NOTE ON CHEBYSHEV POLYNOMIALS

In this note we show that Chebyshev polynomials are completely bounded
in the sense of [ABP19]. As an immediate corollary, using the charac-
terization of quantum query algorithms from [ABP19] and a well-known
result of Nisan and Szegedy [NS94], we recover the quantum algorithm
for the OR,, function restricted to strings of Hamming weight at most 1,
as implied by Grover.

For each & € N U {0} the Chebyshev polynomial 7, € R[z] is the
degree-k polynomial defined recursively by

To(x) =1
Ti(z) ==
Tii1(x) = 22T (x) — Ti_1(x).
Define the n-variate polynomials py, € R[zy, ..., x,] by

(1) e, - ) = Tk(u>

n

1. MAIN LEMMA

Lemma 1.1. For each k > 2 there exists a k-linear form Fj on R"
such that ||Fyllew < 1 and Fy(x,...,x) = pr(x) for each x € {—1,1}".

Proof: Define the bilinear form Fy on R" and linear forms f},..., f
on R" by
(2) Fy(x,y) = Eiep [$¢<2Eje[n] il — i )} ,
—_——
O

where the expectations are over uniformly random indices in [n]|. For
k > 2, recursively define the (k+1)-linear form Fj,; and k-linear forms

foooo fi by
(3) Fk-i-l(x? Y, Z) = E’Le[n} |:Iz <?Fk<y7 Z) - yifli—l(ZZ)]7

-~

fi(y,z)

for z,y € R" and z € (R")F2.
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We first show by induction on k that Fy(x,...,z) = pi(x) for every
r € {—1,1}". Since z? =1 for x; € {—1,1}, it is easy to see from
that

Fy(z,z) = Z(Eie[n} [mz])pl(x) —1=py(x).
Let £ > 2 and assume that the claim holds for k. Below, the number

of repetitions of z in a sequence (z,...,z) will vary but be clear from
the context. Again using that z? = 1, it follows from that

Fia (2, ) = ool Bl - 2) = B [fiy (& )]
By the induction hypothesis, that Fy(x,...,z) = pg(x), we find that

Eicin] [f,ﬁ_l(x, . ,x)] = Eicpn] [2Fk_1(:1:, co, ) — xif,i_Q(a:, . ,x)]
= 2pk—1(x) - Ele[n] [Iif]i—2(x7 cee ,[E)]
=2p_1(x) — Fr_1(z, ..., x)
= 2pp—1(2) — pr—1(z) = pr_1().
Hence,
Fk+1($, e 735) = ZEie[n] [l"z]pk(if) - pkfl(l’) = Pk+1($),

which proves the claim.

Next we show that ||Fk|lc, < 1. To this end, we first show that for
every k,d € N, vector v € C% and collection of contractions X =
(XHry, ..., (XF)n ) in C¥™4 we have

(2 3

(4) Eicpn [|| (f1)a(X)013] < [lv]]3,
where (f{)q is the “lifted” version of the k-linear form f{ as in (3)).
We again induct on k. For k = 1, the expectation reduces to
2
(5) Eicpn|| (2Ejem [X5] — Xa)v][;.

The above square norm equals

(6)
AE e (X0, Xiv) —2E e [(Xjv, Xiv) | — 2B e [(Xiv, Xiv) |+ Xiv][3.

The expectation over i in thus causes the first three terms in @ to
cancel. The result follows since each X; is a contraction.

Let k > 1 and assume the claim for k. Let X = (X})™, and let

)

Y = (X2),,...,(XF)™,). By definition of f,,, we then have that

3 (2

(fli—&-l)d(X?Y) = Q(Fkﬂ)d(X» Y) - Xil(fli)d<Y>'
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Define A = (Fy11)a(X,Y) and B; = X} (f{)a(Y), so that the above
equals 2A — B;. Observe that by definition of Fj,,, we have
]Ez‘e[n} [Bz] = (Fk+1)d(Ya X) = A
Hence,
el [[|(f)a(X)v]2] = Eiepm (24 — Bi)vl3]
= Eicpy [4||A1)H2 — 2(Av, Bjv) — 2(B;v, Av) + |]Bzv||§]
= Eicpo [| B2 ]

_EZE[n] HX fk H }
< Eze [n] H fk ]
< lv]l3,

where the first inequality follows from the fact that X; is a contraction
and and the second inequality follows by the induction hypothesis. This

proves ().
Let X, X,Y and v be as above. Then, by Jensen’s inequality and ,

NFDa(X, Y0lls = [ Eiem [Xe (a0
< Bie || (fi1)a(Y Hg
i o 1/2
< (Eie[n]H(fk—l)d(Y)”||2>
< vl
showing that || Fyl[esp < 1. O

2. OBTAINING GROVER’S ALGORITHM.

Notation. For i € [n], let ¢; € {—1,1}" be the vector with —1 on the
1th position and 1s otherwise. Let OR,, be an n-bit function defined
as: OR,(x) =1 if and only if x = 1". Let |z| =), z;.

Nisan and Szegedy [NS94] showed that the Chebyshev polynomials can
be used to find low-degree polynomials that approximate OR,,. A slight
modification of their argument allows us to recover a the existence of
a O(y/n)-quantum query algorithm for OR,, restricted to strings of
Hamming weight at most 1, as implied by Grover.

Lemma 2.1. Let D = {e;}icpny U {1"} and let OR,, : D — {—1,1}.
There exists a O(y/n)-query quantum algorithm that, on input x, out-
puts a sign with expected value OR(x), with error at most 1/4.
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Proof: Let d =27 /5 - y/n. Here, we show that

(7) ‘Td(m> - OR(J:)‘ <1/4 forallz e D.

n
To see this, first observe that for x = 1", we have Ty(|z|/n) = 1 and
OR,,(1") =1, so Eq. is satisfied. Let = e; for some i € [n]. By

the definition of Chebyshev polynomials, we have

Td(%'> =11~ %) — cos (darccos (1 - %))

By the Taylor series expansion of arccos(1—z) (around the point z = 0),
we have arccos(l — z) > +/2z. This implies that darccos(1 — 2/n) >
27/5 - \/n - \/4/n = 47 /5. Using the monotonicity and negativity of
cos(¢) for ¢ € (w/2,7), we have

x 2 3
Td<|n_|) = cos (d arccos (1 - ﬁ)) < cos(4m/5) < -7
In particular, for such zs the value of OR,(z) = —1, so Eq. (7)) is
satisfied.
The proof of the lemma follows from Eq. and Lemma O
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