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Abstract

We prove that for any ε > 0 it is NP-hard to approximate the non-commutative Grothendieck
problem to within a factor 1/2 + ε, which matches the approximation ratio of the algorithm of
Naor, Regev, and Vidick (STOC’13). Our proof uses an embedding of �2 into the space of ma-
trices endowed with the trace norm with the property that the image of standard basis vectors
is longer than that of unit vectors with no large coordinates.

1 Introduction

The subject of this paper, the non-commutative Grothendieck problem, has its roots in celebrated
work of Grothendieck [Gro53], sometimes (jokingly?) referred to as “Grothendieck’s résumé.” His
paper laid the foundation for the study of the geometry of tensor products of Banach spaces,
though its significance only became widely recognized after it was revamped by Lindenstrauss
and Pełczyński [LP68]. The main result of the paper, now known as Grothendieck’s inequality, shows
a close relationship between the following two quantities. For a complex d×d matrix M let

OPT(M) = sup
αi ,β j

���
d

∑
i,j=1

Mijαiβ j

���, (1)

where the supremum goes over scalars on the complex unit circle, and let

SDP(M) = sup
ai ,bj

���
d

∑
i,j=1

Mij�ai, bj�
���, (2)

where the supremum goes over vectors on a complex Euclidean unit sphere of any dimension.
Since the circle is the sphere in dimension one, we clearly have SDP(M) ≥ OPT(M). Grothendieck’s
inequality states that there exists a universal constant KC

G < ∞ such that for each positive integer d
and any d×d matrix M, we also have SDP(M) ≤ KC

G OPT(M). This result found an enormous

∗Courant Institute of Mathematical Sciences, New York University. Supported by a Rubicon grant from the Nether-
lands Organisation for Scientific Research (NWO). E-mail: jop.briet@cims.nyu.edu

†Courant Institute of Mathematical Sciences, New York University. Supported by the Simons Collaboration on
Algorithms and Geometry and by the National Science Foundation (NSF) under Grant No. CCF-1320188. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the NSF.

‡IBM Research, Bangalore, India. Email: rissaket@in.ibm.com

1



number of applications both within and far beyond its original scope and we give some examples
below (see [KN12, Pis12] for extensive surveys). Despite this, finding the optimal value of KC

G is
the only one of six problems posed in [Gro53] that remains unsolved today; the current best up-
per and lower bounds are 1.4049 [Haa87] and 1.338 [Dav84], respectively. The situation is similar
for the real variant of the problem, where all objects involved are over the real numbers and the
constant is denoted KG; see [BMMN13] for recent progress on the problem of determining KG.

The non-commutative Grothendieck problem, which we will refer to simply as the NCG, is the
optimization problem in which we are asked to maximize a given bilinear form over two unitary
matrices. More explicitly, we are given a four-dimensional array of complex numbers (Tijkl)d

i,j,k,l=1
and are asked to find or approximate the value

OPT(T) = sup
A,B

���
d

∑
i,j,k,l=1

Tijkl AijBkl

���, (3)

where the supremum is over pairs of d×d unitary matrices. (The word “non-commutative” simply
refers to the fact that optimization is over matrices.) It is not difficult to see that the (commutative)
Grothendieck problem of computing OPT(M) as in (1) is the special case where T has Tiijj = Mij
and zeros elsewhere. Seen at first, the problem might seem overly abstract, but in fact, as we will
illustrate below, it captures many natural questions as special cases. Grothendieck conjectured
that his namesake inequality has an extension that relates (3) and the quantity

SDP(T) = sup
�A,�B

���
d

∑
i,j,k,l=1

Tijkl
�
�Aij,�Bkl

����, (4)

where �A,�B range over all d×d matrices whose entries are complex vectors of arbitrary dimension
satisfying a certain “unitarity” constraint.1 Namely, he conjectured that there exists a universal
constant K < ∞ such that for every positive integer d and array T as above, we have OPT(T) ≤
SDP(T) ≤ K OPT(T), where the first inequality follows immediately from the definition. Over
twenty-five years after being posed, the non-trivial content of Grothendieck’s conjecture, SDP(T) ≤
K OPT(T), was finally settled in the positive by Pisier [Pis78]. This result is now known as the
non-commutative Grothendieck inequality. In contrast with the commutative case, and some-
what surprisingly, the optimal value of K is known: Haagerup [Haa85] lowered Pisier’s original
estimate to K ≤ 2 and this was later shown to be sharp by Haagerup and Itoh [HI95].

Algorithmic applications. The importance of Grothendieck’s inequality to computer science
was pointed out by Alon and Naor [AN06], who placed it in the context of approximation al-
gorithms for combinatorial optimization problems. They observed that computing SDP(M) is a
semidefinite programming (SDP) problem that can be solved efficiently (to within arbitrary preci-
sion), and they translated an upper bound of about 1.78 on KG due to Krivine [Kri79] to an efficient
rounding scheme that turns SDP vectors into a feasible solution for the real Grothendieck prob-
lem (1) achieving value at least SDP(M)/1.78. A generic argument following from [BdOFV14]
shows that whatever the value of KG is, there exists a brute-force-based algorithm achieving value

1Namely, we require that �A∗ �A = 1 and �A�A∗ = 1 and similarly for �B, where the multiplication of two vector-entried
matrices is a scalar-valued matrix computed just like a normal matrix multiplication except the scalar multiplication is
replaced by an inner product, e.g., the (i, j)-coordinate of �A�A∗ is given by ∑k��Aik, �Ajk�.
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at least (1/KG − ε) SDP(M) for any ε > 0. The Grothendieck problem shows up in a number of
different areas such as graph partition problems and computing the Cut-Norm of a matrix [AN06],
in statistical physical where it gives ground state energies in the spin model [KNS10], and in quan-
tum physics where it is related to Bell inequalities [Tsi87].

In the same spirit, Naor, Regev, and Vidick [NRV14] recently translated the non-commutative
Grothendieck inequality into an efficient SDP-based approximation algorithm for the NCG prob-
lem (3) that achieves value at least SDP(T)/2. They also considered the real variant and a Hermi-
tian variant, for which they gave analogous algorithms achieving value at least SDP(T)/2

√
2. This

in turn implies efficient constant-factor approximation algorithms for a variety of problems, in-
cluding the Procrustes problem and two robust versions of Principle Component Analysis [NRV14]
and quantum XOR games [RV14]. Bandeira et al. [BKS13] prove better approximation guarantees
for a special case of the Little NCG (considered below) and show that it captures the Procrustes
problem and another natural problem called the Global Registration Problem.

Hardness of approximation. For simplicity we momentarily turn to the real setting, but similar
results hold over the complex numbers. Since the Grothendieck problem contains MAXCUT as a
special case (by taking M to be the positive semidefinite Laplacian matrix of a graph), Håstad’s
inapproximability result [Hås01] implies that it is NP-hard to approximate the value (1) to any fac-
tor larger than 16/17 ≈ .941. Based on the current best-known lower bound of about 1.676 on KG,
Khot and O’Donnell [KO09] proved that (1) is Unique-Games-hard to approximate to within a
factor larger than 1/1.676 ≈ .597. Moreover, despite the fact that the exact value of KG is still
unknown, Raghavendra and Steurer [RS09] were able to improve this Unique Games hardness
to 1/KG. (See for instance [Kho10, Tre12] for background on the Unique Games conjecture.)

Our result. Whereas the hardness situation for the commutative version of Grothendieck’s prob-
lem is reasonably well understood (apart from the yet-unknown exact value of KG), no tight hard-
ness result was previously known for the non-commutative version. In fact, we are not even aware
of any hardness result that is better than what follows from the commutative case. Here we settle
this question.

Theorem 1.1. For any constant ε > 0 it is NP-hard to approximate the optimum (3) of the non-commutative
Grothendieck problem to within a factor greater than 1/2 + ε.

Little Grothendieck. In fact, we prove a stronger result than Theorem 1.1 that concerns a special
case of the NCG called the Little NCG. Let us start by describing the (real case of the) commutative
Little Grothendieck problem (a.k.a. the positive-semidefinite Grothendieck problem). A conve-
nient way to phrase it is as asking for the operator norm of a linear map F : Rn → �d

1, defined
as �F� = supa�F (a)��1

where the vector a ranges over the n-dimensional Euclidean unit ball.
It turns out that that this is a special case of (the real version of) Eq. (1): for any F there exists a
positive semidefinite d×d matrix M such that OPT(M) = �F�

2; and vice versa, one can also map
any such M into a corresponding operator F (see, e.g., [Pis12] or Section 6). We wish to highlight
that for such instances, the constant KG may be replaced by the smaller value π/2 [Rie74] and that
this value is known to be optimal [Gro53]. Moreover, Nesterov made this algorithmic, namely,
he showed an algorithm that approximates �F� as above to within

√
2/π [Nes98]. Finally, Khot
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and Naor [KN09], as part of a more general result, showed that this is tight: the Unique-Games-
hardness threshold for the Little Grothendieck problem is exactly

√
2/π.

The Little non-commutative Grothendieck problem is formulated in terms of the (normalized)
trace norm, also known as the Schatten-1 norm, which for a d×d matrix A is given by �A�S1

=

d−1 Tr
√

A∗A. In other words, �A�S1
is the average of the singular values of A. The space of

matrices endowed with this norm is denoted by S1 and by Sd
1 if we restrict to d×d matrices. The

problem then asks for the operator norm of a linear map F : Cn → Sd
1. This problem is a special

case of the NCG where OPT(T) = �F�
2 (see Section 6). In particular, it follows from [Haa85,

NRV14] that there is an efficient SDP-based 1/
√

2-approximation algorithm for the Little NCG.
Our stronger result alluded to above shows tight hardness for the Little NCG, which directly
implies Theorem 1.1.

Theorem 1.2. For any constant ε > 0 it is NP-hard to approximate the Little non-commutative Grothendieck
problem to within a factor greater than 1/

√
2 + ε.

While this result applies to the complex case, an easy transformation shows that it directly
implies the same result for the real and Hermitian cases introduced in [NRV14] (see Section 5.1).
Finally, as we show in the “warm-up” section of this paper (Section 4), we also get a tight NP-
hardness result for the commutative Little Grothendieck problem, strengthening the unique-games-
based result of [KN09].

Theorem 1.3. For any constant ε > 0 it is NP-hard to approximate the real Little commutative Grothendieck
problem to within a factor greater than

√
2/π + ε. Similarly, the complex case is NP-hard to approximate

to within a factor greater than
√

π/4 + ε.

Techniques. Nearly all recent work on hardness of approximation, including for commutative
Grothendieck problems [RS09, KN09], uses the machinery of Fourier analysis over the hypercube,
influences, or the majority is stablest theorem. Our attempts to apply these techniques here failed.
Instead, we use a more direct approach similar to that taken in [GRSW12] and avoid the use of the
hypercube altogether. The role of dictator functions is played in our proof simply by the standard
basis vectors of Cn. The dictatorship test, which is our main technical contribution, comes in the
form of a linear operator F : Cn → Sd

1 with the following notable property: it maps the n standard
basis vectors to matrices with trace norm 1, and it maps any unit vector with no large coordinate
to a matrix with trace norm close to 1/

√
2. Roughly speaking, one can think of F as identifying

an interesting subspace of Sd
1 in which the unit ball looks somewhat like the intersection of the

Euclidean ball with a (scaled) �∞ ball.
A first attempt to construct an operator F as above might be to map each standard basis vector

to a random unitary matrix. This, however, leads to a very poor map – while standard basis
vectors are mapped to matrices of trace norm 1, vectors with no large coordinates are mapped
to matrices of trace norm close to 8/(3π) ≈ 0.848 by Wigner’s semicircle law. Another natural
approach is to look at the construction by Haagerup and Itoh [HI95] (see also [Pis12, Section 11]
for a self-contained description) which shows the factor-2 lower bound in the non-commutative
Grothendieck inequality, i.e., the tight integrality gap of the SDP (4). Their construction relies on
the so-called CAR algebra (after canonical anticommutation relations) and provides an isometric
mapping from Cn to S1, i.e., all unit vectors are mapped to matrices of trace norm 1. Directly
modifying this construction (akin to how, e.g., Khot et al. [KKMO07] obtained tight hardness of
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MAXCUT by restricting the tight integrality gap instances by Feige and Schechtman [FS02] from
the sphere to the hypercube) does not seem to work. Instead, our construction of F relies on
a different (yet related) algebra known as the Clifford algebra. The Clifford algebra was used
before in a celebrated result by Tsirelson [Tsi87] (to show that Grothendieck’s inequality can be
interpreted as a statement about XOR games with entanglement). His result crucially relies on the
fact that the Clifford algebra gives an isometric mapping from Rn to S1. Notice that this is again an
isometric embedding, but now only over the reals. Our main observation here (Lemma 5.2) is that
the same mapping, when extended to Cn, exhibits intriguing cancellations when the phases in the
input vectors are not aligned, and this leads to the construction of F (Lemma 5.1). Even though
the proof of this fact is simple, we find it surprising; we are not aware of any previous application
of those complex Clifford algebras in computer science (or elsewhere for that matter).

Open questions. For the real and Hermitian cases there is a gap of
√

2 between the guarantee of
the [NRV14] algorithms and our hardness result. It also would be interesting to explore whether
hardness of approximation results can be derived to some of the applications of the NCG, in-
cluding the Procrustes problem and robust Principle Component Analysis. We believe that our
embedding would be useful there too.

Outline. The rest of the paper is organized as follows. In Section 2, we set some notational con-
ventions, gather basic preliminary facts about relevant Banach spaces, and give a detailed formu-
lation of the Smooth Label Cover problem. In Section 3, we prove hardness of approximation for
the problem of computing the norm of a general class of Banach-space-valued functions, closely
following [GRSW12]. In Section 4, as a “warm up,” we prove Theorem 1.3 using the generic result
of Section 3 and straightforward applications of real and complex versions of the Berry-Esséen
Theorem. Section 5 contains our main technical contribution, which we use there to finish the
proof of our main result (Theorem 1.2).

Acknowledgements. We thank Steve Heilman and Thomas Vidick for early discussions.

2 Preliminaries

Notation and relevant Banach spaces. For a positive integer n we denote [n] = {1, . . . , n}. For
a graph G and vertices v, w ∈ V(G) we write v ∼ w to denote that v and w are adjacent. We
write Pre∼v[·] for the expectation with respect to a uniformly distributed random edge with v as
an endpoint. For a finite set U we denote by Eu∈U [·] the expectation with respect to the uniform
distribution over U. All Banach spaces are assumed to be finite-dimensional. Recall that for Ba-
nach spaces X, Y the operator norm of a linear operator F : X → Y is given by

�F� = sup
x∈X: �x�X≤1

�F (x)�Y.

For a real number p ≥ 1, the p-norm of a vector a ∈ Cn is given by

�a��p
=

�
n

∑
i=1

|ai|
p

�1/p

.
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As usual we implicitly endow Cn with the Euclidean norm �a��2
. For a finite set U endowed with

the uniform probability measure we denote by Lp(U) the space of functions f : U → C with the
norm

� f �Lp(U) =
�
Eu∈U

�
| f (u)|p

��1/p .

More generally, for a Banach space X we denote by Lp(U, X) the space of functions f : U → X
with the norm

� f �Lp(U,X) =
�

Eu∈U

�
� f (u)�p

X

��1/p
.

We will write Lp(X) if U is not explicitly given and � f �Lp
instead of � f �Lp(U,X) when there is no

danger of ambiguity. Note that L2(U, Cn) is a Hilbert space.

Smooth Label Cover. An instance of Smooth Label Cover is given by a quadruple (G, [n], [k], Σ)
that consists of a regular connected (undirected) graph G = (V, E), a label set [n] for some positive
integer n, and a collection Σ =

�
(πev, πew) : e = (v, w) ∈ E

�
of pairs of maps both from [n] to [k]

associated with the endpoints of the edges in E. Given an assignment A : V → [n], we say that an
edge e = (v, w) ∈ E is satisfied if πev

�
A(v)

�
= πew

�
A(w)

�
.

The following hardness result for Smooth Label Cover, given in [GRSW12],2 is a slight variant
of the original construction due to Khot [Kho02]. The theorem also describes the various structural
properties, including smoothness, that are satisfied by the hard instances.

Theorem 2.1. For any positive real numbers ζ, γ there exist positive integers n = n(ζ, γ), k = k(ζ, γ),
and t = t(ζ), and a Smooth Label Cover instance (G, [n], [k], Σ) as above such that:

• (Hardness): It is NP-hard to distinguish between the following two cases:

– (YES Case): There is an assignment that satisfies all edges.
– (NO Case): Every assignment satisfies less than a ζ-fraction of the edges.

• (Structural properties):

– (Smoothness): For every vertex v ∈ V and distinct i, j ∈ [n], we have

Pre∼v [πev(i) = πev(j)] ≤ γ. (5)

– For every vertex v ∈ V, edge e ∈ E incident on v, and i ∈ [k], we have |π−1
ev (i)| ≤ t; that is, at

most t elements in [n] are mapped to the same element in [k].
– (Weak Expansion): For any δ > 0 and vertex subset V � ⊆ V such that |V �| = δ · |V|, the

number of edges among the vertices in |V �| is at least (δ2/2)|E|.

3 Hardness for general Banach-space valued operators

The following proposition shows hardness of approximation for the problem of computing the
norm of a linear map from Cn to any Banach space that allows for a “dictatorship test,” namely,
a linear function that maps the standard basis vectors to long vectors, and maps “spread” unit
vectors to short vectors. As stated, the proposition assumes the underlying field to be C; we note
that the proposition holds with exactly the same proof also in the case of the real field R.

2For convenience, we make implicit some of the parameters in the statement of the theorem.
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Theorem 3.1. Let (Xn)n∈N be a family of finite-dimensional Banach spaces, and η and τ be positive num-
bers such that η > τ. Suppose that for each positive integer n there exists a linear operator f : Cn → Xn
with the following properties:

• For any vector a ∈ Cn, we have � f (a)�Xn ≤ �a��2 .

• For each standard basis vector ei, we have � f (ei)�Xn ≥ η.

• For any ε > 0, there is a δ = δ(ε) > 0 such that � f (a)�Xn > (τ + ε)�a��2 implies �a��4 > δ�a��2 .

Then, for any ε� > 0 there exists a positive integer n such that it is NP-hard to approximate the norm of an
explicitly given linear operator F : L2 → L1(Xn) to within a factor greater than (τ/η) + ε�.

3.1 The hardness reduction

To set up the reduction, we begin by defining a linear operator F = Fζ,γ for any choice of pos-
itive real numbers ζ, γ. Afterwards we show that there is a choice of these parameters giving
the desired result. For positive real numbers ζ, γ, let n, k, and t be positive integers (depending
on ζ, γ) and (G, [n], [k], Σ) a Smooth Label Cover instance as in Theorem 2.1, where G = (V, E)
is a regular graph. Note that ζ controls the “satisfiability” of the instance in the NO case, that γ
controls the “smoothness,” and that t depends on ζ only. Endow the vertex set V with the uni-
form probability measure. To define F we consider a special linear subspace H of the Hilbert
space L2(V, Cn). It will be helpful to view a vector a ∈ L2(V, Cn) as an assignment a = (av)v∈V of
vectors av ∈ Cn to V. Let H ⊆ L2(V, Cn) be the subspace of vectors a = (av)v∈V that satisfy for
every e = (v, w) ∈ E and j ∈ [k] the homogeneous linear constraint

∑
i∈π−1

ev (j)

av(i) = ∑
i∈π−1

ew (j)

aw(i), (6)

where av(i) denotes the ith coordinate of the vector av. Notice that if an assignment A : V → [n]
satisfies the edge e = (v, w), then the standard basis vectors av = eA(v) and aw = eA(w) satisfy (6);
indeed, if πev

�
A(v)

�
= πew

�
A(w)

�
= j� then both sides of (6) equal 1 if j = j� and equal zero

otherwise.
Now let η, τ and f be as in Theorem 3.1. We associate with the Smooth Label Cover instance

(G, [n], [k], Σ) from above the linear operator F : H → L1(V, Xn) given by,

(F (a)) (v) = f (av). (7)

The operator F thus maps a Cn-valued assignment a = (av)v∈V satisfying (6) to an Xn-valued
assignment given by f (av) for each v ∈ V. Theorem 3.1 follows from the following two lemmas,
which we prove in Sections 3.2 and 3.3, respectively.

Lemma 3.2 (Completeness). Suppose that there exists an assignment A : V → [n] that satisfies all the
edges in E. Then, �F� ≥ η.

Lemma 3.3 (Soundness). For any ε > 0 there exists a choice of ζ, γ > 0 such that if �F� > τ + 4ε then
there exists an assignment that satisfies at least a ζ-fraction of the edges of G.
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Proof of Theorem 3.1. Let ε > 0 be arbitrary, let ζ, γ be as in Lemma 3.3, and let n = n(ζ, γ)
and k = k(ζ, γ) be as in Theorem 2.1. We use the reduction described above, which maps a
Smooth Label Cover instance (G, [n], [k], Σ) to the linear operator F : L2 → L1(Xn) specified
in (7). By Lemma 3.2, YES instances are mapped to F satisfying �F� ≥ η, whereas by Lemma 3.3,
NO instances are mapped to F satisfying �F� < τ + 4ε. We therefore obtain hardness of approx-
imation to within a factor (τ + 4ε)/η. Since ε is arbitrary, we are done.

3.2 Completeness

Here we prove Lemma 3.2.

Proof of Lemma 3.2. Let A : V → [n] be an assignment that satisfies all the edges. Consider the
vector a ∈ L2(V, Cn) where av = eA(v) and notice that �a�L2 = 1. Since A satisfies all edges, a
satisfies the constraint (6) for every e ∈ E and j ∈ [n], and thus a lies in the domain H of F .
Moreover, by the second property of f given in Theorem 3.1,

�F (a)�L1(V,Xn) = Ev∈V
�
� f (av)�Xn

�
≥ η.

Hence, �F� ≥ η.

3.3 Soundness

Here we prove Lemma 3.3 and show that among the family of operators F = Fζ,γ as in (7), for
any ε > 0 there is a choice of ζ, γ > 0 such that if �F� > τ + 4ε, then there exists an assignment
satisfying a ζ-fraction of the edges in the Smooth Label Cover instance associated with F . To
begin, assume that �F� > τ + 4ε for some ε > 0. Let b ∈ H be a vector such that �b�L2 = 1 and

Ev∈V
�
� f (bv)�

�
= �F (b)�L1

≥ τ + 4ε. (8)

The weak expansion property in Theorem 2.1 implies that it suffices to find a “good” assignment
for a large subset of the vertices, as any large set of vertices will induce a large set of edges.
For δ = δ(ε) as in Theorem 3.1, we will consider set of vertices

V0 = {v ∈ V | �bv��4 > δε and �bv��2 ≤ 1/ε} . (9)

The following lemma shows that V0 contains a significant fraction of vertices.

Lemma 3.4. For V0 ⊆ V defined as in (9), we have |V0| ≥ ε2|V|.

Proof. Define the sets

V1 = {v ∈ V | �bv��4 ≤ δε and �bv��2 < ε},
V2 = {v ∈ V | �bv��4 ≤ δε and �bv��2 ≥ ε},
V3 = {v ∈ V | �bv��2 > 1/ε} .

From (8), we have

∑
v∈V0

� f (bv)�Xn + ∑
v∈V1

� f (bv)�Xn + ∑
v∈V2

� f (bv)�Xn + ∑
v∈V3

� f (bv)�Xn ≥ (τ + 4ε)|V|. (10)
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We bound the four sums on the left-hand side of (10) individually. Since (by the first item in
Theorem 3.1) we have � f (bv)�Xn ≤ �bv��2 , and since �bv��2 ≤ 1/ε for every v ∈ V0, the first sum
in (10) can be bounded by

∑
v∈V0

� f (bv)�Xn ≤ |V0|/ε. (11)

Similarly, using the definition of V1 the second sum in (10) is at most ε|V|. Next, from the third
property of f in Theorem 3.1, for each v ∈ V2, we have � f (bv)�Xn ≤ (τ + ε)�bv��2 . Therefore, the
third sum in (10) is bounded as

∑
v∈V2

� f (bv)�Xn ≤ (τ + ε) ∑
v∈V2

�bv��2

≤ (τ + ε)|V2|
1
2
�

∑
v∈V2

�bv�
2
�2

� 1
2

(By Cauchy-Schwartz)

≤ (τ + ε)|V|
1
2
�

∑
v∈V

�bv�
2
�2

� 1
2

= (τ + ε)|V|, (12)

where the last inequality uses �b�L2 = 1. Finally, the fourth sum in (10) is bounded by

∑
v∈V3

� f (bv)�Xn ≤ ∑
v∈V3

�bv��2 (By the property of f )

< ∑
v∈V3

ε�bv�
2
�2

≤ ε ∑
v∈V

�bv�
2
�2

= ε|V|�b�2
L2

= ε|V|. (13)

Combining the above with Equation (10) yields, |V0|/ε ≥ ε|V|, which proves Lemma 3.4.

Lemma 3.4 and the weak expansion property implies that the set E(V0) of edges induced by V0
has cardinality

|E(V0)| ≥ (ε4/2)|E|. (14)

We set out to show that there exists an assignment to the vertices in V0 that satisfies a significant
fraction of edges in E(V0). Roughly speaking, we do this by randomly assigning each v ∈ V0 one of
the coordinates of the vector bv at which it has large magnitude. (Assigning the largest coordinate
may not work.) The following simple proposition shows that those vectors indeed have large
coordinates.

Proposition 3.5. Let β = β(ε) be given by β = δ2ε3. Then, for each v ∈ V0, we have �bv��∞
≥ β.

Proof. For every v ∈ V0, we have

δ4ε4
≤ �bv�

4
�4
≤ �bv�

2
�∞
�bv�

2
�2
≤ �bv�

2
�∞

/ε2, (15)

giving the claim.
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For the to-be-determined value of ζ let t = t(ζ) be as in Theorem 2.1 and for each v ∈ V0 let

Av
1 =

�
i ∈ [n]

��� |bv(i)| ≥
β

4

�
and Av

2 =
�

i ∈ [n]
��� |bv(i)| ≥

β

4t

�
.

By Proposition 3.5 these sets are nonempty and clearly Av
1 ⊆ Av

2. Moreover, since �bv��2 ≤ 1/ε,
we have,

|Av
1| ≤

16
ε2β2 and |Av

2| ≤
16t2

ε2β2 . (16)

Now consider a random assignment A : V0 → [n] that independently assigns each vertex
v ∈ V0 a uniformly random label from Av

1 and assigns the remaining vertices in V some fixed
arbitrary label. The following lemma shows that on average, this assignment satisfies a significant
fraction of edges.

Lemma 3.6. There exists a γ > 0 depending only on ε and ζ such that for some absolute constant c > 0
the expected fraction of edges in E satisfied by the random assignment A given above is at least cε8β4.

Setting γ appropriately as in the above lemma and ζ = cε8δ4 then gives Lemma 3.3; indeed,
notice that then ζ, and therefore also γ, depend on ε alone.

The remainder of this section is devoted to the proof of Lemma 3.6. Let E� ⊆ E(V0) be the
subset of edges e = (v, w) whose projections πev and πew are injective on the subsets Av

2 and Aw
2

respectively. Formally,

E� =
�

e = (v, w) ∈ E(V0)
�� |πev(Av

2)| = |Av
2|, and |πew(Aw

2 )| = |Aw
2 |
�

. (17)

We set the parameter γ according to the following proposition which shows a lower bound on |E�|

using the smoothness property. Recall that t is a function of ζ only.

Proposition 3.7. There exists an absolute constant c� > 0 such that for any γ ≤ c�ε8β4/t4, the set E� has
cardinality |E�| ≥ (ε4/4)|E|.

Proof. Consider any vertex v ∈ V0. By the smoothness property of Theorem 2.1 and a union bound
over all distinct pairs i, j ∈ A2

v, the fraction of edges e ∈ E incident on v that do not satisfy

|πev(Av
2)| = |Av

2|, (18)

is at most
γ |Av

2|
2

2
≤

1
2

�
ε8β4

210 · t4

��
162 · t4

ε4β4

�
=

ε4

8
,

via an appropriate setting of c�. Therefore, the number of edges in E that are incident on some
v ∈ V0 and do not satisfy (18) is at most

∑
v∈V0

ε4

8
deg(v) ≤

ε4

8 ∑
v∈V

deg(v) ≤
ε4

4
|E|.

Thus,
|E�

| ≥ |E(V0)| − (ε4/4)|E| ≥ (ε4/4)|E|,

by Equation (14).
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The following proposition shows that for an edge e = (v, w) ∈ E�, the label sets Av
1 and Aw

1
intersect under projections given by e.

Proposition 3.8. For every edge e = (v, w) ∈ E�, we have πev(Av
1) ∩ πew(Aw

1 ) �= ∅.

Proof. From Proposition 3.5, let i∗ ∈ [n] be such that |bv(i∗)| ≥ β. Note that i∗ ∈ Av
1. Let

j∗ = πev(i∗). Clearly it suffices to show that there exists an i� ∈ Aw
1 such that πew(i�) = j∗, as

this implies that j∗ ∈ πev(Av
1) ∩ πew(Aw

1 ).
Recall that since b ∈ H, the vector b satisfies the constraint (6), in particular,

���� ∑
i∈π−1

ev (j∗)

bv(i)
���� =

���� ∑
i∈π−1

ew (j∗)

bw(i)
���� . (19)

We show that because i∗ ∈ Av
1, the left-hand side must be large. Therefore the right hand side

is also large, from which we conclude that there must exist a coordinate i� ∈ π−1
ew (j∗) such that

|bw(i�)| is large, and so i� ∈ Aw
1 .

Recall from the second structural property in Theorem 2.1 that |π−1
ev (j∗)| ≤ t. Moreover,

since πev acts injectively on the set Av
2 and since i∗ ∈ Av

2, no index i �= i∗ such that πev(i) = πev(i∗)
can belong to Av

2. Hence, by the triangle inequality, the left-hand side of (19) is at least

|bv(i∗)| − ∑
i∈π−1

ev (j∗)
i �=i∗

|bv(i)| ≥ β − t ·
�

β

4t

�
=

3β

4
. (20)

Combining (19), (20), and the triangle inequality lets us bound the right-hand side of (19) by

3β

4
≤

������
∑

i∈π−1
ew (j∗)

bw(i)

������

≤ ∑
i∈π−1

ew (j∗)∩Aw
2

|bw(i)|+ ∑
i∈π−1

ew (j∗)�Aw
2

|bw(i)|

≤ ∑
i∈π−1

ew (j∗)∩Aw
2

|bw(i)|+ t
β

4t
, (21)

where the last inequality uses the same facts as above. Since πew acts injectively on Aw
2 , there is

at most one index i ∈ π−1
ew (j∗) that also belongs to Aw

2 , meaning that the sum in (21) consists of at
most one term. We see that sum must is at least β/2 and in particular, there is an i� ∈ π−1

ew (j∗) such
that |bw(i�)| ≥ β/2. We conclude that i� ∈ Aw

1 and πew(i�) = j∗ = πev(i∗), proving the claim.

Proof of Lemma 3.6. By Proposition 3.8 and Equation (16) any edge e = (v, w) ∈ E� is satisfied by
the assignment A with probability at least 1/(|Av

1||A
w
1 |) ≥ (ε4β4)/256. Since by Proposition 3.7,

we have |E�| ≥ (ε4/4)|E|, the expected fraction of satisfied edges is at least ε8β4/1024.

4 The commutative case

Recall that the commutative Little Grothendieck problem asks for the norm of a linear operator
F : L2 → L1. In this section we use Theorem 3.1 to prove Theorem 1.3, the tight hardness result
for this problem. We first consider the real case of Theorem 1.3, and then the complex case in
Section 4.2.
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4.1 The real case

The real case of Theorem 1.3 follows easily by combining Theorem 3.1 with the following simple
lemma.

Lemma 4.1. For every positive integer n there exists a map f : Rn → L1 with the following properties:

• For any vector a ∈ Rn, we have � f (a)�L1
≤ �a��2

.

• For each standard basis vector ei, we have � f (ei)�L1
= 1. If � f (a)�L1

> (
√

2/π + ε)�a��2
then �a��4

> (ε/K)�a��2
, where K < ∞ is a universal constant.

This shows that there is an L1-valued function f that satisfies the conditions of the real variant
of Theorem 3.1 for τ =

√
2/π, η = 1 and δ(ε) = (ε/K). Hence, it is NP-hard to approximate the

norm of a linear operator F : L2 → L1(L1) over R to a factor
√

2/π + ε for any ε > 0. The real
case of Theorem 1.3 then follows from the fact that L1(L1) is isometrically isomorphic to L1.

The proof of Lemma 4.1 uses the following version of the Berry–Esséen Theorem (see for ex-
ample [O’D14, Chapter 5.2, Theorem 5.16]).

Theorem 4.2 (Berry–Esséen Theorem). There exists a universal constant K < ∞ such that the following
holds. Let n be a positive integer and let Z1, . . . , Zn be independent centered {−1, 1}-valued random
variables. Then, for any vector a ∈ Rn such that �a��∞

≤ ε�a��2
, we have

E
����

n

∑
i=1

aiZi

���
�
≤

�� 2
π
+ Kε

�
�a��2

.

Proof of Lemma 4.1. Endow {−1, 1}n with the uniform probability measure and define the function
f : Rn → L1({−1, 1}n) by

�
f (a)

�
(Z1, . . . , Zn) =

n

∑
i=1

aiZi.

The first property follows since

� f (a)�L1
≤ � f (a)�L2

=

�
E
����

n

∑
i=1

aiZi

���
2�
�1/2

= �a��2
.

The second property is trivial. The third property follows from Theorem 4.2. Indeed, the theorem
implies that if for some ε > 0, we have

� f (a)�L1
= E

����
n

∑
i=1

aiZi

���
�
>

�� 2
π
+ ε

�
�a��2

,

then �a��∞
> (ε/K)�a��2

. Since �a��4
≥ �a��∞

the last property follows.
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4.2 The complex case

A similar argument to the one above shows the complex case of Theorem 1.3. This follows from
the following complex analogue of Lemma 4.1.

Lemma 4.3. For every positive integer n there exists a map f : Cn → L1 with the following properties

• For any vector a ∈ Cn, we have � f (a)�L1
≤ �a��2

.

• For each standard basis vector ei, we have � f (ei)�L1
= 1. If � f (a)�L1

> (
√

π/4 + ε)�a��2

then �a��4
> (ε2/K)�a��2

, where K < ∞ is a universal constant.

This shows that there is an L1-valued function f that satisfies the conditions of Theorem 3.1
for τ =

√
π/4, η = 1 and δ(ε) = (ε2/K). Hence, it is NP-hard to approximate the norm of a linear

operator F : L2 → L1(L1) over C to a factor
√

π/4 + ε for any ε > 0.
The proof of Lemma 4.3 is based on the following complex analogue the Berry–Esséen Theo-

rem. Since we could not find this precise formulation in the literature we include a proof below
for completeness.

Lemma 4.4 (Complex Berry–Esséen Theorem). There exists a universal constant K < ∞ such that the
following holds. Let Z1, . . . , Zn be independent uniformly distributed random variables over {1, i,−1,−i}.
Then, for any vector a ∈ Cn such that �a��∞

≤ ε�a��2
, we have

E
����

n

∑
j=1

Zjaj

���
�
≤

��π

4
+ K

√
ε
�
�a��2

.

The proof is based on the following multi-dimensional version of the Berry–Esséen theorem
due to Bentkus [Ben05, Theorem 1.1].

Theorem 4.5 (Bentkus). Let X1, . . . , Xn be independent Rd-valued random variables such that E[Xj] = 0
for each j ∈ [n]. Let S = X1 + · · · + Xn and assume that the covariance matrix of S equals 1d.
Let g ∼ N (0,1d) be standard Gaussian vector in Rd with the same covariance matrix as S. Then, for
any measurable convex set A ⊆ Rd, we have

��Pr[S ∈ A]− Pr[g ∈ A]
�� ≤ c(d)

n

∑
j=1

E
�
�Xj�

3
�2

�
,

where c(d) = O(d1/4).

We also use the following standard tail bound.

Lemma 4.6 (Hoeffding’s inequality [Hoe62]). Let X1, . . . , Xn be independent real-valued random vari-
ables such that for each i ∈ [n], Xi ∈ [ai, bi] for some ai < bi. Let S = X1 + · · · + Xn. Then, for
any t > 0,

Pr
�
|S − E[S]| > t

�
≤ 2e−2t2/ ∑n

i=1(bi−ai)2
.
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Proof of Lemma 4.4. Let a ∈ Cn be some vector. By homogeneity we may assume that �a��2
= 1.

Set ε = �a��∞
. For each j ∈ [n] define the random vector Xj ∈ R2 by Xj =

√
2[�(Zjaj),�(Zjaj)]T.

Let S = X1 + · · ·+ Xn, and let T ≥ 1 be some number to be set later. We have

E[�S��2
] =

� ∞

0
Pr[�S��2

> t]dt =
� T

0
Pr[�S��2

> t]dt +
� ∞

T
Pr[�S��2

> t]dt . (22)

We now bound each integral separately. Notice that E[Xj] = 0, and E[XjXT
j ] = |aj|

212. It
follows that the covariance matrix of S equals 12. If we let g ∼ N (0,12) be a standard Gaussian
vector in R2, then it follows from Theorem 4.5 (for d = 2) that for any t > 0, we have

��Pr
�
�S��2

≤ t
�
− Pr

�
�g��2

≤ t
��� ≤ c

n

∑
j=1

E
�
�Xj�

3
�2

�

≤ c max
j∈[n]

E[�Xj��2
]

n

∑
k=1

E
�
�Xk�

2
�2

�

≤ 2
√

2cε. (23)

By (23), the first integral in (22) is at most

2
√

2cεT + E[�g��2
] = 2

√
2cεT +

√
π/2 , (24)

where we used that �g��2
is distributed according to a χ2 distribution.

We now bound the second integral in (22). The first coordinate S1 is a sum of independent
random variables,

√
2�(Zjaj), which are centered and have magnitude at most

√
2|aj|. Similarly,

the same holds for S2. Lemma 4.6 therefore gives,
� ∞

T
Pr[�S��2

> t]dt ≤
� ∞

T
Pr[|S1| > t/

√
2]dt +

� ∞

T
Pr[|S2| > t/

√
2]dt

≤ 4
� ∞

T
e−t2/4dt

≤ 4
� ∞

T
te−t2/4dt

= 8e−T2/4, (25)

where in the last inequality we used the assumption T ≥ 1.
Now set T =

√
4/ε. Combining (22), (24) and (25), we get

E
����

n

∑
j=1

Zjaj

���
�
=

1
√

2
E
�
�S��2

�
≤

1
√

2

��
π

2
+ 2

√
2cεT + 8e−T2/4

�
≤

�
π

4
+ K

√
ε.

The proof of Lemma 4.3 is nearly identical to that of Lemma 4.1, now based on Lemma 4.4 and
the function f : Cn → L1({1, i,−1,−i}n) given by

�
f (a)

�
(Z1, . . . , Zn) = a1Z1 + · · ·+ anZn, where

{1, i,−1,−i}n is endowed with the uniform probability measure.
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5 The non-commutative case

In this section we complete the proof of our main theorem (Theorem 1.2). The following lemma
gives the linear matrix-valued map f mentioned in the introduction that will allow us to conclude.

Lemma 5.1. Let n be a positive integer and let d = 22n+�n/2�. Then, there exists a linear operator
f : Cn → Cd×d such that for any vector a ∈ Cn, we have

� f (a)�S1
≤

�
�a�2

�2
+ �a�2

�4

2
.

In particular, � f (a)�S1
≤ (�a��2

+ �a��4
)/

√
2. Moreover, for each basis vector ei we have � f (ei)�S1

= 1.

Theorem 1.2 now follows easily by combining the above lemma with Theorem 3.1. Indeed,
Lemma 5.1 shows that the conditions of Theorem 3.1 hold for τ = 2−1/2, η = 1 and δ(ε) =

√
2ε.

It is therefore NP-hard to approximate the norm of a linear operator F : L2 → L1(S1) to within a
factor 1/

√
2+ ε for any ε > 0. This implies the theorem because L1(S1) is isometrically isomorphic

to S1. To see the last fact, we use the map that takes a matrix-valued function g on a finite measure
space U to a block diagonal matrix with blocks proportional to g(u) for u ∈ U and use the fact
that the trace norm of a block diagonal matrix is the average trace norm of the blocks.

The rest of this section is devoted to the proof of Lemma 5.1. For a complex vector a ∈ Cn

let �(a),�(a) ∈ Rn denote its real and imaginary parts, respectively, and define

Λ(a) =
�
��(a)�2

�2
��(a)�2

�2
−

�
�(a),�(a)

�2. (26)

Note that this value is the area of the parallelogram in Rn generated by the vectors �(a) and �(a).

Lemma 5.2. Let n be a positive integer and let d� = 2�n/2�. Then, there exists a operator C : Cn → Cd�×d�

such that for any vector a ∈ Cn, we have

�C(a)�S1
=

1
2

�
�a�2

�2
+ 2Λ(a) +

1
2

�
�a�2

�2
− 2Λ(a). (27)

Though we will not use it here, let us point out that the map C becomes an isometric embed-
ding if we restrict it to Rn, since Λ(a) = 0 for real vectors.

Proof. We begin by defining a set of pairwise anti-commuting matrices as follows. The Pauli ma-
trices are the four Hermitian matrices

I =
�

1 0
0 1

�
, X =

�
0 1
1 0

�
, Y =

�
0 −i
i 0

�
, Z =

�
1 0
0 −1

�
.

Using these we define 2�n/2� matrices in Cd×d by

C2j−1 = Z ⊗ · · · ⊗ Z� �� �
j − 1 times

⊗X ⊗ I ⊗ · · · ⊗ I� �� �
�n/2� − j times

C2j = Z ⊗ · · · ⊗ Z� �� �
j − 1 times

⊗Y ⊗ I ⊗ · · · ⊗ I� �� �
�n/2� − j times

,
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for each j ∈ [�n/2�]. It is easy to verify that these matrices have trace zero, that they are Hermitian,
unitary, and that they pairwise anti-commute. In particular, they satisfy C2

j = I. For a vector
a ∈ Cn we define the map C by C(a) = a1C1 + · · · + anCn. Note that for a real vector x ∈ Rn,
the matrix C(x) is Hermitian and that it satisfies C(x)2 = �x�2

�2
I. If a real vector z ∈ Rn is

orthogonal to x then by expanding the definitions of the matrices C(x) and C(z) and using the
above properties we find that they anti-commute:

C(x)C(z) = �x, z�I + ∑
j �=k

xjzkCjCk

= 0 − ∑
j �=k

xjzkCkCj

= −C(z)C(x) .

This shows that the matrix C(x)C(z) is skew-Hermitian, which implies that it has purely imagi-
nary eigenvalues. Since this matrix has trace zero and satisfies C(x)C(z)

�
C(x)C(z)

�∗
= �x�2

�2
�z�2

�2
I,

half the eigenvalues equal i�x��2�z��2 and the other half equal −i�x��2�z��2 .
We show that C satisfies (27). Let x = �(a) and y = �(a) so that C(a) = C(x) + iC(y).

Write y = y� + y⊥ where y� is parallel to x and y⊥ is orthogonal to x. Then,

C(a)C(a)∗ =
�
C(x) + iC(y)

��
C(x)− iC(y)

�

= �a�2
�2

I − i
�
C(x)C(y)− C(y)C(x)

�

= �a�2
�2

I − 2iC(x)C(y⊥),

where in the last line we used the fact that C(y�) commutes with C(x) while C(y⊥) anti-commutes
with C(x). Using what we deduced above for the matrix C(x)C(y⊥) we see that half of the eigen-
values of C(a)C(a)∗ equal �a�2

�2
+ 2�x��2

�y⊥��2
and the other half equal �a�2

�2
− 2�x��2

�y⊥��2
.

Hence,

�C(a)�S1
=

1
2

�
�a�2

�2
+ 2�x��2

�y⊥��2
+

1
2

�
�a�2

�2
− 2�x��2

�y⊥��2

The claim now follows because �x��2
�y⊥��2

is precisely the area of the parallelogram generated
by the vectors x and y.

We denote the entry-wise product of two vectors a, b ∈ Cn by a ◦ b = (a1b1, . . . , anbn).

Proposition 5.3. Let ω be a vector chosen uniformly from {1, i,−1,−i}n. Then, for any a ∈ Cn, we have

4Eω
�
Λ(a ◦ ω)2� = �a�4

�2
− �a�4

�4
.

Proof. Fix a vector a ∈ Cn. Define the random vectors xω = �(a ◦ ω) and yω = �(a ◦ ω). Then
Λ(a ◦ ω)2 = �xω�

2
�2
�yω�

2
�2
− �xω, yω�

2. For each j ∈ [n] we factor aj = αjeiφj and ωj = eiψj , where
αj ∈ R+ and φj, ψj ∈ [0, 2π]. Note that ψ1, . . . , ψn are independent uniformly distributed random
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phases in {0, π/2, π, 3π/2}. Then,

�xω�
2
�2

=
n

∑
j=1

α2
j cos2(φj + ψj)

�yω�
2
�2

=
n

∑
j=1

α2
j sin2(φj + ψj)

�xω, yω� =
n

∑
j=1

α2
j cos(φj + ψj) sin(φj + ψj).

With this it is easy to verify that

�xω�
2
�2
�yω�

2
�2
− �xω, yω�

2 = ∑
j �=k

α2
j α2

k cos2(φj + ψj) sin2(φk + ψk)−

∑
j �=k

α2
j α2

k cos(φj + ψj) sin(φj + ψj) cos(φk + ψk) sin(φk + ψk). (28)

By independence of ψj and ψk when j �= k and the elementary identities E[cos2(φj + ψk)] = 1/2,
E[sin2(φj + ψk)] = 1/2 and E[cos(φj + ψj) sin(φj + ψj)] = 0, the expectation of (28) equals

Eω
�
Λ(a ◦ ω)2� = 1

4 ∑
j �=k

a2
j a2

k =
1
4
�
�a�4

�2
− �a�4

�4

�
.

We remark that in the above proof, it suffices if ω ∈ {1, i,−1,−i}n is chosen from a pairwise
independent family. Using this in the proof below, allows one to prove Lemma 5.1 with a smaller
parameter d.

Proof of Lemma 5.1. Let C be the map given by Lemma 5.2. Define the map

f (a) =
�

ω

C(a ◦ w)

where ω ranges over over {1, i,−1,−i}n. By convexity of the square function, Jensen’s inequality,
and the fact that �a ◦ ω��2

= �a��2
, we have

� f (a)�2
S1

=
�

Eω
�
�C(a ◦ ω)�S1

��2

Lemma 5.2
=

�
Eω

�
1
2

�
�a ◦ ω�

2
�2
+ 2Λ(a ◦ ω) +

1
2

�
�a ◦ ω�

2
�2
− 2Λ(a ◦ ω)

��2

≤ Eω

��
1
2

�
�a�2

�2
+ 2Λ(a ◦ ω) +

1
2

�
�a�2

�2
− 2Λ(a ◦ ω)

�2
�

=
�a�2

�2

2
+

1
2

Eω

��
�a�4

�2
− 4Λ(a ◦ ω)2

�
. (29)

Concavity of the square-root function, Jensen’s inequality and Proposition 5.3 gives that the ex-
pectation in (29) is at most

�
�a�4

�2
− 4E

�
Λ(a ◦ ω)2�

�1/2
=

�
�a�4

�2
− �a�4

�2
+ �a�4

�4

��1/2
= �a�2

�4
.
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Hence,

� f (a)�S1
≤

�
�a�2

�2
+ �a�2

�4

2
.

For the second claim observe that for any standard basis vector ej and ω ∈ {1, i,−1,−i}n, the
vector ej ◦ ω is either purely real or purely imaginary. This implies Λ(ej ◦ ω) = 0. Hence, by
Lemma 5.2,

� f (ei)�S1
=

1
2

Eω

��
�ej ◦ ω�

2
�2
+ 2Λ(ej ◦ ω) +

�
�ej ◦ ω�

2
�2
− 2Λ(ej ◦ ω)

�
= 1.

5.1 The real and Hermitian variants

We end this section by showing that our hardness result of Theorem 1.2 also holds for two variants
of the Little NCG, the real variant and the Hermitian variant. Both variants were introduced (in the
context of the “big” NCG) in [NRV14], partly for the purpose of using them in applications. The
real variant asks for the operator norm of a linear map F from Rn to a space Rd×d endowed with
the Schatten-1 norm; in the Hermitian variant, the linear map is from Rn to the space Hd ⊆ Cd×d

of Hermitian matrices, again endowed with the Schatten-1 norm. In both cases the operator norm
is given by �F� = supa�F(a)�S1

with the supremum over real unit vectors a. Both the real and
Hermitian variants follow directly by combining the lemma shown below and the real version of
Theorem 3.1. Let us denote by Sd×d ⊆ Rd×d the space of real symmetric matrices.

Lemma 5.4. Let n be a positive integer and let d be as in Lemma 5.1. Then, there exists a linear operator
f : Rn → S4d×4d satisfying the conditions stated in Lemma 5.1 (with a ∈ Rn).

The lemma follows by applying the map ρ of the elementary claim below to the restriction of
the operator f of Lemma 5.1 to Rn.

Claim 5.5. For every positive integer d there exists a map ρ : Cd×d → S4d×4d such that for any matrix
A ∈ Cd×d, we have �ρ(A)�S1

= �A�S1
. Moreover, ρ is linear over the real numbers, that is, for any α ∈ R

and A, B ∈ Cd×d, we have ρ(αA) = αρ(A) and ρ(A + B) = ρ(A) + ρ(B).

Proof. The proof follows by combining two standard transformations taking complex matrices to
Hermitian matrices and real matrices, respectively. Let A ∈ Cd×d be a matrix with singular values
σ1 ≥ · · · ≥ σd. The first transformation is given by A �→

� 0 A
A∗ 0

�
. By [HJ13, Theorem 7.3.3], the

last matrix has eigenvalues σ1 ≥ · · · ≥ σd ≥ −σd ≥ · · · ≥ −σ1. Notice that this transformation is
linear over the reals since the adjoint is such. Let B ∈ Cd×d be a Hermitian matrix with eignevalues
λ1 ≥ · · · ≥ λd. The second transformation is given by B �→

�
�(B) �(B)
−�(B) �(B)

�
. Then the last matrix is

symmetric and by [HJ13, 1.30.P20 (g), p. 71], that matrix has the same eigenvalues as B but with
doubled multiplicities, that is, the matrix has eigenvalues λ1 ≥ λ1 ≥ · · · ≥ λd ≥ λd. Notice that
this transformation is also linear over the reals. Let ρ be the composition of these maps. Then the
matrix ρ(A) has the same singular values as A but with quadrupled multiplicities, which implies
that �ρ(A)�S1

= �A�S1
, and ρ is linear over the reals.
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6 Little versus big Grothendieck theorem

For completeness, we include here the well-known relation between the little and big Grothendieck
problems. We focus on the non-commutative case; the commutative case is similar and can be
found in, e.g., [Pis12, Section 5]. This discussion clarifies how to derive Theorem 1.1 from Theo-
rem 1.2.

Consider a linear map F : Cn → Sd
1. A standard and easy-to-prove fact is that for two finite-

dimensional Banach spaces X, Y, the operator norm of a linear map G : X → Y equals the norm of
its adjoint G∗ : Y∗ → X∗. As a result, �F� = �F∗�. Notice that since Hilbert space is self-dual and
the dual of S1 is the space S∞ of matrices endowed with the Schatten-∞ norm (i.e., the maximum
singular value), we have that F∗ : Sd

∞ → Cn. In particular,

�F
∗
� = sup�F∗(A)�2 ,

where the supremum is taken over all A of Schatten-∞ norm at most 1. Equivalently, since any ma-
trix with Schatten-∞ norm at most 1 lies in the convex hull of the set of unitary matrices, we could
take the supremum over all unitary matrices A. Next, recall that in the NCG problem we are given
a bilinear form T : Cd×d × Cd×d → C, and asked to compute OPT(T) = supA,B

��T(A, B)
��, where

the supremum ranges over unitary matrices. Define the bilinear form T(A, B) = �F∗(A),F∗(B)�.
By Cauchy-Schwarz,

OPT(T) = sup
A

�F
∗(A)�2

2 = �F
∗
�

2 = �F�
2 ,

where the supremum is over all unitary A, showing that the Little NCG is a special case of the
“big” NCG.
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