we will search [n] for a vertex i such
that there exists j, k ∈ T such that {i, j, k} is a triangle in G. For any i ∈ [n], we can check if this
condition holds in r2/3 queries to G, using the algorithm GraphCollision, from Theorem 3.3.9,
on the graph GS(T ), since this graph is completely known, and stored in dS(T ). Then the total
cost to search for such a vertex i is

C′ =
√
nr2/3.

Inner Update To implement the inner update, we must implement the local diffusion for Wu:

|T, 0〉 7→
∑
T ′∈ΩS

√
PS(T, T ′)|T, T ′〉;

and the data swap of Wu:
|T, T ′〉|dS(T )〉 7→ |T ′, T 〉|dS(T ′)〉,

for any T, T ′ ∈ ΩS such that |T ∩ T ′| = m− 1.

To implement the local diffusion, we need only construct the state

|P (T, ·)〉 =
∑

(i,j)∈T

1√
m
|(i, j)〉

∑
(i′,j′)6∈T

1√
r2 −m

|(i′, j′)〉,

which has query complexity 0.

To implement the data swap, it suffices to implement, for each (T, T ′) ∈
−→
E (PS), the map:

|dS(T )〉 = |{(i, j, Gi,j) : (i, j) ∈ T}〉 7→ |dS(T ′)〉 = |{(i, j, Gi,j) : (i, j) ∈ T ′}〉.

To implement this, we must simply query the unique (i′, j′) ∈ T ′ \ T and unquery the unique
(i, j) ∈ T \ T ′, so the full update cost for any inner update is U′ = 2.

Thus, by Theorem 5.1.1, we can find a marked state or decide there is no marked state in
query complexity (neglecting logarithmic factors):

S +
1√
ε

(
1√
δ

U +
1√
ε′

(
1√
δ′

U′ + C′
))

= m+

√
n2

r2

(
√
r
m

r
+

√
r2

m

(√
m2 +

√
nr2/3

))

= m+
nm

r3/2
+ n+

n3/2r2/3

√
m
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Setting m and r to the optimal values of r = n2/3 and m = n35/27 gives total complexity
Õ
(
n35/27

)
, proving Theorem 5.2.1.

5.3 Second Application to Triangle Finding

The algorithm presented in the previous section is based on the learning graph upper bound for
triangle finding that inspired this framework, however, it is not the best known upper bound.
Subsequently, the following theorem was proven by Lee, Magniez and Santha using the learning
graph framework.

Theorem 5.3.1 ([LMS13]). The bounded error quantum query complexity of Trianglen is in
O
(
n9/7

)
= O

(
n1.286

)
.

This new upper bound does not use the edge sparsification idea, but rather, first searches for
a set S1 containing a triangle vertex, and then another set S2 containing another vertex from the
same triangle, and detects such a pair of sets by doing a version of the graph collision subroutine
on the bipartite subgraph of G consisting of edges from S1 to S2.

We can also reproduce this improved result, up to logarithmic factors, in our framework, using
nested checking. In this section we will prove the following theorem.

Theorem 5.3.2. There exists a quantum walk search algorithm that solves Trianglen with
bounded error using Õ

(
n9/7

)
quantum queries.

In the remainder of this section, we will specify a nested-checking quantum walk, (W =
(Ω,M, P, d), {Wu = (Ωu,Mu, P u, du)}u∈Ω), and describe and analyze implementations of its sub-
routines. Our construction is based on the learning graph construction used by [LMS13].

Parameters The walk will, once again, take place on a Johnson graph, so we will have:

Ω := {S1 ⊆ [n] : |S1| = r1}

for some r1 to be chosen later, with P being the random walk on the Johnson graph J(n, r1).
The states represent subsets of the vertices of G. We will say a set is marked if it contains a
vertex that is part of a triangle:

M := {S1 ∈ Ω : ∃i ∈ S1, j, k ∈ [n] s.t. Gi,k = Gj,k = Gi,k = 1} .

We will not set any data for the outer walk, so we set d = 1.
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Next, for each S1 ∈ Ω, we define an inner walk WS1 = (Ω′,MS1 , P ′, dS1) (in this case, only
the marked set and data depend on S1). These inner walks P ′ will also be on a Johnson graph
J(n, r2), for some r2 to be specified, so we set

Ω′ := {S2 ⊆ [n] : |S2| = r2}.

Like the outer states, each inner state, S2, represents a subset of the vertex set. We define a state
S2 ∈ Ω′ to be marked (with respect to S1) if there is a vertex in S2 that is part of a triangle, for
which S1 also contains a vertex; that is:

MS1 =
{
S2 ∈ Ω′ : ∃i ∈ S2, j ∈ S1, k ∈ [n] s.t. Gi,k = Gj,k = Gi,k = 1

}
.

We can easily verify that MS1 6= ∅ if and only if S1 ∈ M , so we can use the family {WS1}S1 to
implement the checking subroutine of W.

Finally, we define the inner data function:

dS1(S2) := {(i, j, Gi,j) : i ∈ S1, j ∈ S2}.

In words, dS1 encodes all the edges of G with one endpoint in S1 and the other in S2, so it encodes
the induced bipartite subgraph of G, G(S1, S2).

Properties The spectral gaps of J(n, r1) and J(n, r2) are

δ = Ω

(
1

r1

)
and δ′ = Ω

(
1

r2

)
respectively.

The stationary distribution π is the uniform distribution on
(

[n]
r1

)
, while the stationary distri-

bution of P ′, π′ is the uniform distribution on
(

[n]
r2

)
. If there is a triangle {i, j, k} in the input

graph, then M is non-empty, and in particular, every set S1 containing i or j or k is in M . Thus,
we can compute a lower bound on π(M) assuming M 6= ∅; in that case:

π(M) =
|M |
|Ω|
≥
(
n−1
r1−1

)(
n
r1

) =
r1

n
.

Thus, ε = r1
n is a lower bound on π(M) whenever M 6= ∅. Finally, MS1 is non-empty exactly

when S1 ∈ M . In that case, let {i, j, k} be a triangle with i ∈ S1. Then a state S2 is certainly
marked if j ∈ S2, so

πS1(MS1) =
|MS1 |
|Ω′|

≥
(
n−1
r2−1

)(
n
r2

) =
r2

n
,

so ε′ = r2
n is a lower bound on πS1(MS1) whenever MS1 6= ∅.
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Workspace The algorithm will work on the space

HΩ ⊗HC ⊗Hd ⊗HΩ′ ⊗HC′ ⊗Hd′ ,

where each of these spaces will be defined presently. First, we have:

HΩ = span{|S1〉 : S1 ⊆ [n], |S1| = r1} and HΩ′ = span{|S2〉 : S2 ⊆ [n], |S2| = r2}.

Since we are only concerned with query complexity, we can simply use a naive encoding of each
set as a sorted list.

From any state Sa, a ∈ {1, 2}, we can specify the next state by some i ∈ Sa to be removed,
and some i′ 6∈ Sa to be added, so the coin spaces will be defined as

HC := HC′ := span{|i, i′〉 : i, i′ ∈ [n]}.

The coin states for any S1 or S2 will therefore look like:

|P (S1, ·)〉 =
∑

i∈S1,i′∈[n]\S1

1√
r1(n− r1)

|i, i′〉 and |P (S2, ·)〉 =
∑

i∈S2,i′∈[n]\S2

1√
r2(n− r2)

|i, i′〉.

Finally, since the outer walk has no data, we have Hd = 1, and since the inner data consists
of sets of queried edges, the space Hd′ can simply encode lists of m objects of the form (i, j, Gi,j),
that is:

Hd′ := span{E ⊆ {(i, j, b) : i, j ∈ [n], b ∈ {0, 1}} : |E| = m}.

Setup Subroutine Constructing the state

|π〉0 =
∑
S1∈Ω

√
π(S1)|S1, 0〉

∑
S2∈Ω′

√
π′(S2)|S2, 0〉|dS1(S2)〉

costs S = r1r2 queries, since we must query Gi,j for every (i, j) ∈ S1 × S2 to create dS1(S2).

Update Subroutines To implement the update, we must implement the local diffusion forW:

|S1, 0〉 7→
∑
S′1∈Ω

√
P (S1, S′1)|S1, S

′
1〉;

and the data swap for W:

|S1, S
′
1〉
∑
S2∈Ω′

√
π′(S2)|S2, 0〉|dS1(S2)〉 7→ |S′1, S1〉

∑
S2∈Ω′

√
π′(S2)|S2, 0〉|dS

′
1(S2)〉,
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for any S1, S
′
1 ∈ Ω such that |S1 ∩ S′1| = r1 − 1.

To implement the local diffusion, we need only be able to construct, for any S1 ∈ Ω, the coin
state |P (S1, ·)〉, which we can do in 0 queries.

To implement the data swap, we need only implement the map |dS1(S2)〉 7→ |dS′1(S2)〉 for any

edges (S1, S
′
1) ∈

−→
E (P ) and S2 ∈ Ω′. Fix an edge (S1, S

′
1) and let i be the unique element in

S1 \ S′1, and i′ the unique element in S′1 \ S1. Then since dS1(S2) encodes a bipartite subgraph
of G, with vertex classes S1 and S2, when we remove the vertex i from S1, and add the vertex
i′, to get the subgraph of G with vertex classes S′1 and S2, we must unquery all edge values in
G(S1, S2) incident to i, and query all edge values in G(S′1, S2) incident to i′. That is, we must
unquery the set {(i, j) : j ∈ S2}, which has size r2, and query the set {(i′, j) : j ∈ S2}, which also
has size r2. This costs U = 2r2 queries.

Inner Update Subroutines The inner update step is almost identical to the outer update.
Once again, the local diffusion can be constructed with 0 queries, since the coin state |P ′(S2, ·)〉 is
input-independent. The data swap is nearly identical as well: We must implement, for S2, S

′
2 ∈ Ω

such that |S2 ∩ S′2| = r2 − 1, the map

|S2, S
′
2〉|dS1(S2)〉 7→ |S′2, S2〉|dS1(S′2)〉.

For an edge (S2, S
′
2), let i be the unique member of S2 \ S′2, and i′ the unique member of

S′2 \ S2. Mapping |dS1(S2)〉 = G(S2, S
′
2) to |dS1(S′2)〉 = G(S1, S

′
2) requires unquerying the set

{(j, i) : j ∈ S1}, which has size r1, and querying the set {(j, i′) : j ∈ S1}, which has size r1 as
well, so the full inner update cost is U′ = 2r1 queries.

Inner Checking Subroutine The data dS1(S2) exactly encodes the induced bipartite sub-
graph G(S1, S2). A state S2 is marked if and only if this graph contains a triangle edge. We
know how to check if a graph contains a triangle edge in O(

√
nr2/3) queries, where r = r1 + r2 is

the number of vertices in G(S1, S1), by using the graph collision algorithm from Theorem 3.3.9
and Grover search. However, we can optimize the graph collision algorithm on a bipartite graph,
which gives us the following generalization of Theorem 3.3.9.

Lemma 5.3.3. Let G be a graph on vertex set [n]. Let K be a known bipartite subgraph of G
with vertex classes S1 and S2, such that |S1| = r1 and |S2| = r2. Then there exists an algorithm
that, for any k ∈ [n], decides if there exists an edge {i, j} in K such that {i, j, k} is a triangle in

G, with bounded error, using O
(
r

1/3
1 r

1/3
2

)
queries to G.
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Proof. Let G be a bipartite graph on classes S1 and S2 with |S1| = r1 and |S2| = r2. We proceed
as in the standard graph collision algorithm: let m ≤ min{r1, r2} be a parameter to be optimized
later. We walk on the product graph J(r1,m) × J(r2,m), where a state T1, T2 corresponds to
a pair of subsets; T1 is an m-sized subset of S1 and T2 is an m-sized subset of S2. Two states
(T1, T2) and (T ′1, T

′
2) are adjacent in J(r1,m) × J(r2,m) if T1 is adjacent to T ′1 in J(r1,m) and

T2 is adjacent to T ′2 in J(r2,m).

The data associated with a state T1, T2 is defined d(T1, T2) = {(i, Gi,k) : i ∈ T1 ∪ T2}. Thus,
the setup cost is S = O(m), and the update cost is U = O(1). A state is marked if there is a
pair i ∈ T1 and j ∈ T2 such that Ki,j = Gi,k = Gj,k = 1. Since the data contains Gi,k and Gj,k,
and Ki,j is known, checking costs C = 0 queries. The proportion of marked states is at least

ε = Ω
(
m2

r1r2

)
. The spectral gap of J(r1,m)×J(r2,m) is δ = Ω

(
1
m

)
. Thus, the query complexity

is

O

(
m+

√
r1r2

m

√
m

)
,

which is optimized by setting m = (r1r2)1/3 (which is smaller than r1 + r2 when max{r1, r2} ≤
min{r1, r2}2), yielding quantum query complexity O

(
(r1r2)1/3

)
.

We can check if a state S2 ∈ ΩS1 is marked with respect to S1 ∈ Ω by searching for an index
i ∈ [n] such that there exists an edge (j, k) ∈ S1 × S2 such that {i, j, k} is a triangle in G. We
thus have inner checking cost C′ = O

(√
n(r1r2)1/3

)
.

Plugging in all the costs and parameters, by Theorem 5.1.1, we have:

S +
1√
ε

(
1√
δ

U +
1√
ε′

(
1√
δ′

U′ + C′
))

= r1r2 +

√
n

r1

(
√
r1r2 +

√
n

r2

(√
r2r1 + (r1r2)1/3√n

))
= r1r2 +

√
nr2 + n

√
r1 +

n3/2

(r1r2)1/6
.

Plugging the optimal values of r1 = n4/7 and r2 = n5/7 gives total cost Õ
(
n9/7

)
, proving Theorem

5.3.2.

5.4 Application to Subgraph Finding

Ref. [LMS13] gives a general upper bound for subgraph finding, for any constant-sized subgraph,
of which their triangle finding upper bound is a special case. As with triangle finding in the
previous section, we can also recast their subgraph finding upper bound in the nested-checking
quantum walk search framework.
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We now give an explicit construction of nested quantum walks corresponding to the learning
graphs of [LMS13], matching their complexity up to logarithmic factors, and even potentially
improving their result for some cases. For simplicity consider the case of undirected graphs with
no self-loops. Let K be a graph on vertices {1, 2, . . . , k}. Then a graph G contains a copy of K
if G induces a graph that is isomorphic to K on some subset of k vertices.

The Learning Graph Construction In [LMS13], a meta-language is introduced for design-
ing a learning graph that detects a copy of K in G. Instructions are Setup, LoadVertex(i)
for i ∈ [k] and LoadEdge(i, j) for {i, j} ∈ E(K). A ‘program’ is an ordering of {Setup} ∪
{LoadVertex(i)}i∈[k]∪{LoadEdge(i, j)}{i,j}∈E(K) such that Setup appears first and for each edge
{i, j} of K, instruction LoadEdge(i, j) occurs in the program after instructions LoadVertex(i)
and LoadVertex(j).

Parameters are vertex-set sizes ri ≥ 1 for each vertex i of K, and average degrees di,j ≥ 1
for each edge {i, j} of K. These parameters are not related to K but parameterize the result-
ing learning graph. Assuming some natural conditions on these parameters, we can derive an
algorithm whose complexity is a function of the parameters, which can be optimized via a linear
program (see [LMS13] for a link to the program). We assume that ri ≤ n, di,j ≤ max{ri, rj}, and
that:

For all i there exists j such that {i, j} ∈ E(K) and dij
2rj + 1

2ri + 1
≥ 1. (5.2)

Each instruction has a cost that propagates to later instructions, and its total effective cost.
The first one is called global cost and the second one local cost. In [LMS13], a table is given, nearly
identical to Table 5.1, providing global and local costs for each of the three types of instructions.
Given a program of τ = k + |E(K)|+ 1 instructions, if `t denotes the local cost of instruction t,
and gt the global cost, then the resulting upper bound for deciding if K is in G is

τ∑
t=1

(∏
t′<t

gt′

)
`t. (5.3)

The Corresponding Nested Walk Given a program, we can define a sequence of nested
walks as follows. The Setup instruction corresponds to our quantum walk setup. Each non-setup
instruction corresponds to a quantum walk, with the walk corresponding to the tth instruction
being nested at depth t; that is, the tth walk is the checking procedure for the (t− 1)th walk.
Each non-setup instruction corresponds to an edge or vertex in K, and so each of our walks will
as well.

All walks will be on Johnson graphs. The state of the walk corresponding to a vertex i is
described by a subset of vertices Ri of size ri, and the state of the walk corresponding to an edge
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{i, j} is described by a subset Ti,j of di,j min(ri, rj) potential edges between Si and Sj . For each
edge {i, j} of K, our data function maintains the edges G(Ti,j) of G in Ti,j .

A state Si is marked if there exists some copy of K in G such that: for each Sj in a walk at
depth less than the depth of Si, Sj contains the jth vertex in the subgraph, and for each Tu,v at
depth less than the depth of Si, Tu,v contains edge {u, v} in the subgraph, and finally, Si contains
the ith vertex in the subgraph. A state Ti,j has a similar condition for being marked, except Ti,j
must contain edge {i, j} in the subgraph.

Setup To setup, we must create the uniform superposition |π〉0 of subgraphs G(Ti,j), one for
each edge {i, j} ∈ E(K). The total cost is

S =
∑
{i,j}∈K

min{ri, rj}di,j .

Vertex Walks To update a walk on vertex set Si we remove a vertex and add a new one.
To update the data, we must update the graphs G(Ti,j), for each j adjacent to i in K. By
applying the average cost technique used in the update step of the algorithm presented in Section
5.2, in which we only perform updates that have cost at most a constant times the average, we
can see that this complexity is related to the average degree in Si, which we can calculate as

di,j min
{

1,
rj
ri

}
. The total cost for this type of update is then

U =
∑

j:{i,j}∈K

di,j min

{
1,
rj
ri

}
.

Observe that this quantity is always Ω(1), by the imposed condition in (5.2).

We can easily calculate that the proportion of marked states in this type of walk is ε = ri/n,
and the spectral gap is δ = 1/ri.

Edge Walks Lastly, to update a walk on edge set Ti,j we simply replace one edge in Ti,j and
update G(Ti,j). Thus the cost of this type of update is simply U = 1. For this type of walk we

have ε =
di,j

max(ri,rj)
(since ε is the probability that a particular edge of Si × Sj is in Ti,j) and

δ = 1
min{ri,rj} .

Checking A state of the deepest walk is marked if the data encodes an entire copy of K in G.
Since we can detect this from the data with no further queries to G, the final checking cost is
C = 0.
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Instruction Global Cost Local Cost

Setup 1 S =
∑
{i,j}∈K

min{ri, rj}di,j

LoadVertex(i) 1√
ε

=
√

n
ri

1√
εδ

U =
√
n×

∑
j:{i,j}∈K

di,j min

{
1,
rj
ri

}
LoadEdge(i, j) 1√

ε
=
√

max{ri,rj}
di,j

1√
εδ

U =
√
rirj

Table 5.1: Global and local costs for quantum walks corresponding to each type of instruction.

Global and Local Costs We can rephrase our costs for each walk into global and local costs.
The global cost is simply the part of the cost that propagates forward to deeper walk costs. For
the setup (which we can consider as a walk on a complete graph in which every state is marked),
this is simply 1, whereas for other walks, the global cost is 1√

ε
(see (5.1)). Similarly, we can

consider local costs. For the setup this is defined as S, whereas for each other walk, it is defined
as 1√

εδ
U. We list all global and local costs in Table 5.1.

Comparing (5.1) and (5.3), we see that the upper bounds we achieve for subgraph detec-
tion are the same as those of [LMS13] (up to logarithmic factors), as a function of the global
and local costs. Furthermore, our expressions for global and local costs are almost identical to
those of [LMS13]. The only exception is that, depending on some sparsity condition, namely
whether di,j min{ri, rj} < max{ri, rj}, the local cost of LoadEdge(i, j) has two different expres-
sions in [LMS13]: either

√
rirj (when the condition holds) or max{ri, rj} (otherwise). Therefore,

ignoring logarithmic factors, our total complexity is the same as that of [LMS13] or potentially
better in some cases, because of our potentially better edge-local cost, though we know of no
particular graph for which we have asymptotically better complexity. We remark that we believe
that this improvement in edge-local cost could also be made in the learning graph construction
of [LMS13], however, it is not immediately clear how to do so in that setting, whereas in the
quantum walk setting it is natural and immediate.
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Chapter 6

Nested Updates

Having extended the quantum walk framework to allow for nested checking in [JKM13b], a natural
question was whether a similar result would hold for nesting a quantum walk subroutine in the
update step of a quantum walk. This turned out to be less straightforward than nested checking,
and required the introduction of a new concept in quantum walks; that of coin-dependent data.
Our main application of coin-dependent data was to allow for efficient nested updates, but it may
be of interest on its own. We were able to use nested updates to reproduce the learning graph
upper bound on the quantum query complexity of 3-distinctness up to log factors, and also to
show that in fact, this upper bound of Õ(n5/7) also applies to time complexity.

As a motivation, consider the following quantum walk specification, with the goal of finding a
3-collision in an input x. The walk will be on a Johnson graph J(n2, r), where n2 is the number
of 2-collisions in x. The state space will consists of sets of r 2-collisions with respect to x: pairs
(i, j) such that i < j and xi = xj . It’s not difficult to see how this could help us find a 3-collision:
consider a state marked if it contains a 2-collision that is part of a 3-collision. We can check this
using quantum search for a third index that collides with one of the pairs in the set.

In order to move classically from one state to another, we need to find a new 2-collision to add
to the set of 2-collisions. It therefore seems very natural to use Ambainis’s element distinctness
algorithm to help us perform this task. This algorithm generates a uniform superposition of sets
of m indices such that at least two of them are in collision. We can measure the output state of
Ambainis’s algorithm, and discard the non-collision parts, to get a uniform random 2-collision.
However, at this point, our classical intuition breaks down, because in fact, what we need for
the quantum update is a uniform superposition over 2-collisions. We cannot construct this from
a uniform superposition of sets containing 2-collisions, because this unwanted garbage, or extra
information, in each branch of superposition, is not independent of the 2-collision — for example,
the unwanted elements are disjoint from the 2-collision — so there is entanglement between the
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2-collisions and the garbage. We therefore cannot discard the garbage without destroying the
state.

It is easy to imagine this garbage issue arising in other attempts to use a non-trivial quantum
algorithm for the update step. In order to update a state u, we need to generate the coin state of
u, |P (u, ·)〉, which is some superposition over the coin space of P . This is a kind of state generation
problem, and requiring that we accomplish this state generation problem coherently ; that is, we
generate the superposition with no garbage, may make the problem much more difficult.

In Section 6.1, we will show how to overcome this difficulty in our new quantum quantum
framework, using the coin-dependent data. We will show how this coin-dependent data can be
used to perform nested updates, even when the coin state cannot be generated coherently. Our
strategy will essentially be to make whatever garbage we happen to end up with when we try to
generate the coin a part of the data. This garbage can be a function of the state we are trying to
update, and also of the coin, since we have explicitly allowed this in the data, and it can therefore
be entangled with the coin. This strategy can be used to deal with garbage in any quantum
update subroutine.

As an application of this nested update idea, we are able to get a quantum walk algorithm
for 3-distinctness with time complexity Õ(n5/7). This nearly matches a recent upper bound on
the quantum query complexity of 3-distinctness of O(n5/7) [Bel12a]. This query upper bound
was proven in the span program framework, and thus did not yield an upper bound on the time
complexity. Before this work, the best known time complexity for 3-distinctness was Õ(n3/4),
using the algorithm presented in Section 3.3.3, due to Ambainis [Amb04]. Our nested quantum
walk construction for 3-distinctness uses ideas from the span program construction of [Bel12a],
but since they are implemented using quantum walks, the time complexity is easily analyzed.
Furthermore, we are able to generalize our 3-distinctness algorithm to get an upper bound of
Õ(n(k−1)/k) on the time complexity of k-distinctness for any k > 3. This is only slightly better
than the previous upper bound of Õ(nk/(k+1)), and is worse than the best known query complexity
of k-distinctness, which is o(n3/4) for any k, also proven in [Bel12a]. As a warm-up, we will first
show an upper bound of O(n5/7) on the quantum query complexity of 3-distinctness, in Section
6.2.1. The full time-efficient algorithm for k-distinctness, presented in Section 6.2.2 is similar,
but significantly more technical.

Prior to the work presented in this chapter, the only nontrivial quantum walk update step
of which we are aware was a Grover search [CK11]. The ideas of this chapter open the door to
using a much broader class of quantum algorithms to implement the update subroutines.
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6.1 Nested Updates via Coin-Dependent Data

As with nested checking, we will illustrate the nested update technique by presenting it as an
explicit framework. As with nested checking, we suppose that we are given a quantum walk
specification, W = (Ω,M, P, d), that we want to implement, and along with W, for each u ∈ Ω,
we suppose we have some inner walk specification Wu = (Ωu,Mu, P u, du), whose purpose is to
help us to (non-coherently) generate the coin state of u. As in the nested checking section, we
will assume for simplicity that the data functions d and du are coin-independent (although we
will still use coin-dependent data to accomplish the nested update). It is also possible to consider
coin-dependent data, but this adds the extra associated cost of the (Ω, 0)-phase flip. Therefore,
since we do not require coin-dependent data for our applications, we omit it for the sake of
simplicity.

Since we will need to run both the outer walk W and the inner walks Wu, our full workspace
will look like:

H = HΩ ⊗HC ⊗Hd ⊗HΩ′ ⊗HC′ ⊗Hd′ ,

where HΩ⊗HC ⊗Hd is the workspace of W, HΩ′ must be able to encode any state in Ωu for any
u ∈ Ω, HC′ must be able to encode any coin state |P u(s, ·)〉 for u ∈ Ω, s ∈ Ωu, and all inner data
functions, du, must have domain Hd′ .

We will need several new subroutines related to the update step.

Extraction Subroutine In order for the inner walk Wu to be useful in generating the coin
state of u, even with garbage (which we will show how to deal with momentarily), we will need
some procedure to extract the coin state, non-coherently, from the final state of the walk specified

byWu, |Mu〉 =
∑

s∈Mu

√
πu(s)
πu(Mu) |s, 0〉|d

u(s)〉. In other words, we will need access to an extraction

subroutine, E, that acts on HΩ ⊗HC ⊗HΩ′ ⊗HC′ ⊗Hd′ as

|u, 0〉|Mu〉 = |u, 0〉
∑
s∈Mu

√
πu(s)

πu(Mu)
|s, 0〉|du(s)〉 7→

∑
v∈Ω

√
P (u, v)|u, v〉|Γ(u, v)〉,

for each u ∈ Ω, for some states {|Γ(u, v)〉}
(u,v)∈

−→
E (P )

, which we call the garbage states. The

extraction cost, E is the cost of the subroutine E.

Dealing with Garbage In order to show that the presence of these garbage states are not, in
fact, problematic in the new quantum walk search framework, we simply define coin-dependent
data, d2 so that d2(u, 0) = |πu〉0 and d2(u, v) = |Γ(u, v)〉. In that case, we have actually generated
the coin state with respect to the data d2, |P (u, ·)d2〉 =

∑
v∈Ω

√
P (u, v)|u, v〉|d2(u, v)〉, which is

exactly what is required by the new quantum walk framework. The only remaining requirement
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is a procedure for swapping the garbage, mapping |Γ(u, v)〉 to |Γ(v, u)〉. This is required to
implement the data swap, which requires mapping |d2(u, v)〉 to |d2(v, u)〉. The garbage swap cost,

G, is the cost of implementing this operation. In case Γ(u, v) = Γ(v, u) for all (u, v) ∈
−→
E , this

procedure is not required, and G = 0.

These garbage states {|Γ(u, v)〉}
(u,v)∈

−→
E

become a part of the quantum walk search algorithm

specification in the sense that the extraction and garbage swap subroutines depend on them, but
the correct way to think of them is that they are a byproduct of the extraction subroutine. They
should be defined after the extraction procedure is specified, to be whatever remains entangled
to the coin register when |P (u, ·)〉 is non-coherently generated. The garbage swap procedure is
then implemented based on this definition of Γ.

These simple ideas give rise to the strategy for nested update quantum walks made explicit
in the proof of Theorem 6.1.1. The result of the strategy is the following “framework”.
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Nested-Update Quantum Walk Framework

Parameters: Wx = (Ωx,Mx, Px, dx) An outer quantum walk
(for each x ∈ D) {Wu

x = (Ωu
x,M

u
x , P

u
x , d

u
x)}u∈Ω A family of inner quantum walks

Properties: ({πx}x, ε, δ) The outer walk properties
{πux : Ωu

X → R}u∈Ωx The stationary distribution of P ux
ε′ ∈ R+ A lower bound on πux(Mu

x ) for all u ∈ Ωx such that Mu
x 6= ∅

δ′ ∈ R+ The minimum spectral gap of P ux over all u ∈ Ωx, x ∈ D

Subroutines: Setup, S(x)
with cost S

|0〉 7→
∑
u∈Ωx

√
πx(u)|u, 0〉|dx(u)〉

∑
s∈Ωux

√
πux(s)|s, 0〉|dux(s)〉

Checking, C(x)
with cost C

|u, dx(u)〉 7→
{
−|u, dx(u)〉 if u ∈Mx

|u, dx(u)〉 else

Inner Checking, Cu(x)
with cost C′

|s, dux(s)〉 7→
{
−|s, dux(s)〉 if s ∈Mu

x

|s, dux(s)〉 else

Inner Local Diffu-
sion, Uu(x)
with cost U′

|s, 0〉 7→
∑

t∈Ωux

√
P ux (s, t)|s, t〉, ∀s ∈ Ωu

x

Inner Data Swap,
SWAPu(x)
with cost U′

|s, t〉|dux(s)〉 7→ |s, t〉|dux(t)〉, ∀(s, t) ∈
−→
E (P ux )

Extraction, E(x)
with cost E

|u, 0〉|Mu
x 〉

7→
∑

v∈Ωx

√
Px(u, v)|u, v〉|Γx(u, v)〉, ∀u ∈ Ωx

Garbage Swap, G(x)
with cost G

|u, v〉|dx(u)〉|Γx(u, v)〉

7→ |v, u〉|dx(v)〉|Γx(v, u)〉, ∀(u, v) ∈
−→
E (Px)

Cost: Õ

(
S +

1√
ε

(
1√
δ

(
1√
ε′

(
1√
δ′

U′ + C′
)

+ E + G

)
+ C

))
We now make the discussion of this section precise, by proving that this framework gives rise

to a quantum algorithm with the specified cost.

Theorem 6.1.1. Let N = {(Ωx,Mx, Px, dx), {(Ωu
x,M

u
x , P

u
x , d

u
x)}u∈Ω}x∈D specify a family of quan-

tum walk search algorithms with nested updates.

Then there is a quantum algorithm that finds an element of M , if M 6= ∅, with bounded error
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and with cost
Õ
(

S + 1√
ε

(
1√
δ

(
1√
ε′

(
1√
δ′

U′ + C′
)

+ E + G
)

+ C
))

.

Proof. Let S, C, {Cu, Uu, SWAPu, E, G}u∈Ω be subroutines implementing the walk specified by N ,
and in particular, let {|Γ(u, v)〉}

(u,v)∈
−→
E (P )

be the garbage generated by E. We will show how to

implement this nested update quantum walk via a quantum walk search algorithm in our new
framework using the given subroutines.

Define a new coin-dependent data function d̂2 :
−→
E (P ) ∪ (Ω× {0})→ Hd̂2

by

d̂2(u, v) = |Γ(u, v)〉, ∀(u, v) ∈
−→
E (P ), and d̂2(u, 0) = |πu〉0 =

∑
s∈Ωu

√
πu(u)|u, 0〉|du(s)〉,

where πu is the stationary distribution of P u. We will describe how to implement the subroutines
for the quantum walk Ŵ := (Ω,M, P, d, d̂2).

Setup subroutine The setup subroutine of Ŵ must construct:

|π〉0 =
∑
u∈Ω

√
π(u)|u, 0〉|d(u)〉|d̂2(u, 0)〉 =

∑
u∈Ω

√
π(u)|u, 0〉|d(u)〉|πu〉0,

which is exactly accomplished by the setup subroutine of N , so we have S(Ŵ) = S(N ).

Checking Subroutine We can implement the checking subroutine of Ŵ using the checking
subroutine of N , since they are identical. Thus C(Ŵ ) = C(N ).

Update Subroutines The local diffusion part of the update for Ŵ must achieve, for all u ∈ Ω:

|u, 0〉|d̂2(u, 0)〉 = |u, 0〉|πu〉0 7→
∑
v∈Ω

√
P (u, v)|u, v〉|d̂2(u, v)〉 =

∑
v∈Ω

√
P (u, v)|u, v〉|Γ(u, v)〉.

Let W u be a unitary that acts as W u|πu〉 = |Mu〉. We can use W u and the extraction procedure,

E, to achieve the local diffusion for Ŵ, since:

|u, 0〉|πu〉 W
u

7→ |u, 0〉|Mu〉 E7→
∑
v∈Ω

√
P (u, v)|u, v〉|Γ(u, v)〉.
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By Theorem 4.1.8, we can approximate the map W u with error 1/3 in cost on the order of
1√
ε′

(
1√
δ′

U(Wu) + C(Wu)
)

, and so we can perform the local diffusion for Ŵ with error 1/3 in

cost
1√
ε′

(
1√
δ′

U(Wu) + C(Wu)

)
+ E(N ) =

(
1√
δ′

U′(N ) + C′(N )

)
+ E(N ).

The data swap for Ŵ must achieve, for any edge (u, v) ∈
−→
E (P ):

|u, v〉|d(u)〉|d̂2(u, v)〉 = |u, v〉|d(u)〉|Γ(u, v)〉 7→ |v, u〉|d(v)〉|d̂2(v, u)〉 = |v, u〉|d(v)〉|Γ(v, u)〉.

This is exactly the action of the garbage swap, G, so we can accomplish this in cost G(N ).

Thus, if Ũ(Ŵ) is the cost to approximate the local diffusion and data swap with bounded error,
we have

Ũ(Ŵ) = Õ

(
1√
ε′

(
1√
δ′

U′(N ) + C′(N )

))
+ E(N ) + G(N ).

(Ω, 0)-Phase Flip Subroutine The phase flip subroutine needs to implement the reflection
about states of the form |u〉|d̂2(u, 0)〉 = |u〉|πu〉0. By Theorem 4.1.7, we can approximate this

mapping with precision 1/3 in cost 1√
δ′

U(Wu). Thus, if Φ̃(Ŵ) is the cost to approximate the

phase flip with bounded error, we have

Φ̃(Ŵ) = O

(
1√
δ′

U(Wu)

)
= O

(
1√
δ′

U′(N )

)
.

Recall that the local diffusion and phase flip are used to implement the walk operator. Using
implementations with constant error, we get a walk operator that has constant error. Since we
call the walk operator order of 1√

εδ
times, we need to reduce the error to O(

√
εδ) using log 1

εδ

repetitions, by Theorem 3.1.8, so implementing the walk operator to the required precision has

total cost
(

Ũ(Ŵ) + Φ̃(Ŵ)
)

log 1
εδ .

Finally, we note that since Ŵ only differs fromW in its data, it has the same spectral gap, δ, and
proportion of marked states, ε. We can thus, by Corollary 4.1.9, implement Ŵ in asymptotic
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cost:

S(Ŵ) +
1√
ε

(
1√
δ

(
Ũ(Ŵ) + Φ̃(Ŵ)

)
log

1

εδ
+ C(Ŵ)

)
= Õ

(
S(N ) +

1√
ε

(
1√
δ

(
1√
ε′

(
1√
δ′

U′(N ) + C′(N )

)
+ E(N ) + G(N ) +

1√
δ′

U′(N )

)
+ C(N )

))
= Õ

(
S(N ) +

1√
ε

(
1√
δ

(
1√
ε′

(
1√
δ′

U′(N ) + C′(N )

)
+ E(N ) + G(N )

)
+ C(N )

))
,

since ε′ ≤ 1, so 1√
ε′δ′

U′ ≥ 1√
δ′

U′.

As in the case of quantum walks with nested checking, we can consider the setup cost as
having two parts: the setup of the initial state of W, |πd〉, with cost Sd, and the setup of the
initial state of Wu, with cost S′. Then the total setup cost for a quantum walk with nested
updates is simply the sum of these costs: S = Sd + S′. Furthermore, if the inner walks do all the
work of the update, so that the cost of the extraction is 0, and if the garbage is well-behaved, in
the sense that it is either symmetric, or at least, the cost of implementing |Γ(u, v)〉 7→ |Γ(v, u)〉 is
negligible, then we get cost (neglecting poly-logarithmic factors):

Sd + S′ +
1√
ε

(
1√
δ

(
1√
ε′

(
1√
δ′

U′ + C′
))

+ C

)
,

analogous to the nested checking case.

As in the case of nested checking, it is also possible to nest quantum walks in the update step
to arbitrary depth (but again, each depth of nested results in additional terms in the complexity),
by applying this strategy inductively. However, as of yet, we know of no application for deeper
nesting. Even our k-distinctness algorithms use depth 2 nesting for every k.

6.2 Application to k-Distinctness

We will now show how to apply nested-update quantum walks to get an improved upper bound
on the time complexity of k-distinctness for all k > 2. Specifically, we will prove the following
theorem.

Theorem 6.2.1 (Time Complexity of k-Distinctness). The bounded error quantum time com-
plexity of 3-Distn is at most Õ(n5/7). Furthermore, for any k > 3, the bounded error quantum
time complexity of k-Distn is at most Õ(n(k−1)/k)).

We will prove Theorem 6.2.1 in Section 6.2.2. First, as a warm-up, we will present a nested-
update quantum walk in Section 6.2.1 that solves 3-distinctness in query complexity Õ(n5/7).
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This upper bound on the query complexity was already known, but using the span program
framework [Bel12a]. The proof of Theorem 6.2.1 is a generalization of the algorithm in Section
6.2.1, which we also analyze for time complexity, making the proof much more technical.

6.2.1 Query Complexity of 3-Distinctness

In this section, we will demonstrate how to use the nested-update technique outlined in Section
6.1 to construct a quantum walk for 3-distinctness with query complexity Õ(n5/7). Specifically,
we will prove the following:

Theorem 6.2.2. There exists a quantum walk algorithm solving 3-distinctness with bounded error
in Õ(n5/7) quantum queries.

This matches a previous result [Bel12a] up to logarithmic factors.

Main Idea We begin by giving a high-level overview of the algorithm. Our algorithm is concep-
tually simple. We walk on a Johnson graph, where the states correspond to sets of r2 2-collisions,
looking for a set that contains a 2-collision that is part of a 3-collision. We can check if a set has
this desired property by doing a Grover search for an index that forms a 3-collision with one of
the 2-collisions in the set.

To update to a neighbouring set, we will use a quantum walk subroutine for 2-distinctness.
We will use a variation of Ambainis’s quantum walk algorithm for 2-distinctness that finds m
collisions for some parameter m. At each step of the outer walk we will use the inner 2-distinctness
walk to update the outer walk state by replacing m of its members. That is, we will actually be
walking on a generalized Johnson graph J(n, r2,m).

Assumptions on the Input and Notation We make the simplifying assumptions that there
is at most one 3-collision and that the number of 2-collisions is in Θ(n). The first assumption
is justified in [Amb04, Section 5]. To justify the second assumption, note that given an input
x ∈ [q]n, we can construct x′ ∈ [q + n]3n with the same 3-collisions as x, and Ω(n) 2-collisions,
by defining x′i = xi for i ∈ [n] and x′i = x′i+n = q + i for i ∈ {n + 1, . . . , 2n}. Note that any two
2-collisions not both part of the 3-collision are disjoint.

A common simplifying technique is to randomly partition the space [n] and assume that the
solution respects the partition in some sense. Here we partition the space into three disjoint sets
of equal size, A1, A2 and A3, and assume that if there is a 3-collision {a1, a2, a3}, then we have
a1 ∈ A1, a2 ∈ A2 and a3 ∈ A3. This assumption holds with constant probability, so we need
only repeat the algorithm O(1) times with independent choices of the tripartition to find any
3-collision with high probability. Thus, we assume we have such a partition.
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Since we are assuming that (a1, a2, a3) ∈ A1 ×A2 ×A3, we will restrict our 2-collision search
to the set

C := {(i, j) ∈ A1 ×A2 : xi = xj}.

We will only consider 2-collisions in C to be “real” collisions. Then by the assumption that the
only 3-collision has one part in A2, we can assume that all 2-collisions in C are disjoint. We define
n2 := |C|. We can assume that n2 = Θ(n).

We will be working with sets S2 ⊂ C, but it will be useful to consider the set of indices that
are part of the 2-collisions in S2. We define

Ŝ2 :=
⋃

(i,j)∈S2

{i, j}.

For any set S1 ⊂ [n] of indices, we let

C(S1) := {(i, j) ∈ C : i, j ∈ S1}

denote the set of 2-collisions contained in S1. Since we make the assumption that the unique 3-
collision has one part in A3, all 2-collisions in C are disjoint. This gives us the following very useful
fact: for any set T1 ⊂ [n] and T2 ⊂ C such that T̂2 is disjoint from T1, |C(T1∪ T̂2)| = |C(T1)|+ |T2|.
We can see this inductively, by noting that for any T1 ⊂ [n], if (i, j) ∈ C and i, j ∈ T1, then if we
remove (i, j), it decreases |C(T1)| by exactly 1. This is true precisely because i and j cannot be
part of any other collision in T1.

Finally, for any set S1 ⊂ [n], we define:

x(S1) := {(i, xi) : i ∈ [n]},

and for any set S2 ⊂ C, we define:

x(S2) = {(i, j, xi) : (i, j) ∈ C}.

Parameters We will begin with the parameters for the outer walk W = (Ω,M, P, d). Define

Ω := {S2 ⊆ C : |S2| = r2}.

We say that a state is marked if it contains a 2-collision that is part of a 3-collision:

M := {S2 ∈ Ω : ∃a3 ∈ A3, (a1, a2) ∈ S2 s.t. xa1 = xa3}.
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The underlying random walk P will be on a generalized Johnson graph, J(n2, r2,m) for some
0 < r2 < n2 and 0 < m < r2 to be specified later. Recall that two vertices S2 and S′2 of
J(n2, r2,m) are adjacent whenever |S ∩ S′| = r2 −m. Thus

P (S2, S
′
2) =

{
1

(r2m)(n2−r2m )
if |S2 ∩ S′2| = r2 −m

0 else.

Finally, the data for the outer walk will be:

d(S2) := x(S2) = {(i, j, xi) : (i, j) ∈ S2}.

Next, we specify parameters for the inner walks WS2 = (ΩS2 ,MS2 , PS2 , d′) for each S2 ∈ Ω.
The inner walk will be a variation of Ambainis’s element distinctness algorithm. When updating
a state S2, we will look for m collisions disjoint from those already in S2, so we have:

ΩS2 := {S1 ⊂ (A1 ∪A2) \ Ŝ2 : |S1| = r1},

with the inner walk PS2 on J(2n/3− 2r2, r1) for some r1 ∈ [n]. We have inner marked set

MS2 := {S1 ∈ ΩS2 : |C(S1)| ≥ m}.

In the outer random walk, we replace m elements of the state S2 at each step. The reason this
is desirable is that it turns out that for the optimal r1, when n2 is large, as we assume, then
most sets S1 of size r1 have more than one 2-collision. This means that we need not take any
steps of the inner walk to find them, and furthermore, it would be a waste to only use one of the
2-collisions in S2 and ignore the rest, since the outer walk mixes much faster if we replace more
elements in S2 in each step. We will therefore set m to be half the expected number of 2-collisions
in a set of size r1.

Finally, we will define the inner data:

d′(S1) := x(S1) = {(i, xi) : i ∈ S1}.

Properties All random walks on Johnson graphs have uniform stationary distribution, so for
all S2 ∈ Ω, S1 ∈ ΩS2 , we have:

π(S2) =

(
n2

r2

)−1

, and πS2(S1) =

(
2n/3− 2r2

r1

)−1

.

We also know the spectral gaps for the walks on the J(n2, r2,m) and J(n−2r2, r1) from Fact 2.2.9:

δ ≥ m

r2
, δ′ ≥ 1

r1
.
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Finally, we estimate a lower bound on the proportion of marked states. For the outer walk,
assuming that there is a 3-collision, (a1, a2, a3) ∈ A1 × A2 × A3, then a state S2 is marked
whenever (a1, a2) ∈ S2. Then:

π(M) =
|M |
|Ω|
≥
(
n2−1
r2−1

)(
n2

r2

) =
r2

n2
,

so ε := r2
n2

is a lower bound on π(M). For the inner walk, a state is marked if |C(S1)| ≥ m. Each

(i, j) ∈ C is in C(S1) with probability r1(r1−1)
n′(n′−1) , where n′ = |A1∪A2|−2r2 = Θ(n). Since |C| = n2,

the expected size of |C(S1)| is µ = n2
r1(r1−1)
n′(n′−1) . Then we will set m = µ

2 = Θ
(
r21
n

)
, since n2 and n′

are both of order Θ(n). Since m = µ
2 , using Fact 2.3.2, we have

Pr[|C(S1)| ≥ m] ≥ 1− e−µ/8.

We will make sure to choose r1 so that n2
r1(r1−1)
n′(n′−1) ≥ 1, so that ε′ := 1 − e−1/8 ≥ 1

10 is a lower

bound on πS2(MS2).

It may seem somewhat odd that we have ε′ = Ω(1) for all inner walks, since this implies that
an inner marked state S1 is somehow easy to find. Going back to our classical intuition of a
random walk algorithm, we can imagine trying to find m 2-collisions by sampling a set S1 and
then taking steps of the walk until we have found m 2-collisions, however, since we will already
have m 2-collisions in the initially sampled state, we do not actually need to do the walk at all.
So in some sense, the nested quantum walk we are presenting here does not actually contain a
nested walk: we simply make use of the fact that it is sometimes easier to approximately reflect
about a state |π〉 than it is to create it, so after the first time we “sample a state S1”, subsequent
“samples” are cheaper. More formally, suppose we choose m so that it is within logarithmic
factors of the expected number of 2-collisions, so that ε′ = 1 − 1

poly(n) . Then we can apply the

extraction subroutine directly on the state |πS2〉 ≈ |MS2〉, making the update cost (ignoring
extraction and garbage swap costs, which we will show to be negligible): 1√

δ′
U′. This cost comes

from the (Ω, 0)-phase flip, which reflects about |πS2〉 — the classical analogue of sampling a new
S1. So although the quantum walk does need the coin-dependent data of the new framework, in
some sense, it does not use the full machinery of the nested-update quantum walk framework.

Workspace The algorithm will work on the space

HΩ ⊗HC ⊗Hd ⊗HΩ′ ⊗HC′ ⊗Hd′ ,

where each of these spaces will be defined presently. First we have:

HΩ = span{|S2〉 : S2 ⊂ [n]2, |S2| = r2}, and HΩ′ := span{|S1〉 : S1 ⊂ [n], |S1| = r1}.
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Since we are only concerned with query complexity, we can assume all sets are stored as sorted
lists. Since d(S2) is a set of elements of the form (i, j, xi), and d′(S1) is a set of elements of the
form (i, xi), we will have:

Hd := span{|S〉 : S ⊂ [n]× [n]× [q], |S| = r2} and Hd′ := span{|S〉 : S ⊂ [n]× [q], |S| = r1}.

Finally, the coin spaces will be defined:

HC := span{|I, J〉 : I, J ⊂ [n]2, |I| = |J | = m} and HC′ := span{|i, j〉 : i, j ∈ [n]}.

For the outer walk, |S2〉|I, J〉C represents the edge (S2, S
′
2), where S′2 = (S2 \ I) ∪ J .

Setup Subroutine To set up, we must construct the state:

|π〉0 =
∑
S2∈Ω

1√(
n2

r2

) |S2〉|d(S2)〉
∑

S1∈ΩS2

1√(
n−2r2
r1

) |S1〉|d′(S1)〉.

We have Ω = {S2 ⊂ C : |S2| = r2}, where C ⊂ A1 ×A2 for some tripartition of [n], A1 ×A2 ×
A3. It turns out that we cannot construct the state |π〉0 with respect to a specified A1, A2, A3.
However, we can construct the state for some tripartition, over which we do not have full control,
but which is sufficiently random.

Theorem 6.2.3. Let C(A1, A2) = {(i, j) ∈ A1 ×A2 : xi = xj}. We can construct the state∑
S2⊂C(A1,A2):|S2|=r2

1√(
n2

r2

) |S2〉|d(S2)〉

for random variables A1 and A2 such that A1 and A2 are disjoint, and if x has a unique 3-
collision {a1, a2, a3}, and A3 := [n] \ A1 ∪ A2, then Pr[(a1, a2, a3) ∈ A1 × A2 × A3] = Ω(1), in
O(r1 + r2

√
n/r1) queries.

Proof. We sketch a proof here, but note that the proof of Theorem 6.2.5 for the case of k-
distinctness contains significantly more detail.

We start with a random 3-partition of [n], B1, B2, B3, and let C := {(i, j) ∈ B1 × B2 : xi = xj}.
Let n2 = |C|.

To construct the state, we first construct

|ψ1〉 =
∑

S1⊂B1:|S1|=r1

(
n/3

r1

)−1/2

|S1〉|x(S1)〉,

which we can do in r1 queries, since we must query all of S1 to get x(S1). Next we will search
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for elements of B2 that collide with S1. For S1 ⊂ B1, define

Z(S1) := {i ∈ B2 : ∃j ∈ S1, (j, i) ∈ C}.

We will repeatedly Grover search for elements in Z(S1) until we find r2 of them. We have to query
an index i to see if it is in Z(S1), so the query complexity of this procedure is

√
n/|Z(S1)|r2,

assuming |Z(S1)| ≥ r2. For a uniform S1, the size of Z(S1) is roughly n2r1
n = Ω(r1) in expectation.

For most choices of B1 and B2, we have Pr[|Z(S1)| ≥ r1
4 ] ≥ 1 − o(1). We can thus ignore the

part of the state |ψ1〉 where |Z(S1)| < εr1, for some suitably chosen constant ε. Thus, if we will

apply Grover search to find r2 elements of Z(S1) in cost O
(
r2

√
n
r1

)
, the resulting state is close

to:

|ψ2〉 =
∑

S1⊂B1:|S1|=r1,|Z(S1)|≥εr1

(
n/3

r1

)−1/2

|S1〉|x(S1)〉
∑

J⊂Z(S2):|J |=r2

(
|Z(S1)|
r2

)−1/2

|J〉|x(J)〉.

For a particular J and S1, define

KS1,J := {i ∈ S1 : @j ∈ J s.t. (i, j) ∈ C},

and
SS1,J

2 := {(i, j) ∈ C s.t. i ∈ S1, j ∈ J}.

Next, in 0 queries, we perform the reversible map:

|S1〉|x(S1)〉|J〉|x(J)〉 7→ |KS1,J〉|x(KS1,J)〉|SS1,J
2 〉|x(SS1,J

2 )〉.

Applying this to |ψ2〉 leaves us with a state close to:(
n/3 + r1 − r2

s1

)−1/2 ∑
K∈( B1

r1−r2
):|Z(K)|≥εr1−r2

|K,x(K)〉
(
|Z(K)|+ r2

r2

)−1/2 ∑
S2∈C(B1\K,B2)

|S2, x(S2)〉.

Note that this state is not uniform in K, but is uniform in S2 when we restrict to a particular K.
Thus we measure the first register to get some K with non-uniform probability that depends only
on |Z(K)|. The remaining state is the uniform superposition (omitting uniform amplitudes):∑

S2⊂C(B1\K,B2):|S2|=r2

|S2〉|d(S2)〉,

since d(S2) = x(S2). In other words, we have constructed the correct state, but for the wrong
partition.
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Now let A1 = B1 \K, A2 = B2 and A3 = B3 ∪K. Then we have C = C(B1 \K,B2) = C(A1, A2),
so we have constructed the correct state for the tripartition A1, A2, A3. Clearly, if {a1, a2, a3} is
the unique 3-collision, then a1 ∈ B1, a2 ∈ B2 and a3 ∈ B3 with constant probability. It remains
to consider whether a1 ∈ K. Although the distribution of K is non-uniform, the distribution
restricted to those K with Z(K) = z is uniform for any fixed z, and it is easy to see that
Pr(a1 ∈ K|Z(K) = z) is o(1) for any z.

For more details, refer to the proof of Theorem 6.2.5, which also proves an analogous statement
for time complexity.

To complete the setup, we simply construct, for every |S2〉, the state
∑

S1∈ΩS2 |S1〉|d′(S1)〉,
which can be done in r1 = |S1| queries. The full setup cost is then

S = r1 + r2

√
n

r1
.

Checking Subroutine In order to check if a state S2 is marked, we will search A3 for an index
a3 such that xa3 = xa1 for some (a1, a2) ∈ S2. We can accomplish this task using Grover search
over A3. Since all values xa1 , xa2 such that (a1, a2) ∈ S2 can be found in d(S2), we need only
query xa3 to know if a3 is the index we are looking for. Thus, searching for such a value in A3

costs C = O(
√
|A3|) = O(

√
n) queries.

Inner Checking Subroutine In order to check if a state S1 is marked, we need only inspect
d′(S1) to see if there are m 2-collisions, i, j ∈ S1 such that (i, j) ∈ A1 × A2 and xi = xj . Since
d′(S1) contains xi and xj , this can be done with C′ = 0 queries.

Inner Update Subroutines To implement the inner update, we must implement the local
diffusion for each WS2 :

|S1, 0〉 7→
∑

S′1∈ΩS2

√
PS2(S1, S′1)|S1, S

′
1〉;

and the data swap for each WS2 :

|S1, S
′
1〉|d′(S1)〉 7→ |S′1, S1〉|d′(S′1)〉,

for every S1, S
′
1 ∈ ΩS2 such that |S1∩S′1| = r1−1. We can perform the local diffusion in 0 queries,

since it is independent of the input. To implement the data swap, since d′(S1) = {(i, xi) : i ∈ S1}
and d′(S′1) = {(i, xi) : i ∈ S′1}, we need only unquery the unique i ∈ S1 \S′1 and query the unique
i′ ∈ S′1 \ S1. Thus the inner update can be implemented in U′ = 2 queries.
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Extraction Subroutine To implement the extraction, we must implement the map

|S2, 0〉
∑

S1∈MS2

1√
|MS2 |

|S1, 0〉|d′(S1)〉 7→
∑
S′2∈Ω

√
P (S2, S′2)|S2, S

′
2〉|Γ(S2, S

′
2)〉 = |S2〉|P (S2, ·)Γ〉

for any states {|Γ(S2, S
′
2)〉}

(S2,S′2)∈
−→
E

in Hd′ . Recall that the coin state of S2, without data, is

|P (S2, ·)〉 =
∑

I⊆S2:|I|=m

1√(
r2
m

) |I〉 ∑
J⊆C\S2:|J |=m

1√(
n2−r2
m

) |J〉.
The first part of this is simple to construct, in 0 queries, with no garbage, from |S2〉. To construct
the second part, recall that MS2 consists of subsets of [n] that contain at least m pairs of colliding
indices, not already in S2. Roughly speaking, in order to construct the coin state with garbage,
we will simply extract m collision pairs from each S1 in superposition, and the garbage will be
whatever is leftover. To start, we implement the map

|0〉|S1, d
′(S1)〉 7→

∑
J⊆C(S1):|J |=m

1√(|C(S1)|
m

) |J〉|S1, d
′(S1)〉,

extracting every possible m-set of collision pairs from S1 in superposition. This can be done in 0
queries, and the resulting state is (omitting uniform amplitudes):∑

S1∈MS2

∑
J⊆C(S1):
|J |=m

1√(|C(S1)|
m

) |J〉|S1〉|d′(S1)〉 =
∑

J⊆C\S2:
|J |=m

|J〉
∑

S1∈MS2 :Ĵ⊂S1

1√(|C(S1)|
m

) |S1〉|d′(S1)〉.

Note that it is important here that the amplitudes not depend on J . This is only true because
we assume that the unique 3-collision has one part in A3, and so all 2-collisions across A1 × A2

are disjoint. We can define the garbage as what we happen to have leftover. For any S′2 such
that S′2 \ S2 = J , we define the garbage state:

|Γ(S2, S
′
2)〉 :=

√
|MS2 |(
n2−r2
m

) ∑
S1∈MS2 :Ĵ⊂S1

1√(|C(S1)|
m

) |S1〉|d′(S1)〉.

With these garbage states, we can implement the extraction in E = 0 queries.

Garbage Swap Having defined the garbage states, we can now describe how to implement the
garbage swap. This must act as

|S2, S
′
2〉|d(S2)〉|Γ(S2, S

′
2)〉 7→ |S′2, S2〉|d(S′2)〉|Γ(S′2, S2)〉.
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Let I = S2 \ S′2 and J = S′2 \ S2. To implement the mapping

|d(S2)〉 = |{(i, j, xi) : (i, j) ∈ S2}〉 7→ |d(S′2)〉 = |{(i, j, xi) : (i, j) ∈ S′2}〉,

we must remove x(I) and add x(J). In fact, we do not need any queries to learn x(J), because
Γ consists of superpositions of sets S1 containing all indices in J , and d′(S1) contains their query
values. In fact, we will see that if we remove all of J, x(J) from S1, d

′(S1), and replace it with
I, x(I), we will have implemented the map |Γ(S2, S

′
2)〉 7→ |Γ(S′2, S2)〉 as well, with 0 queries.

We will perform the mapping, controlled on |S2, S
′
2〉 = |S2, I, J〉:

|x(S2)〉|S1〉|x(S1)〉 7→ |x((S2 \ I) ∪ J)〉|(S1 \ Ĵ) ∪ Î〉|x((S1 \ Ĵ) ∪ Î)〉.

This costs 0 queries, since it just involves moving around already stored values. Applying this
map to |d(S2)〉|Γ(S2, S

′
2)〉 gives:

|d(S′2)〉
∑

S1∈MS2 :Ĵ⊂S1

1√(|C(S1)|
m

) |(S1 \ Ĵ) ∪ Î〉|d′((S1 \ Ĵ) ∪ Î)〉. (6.1)

Next, it is easy to see that the map ϕ(S1) = (S1\Ĵ)∪Î is a bijection from {S1 ∈MS2 : Ĵ ⊂ S1}
to {S1 ∈MS′2 : Î ⊂ S1}. Furthermore, since all collisions in C are disjoint, we have for any S1,

|C(S1)| = |C(S1 \ J)|+ |J | = |C(S1 \ J)|+ |I| = |C((S1 \ J) ∪ I)| = |C(ϕ(S1))|.

We can therefore rewrite (6.1) as

|d(S′2)〉
∑

S1∈MS′2 :Î⊂S1

1√(|C(S1)|
m

) |S1〉|d′(S1)〉.

Since I = S2 \S′2 and J = S′2 \S2, this is exactly |d(S′2)〉|Γ(S′2, S2)〉, as desired. We can complete
the garbage swap by mapping |S2, S

′
2〉 to |S′2, S2〉, also in 0 queries. Each of the required operations

has 0 queries, so we can implement the garbage swap with query complexity G = 0.

The Full Complexity Applying Theorem 6.1.1, we can compute the query complexity of our
nested-update quantum walk algorithm, (neglecting logarithmic factors):

S +
1√
ε

(
1√
δ

(
1√
ε′

(
1√
δ′

U′ + C′
)

+ E + G

)
+ C

)
= r1 + r2

√
n

r1
+ r1 +

√
n2

r2

(√
r2

m

(√
nm
√
r1

+ 0 + 0

)
+
√
n

)
= r1 + r2

√
n

r1
+

√
n2n

r1
+

√
n2n

r2
= Õ

(
r1 + r2

√
n

r1
+

n
√
r1

+
n
√
r2

)
.

Setting r1 and r2 to the optimal values of r1 = n5/7 and r2 = n4/7 gives query complexity Õ(n5/7),
proving Theorem 6.2.2.
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6.2.2 Time Complexity of k-Distinctness for k ≥ 3

In this section, we will present a generalization of the quantum walk search algorithm presented
in Section 6.2 that will solve k-distinctness for any k ≥ 3. We will analyze this algorithm in terms
of not only query complexity, but also time complexity, to prove Theorem 6.2.1.

Main Idea We begin by giving a high-level overview of the algorithm. As in the case of 3-
distinctness, our main idea is very simple. Whereas the algorithm from Section 6.2.1 walks on a
Johnson graph of sets of 2-collisions, our more general version will walk on sets of rk−1 (k − 1)-
collisions. To update the state, we will use a variation of the (k − 1)-Dist algorithm of Ambainis,
in which we search for a set containing m (k− 1)-collisions. Thus, at each step of the outer walk,
we replace m elements of the set. We remark that it may be possible to improve this algorithm
by finding a way to use the improved (k − 1)-Dist algorithm presented here rather than that of
Ambainis’s algorithm, thus using k− 1 levels of nesting, however, it is not immediately clear how
to do this.

Assumptions on the Input, and Notation As in the previous section, we will assume that
the input has at most 1 k-collision, and nk−1 = Θ(n) (k − 1)-collisions.

As in the previous section, we can partition [n] into equal parts A1, . . . , Ak, and only consider
k-collisions (a1, . . . , ak) ∈ A1 × · · · ×Ak. Define

C`(A1, . . . , A`) := {(a1, . . . , a`) ∈ A1 × · · · ×A` : xa1 = · · · = xa`}.

Note that C1(A1) = A1. When A1, . . . , Ak is fixed, and there is no ambiguity, we write

Ck−1 := {(i1, . . . , ik−1) ∈ A1 × · · · ×Ak−1 : xi1 = · · · = xik−1
}.

Let nk−1 := |Ck−1|. For Sk−1 ⊂ Ck−1, define:

Ŝk−1 :=
⋃

(i1,...,ik−1)∈Sk−1

{i1, . . . , ik−1}.

For any S1 ⊂ [n], define:

Ck−1(S1) := {(i1, . . . , ik−1) ∈ Ck−1 : i1, . . . , ik−1 ∈ S1}.

As in the case of 3-collision, since we assume a unique k-collision, and assume part of it is in Ak,
the (k − 1)-collisions in Ck−1 are all disjoint.

Finally, for any I ⊆ C`(A1, . . . , A`), define x(I) = {(i1, . . . , i`, xi1) : (i1, . . . , i`) ∈ I}.
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Parameters The outer walk P will be on a Johnson graph J(nk−1, rk−1,m) for some rk−1 ∈ [n]
and m ∈ [rk−1] to be defined later, with states representing sets of (k − 1)-collisions. Thus, we
define:

Ω := {Sk−1 ⊆ Ck−1 : |Sk−1| = rk−1}.

We will consider a state S1 marked if it has m distinct (k − 1)-collisions, so

M := {Sk−1 ∈ Ω : ∃ak ∈ Ak, (a1, . . . , ak−1) ∈ Sk−1 s.t. xak = xa1}.

Finally, the data for the outer walk will be:

d(Sk−1) := x(Sk−1) = {(i1, . . . , ik−1, xi1) : (i1, . . . , ik−1) ∈ Sk−1}.

The inner walks will be used to search for (k − 1)-collisions in A1 ∪ · · · ∪ Ak−1 using the
algorithm of Ambainis. When updating Sk−1, we will look for collisions disjoint from those
already in Sk−1. Thus the inner walk will be on J(n− |Ak| − (k− 1)rk−1, r1) for some parameter
r1 to be specified later, with state space:

ΩSk−1 := {S1 ⊆ (A1 ∪ · · · ∪Ak−1) \ Ŝk−1 : |S1| = r1}.

We will consider a state S1 marked if it contains m (k − 1)-collisions, for some m that will be
specified shortly, so we define

MSk−1 :=
{
S1 ∈ ΩSk−1 : |Ck−1(S1)| ≥ m

}
.

Finally, we define the inner data function:

dSk−1(S1) = d′(S1) := {(i, xi) : i ∈ S1}.

Properties Random walks on Johnson graphs have uniform stationary distribution, so the
stationary distribution of P , π, is the uniform distribution on Ω, and the stationary distribution
of PSk−1 , πSk−1 , is the uniform distribution on ΩSk−1 . We also know the spectral gap for any
walk on a Johnson graph, so in particular:

δ ≥ m

rk−1
, and δ′ ≥ 1

r1
.

Next, we estimate a lower bound on the proportion of marked states. For the outer walk, assuming
that there is at least one (k − 1)-collision, (a1, . . . , ak), then a state Sk−1 is marked whenever
(a1, . . . , ak−1) ∈ Sk−1. Then:

π(M) =
|M |
|Ω|
≥

(nk−1−1
rk−1−1

)(
nk−1
rk−1

) =
rk−1

nk−1
,
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so ε :=
rk−1

nk−1
is a lower bound on the proportion of states that are marked.

Finally, we compute a lower bound ε′ on the proportion of marked states in an inner walk.
By assumption that nk−1 = Θ(n), there are always marked states in the inner walk, since m <
r1 = o(n). As in the case of 3-distinctness, we will actually end up setting parameters so that
the expected number of (k − 1)-collisions in a state S1 is more than 1. Thus, just as in the case
of 3-distinctness, we will choose m to be µ

2 , where µ is the expected size of Ck−1(S1), and then
we will have ε′ constant. We formalize this in the following lemma.

Lemma 6.2.4. Suppose
rk−1
1

nk−2 ≥ 1. Then there exist m ∈ O
(
rk−1
1

nk−2

)
and ε′ ∈ Ω(1) such that if

MSk−1 = {S1 ∈ ΩSk−1 : |Ck−1(S1)| ≥ m}, then for all Sk−1 ∈ Ω, πSk−1(MSk−1) ≥ ε′.

Proof. Let Z = |Ck−1(S1)| for uniform random S1 ∈ ΩSk−1 . For any ~a ∈ Ck−1, let Z~a be the
indicator variable for the event that all of its coordinates occur in S1, so we have Z =

∑
~a Z~a.

We have

µ := E[Z] =
∑

~a∈Ck−1

Pr[Z~a = 1] = nk−1

(n−(k−1)rk−1−(k−1)
r1−(k−1)

)(
n−(k−1)rk−1

r1

) = Θ

(
rk−1

1

nk−2

)
,

since nk−1 = Θ(n). We will define m := µ
2 .

For any ~a,~a′ ∈ Ck−1, Pr[Z~aZ~a′ = 1] ≤ Pr[Z~a = 1] Pr[Z~a′ = 1], that is, the random variables are
negatively correlated, so we can apply tail bounds (see Fact 2.3.2) to get Pr[Z < µ−ε] < e−ε

2/(2µ)

for any ε > 0, where p = Pr[Z~a = 1]. Setting ε = µ
2 , we get:

Pr[Z ≥ m] ≥ 1− e−µ/8 ≥ 1− e−1/8 ≥ 1

10
.

Setting ε′ = 1/10 completes the proof.

Workspace and Encoding Since we will be concerned with time complexity, we will need
to carefully consider how we encode sets |S〉 and their data, so that elementary operations like
inserting a new element can be done efficiently. As usual, the full workspace will have the tensor
product structure:

H = HΩ ⊗HC ⊗Hd ⊗HΩ′ ⊗HC′ ⊗Hd′ .

Each of these spaces will be spanned by states that encode sets — either of indices, (k−1)-tuples
of indices, or index-query tuples of the form (i, xi) or (i1, . . . , ik−1, xi1). We first consider encoding
sets of indices or (k− 1)-tuples of indices. We will use the quantum radix tree structure, defined
in Section 3.3.4, using the index or index tuple as both the key and value. Thus, HΩ will store
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quantum radix trees of size rk−1, containing strings of length (k − 1) log n, and HΩ′ will store
quantum radix trees of size r1, containing strings of length log n, (see Definition 3.3.5). Recall
that quantum radix trees storing strings of length O(log n) allows us to insert, delete, lookup, and
construct a uniform superposition of the elements stored, all in time O(log n). For the remainder
of this section, when we write |S〉, it will be implicit that S is encoded as a quantum radix tree.

The coin state of a state Sk−1 ∈ Ω can be defined

|P (Sk−1, ·)〉 :=
1√(

rk−1
m

)(
nk−1−rk−1

m

) ∑
I⊂Sk−1:|I|=m

|I〉
∑

J⊂Ck−1\Sk−1:|J |=m

|J〉,

so the outer coin also encodes sets. We will store these as quantum radix trees as well.

The inner coin is just
∑

i∈S1
|i〉
∑

j∈[n]\S1
|j〉, so we can just let HC′ = span{|i, j〉 : i, j ∈ [n]}.

To store sets of items of the form (i, xi), we use a (k − 1)-augmented quantum radix tree
structure (Definition 3.3.6). The xi part will act as the key, and the i part the value. Recall
that, in addition to being able to insert, remove and lookup in cost O(log n), we can also check
the number of (k − 1)-collisions stored in the tree in cost O(1), as well as create a uniform
superposition over all (k − 1)-collisions stored in the tree in cost O(log n). This is even possible
when we restrict to only those (k− 1)-collisions in A1 × · · · ×Ak−1. Thus, since d′(S1) is a set of
elements of this form, Hd′ will store (k − 1)-augmented quantum radix trees of size r1.

Finally, we will store |d(Sk−1)〉, which is a set of items of the form (i1, . . . , ik−1, xi1), in a
quantum radix tree, with the xi part acting as the key, and the (i1, . . . , ik−1) part acting as the
value. So Hd will store quantum radix trees of size rk−1.

Setup Subroutine Since we are now concerned with time complexity, we will need some
efficient way to store and compute the partition A1, . . . , Ak. To this end, we will use a k-wise
independent function to construct a k-wise independent partition of [n] (see Definition 2.3.3).
Such a partition is sufficiently random for our purposes, but still allows us to efficiently compute
to which Aj an index i belongs, and encode the partition in a reasonable sized space.

Roughly, the setup subroutine will work as follows. Let r1 > r2 > · · · > rk−1 be parameters
to be specified later. We will begin by querying a set S1 ⊂ A1 of r1 indices. Next we will search
for r2 indices in A2 that collide with the indices in S1. We will remove those indices K1 ⊂ S1 for
which we did not find a collision, leaving a set S2 of r2 2-collisions. Next we will search A3 for
r3 indices that collide with the 2-collisions in S2. We will remove those 2-collisions K2 ⊂ S2 for
which we did not find a collision in A3, resulting in a set S3 of r3 3-collisions. We will continue
inductively, at the tth step, finding indices from At that collide with some set of (t− 1)-collisions,
until we have a superposition over tuples of sets Sk−1,K1, . . . ,Kk−2 such that Sk−1 is a set of
(k−1)-collisions, and for each j, Kj is a set of j-collisions. We will measure the sets K1, . . . ,Kk−2

so that what remains is a superposition over sets Sk−1 of (k − 1)-collisions.
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Figure 6.1: After two steps, we have a super-
position over sets S2 of 2-collisions and sets
K1 of single indices. After the third step, we
have a state |ψ3〉, supported by states of the
pictured form, which consist of a set S3 of 3-
collisions, a set K2 of 2-collisions, and a set
K1 of single indices.

Apart from the details of the time complexity analysis being somewhat technical, a small
issue comes up when we attempt to implement this procedure, because whenever we measure the
sets Kj of j-tuples with which we did not find collisions, there is some small correlation between
Kj and the unmeasured register of (k − 1)-collisions, Sk−1, so the resulting state does not have
support on all sets of t-collisions from Ct(A1, . . . , At), just as we saw in the case of 3-distinctness.
We can deal with this by slightly modifying the partition A1, . . . , Ak.

The full setup construction is quite technical, and consists almost entirely in the proof of the
Theorem 6.2.5, below. An immediate corollary of Theorem 6.2.5 is that

S = O

((
r1 +

k−2∑
i=1

ri+1

√
n/ri

)
(log n+ log q)

)
,

since we can complete the setup by constructing
∑

S1⊂[n]\Ŝk−1:|S1|=r1 |S1〉|d′(S1)〉 using r1 inser-

tions and queries.

Theorem 6.2.5 (First part of Setup). We can construct the state(
nk−1

rk−1

)−1/2 ∑
Sk−1⊂Ck−1(A1,...,Ak−1):|Sk−1|=rk−1

|Sk−1〉|d(Sk−1)〉,

in time O
(

(r1 +
∑k−2

i=1 ri+1

√
n/ri)(log n+ log q)

)
, for A1, . . . , Ak−1 random variables such that:

1. A1, . . . , Ak−1, Ak := [n] \ (
⋃k−1
j=1 Aj) is a k-partition of [n];

2. if {a1, . . . , ak} denotes the unique k-collision of x, then with probability at least 1
2kk

, (a1, . . . , ak) ∈
A1 × · · · ×Ak; and
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3. the time complexity of determining to which of A1, . . . , Ak an index i ∈ [n] belongs is

O(log n), and the space required to store the partition is O
(∑k−2

i=1 ri log n
)

.

Proof. Let B1, . . . , Bk be a uniform k-wise independent k-partition of [n]. For any j ∈ {1, . . . , k−
1}, let nj := |Cj(B1, . . . , Bj)|. With high probability, we have nj = Θ(n) for all j.

For any j ∈ {1, . . . , k − 1} and any set Sj ⊆ Cj(B1, . . . , Bj), define

Z(Sj) := {i ∈ Bj+1 : ∃(i1, . . . , ij) ∈ Sj s.t. xi = xi1},

the set of indices that form (j+1)-collisions with the j-collisions in Sj . For any t ∈ {1, . . . , k−1},
j ∈ {1, . . . , t}, and St ⊆ Ct(B1, . . . , Bt), define

S
(j)
t := {(i1, . . . , ij) ∈ Cj(B1, . . . , Bj) : ∃ij+1, . . . , it s.t. (i1, . . . , it) ∈ St}.

For any j ∈ {1, . . . , k − 1} and Sj ⊆ Cj(B1, . . . , Bj), let |x̃(Sj)〉 denote |Sj〉|x(Sj)〉. For t ∈
{1, . . . , k − 1}, define (omitting uniform amplitudes)

|ψt〉 :=

(
|Ct(B1, . . . , Bt)|

rt

)−1/2 ∑
St⊂Ct(B1,...,Bt):

|St|=rt

|x̃(St)〉|ψt(St)〉,

where

|ψt(St)〉 :=
∑

K1⊂C1(B1),...,
Kt−1⊂Ct−1(B1,...,Bt−1):
∀j,|Kj |=rj−rj+1,

∀i 6=j,Ŝt∩K̂j=K̂i∩K̂j=∅

t−1∏
j=1

(
|Z(S

(j)
t ∪

⋃t−1
i=j K

(j)
i )|

rj

)−1/2

|x̃(K1), . . . , x̃(Kt−1)〉.

We will first prove by induction on t ∈ {1, . . . , k − 1} that we can construct |ψt〉 in cost

O
(

(r1 +
∑t−1

i=1 ri+1

√
n/ri)(log n+ log q)

)
. We will then show how to construct the desired state

from |ψk−1〉.

Base Case Since C1(B1) = B1, we need only construct the state:

|ψ1〉 =

(
|B1|
r1

)−1/2 ∑
S1∈(B1

r1
)

|S1〉|x(S1)〉.

99



We can do this by simply creating a uniform superposition of subsets of B1, and querying all
indices in each set. Using a quantum radix tree to store S1 and x(S1), this costs O(r1(log n +
log q)), as required.

Induction Step Let t > 1. We begin by constructing the state |ψt−1〉, which has complexity
O((r1 +

∑t−2
i=1 ri+1

√
n/ri)(log n + log q)), by the induction hypothesis. To complete the proof,

we will use |ψt−1〉 to construct |ψt〉 in time complexity O(rt
√
n/rt−1(log n+ log q)). To do this,

we will search for rt indices in Z(St−1), and use them to form rt t-collisions. The (t− 1)-tuples
in St−1 for which we do not find t-collisions will become Kt−1.

The complexity of for indices in Z(St−1) will depend on |Z(St−1)|, which varies in St−1. For a
uniform random St−1, |Z(St−1)| has a hypergeometric distribution with mean µ ≥ rt−1nt

|Bt| ≥
rt−1nt
n ,

so using tail inequalities from Fact 2.3.1:

Pr
[
|Z(St−1)| ≤ rt−1nt

2n

]
≤ 2 exp

(
− µ

10

)
= o(1),

so we will simply ignore any part of the state |ψt−1〉 such that |Z(St−1)| ≤ rt−1nt
2n .

We next define a collision search operation, which we will apply to the |St−1〉|x(St−1)〉 registers
of |ψt−1〉 and some auxiliary space. Let St−1 ⊆ Ct−1(B1, . . . , Bt−1). Then the collision search
operator acts as:

|St−1〉|x(St−1)〉|0〉 7→ |St−1〉|x(St−1)〉
∑

J⊂Z(St−1):|J |=rt

|J〉|x(J)〉.

We can implement this mapping using Grover search to look for an index i ∈ [n] such that
i ∈ Z(St−1). We repeat this rt times, each time looking for an index not yet found. Let J̃ denote
the set of indices in Z(St−1) already found, which we store in a quantum radix tree. Then we can
check if an index i is in Z(St−1)\ J̃ in cost O(log n+ log q) by looking up i in J̃ , testing if i ∈ At,
and looking up xi in x(J̃). Thus, since we assume |Z(St−1)| ≥ rt−1nt

2n = Θ(rt−1), since nt = Θ(n),

finding a new i costs O(
√
n/rt−1(log n+ log q)). Once we have found a new i, we insert i into J̃ ,

and insert (i, xi) into x(J̃), costing O(log n+ log q). Thus, the total cost to implement collision

search is O
(
rt
√
n/rt−1(log n+ log q)

)
.

Applying collision search to |ψt−1〉|0〉 results in the state (omitting uniform amplitudes):

|ψ′t−1〉 =
∑

St−1⊂Ct−1(B1,...,Bt−1):
|St−1|=rt−1

|St−1〉|x(St−1)〉
(
|Z(St−1)|

rt

)−1/2 ∑
J⊂Z(St−1):|J |=rt

|J〉|x(J)〉|ψt−1(St−1)〉.
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Each index in J forms a t-collision with some (t− 1)-tuple in St−1. We want to form t-collisions
and insert them into a new set, St. We will show how to do this one-by-one for each j ∈ J .
Consider a state of the form |St−1〉|x(St−1)〉|j, xj〉|St〉|x(St)〉, where St is a (possibly empty) set of
elements of the form (i1, . . . , it) with it < j, stored in a quantum radix tree, and j ∈ Z(St−1). In
particular, let~i = (i1, . . . , it−1) be the unique element of St−1 such that xj = xi1 (it is necessarily
unique, because of the assumption that there is only one k-collision and it is in B1 × · · · × Bk).
We next describe how to implement the mapping:

|St−1〉|x(St−1)〉|j, xj〉|St〉|x(St)〉 7→ |St−1 \ {~i}〉|x(St−1 \ {~i})〉|0〉|St ∪ {(~i, j)}〉|x(St ∪ {(~i, j)})〉.

This is reversible, since j > it for all (i1, . . . , it) ∈ St. We can implement this mapping roughly
as follows:

� Lookup xj in x(St−1) to find (i1, . . . , it−1, xj), and write it into an auxiliary register.

� Delete (i1, . . . , it−1) from St−1 and (i1, . . . , it−1, xj) from x(St−1).

� Insert (i1, . . . , it−1, j) into St and (i1, . . . , it−1, j, xj) into x(St).

� Lookup xj in x(St) to get some tuple (`1, . . . , `t, xj), and subtract it from the auxiliary
register containing (i1, . . . , it−1, xj).

� Lookup the largest index ` ∈ St, and subtract `, x` from the register containing j, xj .

Note that we can lookup the largest key in a radix tree by simply traversing the tree as far down
as possible, always taking the right child. Since j is the largest, the last step erases j, xj . The
complete procedure costs O(log n+ log q). For any St−1, J , define

KSt−1,J := {(i1, . . . , it−1) : @j ∈ J s.t. xj = xi1},

which is the set of tuples in St−1 for which we did not find collisions; and

S
St−1,J
t := {(i1, . . . , it) : (i1, . . . , it−1) ∈ St−1, it ∈ J, xi1 = xit},

which is the set of t-collisions we can form from St−1 and J . By repeating the above process
|J | = rt times on |ψ′t−1〉, in cost O(rt(log n+ log q)), we get the state |ψ′′t−1〉 defined:

∑
St−1⊂Ct−1(B1,...,Bt−1):

|St−1|=rt−1

(
|Z(St−1)|

rt

)−1/2∑
J⊂Z(St−1):
|J |=rt

|x̃(S
St−1,J
t )〉|x̃(KSt−1,J)〉|ψt−1(St−1)〉.
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We will now show that |ψ′′t−1〉 = |ψt〉. First, by observing that St−1 = (S
St−1,J
t )(t−1) ∪KSt−1,J ,

we can rewrite |ψ′′t−1〉 as:

∑
St⊂Ct(B1,...,Bt):

|St|=rt

|x̃(St)〉
∑

Kt−1⊂Ct−1(B1,...,Bt−1):

|Kt−1|=rt−1−rt, Ŝt∩K̂t−1=∅

(
|Z(S

(t−1)
t ∪Kt−1)|

rt

)−1/2

|x̃(Kt−1)〉|ψt−1(S
(t−1)
t ∪Kt−1)〉.

For any St, consider

|ψ̃t(St)〉 :=
∑

Kt−1⊂Ct−1(B1,...,Bt−1):

|Kt−1|=rt−1−rt, Ŝt∩K̂t−1=∅

(
|Z(S

(t−1)
t ∪Kt−1)|

rt

)−1/2

|x̃(Kt−1)〉|ψt−1(S
(t−1)
t ∪Kt−1)〉,

and recall that |ψt−1(S
(t−1)
t ∪Kt−1)〉 is equal to:

∑
K1⊂C1(B1),...,

Kt−2⊂Ct−2(B1,...,Bt−2):
∀j,|Kj |=rj−rj+1,

∀i 6=j,(Ŝ(t−1)
t ∪K̂t−1)∩K̂j=K̂i∩K̂j=∅

t−2∏
j=1

(
|Z((S

(t−1)
t ∪Kt−1)(j)) ∪

⋃t−2
i=j K

(j)
i )|

rj

)−1/2

|x̃(K1), . . . , x̃(Kt−1)〉.

Let K̃ be the set of (K1, . . . ,Kt−1) on which |ψ̃t(St)〉 has nonzero support, and K the set on
which |ψt(St)〉 has nonzero support. Note that

(Ŝ
(t−1)
t ∪ K̂t−1) ∩ K̂j = (Ŝ

(t−1)
t ∩ K̂j) ∪ (K̂t−1 ∩ K̂j) = (Ŝt ∩ K̂j) ∪ (K̂t−1 ∩ K̂j),

since Ŝt \ Bt = Ŝ
(t−1)
t and K̂j ∩ Bt = ∅, so (Ŝ

(t−1)
t ∪ K̂t−1) ∩ K̂j = ∅ if and only if Ŝt ∩ K̂j = ∅

and K̂t−1 ∩ K̂j = ∅, from which it follows that K = K̃.

Let α̃(K1, . . . ,Kt−1) be the amplitude on |x̃(K1), . . . , x̃(Kt−1)〉 in |ψ̃t(St)〉. Note that (S
(t−1)
t ∪
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Kt−1)(j) = (S
(t−1)
t )(j) ∪K(j)

t−1 = S
(j)
t ∪K

(j)
t−1 We have

α̃(K1, . . . ,Kt−1) =

(
|Z(S

(t−1)
t ∪Kt−1)|

rt

)−1/2 t−2∏
j=1

(
|Z((S

(t−1)
t ∪Kt−1)(j) ∪

⋃t−2
i=j K

(j)
i )|

rj

)−1/2

=

(
|Z(S

(t−1)
t ∪Kt−1)|

rt

)−1/2 t−2∏
j=1

(
|Z(S

(j)
t ∪

⋃t−1
i=j K

(j)
i )|

rj

)

=

t−1∏
j=1

(
|Z(S

(j)
t ∪

⋃t−1
i=j K

(j)
i )|

rj

)
,

so |ψ̃t(St)〉 = |ψ(St)〉, and thus |ψ′′t−1〉 = |ψt〉, completing the induction step.

Constructing the Desired State from |ψk−1〉. To construct the desired state from |ψk−1〉,
we will simply measure the registers containing |ψk−1(Sk−1)〉 to get some K =

⋃k−2
j=1 K̂j . The

remaining superposition, |ψ〉, over states |Sk−1〉 will not have nonzero support on all possible sub-
sets of Ck−1(B1, . . . , Bk−1): rather, it will have nonzero support on all Sk−1 ⊂ Ck−1(B1, . . . , Bk−1)
such that |Sk−1| = rk−1 and Ŝk−1 ∩K = ∅. For all i ∈ {1, . . . , k− 1}, define Ai := Bi \K. Then
|ψ〉 has nonzero support on

(C(A1,...,Ak−1)
rk−1

)
. To show that |ψ〉 is a uniform superposition, we will

show that the relative amplitudes of each possible (K1, . . . ,Kk−2) have no dependence on Sk−1.
Define

α(K1, . . . ,Kk−2, Sk−1) :=

k−2∏
j=1

(
|Z(S

(j)
k−1 ∪

⋃k−2
i=j K

(j)
i )|

rj

)
.

For all j ∈ {1, . . . , k − 2}, define:

Sj := S
(j)
k−1 ∪

k−2⋃
i=j

K
(j)
i .

Lemma 6.2.6. Let Ak = [n] \ (
⋃k−1
i=1 Ai), and suppose the unique k-collision is in A1× · · ·×Ak.

Then for all j ∈ {1, . . . , k − 2}, |Z(Sj)| = |Z(Sj \ S(j)
k−1)|+ rk−1.
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Proof. Let S
(j)
k−1 := Ŝk−1 ∩ Aj , and note that |S(j)

k−1| = |Sk−1| = |S(j)
k−1|, since S

(j)
k−1 contains

exactly the last member of each tuple in S
(j)
k−1.

We first observe that Z(S
(j)
k−1) = S

(j+1)
k−1 . To see this, since it’s clear that S

(j+1)
k−1 ⊆ Z(S

(j)
k−1),

suppose there is some i′j+1 ∈ Z(S
(j)
k−1) \ S(j+1)

k−1 . Since i′j+1 ∈ Z(S
(j)
k−1), let (i1, . . . , ij) ∈ S

(j)
k−1

be such that xi1 = xi′j+1
. Let ij+1, . . . , ik−1 be such that (i1, . . . , ik−1) ∈ Sk−1. Then since

i′j+1 6= ij+1, (i1, . . . , ik−1, i
′
j+1) is a k-collision in [n] \Ak, which is a contradiction.

Next, we observe that S
(j+1)
k−1 ∩ Z(Sj \ S(j)

k−1) = ∅. Suppose not, and let i′j+1 ∈ S
(j+1)
k−1 ∩ Z(Sj \

S
(j)
k−1). Since ij+1 ∈ Z(Sj \ S(j)

k−1), there exists (i′1, . . . , i
′
j) ∈ Sj \ S(j)

k−1 such that xi1 = xi′j+1
.

Since i′j+1 ∈ S
(j+1)
k−1 , let i1, . . . , ij , ij+1, . . . , ik−1 be such that (i1, . . . , ik−1) ∈ Sk−1. Then since

(i′1, . . . , i
′
j) 6∈ S

(j)
k−1, (i1, . . . , ij) 6= (i′1, . . . , i

′
j). Suppose i` 6= i′` for ` ∈ [j]. Then (i1, . . . , ik−1, i

′
`) is

a k-collision in [n] \Ak, which is a contradiction.

Then, since for any sets S and S′, Z(S ∪ S) = Z(S) ∪ S(S′), we have:

|Z(Sj)| = |Z(Sj \ S(j)
k−1) ∪ Z(S

(j)
k−1)|

= |Z(Sj \ S(j)
k−1)|+ |Z(S

(j)
−1)| − |Z(Sj \ S(j)

k−1) ∩ Z(S
(j)
k−1)|

= |Z(Sj \ S(j)
k−1)|+ |S(j+1)

k−1 | − |Z(Sj \ S(j)
k−1) ∩ S(j+1)

k−1 |

= |Z(Sj \ S(j)
k−1)|+ rk−1.

Note that this proof relies heavily on the assumption that there is a unique k-collision. This
is a barrier to constructing uniform superpositions over sets of t-collisions when 1 < t < k −
1, which would allow us to implement more clever algorithms for k-distinctness with better
complexity.

Thus, we have

α(K1, . . . ,Kk−2, Sk−1) =

k−2∏
j=1

(
|Z(
⋃k−2
i=j K

(j)
i )|+ rk−1

rj

)
,

which is independent of Sk−1. Thus, under the assumption that the unique k-collision is in
A1 × · · · × Ak, |ψ〉 is a uniform superposition over

(Ck−1(A1,...,Ak−1)
rk−1

)
. We complete the proof by

arguing that this happens with constant probability.

Let (a1, . . . , ak) be the unique k-collision in x. Since B1, . . . , Bk is a uniform k-wise independent
partition of [n], Pr[a1 ∈ B1, . . . , ak ∈ Bk] = 1

kk
. Suppose (a1, . . . , ak) ∈ B1 × · · · × Bk. Then
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the only way we can have (a1, . . . , ak) 6∈ A1 × · · · × Ak is if ai ∈ K for some i ∈ [k − 1]. Since
|K| =

∑k−2
j=1 |K̂j | =

∑k−2
j=1 j(rj − rj+1) = o(n), this happens with probability o(1), so for large

enough n, we have Pr[a1 ∈ A1, . . . , an ∈ An] ≥ 1
2kk

.

Finally, if we store K in a radix tree, we can efficiently compute to which set i ∈ [n] belongs as
follows. We first check if i ∈ K, in which case, we know i ∈ Ak. Otherwise, we compute to which
of B1, . . . , Bk i belongs.

Checking Subroutine In order to check if a state Sk−1 is marked, we will search Ak for an
index ak such that xa1 = · · · = xak for some (a1, . . . , ak−1) ∈ Sk−1. We can accomplish this task
using Grover search over Ak. For any ak ∈ Ak, we can check if it has the desired property by
looking up xak in the quantum radix tree storing |d(Sk−1)〉. This has time complexity O(log n).
Since we are searching a set of size |Ak| = n

k = O(n), we can determine if such an ak exists with
bounded error in O(

√
n) such data structure queries. Thus, the checking procedure has total

time complexity C = O(
√
n log n).

Inner Update Subroutines To implement the inner update, we need to implement the local
diffusion for WSk−1 :

|S1, 0〉 7→ |S1〉
∑

i∈S1,j∈([n]\Ŝk−1)\S1

1√
r1(n− (k − 1)rk−1 − r1)

|i〉|j〉;

and the data swap for WSk−1 :

|S1, S
′
1〉|d′(S1)〉 7→ |S′1, S1〉|d′(S′1)〉.

We will begin with the local diffusion. To construct
∑

i∈S1

1√
r1
|i〉, controlled on |S1〉, we simply

access the elements of the quantum radix tree storing S1 in superposition, which we can do in
time O(log n). To construct

∑
j∈([n]\Ŝk−1)\S1

1√
n−(k−1)rk−1−r1

|j〉, we can construct
∑

j∈[n]
1√
n
|j〉,

and then bring it as close as desired to the required state using a constant number of rounds of
amplitude amplification, where at each round we check, in time O(log n), if j in S1 or Sk−1. Thus
the local diffusion costs O(log n).

To implement the data swap, on an edge (S1, S
′
1) with S1 \ S′1 = {i} and S′1 \ S1 = j, we

first note that we can map |S1, S
′
1〉 = |S1〉|i, j〉 to |S′1, S1〉 = |S′1, j, i〉 by inserting j into S1, and

removing i from S1, in cost O(log n), and then mapping |i, j〉 7→ |j, i〉 in cost O(1). Finally, to
map |d(S1)〉 to |d(S′1)〉, controlled on |j, i〉, we query |xj , xi〉 in an auxiliary register, remove (i, xi)
from |d(S1)〉 and add (j, xj), in cost O(log q), and 2 queries.

Thus, the total update cost of WSk−1 is U′ = O(log n+ log q).
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Inner Checking Subroutine In order to check if a state S1 is marked, we need to determine
if it has at least m (k− 1)-collisions from Ck−1, which we can do by simply checking the collision
counter of the augmented quantum radix tree storing d′(S1) = x(S1). Thus, the time complexity
of the inner checking step is C′ = O(1).

Extraction Subroutine To implement the extraction, we must implement the map (omitting
uniform amplitudes):

|Sk−1, 0〉
∑

S1∈MSk−1

|S1, 0〉|d′(S1)〉 7→ |Sk−1〉
∑

I⊂Sk−1:
|I|=m

|I〉
∑

J⊂Ck−1\Sk−1:
|J |=m

|J〉|Γ (Sk−1, (Sk−1 ∪ J) \ I)〉,

for some states Γ. This extraction will be carried out just as in the case of 3-distinctness from
Section 6.2, however, since we are now concerned with time complexity, our analysis must be
more detailed.

To construct
∑

I⊂Sk−1:|I|=m
1√

(rk−1
m )
|I〉, we simply access Sk−1 in superposition m times, in

cost O(m log n). To construct the second part, we will use the fact that MSk−1 consists of subsets
of [n] that contain at least m (k − 1)-collisions not already in S2, and extract these to form J ,
letting whatever is leftover be the garbage. We first implement the map:

|0〉|S1, d
′(S1)〉 7→

∑
J⊂Ck−1(S1):|J |=m

1√(|Ck−1(S1)|
m

) |J〉|S1, d
′(S1)〉,

extracting every possible set of m (k − 1)-collisions from S1 in superposition. We can construct
a uniform superposition of (k − 1)-collisions in S1 from the augmented quantum radix tree stor-
ing d′(S1) in cost O(log q). Repeating this m times gives the desired state in time O(m log q).
Applying this procedure to |MSk−1〉 results in the state (omitting uniform amplitudes):∑

S1∈MSk−1

∑
J⊆Ck−1(S1):
|J |=m

1√(|Ck−1(S1)|
m

) |J〉|S1〉|d′(S1)〉

=
∑

J⊆Ck−1\Sk−1:
|J |=m

|J〉
∑

S1∈MSk−1 :Ĵ⊂S1

1√(|Ck−1(S1)|
m

) |S1〉|d′(S1)〉.

We can define the garbage as what we happen to have leftover. For any S′k−1 such that S′k−1 \
Sk−1 = J , we define the garbage state:

|Γ(Sk−1, S
′
k−1)〉 :=

√
|MSk−1 |(
nk−1−rk−1

m

) ∑
S1∈MSk−1 :Ĵ⊂S1

1√(|Ck−1(S1)|
m

) |S1〉|d′(S1)〉.

With these garbage states, we can implement the extraction in time E = O(m(log n+ log q)).
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Garbage Swap Having defined the garbage states, we can now describe how to implement the
garbage swap, which is similar to the 3-distinctness case seen in Section 6.2. This must act as

|Sk−1, S
′
k−1〉|d(Sk−1)〉|Γ(Sk−1, S

′
k−1)〉 7→ |S′k−1, Sk−1〉|d(S′k−1)〉|Γ(S′k−1, Sk−1)〉.

Let I = Sk−1 \ S′k−1 and J = S′k−1 \ Sk−1. To implement the mapping

|d(Sk−1)〉 = |{(i1, . . . , ik−1, xi1) : (i1, . . . , ik−1) ∈ Sk−1}〉

7→ |d(S′k−1)〉 = |{(i1, . . . , ik−1, xi1) : (i1, . . . , ik−1) ∈ S′k−1}〉,

we must remove x(I) = {(i1, . . . , ik−1, xi1) : (i1, . . . , ik−1) ∈ I} and add x(J) = {(i1, . . . , ik−1, xi1) :
(i1, . . . , ik−1) ∈ J}. To implement this, we will remove J and x(J) from S1 and d′(S1), and replace
them with I and x(I). We do this using the map (controlled on |Sk−1, S

′
k−1〉):

G : |d(Sk−1)〉|S1〉|d′(S1)〉 7→ |d((Sk−1 \ I) ∪ J〉|(S1 \ Ĵ) ∪ Î〉|d′((S1 \ Ĵ) ∪ Î)〉.

Note that since |Sk−1, S
′
k−1〉 encodes both I and J , we can reversibly perform this mapping by

doing the following for each (i1, . . . , ik−1) ∈ I:

� Remove (i1, . . . , ik−1, xi1) from |d(Sk−1)〉 (O(log q)).

� For each t ∈ [k − 1], insert it into |S1〉, and (it, xi1) into |d(S1)〉 (O(log q + log n)).

and a similar (but reversed) set of operations for each (i1, . . . , ik−1) ∈ J . The total cost of this is
O(m(log q+ log n)). Recall from Section 6.2 that the map ϕ(S1) = (S1 \ Ĵ)∪ Î is a bijection from

MSk−1 to MS′k−1 such that |Ck−1(S1)| = |Ck−1(ϕ(S1))|. Then, applying G results in (omitting
uniform amplitudes):

|d(Sk−1)〉|Γ(Sk−1, S
′
k−1)〉

7→ |d((Sk−1 \ I) ∪ J)〉
∑

S1∈MSk−1 :Ĵ⊂S1

1√(|Ck−1(S1)|
m

) |ϕ(S1)〉|d′(ϕ(S1))〉

= |d(S′k−1)〉
∑

S1∈M
S′
k−1 :Î⊂S1

1√(|Ck−1(S1)|
m

) |S1〉|d′(S1)〉 = |d(S′k−1)〉|Γ(S′k−1, Sk−1)〉.

Thus we can implement the garbage swap in cost G = O(m(log n+ log q)).
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Final Analysis

Applying Theorem 6.1.1, we can compute the time complexity of our nested-update quantum
walk algorithm, (neglecting logarithmic factors, and assuming rk−1

1 > nk−2):

S +
1√
ε

(
1√
δ

(
1√
ε′

(
1√
δ′

U′ + C′
)

+ E + G

)
+ C

)
= r1 +

k−2∑
i=1

ri+1

√
n

ri
+

√
n

rk−1

(√
rk−1

m
((
√
r1 + 1) +m+m) +

√
n

)

= r1 +
k−2∑
i=1

ri+1

√
n

ri
+
n(k−1)/2

r
(k−2)/2
1

+
r

(k−1)/2
1

n(k−3)/2
+

n
√
rk−1

.

3-Distinctness In optimizing the parameters, there are now two cases: k = 3 or k > 3. We
first suppose k = 3. In that case, the complexity expression becomes:

r1 + r2

√
n

r1
+

n

r
1/2
1

+ r1 +
n
√
r2
.

Just as in the case of the query complexity, this is optimized by setting r1 = n5/7 and r2 = n4/7.
This gives total time complexity Õ

(
n5/7

)
. In this case, the dominating terms are the first, second,

and fourth terms.

k-Distinctness When k > 3, the optimization of terms works out differently. In that case, we

set r1 = n
k−1
k , optimizing the first and third-last terms, and set ri =

√
n for all i > 1, so that all

but the first term in the sum become n3/4. This gives time complexity Õ
(
n
k−1
k

)
, completing the

proof of Theorem 6.2.1.
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Part III

Approximate Span Programs
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Chapter 7

Approximate Span Programs

Span programs are a model of computation first used to study logspace complexity [KW93],
and more recently, introduced to the study of quantum query complexity in [RŠ12]. The main
practical use of span programs stems from a general construction that takes a span program
and constructs a quantum algorithm for the associated decision problem with quantum query
complexity matching the “complexity” of the span program [Rei09, Rei11]. When we construct
and run this quantum algorithm, we say that we evaluate the span program.

It is known that span programs are equivalent to bounded error quantum query complexity
of Boolean functions, in the sense that, for every span program, we can construct an algorithm
that decides the related function in bounded error query complexity that is within a constant
factor of the span program complexity, and for every Boolean function, there is an optimal span
program for that function, whose complexity is within a constant of the bounded error quantum
query complexity of the function. However, there is no known construction that takes a bounded
error quantum query algorithm and converts it to a span program with matching complexity
(up to a constant) compared with a simple construction, discussed in Section 7.2, that takes
an algorithm with one-sided error and converts it to a span program with matching complexity
[Rei09, Section 3]. Interestingly, this conversion even preserves the time complexity, in the sense
that the time complexity of evaluating the resulting span program is within a constant factor of
the time complexity of the original algorithm. Although nothing practical is gained from this
construction, it is unsatisfying that despite the known relationship between bounded error query
complexity and span programs, this construction only works for one-sided error, suggesting that
perhaps the definition of span programs currently used is not the ideal definition for modeling
bounded error quantum query complexity.

The problem in extending this idea beyond 1-sided error seems to be that span programs have
a somewhat exact nature, in the sense that an input is said to be “accepted” by a span program
(that is, the associated function is 1 on that input) if and only if the target is in the span of the
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available vectors (see Definition 7.0.1), and is “rejected” even if it is almost in the span of these
vectors.

Motivated by this unsatisfying state of affairs, we study the concept of approximate span
programs. We begin by giving a slightly modified definition of a span program that has the
advantage of working with non-Boolean alphabets without incurring any logarithmic (in the
input alphabet size) factors, in contrast to the previous definition. We then relax the notion
of the associated function of a span program, allowing us to consider a single span program P
with a number of possible functions f , with which P has a more approximate relationship. We
then view this pair (P, f) as an approximate span program. We show that this new definition
of approximate span programs is actually meaningful by giving an algorithm to evaluate an
approximate span program. That is, for any (P, f) with the approximate relationship we will
define, we can construct an algorithm from P, that solves f , and whose query complexity is equal
to the complexity of P. The contents of this chapter are based on joint work with Tsuyoshi Ito.

Span Programs for non-Boolean Alphabets To begin, we slightly modify the definition
of a span program to facilitate its extension to non-Boolean alphabets. We use the following
definition.

Definition 7.0.1. A span program P = (H,V, τ, A) on [q]n consists of

1. finite-dimensional complex inner product spaces H = H1 ⊕ · · · ⊕ Hn ⊕ Htrue ⊕ Hfalse, and
{Hj,a ⊆ Hj}j∈[n],a∈[q] such that Hj = Hj,1 + · · ·+Hj,q,

2. a vector space V ,

3. a target vector τ ∈ V , and

4. a linear operator A ∈ L(H,V ).1

Furthermore, for a string x ∈ [q]n, we define H(x) := H1,x1 ⊕ · · · ⊕Hn,xn ⊕Htrue and say that
these vectors are available to x (in a slight abuse of terminology, since typically V (x) := AH(x)
are called the available vectors for x).

For a function f : D → {0, 1}, D ∈ [q]n, we say that P decides f if

1. for every x ∈ f−1(1) there exists |w〉 ∈ H(x) such that A|w〉 = τ (such a |w〉 is called a
positive witness), and

2. for every x ∈ f−1(0) there is no |w〉 ∈ H(x) such that A|w〉 = τ , or equivalently, there
exists a linear mapping ω ∈ L(V,C) such that ω(τ) = 1 and

∥∥ωAΠH(x)

∥∥ = 0 (such an ω is
called a negative witness).

1Wlog, we can assume V = im(A).
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For each x ∈ f−1(1), we define

wsize+(x,P) := min
|w〉∈H(x):A|w〉=τ

‖|w〉‖2 and wsize−(x,P) :=∞.

For each x ∈ f−1(0), we define

wsize−(x,P) := min
ω∈L(V,C):ω(τ)=1,ωAΠH(x)=0

‖ωA‖2 and wsize+(x,P) :=∞.

We define the positive and negative complexities of P as a span program for f as

W+(P, f) := max
x∈f−1(1)

wsize+(x,P) and W−(P, f) := max
x∈f−1(0)

wsize−(x,P).

The complexity of P as a span program for f is defined C(P, f) :=
√
W+(P, f)W−(P, f).

There are a number of cosmetic differences between Definition 7.0.1 and previous span program
definitions. One that we note is the use of spaces Htrue and Hfalse. We can view these spaces in
the following manner: for every input x ∈ [q]n, we append a 1 to x to get x′ = (x, 1) ∈ [q]n+1.
Then every string x′ has a 1 in the (n+ 1)th position, so Htrue functions as Hn+1,1, available to
every input x′ obtained in this manner, whereas Hfalse acts as Hn+1,0, never available to any of
the x′. Thus, it is never necessary, but often convenient, to use these spaces. The image of Htrue

under A is similar to the space Vfree often used in earlier definitions of span programs (though
also for convenience, not necessity). For convenience, we do count the part of a positive witness
on Htrue in the witness size.

Aside from these cosmetic differences, the only substantial difference between our definition
and previous definitions for non-Boolean input alphabets is that the spaces {Hj,a}a need not
be orthogonal. This allows us to prove the following theorem, in Section 7.1, which was known
before only for the case q = 2 [Rei09, Rei11].

Theorem 7.0.2. Let f : D → {0, 1} for D ⊆ [q]n be a function with bounded error quantum query
complexity Q(f). There exists a span program on [q]n, P, that decides f , such that C(P, f) =
Θ(Q(f)).

The rest of this chapter is organized as follows. In Section 7.1, we prove Theorem 7.0.2. In
Section 7.2, we present a method for converting a quantum algorithm A that decides f : D →
{0, 1}, D ⊆ [q]n, with one-sided error, to a span program P on [q]n, so that the quantum query
complexity of A is equal to C(P, f), up to a multiplicative constant. This construction only works
when A has one-sided error, which motivates us to explore approximate notions of span programs
in Section 7.3. In Section 7.3, we discuss several possible notions of approximate span programs,
and show that they are all, in fact, the same. In Section 7.3.2, we show how the construction for
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converting a one-sided algorithm to a span program can be adapted to convert a two-sided error
algorithm to an approximate span program.

To show that these new approximate span programs are meaningful, we need to present an
algorithm to evaluate them. With that in mind, in Section 7.4, we explore the structure of
witnesses in order to better understand span programs, and in Section 7.5, we look at various
transformations we can perform on a span program. The results of these two sections allow us
to give a fairly intuitive algorithm for evaluating span programs in Section 7.6.1. A variant of
this span program evaluation algorithm, shown in Section 7.6.2, can be used to approximately
evaluate a span program in a sense that makes our approximate definition of span programs
meaningful.

7.1 Span Programs on non-Boolean Alphabets

We now prove that with our slightly modified definition of span program, there exists an optimal
span program for any decision problem f . Previously, this was only known to be possible for
functions over Boolean alphabets; for more general alphabets, it was only known up to logarithmic
factors in q [Rei09]. Our proof will use the dual adversary bound, which we define shortly. The
adversary lower bound is a semidefinite program parameterized by any function f , which gives a
lower bound on Q(f), the bounded error quantum query complexity of f [Amb00, HLŠ07]. As
we formally state in Theorem 7.1.2, it was shown that the adversary lower bound can, in fact,
give an optimal (up to a constant) lower bound for f [Rei09, Rei11], and so its dual formulation,
stated below, gives an upper bound on Q(f). It can be defined for non-decision problems, but
we give the decision version, as it is sufficient, and well-stated, for our purposes.

Definition 7.1.1 (Dual Adversary Bound). Let f : D → {0, 1} be some problem with domain
D ⊆ [q]n. The dual adversary bound of f is the following optimization problem, where F0 =
f−1(0) and F1 = f−1(1).

Adv(f) = minimize

√√√√√
max
x∈F0

∑
j∈[n]

‖|vx,j〉‖2
max

x∈F1

∑
j∈[n]

‖|ux,j〉‖2


subject to {|ux,j〉}j∈[n],x∈F1
, {|vx,j〉}j∈[n],x∈F0

⊂ Rm for some m ∈ N,

∀(x, y) ∈ F0 × F1,
∑

j:xj 6=yj

〈vx,j |uy,j〉 = 1.

The following theorem tells us that the optimal solution to the dual adversary bound is equal
to the quantum query complexity of f , up to a constant.
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Theorem 7.1.2 ([Rei09, Rei11]). Let f : D → {0, 1} be some problem with domain D ⊆ [q]n.
Then Q(f) = Θ(Adv(f)).

We will make use of the following useful set of vectors, from [LMR+11].

Fact 7.1.3. For any k ∈ N, there exist unit vectors {|µi〉}ki=1 and {|νj〉}kj=1 such that

〈µi|νj〉 =

{
1
2

k
k−1 if i 6= j

0 else.

Proof. We can define µi = −α|i〉 +
√

1−α2

k−1

∑
j 6=i |j〉 and νj =

√
1− α2|i〉 + α√

k−1

∑
j 6=i |j〉, for

α =

√
1
2 −

√
k−1
k to satisfy the desired property.

We are now ready to prove the main theorem of this section, which immediately proves
Theorem 7.0.2.

Theorem 7.1.4. Let f : D → {0, 1} be some problem with domain D ⊆ [q]n. Then there exists
a span program P on [q]n such that

C(P, f) ≤ 2Adv(f).

Proof. Let {|ux,j〉}j∈[n],x∈F1
and {|vx,j〉}j∈[n],x∈F0

in Rm be a dual adversary solution. We will
construct a span program P for f that has complexity at most

2

√√√√√
max
x∈F0

∑
j∈[n]

‖|vx,j〉‖2
max

x∈F1

∑
j∈[n]

‖|ux,j〉‖2
.

We will make use of the vectors from Fact 7.1.3, {|νa〉, |µa〉}a∈[q].

The Span Program We define P as follows. We will work in the inner product space

H := span{|α, j, a〉 : α ∈ [m], j ∈ [n], a ∈ [q]},

which we decompose into

Hj := span{|α, j, a〉 : α ∈ [m], a ∈ [q]}.

Within each Hj , we define, for each a ∈ [q],

Hj,a := span{|α, j〉 : α ∈ [m]} ⊗ (span{|νa〉})⊥ .
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Note that the Hj,a and Hj,b for a 6= b are not orthogonal as is required in the usual definition of
span programs. With our modification, however, this is allowed. This is the only place that we
use our modification to the definition; the rest of the proof is identical to the Boolean case.

Next, we define:

V := span{|x〉 : x ∈ F0}, |τ〉 :=
∑
x∈F0

|x〉

and finally, we define A ∈ L(H,V ) by A|α, j, a〉 =
∑

x∈F0
〈vx,j |α〉〈νxj |a〉|x〉. Then we can write:

A =
∑

α∈[m],j∈[n],a∈[q]

∑
x∈F0

〈vx,j |α〉〈νxj |a〉|x〉〈α, j, a|

=
∑
j∈[n]

∑
x∈F0

|x〉

∑
α∈[m]

〈vx,j |α〉〈α|

 〈j|
∑
a∈[m]

〈νxj |a〉〈a|


=

∑
j∈[n]

∑
x∈F0

|x〉〈vx,j |〈j|〈νxj |.

Negative Analysis Suppose x ∈ F0. Then let ωx := 〈x|. So we have:

ωxA = 〈x|A =
∑
j∈[n]

〈vx,j |〈j|〈νxj |.

Since for all j, Hj,xj = span{|α, j〉} ⊗
(
span{|νxj 〉}

)⊥
, we have 〈x|AΠH(x) = 0. Furthermore, we

have
ωx|τ〉 = 〈x|

∑
y∈F0

|y〉 = 1,

so ωx is a negative witness for x. It has complexity:

‖〈x|A‖2 =

∥∥∥∥∥∥
∑
j∈[n]

〈vx,j |〈j|〈νxj |

∥∥∥∥∥∥
2

=
∑
j∈[n]

‖|vx,j〉‖2 ,

since
∥∥|νxj 〉∥∥ = 1. Thus,

W−(P) ≤ max
x∈F0

∑
j∈[n]

‖|vx,j〉‖2 .
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Positive Analysis On the other hand, suppose x ∈ F1. Then define

|wx〉 =
2(q − 1)

q

∑
j∈[n]

|ux,j〉|j〉|µxj 〉.

Note that since 〈µxj |νxj 〉 = 0, |ux,j〉|j〉|µxj 〉 ∈ Hj,xj , so |wx〉 ∈ H(x). Furthermore, we have

A|wx〉 =
2(q − 1)

q

∑
j∈[n]

∑
y∈F0

|y〉〈vy,j |〈j|〈νyj |
∑
j∈[n]

|ux,j〉|j〉|µxj 〉

=
2(q − 1)

q

∑
y∈F0

|y〉
∑
j∈[n]

〈vy,j |ux,j〉〈νyj |µxj 〉

=
∑
y∈F0

|y〉
∑

j∈[n]:xj 6=yj

〈vy,j |ux,j〉, since 〈νyj |µxj 〉 =
1

2

q

q − 1
(1− δxj ,yj )

=
∑
y∈F0

|y〉 = |τ〉.

The last line follows from the feasibility condition
∑

j∈[n]:xj 6=yj 〈vy,j |ux,j〉 = 1 for all (x, y) ∈
F1 × F0. Thus, |wx〉 is a positive witness for x in P. It has complexity

‖|wx〉‖2 =
4(q − 1)2

q2

∑
j∈[n]

‖|ux,j〉‖2 ≤ 4
∑
j∈[n]

‖|ux,j〉‖2 .

Thus,

W+(P) ≤ 4 max
x∈F1

∑
j∈[n]

‖|ux,j〉‖2 .

We thus have:

C(P) =
√
W−(P)W+(P) ≤ 2

√
max
x∈F0

∑
j∈[n]

‖|vx,j〉‖2 max
x∈F1

∑
j∈[n]

‖|ux,j〉‖2.

7.2 Motivation: One-Sided Error Algorithms to Span Programs

It is possible to convert a span program P for a problem f to a quantum algorithm that computes
f with bounded error query complexity Θ(C(P, f)) by Theorem 7.0.2. Similarly, given a quantum
algorithm that computes f with bounded error query complexity C, there exists a span program
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for f with complexity C, by Theorem 7.0.2. However, there is no general conversion that takes an
arbitrary quantum algorithm and converts it to a span program for the same problem, preserving
the query complexity. It is not immediately clear that such a conversion would be useful. It
is clear why we would want to convert span programs to quantum algorithms, since quantum
algorithms are useful, whereas our main use for span programs is to generate algorithms, so if
we already have a quantum algorithm, a span program is of little use. However, it is somewhat
unpleasant that there is no conversion from algorithms to span programs, especially given that
there is a very natural conversion, to be presented shortly, that works for any quantum algorithm
with one-sided error [Rei09, Section 3 of full version]. Since span programs seem to correspond so
perfectly to (two-sided) bounded error quantum algorithms, why does this nice conversion only
work for one-sided algorithms?

An Arbitrary One-sided Error Algorithm Fix a decision problem f , and let A be a quantum
algorithm that solves f with one-sided error using T queries. Suppose without loss of generality
that A works on the space HA := span{|i, z, a〉 : i ∈ {0, . . . , n}, z ∈ Z, a ∈ {0, 1}} for some finite
set Z with 0 ∈ Z. A query operates as

Ox : |i, z, a〉 7→ (−1)xi |i, z, a〉.

Suppose without loss of generality that A acts as UT+1OxUTOx . . . U2OxU1 on starting state
|0, 0, 0〉, before measuring the bit in the last register.

Define unitaries {U ′t}2T+1
t=1 such that:

U ′2t−1 := Ut ∀t ∈ {1, . . . , T + 1} and U ′2t := Ox ∀t ∈ {1, . . . , T}.

Then we can rewrite the unitary enacted by A as U ′2T+1U
′
2T . . . U

′
1. For any t ∈ {0, . . . , 2T + 1},

write the state of the algorithm after t steps on input x as

|Ψt(x)〉 := U ′t . . . U
′
1|0, 0, 0〉.

For all x, we have |Ψ0(x)〉 = |Ψ0〉 := |0, 0, 0〉. Suppose that A ends in a state |Ψ2T+1(x)〉 such
that 〈Ψ2T+1(x)|0, 0, 1〉 is the probability of measuring 1 in the answer register. We can impose
this condition with at most a doubling of T by starting with an arbitrary algorithm, copying the
output register, and then running the algorithm in reverse. In particular, this implies that when
f(x) = 1, |Ψ2T+1(x)〉 = |0, 0, 1〉 =: |Ψ1

2T+1〉, since A has one-sided error.

A Corresponding Span Program We will now define a span program for f based on A. The
span program will have

H := span{|t〉 : t ∈ {0, . . . , 2T}} ⊗HA ⊗ C2
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and
V := span{|t〉 : t ∈ {0, . . . , 2T + 1}} ⊗HA,

and in particular, for each j ∈ [n], we will set

Hj,b := span {|t, j, z, a, b〉 : t odd} ,

Htrue := span {|t, j, z, a, b〉 : t even} ,

and A|t, j, z, a, b〉 =

{
|t, j, z, a〉 − (−1)b|t+ 1, j, z, a〉 if t odd
|t, j, z, a〉 − |t+ 1〉U ′t+1|j, z, a〉 else.

Notice that for any t, j, z, and a, we have A|t, j, z, a, xj〉 = |t, j, z, a〉 − |t + 1〉U ′t+1|j, z, a〉. The
target vector will be

|τ〉 := |0〉|Ψ0〉 − |2T + 1〉|Ψ1
2T+1〉.

Notice that we can always use available vectors in H(x) to construct |t〉|Ψt(x)〉− |t+ 1〉|Ψt+1(x)〉
in V . Adding these up, we can construct |0〉|Ψ0(x)〉 − |2T + 1〉|Ψ2T+1(x)〉. We have, for every x,
|Ψ0(x)〉 = |0, 0, 0〉 = |Ψ0〉. Furthermore, when f(x) = 1, we have |Ψ2T+1(x)〉 = |0, 0, 1〉 = |Ψ1

2T+1〉,
so we will have constructed |τ〉. We can make this idea rigorous by constructing positive and
negative witnesses.

Positive Witnesses Suppose f(x) = 1. We construct the positive witness:

|wx〉 :=

2T∑
t=0

∑
j∈[n]

αj,t(x)|t〉|j〉|ψjt (x)〉|xj〉, where |Ψt(x)〉 =
∑
j∈[n]

αj,t(x)|j〉|ψjt (x)〉.

To see that this is a positive witness, we must show |wx〉 ∈ H(x), and A|wx〉 = |τ〉. Note that

H(x) =
⊕
j∈[n]

Hj,xj ⊕Htrue = span {|t, j, z, a, xj〉 : t odd} ∪ {|t, j, z, a, b〉 : t even},
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so clearly |wx〉 ∈ H(x). Next we compute:

A|wx〉 =
2T∑
t=0

∑
j∈[n]

αj,t(x)
(
|t〉|j〉|ψjt (x)〉 − |t+ 1〉U ′t+1|j〉|ψ

j
t (x)〉

)

=
2T∑
t=0

|t〉∑
j∈[n]

αj,t(x)|j〉|ψjt (x)〉 − |t+ 1〉U ′t+1

∑
j∈[n]

αj,t(x)|j〉|ψjt (x)〉


=

2T∑
t=0

(
|t〉|Ψt(x)〉 − |t+ 1〉U ′t+1|Ψt(x)〉

)
=

2T∑
t=0

(|t〉|Ψt(x)〉 − |t+ 1〉|Ψt+1(x)〉) = |0〉|Ψ0(x)〉 − |2T + 1〉|Ψ2T+1(x)〉

= |0〉|Ψ0〉 − |2T + 1〉|Ψ1
2T+1〉 = |τ〉.

Thus, |wx〉 is indeed a positive witness for x in P . So we have:

wsize+(x) ≤ ‖|wx〉‖2 =
2T∑
t=0

∑
j∈[n]

|αj,t(x)|2
∥∥∥|ψjt (x)〉

∥∥∥2
=

2T∑
t=0

1 = 2T + 1. (7.1)

Thus W+(P) ≤ 2T + 1.

Negative Witnesses We now turn to the case where f(x) = 0. In that case, consider the
linear mapping:

ωx :=

2T+1∑
t=0

〈t|〈Ψt(x)|.

To show that this is a negative witness for x, we need to show that
∥∥ωxAΠH(x)

∥∥ = 0, and
ωx(|τ〉) = 1. To see the former, first note that for odd t:

ωxA|t, j, z, a, xj〉 = ωx (|t, j, z, a〉 − (−1)xj |t+ 1〉|j, z, a〉)
= 〈Ψt(x)|j, z, a〉 − 〈Ψt+1(x)|(−1)xj |j, z, a〉
= 〈Ψt+1(x)|U ′t+1|j, z, a〉 − 〈Ψt+1(x)|(−1)xj |j, z, a〉
= 〈Ψt+1(x)|(−1)xj |j, z, a〉 − 〈Ψt+1(x)|(−1)xj |j, z, a〉 = 0

since U ′t+1|j, z, a〉 = Ox|j, z, a〉 = (−1)xj |j, z, a〉. Next note that for even t:

ωxA|t, j, z, a, b〉 = ωx(|t, j, z, a〉 − |t+ 1〉U ′t+1|j, z, a〉)
= 〈Ψt(x)|j, z, a〉 − 〈Ψt+1(x)|U ′t+1|j, z, a〉
= 〈Ψt+1(x)|U ′t+1|j, z, a〉 − 〈Ψt+1(x)|U ′t+1|j, z, a〉 = 0.
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Thus,
∥∥ωxAΠH(x)

∥∥ = 0. Next, we compute:

ωx|τ〉 =

(
2T+1∑
t=0

〈t|〈Ψt(x)|

)(
|0〉|Ψ0〉 − |2T + 1〉|Ψ1

2T+1〉
)

= 〈Ψ0(x)|Ψ0〉 − 〈Ψ2T+1(x)|Ψ1
2T+1〉.

For all x we have |Ψ0(x)〉 = |Ψ0〉 so 〈Ψ0(x)|Ψ0〉 = 1. Furthermore, by assumption, 〈Ψ2T+1(x)|Ψ1
2T+1〉

is the probability of measuring a 1 in the answer register, so p1(x) := 〈Ψ2T+1(x)|Ψ1
2T+1〉 is a real

number that is at most ε, where ε is the error of A, since it is the probability that the algorithm
errs on input x. Let ω̄x := 1

1−p1(x)ωx. Clearly, ω̄x is a negative witness for x in P , and

wsize−(x) ≤ ‖ω̄xA‖2 =
‖ωxA‖2

(1− p1(x))2
≤ ‖ωxA‖

2

(1− ε)2
. (7.2)

To compute ‖ωxA‖2, note that

A =
∑
j,z,a,b

( T∑
t=0

(
|2t, j, z, a〉 − (−1)b|2t+ 1, j, z, a〉

)
〈2t, j, z, a, b|

+
T∑
t=0

(
|2t+ 1, j, z, a〉 − |2t+ 2〉U ′2t+2|j, z, a〉

)
〈2t+ 1, j, z, a, b|

)
.

We already know that for t even or b = xj , we have ωxA|t, j, z, a, b〉 = 0. Suppose on the
other hand that t is even, and b 6= xj . Then

ωxA|t, j, z, a, b〉 =

(
2T+1∑
t=0

〈t|〈Ψt(x)|

)(
|t, j, z, a〉 − (−1)b|t+ 1〉|j, z, a〉

)
= 〈Ψt(x)|j, z, a〉+ 〈Ψt(x)||j, z, a〉 = 2〈Ψt(x)|j, z, a〉,

so we have:

‖ωxA‖2 =

T∑
t=0

∑
j,z,a

|ωxA|j, z, a, xj ⊕ 1〉|2

=
T∑
t=0

4
∑
j,z,a

|〈Ψt(x)|j, z, a〉|2 = 4(T + 1).

Thus, we have wsize−(x) ≤ 4(T+1)
(1−ε)2 . Thus W−(P) ≤ 4(T+1)

(1−ε)2 . So the complexity of the span
program is √

W+W− ≤

√
(2T + 1)4(T + 1)

(1− ε)2
= Θ(T ),

120



matching the query complexity of A, up to a constant, as desired.

There is one more intriguing detail of this construction that motivates even further the desire
to understand why such a beautiful construction does not apply to general quantum algorithms:
If the time complexity of this algorithm is also T — that is, each Ui can be implemented with
a constant number of gates — then if we convert the algorithm to a span program using this
construction, and then back to an algorithm by a span program evaluation algorithm like the one
to be presented in Section 7.6.1, the resulting algorithm can be made to have time complexity
T as well! This is because the span program evaluation algorithm is constructed from a pair
of reflections, one of which has 0 query complexity, but possibly large time complexity. In this
case that reflection ends up being sufficiently structured that a time-efficient implementation is
possible (see [Rei09]). This actually says that, in general, any one-sided algorithm with time
complexity T can be converted to a span program in this way and then back to an algorithm
with time complexity T : simply break the algorithm into constant-time sub-unitaries Ui, and put
empty queries between those Ui and Ui+1 that do not have a query between them.

If we try to apply the same idea to an algorithm with two-sided error, the conversion fails
because we cannot specify an exact target |τ〉: every x ∈ f−1(1) has a different “target” they
can obtain |0〉|Ψ0〉 − |2T + 1〉|Ψ2T+1(x)〉. All are close to |0〉|Ψ0〉 − |2T + 1〉|Ψ1

2T+1〉, but we have
no guarantee that we can hit this target exactly. This exact nature of span programs does not
seem necessary at all, and in fact, as we will soon see, it is not. This motivates us to consider
approximate versions of the span program formalism.

7.3 Definition of Approximate Span Program

Section 7.2 motivates us to consider approximate versions of the span program definition, but as
we will see in this section, there are a number of very natural sounding definitions. Fortunately,
as we will show here, these definitions are all equivalent.

Approximation 1: Approximate Acceptance If we naively try to apply the construction
of Section 7.2 to a two-sided error algorithm, we see that it fails for precisely the reason that even
when f(x) = 1, we can not exactly predict the final state |Ψ2T+1(x)〉 — it can vary slightly for
different x, and all we can say is that the state must be close to |Ψ1

2T+1〉 = |0, 0, 1〉, the final state
that outputs 1 with probability 1. A natural way to modify the definition of a span program
then is to say a span program P accepts an input x if there is some witness |wx〉 ∈ H(x) such
that A|wx〉 is close to τ , or rather, since V has no notion of distance, we modify the definition by
saying that P accepts x if there is a witness |wx〉 that is almost in H(x) (since H comes equipped
with an orthonormal basis, this “almost” can be quantified) such that A|wx〉 = τ . This idea gives
rise to our first definition of an approximate span program.
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Definition 7.3.1 (Approximate Positive Witness). Let P be a span program on [q]n. For any
x ∈ [q]n, the positive error of x is defined

error+(x,P) := min
|w〉:A|w〉=|τ〉

∥∥∥ΠH(x)⊥ |w〉
∥∥∥2
.

Definition 7.3.2 (Span Program with Approximate Positive Witnesses). Let f : D → {0, 1} be
a decision problem on D ⊆ [q]n. Let P be a span program on [q]n. We say that P solves f with
approximate positive witness error gap λ if

maxx∈f−1(1) error+(x,P)

minx∈f−1(0) error+(x,P)
≤ λ.

We can think of P as accepting inputs with small positive error, and rejecting those with
large positive error. We require that there is some relative gap between what we consider small
enough to accept, and what we consider large enough to reject.

Of course, the main reason that the original definition of span programs is useful is that they
can be used to construct quantum algorithms. In Section 7.6.2, we will prove that our definition
is similarly useful by giving an algorithm for evaluating approximate span programs. However,
we first consider alternative definitions of approximate span programs.

Approximation 2: Approximate Rejection Naturally, we can consider the same type of
approximation in the negative witnesses, rather than the positive witnesses — that is, having an
almost negative witness for x is enough for x to be rejected. We formalize this by defining the
negative error of an input.

Definition 7.3.3 (Approximate Negative Witness). Let P be a span program on [q]n. For any
x ∈ [q]n, the negative error of x is defined

error−(x,P) := min
ω∈L(V,C)|ω(τ)=1

∥∥ωAΠH(x)

∥∥2
.

This yields our next notion of approximate span program.

Definition 7.3.4 (Span Program with Approximate Negative Witnesses). Let f : D → {0, 1} be
a decision problem on D ⊆ [q]n. Let P be a span program on [q]n. We say that P solves f with
approximate negative witness error gap λ if

maxx∈f−1(0) error−(x,P)

minx∈f−1(1) error−(x,P)
≤ λ.
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Approximation 3: Positive Witness Size Gap The first (and second) definitions are very
well motivated by the construction in Section 7.2, however, in coming up with an approximate
notion of span programs, there is another possibly even more natural definition: to accept only
those strings with a small positive witness, below some threshold, and reject any strings with
positive witnesses above some threshold. This motivates our third definition:

Definition 7.3.5 (Span Program with Positive Witness Size Gap). Let f : D → {0, 1} be a
decision problem on D ⊆ [q]n. Let P be a span program on [q]n. We say that P solves f with
positive witness gap λ if

maxx∈f−1(1) wsize+(x,P)

minx∈f−1(0) wsize+(x,P)
≤ λ.

Approximation 4: Negative Witness Size Gap Finally, we may similarly consider a gap
in negative witness size, where we reject only those strings with very small negative witness, and
accept any strings with negative witness size above a certain threshold.

Definition 7.3.6 (Span Program with Negative Witness Size Gap). Let f : D → {0, 1} be a
decision problem on D ⊆ [q]n. Let P be a span program on [q]n. We say that P solves f with
negative witness gap λ if

maxx∈f−1(0) wsize−(x,P)

minx∈f−1(1) wsize−(x,P)
≤ λ.

Comparison of Definitions We will now prune the unwieldy landscape of definitions by
showing them all to be equivalent.

Theorem 7.3.7 (Equivalence of Definitions 7.3.2 and 7.3.6). Let P be a span program on [q]n.
For all x ∈ [q]n such that wsize−(x,P) <∞, we have:

error+(x,P) =
1

wsize−(x,P)
.

Furthermore, if wsize−(x,P) =∞, we have error+(x,P) = 0. Therefore, for any f : D → {0, 1}
with D ⊆ [q]n, P solves f with approximate positive witness error gap λ if and only if P solves f
with negative witness gap λ.

Proof. To begin, suppose wsize−(x,P) = ∞. Then there does not exist an exact negative
witness for x, so x is positive for P, and thus, there exists an exact positive witness, |w〉 such

that
∥∥∥ΠH(x)⊥ |w〉

∥∥∥2
= 0, and thus error+(x) = 0.

Now suppose that wsize−(x) < ∞. Let ω ∈ L(V,C) be an optimal negative witness for x, so

ω(τ) = 1,
∥∥ωAΠH(x)

∥∥2
= 0, and ‖ωA‖2 = wsize−(x). Let |w〉 be a minimum-error positive
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witness for x, so A|w〉 = τ , and
∥∥∥ωAΠH(x)⊥

∥∥∥2
= error+(x). We have

wsize−(x,P) = ‖ωA‖2 ≥

∥∥∥(ωA)(ΠH(x)⊥ |w〉)
∥∥∥2

∥∥∥ΠH(x)⊥ |w〉
∥∥∥2 ≥

∥∥ω(τ)− ω(AΠH(x)|w〉)
∥∥2

error+(x,P)

=
1

error+(x,P)
since ω(τ) = 1 and

∥∥ωAΠH(x)

∥∥2
= 0.

Now consider |werr〉 = ΠH(x)⊥ |w〉, the error part of |w〉. Define

|w′〉 = |w〉 −ΠkerA|werr〉 and note A|w′〉 = A|w〉 = |τ〉.

Then by the assumption that |w〉 has minimal error, we have∥∥∥ΠH(x)⊥ |w〉
∥∥∥2
≤
∥∥∥ΠH(x)⊥ |w′〉

∥∥∥2
≤
∥∥∥ΠH(x)⊥ |w〉 −ΠkerAΠH(x)⊥ |w〉

∥∥∥2
= ‖ΠkerA⊥ |werr〉‖2 ,

so we must have ΠkerA⊥ |werr〉 = |werr〉, or in other words, |werr〉 ∈ kerA⊥. Thus, the linear
function 〈werr| has ker 〈werr| ⊆ kerA, so (by the fundamental homomorphism theorem) there
exists a linear function ω̃ : ImA→ Im〈werr| such that ω̃A = 〈werr|. We can assume without loss
of generality that ImA = V , so ω̃ ∈ L(V,C). We have

ω̃(τ) = ω̃A|w〉 = 〈w|ΠH(x)⊥ |w〉,

so ω = 1∥∥∥Π
H(x)⊥ |w〉

∥∥∥2 ω̃ has ω(τ) = 1 and

wsize−(x,P) ≤ ‖ωA‖2 =
‖ω̃A‖2∥∥∥ΠH(x)⊥ |w〉

∥∥∥4 =

∥∥∥ΠH(x)⊥ |w〉
∥∥∥2

∥∥∥ΠH(x)⊥ |w〉
∥∥∥4 =

1

error+(x,P)
.

We can similarly show that span programs with approximate negative witnesses are equivalent
to span programs with positive witness gap.

Theorem 7.3.8 (Equivalence of Definitions 7.3.4 and 7.3.5). Let P be a span program on [q]n.
For all x ∈ [q]n such that wsize+(x,P) <∞, we have:

error−(x,P) =
1

wsize+(x,P)
.

Furthermore, if wsize+(x,P) =∞, we have error−(x,P) = 0. Therefore, for any f : D → {0, 1}
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with D ⊆ [q]n, P solves f with approximate negative witnesses with gap λ if and only if P solves
f with positive witness gap λ.

Proof. To begin, suppose wsize+(x,P) = ∞. Then there does not exist an exact positive
witness for x, |w〉 ∈ H(x) such that A|w〉 = τ . So x is negative for P, and thus there exists

an exact negative witness for x, ω ∈ L(V,C) such that ωτ = 1, and
∥∥〈ω|AΠH(x)

∥∥2
= 0, thus

error−(x,P) = 0.

Now suppose that wsize+(x,P) <∞. Let |w〉 ∈ H(x) be an optimal witness for x, so A|w〉 = τ
and ‖|w〉‖2 = wsize+(x,P). For any ω ∈ L(V,C) such that ωτ = 1 we have

‖ωA|w〉‖2

‖|w〉‖2
=

‖ωτ‖2

wsize+(x,P)
=

1

wsize+(x,P)
,

so certainly

error−(x,P) = min
ω:ω(τ)=1

∥∥ωAΠH(x)

∥∥2 ≥ 1

wsize+(x,P)
, (7.3)

since |w〉 ∈ H(x).

For the other direction, let ω ∈ L(V,C) such that ωτ = 1 minimize
∥∥ωAΠH(x)

∥∥2
. Note that

ωA ∈ H�, so its dual is in H. Define

|w〉 :=
ΠH(x)(ωA)�∥∥ωAΠH(x)

∥∥2 .

Clearly |w〉 ∈ H(x). We will show that it is a positive witness for x by showing that A|w〉 = τ , by
contradiction. Assume that A|w〉 and τ are linearly independent. In that case, let α ∈ L(V,C)
be such that α(A|w〉) = 0 and α(τ) = 1. Then we have

α(AΠH(x)(ωA)�) = (αA)
(∥∥ωAΠH(x)

∥∥2 |w〉
)

=
∥∥ωAΠH(x)

∥∥2
α(A|w〉) = 0, (7.4)

and since α(τ) = 1, for any ε ∈ [0, 1], we have (εω + (1− ε)α)(τ) = 1, so by the optimality of ω,
we have ∥∥ωAΠH(x)

∥∥2 ≤
∥∥(εω + (1− ε)α)AΠH(x)

∥∥2

= ε2
∥∥ωAΠH(x)

∥∥2
+ (1− ε)2

∥∥αAΠH(x)

∥∥2
by (7.4)

(1− ε2)
∥∥ωAΠH(x)

∥∥2 ≤ (1− ε)2
∥∥αAΠH(x)

∥∥2
.
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In particular, this must hold for ε =
‖αAΠH(x)‖2

‖αAΠH(x)‖2+‖ωAΠH(x)‖2
, yielding

∥∥ωAΠH(x)

∥∥6
+
∥∥ωAΠH(x)

∥∥4 ∥∥ωAΠH(x)

∥∥2 ≤ 0,

a contradiction, since
∥∥ωAΠH(x)

∥∥ > 0. Thus, we must have A|w〉 = rτ for some scalar r, so
ω(A|w〉) = rω(τ). We then have

ω(A|w〉) = ωA
ΠH(x)(ωA)�∥∥ωAΠH(x)

∥∥2 = 1,

and so we have r = 1, and thus A|w〉 = τ . So |w〉 is a positive witness for x, and we can compute

wsize+(x,P) ≤ ‖|w〉‖2 =

∥∥ΠH(x)(ωA)�
∥∥2∥∥ωAΠH(x)

∥∥4 =
1

error−(x,P)
.

Combining this with (7.3) completes the proof that error−(x,P) = 1
wsize+(x,P) .

Thus, we can conclude that P solves f with approximate negative witness gap λ if and only if
P solves f with positive witness gap λ, since

maxx∈f−1(1) wsize+(x,P)

minx∈f−1(0) wsize+(x,P)
=

maxx∈f−1(0) error−(x,P)

minx∈f−1(1) error−(x,P)
.

By Theorem 7.3.7, Span Programs with Approximate Positive Witness and Span Programs
with Negative Witness Gap are actually the same thing, so we can merge Definitions 7.3.2 and
7.3.6 into a new definition, which we will call Approximate Negative Span Programs, since all
x ∈ f−1(0) have negative witnesses.

Definition 7.3.9 (Approximate Negative Span Program). Let f : D → {0, 1} be a decision
problem on D ⊆ [q]n. Let P be a span program on [q]n. For λ ∈ (0, 1), we say that P is a
λ-negative span program for f if

maxx∈f−1(0) wsize−(x,P)

minx∈f−1(1) wsize−(x,P)
≤ λ.

We define the negative complexity of P for f as

W 0
−(P, f) := max

x∈f−1(0)
wsize−(x,P).
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We can also define
W 1
−(P, f) := min

x∈f−1(1)
wsize−(x,P).

Note that we have W 1
−(P, f) ≥W 0

−(P, f)/λ.

Let w̃size+(x,P, ε) := min{‖ωA‖2 : ω(τ) = 1,
∥∥ωAΠH(x)

∥∥2 ≤ ε}. In particular, let w̃size+(x,P) :=

w̃size+ (x,P, error+(x,P)) denote the smallest min-error witness for x in P. We define the λ-
positive complexity of P for f as

W̃ 1
+(P, f) := max

x∈f−1(1)
w̃size+

(
x,P, λ

W 0
−(P, f)

)
.

Finally, define the complexity of P on f as:

C(P, f) :=

√
W̃ 1

+(P, f)W 0
−(P, f).

Similarly, by Theorem 7.3.8, we can merge Definitions 7.3.4 and 7.3.5 into one definition,
which we call an approximate positive span program for f , since all x ∈ f−1(1) have a positive
witness.

Definition 7.3.10 (Approximate Positive Span Program). Let f : D → {0, 1} be a decision
problem on D ⊆ [q]n. Let P be a span program on [q]n. For λ ∈ (0, 1), we say that P is a
λ-positive span program for f if

maxx∈f−1(1) wsize+(x,P)

minx∈f−1(0) wsize+(x,P)
≤ λ.

We define the positive complexity of P for f as

W 1
+(P, f) := max

x∈f−1(1)
wsize+(x,P).

We can also define
W 0

+(P, f) := min
x∈f−1(0)

wsize+(x,P).

Note that we have W 0
+(P, f) ≥W 0

−(P, f)/λ.

Let w̃size−(x,P, ε) := min{‖|w〉‖2 : A|w〉 = τ,
∥∥∥ΠH(x)⊥ |w〉

∥∥∥2
≤ ε}. In particular, let wsize−(x,P) :=

w̃size−(x,P, error−(x,P)) denote the smallest min-error witness for x in P. We define the λ-
negative complexity of P for f as

W̃ 0
−(P, f) := max

x∈f−1(0)
w̃size−

(
x,P, λ

W 1
+

)
.
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Figure 7.1: We can order inputs from those with largest positive error, to those with largest
negative error (exactly one of these is non-zero). A span program algorithm can be used to
distinguish between those inputs with positive error, and those inputs with negative error.

Figure 7.2: Approximate span programs allow us to more generally distinguish between inputs
on either side of any threshold. When the threshold is set somewhere on the positive side, we
call this a positive span program.

Figure 7.3: When the threshold is on the negative side, we call this a negative span program.

Finally, define the complexity of P on f as:

C(P, f) :=

√
W 1

+(P, f)W̃ 0
−(P, f).

We now have only two definitions, which is certainly preferable to the previous four. Even
these two definitions are on the same continuum. For any span program P on [q]n, we can order
the set [q]n as {x1 < · · · < xq

n} with “<” defined so that for all x such that P accepts x, and
y such that P rejects y, we have y < x; for all x and y such that P accepts both x and y,
if wsize+(x) < wsize+(y), then y < x, and for all x and y such that P rejects both x and y,
if wsize−(x) < wsize−(y) then x < y. This ordering captures the idea that some inputs are
more accepted than others, and some inputs are more rejected than others. The usual notion of
span programs defines a threshold between those inputs that P accepts and those inputs that P
rejects. Our idea is simply to allow this threshold to fall at any point in the ordering of inputs. An
approximate negative span program places this threshold somewhere on the side of the rejected
inputs, whereas an approximate positive span program places this threshold somewhere on the
side of the accepted inputs.
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For good measure, we can further strengthen the equivalence of these definitions by giving
conversions between the two that mostly preserve the parameters.

Theorem 7.3.11 (Conversion from Positive to Negative). Let P = (H,V, τ, A) be a λ-positive
span program for f : D ⊆ [q]n → {0, 1}. For any positive constant d, there exists a λ′-negative
span program for f , P ′, with

λ′ =
d2 + 1

d2
λ, W̃ 1

+(P ′, f) ≤
(

1 +
λ

d2C(P, f)2

)
W 1

+(P, f), and W 0
−(P ′, f) ≤ (d2+1)W̃ 0

−(P, f).

Proof. Our goal is to define a span program that rejects all inputs in x ∈ f−1(0), even those
that P accepts. Our strategy will be to define a span program P ′ that rejects everything, but
that penalizes most those things that P accepted the most. In order to accomplish this, we will
define A′ so that it adds a small error, orthogonal to τ ′, to every vector, proportional to its size.
In this way, every positive witness from P gets an error term proportional to its positive witness
complexity in P. Let N = d 1√

λ
C(P, f).Concretely, we define P ′ = ({H ′j,a}, V ′, τ ′, A′) as follows:

H ′ = H ⊕H, H ′j,a = Hj,a ⊗ |0〉, H ′true = Htrue ⊗ |0〉 H ′false = Hfalse ⊕H

V ′ = V ⊕H, τ ′ = τ ⊗ |0〉, A′ (|h0, 0〉+ |h1, 1〉) = (A|h0〉)|0〉+
1

N
|h0, 1〉+ |h1, 1〉

Then we have H ′(x) = H(x)|0〉 and H ′(x)⊥ = H(x)⊥ ⊗ |0〉+H ⊗ |1〉.

Let x ∈ f−1(0). We will show that it has a (small) exact negative witness in P ′. Let ω̃ ∈ L(V,C)
be a (possibly approximate) negative witness for x in P with

‖ω̃A‖2 ≤ W̃ 0
−(P, f), and

∥∥ω̃AΠH(x)

∥∥2 ≤ λ

W 1
+(P, f)

.

We will define a negative witness ω′ in P ′ so that ω′ agrees with ω̃ on V , and ω′ on H cleans up
any errors in ω̃. Specifically, if Π0 is the orthogonal projector from V ′ into V |0〉, and Π1 is the
orthogonal projector from V ′ into H, we define

ω′ = ω̃Π0 −Nω̃AΠH(x)Π1.
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We can see that this has zero error for x:∥∥ω′A′ΠH′(x)

∥∥2
= max

|h〉∈H(x):‖|h〉‖=1

∥∥ω′A′|h, 0〉∥∥2

= max
|h〉∈H(x):‖|h〉‖=1

∥∥∥∥ω′(A|h〉|0〉+
1

N
|h〉|1〉)

∥∥∥∥2

= max
|h〉∈H(x):‖|h〉‖=1

∥∥∥∥ω̃(A|h〉)−N 1

N
ω̃(AΠH(x)|h〉)

∥∥∥∥2

= 0.

We can compute the negative witness size:∥∥ω′A∥∥2
=

∥∥ω′AΠ0

∥∥2
+
∥∥ω′AΠ1

∥∥2

= max
|h〉∈H:‖|h〉‖=1

∥∥ω′A′|h, 0〉∥∥2
+ max
|h〉∈H:‖|h〉‖=1

∥∥ω′A′|h, 1〉∥∥2

= max
|h〉∈H:‖|h〉‖=1

∥∥∥∥ω′((A|h〉)|0〉+
1

N
|h〉|1〉)

∥∥∥∥2

+ max
|h〉∈H:‖|h〉‖=1

∥∥ω′|h, 1〉∥∥2

= max
|h〉∈H:‖|h〉‖=1

∥∥∥∥ω̃(A|h〉)−N 1

N
ω̃(AΠH(x)|h〉)

∥∥∥∥2

+ max
|h〉∈H:‖|h〉‖=1

∥∥−Nω̃AΠH(x)|h〉
∥∥2

=
∥∥∥ω̃AΠH(x)⊥

∥∥∥2
+N2

∥∥ω̃AΠH(x)

∥∥2

≤ W̃ 0
−(P, f) + d2C(P, f)2

λ

λ

W 1
+(P)

≤ (1 + d2)W̃ 0
−(P, f).

So we have W 0
−(P ′, f) ≤ (d2 + 1)W̃ 0

−(P, f).

We now turn to the case x ∈ f−1(1). In that case, we know that there is an exact positive witness

for x in P. Let |w〉 be an optimal positive witness for x in P, so
∥∥∥ΠH(x)⊥ |w〉

∥∥∥2
= 0 and ‖|w〉‖2 ≤

W 1
+(P, f). Define |w′〉 = |w〉|0〉 − 1

N |w〉|0〉. Then A′|w′〉 = (A|w〉)|0〉+ 1
N |w〉|1〉 −

1
N |w〉|1〉, and

∥∥∥ΠH′(x)⊥ |w′〉
∥∥∥2

=

∥∥∥∥(ΠH(x)⊥ |w〉
)
|0〉 − 1

N
|w〉|1〉

∥∥∥∥2

=
1

N2
‖|w〉‖2

≤ λ

d2W 1
+(P, f)W̃ 0

−(P, f)
W 1

+(P, f)

≤ d2 + 1

d2

λ

W 0
−(P ′, f)

=
λ′

W 0
−(P ′, f)

,
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where the last line follows from W 0
−(P ′, f) ≤ (d2 + 1)W̃ 0

−(P, f). Thus, |w′〉 has error at most λ′

for x, so we have

wsize+(x,P ′, λ′/W 0
−(P ′, f)) ≤

∥∥|w′〉∥∥2
= ‖|w〉‖2 +

1

N2
‖|w〉‖2 ≤ (1 +

1

N2
)W 1

+(P, f)

so we have W̃ 1
+(P ′, f) ≤

(
1 + λ

d2C(P,f)2

)
W 1

+(P, f), as desired.

We can show a similar conversion in the other direction.

Theorem 7.3.12 (Conversion from Negative to Positive). Let P = (H,V, τ, A) be a λ-negative

span program for f : D ⊆ [q]n → {0, 1}. For any positive constant d ≥
√

λ
1−λ , there exists a

λ′-positive span program for f , P ′, with

λ′ =
d2 + 1

d2
λ, W̃ 0

−(P ′, f) ≤ (1 +
λ

d2C(P, f)2
)W 0
−(P, f), and W 1

+(P ′, f) ≤ (d2 + 1)W̃ 1
+(P, f).

Proof. We will construct a span program in which everything is positive, so in particular, every
input in f−1(1) is positive. To do this, we will make a complete copy of H available in each H ′(x),
by adding it to Htrue. In order to ensure that inputs in f−1(0) have large positive witnesses,
we will construct A′ so that it imposes a penalty whenever we use these vectors, so that it will
always be preferable to use other vectors in H(x), when possible. In this way, small error positive
witnesses in P will have small positive witnesses in P ′.

The New Span Program Let N = dC(P,f)√
λ

. The new span program P ′ will have the same

target as P, so we set V ′ = V and τ ′ = τ . We will define the inner product spaces so that all
are the same as in P, except for the space H ′true, which gets an additional copy of H:

H ′ = H|0〉 ⊕H|1〉, H ′j,a = Hj,a|0〉, H ′true = Htrue|0〉 ⊕H|1〉, H ′false = Hfalse|0〉

Note that H ′(x) = H(x)|0〉 ⊕ H|1〉 and H ′(x)⊥ = H(x)⊥|0〉. Finally, we define A′ so that it
acts as A, except that it ensures that vectors in the new space H|1〉 are expensive to use, by
penalizing these vectors by a factor of 1

N :

A′(|h0, 0〉+ |h1, 1〉) = A|h0〉+
1

N
A|h1〉

Positive Complexity To begin, suppose that x ∈ f−1(1), and let |w〉 be an approximate

positive witness for x in P with ‖|w〉‖2 ≤ w̃size+(x,P, λ
W 0
−(P )

) ≤ W̃ 1
+(P, f) and

∥∥∥ΠH(x)⊥ |w〉
∥∥∥2
≤
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λ
W 0
−(P,f)

. Define

|w′〉 = N(ΠH(x)⊥ |w〉)|1〉+ (ΠH(x)|w〉)|0〉.

We can see that |w′〉 ∈ H ′(x) = H(x)|0〉 ⊕H|1〉. Furthermore we have

A′|w′〉 = N
1

N
AΠH(x)⊥ |w〉+AΠH(x)|w〉 = A|w〉 = τ,

so |w′〉 is a positive witness for x in P ′, and we have:

wsize+(x,P ′) ≤
∥∥|w′〉∥∥2

= N2
∥∥∥ΠH(x)⊥ |w〉

∥∥∥2
+
∥∥ΠH(x)|w〉

∥∥2 ≤ N2 λ

W 0
−(P, f)

+ W̃ 1
+(P, f).

We therefore have

W 1
+(P, f) ≤

d2W̃ 1
+(P, f)W 0

−(P, f)

λ

λ

W 0
−(P, f)

+ W̃ 1
+(P, f) = (d2 + 1)W̃ 1

+(P, f),

completing the first part of the proof.

Negative Complexity Next, suppose x ∈ f−1(0), and let ω ∈ L(V,R) be an optimal negative

witness for x in P, so
∥∥ωAΠH(x)

∥∥2
= 0 and ‖ωA‖2 ≤ W 0

−(P, f). Since V ′ = V and τ ′ = τ ,
we have ω(τ ′) = 1, so we can consider ω as a negative witness in P ′. Let Π0 and Π1 be the
orthogonal projectors from H ′ into H|0〉 and H|1〉 respectively, and note that A′ = A(Π0+ 1

NΠ1).
As a negative witness for x in P ′, ω has error

∥∥ωA′ΠH′(x)

∥∥2
=

∥∥∥∥ωA(Π0 +
1

N
Π1

)
ΠH′(x)

∥∥∥∥2

=

∥∥∥∥ωA(ΠH(x)Π0 +
1

N
Π1

)∥∥∥∥2

=
∥∥ωAΠH(x)

∥∥2
+

1

N
‖ωA‖2 =

1

N2
‖ωA‖2

≤ λ

d2W̃ 1
+(P, f)W 0

−(P, f)
W 0
−(P, f) ≤ λ

d2(W 1
+(P ′, f)/(d2 + 1))

=
λ′

W 1
+(P ′, f)

,

where we use the fact that W 1
+(P ′, f) ≤ (d2 + 1)W̃ 1

+(P, f). We therefore have

w̃size−

(
x,P ′, λ′

W 1
+(P ′, f)

)
≤ ‖ωA‖2 = ‖ωA‖2 +

1

N2
‖ωA‖2 ≤

(
1 +

1

N2

)
W 0
−(P, f),

so W̃ 0
−(P ′, f) ≤

(
1 + λ

d2C(P,f)2

)
W 0
−(P, f).
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7.3.1 Example: Gapped t-threshold

To illustrate that this construction may in fact be useful for coming up with quantum algorithms
and not just in strengthening the theoretical correspondence between bounded error query com-
plexity and span programs, consider the following very natural example of an approximate span
program.

Let f be the problem of Gapped t-threshold: given an input x ∈ {0, 1}n, if |x| ≥ 2t output
1, and if |x| ≤ t output 0, under the promise that one of these conditions holds. We will give a
positive approximate span program for this problem.

Define a span program P by:

V = C, τ = 1, Hj = C|j〉, Hj,1 = Hj , Hj,0 = {0}, and A =
n∑
j=1

〈j|.

Then for any input x, we have H(x) = span{|j〉 : xj = 1}, and it’s easy to see that the optimal
positive witness for any x is |wx〉 = 1

|x|
∑

j:xj=1 |j〉, where |x| is the Hamming weight of x, so

wsize+(x,P) = 1
|x| . We therefore have

W 1
+(P, f) = max

x∈f−1(1)

1

|x|
=

1

2t
.

On the other hand, the only negative witness is the identity on R, ω = 1, and it has negative

witness complexity ‖ωA‖2 =
∥∥∥∑n

j=1 〈j|
∥∥∥2

= n. For any x, this has error
∥∥ωAΠH(x)

∥∥ = |x|, so

for λ = 1/2, any x ∈ f−1(0) has negative witness error at most t = λ
W 1

+(P,f)
. We then have

W̃ 0
−(P, f) = n.

By Theorem 7.6.9 in Section 7.6.2, this 1/2-positive approximate span program yields a

Θ
(√

n/t
)

algorithm for Gapped t-threshold (by first converting it to a negative span program

via Theorem 7.3.11), which is known to be optimal.

7.3.2 Two-Sided Error Algorithms to Approximate Span Programs

We will now show how to turn a two-sided error algorithm for f into a 3/4-negative approximate
span program for f . Fix an algorithm A as in Section 7.2, except now we only suppose that A has
error at most ε = 1/3 for all inputs, whereas in Section 7.2, we required the stronger condition
that A had error 0 on 1-inputs.
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Recall the span program P = (H,V, |τ〉, A) from Section 7.2. We will use a span program
P ′ = (H ′, V, |τ〉, A′) nearly identical to P, but we now add some never-available vectors to H:

H ′0 := |2T + 1〉 ⊗HA,

to get H ′ = H ⊕H ′0. The operator A′ acts on these vectors as:

A′|2T + 1〉|ψ〉 =
√
c(T + 1)|2T + 1〉|ψ〉,

for some c to be specified later, and A′ acts as A everywhere else. The new vectors in H ′0 allow
us to put any desired state as the final state, but when we do this, we will be penalized, because
these vectors are never in H ′(x) = H(x), and so always contribute to positive witness error. The
multiplicative factor

√
c(T + 1) ensures that this error is not too large.

Negative Analysis Since we have H ′(x) = H(x) for any x, all exact negative witnesses for P
are still exact negative witnesses for P ′, but their complexity may have changed slightly. Using
the negative witnesses ω̄x defined in Section 7.2, we recompute, for any x such that f(x) = 0:

wsize−(x,P ′) ≤
∥∥ω̄xA′∥∥2

= ‖ω̄xA‖2 +
∥∥∥ω̄x√c(T + 1)|2T + 1〉〈2T + 1| ⊗ IHA

∥∥∥2

≤ 4

(1− p1(x))2
+ c(T + 1) ‖〈2T + 1|〈Ψ2T+1(x)|‖2

=

(
4

(1− p1(x))2
+ c

)
(T + 1),

(see eq. (7.2)) where p1(x) is the probability that A(x) = 1. As p1(x) gets larger (x becomes less
negative) the negative witness size grows unboundedly. However, when f(x) = 0, p1(x) ≤ ε, so

W 0
−(P ′, f) ≤

(
4

(1− ε)2
+ c

)
(T + 1).

Positive Analysis We now consider positive witnesses, which may now be approximate. Sup-
pose f(x) = 1. In the exact case, we had positive witnesses |wx〉 ∈ H(x) such that A|wx〉 = |τ〉.
Now we may have A′|wx〉 = A|wx〉 6= |τ〉, since equality relied on the exactness of A on 1-inputs.
We have:

A′|wx〉 = A|wx〉 = |0〉|0, 0, 0〉 − |2T + 1〉|Ψ2T+1(x)〉.

Then A|wx〉 − |τ〉 = |2T + 1〉(|0, 0, 1〉 − |Ψ2T+1(x)〉), so we define a new approximate witness:

|w̃x〉 := |wx〉 −
1√

c(T + 1)
|2T + 1〉(|0, 0, 1〉 − |Ψ2T+1(x)〉),
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so clearly A′|w̃x〉 = |τ〉. We can compute the positive witness error:

error+(x,P ′) ≤
∥∥∥ΠH′(x)⊥ |w̃x〉

∥∥∥2
=

∥∥∥∥∥ 1√
c(T + 1)

|2T + 1〉(|0, 0, 1〉 − |Ψ2T+1(x)〉)

∥∥∥∥∥
2

=
1

c(T + 1)
(2− 2Re〈Ψ2T+1(x)|0, 0, 1〉)

=
1

c(T + 1)
(2− 2p1(x))

≤ 2− 2(1− ε)
c(T + 1)

=
2ε

c(T + 1)
.

Thus, for all x such that f(x) = 1, wsize−(x,P ′) ≥ c(T+1)
2ε , so W 1

−(P ′, f) ≥ c(T+1)
2ε . Thus

W 0
−(P ′, f)

W 1
−(P ′, f)

≤
(

4

(1− ε)2
+ c

)
(T + 1)

2ε

c(T + 1)
=

8ε

c(1− ε)2
+ 2ε =: λ.

When ε = 1/3, setting c ≥ 72 gives λ ≤ 3/4. We can also compute the positive witness size:

w̃size+(x,P ′) ≤ ‖|w̃x〉‖2 ≤ ‖|wx〉‖2 +
2ε

c(T + 1)

≤ 2T + 1 +
2ε

c(T + 1)
. (See eq. (7.1).)

Thus W̃ 1
+(P ′, f) ≤ 2T + 1 + 2ε

c(T+1) . Then P ′ is a 3/4-negative approximate span program for f
with complexity √

W̃ 1
+(P ′, f)W 0

−(P ′, f) = Θ(T ).

7.4 Witness Anatomy

In this section, we explore the structure of span program witnesses. Understanding this structure
will allow us to present more intuitive algorithms in Section 7.6.

In general, a positive witness is any |w〉 ∈ H such that A|w〉 = τ . Assume the set of all such
vectors is non-empty, and let |w〉 be any vector in H such that A|w〉 = τ . Then the set is exactly

T := |w〉+ kerA = {|w〉+ |h〉 : |h〉 ∈ kerA}.

We prove here, for completeness, that the unique shortest vector in T is the unique vector in
T ∩ (kerA)⊥ (See also Figure 7.4).

Lemma 7.4.1. Let T = |w〉+U be an affine subspace of inner product space H, for some subspace
U of H, and some vector |w〉 6∈ U . Then ΠU⊥ |w〉 is the unique shortest vector in T .
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kerA TH(x)

|w⊥0,x〉
|wx〉

|w0〉

Figure 7.4: The smallest witness |w0〉
is the unique vector in T orthogonal to
kerA. We can write any optimal witness
for an input x as |wx〉 = |w0〉+ |w⊥0,x〉 for

some |w⊥0,x〉 ∈ kerA.

Proof. We first notice that ΠU⊥ |w〉 = |w〉−ΠU |w〉, and −ΠU |w〉 ∈ U , so ΠU⊥ |w〉 ∈ T , so we can
write T = ΠU⊥ |w〉+U . Let |w′〉 ∈ T be such that ‖|w′〉‖ ≤ ‖ΠU⊥ |w〉‖. Write |w′〉 = ΠU⊥ |w〉+|u〉
for some |u〉 ∈ U . We have ∥∥|w′〉∥∥2

= ‖ΠU⊥ |w〉‖
2 + ‖|u〉‖2

since 〈u|ΠU⊥ |w〉 = 0. Then, since ‖|w′〉‖ ≤ ‖ΠU⊥ |w〉‖, we must have ‖|u〉‖ = 0, so |w′〉 =
ΠU⊥ |w〉.

We can therefore talk about the unique smallest positive witness, whenever T is non-empty.

Definition 7.4.2. Fix a span program P, and suppose T = {|h〉 ∈ H : A|h〉 = τ} is non-empty.
We define the globally optimal positive witness to be the vector |w0〉 ∈ T with smallest norm.
We define G+(P) := ‖|w0〉‖2.

By Lemma 7.4.1, we know that |w0〉 is in (kerA)⊥. We can write any positive witness |wx〉
as |w0〉+ |w⊥0,x〉 for some |w⊥0,x〉 ∈ kerA.

Negative Global Witness Just as we can talk about a globally optimal positive witness, we
can also talk about a globally optimal negative witness: any ω0 ∈ L(V,C) such that ω0(τ) = 1,
that minimizes ‖ω0A‖. Note that unlike |w0〉, ω0 might not be unique. There may be distinct
ω0, ω

′
0 ∈ L(V,C) that map τ to 1 and have minimal complexity. However, the following lemma

tells us that in that case, ω0A = ω′0A.

136



Lemma 7.4.3. Suppose ω0, ω
′
0 ∈ L(V,C) are such that ω0(τ) = ω′0(τ) = 1, Aω0 6= Aω′0 and

‖ω0A‖ = ‖ω′0A‖. Then there exists ω′′0 ∈ L(V,C) such that ω′′0(τ) = 1 and ‖ω′′0A‖ < ‖ω0A‖.

Proof. For any choice of δ ∈ (0, 1), ω′′0 := δω0 + (1− δ)ω′0 has ωδ(τ) = 1.

Note that if (ω0A)� and (ω′0A)� are linearly independent, then we have |ω0A(ω′0A)| < ‖ω0A‖ ‖ω′0A‖ =
‖ω0A‖2 by Cauchy-Schwarz. On the other hand, if they are linearly dependent, we must have
ω0A = −ω′0A since ‖ω0A‖ = ‖ω′0A‖ and ω0A 6= ω′0A. In that case, ω0A(ω′0A)� = −ω0A(ω0A)� =
−‖ω0A‖2 < ‖ω0A‖2. Thus, we can compute:∥∥ω′′0A∥∥2

=
∥∥δω0A+ (1− δ)ω′0A

∥∥2

= δ2 ‖ω0A‖2 + (1− δ)2
∥∥ω′0A∥∥2

+ 2δ(1− δ)ω0A(ω′0A)�

< (2δ2 − 2δ + 1) ‖ω0A‖2 + 2δ(1− δ) ‖ω0A‖2

= (2δ2 − 2δ + 1 + 2δ − 2δ2) ‖ω0A‖2 = ‖ω0A‖2 .

For any global optimal negative witness, ω0, ω0A is conveniently related to the global optimal
positive witness |w0〉, as the following lemma shows.

Lemma 7.4.4. Let |w0〉 be the globally optimal positive witness in P, and ω0 a globally optimal

negative witness in P. Then (ω0A)� = |w0〉
G+(P) , and G+(P) = 1

G−(P) .

Proof. We can compute
ω0A|w0〉 = ω0τ = 1,

so write (ω0A)� = |w0〉
‖|w0〉‖2

+|u〉 for some |u〉 with 〈u|w0〉 = 0. Let |v〉 = |w0〉
‖|w0〉‖2

. Then |v〉 ∈ kerA⊥,

so kerA ⊆ ker 〈v|, so by the fundamental homomorphism theorem, there exists a linear function
ω′0 ∈ L(ImA, Im〈v|) = L(V,C) such that 〈v| = ω′0A. Furthermore, we have

‖ω0A‖2 =

∥∥∥∥ |w0〉
‖|w0〉‖2

+ |u〉
∥∥∥∥2

=
∥∥ω′0A∥∥2

+ ‖|u〉‖2 ,

so since by optimality of ω0, we must have ‖ω0A‖ ≤ ‖ω′0A‖, it must be the case that |u〉 = 0.

That is, ω0A = 〈w0|
‖|w0〉‖2

= 〈w0|
G+(P) . Thus:

G−(P) = ‖ω0A‖2 =
‖|w0〉‖2

G+(P)2
=

1

G+(P)
,
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completing the proof.

A related fact shows a similar relationship between the positive error and negative witness for
a particular input x. The following lemma is actually proven in the proof of Theorem 7.3.7.

Lemma 7.4.5. Let ωx be an optimal negative witness for x and |w̃x〉 an optimal min-error positive
witness for x. Then the error of |w̃x〉, ΠH(x)⊥ |w̃x〉, is exactly

ΠH(x)⊥ |w̃x〉 =
(ωxA)�

‖ωxA‖2
.

7.5 Span Program Scaling

When presenting an algorithm for evaluating approximate span programs in the next section,
it will be much clearer what is going on in the algorithm if we can make certain assumptions
about the span program, such as that the optimal positive witness is a unit vector. Although
we can’t hope to effect a scaling that decreases W+(P, f)W−(P, f), it is simple to scale all
positive witnesses up, while simultaneously scaling negative witnesses down by the same factor,
or vice versa, by simply scaling the target vector. However, it will be desirable to perform such
a scaling, while independently scaling the optimal positive witness. In this section, we show how
to nearly accomplish this independent scaling, showing how to normalize G+(P), the optimal
positive witness size, to 1, with a nearly independent relative scaling of the positive and negative
witnesses.

Theorem 7.5.1 (Scaling G+). Let P = (H,V,A, τ) be a span program on [q]n. Then for any
positive real number β, define a span program on [q]n, Pβ = (H ′, V ′, A′, τ ′), by

H ′ = H⊕C|0〉⊕C|1〉, ∀j ∈ [n], a ∈ [q], H ′j,a = Hj,a, H ′true = Htrue⊕C|1〉, H ′false = Hfalse⊕C|0〉

V ′ = V ⊕ C|1〉, τ ′ = τ + |1〉,
and A′ ∈ L(H ′, V ′) defined:

∀|h〉 ∈ H, A′|h〉 = βA|h〉, A′|0〉 = τ, and A′|1〉 =

√
β2 +G+(P)

β
|1〉.

Then for all x ∈ [q]n with a positive witness in P,

wsize+(x,Pβ) =
1

β2
wsize+(x,P) +

β2

G+(P) + β2
;

for all x ∈ [q]n with a negative witness in P,

wsize−(x,Pβ) = β2wsize−(x,P) + 1;

and G+(Pβ) = 1.

138



Proof. Let |w0〉 be the globally optimal positive witness of P. Then it’s clear that the globally
optimal positive witness of P ′ must have the form:

|w′0〉 =
1− α
β
|w0〉+ α|0〉+

β√
β2 +G+(P)

|1〉,

for some parameter α. In particular, since |w′0〉 is assumed to be optimal, it must be the α that
minimizes: ∥∥|w′0〉∥∥2

=
(1− α)2

β2
G+(P) + α2 +

β2

β2 +G+(P)
.

We can compute this as follows:

−2
1− α
β2

G+(P) + 2α = 0

α

(
1 +

G+(P)

β2

)
=

G+(P)

β2

α =
G+(P)

β2 +G+(P)
.

Plugging in the computed value for α, we get:

|w′0〉 =

β2

β2+G+(P)

β
|w0〉+

G+(P)

β2 +G+(P)
|0〉+

β√
β2 +G+(P)

|1〉

=
β

β2 +G+(P)
|w0〉+

G+(P)

β2 +G+(P)
|0〉+

β√
β2 +G+(P)

|1〉.

From which we can compute:

G+(Pβ) =
∥∥|w′0〉∥∥2

=
β2G+(P)

(β2 +G+(P))2
+

G+(P)2

(β2 +G+(P))2
+

β2

β2 +G+(P)

=
β2G+(P) +G+(P)2 + β2(β2 +G+(P))

(β2 +G+(P))2
= 1.

Similarly, let |wx〉 be the optimal positive witness for some x in P. Since |0〉 6∈ H(x), it’s clear
that the optimal positive witness for x has the form:

|w′x〉 =
1

β
|wx〉+

β√
β2 +G+(P)

|1〉.
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We thus have

wsize+(x,Pβ) =
∥∥|w′x〉∥∥2

=
1

β2
wsize+(x,P) +

β2

β2 +G+(P)
.

Finally, let ωx be the optimal negative witness for some x in P. Suppose ω′x is an optimal
negative witness for x in Pβ. Then ω′xAΠH′(x) = 0, so in particular ω′xA

′|1〉 = 0, so ω′x|1〉 = 0.
We also need ω′x(τ + |1〉) = 1, so ω′xτ = 1. Thus, ω′x is a vector in V ′ such that ω′xτ = 1 and
ω′xA

′ΠH(x) = 0 that minimizes:∥∥ω′xA′∥∥2
=
∥∥ω′xAΠH + ω′xτ〈0|

∥∥2
=
∥∥ω′xA∥∥2

+ 1,

and thus ω′x minimizes ‖ω′xA‖
2, and so we have ‖ω′xA‖

2 = ‖ωxA‖2 = wsize−(x,P). Thus:

wsize−(x,Pβ) = wsize−(x,P) + 1,

completing the proof.

When we give our algorithm for evaluating a negative approximate span program, in Section
7.6.2, we will also make use of the following properties of the scaling described in Theorem 7.5.1.

Corollary 7.5.2. For any f : D → {0, 1} for some D ⊆ [q]n, the span program defined in
Theorem 7.5.1 has

W 0
−(Pβ, f) = β2W 0

−(P, f)+1, W 1
−(Pβ, f) = β2W 1

−(P, f)+1, and W̃+(P, f) ≤ 1

β2
W̃+(P, f)+2.

Proof. The first two statements are easy to see, since wsize−(x,Pβ) = β2wsize−(x,P) + 1, we
have

W 0
−(Pβ, f) = max

x∈f−1(0)
wsize−(x,Pβ) = max

x∈f−1(0)
{β2wsize−(x,P) + 1} = β2W 0

−(P, f) + 1,

W 1
−(Pβ, f) = min

x∈f−1(1)
wsize−(x,Pβ) = min

x∈f−1(1)
{β2wsize−(x,P) + 1} = β2W 1

−(P, f) + 1.

For the final fact, let |w̃x〉 be an optimal min-error approximate witness for x in P. Define

|w̃′x〉 :=
βwsize−(x,P)

1 + β2wsize−(x,P)
|w̃x〉+

1

1 + β2wsize−(x,P)
|0〉+

β√
β2 +G+(P)

|1〉.

We have

A′|w̃′x〉 =
β2wsize−(x,P)

1 + β2wsize−(x,P)
A|w̃x〉+

1

1 + β2wsize−(x,P)
τ + |1〉 = τ + |1〉 = τ ′
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so |w̃′x〉 is an approximate witness for x. Since H ′(x)⊥ = H(x)⊥ ⊕ span{|0〉}, it has error:∥∥∥ΠH′(x)⊥ |w̃′x〉
∥∥∥2

=
β2wsize−(x,P)2

(1 + β2wsize−(x,P))2

∥∥∥ΠH(x)⊥ |w̃x〉
∥∥∥2

+
1

(1 + β2wsize−(x,P))2

=
β2wsize−(x,P)

(1 + β2wsize−(x,P))2
+

1

(1 + β2wsize−(x,P))2
since error+(x,P) =

1

wsize−(x,P)

=
1

1 + β2wsize−(x,P)
=

1

wsize−(x,Pβ)
,

which we know is optimal. Thus |w̃′x〉 is a min-error approximate witness for x in Pβ. Its
complexity is

w̃size+(x,Pβ) ≤
∥∥|w̃′x〉∥∥2

=
β2wsize−(x,P)2

(1 + β2wsize−(x,P))2
‖|w̃x〉‖2 +

1

(1 + β2wsize−(x,P))2
+

β2

β2 +G+(P)

≤ β2wsize−(x,P)2w̃size+(x,P) + 1

(1 + β2wsize−(x,P))2
+ 1

≤ β2wsize−(x,P)2w̃size+(x,P)

1 + 2β2wsize−(x,P) + β4wsize−(x,P)2
+ 2

=
β2wsize−(x,P)2w̃size−(x,P)

β4wsize−(x,P)2
+ 2 =

w̃size+(x,P)

β2
+ 2.

Thus, we can compute

W̃ 1
+(Pβ, f) = max

x∈f−1(1)
w̃size+(x,Pβ) ≤ max

x∈f−1(1)

(
w̃size+(x,P)

β2
+ 2

)
=

1

β2
W̃ 1

+(P, f) + 2.

7.6 Algorithm for evaluating approximate span programs

In this section, we show that our span program definitions are actually useful by giving algo-
rithms for “evaluating” span programs. These algorithms are similar to previous algorithms for
evaluating span programs, such as [Rei09], however, the understanding of the structure of span
programs gained in Section 7.4 allows us to present a more transparent view of the structure of
the algorithm, and why it works.

141



We begin in Section 7.6.1 by presenting and analyzing an algorithm that decides if input x
is accepted by P or rejected. This does not show any new result, as it does not use any notion
of approximate span programs, and for our other modification, that Hj,a and Hj,a′ need not be
orthogonal, it is trivial to see that the old results on evaluating span programs still hold. However,
our presentation is somewhat novel, and our later algorithms build on this first algorithm. Later,
in Section 7.6.2, we give an algorithm for approximately evaluating span programs; that is, we
present an algorithm that decides if input x has negative witness size above a given threshold,
or below a given threshold. Applying this construction to a span program P that is a λ-negative
approximate span program for a decision problem f gives an algorithm that decides f with

bounded error, whose quantum query complexity is O

(√
W 0
−(P, f)W̃ 1

+(P, f)

)
for any constant

λ, or more generally, scales as O

(√
W 0
−(P, f)W̃ 1

+(P, f) 1
(1−λ1/4)2

log 1
1−λ1/4

)
.

The following algorithm will be the basis of both the algorithm in Section 7.6.1 and the
algorithm in Section 7.6.2.

The Basic Algorithm Let P be a span program with G+(P) = 1. Let |w0〉 be the glob-
ally optimal positive witness for P (which is a unit vector by assumption). Define U(P, x) :=
(2ΠH(x)⊥ − I)(2ΠkerA⊥ − I). Then the algorithm BasicSpanP,Θ,ε(x) consists of running phase
estimation, from Theorem 3.1.7, on U(P, x) applied to |w0〉 to precision Θ and error ε. If we
measure 0, we reject, and otherwise, we accept.

We can easily analyze the quantum query complexity of BasicSpan. The phase estimation
makes O( 1

Θ log 1
ε ) controlled calls to U(P, x). We have the following.

Lemma 7.6.1. The operator U(P, x) can be implemented using 2 queries to x.

Proof. The reflection 2ΠkerA⊥ − I is independent of the input, so it has query complexity 0,
although its time complexity may be quite high. We have H(x) =

⊕
j∈[n]Hj,xj . For every j ∈ [n]

and a ∈ [q], let Rj,a reflect states in H⊥j,a ∩ Hj . Implementing Rj,a is also input-independent,
and so has query complexity 0, although again it may have high time complexity. Since the
Hj are orthogonal, we can map |0〉|0〉|ψj,a,`〉 7→ |j〉|0〉|ψj,a,`〉 7→ |j〉|xj〉|ψj,a,`〉 using one query to
the input. We can then apply Rj,xj , controlled on the first two registers, in 0 queries, before
uncomputing the first two registers using one more query, and accomplishing 2ΠH(x)⊥ − I. Thus
U(P, x) can be implemented using 2 queries to x.

Thus, the quantum query complexity of the algorithm BasicSpanP,Θ,ε is O
(

1
Θ log 1

ε

)
.

We will make use of the following lemma, which can be derived from Theorem 4.1.4, to analyze
the action of U(P, x) on |w0〉.
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Lemma 7.6.2 (Effective Spectral Gap Lemma [LMR+11]). Let U = (2ΠA − I)(2ΠB − I) be the
product of two reflections, and let ΠΘ be the orthogonal projector onto

span{|u〉 : U |u〉 = eiθ|u〉, |θ| ≤ Θ}.

Then if ΠA|u〉 = 0,

‖ΠΘΠB|u〉‖ ≤
Θ

2
‖|u〉‖ .

7.6.1 Non-approximate Span Programs

We first show how the algorithm BasicSpan can be used to evaluate span programs in the
traditional sense, in which we want to accept all inputs that are positive for P, and reject all
inputs that are negative for P. Specifically, we prove the following theorem.

Theorem 7.6.3. Let f : D → {0, 1}, D ⊆ [q]n be any decision problem such that P decides f .

Then the query complexity of f is at most O
(√

W−(P, f)W+(P, f)
)

.

Upper Bound on Rejection Error We start by showing an upper bound on the probability
that a positive input is rejected. In order to do this, we simply show that the overlap with small
phase subspaces can be upper bounded in terms of the positive witness size. We notice then that
the rejection probability goes down with the witness size.

Lemma 7.6.4. For any x ∈ [q]n,

‖ΠΘ|w0〉‖2 ≤
Θ2

4
wsize+(x,P).

Proof. If there is no positive witness for x, then wsize+(x,P) =∞, and the statement is vacuously
true. Otherwise, let |wx〉 = |w0〉+ |w⊥0,x〉, with |w⊥0,x〉 ∈ kerA, be an optimal positive witness for

x, so ‖|wx〉‖2 = wsize+(x,P). Since ΠH(x)⊥ |wx〉 = 0, by the Effective Spectral Gap Lemma, we

have ‖ΠΘΠkerA⊥ |wx〉‖ ≤ Θ
2 ‖|wx〉‖. Thus, we have:

‖ΠΘ|w0〉‖ = ‖ΠΘΠkerA⊥ |wx〉‖ ≤
Θ

2
‖|wx〉‖ =

Θ

2

√
wsize+(x,P).

The statement follows immediately.

Corollary 7.6.5. If f(x) = 1, the probability BasicSpanP,Θ,ε rejects x is at most Θ2

4 W+(P, f)+ε.
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Proof. By Lemma 7.6.4, if f(x) = 1, then ‖ΠΘ|w0〉‖2 ≤ Θ2

4 W+(P, f). Let Φ be the unitary action
of applying phase estimation on U(P, x) to precision Θ. Then the probability the algorithm
rejects is:

|〈0|Φ|w0〉|2 = |〈0|ΦΠΘ|w0〉|2 + |〈0|Φ(I −ΠΘ)|w0〉|2

≤ Θ2

4
W+(P, f) + ε, by Theorem 3.1.7.

Acceptance Error Next we show an upper bound on the probability that a negative input is
accepted. In order to do this, we simply show that when the input has a negative witness, |w0〉
has high overlap with the 0-phase space.

Lemma 7.6.6. For any input x ∈ [q]n,

‖Π0|w0〉‖2 ≥
1

wsize−(x,P)
.

Proof. If there is no negative witness then wsize−(x,P) = ∞ and the statement is vacuously
true. Otherwise, let ωx be an optimal negative witness for x in P, so ωxτ = 1,

∥∥ωxAΠH(x)

∥∥ = 0,

and ‖ωxA‖2 = wsize−(x,P). Define |u〉 = (ωxA)�. We clearly have ΠkerA⊥ |u〉 = |u〉, and
ΠH(x)⊥ |u〉 = |u〉, since

∥∥ωxAΠH(x)

∥∥ = 0, so U(P, x)|u〉 = |u〉 — i.e., |u〉 is in the 0-phase space
of U(P, x). We have:

〈u|w0〉 = ωxA|w0〉 = ωxτ = 1

and
‖|u〉‖2 = ‖ωxA‖2 = wsize−(x,P),

so we have

‖Π0|w0〉‖2 ≥
∥∥∥∥ |u〉〈u|‖|u〉‖2

|w0〉
∥∥∥∥2

=
1

wsize−(x,P)
.

Corollary 7.6.7. If f(x) = 0, then the probability BasicSpanP,Θ,ε rejects x is at least 1
W−(P,f) .

Proof. By Lemma 7.6.6, if f(x) = 0, then ‖Π0|w0〉‖2 ≥ 1
W−(P,f) . Since phase estimation outputs

0 with certainty on input Π0|w0〉, the probability phase estimation outputs 0, and thus the
algorithm rejects, is at least 1

W−(P,f) .

144



Final Algorithm We now give the final algorithm to evaluate any span program.

ExactSpanP,ε(x)

1. Let P = (H,V,A, τ), and define P ′ to be Pβ from Theorem 7.5.1, for β =
√

ε
W−(P,f)(1−ε)

2. Define Θ =
√

2ε
(1−ε)
ε

W−(P,f)W+(P,f)+1
and ε = ε

2

3. Run BasicSpanP ′,Θ,ε(x) and output the outcome

Theorem 7.6.8. Let P be a span program on [q]n, and let f be any decision problem with domain
D ⊆ [q]n such that if f(x) = 1, then P accepts x and if f(x) = 0 then P rejects x. Then for

any ε ∈ (0, 1/2), ExactSpanP,ε(x) solves f with bounded error ε in O
(√

W−(P)W+(P)1
ε log 1

ε

)
quantum query complexity.

Proof. The complexity of BasicSpanP,Θ,ε is O(1/Θ log 1
ε ) quantum queries, so the query com-

plexity of ExactSpan follows.

We now show correctness. We first note that by Theorem 7.5.1, G+(P ′) = 1, so we can apply
BasicSpan to P ′. Also by Theorem 7.5.1, we have

W+(Pβ, f) =
1

β2
W+(P, f) +

β2

G+(P) + β2
and W−(Pβ, f) = β2W−(P, f) + 1,

so plugging in β =
√

ε
W−(P,f)(1−ε) , and using β2 < G+(P) + β2, we get

W+(P ′, f) ≤ 1− ε
ε

W−(P, f)W+(P, f) + 1, and W−(P ′, f) =
ε

1− ε
+ 1 =

1

1− ε
.

Suppose x ∈ f−1(1). Then by Corollary 7.6.5, BasicSpanP ′,Θ,ε errs (in this case, rejects) with
probability at most

Θ2

4
W+(P ′, f) + ε ≤ 1

2

ε
1−ε
ε W−(P, f)W+(P, f) + 1

(
1− ε
ε

W−(P, f)W+(P, f) + 1

)
+
ε

2
= ε.

Next, suppose x ∈ f−1(0), then by Corollary 7.6.7, BasicSpanP ′,Θ,ε errs (in this case, accepts)
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with probability at most

1− 1

W−(P ′)
= 1− (1− ε) = ε.

Thus, the error probability on any input is at most ε, completing the proof.

7.6.2 Evaluating Approximate Span Programs

In this section, we will use the algorithm BasicSpan to prove the following theorem.

Theorem 7.6.9. If P is a λ-negative approximate span program for f , then there exists an
algorithm that decides f with bounded error in quantum query complexity:

O


√
W 0
−(P, f)W̃ 1

+(P, f)

(1− λ1/4)2
log

1

1− λ1/4

 .

To prove this theorem, we will analyze the behaviour of BasicSpan on a span program with
G+(P) = 1, as in the previous section, but this time, we will consider the case when positive
witnesses may have some error. Just as in the previous section, we will use the results of Section
7.5 to transform an arbitrary span program to a span program P ′ with G+(P ′) = 1, and run
BasicSpan on P ′.

Upper Bound on Rejection Error The following lemma is very similar to Lemma 7.6.4,
except that we now consider positive witnesses that may have some error.

Lemma 7.6.10. For any x ∈ [q]n,

‖ΠΘ|w0〉‖2 ≤

(
Θ

2

√
w̃size+(x,P) +

1√
wsize−(x,P)

)2

.

Proof. Let |wx〉 = |w0〉+|w⊥0 〉 be an optimal min-error approximate witness for x, so
∥∥∥ΠH(x)⊥ |w〉

∥∥∥2
=

1
wsize−(x,P) , and minimal witness size ‖|wx〉‖2 = w̃size+(x,P). We have:

|w0〉 = ΠkerA⊥ |wx〉 = ΠkerA⊥ΠH(x)|wx〉+ ΠkerA⊥ΠH(x)⊥ |wx〉.

By the effective spectral gap Lemma,

since ΠH(x)⊥ΠH(x)|wx〉 = 0, we have
∥∥ΠΘΠkerA⊥ΠH(x)|wx〉

∥∥ ≤ Θ

2

∥∥ΠH(x)|wx〉
∥∥ .
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Then we have:

‖ΠΘ|w0〉‖ =
∥∥∥ΠΘΠkerA⊥ΠH(x)|wx〉+ ΠΘΠkerA⊥ΠH(x)⊥ |wx〉

∥∥∥
≤

∥∥ΠΘΠkerA⊥ΠH(x)|wx〉
∥∥+

∥∥∥ΠΘΠkerA⊥ΠH(x)⊥ |wx〉
∥∥∥

≤ Θ

2

∥∥ΠH(x)|wx〉
∥∥+

∥∥∥ΠH(x)⊥ |wx〉
∥∥∥

≤ Θ

2

√
w̃size+(x,P) +

1√
wsize−(x,P)

.

The result follows.

Corollary 7.6.11. For all x ∈ f−1(1) the probability that BasicSpanP,Θ,ε rejects on input x is
at most: Θ

2

√
W̃ 1

+(P, f) +
1√

W 1
−(P, f)

2

+ ε.

Proof. By Lemma 7.6.10, if f(x) = 1, then ‖ΠΘ|w0〉‖2 ≤
(

Θ
2

√
W̃ 1

+(P, f) + 1√
W 1
−(P,f)

)2

. Let

Φ be the unitary action of applying phase estimation on U(P, x) to precision Θ. Then the
probability we reject is:

|〈0|Φ|w0〉|2 = |〈0|ΦΠΘ|w0〉|2 + |〈0|Φ(I −ΠΘ)|w0〉|2

≤

Θ

2

√
W̃ 1

+(P, f) +
1√

W 1
−(P, f)

2

+ ε, by Theorem 3.1.7.

Upper Bound on Acceptance Error By Lemma 7.6.6, for all x ∈ [q]n, ‖Π0|w0〉‖2 ≥
1

wsize−(x,P) . As a corollary, we get the following.

Corollary 7.6.12. For all x ∈ f−1(0), the probability that BasicSpanP,Θ,ε rejects on input x is

at least 1
W 0
−(P,f)

.

Proof. The algorithm BasicSpan rejects whenever a 0 is measured, which happens with proba-
bility at least ‖Π0|w0〉‖2. The result then follows from Lemma 7.6.6.
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Full Algorithm We are now ready to construct an algorithm that evaluates any λ-negative
span program, P, with no assumption on G+(P). We first give an algorithm that may not have
very high success probability, and later describe how to amplify the success probability to get
bounded error.

NegativeSpanP,ε(x)

1. Let P = (H,V,A, τ), and define P ′ to be Pβ from Theorem 7.5.1, for β = λ1/4√
W 0
−(P,f)

2. Define Θ =
1− λ1/4√

W 0
−(P ′, f)W̃ 1

+(P ′, f)
, and ε = 1−λ1/4

8

3. Run BasicSpanP ′,Θ,ε(x) and output the outcome

In the following theorem we restrict to λ ≥ 1
2 , but this is not really a restriction at all, since if

P is a λ-negative approximate span program for f with λ < 1
2 , then P is also a 1

2 -negative span
program for f , since

W 0
−(P, f)

W 1
−(P, f)

≤ λ ≤ 1

2
.

Theorem 7.6.13. For any λ ∈ [1/2, 1), if P is a λ-negative span program for f , then the
algorithm NegativeSpan has quantum query complexity

O


√
W 0
−(P, f)W̃ 1

+(P, f)

1− λ1/4
log

1

1− λ1/4

 .

Furthermore, for any x such that f(x) = 0, NegativeSpan rejects with probability at least p0 =
1√
λ+1

, and for any x such that f(x) = 1, NegativeSpan rejects with probability at most p1 =

(1/2+1/2λ1/4)2

1+
√
λ

+ 1−λ1/4
8 . Furthermore, we have p0 − p1 ≥ 1−λ1/4

4 > 0.

Proof. The query complexity of BasicSpan is O
(

1
Θ log 1

ε

)
, and thus the query complexity of

NegativeSpan is O
(

1
Θ log 1

ε

)
. By Corollary 7.5.2, we have

W 0
−(P ′, f) =

√
λ

W 0
−(P, f)

W 0
−(P, f) + 1 =

√
λ+ 1,
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W 1
−(P ′, f) ≥

√
λ

W 0
−(P, f)

W 1
−(P, f) + 1 ≥ 1√

λ
+ 1, since λ ≥

W 0
−(P, f)

W 1
−(P, f)

,

and W̃ 1
+(P ′, f) ≤

W 0
−(P, f)
√
λ

W̃ 1
+(P, f) + 2.

We can thus compute the query complexity of NegativeSpan as order of:

1

Θ
log

1

ε
=

√√
λ+1√
λ
W 0
−(P, f)W̃ 1

+(P, f) + 2(
√
λ+ 1)

1− λ1/4
log

8

1− λ1/4

= O


√
W 0
−(P, f)W̃ 1

+(P, f)

1− λ1/4
log

1

1− λ1/4

 .

Next, by Corollary 7.6.12, for any x ∈ f−1(0), the probability of rejection is at least

1

W 0
−(P ′, f)

=
1√
λ+ 1

.

By Corollary 7.6.11, for any x ∈ f−1(1), the probability of rejection is at most

Θ

2

√
W̃ 1

+(P ′, f) +
1√

W 1
−(P ′, f)

2

+ ε

=

 1− λ1/4

2
√
W 0
−(P ′, f)W̃ 1

+(P ′, f)

√
W̃ 1

+(P ′, f) +
1√

1/
√
λ+ 1

2

+
1− λ1/4

8

≤

 1− λ1/4

2
√√

λ+ 1
+

√ √
λ

1 +
√
λ

2

=

(
1
2 + 1

2λ
1/4
)2

1 +
√
λ

+
1− λ1/4

8
.
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Finally, we can compute:

p0 − p1 =
1− 1

4(1 + λ1/4)2

√
λ+ 1

− 1− λ1/4

8
=

3
4 −

1
4

√
λ− 1

2λ
1/4

√
λ+ 1

− 1− λ1/4

8

≥ 3

8

(
1− λ1/4

)
− 1− λ1/4

8
=

1− λ1/4

4
.

Since p0 > p1 whenever λ < 1, NegativeSpan can distinguish between 0- and 1-inputs of
f with possibly small success probability. In order to turn NegativeSpan into a bounded error
algorithm for f for any λ < 1, we will make use of the following theorem.

Theorem 7.6.14 (Quantum Amplitude Estimation [BHMT02]). Let A be a quantum procedure
that outputs a state

√
p|0〉|Ψ(0)〉+

√
1− p|1〉|Ψ(1)〉. Then there exists a quantum procedure that

uses T calls to A and outputs an estimate of p, p̃, such that with probability at least 2/3,

|p− p̃| < 2π

√
p(1− p)
T

+
π2

T 2
.

Using amplitude estimation and Theorem 7.6.13, we get Theorem 7.6.9:

Corollary 7.6.15 (Theorem 7.6.9). If P is a λ-negative approximate span program for f , then
there exists an algorithm that decides f with bounded error in quantum query complexity:

O


√
W 0
−(P, f)W̃ 1

+(P, f)

(1− λ1/4)2
log

1

1− λ1/4

 .

Proof. We will apply amplitude estimation with T = 4π√
p1(p0−p1) to the output of NegativeSpan

if we delay all measurements, which we can write as
√
p(x)|0〉|Ψ(0, x)〉 +

√
1− p(x)|1〉|Ψ(1, x)〉

for some states |Ψ(0, x)〉, |Ψ(1, x)〉, where p(x) is the probability NegativeSpan rejects input x.
If the estimate p̃ is < p1 + p1

p0−p1
p0+p1

, then we accept, and otherwise, we reject.
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Suppose f(x) = 1. Then p(x) ≤ p1, so with probability at least 2/3:

p̃ < 2π

√
p(x)(1− p(x))

T
+
π2

T 2
+ p(x)

≤ 2π

√
p1

4π/(
√
p1(p0 − p1))

+
π2

16π2/(p1(p0 − p1)2)
+ p1

=
p1(p0 − p1)

2
+
p1(p0 − p1)2

16
+ p1

≤ p1 +
9

16
p1(p0 − p1), since p0 − p1 > (p0 − p1)2,

< p1 +
p1(p0 − p1)

p0 + p1
,

where the last line follows from the fact that since λ ∈ (0, 1), p0 ∈ (1/2, 1) and p1 ∈ (3/8, 1/2),
and so p0 + p1 ≤ 3/2 < 16/9.

On the other hand, suppose f(x) = 0. Then p(x) ≥ p0 ≥ 1/2, so with probability at least 2/3:

p̃ > p(x)− 2π

√
p(x)(1− p(x))

T
− π2

T 2

≥ p0 − 2π

√
1/2

4π/(
√
p1(p0 − p1))

− π2

16π2/(p1(p0 − p1)2)

= p0 −
√
p1(p0 − p1)

2
√

2
− p1(p0 − p1)2

16

≥ p0 −
√

1/2(p0 − p1)

2
√

2
− p0(p0 − p1)

16
, since p1 < 1/2 < p0 and (p0 − p1)2 ≤ p0 − p1,

≥ p0 −
p0

1/2

(p0 − p1)

4
− p0(p0 − p1)

16
, since p0 > 1/2,

≥ p0 −
9

16
p0(p0 − p1)

≥ p0 −
p0(p0 − p1)

p0 + p1
, since p0 + p1 ≤ 3/2 < 16/9,

=
p0(p0 + p1)− p0(p0 − p1)

p0 + p1
=

2p0p1

p0 + p1
= p1 +

p1(p0 − p1)

p0 + p1
.

Thus, applying amplitude estimation to NegativeSpan decides f with bounded error. Since this
procedure calls NegativeSpan T times, using the bound on p0−p1 from Theorem 7.6.13 and the
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fact that p1 ≥ 3/8, the complexity of this procedure grows as

T

√
W 0
−(P, f)W̃ 1

+(P, f)

1− λ1/4
log

1

1− λ1/4
=

4π
√
p1(p0 − p1)

√
W 0
−(P, f)W̃ 1

+(P, f)

1− λ1/4
log

1

1− λ1/4

≤ 4π√
3/8(1− λ1/4)/4

√
W 0
−(P, f)W̃ 1

+(P, f)

1− λ1/4
log

1

1− λ1/4

= O


√
W 0
−(P, f)W̃ 1

+(P, f)

(1− λ1/4)2
log

1

1− λ1/4

 .

We remark that it is likely that NegativeSpan is not optimal for non-constant λ. There are
a number of parameters that could be optimized in order to obtain a more favourable scaling in
the rejection gap, when it is non-constant, however, we leave this improvement for future work.
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