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The physics associated with spherically symmetric charged black holes are analyzed from the point of view of
weak gravitational lensing as a means for determining the dimensionality of spacetime. In particular, the effect of
charged black holes in four and five space time dimensions on the motion of photons are studied using the equations
for the null geodesics and deriving the weak limit bending angle and the time delay for arrival times.

I. INTRODUCTION

Recently there has been renewed interest in the grav-
itational lensing by black holes [2–11] both in the weak
and strong field limits. In addition the possibility that
a black hole may be able to hold some non-zero electric
charge has been raised by a number of authors. Charged
black holes may well be the end point of the evolution of
massive highly magnetized stars where the neutralization
of charge is avoided through some mechanism of selective
accretion. Isolated black holes may then be capable of
remaining charged for sometime and may therefore be
detectable through their influence on the passage of light
rays in the space surrounding them.

However black holes appear in higher dimensional the-
ories of gravity as well. The question one might ask
is whether it is possible to make an observation that
would distinguish the difference between black holes in
four space time dimensions and those that might exist in
higher dimensions but where the influence on the lower
4-D case can be felt.

In order to understand the physics that might arise
as a result of the collapse to higher dimensions we un-
dertake a study of the gravitational lensing of photons
passing by charged black holes that are obtained as vac-
uum solutions to four dimensional Einstein theory and
five-dimensional (classical) Kaluza-Klein theory. That is
we compare the gravitational lensing occurring close to a
Reissner-Nordström black hole to a class of charge black
hole solutions in Kaluza-Klein theory that have been dis-
cussed by Liu and Wesson [1]. These higher dimensional
black holes can exist without charge. However in that
case the projection onto a four-dimensional spacetime of
the uncharged solution is equivalent to the 4-dimensional
Schwarzschild solution and no difference in gravitational
light ray bending would be measured. Therefore in order
to determine whether or not the higher dimensional case
could exist, it is necessary that the black holes be capa-
ble of holding onto some residual electric charge and as
a result produce a difference in the deflection angle and
therefore a difference in the location of the lensed images.

It has already been shown by Sereno [4] that the de-
flection angle of a Reissner-Nordström black hole is less
than that for a Schwarzschild black hole with the same
mass. That is the effect of the charge is to increase the

A gravitational lensing observation alone is insufficient

to determine both the charge and the dimensionality of
the black hole. However should the black hole have an
accretion disk of ionized material surrounding it, one can
in principle determine the charge from the Lorentz force
law. The electric field for both the 4D and the 5D charged
black holes that we consider here takes on its flat space
Coulombic configuration and therefore the charge can be
determined independently of the spacetime dimensions.

II. CHARGED 5-D KALUZA-KLEIN BLACK
HOLES

A number of spherically symmetric solutions to the
vacuum Kaluza-Klein equations are known. However,
most of them lack event horizons and therefore cannot
be considered as black hole solutions. In what follows
we will concentrate on a particular class of solutions
that in the appropriate limit reduce to the standard 4D
Schwarzschild solution. Some of the properties of these
black holes have been discussed previously by Liu and
Wesson [1] who referred to these objects as 5D charged
black holes.

Using coordinates (x0, x1, x2, x3, x4) = (t, r, θ, φ, ψ)
where ψ represents a spatial coordinate in the fifth di-
mension, the line element for the charged black holes can
be written in the form

ds2 = B(r)E−1(r)dt2 − B−1(r)dr2 − r2dθ2 −
r2 sin2 θdφ2 − E(r)(dψ + A(r)dt)2, (1)

where A(r), B(r), E(r) are the potentials what can be
written in the following form

E ≡ 1 − kB
1 − k

= 1 +
2Mk

r
(2)

A ≡
√
k(B − 1)

1 − kB = −2M
√
k

Er (3)

B ≡ 1 − 2M(1 − k)

r
= E − 2M

r
. (4)

This leads to a class of solutions that depend on the two-
parameters (k,M). The electric field (Faraday) tensor
Fαβ has a single component

F01 = E(r) =
2M

√
k

E2r2
,
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which is the static electric field component in the radial
direction. Using the expressions for E and A, and the
condition that the electrostatic potential reduces to the
Coulomb potential as the distance to the black hole ap-
proaches infinity,

lim
r→∞

(A) = −2M
√
k

r
(5)

= −Q
r

(6)

we can to determine the parameter to be k

k =
Q2

4M2
.

Now for the metric of the the form
g = diag(A′, B′, C′, D′), the coefficients are given by

A(r) =
B
E = 1 − 2M

r − Q2

2M

(7)

B(r) =
1

B =

(

1 −
(

2M − Q2

2M

)1

r

)−1

(8)

C(r) = 1 (9)

D(r) = E = 1 +
Q2

2Mr
, (10)

and the electric field becomes

E(r) =
Q

E2r2
.

Clearly this metric is different than the standard
Reissner-Nordström solution. However when the charge
Q becomes infinitesimally small, the solution reduces to
the 5D Schwarzschild vacuum solution, which is just the
4D Schwarzschild solution with a flat fifth dimension.

III. APPROXIMATION OF THE DEFLECTION
ANGLE

The general second order differential equation of the
inverse radial distance from the black hole was nicely
derived by J. Bodenner and C.M. Will [2]. A general four
dimensional, static, spherically symmetric line element
can be written as

ds2 = A(r)dt
2 −B(r)dr

2 − C(r)r
2(dθ2 + sin θdφ2). (11)

The equations of motion can be obtained either by 6 the
Lagrangian or from the geodesic equations. For photons,
the line element is zero. To simplify the calculations, the
variation in the azimuthal angle can be set to zero since
we are dealing with spherical symmetry. The constants
of motion for this case are

ℓ ≡ A
dt

dλ
(12)

J ≡ Cr2
dφ

dλ
(13)

0 =
d

dλ

(

2B
dr

dλ

)

+A′

(

dt

dλ

)2

−B′

(

dr

dλ

)2

−

(Cr2)′
(

dφ

dλ

)2

, (14)

where ℓ and J are the energy and angular momentum
of the photon and a prime stands for a derivative with
respect to r. Substituting equations 12 and 13 into 14
and making the 0 u = 1/r and rewriting it such that
φ is the dependent variable, we obtain a second order
differential equation for the inverse radial distance from
the black hole u,

d2u

dφ2
+

(

C

B

)

u = −1

2
u2 d

dλ

(

C

B

)

+
ℓ2

2J2

d

dλ

(

C2

AB

)

. (15)

It can be shown that ℓ2/J2 = 1/b2, where b is the impact
parameter. Once the metric is specified, equation 15 can
be approximated to find the angle of deflection.

A. Schwarzschild

The Schwarzschild metric coefficients are A = B−1 =
1 − 2Mu and C = 1. This will leave equation 15 as

d2u

dφ2
+ u = 3Mu2. (16)

Assuming the solution to be of the form u = u0 + ǫu1 +
ǫ2u2 + · · · will enable us to approximate the solution to
arbitrary order of ǫ. The solution to the homogeneous
equation is u0 = uN cosφ, where uN is the inverse of the
Newtonian distance of closest approach. This happens
to be be equal to the inverse of the impact parameter
(uN = 1/b). If we now set ǫ = MuN , equation 16 can be
written as

(u′′0 + uo) + ǫ(u′′1 + u1 − 3 cos2 φ)+

ǫ2(u′′2 + u2 − 6 cosφu1) + · · · = 0, (17)

so that the equations up to second order ǫ become

u′′1 + u1 = 3 cos2 φ (18)

u′′2 + u2 = 6u1 cosφ (19)

Solving these leaves us with the following expression
for the inverse radial distance from the black hole.
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FIG. 1: Photon deflection by spacetime curvature

u ≃ uN

(

cosφ+
1

2
MuN(3 − cos(2φ))+

3

16
M2u2

N (20φ sinφ+ cos(3φ))

)

. (20)

For large distances we approximate the deflection angle
φ by solving equation 20 upto second order ǫ. The inverse
radial distance u 0 to zero and the deflection angle can
be expected to be very small. The deflection angle can
be found by solving for ε, using the angle φ = π/2 + ε
(see figure 1). Here the fact is used that the trajectory
is symmetric about φ = 0, so that the deviation from
straight line motion is the angle δφ = 2ε. Since ε is very
small, the trigonometric terms can be expanded and we
can keep ε terms only upto first order of the zeroth order
ǫ (MuN). One more substitution needs to be made for
uN . We want the final expression for the deflection angle
to be in terms of 1/rmin and not uN . Since uN is only
the 0 order approximation of 1/rmin. The distance of
closest approach can be found to occur when φ = 0, and
gives 1/rmin = uN +Mu2

N + 3M2u3
N/16. All this leaves

us with an approximation of the deflection angle up to
second order M/rmin

δφ ≃ 4M

rmin
+

M2

r2min

(

15

4
π − 4

)

(21)

B. Reissner-Nordström

The metric coefficients for Reissner-Nordström areA =
B−1 = 1 − 2Mu+Q2u2 and C = 1. Following the same
procedure as for the Schwarzschild case, equation (15)
becomes

d2u

dφ2
+ u = 3Mu2 − 2Q2u3, (22)

so that the expanded form of equation (22) is

(u′′0 + uo) + ǫ(u′′1 + u1 − 3 cos2 φ)+

ǫ2(u′′2 + u2 − 6 cosφu1 + 2
Q2

M2
cos3 φ) + · · · = 0.

(23)

Since uN is assumed to be very small, the last term
involving the charge Q can be counted under the second
order of MuN as long as Q is smaller than M by an order
larger than that of
uN . The equations up to second order ǫ are now

u′′1 + u1 = 3 cos2 φ (24)

u′′2 + u2 = 6u1 cosφ− 2
Q2

M2
cos3 φ. (25)

From this we find the approximate inverse radial dis-
tance,

u ≃ uN

[

cosφ+
1

2
MuN

(

3 − cos(2φ)
)

+

3

16
M2u2

N

(

(

20 − 4Q2

M2

)

φ sinφ+
(

1 +
Q2

3M2

)

cos(3φ)

)

]

,

(26)

and an approximate deflection angle

δφ ≃ 4M

rmin
+

M2

r2min

(

15

4
π − 4

)

− 3

4

Q2

r2min

π (27)

The charge brings a small correction in the second or-
der term, causing the approximate deflection 0 be smaller
than in the Schwarzschild case, which agrees with the re-
sults from [4], where Fermat’s principle is used to derive
this.

C. Kaluza-Klein

The equations of motion for both massive and zero-
mass particles are given by the geodesic equations of the
5D spacetime. Since we are interested in the 0 of photons
in four dimensions, we need to determine the geodesic
equations in 4D space-time. The first step to solving
these is to determine the constants of the motion, which
can be most easily be accomplished by analyzing the La-
grangian associated with the metric (1). The Lagrangian
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is given by

L = A(r)

(

dt

dλ

)2

−B(r)

(

dr

dλ

)2

−

C(r)r
2

[

(

dθ

dλ

)2

+ sin2 θ

(

dφ

dλ

)2
]

−D(r)

[

dψ

dλ
+ A dt

dλ

]2

,

(28)

using the metric coefficients 7, 8, 9 and 10. Here λ is
an affine parameter along the geodesic curve. Assuming
that the orbit of the test particle is confined to the plane
θ = π

2 with dθ/dλ = 0 the Lagrangian (28) leads directly
to three constants of motion:

ℓ ≡ A
dt

dλ
−D

[

dψ

dλ
+ A dt

dλ

]

A (29)

J ≡ Cr2
dφ

dλ
(30)

N ≡ D

[

dψ

dλ
+ A dt

dλ

]

(31)

The constant of motion N must be proportional to
the charge e of the test particle in order to recover the
Lorentz force law in the appropriate limiting case (see
[1]).

Because we are considering photons as test particles,
the line element and therefore the Lagrangian L must
vanish. The test particle charge is also zero, which leaves
only two non trivial constants of motion since N is zero
in this case.

Therefore, after substituting in the 0 of motion and the
0 expressions for the 1 coefficients, the radial equation of
motion becomes

(

dr

dλ

)2

=

(

1 +
Q2

2Mr

)

ℓ2 − J2

r2

[

1 −
(

2M − Q2

2M

)

1

r

]

.

This equation can be written in the form

(

dr

dλ

)2

− V2(r) = ℓ2

where V can be interpreted as the effective 0, which is
given by

V2(r) =

(

Q2

2M
− 2M

)

J2

r3
+
J2

r2
− Q2ℓ2

2Mr
,

which clearly has a 1/r term when Q 6= 0. The effective
potential looks like that for massive test particles and
therefore indicates that stable photon orbits are possi-
ble, which is unlike the 4D solutions. Returning to the
weak lensing case where r is always well outside of the the
region close to the black hole we expect to obtain hyper-
bolic orbits and will now proceed to derive a deflection
angle for such trajectories.

With the metric coefficients 7, 8, 9 and ??, we find

d2u

dφ2
+ u =

Q2

4Mb2
+

3

2

(

2M − Q2

2M

)

u2 (32)

= α+ βu2. (33)

Since we are going to approximate the solution to this
equation only at distances much larger than the impact
parameter, it can again be written in terms of a pertur-
bation parameter ǫ, such that u′′ + u = α + ǫ(βu2/ǫ).
The homogeneous solution to this equation is u0 =
α + uN cosφ. If we now set ǫ = uNβ, equation (33)
becomes u′′ + u = α + ǫ(uNu

2). Now expanding u in
terms of a power series of ǫ, we get the equations to first
and second order ǫ to be

u′′1 + u1 =
1

b
(α+ uN cosφ)

2
(34)

u′′2 + u2 =
2

b
(α+ uN cosφ)u1. (35)

After eliminating all excess terms of higher order ǫ, we
end up with the following expression for the inverse radial
distance,

u ≃ uN

[

cosφ+
1

2
MuN

(

3 − Q2

4M2
−
(

1 − Q2

4M2

)

cos(2φ)
)

+

3

16
M2u2

N

(

(

20 − 2Q2

M2
+

5Q4

4M4

)

φ sinφ+

(

1 − Q2

2M2
+

Q4

16M4

)

cos(3φ)
)

]

, (36)

from which the deflection angle can be found to be

δφ ≃ 4M

rmin
− Q2

2Mrmin
+

M2

r2min

(

15

4
π − 4

)

+

Q2

r2min

(

1 − 3

8
π

)

+
Q4

16M2r2min

(

15

4
π − 3

)

. (37)

The charge already appears in the first order correc-
tion term would and thus has a significant effect on the
deflection angle.

IV. EXACT DEFLECTION ANGLES

The deflection angles can also be calculated exactly by
finding an expression for the polar angle in terms of the
radial distance. Following §8.5 of [12] we find that the
total deflection angle can be found by solving an integral
in terms of the four dimensional metric coefficients.

δφ = 2

∫

∞

rmin

√

B(r)

r

√

(

r
rmin

)2 (A(rmin)

A(r)

)

− 1

− π (38)

This can also be used for zero-charge test particles in
the Kaluza-Klein theory since the fifth 0 is flat in this
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FIG. 2: Total deflection angle ∆φ (in radians) as a func-
tion of the inverse distance of closest approach 1/rmin (in
Schwarzschild radii).

case. A plot of the deflection angle ∆φ = π + δφ shows
that the deflection decreases as the charge on the black
hole increases. This effect is much more dramatic for
the five dimensional Kaluza-Klein solution than it is for
the Reissner-Nordström solution. When the charge on
the black hole is zero, both the Reissner-Nordström and
Kaluza-Klein solutions reduce to the Schwarzschild solu-
tion.

V. APPROXIMATE TIME DELAY

The deviation from flat space travel time that occurs
as a result of the curved trajectories of photons in the
vicinity a black hole can be estimated for all three geome-
tries. Following §8.7 of [12], we find that when isotropic
coordinates are used, the exact time delay is given by

t(r,rmin) =

∫ r

rmin





B(r)/A(r)

1 − A(r)

A(rmin)

(

rmin

r

)2





1/2

dr. (39)

A. Schwarzschild and Kaluza-Klein

To obtain isotropic coordinates for the Schwarzschild
line element, we can let r → ρ(1 +M/2ρ)2. Using this,
the new metric coefficients and thus the time delay can
be calculated. To first order M/ρ we have

t(ρ,ρmin) ≃
√

ρ2 − ρ2
min + 2M ln

(

ρ+
√

ρ2 − ρ2
min

ρmin

)

+

M

√

ρ− ρmin

ρ+ ρmin
. (40)

The same coordinate transformation can be used to
obtain isotropic coordinates for the Kaluza-Klein line el-
ement, the only difference being that M gets replaced
by j = 1/2(2M −Q2/2M). Now, the metric coefficients
become

A(ρ) =
(1 − j

2ρ )2

(1 + j
2ρ )2 + Q2

2Mρ

(41)

B(ρ) = ρ2C(ρ) = (1 +
j

2ρ
)4. (42)

After expanding these up to second order 1/ρ, the inte-
grand can be broken up into

B(ρ)

A(ρ)
≃ 1 +

4j − Q2

2M

ρ
+

9j2

2 + jQ2

2M

ρ2
(43)

and

1 −
A(ρ)

A(ρmin)

(

ρmin

ρ

)2

≃
(

1 − ρ2
min

ρ2

)

[

1−

(2j + Q2

2M )ρmin

ρ(ρ+ ρmin)
−

(j2 + jQ2

2M2 )

ρ2
−

(2j + Q2

2M )2ρmin

ρ3

(

1 +
ρ2

min

ρ2

)

]

, (44)

so that to second order j/ρ and j/ρmin,

t(r,rmin) ≃
∫ ρ

ρmin

(

1 − ρ2
min

ρ2

)−
1
2

[

1+

(2j − Q2

2M )ρmin

ρ(ρ+ ρmin)
+

8j −Q2

2ρ
+

(11
2 j

2 − jQ2

M )

ρ2
+

(8j2 − 3jQ2

M + Q4

4M2 )ρmin

ρ2(ρ+ ρmin)
−

(2Q2j
M − 4j2 − Q4

4M2 )ρmin

ρ3

(

1 +
ρ2

min

ρ2

)

]

dρ. (45)

The approximate time it takes a light ray to go from
ρmin to ρ is now
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t(r,rmin) ≃
√

ρ2 − ρ2
min +

(

2M − Q2

4M

)

ln

(

ρ+
√

ρ2 − ρ2
min

ρmin

)

+M

√

ρ− ρmin

ρ+ ρmin
+

1

ρmin

(

11M2

4
− 7Q2

8
+

3Q4

64M2

)

tan−1

(

√

ρ2 − ρ2
min

ρmin

)

+

1

ρmin

(

2M2 − Q2

4

)

[

√

ρ2 − ρ2
min

ρ+ ρmin
+

tan−1

(

ρmin
√

ρ2 − ρ2
min

)

− π

2

]

+

1

ρmin
2M2

√

ρ2 − ρ2
min

(

1

ρ2
+

2ρ2 + ρ2
min

3ρ3

)

(46)

B. Reissner-Nordström

In order to get the Reissner-Nordström line element
in isotropic coordinates, we make the substitution r →
ρ(1 +M/ρ+ (M2 −Q2)/4ρ2), so that,

A(ρ) = ρ

(

1 +
M

ρ
+
M2 −Q2

ρ2

)

(47)

B(ρ) = ρ2C(ρ) =

(

M2 − 4ρ2 −Q2

(M + 2ρ)2 −Q2

)2

(48)

Once again, expanding upto second order 1/ρ, we get

B(ρ)

A(ρ)
≃ 1 +

4M

ρ
+

11M2 − 3Q2

2ρ2

and

1 −
A(ρ)

A(ρmin)

(

ρmin

ρ

)2

≃
(

1 − ρ2
min

ρ2

)

×
[

1 − 2Mρmin

ρ(ρ+ ρmin)
− Q2

ρ2
− 4M2ρmin

ρ2(ρ+ ρmin)

]

, (49)

so that to second order M/ρ, Q/ρ, M/ρmin and
Q/ρmin,

t(r,rmin) ≃
∫ ρ

ρmin

(

1 − ρ2
min

ρ2

)−
1
2

[

1 +
2M

ρ
+

Mρmin

ρ(ρ+ ρmin)
+

11M2 − 3Q2

4ρ2
+
Q2

2ρ2
+

2M2ρmin

ρ2(ρ+ ρmin)
+

2m2ρmin

ρ2

(

1 +
ρ2

min

ρ2

)

]

dρ. (50)

!

r
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Reissner-Nordström, Q = M
Kaluza-Klein, Q = M

FIG. 3: The time delay due to geometrical lensing as a func-
tion of the distance of closest approach of the light ray. As
a light source moves behind the black hole, the arrival time
of its radiation increases. Here, the distance of closest ap-
proach (rmin) changes from 52 Schwarzschild radii to 2 and
back again.

This leaves us with an approximate travel time

t(r,rmin) ≃
√

ρ2 − ρ2
min + 2M ln

(

ρ+
√

ρ2 − ρ2
min

ρmin

)

+

M

√

ρ− ρmin

ρ+ ρmin
+

1

ρmin

(

11M2

4
− Q2

4

)

tan−1

(

√

ρ2 − ρ2
min

ρmin

)

+

2M2

ρmin

[

√

ρ2 − ρ2
min

ρ+ ρmin
+ tan−1

(

ρmin
√

ρ2 − ρ2
min

)

− π

2

]

+

2M2

ρmin

√

ρ2 − ρ2
min

(

1

ρ2
+

2ρ2 + ρ2
min

3ρ3

)

(51)

Both the Kaluza-Klein and Reissner-Nordström times re-
duce to the same expression when Q = 0, which corre-
sponds to the approximate Schwarzschild time.
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Schwarzschild Reissner-Nordström Kaluza-Klein

Q = M/2 Q = M Q = M/2 Q = M

δφ(rad) 0.020592218 0.020531170 0.018008016 0.020348052 0.010293984

cδt(km) 23.28534541 23.28339441 22.62136541 23.27754143 20.62649894

δt(msec) 0.077669598 0.077663090 0.075454855 0.077643567 0.068800864

TABLE I: Deflection angles and time delays for a symmetric photon trajectory starting and finishing 104 masses from the black
hole and with a distance of closest approach of 102 masses. Here MG/c = 1.
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