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Abstract. A surprising ‘converse to the polynomial method’ of
Aaronson et al. (CCC’16) shows that any bounded quadratic poly-
nomial can be computed exactly in expectation by a 1-query al-
gorithm up to a universal multiplicative factor related to the fa-
mous Grothendieck constant. A natural question posed there asks
if bounded quartic polynomials can be approximated by 2-query
quantum algorithms. Arunachalam, Palazuelos and the first au-
thor showed that there is no direct analogue of the result of Aaron-
son et al. in this case. We improve on this result in the following
ways: First, we point out and fix a small error in the construction
that has to do with a translation from cubic to quartic polynomials.
Second, we give a completely explicit example based on techniques
from additive combinatorics. Third, we show that the result still
holds when we allow for a small additive error. For this, we apply
an SDP characterization of Gribling and Laurent (QIP’19) for the
completely-bounded approximate degree.

1. Introduction

A celebrated result of Beals et al. [BBC+01], known as the polynomial
method in quantum complexity theory, leverages the problem of lower
bounding the quantum query complexity of a Boolean function to lower
bounding the approximate degree. The method is based on the fact
that for every t-query quantum algorithm A that takes an n-bit input
and returns a sign, there is a real n-variable polynomial f of degree at
most 2t such that f(x) = E[A(x)] for every x. Here, the expectation is
taken with respect to the randomness in the measurement done by A.1

In addition to many new lower bounds, this result led to a line of
research on possible converses, whereby a bounded polynomial f can
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1We identify a quantum query algorithm with the (random) function representing
its output on a given input string.
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be turned into a quantum query algorithm that approximates f and
whose query complexity depends in some reasonably way on the degree
of f . Here, f is bounded if it maps the Boolean hypercube to the
interval [−1, 1] and a quantum query algorithm A approximates f if for
some constant error parameter ε < 1, we have that |f(x)−E[A(x)]| ≤ ε
for every x. For bounded polynomials of degree at most 2, the following
converse was proved in [AAI+16], using a surprising application of the
Grothendieck inequality from Banach space theory (we refer to [Pis12]
for an extensive survey on Grothendieck-type inequalities).

Theorem 1.1 (Aaronson et al.). There exists an absolute constant
C > 0 such that the following holds. For every bounded polynomial f
of degree at most 2, there exists a one-query quantum algorithm A such
that E[A(x)] = Cf(x) holds for every x ∈ {−1, 1}n.

This “multiplicative converse” implies an approximation with additive
error at most 1 − C. A natural question is if this result generalizes
to quartic polynomials and two-query quantum algorithms [AAI+16,
Section 5, Question 1]. Based on the probabilistic method and a new
characterization of quantum query algorithms in terms of completely
bounded polynomials, a counterexample to a direct analog of Theo-
rem 1.1 was given for quartic polynomials in [ABP19].

Theorem 1.2 (Arunachalam–Briët–Palazuelos). For any C > 0, there
exist an n ∈ N and a bounded quartic n-variable polynomial f such
that no two-query quantum algorithm A satisfies E[A(x)] = Cf(x) for
every x ∈ {−1, 1}n.

However, this result does not exclude the possibility that all bounded
quartic polynomials can be (additively) approximated by two-query
quantum algorithms. Moreover, the result is not constructive, relying
on results from random matrix theory to show the existence of such
polynomials. Finally, the result was obtained by transforming a cer-
tain random cubic polynomial into a quartic polynomial with similar
properties. As we will explain here, the argument given in [ABP19] to
show that there is such a transformation contains an error. Here, we
address these issues as follows:

First, we correct the error in [ABP19], showing that Theorem 1.2 holds
as stated.
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Second, we give a completely explicit example for Theorem 1.2 using
ideas from the field of additive combinatorics that were applied to con-
struct counterexamples to certain far-reaching generalizations of the
Grothendieck inequality [BP19].

Third, we strengthen Theorem 1.2 by showing that it still holds with
a small additive error:

Theorem 1.3. For any C > 0, there exist an n ∈ N, an ε > 0
and a bounded quartic n-variable polynomial f such that no two-query
algorithm A satisfies |E[A(x)]− Cf(x)| < ε for every x ∈ {−1, 1}n.

This result is an application of a semidefinite-program (SDP) of Grib-
ling and Laurent [GL19] for quantum query complexity. It can be in-
terpreted as an analogue of results on approximate degree based on its
linear-programming-based characterization (see for instance [BKT18]).
To the best of our knowledge, this is the first application of [GL19] to
prove lower bounds on quantum query complexity. As such, we believe
it can serve as a first step towards using this SDP to approach other
problems such as proving large separations between approximate de-
gree and quantum query complexity, for example [Aar21]. The SDP is
based on a characterization of quantum query algorithms from [ABP19]
that thus far has proved difficult to use. Surprisingly, in parallel to our
work, that was used by Bansal, Sinha and de Wolf [BSdW22] to make
progress on a famous problem on the need for structure in quantum
speed-ups. Their work settled a special case of the Aaronson-Ambainis
conjecture [AA14] showing that polynomials resulting from particular
types of quantum algorithms have influential variables.

In similar vein, we use a basic lower bound on the (real) Grothendieck
constant, denoted KG, based on the CHSH Bell inequality to give an
impossibility result for one-query quantum algorithms. That is, we
show that there exists a bounded quadratic polynomial f such that
no one-query quantum algorithm approximates f with error less than
1−1/

√
2. Motivated by this, we pose as an open question whether this

can be improved to 1 − 1/KG. Since the result of [AAI+16] achieves
this for bounded bilinear forms, this would give yet another charac-
terization of the Grothendieck constant. Tsirelson’s characterization
in the context of Bell inequalities [Tsi80] being a famous example in
quantum information theory, for instance.
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2. Preliminaries

Unless stated otherwise, below C will stand for an absolute positive
constant whose value may change from line to line. All polynomials
are assumed to be real and multivariate. A homogeneous polynomial
is referred to as a form. A polynomial is multilinear if each variable
appears with degree at most 1. Given an n-variate polynomial f and
p ∈ [1,∞), define

‖f‖p =
(
Ex∈{−1,1}nf(x)p

) 1
p

‖f‖∞ = max
x∈{−1,1}n

|f(x)|.

We also define the following “commutative version” of a completely
bounded norm:

‖f‖iccb = sup
d∈N

{∥∥f(A1, . . . , An)‖ | Ai ∈ Cd×d, ‖Ai‖ ≤ 1, [Ai, Aj] = 0
}
,

where the norms on the right-hand side are the usual operator norms.2

The following lemma [ABP19, Theorem 1.3, Proposition 4.4] relates
quantum query algorithms to completely bounded polynomials.

Lemma 2.1. Let A be a t-query quantum algorithm. Then, there exists
an (n+ 1)-variate form f of degree 2t such that ‖f‖iccb ≤ 1 and which
satisfies f(x, 1) = E[A(x)] for every x ∈ {−1, 1}n.

We will also use a quantity associated specifically with multilinear cubic
forms, that is polynomials of the form:

(1) f(x) =
∑

S∈([n]
3 )

cS
∏
i∈S

xi,

where the cS are some real coefficients. For i ∈ [n], define the ith slice
of f to be the symmetric matrix Mi ∈ Rn×n with (j, k)-coefficient equal
to c{i,j,k} if i, j, k are pairwise distinct and 0 otherwise. Then, define

∆(f) = max
i∈[n]
‖Mi‖.

The following is a slight variant of a decomposition due to Varopou-
los [Var74].

2The notation iccb stands for “identical commutative completely bounded”,
where the word identical distinguishes it from another natural variant of the com-
pletely bounded norm of a polynomial.
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Lemma 2.2 (tri-linear Varopoulos decomposition). Let f be an n-
variate multilinear cubic form as in (1). Then, for some d ∈ N, there
exist pairwise commuting matrices A1, . . . , An ∈ Rd×d and orthogonal
unit vectors u, v ∈ Rd such that ‖Ai‖ ≤ 1, [Ai, Aj] = 0 and

A2
i = 0(2)

〈u,Aiv〉 = 0(3)

〈u,AiAjv〉 = 0(4)

〈u,AiAjAkv〉 =
c{i,j,k}
∆(f)

(5)

for all pairwise distinct i, j, k ∈ [n].

Proof: For each i ∈ [n], define Mi as above. Define Wi = ∆(f)−1Mi

and note that this has operator norm at most 1. For each i ∈ [n], define
the (2n+ 2)× (2n+ 2) block matrix

Ai =

 ei
WT

i

eTi

,
where the first and last rows and columns have size 1, the second and
third have size n and where the empty blocks are filled with zeros.
Define u = e2n+1 and v = e1. The rest of the proof is identical to the
proof of [BP19, Lemma 2.11], except for the property that A2

i = 0.
This follows from the fact that

A2
i =

 WT
i ei

eTi W
T
i

.
and since the ith row and ith column of Mi are zero. 2

Corollary 2.3. Let f be an n-variate multilinear cubic form as in (1).
Suppose that an (n + 2)-variate quartic form h ∈ R[x0, x1, . . . , xn, z]
satisfies h(x, 1) = x0f(x1, . . . , xn) for every x ∈ {−1, 1}n+1. Then,

‖h‖iccb ≥
‖f‖2

2

∆(f)
.

Proof: The multilinear monomials χS(x) =
∏

i∈S xi with S ⊆ {0, . . . , n}
satisfy the orthogonality relations

(6) Ex∈{−1,1}n+1χS(x)χT (x) = δS,T .

It follows that h and x0f have equal coefficients for each quartic multi-
linear monomial in the variables x0, . . . , xn, which are cS for x0χS with
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S ∈
(

[n]
3

)
and 0 otherwise. Let A1, . . . , An ∈ Rd×d and u, v ∈ Rd be as

in Lemma 2.2 and let A0 = I, An+1 = 0. Commutativity and proper-
ties (2)–(4) imply that if a quartic monomial expression AiAjAkAl with
i, j, k, l ∈ {0, . . . , n+1} has repeated indices or an index equal to n+1,
then 〈u,AiAjAkAlv〉 = 0. With this, it follows from property (5) that

〈u, h(A0, . . . , An+1)v〉 =
〈
u,
∑

S∈([n]
3 )

cS A0χS(A1, . . . , An)v
〉

(7)

=
∑

S∈([n]
3 )

cS〈u, χS(A1, . . . , An)v〉

= ∆(f)−1
∑

S∈([n]
3 )

c2
S

= ∆(f)−1‖f‖2
2,

where the last line is Parseval’s identity [O’D09, Chapter 1]. 2

3. Counterexamples

Here, we prove Theorems 1.2 and 1.3. But first we discuss the error
in [ABP19, pp. 920]. The proof there uses the equation
(8) ∑

α,β∈{0,1,2,3,4}n:|α|+|β|=4

d′α,βx
α = C

∑
α∈{0,1}n:|α|=4

dαx
α ∀ x ∈ {−1, 1}n,

where d′α,β, dα and C are real numbers and |α| stands for
∑n

i=1 αi. It
follows from (6) that d′α,0 = Cdα for all α ∈ {0, 1}n such that |α| = 4.
What is used, however, is that d′α,0 = Cdα for all α ∈ {0, 1, 2, 3, 4}n
such that |α| = 4, which is not true in general. For instance if n = 2,
C = 1 and d′(2,2),(0,0) = d′(0,0),(4,0) = −d′(2,0),(2,0) = −d′(0,2),(2,0) = 1 and the

rest of the coefficients set to 0, then (8) becomes x2
1x

2
2−x2

1−x2
2 +1 = 0.

Corollary 2.3 gets around this issue by using a multilinear cubic form
instead of just a cubic form. This results in matrices Ai in Lemma 2.2
that square to zero and has the effect that terms other than quartic
multilinear monomials vanish in the left-hand side of (7).

3.1. A random example. The probabilistic proof of Theorem 1.2
uses a random cubic form as in (1) where the coefficients cS are cho-
sen to be independent uniformly distributed random signs. Parseval’s
identity then gives ‖f‖2

2 =
(
n
3

)
. Each of the slices Mi of f is a random
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symmetric matrix with independent mean-zero entries of absolute value
at most 1. A standard random-matrix inequality and the union bound
then imply that ∆(f) ≤ C

√
n with probability 1− exp(−Cn) [Tao12,

Corollary 2.3.6]. By Hoeffding’s inequality [BLM13, Theorem 2.8]
and the union bound, we have that ‖f‖∞ ≤ Cn2 with probability
1 − exp(−Cn). Rescaling f then gives that there exists a bounded
multilinear cubic form such that ‖f‖2

2/∆(f) ≥ C
√
n. It now follows

from Lemma 2.1 with Corollary 2.3 that the (n + 1)-variable quartic
polynomial x0f(x1, . . . , xn) satisfies the requirements of Theorem 1.2.

3.2. An explicit example. We also give a constructive proof of The-
orem 1.2 using techniques from [BP19], which were used there to dis-
prove a conjecture of Pisier on certain far-reaching generalizations of
the Grothendieck inequality. We do not exactly use the construction
from that paper because it involves complex functions. Instead, we will
the Möbius function (defined below), which is real valued and has the
desired properties.

Let n be a positive integer to be set later and let f0 : Zn → [−1, 1]
be a function to be set later (where as usual Zn denotes the group of
integers modulo n). Define f to be the cubic multilinear form on 3n
variables given by

(9) f(x) =
∑
a,b∈Zn

x(1, a)x(2, a+ b)x(3, a+ 2b)f0(a+ 3b),

where we indexed the variables by [3]× Zn.

We claim that for some choice of f0, the quartic polynomial x0f ,
where x0 is an additional variable, meets the requirements of Theo-
rem 1.2. The generalized von Neumann inequality [TV06, Lemma 11.4]
allows us to bound the ∞-norm of f . For a function g : Zn → R and
b ∈ Zn, define its multiplicative derivative ∆bg : Zn → R to be the
function ∆bg(a) = g(a+ b)g(a). The Gowers 3-uniformity norm of g is
then defined as

‖g‖U3 =
(
Ea,b,c,d∈Zn∆b∆c∆dg(a)

) 1
8 .

Lemma 3.1 (generalized von Neumann inequality). Suppose that n is
coprime to 6. Then, for any function of the form (9), we have that

‖f‖∞ ≤ n2‖f0‖U3 .

The polynomial f has 3n slices, Mi,a ∈ R[3]×Zn for each i ∈ [3] and
a ∈ Zn, which we view as 3 × 3 block-matrices with blocks indexed
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by Zn. The slice M1,a is supported only on the (2, 3) and (3, 2) blocks,
which are each others’ transposes. On its (2, 3) block it has value
f0(a + 3b) on coordinate (a + b, a + 2b) for each b. In particular, this
matrix has at most one nonzero entry in each row and column. It
follows that a relabeling of the rows turns M1,a into a diagonal matrix
with diagonal entries in [−1, 1], and therefore ‖M1,a‖ ≤ 1. Similarly,
we get that ‖Mi,a‖ ≤ 1 for i = 2, 3. Hence, ∆(f) ≤ 1. Parseval’s
identity implies that

‖f‖2
2 = n

∑
a∈Zn

f0(a)2.

Identify Zn with {0, 1 . . . , n− 1} in the standard way. We choose f0 to
be the Möbius function restricted to this interval. That is, set f0(0) = 0
and for a > 0, set

f0(a) =


1 if a is square-free with an even number of prime factors

−1 if a is square-free with an odd number of prime factors

0 otherwise.

Tao and Teräväinen [TT21] recently proved that

‖f0‖U3 ≤ 1

(log log n)C

for some absolute constant C > 0. It is also well-known that there are
6
π2n − O(

√
n) integers in [n] that are square-free [HW+79, page 269].

Normalizing f by (log log n)C/n2 and taking n coprime to 6 then gives
a bounded multilinear cubic polynomial satisfying

‖f‖2
2

∆(f)
≥ 6

π2
(log log n)C − o(1).

This proves Theorem 1.2 as before.

Remark 3.2. The jointly completely bounded norm of f is given by

‖f‖jcb = sup
d∈N
‖f(A1, A2, A3)‖,

where the supremum is taken over maps A1, A2, A3 : Zn → Cd×d such
that ‖Ai(a)‖ ≤ 1 and [Ai(a), Aj(b)] = [Ai(a), Aj(b)

∗] = 0 for all i 6= j
and a, b ∈ Zn. Note that the only difference with the iccb norm defined
in Section 2 is the second commutation relation involving the complex
conjugates. This norm can also be stated in terms of tensor products
and the supremum is attained by observable-valued maps. As such, this
norm appears naturally in the context of non-local games. It was shown
in [BBB+19] that Proposition 3.1 also holds for the jointly completely
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bounded norm, that is ‖f‖jcb ≤ n2‖f0‖U3 . The proof of Corollary 2.3
easily implies that ‖f‖iccb ≥ ‖f‖2

2/∆(f). This was used in [BP19] to
prove that the jcb and iccb norms are inequivalent.

3.3. SDPs for quantum query complexity. Theorem 1.3 is based
on an SDP for the completely bounded approximate degree of Gribling
and Laurent [GL19]. The following notation will be convenient to state
the SDP. Let F(n, t) be the set of functions f : [n]t → R of the form

f(i) = 〈u,A1(i1) · · ·At(it)v〉,
where u, v ∈ Sd−1 and A1, . . . , At : [n] → {M ∈ Rd×d | ‖M‖ ≤ 1}
for some d ∈ N. A basic linear algebra argument shows that any
such function can be obtained by setting d = nt. Given a function
φ : {−1, 1}n → R, a sequence i ∈ [n+ 1]t and setting xn+1 = 1, define

φ̂(i) = Ex∈{−1,1}nφ(x)
t∏

j=1

xij .

Note that if

φ(x) =
∑

S∈([n]
t )

cSχS(x)

is a multilinear form of degree t, then

(10) φ̂(i) =

{
cS if {i1, . . . , it} = S

0 otherwise.

Given f : {−1, 1}n → [−1, 1] and t ∈ N, define

SDP(f, t) = max Ex∈{−1,1}nφ(x)f(x)− w(11)

s.t. φ : {−1, 1}n → R, w ∈ R
‖φ‖1 = 1

(1/w)φ̂ ∈ F(n+ 1, t).

Program (11) corresponds to the optimization problem (24) of [GL19]
for total functions and is written in a more convenient way for our
purposes. There, f is considered to take values in {−1, 1}, but their
results still hold if f is allowed to take values in R, as we do here.
Also, we must point out that the Ai(is) used in the program (24) of
[GL19] are unitaries, but there is no problem if we substitute them by
contractions, thanks to the fact that every contraction can be seen as
the top left corner of an unitary matrix [AAI+16, Lemma 7].
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Theorem 3.3 (Gribling-Laurent). If the optimal value of program (11)
is stricly larger than ε, then there is no bt/2c-query algorithm A such
that |E(A(x))− f(x)| ≤ ε.

3.4. Approximation of quadratic forms. Theorem 1.1 implies that
bounded quadratic polynomials can be approximated by one-query
quantum algorithms with error at most 1 − C. Moreover, for 2n-
variate bounded bilinear forms f(x, y) = xTAy for A ∈ Rn×n, we can
choose C to be 1/KG(n), where KG(n) is the real Grothendieck con-
stant of dimension n (see [ABP19] for a short proof). Then, bounded
bilinear forms can be approximated with an additive error of at most
1 − 1/KG(n). Using Theorem 3.3, we show that this is optimal for
n = 2, in which case KG(2) =

√
2 [FR94].

Proposition 3.4. There exists a bilinear form f ∈ R[x1, x2, x3, x4]
such that there is no one-query quantum algorithm that approximates f
on every x ∈ {−1, 1}4 with an additive error smaller than 1− 1/

√
2.

Proof: We use the bilinear form that attains the Grothendieck constant
of dimension 2, which is captured by the CHSH game. This form
f ∈ R[x1, x2, x3, x4] is given by

f(x) =
1

2

(
x1(x3 + x4) + x2(x3 − x4)

)
.

Clearly f maps {−1, 1}4 to {−1, 1}, and so ‖f‖1 = ‖f‖2
2 = 1. We now

emulate the construction from Lemma 2.2. Writing the coefficients of f
as cS for S ∈

(
[4]
2

)
, for each i ∈ [4] define the unit vector wi ∈ R4 by

wi =
√

2
∑

j∈[4]\{i}

c{i,j}ej.

Now define the matrices Ai ∈ R6×6 by

A(i) =

 0 0 0
wi 0 0
0 eTi 0


It is easily verified that A(i)2 = 0 and that the (6, 1)-coordinate of
A(i)A(j) equals

√
2c{i,j} if i 6= j, from which it also follows that these

matrices commute. Setting A(5) = 0, we get that

〈e6, A(i)A(j)e1〉 =

{√
2c{i,j} if {i, j} ∈

(
[4]
2

)
0 otherwise.

Setting φ = f then gives that
√

2φ̂ ∈ F(5, 2) and ‖φ‖1 = 1. This shows
that SDP(f, 2) ≥ 1− 1/

√
2 2
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Proposition 3.4 leads to a following natural question:

Question 1. Is it true that for any ε > 0 there are an integer n and
a bounded bilinear form f ∈ R[x1, . . . , x2n] such that there is no one-
query quantum algorithm that approximates f on every x ∈ {−1, 1}2n

with an error smaller than 1− 1
KG
− ε?

3.5. Approximation of cubic forms. Given that a generalization
of Theorem 1.1 has been ruled out for quartic polynomials, one may
wonder if a weaker converse for the polynomial method is possible:

Question 2. Are there constants C > 0 and ε > 0 such that for every
bounded polynomial f of degree 4 there is a 2-query algorithm A such
that |E(A(x))− Cf(x)| < ε for every x ∈ {−1, 1}n?

An affirmative answer to this question would imply that every polyno-
mial of degree 4 could be approximated by a 2-query algorithm with
additive error 1−C+ε. This would be the converse for the polynomial
method that motivated Theorem 1.1 in [AAI+16]. Theorem 1.3 means
that the ε appearing in Question 2 cannot be arbitrarily small. In other
words, Theorem 1.3 says that there is no multiplicative converse even
if we allow an (arbitrarily) small additive error.

Proof of Theorem 1.3: Let f ∈ R[x1, . . . , xn] be a bounded multilinear
cubic form as in (1). As shown in the proof of Corollary 2.3, there exist
unit vectors u, v ∈ Rd and mappings A : {0, 1, . . . , n+ 1} → Rd×d such
that ‖A(i)‖ ≤ 1 for each i and〈
u,A(i)A(j)A(k)A(l)v

〉
=

{
cS

∆(f)
if {i, j, k, l} = {0} ∪ S for S ∈

(
[n]
3

)
0 otherwise.

Let g = x0f/‖f‖∞. Then, the function φ = x0f/‖f‖1 meets the criteria
of (11) with w = ∆(f)/‖f‖1 and shows that

SDP(g, 4) ≥ ‖f‖2
2

‖f‖1‖f‖∞
− ∆(f)

‖f‖1

≥ ‖f‖2
2

‖f‖1‖f‖∞

(
1− ∆(f)‖f‖∞

‖f‖2
2

)
.

If f is the random example from Section 3.1, then ‖f‖2
2 =

(
n
3

)
and

∆(f)‖f‖∞ ≤ Cn5/2 with high probability. In particular, the above is
positive for sufficiently large n. Similarly, for any C ∈ (0, 1) we get
that SDP(Cg, 4) > 0 for sufficiently large n. The result now follows
from Theorem 3.3. 2
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