
Monotonicity Testing and Shortest-Path Routing on the
Cube

Jop Briët1, Sourav Chakraborty1, David Garcı́a-Soriano1, and Arie Matsliah1

Centrum Wiskunde & Informatica,
Amsterdam, Netherlands.

e-mail:{jop.briet,sourav.chakraborty,david,ariem}@cwi.nl

Abstract. We study the problem of monotonicity testing over the hypercube.
As previously observed in several works, a positive answer to a natural question
about routing properties of the hypercube network would imply the existence of
efficient monotonicity testers. In particular, if any set of source-sink pairs on the
directed hypercube (with all sources and all sinks distinct) can be connected with
edge-disjoint paths, then monotonicity of functions f : {0, 1}n → R can be
tested with O(n/ε) queries, for any totally ordered range R. More generally, if
at least an µ(n) fraction of the pairs can always be connected with edge-disjoint
paths then the query complexity is O(n/(εµ(n))).
We construct a family of instances of Ω(2n) pairs in n-dimensional hypercubes
such that no more than roughly a 1√

n
fraction of the pairs can be simultaneously

connected with edge-disjoint paths. This answers an open question of Lehman
and Ron [LR01], and suggests that the aforementioned appealing combinatorial
approach for deriving query-complexity upper bounds from routing properties
cannot yield, by itself, query-complexity bounds better than ≈ n3/2. Addition-
ally, our construction can also be used to obtain a strong counterexample to Szy-
manski’s conjecture about routing on the hypercube. In particular, we show that
for any δ > 0, the n-dimensional hypercube is not n

1
2−δ-realizable with shortest

paths, while previously it was only known that hypercubes are not 1-realizable
with shortest paths.
We also prove a lower bound of Ω(n/ε) queries for one-sided non-adaptive test-
ing of monotonicity over the n-dimensional hypercube, as well as additional
bounds for specific classes of functions and testers.

Monotonicity Testing and Shortest-Path Routing on the Cube 1

1 Background

Testing monotonicity of functions [DGL+99],[Ras99],[GGL+00],[EKK+00],[Fis04],
[FLN+02],[AC06],[Bha08],[HK08] is one of the oldest and most studied problems in
Property Testing. The problem is defined as follows: Let D be a partially ordered set
(poset) and let R ⊆ Z. A function f : D → R is monotone if for every (comparable)
pair x, y ∈ D, x ≤ y implies f(x) ≤ f(y). A function f is ε-far from monotone if
it has to be changed on at least an ε-fraction of the domain D to become monotone. A
(q, ε)-monotonicity tester for domain D and range R is a probabilistic algorithm that,
given oracle access to a function f : D → R, satisfies the following: (a) it makes at
most q queries to f ; (b) it accepts with probability at least 2/3 if f is monotone; (c) it
rejects with probability at least 2/3 if f is ε-far from monotone.

The simplest monotonicity testers are those that specify all their queries in advance
(non-adaptively) and reject if and only if they reveal a violation, i.e. if f(x) > f(y)
for some comparable pair x ≤ y of points queried from D. These non-adaptive testers
with one-sided error are the only ones considered in this paper, unless explicitly stated
otherwise. We note that nearly all known monotonicity testers are non-adaptive and
have one-sided error. Furthermore, it is also known that ifD is totally ordered then non-
adaptive testers with one-sided error are as powerful (in terms of query complexity) as
general ones [Fis04].

For general domains D, Fischer et al. [FLN+02] proved that testing monotonic-
ity is equivalent to several natural problems, including testing certain graph properties
and testing assignments for Boolean formulae. Domains of the form {0, 1, . . . ,m}n,
however, received most of the attention [DGL+99], [EKK+00], [GGL+00], [Fis04],
[Ras99], [Bha08], [BGJ+09]. Here the order relation x ≤ y is defined to hold for
x, y ∈ {0, . . . ,m}n when xi ≤ yi for all i ∈ [n]. In this paper we focus on a well-
studied subcase of the above, where m = 1 andR ⊆ Z.

1.1 Preliminaries

Every x ∈ {0, 1}n is identified with the subset support(x) = {i ∈ [n] : xi = 1}
as usual. With a slight abuse of notation, we interpret binary strings as sets (and vice-
versa). E.g., we write x ⊆ y (or x ≤ y) for two strings x, y ∈ {0, 1}n such that
support(x) ⊆ support(y).

The directed n-dimensional hypercube (or simply n-cube) is a directed graphHn =
(Vn, En) with Vn = {0, 1}n and En = {(x, y) : x ⊆ y and |y| = |x| + 1}. The h-th
layer (or level) of Hn contains all x ∈ Vn with |x| = h.

Definition 1 A set P ⊆ Vn × Vn of ` pairs {(si, ti)}`i=1 is called a source-sink pairing
(of size `), with sources s1, . . . , s` and sinks t1, . . . , t`, if

– si ⊂ ti for all i ∈ [`] and
– si 6= sj , si 6= tj and ti 6= tj for all i, j ∈ [`], i 6= j.

P is aligned if in addition |si| = |sj | and |ti| = |tj | for all i, j ∈ [`].

2 Briët, Chakraborty, Garcı́a-Soriano, Matsliah

Notice that P is a source-sink pairing if and only if it forms a (partial) matching in
the transitive closure of Hn. Throughout this paper we denote by P only sets of pairs
that form a source-sink pairing, even when it is not explicitly mentioned.

A (directed) path in Hn is called a P-path if it connects some source si from P to
its sink ti. A subset C ⊆ En is called a P-cut if every P-path in Hn uses at least one
edge from C. Similarly, a subset S ⊆ Vn is called a P-vertex-cut if every P-path uses
at least one vertex from S. We write maxflow(P) for the size of the largest set of edge-
disjoint P-paths, mincut(P) for the size of the smallest P-cut and minvertexcut(P)
for the size of the smallest P-vertex-cut. Clearly mincut(P) is an upper bound on both
minvertexcut(P) and maxflow(P). Unlike the case with a single pair in P , these quan-
tities need not coincide.

We define the terms sparsity and meagerness as in [RL05], [ABY08], [AHJ+06].
The sparsity of P is the ratio mincut(P)/|P|, and the vertex-sparsity of P is the
ratio minvertexcut(P)/|P|. The sparsity and the vertex-sparsity of Hn are defined
as minP{mincut(P)/|P|} and minP{minvertexcut(P)/|P|}, respectively. In other
words, sparsity is the average number of edges per source-sink pair that one has to
remove to disconnect every source from its sink, whereas vertex-sparsity is the aver-
age number of vertices per source-sink pair that one has to remove to disconnect every
source from its sink. The definitions of meagerness and vertex-meagerness are similar,
except for the stronger requirement that the corresponding cuts disconnect all sources
si from all sinks tj .

Observe that (1) sparsity ≥ vertex-sparsity; (2) meagerness ≥ vertex-meagerness;
(3) meagerness ≥ sparsity and (4) vertex-meagerness ≥ vertex-sparsity.

GivenR ⊆ Z and a function f : {0, 1}n → R, we say that a pair (x, y) ∈ Vn × Vn
is violated by f if x ≤ y and f(x) > f(y). If in addition (x, y) ∈ En, we call it a
violated edge. We denote by Viol(f) the set of all pairs (x, y) violated by f , and by
EdgeViol(f) the set of all edges violated by f . Thus, f is monotone if and only if
Viol(f) = EdgeViol(f) = ∅.

We denote by εM (f) ∈ [0, 1] the relative distance of f from being monotone, i.e. the
minimum of Prx[f(x) 6= g(x)] taken over all monotone functions g : {0, 1}n → R. Let
δM (f) ∈ [0, 1] denote the fraction |EdgeViol(f)|/|En| = |EdgeViol(f)|/(n2n−1) of
edges violated by f .

2 Our results and related work

2.1 Monotonicity testers via sparsity lower bounds

One of the earliest upper bounds on the query complexity of monotonicity testing on
the hypercube used an approach based on the concepts of meagerness and sparsity
[GGLR98]. In particular, [GGLR98] observed that if the meagerness ofHn is at least 1,
then monotonicity of Boolean functions can be tested with O(n/ε) queries. Then they
proved that vertex-meagerness (and hence meagerness too) is 1 if the possible pairings

Monotonicity Testing and Shortest-Path Routing on the Cube 3

P are restricted to aligned sets, satisfying |si| = |sj | and |ti| = |tj | for all i, j (see also
[LR01] for a detailed proof). This sufficed to derive an upper-bound of O(n2) queries
for any constant ε > 0.

While a lower bound on meagerness implies query-complexity upper bounds for
Boolean functions, a lower bound on sparsity implies query-complexity upper bounds
for functions with general range (see Section 3.1 for details). In particular, if the sparsity
of Hn is at least µ = µ(n), then monotonicity of functions with any linearly ordered
range can be tested withO(n/(εµ)) queries. In [LR01] the authors ask whether the spar-
sity of any P (or even just of the aligned ones) is at least 1, noting that this would imply
the existence of efficient monotonicity testers as well as progress on some long-standing
questions regarding routing in the hypercube network. We prove that the answer to both
of their questions is no. The following theorem is proved in Section 3.2:

Theorem 2. The sparsity of Hn is at most n−
1
2+o(1). Furthermore, this upper bound

on the sparsity can be demonstrated both with aligned sets and with Ω(2n)-sized sets:

– for any δ > 0 and large enough n there is an aligned set P in Hn with sparsity at
most n−

1
2+δ;

– for any δ > 0 there is ε > 0, such that for large enough n there is a set P in Hn of
size |P| ≥ ε2n with sparsity at most n−

1
2+δ .

2.2 Routing in the hypercube and Szymanski’s conjecture

The hypercube is a natural and well-studied architecture for multi-processor systems
and networks. The ability to route arbitrary permutations on it models flow of infor-
mation in a network of processors. In this context, a doubly-directed version of Hn is
usually considered, where each edge inEn is replaced with a pair of anti-parallel edges.
Let us denote the doubly-directed version of Hn by H

↑↓

n . A permutation π of Vn is 1-
realizable if there exist pairwise edge-disjoint paths in H

↑↓

n that connect every v with
π(v). A permutation π is k-realizable if there exist paths connecting every v with π(v)
such that each edge is used in at most k paths. Szymanski [Szy89] conjectured that any
permutation π of Vn is 1-realizable with shortest paths. It was proved that the conjecture
holds up to dimension 3, but later Lubiw [Lub90] provided a counterexample in dimen-
sion 5 that is not 1-realizable using shortest paths. While it is still unknown whether
or not every permutation is 1-realizable without requiring shortest paths1, the fact that
any permutation is 2-realizable follows from the classical work of Beneš [Ben65] (see
[Lub90] for details). In contrast, we prove that if we insist on the shortest-path condi-
tion, there are permutations that are not k-realizable for any k significantly smaller than√
n. Specifically, the construction in Theorem 2 can be used (see Section 3.3) to prove

the following.

1 Since the original conjecture was shown to be false, the weaker version that does not require
shortest paths is now called Szymanski’s conjecture.

4 Briët, Chakraborty, Garcı́a-Soriano, Matsliah

Theorem 3. For any δ > 0 and large enough n, there are permutations on Vn that
cannot be n

1
2−δ-realized in H

↑↓

n with shortest paths.

Remark 1. Any upper bound µ(n) on the sparsity of Hn can be used to show that H
↑↓

n

is not 1/µ(n)-realizable with shortest paths. But the opposite is not true; in particular,
the counterexample from [Lub90] does not imply that the sparsity of H5 is less than 1.

2.3 New bounds on testing monotonicity

At the moment the best known query-complexity bounds for testing monotonicity (non-
adaptively with one-sided error) of functions f : {0, 1}n → R are:

– an upper bound of O(nε log |R|) for any rangeR [DGL+99];
– a lower bound of Ω(

√
n/ε) for Boolean ranges (and hence for wider ranges too)

[FLN+02].

The tester used in the upper bound of [DGL+99] is perhaps the most natural one: it
picks an edge (x, y) ∈ En uniformly at random, and rejects if f(x) > f(y). Let us call
this test an edge-test. [DGL+99] prove that the probability that a single execution of an
edge-test rejects is Ω(εM (f)

n log |R|), by relating the distance of a function from monotone
to the number of edges that it violates.

It is an interesting open question whether the general upper bound of [DGL+99]
can be improved into one that is independent of |R| (or at least has a better dependence
on it). Since we can assume without loss of generality that |R| ≤ 2n, any upper bound
of o(n2/ε) queries would be an improvement. We make a small step in this direction.
Call a function f : {0, 1}n → R dist-k monotone if f(y) ≥ f(x) for every y > x with
|y| > |x|+ k. In this terminology dist-0 monotone is simply monotone. In Section 3.4
we prove that given a dist-3 monotone function f , we can test if f is monotone with
O(n3/2/ε) queries. We actually prove the following stronger claim:

Theorem 4. Let ε > 0,R ⊆ Z and let f : {0, 1}n → R be a dist-3 monotone function.

If f is ε-far from being monotone then |EdgeViol(f)| ≥ Ω
(

2n

ε
√
n

)
.

The upper bound on the query complexity follows using the edge-tests described above.
The reasons for considering dist-3 monotonicity here are twofold. Firstly, it is the

first non-trivial case (it is easy to see that both dist-1 and dist-2 monotone functions can
be tested in O(n/ε) queries). Secondly, we will see later that non-trivial sparsity upper
bounds already exist for pairings in which every source is at distance 3 from its sink.

In Section 3.5 we also extend the lower bound ofΩ(
√
n/ε) of [FLN+02] toΩ(n/ε),

for large enough |R|. Using the “Range-Reduction Lemma” of [DGL+99], the new
bound implies an improved lower bound ofΩ(n/(ε log n)) for the Boolean range, in the
special case of pair-testers whose query complexity can be written as q(n)/ε for some
function q. (A pair-tester picks independent pairs of comparable vertices according to
some distribution, and rejects if and only if one of them forms a violation). We note

Monotonicity Testing and Shortest-Path Routing on the Cube 5

that such testers are not overly restricted: essentially all known query-complexity up-
per bounds for monotonicity-testing use (or can be easily converted into ones that use)
pair-tests of this kind. Furthermore, the new lower-bound almost matches the aforemen-
tioned upper-bound of O(n/ε) achieved by edge-tests (a special case of pair-tests).

3 Proofs
3.1 From sparsity to monotonicity testers

The basic combinatorial interpretation of εM (f) is given in the following lemma:

Lemma 1. [DGL+99], [FLN+02], [GGL+00] Let f : {0, 1}n → R be a function,
and define the violation graph of f as the undirected graph G = ({0, 1}n, E), where
{x, y} ∈ E if either (x, y) or (y, x) is in Viol(f). Then εM (f)2n is exactly the size of
a minimum vertex cover of G. Consequently, there is a matching in G of size at least
εM (f)2n−1.

An important observation is that since G is a subgraph of the transitive closure of Hn,
the matching of violated pairs in Lemma 1 forms a source-sink pairing P (see Defini-
tion 1) of size εM (f)2n−1.

As we mentioned earlier, the best known upper bounds for testing monotonicity
over hypercubes are obtained by a simple edge-tester, which picks a set of edges from
Hn uniformly at random, queries f on their endpoints, and rejects if one of them is
violated. Recall that δM (f) denotes the fraction of edges in Hn that are violated by f ;
thus the success probability of the edge-tester is determined by δM (f). Goldreich et al
prove the following:

Theorem 5. [GGLR98], [GGL+00] For any f : {0, 1}n → {0, 1}, δM (f) ≥ εM (f)
n .

More generally, [DGL+99] use their range-reduction lemma to conclude that for
any f : {0, 1}n → R, δM (f) ≥ εM (f)

n log |R| . Since without loss of generality |R| ≤ 2n,
this gives an upper bound of O(n2/ε) queries for testing monotonicity of all functions
f : {0, 1}n → R.

Clearly, obtaining better lower bounds on δM (f) is sufficient for improving the
upper bounds on the query complexity of testing monotonicity. (It may even be the case
that Theorem 5 holds for any R). The next lemma states that this can also be done by
proving lower bounds on the sparsity of Hn.

Lemma 2. Let µ(n) denote the sparsity ofHn. For any ε > 0 andR ⊆ Z, monotonicity
of functions f : {0, 1}n → R can be tested with O(n

εµ(n)) queries.

Proof: Let ε > 0 and let f : {0, 1}n → R be ε-far from monotone. Let P be the
set of εM (f)2n−1 ≥ ε2n−1 vertex-disjoint violated pairs promised by Lemma 1. By
definition, P is a source-sink pairing. Notice that since every (si, ti) ∈ P is violated,
we have that every path from si to ti must contain at least one violated edge. It follows
that the set EdgeViol(f) is a P-cut and |EdgeViol(f)|/|P| ≥ µ(n). Hence δM (f) =
|EdgeViol(f)|
|En| ≥ εµ(n)

n . We can thus conclude that O
(

n
εµ(n)

)
edge queries suffice to find

an edge-violation with constant probability. ut

6 Briët, Chakraborty, Garcı́a-Soriano, Matsliah

3.2 Proof of Theorem 2

We use a number of properties of the parity-check matrix of Hamming codes, which
we now describe. For an integer k ≥ 1, let the strings y ∈ {0, 1}k\{0}k represent the
indices of bit positions of binary strings of length n = 2k − 1. The Hamming code
consists of the n-bit strings x ∈ {0, 1}n that, for every i ∈ [k], have an even number
of positions y for which yi = 1 and xy = 1. The columns of its k × n parity check
matrix p are all possible non-zero k-bit vectors y; this matrix represents a linear map
p : {0, 1}n → {0, 1}k, with arithmetic done modulo 2. Therefore, for any unit vector
ey (i.e., the vector having 1 at position y and 0 elsewhere), p(ey) = y. Consequently,
for all x, y, p(x⊕ ey) = p(x)⊕ y.

Codewords of the Hamming code correspond to strings satisfying p(x) = 0 (here
and in what follows we use 0 to denote the all-zero vector of the appropriate size). The
k bit positions of the form 2i (i.e., 1, 2, 4, . . . , (n + 1)/2) can be viewed as the parity
bits of the code; in a codeword they are determined by the remaining n− k bits.

Warm-up To showcase the main ideas in the construction, we first show that the spar-
sity of the hypercube is at most O(1

n1/3); better bounds are derived in Section 3.2.

Proposition 6 Let k > 0 be a multiple of three, and n = 2k−1. There is a pairing P ⊆
Vn×Vn inHn of size |P| = Ω(2n) having a P-cut C ⊆ En of size |C| = O(2n/n1/3).

Proof: For a ∈ {0, 1}n, consider the k parity bits p(a) and divide them into three
groups of size k/3 each, denoted x(a), y(a) and z(a). For convenience, we will write
(v1, v2, v3) to denote the concatenation of three vectors v1, v2, v3 ∈ {0, 1}k/3, and
whenever no confusion may arise, we interpret every v ∈ {0, 1}k as an element of
{0}∪ [n]. With this convention, we have p(a) = (x(a), y(a), z(a)), and if one of v1, v2
or v3 is non-zero, then (v1, v2, v3) ∈ [n].

The set S of sources of P is the set of all s ∈ {0, 1}n that satisfy(
x(s) 6= 0∧y(s) 6= 0∧z(s) 6= 0

)
∧
(
s(x(s),y(s),0) = s(x(s),0,z(s)) = s(0,y(s),z(s)) = 0

)
.

For each source s ∈ S, we define its sink t as

t = s ∪ {(x(s), y(s), 0), (x(s), 0, z(s)), (0, y(s), z(s))}.

That is, the three directions leading from s to t are (x(s), y(s), 0), (x(s), 0, z(s)) and
(x(s), 0, z(s)). The first three conditions on a member s of S ensure that all three direc-
tions are (1) distinct; (2) proper (i.e. non-zero); and (3) have a k-bit binary representa-
tion with Hamming weight strictly greater than one. The last condition ensures that the
relevant bits of s are set to zero.

The pairing P will be given by all pairs (s, t) defined in this way. Clearly s ⊆ t and
|t− s| = 3. It is easy to verify that |S| =

(
2k/3 − 1

)3
2n−k−3 = Ω(2n), since none of

the directions used corresponds to a parity bit, i.e., none of them is a power of 2.

Monotonicity Testing and Shortest-Path Routing on the Cube 7

To prove that P is a pairing, it remains to show that all sources are distinct, and
that no source is also a sink. Because of the properties of map p, after flipping e.g. bit
(x, y, 0) from a source s with parity (x, y, z), we reach a vertex with parity (0, 0, z).
Thus, we see that the parities of the eight vertices in the cube from s to t are:

– Level 3 (sink): (x, y, z).
– Level 2: (x, 0, 0), (0, y, 0), (0, 0, z).
– Level 1: (0, 0, z), (0, y, 0), (x, 0, 0).
– Level 0 (source): (x, y, z).

Notice that the parities at level 1 are distinct, as are the parities at level 2.
Since the three directions from s to t are determined by p(s) = (x, y, z) = p(t), it

follows that the set of sinks is disjoint from the set of sources (these bits already belong
to t, so t /∈ S). Likewise, if two different sources s1 and s2 were associated with the
same sink t, we would get p(s1) = p(t) = p(s2), so the three directions from s1 to t
are the same as from s2 to t, implying s1 = s2. Hence P is indeed a pairing.

Let Q ⊆ Vn be the set of vertices at level 1 or 2 for some pair (s, t) ∈ P (that is,
lying on a path from s to t and different from s and t). All vertices in Q have parities
of one of the forms (0, 0, z), (0, y, 0), (x, 0, 0), hence |Q| = O(2n/n2/3). Now take
the set C ⊆ En of all edges of Hn with both endpoints in Q; it is clearly a P-cut.
Furthermore, each vertex of Q is incident with at most 3 · 2k/3 = O(n1/3) edges from
C. This follows from the fact that every v ∈ Q with parity vector, say, (x, 0, 0), can
be incident only with those edges in C that have directions corresponding to vectors
of the form (x, y, 0), (x, 0, z) or (x′, 0, 0), for various y, z, x′ ∈ {0, 1}k/3. Therefore,
|C| = O(2n/n1/3), concluding the proof. ut

Improved bounds In the main construction, we divide the length-k strings into m
equally-sized parts, we let d be the distance between pairs in the pairing and w be the
number of non-zero length-(k/m) parts of the parity strings of the direction vectors.
The main tool is the following lemma about certain sets of vectors used to generalize
the proof in the warm-up. The reader should keep in mind that an example of such a set
of vectors for m = 3, d = 3, w = 2, is V = {110, 101, 011}, and was used implicitly
in the previous proof.

For our purposes, all parameters involved except k and n should be thought of as
constants, although the constants hidden in the Big-O notation are absolute.

Lemma 3. Suppose V ⊆ {0, 1}m, d = |V |, and w ∈ N are such that:
1. 2 ≤ |v| ≤ w for all v ∈ V ,
2.
⊕

v∈V v = 0, and
3. For all W ⊆ V of size |W | = bd/2c, |

⊕
v∈W v| ≥ dm/2e

Let k be a positive multiple of m and n = 2k − 1. Then there is a pairing P ⊆
Vn × Vn of vertices of Hn of size |P| = Ω(2n−d) that has a P-cut C ⊆ En of size

|C| = O
(

2n
√
n
nw/m

√
d2d
)

and with the additional property that each source in P is
at distance exactly d from its sink.

8 Briët, Chakraborty, Garcı́a-Soriano, Matsliah

Proof: Divide [k] into m disjoint subsets G1, . . . , Gm ⊆ [k] of size k/m; e.g. Gi =
{(i−1)k/m+1, . . . , ik/m}. For a ∈ {0, 1}n, consider the k parity bits p(a) ∈ {0, 1}k

of a, and split them into m blocks according to G1, . . . , Gm
2; let us call each of the

corresponding k/m-bit substrings x1(a), . . . , xm(a). Thus, p(a) is the concatenation
of x1(a), x2(a), . . . , xm(a).

For a subset v ⊆ [m], let Zv =
⋃
i∈v Gi ⊆ [k]. Given p ⊆ [k], define the projection

of p on v to be Πv(p) = p ∩ Zv , (remember that p and Πv(x) can be interpreted as
strings in {0, 1}k as well). For example, in the preceding subsection, Π110((x, y, z)) =
(x, y, 0). Consider the set

S = {a ∈ {0, 1}n : ∀i∈[m] xi(a) 6= 0 and ∀v∈V aΠv(p(a)) = 0}.

This will be set of sources in P . Note that the expression aΠv(p(a)), referring to bit
number Πv(p(a)) of a, is well-defined, because the condition ∀i xi(a) 6= 0, along with
v 6= 0, implies Πv(p(a)) 6= 0.

The set of d directions between a source s and the corresponding sink t will be
determined by the parity of s alone, in the following way: for p ∈ {0, 1}k, let D(p) =⋃
v∈V {Πv(p)}. Condition 1 of the hypothesis of the lemma implies that if s ∈ S,
|D(p(s))| = |V | = d, and all elements of D(p(s)) have weight ≥ 2.

For each source s ∈ S, we define the sink t = s ∪D(p(s)); by construction s ⊆ t,
and t−s = |D(p(s))| = d.P is defined as the union of all such ordered pairs (s, t):P =
∪s∈S{(s, s ∪D(p(s)))}. Notice that |P| = |S| =

(
2k/m − 1

)m
2n−k−d = Ω(2n−d).

We prove now that P forms a pairing: the set of sinks is disjoint from the set
of sources, and no two different sources have the same sink. Because of the afore-
mentioned properties of the parity check p, for any source-sink pair (s, t) we have
p(t) = p(s) ⊕

⊕
v∈V Πv(p(s)) = p(s) ⊕ΠL

v∈V v(p(s)) = p(s) (where we used the
second property of V and simple properties of the projection operator). Since for every
d ∈ D(p), d /∈ s but d ∈ t, it follows that no sink is a source too. Likewise, if two sinks
t1 and t2 (corresponding to sources s1 and s2) were the same (t1 = t2), we would have
p(s1) = p(s2), which implies D(p(s1)) = D(p(s2)) and therefore s1 = s2.

To conclude, we only need to bound the size of a smallest P-cut. Consider the set
of vertices halfway between a source and a sink:
Q = {x ∈ {0, 1}n : there exists (s, t) ∈ P such that s ⊆ x ⊆ t and |x− s| = bd/2c}

(notice the slightly different definition of Q, compared to that in 3.2).
Due to the third property of V and the definition of D(p(s)), it follows that b ∈ Q

implies that at least half of x1(b), . . . , xm(b) are zero. For any b ∈ {0, 1}n, if r(b) is
the m-bit string such that for all 1 ≤ i ≤ m, xi(b) = 0 iff r(b)i = 0, then the set
{r(b) : b ∈ Q} has size bounded by

(
d
d/2

)
: for all s ∈ S, r(s) is the all-ones string

and any for any b ∈ Q, r(b) is r(s) XORed with some d/2 vectors in V . So the set
{p(b) : b ∈ Q} has size at most

(
d
d/2

)
(2k/m− 1)m/2, and does not contain unit vectors;

therefore |Q| ≤ 2n

n+1

(
d
d/2

)
(2k/m − 1)m/2 = O(2n

√
n

2d
√
d
).

2 Actually, in order to do this we first impose an arbitrary ordering on the elements of each Gi.

Monotonicity Testing and Shortest-Path Routing on the Cube 9

An edge cut is given by C = {(b, c) ∈ En : b ∈ Q ∧ c − b ∈ D(p(S))}, where
D(p(S)) =

⋃
s∈S{D(p(s))}. Thus, |C| ≤ |Q||D(p(S))|. The claim follows since

|D(p(S))| ≤ d(2k/m − 1)w. ut

Proof of Theorem 2: We prove a strengthening of the second part of the theorem that
implies the first as well. To be precise, we show that, for every 1 > δ > 0, there
exist ε > 0 and d such that, for all large enough n, there is a pairing P in Hn of size
|P| ≥ ε2n, sparsity at most n−1/2+δ and with the additional property that all pairs in
P have distance exactly d. By partitioning the pairs in P according the level modulo d
of their source, and applying a simple averaging argument, we conclude that there must
exist an aligned pairing in Hn with sparsity at most n−1/2+δ .

First note that, whatever our choice ofm,w and d (as long asm and w are constants
depending only on δ), we can assume without loss of generality that n is of the form
n = 2k − 1 and m divides k. Otherwise, let n′ be the largest integer less than n such
that n′ is of the form n′ = 2k − 1 and m divides k. Note that n′ > n/2m+1. Hn′ can
be embedded into Hn, so if we find a set P in Hn′ that satisfies the conclusion of the
theorem for n′ then the embedding of P in Hn will also suffice for n with a smaller ε′.

Let w = d1/δe,m = w2, d = 2w. It only remains to show that sets with parameters
m, d,w, as in the hypotheses of Lemma 3, exist. The size of P is Ω(2n−d) and hence
the ε we get depends on d and hence on δ.

Arrange the w2 elements of [m] into a square matrix A ∈ {0, 1}w×w. Associate
one vector with each row and each column of A (2w vectors in total). The i-th row is
associated with the subset (or vector in {0, 1}w) Ri = {r ∈ [m] : (i− 1)w < r ≤ iw};
the j-th column will correspond to the subset Cj = {r ∈ [m] : (r−1) mod w = j−1}.
Let V =

⋃
i∈[w]{Ri, Si}. Clearly, |V | = 2w and for all v ∈ V , we have |v| = w > 1.

It is also apparent that⊕v∈V v = 0, because any k ∈ [m] belongs to exactly two vectors
in V , namely Ri and Cj , where k = (i− 1)w + j with i, j ∈ [w].

Finally, we show that, for any W ⊆ V with |V | = d/2 = w, | ⊕v∈W v| ≥ m
2 =

w2

2 . Suppose W contains a row elements Ri and w − a column elements Cj ; then
| ⊕v∈W v| = a2 + (w − a)2 ≥ w2

2 by the QM-AM inequality. ut

3.3 Proof of Theorem 3

Let P and C be the pairing and the cut constructed in the proof of Theorem 2. Let
π be any permutation on Vn that maps each source in P to its sink. Notice that any
shortest path in H

↑↓

n that connects a source of P to its sink must also be a directed path
in Hn. Hence, any realization of P with shortest paths must use some edge in C at least
|P|/|C| = Ω(n1/2−δ) times. ut

3.4 Proof of Theorem 4

Let ε > 0, R ⊆ Z and let f : {0, 1}n → R be a dist-3 monotone function. If f is
ε-far from being monotone, then by Lemma 1 there is a set P of ε2n−1 vertex disjoint

10 Briët, Chakraborty, Garcı́a-Soriano, Matsliah

pairs in Hn that are violated by f . Furthermore, since f is dist-3 monotone, for every
(si, ti) ∈ P we have |ti| ≤ |si| + 3. To prove Theorem 4 we show that the sparsity of
such P must be Ω(1/

√
n).

Let C be a smallest P-cut, and let us prove that |C|/|P| ≥ Ω(1/
√
n). First we note

that it is possible to assume that C has no edges that are incident with any source si or
sink tj from P (and in particular, this will mean that no pair in P has distance 1 or 2):
Let p > 0 be the number of edges in C that are incident to some source or sink of a pair
in P . If p ≥ |P|/4 then we are done, since clearly |C| ≥ p. Otherwise, removing these
p edges from C and the corresponding pairs from P leaves a set C ′ of size |C| − p that
cuts a subset P ′ ⊆ P of at least |P| − 2p pairs. This is due to the fact that the pairs
in P are disjoint, and hence each edge can be incident with at most two pairs. Since
p ≤ |P|/4, we have |C|−p|P|−2p ≤ 2 C

|P| , so it is enough to prove the claim for C , C ′ and

P , P ′.
For 0 ≤ h ≤ n − 3, let Ph ⊆ P be the set of pairs (si, ti) ∈ P with |si| = h (and

|ti| = h+ 3). Clearly C is a Ph-cut for every h. Let Ch ⊆ C denote the set of edges in
C that lie on some Ph-path. Since Ch has no edges incident to any si or tj , in order to
cut Ph we must use exactly those edges between levels h+1 and h+2 that lie on some
Ph-path. So the sets Ch, 0 ≤ h ≤ n − 3, are in fact disjoint. Therefore it is sufficient
to prove that Ch/|Ph| ≥ Ω(1/

√
n) for all h.

Fix h, and for clarity let us redefine P , Ph and C , Ch. Each pair (si, ti) ∈
P defines a sub-cube of dimension 3, which we will denote by Hi

3, that contains all
vertices and edges that belong to one of the six possible paths from si to ti.

Observation 7 For any two pairs (si, ti), (sj , tj) ∈ P , |E(Hi
3) ∩ E(Hj

3)| ≤ 1.

Proof: Assume that |E(Hi
3) ∩ E(Hj

3)| ≥ 2 for some i 6= j, and let e = (a, b) and
e′ = (a′, b′) be two edges in E(Hi

3) ∩ E(Hj
3). Since the pairs (si, ti) and (sj , tj) are

disjoint, both e and e′ should lie between layers h+ 1 and h+ 2. Therefore, a = a′ =
si ∪ sj and b = b′ = ti ∩ tj , contradicting the assumption that e 6= e′. ut

Consider the directed graph G = (V,E) with V =
⋃

(si,ti)∈P V (Hi
3) and E =⋃

(si,ti)∈P E(Hi
3). Since every si has out-degree 3 in G (and in-degree 0), the number

of edges between layers h and h + 1 of Hn that belong to G is exactly 3|P|. Let
A = a1, . . . , ak be the vertices in layer h + 1 of Hn that belong to G, let α1, . . . , αk
denote their in-degrees and let β1, . . . , βk denote their out-degrees in G. We have that∑
i∈[k] αi = 3|P|, and our goal is to prove that |C| ≡

∑
i∈[k] βi = Ω(|P|/

√
n).

Consider vertex ai. For every pair (sj , tj) ∈ P such that ai ∈ V (Hj
3) there are two

edges in Hj
3 going out of ai. Since for any two pairs (sj , tj), (sj

′
, tj

′
) ∈ P we have

|E(Hj
3) ∩ E(Hj′

3)| ≤ 1, it follows that
(
βi

2

)
≥ αi. So βi >

√
αi for all i and hence

|C| =
∑
i∈[k] βi >

∑
i∈[k]

√
αi =

∑
i∈[k]

αi√
αi
≥ 3|P|√

n
, as αi ≤ n.

Monotonicity Testing and Shortest-Path Routing on the Cube 11

3.5 AnΩ(n/ε) lower bound for general functions

Theorem 8. LetR ⊆ Z, |R| = Ω(
√
n). Testing monotonicity of functions f{0, 1}n →

R (non-adaptively with one-sided error) requires Ω(n/ε) queries.

Proof: We first prove a lower bound of Ω(n) for some constant ε and argue at the end
how we can achieve the promised lower bound of Ω(n/ε).

A non-adaptive q-query monotonicity tester with one-sided error queries f on a set
Q of at most q vertices and rejects if and only if one of the comparable pairs in Q is
violated. Hence, it is sufficient to show a family Fn of functions f : {0, 1}n → R
that are ε-far from monotone (for a fixed ε > 0 and all n) and such that, for any fixed
set Q ⊆ {0, 1}n of size o(n), a random f ∼U Fn induces a violated pair in Q with
probability less than 1/3.

For every n, we will define a family Fn = {f1, . . . , fn} of n functions fi :
{0, 1}n → R with the following properties:

– every fi is ε-far from monotone, for some absolute constant ε > 0;
– for any set Q ⊆ {0, 1}n, Pri∼U [n][(Q×Q) ∩ Viol(fi) 6= ∅] ≤ |Q|−1

n .

This implies any tester making fewer than 2n
3 queries will fail with probability ≥ 1/3.

Similarly to [FLN+02], each fi ∈ Fn will violate some pairs that differ in the i-th
coordinate. But here we will make sure that only the actual edges of Hn are violated,
making it more difficult to catch violated pairs.

We now formally define Fn. LetR = {0, 1, . . . , 2
√
n}, and let h(x) , |x|−n/2+√

n for all x ∈ {0, 1}n. For each i ∈ [n] we define fi : {0, 1}n → R as follows:

fi(x) =


0, h(x) < 0
2
√
n, h(x) > 2

√
n

h(x), h(x) ∈ R and xi 6= h(x) mod 2
h(x) + (−1)xi , h(x) ∈ R and xi = h(x) mod 2

Notice that for all i ∈ [n], Viol(fi) = EdgeViol(fi), and the edges in EdgeViol(fi)
are vertex disjoint. So by Lemma 1, the functions fi ∈ Fn are ε-far from monotone (for
some fixed ε > 0) if |EdgeViol(fi)| ≥ ε2n. Indeed, |EdgeViol(fi)| equals the number
of points x ∈ {0, 1}n such that: h(x) ∈ R, h(x) = 0 (mod 2) and xi = 0. Notice that
for n > 10, these constitute roughly a quarter of all points y ∈ {0, 1}n with h(y) ∈ R.
On the other hand, it follows from Chernoff bounds that for some constant ρ > 0 and
for all n > 10, the number of points y ∈ {0, 1}n with h(y) ∈ R is at least ρ2n. Setting
ε = ρ/5, we conclude that all functions fi ∈ Fn are ε-far from monotone.

Now we prove that Pri∼U [n][(Q×Q)∩Viol(fi) 6= ∅] ≤ |Q|−1
n . Fix Q and consider

the undirected graph G = (V,E), where V = Q and E = {{x, y} ∈ Q×Q : (x, y) ∈
En}. In other words, G is the undirected skeleton of the subgraph of Hn induced on
Q. For x, y ∈ {0, 1}n we write x = y(j) if x equals y in all coordinates except j. Let
T ⊆ [n] be a set of directions spanned by E, namely, T = {j : there exists {x, y} ∈
E such that x = y(j)}. Clearly, the success probability of the test is bounded by |T |/n.
To finish the proof, we show that |T | ≤ |Q| − 1.

12 Briët, Chakraborty, Garcı́a-Soriano, Matsliah

Consider a minimal subgraph G′ of G that spans all directions in T . Then clearly,
|E(G′)| = |T |. Since any cycle in the undirected skeleton ofHn travels in any direction
even number of times so G′ is acyclic. So |T | = |E(G′)| ≤ |V (G′)| − 1 = |Q| − 1.

We proved a lower bound of Ω(n) queries for some constant ε > 0. To get a lower
bound of Ω(n/ε) for any ε = ε(n) we need to compose our lower bound with a simple
“hiding” procedure. Namely, we define a distribution F ′n that fools any deterministic
tester with o(n/ε) queries as follows: first, partition Hn into disjoint subcubes, each
of size ε2n (for simplicity we assume that 1/ε is a power of 2); then pick a random
subcube C in this partition, and value it with a random fi ∈ Fn−log 1/ε; value the other
subcubes so that there are no violations outside C. Now for any fixed set Q of o(n/ε)
queries, the expected number of queries that hit C is o(n), and we know that with o(n)
queries it is impossible to find a violation in a random fi. ut

Notice that the range R of the functions fi is of size O(
√
n) - much smaller than

the 2n different values a function on the hypercube may have. Consider pair-testers (see
Section 2.3) of Boolean monotonicity making at most q(n)/ε queries for some function
q : N → N and any ε > 0; it follows from the range-reduction lemma of [DGL+99]
and Theorem 8 that for any such tester, q(n) = Ω(n/ log n) must hold. This is tight up
to the log n factor.

4 Concluding remarks

We suggest three open problems related to this line of work:
First, is it true that the best testers for monotonicity over Hn are in fact pair-testers?

The question is of interest even just for Boolean-range functions, since a positive answer
coupled with our Ω(n

ε logn) lower bound for pair testers would give an almost-tight
lower bound.

Another challenge is to find better upper bounds for the special case of testing
monotonicity of dist-k monotone functions, for some k ≥ 3. As we saw in Section
3.2, non-trivial sparsity upper bounds can be found even if we restrict ourselves to pair-
ings in which all pairs are at distance 3. This seems to indicate, in our opinion, that a
better understanding of the small-distance situations will yield new insights that may
be applicable in the general case.

Finally, recall from Section 3.4 that for k ≤ 3, dist-k monotonicity can be tested
with O(n3/2) queries; on the other hand, the construction in Section 3.2 shows that
sparsity considerations alone will never yield upper bounds better than this. In view of
these results, it is natural to ask whether these two measures need to coincide for larger
k; that is, whether the complexity of edge-testers may be better than the values derived
from sparsity upper-bounds.

References

ABY08. Ali Al-Bashabsheh and Abbas Yongaçoglu. On the k-pairs problem. CoRR,
abs/0805.0050, 2008.

Monotonicity Testing and Shortest-Path Routing on the Cube 13

AC06. Nir Ailon and Bernard Chazelle. Information theory in property testing and mono-
tonicity testing in higher dimension. Inf. Comput., 204(11):1704–1717, 2006.

AHJ+06. Micah Adler, Nicholas J. A. Harvey, Kamal Jain, Robert D. Kleinberg, and
April Rasala Lehman. On the capacity of information networks. In SODA, pages
241–250, 2006.

Ben65. V.E. Benes. Mathematical theory of connecting networks and telephone traffic. New
York : Academic Press, 1965.

BGJ+09. Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and
David P. Woodruff. Transitive-closure spanners. In SODA ’09: Proceedings of the
Nineteenth Annual ACM -SIAM Symposium on Discrete Algorithms, pages 932–941,
Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

Bha08. Arnab Bhattacharyya. A note on the distance to monotonicity of boolean functions.
Electronic Colloquium on Computational Complexity (ECCC), 15(012), 2008.

DGL+99. Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron,
and Alex Samorodnitsky. Improved testing algorithms for monotonicity. In
RANDOM-APPROX, pages 97–108, 1999.

EKK+00. Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh
Viswanathan. Spot-checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000.

Fis04. Eldar Fischer. On the strength of comparisons in property testing. Inf. Comput.,
189(1):107–116, 2004.

FLN+02. Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Alex Samorodnitsky. Monotonicity testing over general poset domains. In STOC,
pages 474–483, 2002.

GGL+00. Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnit-
sky. Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

GGLR98. Oded Goldreich, Shafi Goldwasser, Eric Lehman, and Dana Ron. Testing monotonic-
ity. In FOCS, pages 426–435, 1998.

HK08. Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Ran-
dom Struct. Algorithms, 33(1):44–67, 2008.

LR01. Eric Lehman and Dana Ron. On disjoint chains of subsets. J. Comb. Theory, Ser. A,
94(2):399–404, 2001.

Lub90. Anna Lubiw. Counterexample to a conjecture of szymanski on hypercube routing.
Inf. Process. Lett., 35(2):57–61, 1990.

Ras99. Sofya Raskhodnikova. Monotonicity testing. Master’s thesis, Department of Electri-
cal Engineering and Computer Science, MIT, Cambridge, MA, 1999.

RL05. A. Rasala-Lehman. Network coding. PhD thesis, Department of Electrical Engineer-
ing and Computer Science, MIT, Cambridge, MA, 2005.

Szy89. Ted H. Szymanski. On the permutation capability of a circuit-switched hypercube. In
ICPP (1), pages 103–110, 1989.

	Monotonicity Testing and Shortest-Path Routing on the Cube
	Jop Briët (CWI, Amsterdam) Sourav Chakraborty (CWI, Amsterdam), David García-Soriano (CWI, Amsterdam) and Arie Matsliah (CWI Amsterdam)

