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Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the most important
divergence measure of information theory, Kullback divergence. As opposed to Kullback divergence
it determines in a very direct way a metric; indeed, it is the square of a metric. We consider a family
of divergence measures (JDα for α > 0), the Jensen divergences of order α, which generalize JD as
JD1 = JD. Using a result of Schoenberg, we prove that JDα is the square of a metric for α ∈ (0, 2] ,
and that the resulting metric space of probability distributions can be isometrically embedded in
a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a symmetrized and smoothed
version of quantum relative entropy and can be extended to a family of quantum Jensen divergences
of order α (QJDα). We strengthen results by Lamberti et al. by proving that for qubits and pure

states, QJD1/2
α is a metric space which can be isometrically embedded in a real Hilbert space when

α ∈ (0, 2] . In analogy with Burbea and Rao’s generalization of JD, we also define general QJD by
associating a Jensen-type quantity to any weighted family of states. Appropriate interpretations of
quantities introduced are discussed and bounds are derived in terms of the total variation and trace
distance.

PACS numbers: 89.70.Cf, 03.67.-a

I. INTRODUCTION

For two probability distributions P = (p1, . . . , pn) and
Q = (q1, . . . , qn) on a finite alphabet of size n ≥ 2,
Jensen-Shannon divergence (JD) is a measure of diver-
gence between P and Q. It measures the deviation be-
tween the Shannon entropy of the mixture (P+Q)/2 and
the mixture of the entropies, and is given by

JD(P,Q) = H

(
P +Q

2

)
− 1

2
(
H(P ) +H(Q)

)
. (1)

Attractive features of this function are that it is every-
where defined, bounded, symmetric and only vanishes
when P = Q. Endres and Schindelin [1] proved that it
is the square of a metric, which we call the transmission
metric (dT). This result implies, for example, that Ba-
nach’s fixed point theorem holds for the space of probabil-
ity distributions endowed with the metric dT . A natural
way to extend Jensen-Shannon divergence is to consider
a mixture of k probability distributions P1, . . . , Pk, with
weights π1, . . . , πk, respectively. With π = (π1, . . . , πk),
we can then define the general Jensen divergence as

JDπ(P1, . . . , Pk) = H

(
k∑
i=1

πiPi

)
−

k∑
i=1

πiH(Pi).

This was already considered by Gallager [2] in 1968, who
proved that, for fixed π, this is a convex function in
(P1, · · · , Pk). Further identities and inequalities were de-
rived by Lin and Wong [3, 4], and Topsøe [5]. It has found
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a variety of important applications: Sibson [6] showed
that it has applications in biology and cluster analysis,
Wong and You [7] used it as a measure of distance be-
tween random graphs, and recently, Rosso et al. used it
to quantify the deterministic vs. the stochastic part of a
time series [8]. For its statistical applications we refer to
El-Yaniv et al. [9] and references therein.

Burbea and Rao [10] introduced another level of gener-
alization, based on more general entropy functions. For
an interval I in R and a function φ : I → R, they define
the φ-entropy of x ∈ In (where In denotes the Cartesian
product of n copies of I) as

Hφ(x) = −
n∑
i=1

φ(xi).

Based on this, they define the generalized mutual infor-
mation measure as

JDπ
φ(P1, . . . , Pk) = Hφ

(
k∑
i=1

πiPi

)
−

k∑
i=1

πiHφ(Pi),

for which they established some strong convexity prop-
erties. If k = 2, I = [0, 1] and φ is the function
x → 1

α−1 (xα − x), then Hφ defines the entropy of or-
der α. In this case, Burbea and Rao proved that JDπ

φ

is convex for all π, if and only if α ∈ [1, 2], except if
n = 2 when convexity holds if and only if α ∈ [1, 2] or
α ∈ [3, 11/3].

We focus on the functions JDπ
φ, where k ≥ 2, I = [0, 1]

and φ defines entropy of order α. For ease of notation we
write these as JDπ

α if k ≥ 2 and as JDα if k = 2 and
π = (1/2, 1/2).

Shannon entropy is additive in the sense that the en-
tropy of independent random variables, defined as the
entropy of their joint distribution, is the sum of their



2

individual entropies. Like Shannon entropy Rényi of or-
der α entropy is additive but in general Rényi entropy is
not convex [26]. The power entropy of order α is a mono-
tone function of Rényi entropy but, contrary to Rényi en-
tropy, it is a concave function which is what we are inter-
ested in. The study of power entropy dates back to J.H.
Havrda and F. Charvat [27]. Since then it was rediscov-
ered independently several times [11, 12, 28], but we have
chosen the more neutral term entropy of order α rather
than calling it Havrda-Chervat-Lindhardt-Nielsen-Aczél-
Dar’oczy-Tsallis entropy. Entropy of order α is not ad-
ditive (unless α = 1). This is one of the reasons why
this function is used by physicists in attempts to model
long range interaction in statistical mechanics, cf. Tsal-
lis [11] and followers (can be traced from a bibliography
maintained by Tsallis).

Martins et al. [13–16] give non-extensive (i.e. non-
additive) generalizations of JD based on entropies of or-
der α and an extension of the concept of convexity to
what they call q-convexity. For these functions they ex-
tend Burbea and Rao’s results in terms of q-convexity.

Distance measures between quantum states, which
generalize probability distributions, are of great inter-
est to the field of quantum information theory [17–21].
They play a central role in state discrimination and
in quantifying entanglement. For example, the quan-
tum relative entropy of two states ρ1 and ρ2, given by
S(ρ1‖ρ2) = −Trρ1(ln ρ1 − ln ρ2), is a commonly used
distance measure. (For a review of its basic properties
and applications see [22]). However, it is not symmetric
and does not obey the triangle inequality. As an alter-
native, Lamberti et al. [21, 23, 24] proposed to use the
(classical) JD as a distance function for quantum states,
but also introduced a quantum version based on the von
Neumann entropy, which we denote by QJD. Like its
classical variant, it is everywhere defined, bounded, sym-
metric and zero only when the inputs are two identical
quantum states. They prove that it is a metric on the
set of pure quantum states and that it is close to the
Wootter’s distance and its generalization introduced by
Braunstein and Caves [18]. Whether the metric property
holds in general is unknown.

As an analogue to JDπ
α for quantum states, we intro-

duce the general quantum Jensen divergence of order α
(QJDπ

α). In the limit α→ 1 we obtain the “von Neumann
version”:

QJDπ(ρ1, . . . , ρk) = S

(
k∑
i=1

πiρi

)
−

k∑
i=1

πiS(ρi),

where S(ρ) = −Trρln ρ is the von Neumann entropy. For
k = 2 and π = (1/2, 1/2) one obtains the quantum Jensen
divergence of order α (QJDα), which generalizes QJD as
limα→1 QJDα = QJD.

1. Our results.

We extend the results of Endres and Schindelin, con-
cerning the metric property of JD, and those of Lamberti
et al., concerning the metric property of QJD, as follows:

• Denoting the set of probability distributions on a
set X by M1

+(X), we prove that for α ∈ (0, 2],

the pair
(
M1

+(X), JD1/2
α

)
is a metric space which

can be isometrically embedded in a real separable
Hilbert space.

• Denoting the set of quantum states on qubits (2-
dimensional Hilbert spaces) by B1

+(H2) and the set
of pure-states on d-dimensional Hilbert spaces by
P(Hd), we prove that for α ∈ (0, 2] , the pairs(
B1

+(H2),QJD1/2
α

)
and

(
P(Hd),QJD1/2

α

)
are met-

ric spaces which can be isometrically embedded in
a real separable Hilbert space.

• We show that these results do not extend to the
cases α ∈ (2, 3) and α ∈ ( 7

2 ,∞). More pre-
cisely, we show that, for α ∈ (2, 3), neither JDα

nor QJDα can be the square of a metric, and for
α ∈ ( 7

2 ,∞), isometric embedding in a real Hilbert
space is impossible (though the metric property
may still hold).

2. Techniques.

To prove our positive results, we evoke a theorem by
Schoenberg which links Hilbert-space embeddability of a
metric space (X, d) to the property of negative definite-
ness (defined in Section IV). We prove that for α ∈ (0, 2] ,
JDα satisfies this condition for every set of probability
distributions, and that QJDα satisfies this condition for
every set of qubits or pure-states.

A. Interpretations of JDπ and QJDπ

1. Channel capacity.

A discrete memoryless channel is a system with input
and output alphabets X and Y respectively, and condi-
tional probabilities p(y|x) for the probability that y ∈ Y
is received when x ∈ X is sent. For a discrete memoryless
channel with |X| = k, input distribution π over X and
conditional distributions Px(y) = p(y|x), we have that
JDπ

(
Px1 , . . . , Pxk

)
in fact gives the transmission rate.

(See for example [25].) Inspired by this fact, we call the
metric defined by the square root of JD the transmission
metric and denote it by dT.

A quantum channel has classical input alphabet X,
and an encoding of every element x ∈ X into a quantum
state ρx. A receiver decodes a message by performing a
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measurement with |Y | possible outcomes, on the state he
or she obtained. For a quantum channel with |X| = k,
input distribution π over X, and encoded elements ρx,
Holevo’s Theorem [29] says that the maximum transmis-
sion rate of classical information (the classical channel
capacity) is at most QJDπ (ρx1 , . . . , ρxk). Holevo [30],
and Schumacher and Westmoreland [31] proved that this
bound is also asymptotically achievable.

2. Data compression and side information.

LetX = [k] be an input alphabet and for each i ∈ X let
Pi be a distribution over output alphabet Y with |Y | = n.
Consider a setting where a sender uses a weighting π over
X, and a receiver who has to compress the received out-
put data losslessly. We call the receiver’s knowledge of
which distribution Pi is used at any time the side in-
formation, and difference between the average number
of nats (units based on the natural logarithm instead of
bits) used for the encoding when the side information is
known, and when it is not known, the redundancy. In
[32], this setting is referred to as the switching model.

If the receiver always knows which input distribution
is used, then for each distribution Pi, he or she can ap-
ply the optimal compression encoding given by H(Pi).
Hence, if the receiver has access to the side information,
the average number of nats, that the optimal compression
encoding uses is given by

∑k
i=1 πiH(Pi).

However, if the receiver does not know when which
input distribution is used, he or she always has to use
the same encoding. We say that a compression encoding
C corresponds to an input distribution Q, if C is optimal
for Q (i.e., the number of nats used is H(Q)). If the
sender transmits an infinite sequence of letters y1y2 · · ·
, picked according to distribution Pi, and the receiver
compresses it using an encoding C which corresponds to
distribution Q, then the average number of used nats is
given by

∑n
j=1 Pi(yj)ln

1
Q(yj)

.
Hence, with the weighting π1, . . . , πk, we get the re-

dundancy

R(Q) :=
k∑
i=1

πiH(Pi)−
n∑
j=1

πiPi(yj)ln
1

Q(yj)


=

k∑
i=1

πiD(Pi‖Q) ,

a weighted average of Kullback divergences between the
Pi’s and Q. The compensation identity states that for
P =

∑k
i=1 πiPi, the equality

k∑
i=1

πiD(Pi‖Q) =
k∑
i=1

πiD(Pi‖P ) +D(P‖Q) (2)

holds for any distribution Q, cf. [33, 34].

It follows immediately that Q = P is the unique
argmin-distribution for R(Q), and that JDπ(P1, . . . , Pk)
is the corresponding minimum value.

Analogously in a quantum setting, let X = [k] be an
input alphabet, and for each i ∈ X let ρi be a state on an
output Hilbert space HY . We can think of a sender who
uses the weighting π of distributions X, but a receiver
who has to compress the states on HY using as few qubits
as possible.

Schumacher [35] showed that the mean number of
qubits necessary to encode a state ρi is given by S(ρi).
Later, Schumacher and Westmoreland [36] introduced a
quantum encoding scheme, in which an encoding CQ that
is optimal (i.e., requires the least number of qubits) for a
state σ requires on average S(ρi) +S(ρi‖σ) qubits to en-
code ρi. Hence, when the receiver uses CQ as the encod-
ing, the mean redundancy is R(σ) :=

∑k
i=1 πiS(ρi‖σ).

Let ρ̄ =
∑k
i=1 πiρi. The quantum analogue of (2) is

given by Donald’s identity [37]:

k∑
i=1

πiS(ρi‖σ) =
k∑
i=1

πiS(ρi‖ρ̄) + S(ρ̄‖σ),

from which it follows that σ = ρ̄ is the argmin-state that
the receiver should code for, and that QJDπ(ρ1, . . . , ρk)
is the minimum redundancy.

II. PRELIMINARIES AND NOTATION

In this section we fix notation to be used throughout
the paper. We also provide a concise overview of those
concepts from quantum theory which we need. For an
extensive introduction we refer to [38].

A. Classical information theoretic quantities

We write [n] for the set {1, 2, . . . , n}. The set of proba-
bility distributions supported by N is denoted by M1

+(N)
and the set supported by [n] is denoted by M1

+(n). We
associate with probability distributions P,Q ∈ M1

+(n)
point probabilities (p1, . . . , pn) and (q1, . . . , qn), respec-
tively. Entropy of order α 6= 1, Shannon entropy and
Kullback divergence are given by

Sα (P ) :=
1−

∑n
i=1 p

α
i

α− 1
,

H(P ) := −
n∑
i=1

piln pi (3)

and

D(P‖Q) :=
n∑
i=1

piln
pi
qi
, (4)
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respectively. Note that limα→1+ Sα(P ) = H(P ). For
two-point probability distributions P = (p, 1− p) we let
sα(p) denote Sα(p, 1− p).

B. Quantum theory

1. States.

The d-dimensional complex Hilbert space, denoted by
Hd, is the space composed of all d-dimensional com-
plex vectors, endowed with the standard inner product.
A physical system is mathematically represented by a
Hilbert space. Our knowledge about a physical system
is expressed by its state, which in turn is represented
by a density matrix (a trace-1 positive matrix) acting
on the Hilbert space. The set of density matrices on a
Hilbert space H is denoted by B1

+ (H) [51]. Rank-1 den-
sity matrices are called pure-states. Systems described by
two-dimensional Hilbert spaces are called qubits. As the
eigenvalues of a density matrix are always positive real
numbers that sum to one, a state can be interpreted as a
probability distribution over pure-states. Hence, sets of
states with a complete set of common eigenvectors can
be interpreted as probability distributions on the same
set of pure-states. States thus generalize probability dis-
tributions. This interpretation is not possible when a
common basis does not exist. Two states ρ and σ have a
set of common eigenvectors if and only if they commute;
i.e. ρσ = σρ.

2. Measurements.

Information about a physical system can be obtained
by performing a measurement on its state. The most
general measurement with k outcomes is described by k
positive matrices A1, . . . , Ak, which satisfy

∑k
i=1Ai = I.

This is a special case of the more general concept of
a positive operator valued measure (POVM, see for ex-
ample [38]). The probability that a measurement A of
a system in state ρ yields the i’th outcome is Tr(Aiρ).
Hence, the measurement yields a random variable A(ρ)
with Pr [A(ρ) = λi] = Tr(Aiρ). Naturally, the measure-
ment operators and quantum states should act on the
same Hilbert space.

C. Quantum information theoretic quantities

For states ρ, σ ∈ B1
+ (H), we use the quantum version

of entropy of order α, von Neumann entropy and quan-
tum relative entropy, given by

Sα (ρ) :=
1− Tr (ρα)
α− 1

,

S(ρ) := −Tr(ρln ρ) (5)

and

S(ρ‖σ) := Trρln ρ− Trρlnσ, (6)

respectively. Note that limα→1+ Sα(ρ) = S(ρ). We refer
to [39] for a discussion of quantum relative entropy.

III. DIVERGENCE MEASURES

A. The general Jensen divergence

Let us consider a mixture of k probability distribu-
tions P1, . . . , Pk with weights π1, . . . , πk and let P =∑k
i=1 πiPi. Jensen’s inequality and concavity of Shan-

non entropy implies that

H

(
k∑
i=1

πiPi

)
≥

k∑
i=1

πiH(Pi).

When entropies are finite, we can subtract the right-hand
side from the left-hand side and use this as a measure of
how much Shannon entropy deviates from being affine.
This difference is called the general Jensen-Shannon di-
vergence and we denote it by JDπ(P1, . . . , Pk), where
π = (π1, . . . , πk). One finds that

H

(
k∑
i−1

πiPi

)
−

k∑
i=1

πiH(Pi) =
k∑
i=1

πiD(Pi‖P ) (7)

and therefore

JDπ(P1, . . . , Pk) =
k∑
i=1

πiD(Pi‖P ) . (8)

In the general case when entropies may be infinite the last
expression can be used, but we will focus on the situation
where the distributions are over a finite set and in this
case we can use the left-hand side of (7).

Jensen divergence of order α is defined by the formula

JDπ
α(P1, . . . , Pk) = Sα

(
k∑
i=1

πiPi

)
−

k∑
i=1

πiSα(Pi).

Similarly, if ρ1, . . . , ρk are states on a Hilbert space we
define

QJDπ(ρ1, . . . , ρk) =
k∑
i=1

πiS(ρi‖ρ), (9)

where ρ =
∑k
i=1 πiρi. For states on a finite dimensional
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Hilbert space we have

QJDπ(ρ1, . . . , ρk) = S

(
k∑
i=1

πiρi

)
−

k∑
i=1

πiS(ρi).

The quantum Jensen divergence of order α is defined by

QJDπ
α(ρ1, . . . , ρk) = Sα

(
k∑
i=1

πiρi

)
−

k∑
i=1

πiSα(ρi).

B. The Jensen divergence

For even mixtures of two distributions, we introduce
the notation JDα(P,Q) for JDα( 1

2P + 1
2Q). That is,

JDα(P,Q) := Sα

(
P +Q

2

)
− 1

2
Sα(P )− 1

2
Sα(Q). (10)

For even mixtures of two states the QJD was defined
in [23], to which we refer for some of its basic proper-
ties. We consider the order α version of this and write
QJDα(ρ, σ) for QJDα( 1

2ρ+ 1
2σ). That is,

QJDα(ρ, σ) := Sα

(
ρ+ σ

2

)
− 1

2
Sα(ρ)− 1

2
Sα(σ). (11)

We refer to (10) and (11) simply as Jensen divergence
of order α (JDα) and quantum Jensen divergence of order
α (QJDα) respectively.

IV. METRIC PROPERTIES

In this section we borrow most of the notational con-
ventions and definitions from Deza and Laurent [40]. We
refer to this book, to Berg, Christensen and Ressel [48],
and to Blumenthal [41] for extensive introductions to the
used results. Like Berg, Christensen and Ressel [48] we
shall use the expressions “positive and negative definite”
for what most textbook would call “positive and negative
semi-definite”.

Definition 1. For a set X, a function d : X ×X → R
is called a distance if for every x, y ∈ X:

1. d(x, y) ≥ 0 with equality if x = y.

2. d is symmetric: d(x, y) = d(y, x).

The pair (X, d) is then called a distance space. If
in addition to 1 and 2, for every triple x, y, z ∈ X,
the function d satisfies

3. d(x, y) + d(x, z) ≥ d(y, z) (the triangle inequality),

then d is called a pseudometric and (X, d) a pseu-
dometric space. If also, d(x, y) = 0 holds if and only
if x = y, then we speak of a metric and a metric
space.

Our techniques to prove our embeddability results for
JDα and QJDα are somewhat indirect. To provide some
intuition, we briefly mention the following facts. Only
Definition 1, Proposition 1 and Theorem 3 are needed
for our proofs.

Work of Cayley and Menger gives a characterization of
`2 embeddability of a distance space in terms of Cayley-
Menger determinants. Given a finite distance space
(X, d), the Cayley-Menger matrix CM(X, d) is given in
terms of the matrix Dij = d(xi, xj), for xi, xj ∈ X, and
the all-ones vector e:

CM(X, d) :=
(
D e
eT 0

)
.

Menger proved the following relation between `2 em-
beddability and the determinant of CM(X, d).

Proposition 1 ([42]). Let (X, d) be a finite distance
space. Then (X, d1/2) is `2 embeddable if and only if
for every Y ⊆ X, we have (−1)|Y | det CM(Y, d) ≥ 0.

As an example, consider a distance space with |X| =
3. If we set a := d(x1, x2)1/2, b := d(x1, x3)1/2 and
d(x2, x3)1/2, then we obtain

− det CM(X, d) =
(a+ b+ c)(a− b− c)(−a+ b− c)(−a− b+ c). (12)

On the one hand, this at least zero if d is a pseudomet-
ric, and hence pseudometric spaces on three points are `2
embeddable. On the other hand, up to a factor 1/16, the
right-hand-side of (12) is the square of Heron’s formula
for the area of a triangle with edge-lengths a, b and c. In
general, Cayley-Menger determinants give the formulas
needed to calculate the squared hypervolumes of higher
dimensional simplices. Menger’s result can thus be in-
terpreted as saying that a distance space (X, d1/2) is `2
embeddable if and only if every subset is a simplex with
real hypervolume.

Returning to our example with |X| = 3, we also have
the following implication.

Proposition 2. Let ({x1, x1, x3}, d) be a distance space.
Assume that for every c1, c2, c3 ∈ R such that c1 + c2 +
c3 = 0, the distance function d satisfies∑

i,j

cicjd(xi, xj) ≤ 0, (13)

where the summation is over all pairs i, j ∈ {1, 2, 3}.
Then ({x1, x1, x3}, d1/2) is `2 embeddable.

Proof: Let a := d(x1, x2)1/2, b := d(x1, x3)1/2 and c :=
d(x2, x3)1/2. We first show that (13) implies that (12) is
nonnegative. To this end, set c1 = 1, c2 = t, c3 = −t− 1
where t is a real parameter. Then, if (13) holds, we get
the inequality

a2t+ b2t(−t− 1) + c2(−t− 1) ≤ 0 .
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The nonnegativity of (12) follows from the fact that this
inequality holds if and only if the discriminant of this
second order polynomial is at least zero. The result now
follows from Proposition 1.

The basis of our positive results in this section is that,
due to Schoenberg [43, 44], a more general version of
Proposition 2 also holds. To state it concisely, we first
define negative definiteness.

Definition 2 (Negative definiteness). Let (X, d) be a
distance space. Then d is said to be negative defninite
if and only if for all finite sets (ci)i≤n of real numbers
such that

∑n
i=1 ci = 0, and all corresponding finite sets

(xi)i≤n of points in X, it holds that∑
i,j

cicjd(xi, xj) ≤ 0. (14)

In this case, (X, d) is said to be a distance space of neg-
ative type.

The following theorem follows as a corollary of Schoen-
berg’s theorem.

Theorem 3. Let (X, d) be a distance space. Then(
X, d1/2

)
can be isometrically embedded in a real sep-

arable Hilbert space if and only if (X, d) is of negative
type.

Note that if isometric embedding in a Hilbert space
is possible, then the space must be a metric space. We
define positive definiteness as follows.

Definition 3 (Positive definiteness). Let X be a set and
f : X × X → R a mapping. Then f is said to be pos-
itive definite if and only if for all finite sets (ci)i≤n of
real numbers and all corresponding finite sets (xi)i≤n of
points in X, it holds that∑

i,j

cicjf(xi, xj) ≥ 0. (15)

Because we are concerned with functions defined on
convex sets, the following definition shall be useful.

Definition 4 (Exponential convexity). Let X be a con-
vex set and φ : X → R a mapping. Then φ is said to be
exponentially convex if the function X × X → R given
by (x, y)→ φ

(
x+y

2

)
is positive definite.

Normally exponential convexity is defined as positive
definiteness of φ (x+ y) (as is done in for instance [45]),
but the definition given here allows the function φ only
to be defined on a convex set.

A. Metric properties of JDα

With Theorem 3 we prove the following for Jensen di-
vergence of order α.

Theorem 4. For α ∈ (0, 2], the space
(
M1

+(N), JD1/2
α

)
can be isometrically embedded in a real separable Hilbert
space.

Note that Theorem 4 implies that the same holds for
QJDα for sets of commuting quantum states.

We use the following lemma to prove that JDα is neg-
ative definite for α ∈ (0, 2]. Theorem 4 then follows from
this and Theorem 3.

Lemma 1. For α ∈ (0, 1), we have

xα =
1

Γ(−α)

∫ ∞
0

e−xt − 1
tα+1

dt,

where Γ(α) =
∫∞
0
tα−1e−tdt is the Gamma function. For

α ∈ (1, 2), we have

xα =
1

Γ(−α)

∫ ∞
0

e−xt − (1− xt)
tα+1

dt.

Proof: Let γ ∈ (−1, 0). From the definition of the
Gamma function, we have the following equality:

zγ = zγ
1

Γ(−γ)

∫ ∞
0

r−(γ+1)e−rdr.

By substituting r = tz we get

zγ =
1

Γ(−γ)

∫ ∞
0

e−zt

tγ+1
dt.

Let β ∈ (0, 1) such that β = γ + 1. Integrating zγ for z
from zero to y and multiplying by γ + 1 gives,

yβ = (γ + 1)
∫ y

0

zγdz

=
1

Γ(−β)

∫ ∞
0

e−yt − 1
tβ+1

dt.

Now let α ∈ (1, 2) such that α = β + 1. Integrating yβ
and multiplying by β + 1 gives the result.

xα = (β + 1)
∫ x

0

yβdy

=
1

Γ(−α)

∫ ∞
0

e−xt − (1− xt)
tα+1

dt.

Lemma 2. For α ∈ (0, 2], the distance space
(
M1

+, JDα

)
is of negative type.

Proof: Let (ci)i≤n be a set of real numbers such that∑n
i=1 ci = 0. For two probability distributions P and Q,

we have

JDα(P,Q) = Sα

(
P +Q

2

)
− 1

2
Sα(P )− 1

2
Sα(Q).
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Observe that for any real valued, single-variable function
f , we have

∑
i,j cicjf(xi) = 0. Hence, we only need to

prove that the function

Sα

(
P +Q

2

)
=

1
α− 1

− 1
(α− 1)

∑
i

(
pi + qi

2

)α
is negative definite for all α ∈ (0, 2]. From this decompo-
sition of Sα into a sum over point probabilities it follows
that we need to show that x y xα is exponentially con-
vex. Lemma 1 shows that for fixed 0 < α < 1 and fixed
1 < α < 2, the mapping x y −xα can be obtained as the
limit of linear combinations with positive coefficients of
functions of the type x y 1−e−tx and x y 1−e−tx− tx
respectively. Each such function is exponentially con-
vex since the linear terms are, and for non-negative real
numbers x1, . . . , xn,

∑
i,j

cicj(−e−t(xi+xj)) = −

(
n∑
i=1

cie
−txi

)2

≤ 0.

The case α = 1 follows by continuity. The case α = 2 also
follows by continuity, but a direct proof without Lemma 1
is straightforward.

Proof of Theorem 4: Follows directly from Lemma 2
and Theorem 3.

A constructive proof of Theorem 4 for JD1 (JD) is
given by Fuglede [46, 47], who uses an embedding into
a subset of a real Hilbert space defined by a logarithmic
spiral.

B. Metric properties of QJDα for qubits

Using the same approach as above, we prove the follow-
ing for quantum Jensen divergence of order α and states
on two-dimensional Hilbert spaces.

Theorem 5. For α ∈ (0, 2], the space

(
B1

+(H2),QJD1/2
α

)
can be isometrically embedded in a real separable Hilbert
space.

This is established by the following lemmas and The-
orem 3.

Lemma 3. Let (V, 〈·|·〉) be a real Hilbert space with norm
‖ · ‖2 = 〈·|·〉1/2. Then,

(
V, ‖ · ‖22

)
is a distance space of

negative type.

Proof: The result follows immediately if we expand the

distance function ‖ · ‖22 in terms of the inner product:∑
i,j

cicj〈xi − xj , xi − xj〉

=
∑
i,j

cicj
(
‖xi‖22 + ‖xj‖22 − 2〈xi, xj〉

)
= 2

∑
i

ci
∑
j

cj‖xj‖22 − 2
∑
i,j

cicj〈xi, xj〉

= 0− 2
∑
i,j

cicj〈xi, xj〉

= −2
∥∥∥∑

i

cixi

∥∥∥2

2
≤ 0.

Lemma 4. The distance space
(
B1

+(H2),QJDα

)
, α ∈

(0, 2] is of negative type.

Proof: Using the same techniques as in the proof of The-
orem 4, and the fact that Lemma 1 also holds when x is
a matrix, what has to be shown is that for ρ ∈ B1

+(H2),
the function ρ y Tr (exp (−tρ)) is exponentially convex.
Since ρ acts on a two-dimensional Hilbert space, it has
only two eigenvalues, λ+ and λ−, that satisfy λ++λ− = 1
and λ2

+ + λ2
− = Tr

(
ρ2
)
. A straightforward calculation

gives

λ+/− =
1
2
±
(
2Tr

(
ρ2
)
− 1
)1/2

2
. (16)

Plugging this into Tr (exp(−tρ)) gives

Tr
(
e−tρ

)
= 2e−t/2 cosh

(
t

2
(
2Tr

(
ρ2
)
− 1
)1/2)

= 2e−t/2
∞∑
k=0

t2k

(2k)!4k
(
2Tr

(
ρ2
)
− 1
)k
,

where the second equality follows form the Taylor expan-
sion of hyperbolic cosine. The task can thus be reduced
to proving that

(
2Tr

(
ρ2
)
− 1
)k is exponentially convex

for all k ≥ 0. For this we can use the following theorem:

Theorem 6 ([48, Slight reformulation of Theorem 1.12]).
Let φ1, φ2 : X y C be exponentially convex functions.
Then φ1 · φ2 is exponentially convex too.

This implies that proving it for k = 1 suffices. The
trace distance of two density matrices is defined as the
Hilbert-Schmidt norm ‖ · ‖2 of their difference. Since the
Hilbert-Schmidt norm is a Hilbert-space metric, Lemma
3 implies that (ρ1, ρ2) y ‖ρ1 − ρ2‖21 is negative definite
and the equality

‖ρ1−ρ2‖22 = Tr(ρ1−ρ2)2 = 2(Trρ2
1+Trρ2

2)−Tr
(
(ρ1+ρ2)2

)
implies that the function Tr

(
(ρ1 + ρ2)2

)
is positive defi-

nite. From this it follows that the function 2Tr
(
ρ2
)
− 1
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is exponentially convex.

Proof of Theorem 5: Follows directly from Lemma 4
and Theorem 3.

C. Metric properties of QJDα for pure-states

Here we prove that QJDα is the square of a metric
when restricted to pairs of pure-states. For a Hilbert
space of dimension d we denote the set of pure-states as
P (Hd).

Theorem 7. For α ∈ (0, 2], the space
(
P (Hd),QJD1/2

α

)
can be isometrically embedded in a real separable Hilbert
space.

Lemma 5. The distance space (P (Hd),QJDα) , α ∈
(0, 2] is of negative type.

Proof: Using the same techniques as in Theorem 4,
we have to prove that for ρ ∈ P (Hd), the function
ρ y Tr

(
exp(−tρ)

)
is exponentially convex. For ρ1, ρ2 ∈

P (Hd) such that ρ1 6= ρ2, the matrix ρ1+ρ2
2 has two non-

zero eigenvalues, λ+ and λ−, which can be calculated in
the same way as above. In this case (16) reduces to

λ± =
1
2
± 1

2
(
Tr(ρ1 · ρ2)

)1/2
.

When we plug this into Tr
(

exp(−t(ρ1 + ρ2))
)
, we get

Tr
(
e−2t( ρ1+ρ2

2 )
)

= (n− 2)

+2e−t cosh
(
t (Tr(ρ1 · ρ2))1/2

)
= (n− 2)

+2e−t
∞∑
k=0

t2k (Tr(ρ1 · ρ2))k

(2k)!
,

where the (n − 2) term comes from the fact that n− 2
of the eigenvalues are zero. We need to prove that
(ρ1, ρ2) y (Tr(ρ1 · ρ2))k is positive definite for all in-
tegers k ≥ 0. But Theorem 6 implies that we only need
to prove it for k = 1. Appealing to the trace distance,
we have

‖ρ1 − ρ2‖21 = Trρ2
1 + Trρ2

2 − 2Tr(ρ1 · ρ2),

Since, by Lemma 3, this is negative definite, the result
follows.

Proof of Theorem 7: Follows directly from Lemma 5
and Theorem 3.

D. Counter examples

1. Metric space counter example for α ∈ (2, 3).

To see that JDα, and hence QJDα, is not the square
of a metric for all α we check the triangle inequality for
the three probability vectors P = (0, 1) , Q = (1/2, 1/2)
and R = (1, 0) . We have

JDα (P,Q) = JDα (Q,R)

= Sα (1/4, 3/4)− Sα (1/2, 1/2)
2

and

JDα (P,R) = Sα (1/2, 1/2) .

The triangle inequality is equivalent to the inequality

0 ≥ −2 JDα (P,Q)− 2 JDα (Q,R) + JDα (P,R)

= −4
(
Sα (1/4, 3/4)− Sα (1/2, 1/2)

2

)
+ Sα (1/2, 1/2)

= 3Sα (1/2, 1/2)− 4Sα (1/4, 3/4)

= 3
1− 2 (1/2)α

α− 1
− 4

1− (1/4)α − (3/4)α

α− 1

=
4 (1/4)α + 4 (3/4)α − 6 (1/2)α − 1

α− 1
.

We make the substitution x = (1/2)α and assume α > 1
so the inequality is equivalent to

4x2 + 4x
ln 4−ln 3

ln 2 − 6x− 1 ≤ 0.

Define the function

f (x) = 4x2 + 4x2− ln 3
ln 2 − 6x− 1.

Then its first and second derivatives are given by

f ′ (x) = 8x+ 4
(

2− ln 3
ln 2

)
x1− ln 3

ln 2 − 6

f ′′ (x) = 8 + 4
(

2− ln 3
ln 2

)(
1− ln 3

ln 2

)
x−

ln 3
ln 2

and we see that f ′′ (x) = 0 has exactly one solution.
Therefore f has exactly one infliction point and the equa-
tion f (x) = 0 has at most three solutions. Therefore the
equation

4 (1/4)α + 4 (3/4)α − 6 (1/2)α − 1 = 0

has at most three solutions. It is straightforward to check
that α = 1, α = 2 and α = 3 are solutions, so these are
the only ones. Therefore the sign of

4 (1/4)α + 4 (3/4)α − 6 (1/2)α − 1
α− 1
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is constant in the interval (2, 3) and plugging in any num-
ber will show that it is negative in this interval. Hence
JDα cannot be a square of a metric for α ∈ (2, 3).

2. Counter examples for Hilbert space embeddability for
α ∈

`
7
2
,∞

´
.

In the previous paragraph we showed that JDα and
QJDα are not the squares of metric functions for α ∈
(2, 3). Hence, for α in this interval, Hilbert space embed-
dings are not possible. Here we prove a weaker result for
α ∈ ( 7

2 ,∞), using the Cayley-Menger determinant.

Theorem 8. The space(
B1

+(Hd), (JDα)
1
2

)
is not Hilbert space embeddable for α in the interval(

7
2 ,∞

)
.

Note that this does not exclude the possibility that
JDα is the square of a metric and that the same result
holds for QJDα,

Proof: Consider the four distributions(
1
2
− 3ε,

1
2

+ 3ε
)
,(

1
2
− ε, 1

2
+ ε

)
,(

1
2

+ ε,
1
2
− ε
)
,(

1
2

+ 3ε,
1
2
− 3ε

)
.

Then the Cayley-Menger determinant is∣∣∣∣∣∣∣∣∣∣
sα
(

1
2 − 3ε

)
sα
(

1
2 − 2ε

)
sα
(

1
2 − ε

)
sα
(

1
2

)
1

sα
(

1
2 − 2ε

)
sα
(

1
2 − ε

)
sα
(

1
2

)
sα
(

1
2 + ε

)
1

sα
(

1
2 − ε

)
sα
(

1
2

)
sα
(

1
2 + ε

)
sα,2

(
1
2 + 2ε

)
1

sα
(

1
2

)
sα
(

1
2 + ε

)
sα
(

1
2 + 2ε

)
sα
(

1
2 + 3ε

)
1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
and if the four points are Hilbert space embeddable
then this determinant is non-negative. The function
ε→ sα

(
1
2 + ε

)
has a Taylor expansion given by

sα

(
1
2

+ ε

)
= sα

(
1
2

)
+
s′′α
(

1
2

)
2

ε2+

s
(4)
α

(
1
2

)
24

ε4 +
s
(6)
α

(
1
2

)
720

ε4 + ε8f (ε) , (17)

where f is some continuous function of ε. This can be
used to get the expansion of the Cayley-Menger determi-

nant:

CM =
1
8
s(4)α

(
1
2

)((
s(4)α

(
1
2

))2

−

s′′α

(
1
2

)
h(6)
α

(
1
2

))
ε12 + ε14g (ε)

for some continuous function g [52]. We have the follow-
ing formula for the even derivatives of sα :

s(2n)
α (x) = −α2n

(
xα−2n + (1− x)α−2n

)
and

s(2n)
α

(
1
2

)
= −α2n22n+1−α.

If the Cayley-Menger determinant is positive for all
small ε then(

s(4)α

(
1
2

))2

− s′′α
(

1
2

)
s(6)α

(
1
2

)
≤ 0

or equivalently(
−α425−α)2 − (−α223−α) (−α627−α) ≤ 0

and

0 ≥
(
α4
)2 − (α2

) (
α6
)

= α2α4 ((α− 2) (α− 3)− (α− 4) (α− 5))

= 4α2 (α− 2) (α− 3)
(
α− 7

2

)
.

Hence, the Cayley-Menger determinant is non-negative
only for the intervals [0, 2] and

[
3, 7

2

]
.

V. RELATION TO TOTAL VARIATION AND
TRACE DISTANCE

The results of Section IV indicate that interesting ge-
ometric properties are associated with JDα and QJDα

when α ∈ (0, 2] .

A. Bounds on JDα

For α ∈ (0, 2]. we bound JDα as follows:

Theorem 9. Let P and Q be probability distributions in
M1

+(n), and let

v := 1
2

∑
i

|pi − qi| ∈ [0, 2]

denote their total variation. Then for α ∈ (0, 2] , we have
L ≤ JDα(P,Q) ≤ U, where:
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• For every n ≥ 2, L is given by

L(P,Q) = sα
(

1
2

)
− sα

(
1
2 + v

4

)
. (18)

• For every n ≥ 3, U is given by

Un(P,Q) =
1

α− 1

(
1
2
− 1

2α

)
‖P −Q‖αα. (19)

• For n = 2, U is given by the tighter quantity

U2(P,Q) = sα
(
v
4

)
− 1

2
Sα,2

(
v
2

)
. (20)

Proof: We start with the lower bound. Let σ denote a
permutation of the elements in [n] and let σ (P ) denote
the probability vector where the point probabilities have
been permuted according to σ. Clearly, the function JDα

is invariant under such permutations of its arguments:

JDα

(
σ(P ), σ(Q)

)
= JDα (P,Q) . (21)

Let B denote the set of permutations σ that satisfy

pi ≥ qi ⇔ pσ(i) ≥ qσ(i)

for all i ∈ [n] . Then, by the joint convexity of JDα for
α ∈ [1, 2] (as proved in [10]), we have

JDα (P,Q) =
1
|B|

∑
σ∈B

JDα

(
σ(P ), σ(Q)

)
≥ JDα

(
1
|B|

∑
σ∈B

σ (P ) ,
1
|B|

∑
σ∈B

σ (Q)

)
.

(22)

The distributions 1
|B|
∑
σ∈B σ (P ) and 1

|B|
∑
σ∈B σ (Q)

have the property that they are constant on two com-
plementary sets, namely {i ∈ [n] | pi ≥ qi} and {i ∈ [n] |
pi < qi}. Therefore, we may without loss of generality
assume that P and Q are distributions on a two-element
set. On a two-element set P and Q can be parametrized
by P = (p, 1− p) and Q = (q, 1− q) . If σ2 denotes the
transposition of the two elements then

v = V

(
P + σ2 (Q)

2
,
Q+ σ2 (P )

2

)
= 2 |p− q| .

By (21) and (22) we get

JDα (P,Q) ≥ JDα

(
P + σ2 (Q)

2
,
Q+ σ2 (P )

2

)
= JDα

((
1
2

+
v

4
,

1
2
− v

4

)
,

(
1
2
− v

4
,

1
2

+
v

4

))
= sα (1/2)− sα

(
1
2

+
v

4

)
,

and this lower bound is attained for two distributions

on a two element set. Next we derive the general upper
bound. Define distribution P̃ on [n] × [3] such that for
every i ∈ [n],

P̃ (i, 1) = min {pi, qi} ,

P̃ (i, 2) =
{
pi − qi if pi > qi
0 otherwise,

P̃ (i, 3) = 0,

and similarly define Q̃ on [n]× [3] by

Q̃ (i, 1) = min {pi.qi} ,

Q̃ (i, 2) = 0,

Q̃ (i, 3) =
{
qi − pi if qi > pi
0 otherwise.

With these definitions we have V (P̃ , Q̃) = V (P,Q) . Us-
ing the data processing inequality and the definitions of
P̃ and Q̃ it is straightforward to verify that

JDα (P,Q) ≤ JDα(P̃ , Q̃)

=
1

α− 1
(1

2
− 1

2α
) n∑
i=1

|pi − qi|α.

This upper bound is attained on a three element set so
we have

Un(P,Q) =
1

α− 1
(1

2
− 1

2α
)
‖P −Q‖αα.

To get a tight upper bound on a two-element set a spe-
cial analysis is needed. The cases p > q and p < q
are treated separately, but the two cases work the same
way. We will therefore assume that p > q. On a two-
element set parametrize P and Q by P = (p, 1− p) and
Q = (q, 1− q) . In this case we have the linear constraint
p−q = v/2. For a fixed value of v, we have that JDα is a
convex function of q. Therefore the maximum is attained
by an extreme point, i.e. a distribution where either p
or q is either 0 or 1. Without loss of generality we may
assume that q = 0 and that p = v/2. This gives

U2(P,Q) = sα

(v
4

)
−
sα
(
v
2

)
2

.

It is now straightforward to determine the exact form
of the joint range of V and JDα.

Corollary 10. The joint range of V and JDα, denoted
by ∆n, is a compact region in the plane bounded by a
(Jordan) curve composed of two curves: The first curve
is given by (18) with V running from 2 to 0. For n = 2
the second curve is given by (19) with v running from 0
to 2, and for n = 3 the second curve is given by (20) with
v running from 0 to 2.
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Proof: Assume first that n ≥ 3. By Theorem 9 we know
that ∆n is contained in the compact domain described. A
continuous deformation of the lower curve into the upper
bounding curve (i.e. a homotopy from the lower bound-
ing curve to the upper bounding curve ) is given by Pt,
Qt for t ∈ [0, 1], where(

Pt
Qt

)
(v) = (1− t)

(
2+v
4

2−v
4 0 · · · 0

2−v
4

2+v
4 0 · · · 0

)
+

t

(
1− v

2
v
2 0 0 · · · 0

1− v
2 0 v

2 0 · · · 0

)
for v ∈ [0, 2]. Therefore, ∆n has no “holes”. The case
n = 2 is handled in a similar way.

Figure 1: V/ JDα-diagram for α = 1 and n ≥ 3 (the shaded
region), and for n = 2 (the region obtained by replacing the
upper bounding curve by the dotted curve).

In Figure 1 we have depicted the V/ JDα-diagram for
α = 1.

The bounds (18) and (19) give us the following propo-
sition regarding the topology induced by (JDα)

1
2 . In the

limiting case α→ 1, this was proved in [5] by a different
method.

Proposition 11. The space
(
M1

+(N), JD1/2
α

)
is a com-

plete, bounded metric space for α ∈ (0, 2], and the induced
topology is that of convergence in total variation.

Proof: By expansion of L(P,Q) given by (18), in terms
of the total variation v, one obtains the inequality

JDα(P,Q) ≥ 1
α− 1

∞∑
j=1

(
α

2j

)(v
2

)2j

. (23)

Taking only the first term and bounding (19), we get

1
8
V 2(P,Q) ≤ α

8
V 2(P,Q)

≤ JDα(P,Q)

≤ 1
α− 1

(1
2
− 1

2α
)
‖P −Q‖αα

≤ ln 2
2
V (P,Q) . (24)

B. Bounds on QJDα

With Theorem 9 we can bound QJDα for α ∈ [1, 2].
We use the following two theorems.

Theorem 12 ([49], Theorem 3.9). Let H be a Hilbert
space, ρ1, ρ2 ∈ B1

+ (H) and M := {Mi | i = 1, . . . , n} be
a measurement on H. Then S(ρ1‖ρ2) ≥ D(PM‖QM),
where PM, QM ∈ M1

+(n) and have point probabilities
PM(i) = Tr(Miρ1) and QM(i) = Tr(Miρ2), respectively.

Theorem 13 ([38], Theorem 9.1). Let H be a Hilbert
space,

ρ1, ρ2 ∈ B1
+ (H)

and M := {Mi | i = 1, . . . , n} be a measurement on H.
Then ‖ρ1−ρ2‖1 = maxM V (PM, QM), where PM, QM ∈
M1

+(n) and have point probabilities PM(i) = Tr(Miρ1)
and QM(i) = Tr(Miρ2), respectively.

Theorem 14. For α ∈ (0, 2], for all states ρ1, ρ2 ∈
B1

+ (H), we have

sα( 1
2 )− sα

(
1
2

+
‖ρ1 − ρ2‖1

2

)
≤ QJDα(ρ1, ρ2)

≤ ln 2
2
‖ρ1 − ρ2‖1.

Proof: The lower bound is proved in the same way
as [50, Theorem III.1], by making a reduction to the
case of classical probability distributions by means of
measurements. Let M be a measurement that max-
imizes V (PM, QM). Then from Theorem 13 we have
‖ρ1 − ρ2‖1 = V (PM, QM). Theorem 12 gives us

QJDα(ρ1, ρ2) ≥ 1
2
D

(
PM

∥∥PM +QM
2

)
+

1
2
D

(
QM

∥∥PM +QM
2

)
= JDα(PM, QM).

The result now follows from Theorem 9. The upper
bound is proved the same way as we proved the clas-
sical bound. Introduce a 3-dimensional Hilbert space G
with basis vectors |1〉, |2〉 and |3〉. On H⊗ G define the
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density matrices

ρ̃1 =
ρ1 + ρ2 − |ρ1 − ρ2|

2
⊗ |1〉〈1|

+
ρ1 − ρ2 + |ρ1 − ρ2|

2
⊗ |2〉〈2|,

ρ̃2 =
ρ2 + ρ1 − |ρ2 − ρ1|

2
⊗ |1〉〈1|

+
ρ2 − ρ1 + |ρ1 − ρ2|

2
⊗ |3〉〈3|.

Let TrG denote the partial trace B1
+(H ⊗ G) → B1

+(H).
Then TrG (ρ̃1) = ρ1 and TrG (ρ̃2) = ρ2. The matrices
ρ1−ρ2+|ρ1−ρ2|

2 and ρ2−ρ1+|ρ1−ρ2|
2 are positive definite so

‖ρ̃1 − ρ̃2‖1 = Tr
∣∣∣∣ρ1 − ρ2 + |ρ1 − ρ2|

2
⊗ |2〉〈2|

−ρ2 − ρ1 + |ρ1 − ρ2|
2

⊗ |3〉〈3|
∣∣∣∣

= Tr
(
ρ1 − ρ2 + |ρ1 − ρ2|

2

)
+Tr

(
ρ2 − ρ1 + |ρ1 − ρ2|

2

)
= Tr |ρ1 − ρ2| = ‖ρ1 − ρ2‖1.

According to the “quantum data processing inequality”
[49, Theorem 3.10] we have

QJDα(ρ1, ρ2) ≤ QJD1(ρ̃1, ρ̃2)

=
1
2

Tr
(
ρ1 − ρ2 + |ρ1 − ρ2|

2
⊗ |2〉〈2|

)
ln 2

+ Tr
(
ρ2 − ρ1 + |ρ1 − ρ2|

2
⊗ |3〉〈3|

)
ln 2

=
ln 2
2
· ‖ρ1 − ρ2‖1 .

VI. CONCLUSIONS AND OPEN PROBLEMS

We studied generalizations of the (general) Jensen di-
vergence and its quantum analogue. For α ∈ (1, 2], JDα

was proved to be the square of a metric which can be
embedded in a real Hilbert space. The same was shown
to hold for QJDα restricted to qubit states or to pure
states. Both these results were derived by evoking a the-
orem of Schoenberg’s and showing that these quantities
are negative definite.

Whether (QJD1)
1
2 is a metric for all mixed states re-

mains unknown. However, based on a large amount
of numerical evidence, we conjecture the function A →
Tr(eA) to be exponentially convex for density matrices
A. Proving this would imply that QJDα is negative defi-
nite for α ∈ (0, 2], and hence the square of a metric that
can be embedded in a real Hilbert space.
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cle “Sur la définition axiomatique d’une classe d’espace
distanciés vectoriellement applicable sur l’espace de
Hilbert”. Annals of Mathematics, 36:724–732, 1935.

[44] I. J. Schoenberg. Metric spaces and positive definite func-
tions. Trans. Amer. Math. Soc., 44:522–536, 1938.

[45] A. E. Nussbaum. Radial exponentially convex functions.
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