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Abstract— Finding a sparse/low rank solution in lin-

ear/semidefinite programming has many important applica-

tions, e.g. combinatorial optimization, compressed sensing,

geometric embedding, sensor network localization. Here we

consider one of the most basic problems involving semidefinite

programs with rank constraints: the Grothendieck problem

with rank-k-constraint. It contains the MAX CUT problem as

a special case when k = 1. We perform a complexity analysis

of the problem by designing an approximation algorithm which

is asymptotically optimal if one assumes the unique games

conjecture.

I. INTRODUCTION

Given positive integers m, n, k and a matrix A = (Aij) ∈
Rm×n, the Grothendieck problem with rank-k-constraint is
defined as

SDPk(A) = max
� m�

i=1

n�

j=1

Aij xi · yj :

x1, . . . , xm ∈ Sk−1, y1, . . . , yn ∈ Sk−1

�
,

where Sk−1 = {x ∈ Rk : x · x = 1} is the unit sphere; the
inner product matrix of the vectors x1, . . . , xm, y1, . . . , yn

has rank k. This problem was introduced by Briët, Buhrman,
and Toner [2] in the context of quantum nonlocality where
they applied it to nonlocal XOR games.

The case k = 1 is the classical Grothendieck problem
where x1, . . . , xm, y1, . . . , yn ∈ {−1,+1}. It was introduced
by Grothendieck [5] in the study of norms of tensor products
of Banach spaces. It is an NP-hard problem: If A is the
Laplacian matrix of a graph then SDP1(A) coincides with
the value of a maximum cut of the graph. The maximum
cut problem (MAX CUT) is one of Karp’s 21 NP-complete
problems.

Over the last years, there has been a lot of work on al-
gorithmic applications, interpretations and generalizations of
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the Grothendieck problem and the companion Grothendieck
inequalities. For instance, Nesterov [10] showed that it has
applications to finding and analyzing semidefinite relaxations
of nonconvex quadratic optimization problems. Alon and
Naor [1] showed that it has applications to constructing
Szemerédi partitions of graphs and to estimating the cut
norms of matrices. Khot and Naor [7], [8] showed that it
has applications to kernel clustering.

When k is a constant that does not depend on the matrix
size m, n there is no polynomial-time algorithm known
which solves SDPk. However, it is not known if the problem
SDPk is NP-hard when k ≥ 2. On the other hand the
semidefinite relaxation of SDPk(A) defined by

SDP∞(A) =max
� m�

i=1

n�

j=1

Aij ui · vj :

u1, . . . , um, v1, . . . , vn ∈ S∞
�

can be computed in polynomial time using semidefinite
programming. Here S∞ denotes the unit sphere of the Hilbert
space l2(R) of square summable sequences, which contains
Rn as the subspace of the first n components.

Rietz [12] (in the context of the Grothendieck inequality)
showed that SDP1 and SDP∞ are always within a factor of
at most (4/π − 1)−1 = 3.65979 . . . from each other. That
is, for all matrices A ∈ Rm×n we have

SDP1(A) ≤ SDP∞(A) ≤ 1
4/π − 1

SDP1(A).

Alon and Naor [1] showed that Rietz’ argument gives a
polynomial-time approximation algorithm for SDP1. How-
ever Rietz’ argument does not provide the best approximation
factor. The best approximation factor is called Grothendieck’s

constant KG which presently is not known exactly. It is
known that it lies between 1.67695 . . . and π/(2 log(1 +√

2) = 1.78221 . . . . Krivine [9] gave the best known upper
bound (which is conjectured to be tight) and Davie [4] and
Reeds [11] gave the best known lower bound.

The aim of this paper is to provide to initiate an analysis
for SDPk by generalizing Rietz’ argument. So far the only
cases which were studied are the cases k = 1 (see the
discussion above) and the case k = 2 (see the discussion
below. We summarize our results in the following theorem.

Theorem. For all matrices A ∈ Rm×n
we have

SDPk(A) ≤ SDP∞(A) ≤ 1
2γ(k)− 1

SDPk(A),
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where

γ(k) =
2
k

�
Γ((k + 1)/2)

Γ(k/2)

�2

= 1−Θ(1/k),

and
1

2γ(k)− 1
= 1 + Θ(1/k),

and there is a randomized polynomial-time approximation

algorithm for SDPk achieving this ratio. On the other hand,

under the assumption of the unique games conjecture there

is no polynomial-time algorithm which approximates SDPk

with an approximation ratio less than 1/γ(k).
The first three values of 1

2γ(k)−1 are:

1
2γ(1)− 1

=
1

4/π − 1
= 3.65979 . . . ,

1
2γ(2)− 1

=
1

π/2− 1
= 1.75193 . . . ,

1
2γ(3)− 1

=
1

16/(3π)− 1
= 1.43337 . . . .

Haagerup [6] gave an approximation ratio of 1.40491 . . . for
the case k = 2 by following Krivine’s proof.

In Section II we present the approximation algorithm
together with its analysis. Our main contribution is the
analysis of a rounding scheme which can deal with rank-
k-constraints in semidefinite programs. For this we use the
Wishart distribution from multivariate statistics. We believe
this analysis is of independent interest and will turn out to
be useful in different contexts, e.g. for approximating low
dimensional geometric embeddings.

The proof of the unique games conjecture hardness of ap-
proximating SDPk can be found in Briët, Oliveira, Vallentin
[3].

The main result of Briët, Buhrmann and Toner [2] shows
that the gap between SDPk and SDP∞ given in our theorem
is asymptotically correct up to lower order terms.

II. APPROXIMATION ALGORITHM

The following proof follows the idea of Alon and Naor
[1, Section 4] which in turn relies on ideas of Rietz [12]

Proof: The randomized polynomial-time approximation
algorithm which we use to prove the theorem is the following
three-step process.

1) By solving SDP∞(A) we obtain the vectors
u1, . . . , um, v1, . . . , vn ∈ Sm+n−1.

2) Choose Z = (Zij) ∈ Rk×(m+n−1) so that every matrix
entry Zij is distributed independently according to the
standard normal distribution with mean 0 and variance
1: Zij ∼ N(0, 1).

3) Set xi = Zui/�Zui� ∈ Sk−1 with i = 1, . . . ,m, and
yj = Zvj/�Zvj� ∈ Sk−1 with j = 1, . . . , n.

The quality of the feasible solution x1, . . . , xm, y1, . . . , yn

for SDPk is measured by the expectation

SDPk(A) ≥ E
� m�

i=1

n�

j=1

Aij xi · yj

�
.

For vectors u, v ∈ S∞ we define

Ek(u, v) = E
�

Zu

�Zu� · Zv

�Zv�

�
,

where Z = (Zij) is a matrix with k rows and infinitely
many columns whose entries are distributed independently
according to the the standard normal distribution. Of course,
if u, v ∈ Sm+n−1, then it suffices to work with finite
matrices Z ∈ Rk×(m+n−1). In Briët, Oliveira, Vallentin [3]
it was shown that one can develop Ek as a power series

Ek(u, v) =
∞�

r=0

f2r+1(u · v)2r+1,

where all coefficients f2r+1 are nonnegative, where

f1 =
∂Ek

∂t
(0)

=
k − 1
2π

� 1

0

� 2π

0

r(1− r2)(k−1)/2

(1− r2(sinφ)2)3/2
dφdr.

= γ(k).

and where ∞�

r=0

f2r+1 = 1.

For the computation of f1 we used the Wishart distribution
from multivariate statistics: Because Ek is invariant under
the orthogonal group one can express the integral Ek(u, v)
with help of the standard Wishart distribution W2(k). This is
the probability distribution of random matrices Y = XTX ∈
R2×2, where the entries of the matrix X = (Xij) ∈ Rk×2 are
independently chosen from the standard normal distribution
Xij ∼ N(0, 1).

Now we have

E
� m�

i=1

n�

j=1

Aij xi · yj

�

=
m�

i=1

n�

j=1

AijEk(vi, wj)

= f1

m�

i=1

n�

j=1

Aijvi · wj

+
m�

i=1

n�

j=1

Aij

∞�

r=1

f2r+1(vi · wj)2r+1.

The first summand equals f1SDP∞(A). The second sum-
mand is bounded in absolute value by (1 − f1)SDP∞(A)
as we argue now. Consider the m + n vectors ui = vi,
um+i = wj . Then the (m+n)×(m+n)-matrix with entries

∞�

r=1

f2r+1(ui · uj)2r+1

is positive semidefinite because of Schoenberg’s theorem
[13]. So there are vectors u�1, . . . , u

�
m+n ∈ Rm+n all of

squared length 1− f1 so that

u�i · u�j =
∞�

r=1

f2r+1(ui · uj)2r+1.
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Setting v�i = ui, w�j = um+j we have
m�

i=1

n�

j=1

Aijv
�
i · w�j ≤ (1− f1)SDP∞(A).

The lower bound follows from the fact that replacing the
sign of vi to −vi also changes the sign of the complete sum
from ∞�

r=1

f2r+1(vi · wj)2r+1

to

−
∞�

r=1

f2r+1(vi · wj)2r+1

since all involved powers are odd. Thus for the second sum
we have

m�

i=1

n�

j=1

Aij

∞�

r=1

f2r+1(vi · wj)2r+1 ≥ (f1 − 1)SDP∞(A),

which finishes the proof.
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