
NOTE ON CHEBYSHEV POLYNOMIALS

In this note we show that Chebyshev polynomials are completely bounded
in the sense of [ABP19]. As an immediate corollary, using the charac-
terization of quantum query algorithms from [ABP19] and a well-known
result of Nisan and Szegedy [NS94], we recover the quantum algorithm
for the ORn function restricted to strings of Hamming weight at most 1,
as implied by Grover.

For each k ∈ N ∪ {0} the Chebyshev polynomial Tk ∈ R[x] is the
degree-k polynomial defined recursively by

T0(x) = 1

T1(x) = x

Tk+1(x) = 2xTk(x)− Tk−1(x).

Define the n-variate polynomials pk ∈ R[x1, . . . , xn] by

pk(x1, . . . , xn) = Tk

(x1 + · · ·+ xn
n

)
.(1)

1. Main lemma

Lemma 1.1. For each k ≥ 2 there exists a k-linear form Fk on Rn

such that ‖Fk‖cb ≤ 1 and Fk(x, . . . , x) = pk(x) for each x ∈ {−1, 1}n.

Proof: Define the bilinear form F2 on Rn and linear forms f 1
1 , . . . , f

n
1

on Rn by

(2) F2(x, y) = Ei∈[n]

[
xi

(
2Ej∈[n][yj]− yi︸ ︷︷ ︸

f i
1(y)

)]
,

where the expectations are over uniformly random indices in [n]. For
k ≥ 2, recursively define the (k+1)-linear form Fk+1 and k-linear forms
f 1
k , . . . , f

n
k by

(3) Fk+1(x, y, z) = Ei∈[n]

[
xi

(
2Fk(y, z)− yif i

k−1(z)︸ ︷︷ ︸
f i
k(y,z)

)]
,

for x, y ∈ Rn and z ∈ (Rn)k−2.
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We first show by induction on k that Fk(x, . . . , x) = pk(x) for every
x ∈ {−1, 1}n. Since x2i = 1 for xi ∈ {−1, 1}, it is easy to see from (2)
that

F2(x, x) = 2
(
Ei∈[n][xi]

)
p1(x)− 1 = p2(x).

Let k ≥ 2 and assume that the claim holds for k. Below, the number
of repetitions of x in a sequence (x, . . . , x) will vary but be clear from
the context. Again using that x2i = 1, it follows from (3) that

Fk+1(x, . . . , x) = 2Ei∈[n][xi]Fk(x, . . . , x)− Ei∈[n]
[
f i
k−1(x, . . . , x)

]
.

By the induction hypothesis, that Fk(x, . . . , x) = pk(x), we find that

Ei∈[n]
[
f i
k−1(x, . . . , x)

]
= Ei∈[n]

[
2Fk−1(x, . . . , x)− xif i

k−2(x, . . . , x)
]

= 2pk−1(x)− Ei∈[n]
[
xif

i
k−2(x, . . . , x)

]
= 2pk−1(x)− Fk−1(x, . . . , x)

= 2pk−1(x)− pk−1(x) = pk−1(x).

Hence,

Fk+1(x, . . . , x) = 2Ei∈[n][xi]pk(x)− pk−1(x) = pk+1(x),

which proves the claim.

Next we show that ‖Fk‖cb ≤ 1. To this end, we first show that for
every k, d ∈ N, vector v ∈ Cd and collection of contractions X =
((X1

i )ni=1, . . . , (X
k
i )ni=1) in Cd×d, we have

(4) Ei∈[n]
[∥∥(f i

k)d(X)v‖22
]
≤ ‖v‖22,

where (f i
k)d is the “lifted” version of the k-linear form f i

k as in (3).

We again induct on k. For k = 1, the expectation (4) reduces to

Ei∈[n]
∥∥(2Ej∈[n][Xj]−Xi)v

∥∥2
2
.(5)

The above square norm equals
(6)
4Ej,k∈[n]〈Xjv,Xkv〉−2Ej∈[n]

[
〈Xjv,Xiv〉

]
−2Ek∈[n]

[
〈Xiv,Xkv〉

]
+‖Xiv‖22.

The expectation over i in (5) thus causes the first three terms in (6) to
cancel. The result follows since each Xi is a contraction.

Let k ≥ 1 and assume the claim for k. Let X = (X1
i )ni=1 and let

Y = ((X2
i )ni=1, . . . , (X

k
i )ni=1). By definition of f i

k+1, we then have that

(f i
k+1)d(X,Y) = 2(Fk+1)d(X,Y)−X1

i (f i
k)d(Y).
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Define A = (Fk+1)d(X,Y) and Bi = X1
i (f i

k)d(Y), so that the above
equals 2A−Bi. Observe that by definition of Fk+1, we have

Ei∈[n][Bi] = (Fk+1)d(Y,X) = A.

Hence,

Ei∈[n]
[∥∥(f i

k)d(X)v‖22
]

= Ei∈[n]
[
‖(2A−Bi)v‖22

]
= Ei∈[n]

[
4‖Av‖22 − 2〈Av,Biv〉 − 2〈Biv,Av〉+ ‖Biv‖22

]
= Ei∈[n]

[
‖Biv‖22

]
= Ei∈[n]

[
‖Xi(f

i
k)d(Y)v‖22

]
≤ Ei∈[n]

[
‖(f i

k)d(Y)v‖22
]

≤ ‖v‖22,
where the first inequality follows from the fact that Xi is a contraction
and and the second inequality follows by the induction hypothesis. This
proves (4).

Let X, X,Y and v be as above. Then, by Jensen’s inequality and (4),

‖(Fk)d(X,Y)v‖2 =
∥∥∥Ei∈[n]

[
Xi(f

i
k−1)d(Y)

]
v
∥∥∥
2

≤ Ei∈[n]
∥∥(f i

k−1)d(Y)v
∥∥
2

≤
(
Ei∈[n]

∥∥(f i
k−1)d(Y)v

∥∥2
2

)1/2
≤ ‖v‖2

showing that ‖Fk‖cb ≤ 1. 2

2. Obtaining Grover’s algorithm.

Notation. For i ∈ [n], let ei ∈ {−1, 1}n be the vector with −1 on the
ith position and 1s otherwise. Let ORn be an n-bit function defined
as: ORn(x) = 1 if and only if x = 1n. Let |x| =

∑
i xi.

Nisan and Szegedy [NS94] showed that the Chebyshev polynomials can
be used to find low-degree polynomials that approximate ORn. A slight
modification of their argument allows us to recover a the existence of
a O(

√
n)-quantum query algorithm for ORn restricted to strings of

Hamming weight at most 1, as implied by Grover.

Lemma 2.1. Let D = {ei}i∈[n] ∪ {1n} and let ORn : D → {−1, 1}.
There exists a O(

√
n)-query quantum algorithm that, on input x, out-

puts a sign with expected value OR(x), with error at most 1/4.
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Proof: Let d = 2π/5 ·
√
n. Here, we show that∣∣∣Td( |x|

n

)
−OR(x)

∣∣∣ ≤ 1/4 for all x ∈ D.(7)

To see this, first observe that for x = 1n, we have Td(|x|/n) = 1 and
ORn(1n) = 1, so Eq. (7) is satisfied. Let x = ei for some i ∈ [n]. By
the definition of Chebyshev polynomials, we have

Td

( |x|
n

)
= Td

(
1− 2

n

)
= cos

(
d arccos

(
1− 2

n

))
.

By the Taylor series expansion of arccos(1−z) (around the point z = 0),
we have arccos(1 − z) ≥

√
2z. This implies that d arccos(1 − 2/n) ≥

2π/5 ·
√
n ·
√

4/n = 4π/5. Using the monotonicity and negativity of
cos(φ) for φ ∈ (π/2, π), we have

Td

( |x|
n

)
= cos

(
d arccos

(
1− 2

n

))
≤ cos(4π/5) ≤ −3

4
.

In particular, for such xs the value of ORn(x) = −1, so Eq. (7) is
satisfied.

The proof of the lemma follows from Eq. (1) and Lemma 1.1. 2

References

[ABP19] Srinivasan Arunachalam, Jop Briët, and Carlos Palazuelos. Quantum
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