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Abstract. A surprising ‘converse to the polynomial method’ of Aaronson
et al. (CCC’16) shows that any bounded quadratic polynomial can be com-
puted exactly in expectation by a 1-query algorithm up to a universal multi-
plicative factor related to the famous Grothendieck constant. Here we show
that such a result does not generalize to quartic polynomials and 2-query
algorithms, even when we allow for additive approximations. We also show
that the additive approximation implied by their result is tight for bounded
bilinear forms, which gives a new characterization of the Grothendieck con-
stant in terms of 1-query quantum algorithms. Along the way we provide
reformulations of the completely bounded norm of a form, and its dual norm.

1. Introduction

Quantum query complexity is one of the few models of computation in which
the strengths and weaknesses of quantum computers can be rigorously studied
with currently-available techniques (see e.g., [Amb18, Aar21] for recent sur-
veys). On the one hand, many of quantum computing’s best-known algorithms,
such as for unstructured search [Gro96], period finding (the core of Shor’s al-
gorithm for integer factoring) [Sho97] and element distinctness [Amb07], are
most naturally described in the query model. On the other hand, it admits
powerful lower-bound techniques.

For a (possibly partial) Boolean function f : D → {−1, 1} defined on a set
D ⊆ {−1, 1}n, the celebrated polynomial method of Beals, Buhrman, Cleve,
Mosca and de Wolf [BBC+01] gives a lower bound on the quantum query com-
plexity of f , denoted Q(f), in terms of the minimal degree of an approximating

polynomial for f , or approximate degree, d̃eg(f). The method relies on the ba-
sic fact that for any t-query quantum algorithm A that takes an n-bit input
and returns a sign, there is a real n-variable polynomial p of degree at most 2t
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such that p(x) = E[A(x)] for every x. Here, the expectation is taken with re-
spect to the randomness in the measurement done by A.1 Using this method,
many well-known quantum algorithms were proved to be optimal in terms of
query complexity (see e.g., [BKT20] and references therein).

Since polynomials are simpler objects than quantum query algorithms, it is
of interest to know how well approximate degree approximates quantum query

complexity. There are total functions f that satisfy Q(f) ≥ d̃eg(f)c for some
absolute constant c > 1 [Amb06, ABDK16]; the second reference gives an
exponent c = 4− o(1), which was shown to be optimal in [ABDK+21].2 These
separations rule out a direct converse to the polynomial method, whereby a
given bounded degree-2t polynomial p is implemented with a t-query quantum
algorithmA. However, since these results concern functions whose approximate
degree grows with n, they leave room for the possibility of an “approximate
converse,” where A approximates p with some error that depends on t.
Here, p is bounded if it maps the Boolean hypercube to the interval [−1, 1]

and A approximates p if for some constant additive error parameter ε < 1, we
have that |p(x) − E[A(x)]| ≤ ε for every x. Note that an additive error of 1
can trivially be achieved with a uniformly random coin flip. For a function
f : {−1, 1}n → R and and positive integer t, we denote the smallest additive
error that a t-query quantum algorithm can achieve by

E(f, t) := inf
{
ε ≥ 0 | ∃ t-query quantum algorithm A with(1)

|f(x)− E[A(x)]| ≤ ε ∀x ∈ {−1, 1}n
}
.

For bounded polynomials of degree at most 2, the following “multiplicative
converse” to the polynomial method was proved by Aaronson, Ambainis, Iraids,
Kokainis and Smotrovs [AAI+16].

Theorem 1.1 (Quadratic multiplicative converse). There exists an absolute
constant C ∈ (0, 1] such that E(Cp, 1) = 0 for every bounded polynomial p of
degree at most 2.

Up to an absolute constant scaling, quadratic polynomials can thus be com-
puted exactly by 1-query quantum algorithms. This result directly implies the
following additive version.

Corollary 1.2 (Quadratic additive converse). There exists an absolute con-
stant ε ∈ (0, 1) such that the following holds. For every bounded polynomial p
of degree at most 2, we have E(p, 1) ≤ ε. In particular, one can take ε = 1−C
for the constant C appearing in Theorem 1.1.

1We identify quantum query algorithms with the (random) functions giving their outputs.
2It is open whether partial functions admit exponential separations [Aar21, Problem 5].
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In light of the polynomial method, Corollary 1.2 thus shows that in an ap-
proximate sense, one-query quantum algorithms are equivalent to bounded qua-
dratic polynomials.

1.1. Generalizations to higher degrees. The authors of [AAI+16] asked
whether their results generalize to higher degrees. Two ways to interpret this
question are that for any k, any degree-2k polynomial p satisfies:

(1) E(Cp, k) = 0 for some C = C(k) > 0, or;
(2) E(p, k) ≤ ε for some ε = ε(k) < 1.

The dependence on the degree k in these options is necessary due to the known
separations between bounded-error quantum query complexity and approxi-
mate degree.

Option (1), the higher-degree version of Theorem 1.1, was ruled out by
Arunachalam, Palazuelos and the first author [ABP19] and the first two au-
thors [BEG22]. In particular, in terms of the notation above, the hoped-for
constant scaling C(4) > 0 does not exist. In the additive-error setting it was
also proved in [BEG22] that for some absolute constant ε0 > 0, we necessarily
have that ε(4) > ε0, thus placing a lower bound on the error required in any
quartic generalization of Corollary 1.2.

These negative results do not exclude the possibility of option (2), namely
that Corollary 1.2 generalizes to higher degrees, in particular that it holds for
some ε(4) ∈ (ε0, 1). Our first result shows that it does not.

Theorem 1.3. There is no constant ε ∈ (0, 1) such that for every bounded
polynomial p of degree at most 4 we have E(p, 2) ≤ ε.

In the context of quantum query complexity of Boolean functions, this rules

out arguably the most natural way to upper bound Q(f) in terms of d̃eg(f):
ε-approximate f by a degree-2t polynomial p, then ε′-approximate p with a
t-query quantum algorithm A, with ε + ε′ < 1, and then boost the success
probability of A so that it approximates f . Corollary 1.2 gives the only excep-
tional case where this is possible in general.

1.2. Best constants. Theorem 1.1 was proved using a surprising application
of the famous Grothendieck inequality from Banach space theory [Gro53]. For
bounded bilinear forms, p(x, y) = xTAy given by a matrix A ∈ Rn×n, the
result holds with 1/C equal to the Grothendieck constant KG (see [ABP19,
Section 5] for a short proof). Determining the precise value ofKG is a notorious
open problem posed originally in [Gro53]; the best-known lower and upper
bounds place it in the interval (1.676, 1.782) [Dav84, Ree91, BMMN13]. The
general form of Theorem 1.1 then follows from decoupling techniques. It is not
difficult to show that 1/KG is the optimal constant in the bilinear case for the
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multiplicative setting of Theorem 1.1. Here we show that the additive 1−1/KG

approximation implied by the multiplicative setting is also optimal.

Theorem 1.4. Let BB the set of bounded bilinear forms. Then,

sup
p∈BB

E(p, 1) = 1− 1

KG

.

Theorem 1.4 may open a new route to determine the value of KG by studying
the power and limitations of 1-query quantum algorithms. This complements
another well-known characterization ofKG in terms of the largest-possible Bell-
inequality violations in two-player XOR games [Tsi80].

1.3. Techniques. The starting point for this work is a characterization of
quantum query algorithms with completely bounded polynomials [ABP19]. Re-
cently, this characterization was also used to make progress on the problem to
determine “the need for structure in quantum speed-ups” by Bansal, Sinha and
de Wolf [BSdW22] and in the above-mentioned work [BEG22]. In addition, it
led to a new exact SDP-based formulation for quantum query complexity, due
to Laurent and the third author [GL19].

Using this, we show that for any “block-multilinear” polynomial p of de-
gree 2t, the parameter E(p, t) can be written in terms of a ratio of norms related
to norms appearing naturally in the Grothendieck inequality. Block-multilinear
forms appear naturally in the polynomial method and play an important role
for instance in [AAI+16, BSdW22]. Here we will give an informal explanation
of our main technical contribution and refer to the sequel for further details.

For a partition P of [n] into 2t parts, we let VP denote the space of real
n-variable degree-2t polynomials that are block-multilinear with respect to P .
In Theorem 4.1 below we show that for any p ∈ VP , we can express E(p, t) as
a supremum of the form

(2) sup
r∈VP

⟨p, r⟩ − ∥r∥cb,∗
∥r∥∞,∗

,

where the inner product is as usual for functions on the Boolean hypercube.
The connection with the Grothendieck theorem emerges in the bilinear case,

where t = 1, n = 2k and, say, P = {1, . . . , k}∪{k+1, . . . , 2k}. In this case, VP
consists of polynomials of the form p(x, y) = xTAy for some matrix A ∈ Rk×k.
Then, ∥p∥∞,∗ and ∥p∥cb,∗ are the dual norms associated to respectively the
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∞ → 1-norm and completely bounded norm of A:

∥A∥∞→1 = max
x,y∈{−1,1}k

xTAy,

∥A∥cb = sup
d∈N,u,v:[k]→Sd−1

k∑
i,j=1

Ai,j⟨u(i), v(j)⟩,

where Sd−1 denotes the real (d − 1)-dimensional Euclidean unit sphere. The
expression (2) then simplifies to

(3) sup
B∈Rk×k

⟨A,B⟩ − ∥B∥cb,∗
∥B∥∞→1,∗

,

where the inner product is now the usual trace inner product on matrices.
Grothendieck’s theorem asserts that the above norms are in fact closely related.

Theorem 1.5 (Grothendieck’s theorem). There exists a constant K < ∞ such
that for any k ∈ N and A ∈ Rk×k, we have

(4) ∥A∥∞→1 ≤ ∥A∥cb ≤ K∥A∥∞→1.

The non-trivial part of this result is the second inequality in (4) and the
smallestK for which it holds is the above-mentioned Grothendieck constantKG.
The dual formulation of this fact asserts that ∥A∥∞→1,∗ ≤ KG∥A∥cb,∗ holds for
any matrix A. Theorem 1.4 then follows from the expression (3) for E(p, 1) by
minimizing ∥B∥cb,∗/∥B∥∞→1,∗ while maximizing ⟨A,B⟩ over all nonzero B.
Theorem 1.3 follows similarly from the expression (2) for the case t = 2. For

this, we use a construction from [BEG22] which gives a sequence (pn)n∈N of
block-multilinear polynomials of degree 4 satisfying

∥pn∥cb
∥pn∥∞

→ ∞

as n → ∞. By duality, this implies the existence of a sequence of block-
multilinear polynomials rn of degree 4 such that ∥rn∥cb,∗/∥rn∥∞,∗ → 0. This
sequence (rn)n∈N can be explicitly described, as we do in Appendix A.

We give two proofs of Theorem 4.1, one based directly on the formulation of
E(f, t) that follows from [ABP19], and a second proof that uses a semidefinite
programming formulation of the completely bounded norm from [GL19].

2. Preliminaries

First, we establish some notation. Given n ∈ N, write [n] := {1, . . . , n}.
Given d ∈ N, we use the standard inner product of vectors x, y ∈ Rd defined
as ⟨x, y⟩ =

∑
i∈[d] xiyi, and the associated norm ∥x∥ =

√
⟨x, x⟩. We denote the

set of unit vectors of Rd by Sd−1. For matrices A ∈ Rd×d we use the operator
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norm that corresponds to viewing A as a linear map from Rd to Rd. We write
M(d) = Rd×d and let BM(d) denote the unit ball in M(d) with respect to the
operator norm (i.e., the set of contractions).

We write i for a t-tuple i = (it, . . . , it) ∈ [n]t of indices. Given vari-
ables x1, . . . , xn and a t-tuple i ∈ [n]t, we use x(i) to denote the monomial
xi1xi2 · · ·xit . Similarly, given a matrix-valued map A : [n] → Rd×d, we write
A(i) := A(i1)A(i2) . . . A(it). We let Sn be the symmetric group on n elements.

2.1. Norms of polynomials. As usual we let R[x1, . . . , xn] be the ring of
n-variate polynomials with real coefficients, whose elements we write as

(5) p(x) =
∑

α∈Zn
≥0

cαx
α,

where xα = xα1
1 · · ·xαn

n and cα ∈ R. The support of p is given by supp(p) =
{α ∈ Zn

≥0 | cα ̸= 0}. For α ∈ Zn
≥0, write |α| = α1 + · · · + αn, which gives the

degree of the monomial xα. A form of degree d is a homogeneous polynomial
of degree d. Denote by R[x1, . . . , xn]=d the space spanned by forms of degree d.
For p as in Eq. (5), define its homogeneous degree-d part by

p=d(x) =
∑
|α|=d

cαx
α.

When when we only evaluate polynomials on the hypercube it is natural to
consider the space of multilinear polynomials, which are those polynomials with
support in {0, 1}n. We write r : {−1, 1}n → R for a multilinear polynomial r.
The inner product in R[x1, . . . , xn] is given by

⟨p, q⟩ =
∑

α∈Zn
≥0

cαc
′
α,

where cα and c′α are the coefficients of p and q, respectively.
We recall the definition of ∥·∥1 and ∥·∥∞, which are seminorms of polynomials

in R[x1, . . . , xn], and norms on the space of multilinear polynomials.

∥p∥∞ := sup
x∈{−1,1}n

|p(x)|,

∥p∥1 := Ex∈{−1,1}n|p(x)|,
where the expectation is taken with respect to the uniform probability measure.

Toward defining the completely bounded norm, we restrict our attention to
forms only. For every p ∈ R[x1, . . . , xn]=t there are many t-tensors T ∈ Rn×···×n

such that T (x) = p(x) for every x ∈ Rn, where

T (x) :=
∑
i∈[n]t

Tix(i).
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These tensors only have to satisfy

(6)
∑
i∈Iα

Ti = cα ∀α ∈ Zn
≥0,

where Iα is the set of elements i of [n]t such that the element m ∈ [n] occurs αm

times in i. Each of these tensors gives a way of evaluating p in matrices, namely
for every matrix-valued map A : [n] → Rd×d,

T (A) :=
∑
i∈[n]t

TiA(i) =
∑
i∈[n]t

TiA(i1) . . . A(it).

We will use the following inner product for tensors:

⟨T,R⟩ =
∑
i∈[n]t

TiRi.

It is also important to consider the unique symmetric t-tensor Tp ∈ Rn×···×n

such that

p(x) = Tp(x).

For a tensor T = (Ti)i∈[n]t and permutation σ ∈ St we define T ◦σ := (Tσ(i))i∈[n]t ,
and we say that T symmetric if T = T ◦ σ for all σ ∈ St. The entries of this Tp

are given by

(7) (Tp)i =
cei1+···+eit

τ(i1, . . . , it)
for i ∈ [n]t,

where τ(i1, . . . , it) is the number of distinct permutations of the sequence
(i1, . . . , it). The completely bounded norm of a tensor T is given by3

∥T∥cb = sup{∥
∑
i∈[n]t

TiA1(i1) . . . At(it)∥ | As : [n] → BM(d), s ∈ [t], d ∈ N},

and the norm of a form p is

(8) ∥p∥cb = inf{
∑
σ∈St

∥Tσ∥cb |
∑
σ∈St

Tσ ◦ σ = Tp}.

In Section 3 we provide easier expressions for both ∥T∥cb (showing that a single
matrix-valued map A : [n] → Rd×d suffices) and ∥p∥cb.

3This is the completely bounded norm of T when regarded as an element of ℓ1n⊗h · · ·⊗h ℓ
1
n,

where h stands for the Haagerup tensor product, which determines a well-studied tensor
norm. See for instance [Pau03, Chapter 17].
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2.2. Block-multilinear forms. Our main result Theorem 4.1 is stated for a
special kind of polynomials, which are the block-multilinear forms.

Definition 2.1. Let P = {I1, . . . , It} be a partition of [n] into t (pairwise
disjoint) non-empty subsets. Define the set of block-multilinear polynomials
with respect to P to be the linear subspace

VP = Span
{
xi1 · · ·xit | i1 ∈ I1, . . . , it ∈ It

}
.

We also work with the larger space of polynomials spanned by monomials
where in the above we replace degree-1 with respect to a set by odd degree,
formally defined as follows.

Definition 2.2. For a family Q ⊆ 2[m] of pairwise disjoint subsets, let WQ ⊆
R[x1, . . . , xm] be the subspace of polynomials spanned by monomials xα with
α ∈ Zm

≥0 satisfying

(9)
∑
i∈I

αi ≡ 1 mod 2 ∀I ∈ Q.

Remark 2.3. Given a partition P of [n], we have VP ⊂ WP . In particular, VP
consists of precisely the multilinear polynomials in WP .

We note that all the norms and seminorms we have mentioned are norms
on the space VP for any partition P of [n]. Hence, we can take the dual of
these norms with respect to this subspace, so from now on ∥p∥∞,∗ and ∥p∥cb,∗
will be the dual of ∥p∥∞ and ∥p∥cb of VP , respectively. On the other hand,
when we say ∥R∥cb,∗ for some t-tensor Rn×···×n we refer to the dual norm of the
completely bounded norm of R with respect to the whole space of t-tensors.

We stress that ∥ · ∥∞,∗ need not be equal to ∥ · ∥1. This is because we are
taking the dual norms with respect to VP and not with respect to the space of
all multilinear maps, in which case the dual norm would be ∥p∥1. The following
example shows that ∥p∥∞,∗ ̸= ∥p∥1 in general.

Example 2.4. Consider n = 3, t = 1 and p = (x1 + x2 + x3)/3. Then,
∥p∥1 > 1/3, but ∥p∥∞,∗ ≤ 1/3. Indeed, as |p(x)| ≥ 1/3 for every x ∈ {−1, 1}3
and |p(x)| > 1/3 for some x ∈ {−1, 1}3, we have that ∥p∥1 > 1/3. On the other
hand, in this case P = {[3]} so VP is the set of linear polynomials. Note that
if q is linear, then ∥q̂∥1 = ∥q∥∞, where q̂ is the Fourier transform of q. Hence

∥p∥∞,∗ = sup
q∈VP ,∥q∥∞≤1

⟨p, q⟩ = sup
q∈VP ,∥q̂∥1≤1

⟨p̂, q̂⟩ ≤ sup
∥q̂∥1≤1

∥p̂∥∞∥q̂∥1 =
1

3
,

where in second equality we used Parseval’s identity (see [O’D14, Chapter 1]
for an introduction to Fourier analysis in the Boolean hypercube).
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It will be convenient to work with WQ because the projector onto this sub-
space has a nice structure. To state this formally we introduce some notation.
Let ΠQ : R[x1, . . . , xn] → WQ be the projector onto WQ. Given a t-tensor
T ∈ Rn×···×n, we define ΠQT as

(10) (ΠQT )i :=

{
Ti if i ∈ IQ,
0 else,

where IQ is the subset of indices i such that for every set of Q, the number
of indices in i that belong to that set is odd. Here we abuse notation since T
is a tensor and not a polynomial, however, this is consistent in the following
way: if T (x) = p(x) for every x ∈ {−1, 1}n, then ΠQT (x) = ΠQp(x) for every
x ∈ {−1, 1}n, where on the left-hand side we use Eq. (10) and on the right-
hand side ΠQ is the projection onto WQ. For every I ∈ Q let zI be a random
variable that takes the values −1 and 1 with probability 1/2, let z = (σI)I∈Q
and for every A : [n] → Rd×d we define the random variable A · z by

(A · z)(i) :=
{

A(i)zI if i ∈ I for some I ∈ Q,
A(i) otherwise.

Proposition 2.5. Let Q be a family of disjoint subsets of [n]. If p ∈ R[x1, . . . , xn],
then

ΠQp(x) = Ez

[
p(x · z)

∏
I∈Q

zI

]
for every x ∈ Rn. Moreover, if T ∈ Rn×···×n is a t-tensor, then

ΠQT (A) = Ez

[
T (A · z)

∏
I∈Q

zI

]
for every A : [n] → Rd×d and every d ∈ N.

Proof: By linearity, it suffices to prove the equality for monomials. Let α ∈ Zn
≥0.

Then we have

(x · z)α
∏
I∈Q

zI = xα
∏
I∈Q

z
1+

∑
i∈I αi

I ,

and hence

Ez[(x · z)α
∏
I∈Q

zI ] =

{
xα if 1 +

∑
i∈I αi = 0 mod 2 ∀I ∈ Q,

0 otherwise,

which equals the projection of xα on WQ. The statement for tensors follows
analogously. 2
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2.3. Completely bounded forms and quantum query algorithms. In
[ABP19] the outputs of quantum query algorithms were fully characterized in
terms of completely bounded forms.

Theorem 2.6 (Quantum query algorithms are completely bounded forms).
Let f : {−1, 1}n → [−1, 1] and let t ∈ N. Then,

E(f, t) = inf ∥f − q∥∞
s.t. h ∈ R[x1, . . . , xn+1]=2t with ∥h∥cb ≤ 1

q : {−1, 1}n → R, with q(x) = h(x, 1) ∀ x ∈ {−1, 1}n.

3. Reformulation of the completely bounded norm of a form

In this section we prove a few general results regarding the completely
bounded norms of tensors and polynomials. We provide simplifications of these
norms that are not only helpful to develop our results, but also might facili-
tate the use of completely bounded polynomials to prove results in quantum
query complexity. After this section, we will implicitly use the formulas of
Propositions 3.1 and 3.2 as definitions for ∥p∥cb and ∥T∥cb, respectively.
First, we provide a simpler expression (compared to Eq. (8)) for ∥p∥cb.

Proposition 3.1. Let p ∈ R[x1, . . . , xn]=t be a form of degree t. Then,

∥p∥cb = inf
{
∥T∥cb | p(x) = T (x) ∀x ∈ Rn

}
.

Proof: We first observe that for any t-tensor T and permutation σ ∈ St we
have

(T ◦ σ)(x) =
∑
i∈[n]t

Ti◦σx(i) =
∑
i∈[n]t

Ti◦σx(i ◦ σ) = T (x).

We then show the first inequality: ∥p∥cb ≤ inf
{
∥T∥cb | p(x) = T (x) ∀x ∈

Rn
}
. By restricting in (8) to decompositions where T σ = T/t! for all σ, we

have

∥p∥cb = inf
{∑

σ∈St

∥T σ∥cb | Tp =
∑
σ

T σ ◦ σ
}

≤ inf
{
∥T∥cb | Tp =

1

t!

∑
σ

T ◦ σ
}

= inf
{
∥T∥cb | p(x) = T (x)

}
.

Here to see the last equality we require two observations: first, we have p(x) =
Tp(x) =

1
t!

∑
σ T ◦ σ(x) = 1

t!

∑
T (x) = T (x), and second, if p(x) = T (x), then

Tp =
1
t!

∑
σ T ◦ σ since Tp is the unique symmetric t-tensor with Tp(x) = p(x).
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Now for the reverse inequality, let T σ (σ ∈ St) be such that Tp =
∑

σ T
σ ◦ σ

and define T =
∑

σ T
σ. Then we have

p(x) = Tp(x) =
∑
σ

T σ ◦ σ(x) =
∑
σ

T σ(x) = T (x),

and ∥T∥cb ≤
∑

σ ∥T σ∥cb by the triangle inequality. This shows that also

∥p∥cb ≥ inf
{
∥T∥cb | p(x) = T (x)

}
. 2

Second, we show that the contraction-valued maps As in the definition
of ∥T∥cb can be taken to be the same. This result can be understood as the fact
that the polarization constant of completely bounded multilinear maps is 1.4

Proposition 3.2. Let T ∈ Rn×···×n be a t-tensor. Then,

∥T∥cb = sup
{
∥
∑
i∈[n]t

TiA(i)∥ | A : [n] → BM(d), d ∈ N
}
.

Proof: Let |||T ||| be the expression in the right-hand side of the statement. Note
that it is the same as the expression of ∥T∥cb, but now the contraction-valued
maps A1, . . . , At are all equal. This shows that |||T ||| ≤ ∥T∥cb. To prove the
other inequality, let A1, . . . , At : [n] → BM(d) and u, v ∈ Sd−1. Now, define
the contraction-valued map A by A(i) :=

∑
s∈[t] ese

T
s+1 ⊗ As(i) for i ∈ [n], and

define the unit vectors u′ := e1 ⊗ u and v′ := et+1 ⊗ v. They satisfy

⟨u,A1(i1) . . . At(it)v⟩ = ⟨u′, A(i)v′⟩ for all i ∈ [n]t,

so in particular∑
i∈[n]t

Ti⟨u,A1(i1) . . . At(it)v⟩ =
∑
i∈[n]t

Ti⟨u′, A(i)v′⟩.

Taking the supremum over all As and u, v shows that ∥T∥cb ≤ |||T |||, which
concludes the proof. 2

Third, we give a convenient formula for the dual of the completely bounded
norm of a tensor. To state it in an elegant way, we introduce the following
subset of t-tensors in Rn×···×n:

K(n, t) := {⟨u,A(i)v⟩i∈[n]t | d ∈ N, u, v ∈ Sd−1, A : [n] → BM(d)}.(11)

Proposition 3.3. Let R ∈ Rn×···×n be a t-tensor. Then,

∥R∥cb,∗ = inf{w > 0 | R ∈ wK(n, t)}.(12)

4In Banach space theory a multilinear map T : X×· · ·×X → Y determines a polynomial
P : X → Y : A → T (A, . . . , A). The operator norms of T and P are equivalent if T is
symmetric: ∥T∥ ≤ ∥P∥ ≤ K∥T∥, where K is the polarization constant of T . For a survey
on the topic see, e.g., [MMFPSS22, Section 5.1].
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Remark 3.4. Note that Proposition 3.3 states that ∥R∥cb,∗ is the Minkowski
norm defined by K(n, t), so K(n, t) is the unit ball of (Rn×···×n, ∥ · ∥cb,∗).

Proof: Let |||R||| be the expression in the right-hand side of Eq. (12). First, we
show that |||·||| is a norm. We should check that |||R||| is well-defined, i.e., that
every tensor can be decomposed as ⟨u,A(i)v⟩. We observe that the standard
basis elements for the space of t-tensors are contained in K(n, t). Indeed, let
u := e1, v := et+1 and A(i) =

∑
s∈i−1(i) ese

T
s+1 then

⟨u,A(j)v⟩ =

{
1 if j = i,

0 otherwise.

To conclude that |||R||| is well-defined it then suffices to observe that the set of
scalar multiples of elements in K(n, t) is closed under addition. Indeed, if

Ri = ⟨u,A(i)v⟩ and R̃i = ⟨ũ, Ã(i)ṽ⟩,

for some u, v, ũ, ṽ ∈ Rd with ∥u∥2 = ∥v∥2 = w, ∥ũ∥2 = ∥ṽ∥2 = w̃ and maps
A, Ã : [n] → BM(d), then

Ri + R̃i = ⟨û, Â(i)v̂⟩,
where û, v̂ ∈ R2d are the vectors with ∥û∥2 = ∥v̂∥2 = w+w̃ defined by û := u⊕ũ,

v := v ⊕ ṽ and the map Â : [n] → BM(2d) is defined via

Â(i) =

(
A(i) 0

0 Ã(i)

)
.

This construction also shows that |||·||| satisfies the triangle inequality. It is also
clear that |||·||| is homogeneous and that |||R||| = 0 if and only if R = 0, so |||·|||
is a norm.

Finally, note that the completely bounded norm of a t-tensor R ∈ Rn×···×n

is given by

∥T∥cb = sup
{∣∣ ∑

i∈[n]t
Ti⟨u,A(i)v⟩

∣∣ | d ∈ N, u, v ∈ Sd−1, A : [n] → BM(d)

}
,

so ∥T∥cb = |||T |||∗, and by the fact that the dual of the dual norm is the primal
norm for finite-dimensional normed spaces, we conclude that

|||·||| = |||·|||∗∗ = ∥ · ∥cb,∗.
2

As was observed in [ABP19], in general ∥T∥cb need not be equal to ∥T ◦σ∥cb.
It is not hard to show however, that when T is a matrix (i.e. a 2-tensor) we
have ∥TT∥cb = ∥T∥cb. This is equivalent to ∥T ◦ σ∥cb = ∥T∥cb for the only
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non-trivial permutation in S2. Doing so, this gives the following reformulation
of the completely bounded norm of forms of degree 2.

Proposition 3.5. Let p ∈ R[x1, . . . , xn]=2 be a quadratic form and let Tp be
the unique symmetric matrix associated to p via (7). Then ∥p∥cb = ∥Tp∥cb.

Proof: Let T ∈ Rn×n be a matrix. First, we have

∥TT∥cb = sup
{
∥
∑
i,j

Tj,iA(i)B(j)∥ | A,B : [n] → BM(d)

}
(13)

= sup
{
∥
∑
i,j

Tj,iB(j)TA(i)T∥ | A,B : [n] → BM(d)

}
= ∥T∥cb,

where we use (twice) that for any matrix M we have ∥M∥ = ∥MT∥.
Let T ∈ Rn×n be a matrix with p(x) = T (x). Then, Tp = (T + TT)/2, so

from the above and the triangle inequality it follows that

∥Tp∥cb =
1

2
∥T + TT∥cb ≤ 1

2
(∥T∥cb + ∥TT∥cb) = ∥T∥cb.

Using Proposition 3.1 we conclude that ∥p∥cb = ∥Tp∥cb. 2

Considering only bilinear forms gives the following corollary.

Corollary 3.6. Let p : {−1, 1}n × {−1, 1}n → R be a bilinear form and let
A ∈ Rn×n be such that p(x, y) = xTAy for all x, y ∈ Rn. Then, ∥A∥cb = ∥p∥cb.

Proof: By Proposition 3.5 we have ∥p∥cb = ∥Tp∥cb. Now observe that Tp =

1
2

(
0 A
AT 0

)
and hence

∥Tp∥cb ≤ 1

2

(∥∥∥(0 A
0 0

)∥∥∥
cb
+
∥∥∥( 0 0

AT 0

)∥∥∥
cb

)
≤ 1

2

(
∥A∥cb + ∥AT∥cb

)
= ∥A∥cb,

where the last equality uses (13).
Conversely, let A,B : [n] → BM(d). Note that ∥

∑
i,j∈[n] Ai,jA(i)B(j)∥ =

∥
∑

i,j∈[n] Ai,jA(i)B(j)U∥ for any unitary matrix U . We may therefore assume
without loss of generality that

∥
∑
i,j∈[n]

Ai,jA(i)B(j)∥ =
∣∣∣ ∑
i,j∈[n]

Ai,j⟨u,A(i)B(j)u⟩
∣∣∣,
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for a single unit vector u. For every i ∈ [n], define the following contractions:

Q1(i) = A(i) = QT
2 (i), Q2(n+ i) = B(i) = QT

1 (n+ i).

Then,

∥Tp∥cb ≥
∥∥∥ ∑

i,j∈[n]

1

2

(
Ai,jQ1(i)Q2(n+ j) + Aj,iQ1(n+ i)Q2(j)

)∥∥∥
=

∣∣∣ ∑
i,j∈[n]

Ai,j⟨u,
A(i)B(j) +BT(j)AT(i)

2
u⟩
∣∣∣

=
∣∣∣ ∑
i,j∈[n]

Ai,j⟨u,A(i)B(j)u⟩
∣∣∣

Taking the supremum over A,B : [n] → BM(d) shows that ∥Tp∥cb ≥ ∥A∥cb. 2

We finally record the following useful property of ΠQ.

Lemma 3.7. Let Q be a family of disjoint subsets of [n] and p ∈ R[x1, . . . , xn]
and let norm ∈ {cb,∞, 1} where for the cb-norm we moreover require p to be
homogeneous. Then

∥ΠQp∥norm ≤ ∥p∥norm.

Proof: We will use Proposition 2.5 throughout the proof. First, we consider
the ∥ · ∥∞ norm. For every x ∈ {−1, 1}n, we have that x · z ∈ {−1, 1}n, so

|ΠQp(x)| ≤ Ez|p(x · z)
∏
I∈Q

zI | = Ez|p(x · z)| ≤ Ez∥p∥∞ = ∥p∥∞,

where in the first inequality we used Lemma 3.7 and the triangle inequality.
Similarly, for any t-tensor T ∈ Rn×···×n we have that ∥ΠQT∥cb ≤ ∥T∥cb. Given
that ΠQp(x) = ΠQT (x) if p(x) = T (x), it follows that

∥ΠQp∥cb ≤ ∥ΠQT∥cb ≤ ∥T∥cb

for every t-tensor T ∈ Rn×···×n such that T (x) = p(x). Taking the infimum
over all those T we arrive at ∥ΠQp∥cb ≤ ∥p∥cb. For ∥ · ∥1 we have

∥ΠQp∥1 = Ex|Ezp(x · z)
∏
I∈Q

zI | ≤ ExEz|p(x · z)| = EzEx|p(x)| = ∥p∥1,

where in the first equality we have used Lemma 3.7 and in the third we have
used the fact that the uniform measure is invariant under products of z ∈
{−1, 1}n. 2
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4. E(p, t) for block-multilinear forms

4.1. Proof of main result. In this subsection we will prove and formally
state our main result.

Theorem 4.1. Let P be a partition of [n] in 2t subsets and p ∈ VP . Then,

E(p, t) = sup {⟨p, r⟩ − ∥r∥cb,∗ | r ∈ VP , ∥r∥∞,∗ ≤ 1} .

Proof: We start from the expression given in Theorem 2.6 for E(p, t) and let
h ∈ R[x1, . . . , xn+1]=2t with ∥h∥cb ≤ 1 and let q : {−1, 1}n → R be defined by
q(x) = h(x, 1) for every x ∈ {−1, 1}n.
We first show that we can project q (and h) onto WP and obtain a feasible

solution whose objective value is at least as good as q. Since P is a partition
of [n], it defines a family of disjoint subsets of [n + 1], so by Lemma 3.7, we
have ∥ΠPh∥cb ≤ ∥h∥cb ≤ 1. Since the degree of h is at most 2t, the polynomial
ΠPh has degree at most 2t. This shows that each monomial in its support
contains exactly one variable from each of the 2t sets in P . We can therefore
observe that ΠPh does not depend on xn+1. Since h(x, 1) = q(x), we have
ΠPh(x, 1) = ΠPq(x) and therefore ΠPq ∈ VP . We then use Proposition 3.1 to
show that ∥ΠPq∥cb ≤ 1. Indeed, applying ΠP to a 2t-tensor T ∈ R(n+1)×···(n+1)

that certifies ∥h∥cb ≤ 1 results in a tensor ΠPT that satisfies ΠPT (i) = 0
whenever i contains an index equal to n + 1. So, ΠPT (x, 1) = ΠPq(x) for
every x ∈ {−1, 1}n and thus ΠPT , viewed as a 2t-tensor in Rn×···×n, certifies
∥ΠPq∥cb ≤ 1. For the objective value of ΠPq we finally observe that

∥p− ΠPq∥∞ = ∥ΠP(p− q)∥∞ ≤ ∥p− q∥∞,

where we used that p ∈ VP in the equality and we use Lemma 3.7 in the
inequality. This shows that

E(p, t) ≥ inf{∥p− q∥∞ | q ∈ VP with ∥q∥cb ≤ 1}.

To show that the above inequality is in fact an equality it suffices to observe that
given a polynomial q ∈ VP , we can define h ∈ R[x1, . . . , xn+1] as h(x, xn+1) =
q(x) and then we have ∥h∥cb ≤ ∥q∥cb.

Finally, in the above reformulation of E(p, t), we can express ∥p − q∥∞ in
terms of its dual norm and obtain

E(p, t) = inf
q
sup
r

⟨p− q, r⟩

s.t. q ∈ VP with ∥q∥cb ≤ 1,

r ∈ VP with ∥r∥∞,∗ ≤ 1.
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The desired result then follows by exchanging the infimum and supremum,
which we are allowed to do by von Neumann’s minimax theorem (see, e.g.,
[Nik54] for a simple statement and proof) and the definition of ∥r∥cb,∗. 2

4.2. How to compute the dual norms. Theorem 4.1 provides a formula for
E(p, t) when p ∈ VP that is easier to work with than the one of Theorem 2.6,
as we will see in the next sections. However, it is not clear yet how to compute
the dual norms appearing in Theorem 4.1. Now, we will give expressions for
both norms.

Proposition 4.2. Let P be a partition of [n] in t subsets and p ∈ VP . Then,

(14) ∥p∥∞,∗ = inf{∥r∥1 | r : {−1, 1}n → R, r ∈ WP , r=t = p
}
.

Proof: First, by Lagrange duality (cf. [BV04, Sec. 5.1.6]), we have

inf
{
∥r∥1 | r : {−1, 1}n → R, r=t = p

}
(15)

= sup
{
⟨p, q⟩ | q ∈ R[x1, . . . , xn]=t, ∥q∥∞ ≤ 1}

= sup
{
⟨p, q⟩ | q ∈ VP , ∥q∥∞ ≤ 1} = ∥p∥∞,∗,

where for the second equality we use that p ∈ VP and we replace q by ΠPq
(which does not increase its infinity-norm by Lemma 3.7). Second, we show
that the right-hand side of Eq. (14) equals (15). The lower bound follows from
inclusion of the feasible region, while the upper bound follows from Lemma 3.7
for ∥ · ∥1. 2

We have already seen in Example 2.4 that ∥p∥∞,∗ ̸= ∥p∥1 in general, because
we are taking the dual norm with respect to VP . For completeness we give an
alternative proof of the separation using Proposition 4.2.

Example 4.3. The upper bound ∥p∥∞,∗ ≤ 1/3 of Example 2.4 follows from
Proposition 4.2 by considering the multilinear map r(x) = (x1 + x2 + x3 +
x1x2x3)/3 that belongs to WP , satisfies r=1(x) = p(x) = (x1 + x2 + x3)/3 and
∥r∥1 = 1/3.

Proposition 4.4. Let P be a partition of [n] in t subsets and let p ∈ VP . Then,

∥p∥cb,∗ = t!∥Tp∥cb,∗.(16)

Proof: By duality and definition of ∥ · ∥cb, we have that

∥p∥cb,∗ = sup{
∑

α∈Zn
≥0

cαc
′
α : q ∈ VP , ∥q∥cb ≤ 1}

= sup{
∑

α∈Zn
≥0

cα
∑
i∈Iα

Ti : q ∈ VP , T (x) = q(x), ∥T∥cb ≤ 1},
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where cα and c′α are the coefficients of p and q, respectively. Now, let R ∈
Rn×···×n be a t-tensor such that R(x) = p(x) for every x ∈ Rn. Then we have,
using Eq. (6), that

∥p∥cb,∗ = sup{
∑

α∈Zn
≥0

∑
j∈Iα

Rj

∑
i∈Iα

Ti : q ∈ VP , T (x) = q(x), ∥T∥cb ≤ 1}.

In particular, if we choose R to be Tp, then we have

∥p∥cb,∗ = t! sup{
∑

α∈Zn
≥0

∑
i∈Iα

(Tp)iTi : q ∈ VP , T (x) = q(x), ∥T∥cb ≤ 1}

= t! sup{⟨Tp, T ⟩ : q ∈ VP , T (x) = q(x), ∥T∥cb ≤ 1}.

We now show that the expression on the right equals t! times ∥Tp∥cb,∗, which
we recall can be written as

∥Tp∥cb,∗ = sup{⟨Tp, T ⟩ : ∥T∥cb ≤ 1}.(17)

By inclusion of the feasible region we have that ∥p∥cb,∗ ≤ t!∥Tp∥cb,∗. For the
other inequality, let T ∈ Rn×···×n be a t-tensor and consider ΠPT as in Eq. (10).
By Proposition 2.5 we have ∥ΠPT∥cb ≤ ∥T∥cb ≤ 1. Also note that the polyno-
mial ΠPT (x) belongs to VP , because (ΠPT )i = 0 unless i contains exactly one
index from each set in the partition P . It remains to observe that (ΠPT )i = Ti

for all indices i ∈ [n]t for which (Tp)i ̸= 0 and therefore

⟨Tp, T ⟩ = ⟨Tp,ΠPT ⟩.

This shows that ∥p∥cb,∗ ≥ t!∥Tp∥cb,∗. 2

5. No additive converse for the polynomial method

In this section we will show that there is no analogue of Corollary 1.2 for
polynomials of degree 4. In other words, we will prove Theorem 1.3.

Theorem 1.3. There is no constant ε ∈ (0, 1) such that for every bounded
polynomial p of degree at most 4 we have E(p, 2) ≤ ε.

Proof: For any partition P of [n] in 2t subsets, Theorem 4.1 shows that

sup
p∈VP ,∥p∥∞≤1

E(p, t) = sup
p∈VP ,∥p∥∞≤1

sup
r∈VP ,∥r∥∞,∗≤1

⟨p, r⟩ − ∥r∥cb,∗

= sup
r∈VP ,∥r∥∞,∗≤1

∥r∥∞,∗ − ∥r∥cb,∗

= sup
r∈VP ,∥r∥∞,∗=1

1− ∥r∥cb,∗.
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Consider now the case t = 2 and the partition Pn = {{1, . . . , n}, {n+1, . . . , 2n}, {2n+
1, . . . , 3n}, {3n + 1}} of [3n + 1]. In [BEG22, Sec. 3.2] a sequence of forms
pn ∈ VPn was constructed with the property that

(18)
∥pn∥cb
∥pn∥∞

→ ∞.

Hence, by a duality argument we get that there is a sequence rn ∈ VPn such
that ∥rn∥cb,∗/∥rn∥∞,∗ → 0. Indeed, suppose towards a contradiction that there
is a K > 0 such that for every n ∈ N and every r ∈ VPn we have that
∥r∥cb,∗ ≥ K∥r∥∞,∗. Then,

∥p∥cb = sup
∥r∥cb,∗≤1

⟨r, p⟩ ≤ 1

K
sup

∥r∥∞,∗≤1

⟨r, p⟩ = 1

K
∥p∥∞,

which contradicts Eq. (18). The sequence rn shows that

sup
p∈VPn ,∥p∥∞≤1,n∈N

E(p, 2) = 1,

which implies the stated result. 2

Remark 5.1. In the above proof we used the fact that a sequence of forms
(pn)n∈N with ∥pn∥cb/∥pn∥∞ → ∞ implies the existence of a sequence rn ∈ VPn

with ∥rn∥cb,∗/∥rn∥∞,∗ → 0. In [BEG22, Sec. 3.2] such a sequence pn was
constructed. Let us point out that their construction in fact allows for an
explicit description of a sequence rn as well, for the details see Appendix A.

6. Characterizing KG with 1-query quantum algorithms

In this section we show the best additive error up to which 1-query quantum
algorithms can compute bounded bilinear forms is exactly 1−1/KG, where KG

is the real Grothendieck constant. We recall that it was shown in [AAI+16] that
for every bilinear form there exists a 1-query quantum algorithm that makes
additive error at most 1− 1/KG. It thus remains to show the lower bound.

Theorem 1.4. Let BB the set of bounded bilinear forms. Then,

sup
p∈BB

E(p, 1) = 1− 1

KG

.
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Proof: Theorem 4.1 shows the following:

sup
p∈BB

E(p, 1) = sup
∥p∥∞≤1

sup
∥r∥∞,∗≤1

⟨p, r⟩ − ∥r∥cb,∗(19)

= sup
∥r∥∞,∗≤1

∥r∥∞,∗ − ∥r∥cb,∗(20)

= sup
∥r∥∞,∗=1

1− ∥r∥cb,∗.

It thus remains to show that for bilinear forms there exists a constant K > 0
such that ∥p∥∞,∗ ≤ K∥p∥cb,∗, and KG is the smallest such constant. We do
so starting from Grothendieck’s theorem for matrices. It states that for A ∈
Rn×n we have ∥A∥cb ≤ K∥A∥∞, and KG is the smallest such constant. Each
bilinear form p : {−1, 1}n × {−1, 1}n → R uniquely corresponds to a matrix
A ∈ Rn×n such that p(x, y) = xTAy. Moreover, for such p and A one has
∥p∥∞ = ∥A∥∞ (immediate) and in Corollary 3.6 we showed ∥p∥cb = ∥A∥cb.
A duality argument then concludes the proof: if K > 0 is such that ∥p∥cb ≤
K∥p∥∞, then

∥p∥∞,∗ = sup
∥q∥∞≤1

⟨p, q⟩ ≤ sup
∥q∥cb≤K

⟨p, q⟩ = K∥p∥cb,∗.

2

7. Alternative proof of the main result via semidefinite
programming

First of all, we will state Theorem 7.1 (which corresponds, after some re-
formulation, to equation (20) of [GL19]), that gives an optimization problem
equivalent to the dual of the SDP E(f, t). Before that, we introduce the fol-
lowing notation. Given i ∈ [n+ 1]2t, α(i) ∈ {0, 1}n is defined as

(α(i))m :=

{
1 if m ∈ [n] and m occurs an odd number of times in i,
0 otherwise.

Theorem 7.1 ([GL19]). Let f : {−1, 1}n → R and t ∈ N. Then,

E(f, t) = sup (⟨f, r⟩ − w)/∥r∥1(21)

s.t. r : {−1, 1}n → R, d ∈ R
As : [n+ 1] → BM(d) for all s ∈ [2t]

u, v ∈ Rd, w = ∥u∥2 = ∥v∥2

cα(i) = ⟨u,A1(i1) . . . At(it)v⟩ for all i ∈ [n+ 1]2t,
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where cα are the coefficients of r.5

Second, we show that in the case of f belonging to WP , we can restrict r to
belong to WP . As before, we also show that a single contraction-valued map
A suffices.6

Lemma 7.2. Let P be a partition of [n] in 2t subsets and let p ∈ WP . Then,

E(p, t) = sup (⟨p, r⟩ − w)/∥r∥1(22)

s.t. r : {−1, 1}n → R, r ∈ WP , d ∈ R
A : [n+ 1] → BM(d), for s ∈ [2t]

u, v ∈ Rd, w = ∥u∥2 = ∥v∥2

cα(i) = ⟨u,A(i)v⟩ for all i ∈ [n+ 1]2t ,

where cα are the coefficients of r.

Proof: Let E∗(p, t) be the expression in the right-hand side of Eq. (22). By
inclusion of the feasible region, E(p, t) ≥ E∗(p, t). To prove the other inequality,
consider a feasible instance (u, v, w,As, r) for the SDP (21). Consider the

contraction-valued map Ã(i) :=
∑

s∈[2t] ese
T
s+1 ⊗ Âs(i) for i ∈ [n], where Âs(i)

is a d22t × d22t matrix defined by

Âs(i) =
⊕

z∈{−1,1}2t
(As · z)(i).

We also define Ã(n + 1) := 0 and the vectors ũ = e1 ⊗ û and ṽ = e2t+1 ⊗ v̂,
where û is the 2td-dimensional vector defined as the (normalized) direct sum
of 2t copies of u, i.e.,

û =
1√
22t

⊕
z∈{−1,1}2t

u,

and the same for v̂, but with an appropriate sign in each of the copies

v̂ =
1√
22t

⊕
z∈{−1,1}2t

v
∏
I∈P

zI .

This way, (ũ, ṽ, w, Ã,ΠPr) is a feasible instance of E∗(p, t). Indeed, if i takes the
value n+1 at least once or has any repeated indices, then α(i)1+· · ·+α(i)n < 2t,

5Following [GL19] one obtains Theorem 7.1, but with the As being unitary-valued maps.
Every contraction-valued map can be turned into an equivalent unitary-valued map by block-
encoding contractions into the top-left corner of unitaries.

6In fact, all of the contraction-valued maps As can be taken to be the same regardless f
belongs to WP or not, similarly to what is done in Proposition 3.2.
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so (ΠPr)α(i) = 0 because ΠPr ∈ WP , and ⟨ũ, Ã(i)ṽ⟩ = 0 by construction.
If i ∈ [n]2t and has no repeated indices, we get that

⟨ũ, Ã(i)ṽ⟩ = 1

22t

∑
z∈{−1,1}2t

⟨u,A1(i1) . . . A2t(i2t)v⟩
∏
I∈P

z
1+

∑
j∈I α(i)j

I .

Now, reasoning as in Proposition 2.5, we get that

⟨ũ, Ã(i)ṽ⟩ =
{

⟨u,A1(i1) . . . A2t(i2t)v⟩ if i takes one value in each I ∈ P ,
0 otherwise,

so putting everything together we get that

c̃α(i) = ⟨ũ, Ã(i)ṽ⟩,

where c̃α are the coefficients of ΠPr. Since Ã is contraction-valued and both
∥ũ∥2 = 1

22t

∑
z∈{−1,1}2t ∥u∥2 = ∥u∥2 = w and ∥ṽ∥2 = w, we conclude that

(ũ, ṽ, w, Ã,ΠPr) is a feasible instance of Eq. (22).
Finally, the value of (ũ, ṽ, w, Ã,ΠPr) is at least as large as the one of (u, v, w,A, r):

⟨p,ΠPr⟩ − w

∥ΠPr∥1
=

⟨p, r⟩ − w

∥ΠPr∥1
≥ ⟨p, r⟩ − w

∥r∥1
,

where in the equality we have used that that p belongs to WP and in the
inequality we have used Lemma 3.7. 2

Now, we are ready to prove Theorem 4.1, again.

Proof of Theorem 4.1: First note that given a feasible instance (u, v, w,A, r)
for Eq. (22) we clearly have that r=2t ∈ VP . We show that also w ≥ ∥r=2t∥cb,∗.
By Propositions 3.3 and 4.4, this requires us to show that t! times the unique
symmetric 2t-tensor Tr=2t associated to r=2t belongs to wK(n, t). To do so, we
show that t!Tr=2t = (⟨u,A(i)v⟩)i∈[n]2t . Let i ∈ [n]2t. If i has repeated indices
then (Tr=2t)i = 0 because r=2t is multilinear, and also ⟨u,A(i)v⟩ = 0, because
r is a feasible instance of Eq. (22). If i does not have repeated indices, then
t!(Tr=2t)i = cα(i), and also ⟨u,A(i)v⟩ = cα(i) because r is a feasible solution for
Eq. (22).

On the other hand, given r ∈ WP there is an instance (u, v, w,A, r) with
w = ∥r=2t∥cb,∗. Indeed, by Proposition 4.4 there is a map A : [n] → BM(d) and
vectors u, v whose norm squared is ∥r=2t∥cb,∗ such that cα(r=2t) = ⟨u,A(i)v⟩ for
every i ∈ Iα and every α ∈ Zn

≥0. Note that in order to have a feasible instance
for Eq. (22) we need to satisfy its last condition, and with these contractions
we can only satisfy it for α such that α1+ · · ·+αn = 2t. To satisfy it for every
α with α1 + · · · + αn ≤ 2t, we just have to change the contractions and the
vectors by Â(i) :=

∑
s∈[2t] ese

T
s+1 ⊗As(i) and û := e1 ⊗ u and v̂ := et+1 ⊗ v and



22 J. BRIËT, F. ESCUDERO GUTIÉRREZ, AND S. GRIBLING

define the extra contraction as Â(n + 1) = 0. This, way (û, v̂, ∥r=2t∥cb,∗, Â, r)
is a feasible instance. To sum up, so far we have proved that

E(p, t) = sup (⟨p, r⟩ − ∥r=2t∥cb,∗)/∥r∥1
s.t. r : {−1, 1}n → R, r ∈ WP .

We finally reformulate the above in terms of r=2t using the following two obser-
vations. Since p ∈ VP we have ⟨p, r⟩ = ⟨p, r=2t⟩. Moreover, by Proposition 4.2,
we have ∥r=2t∥∞,∗ = inf{∥r=2t∥1 | r : {−1, 1}n → R, r ∈ WP}. Hence,

E(p, t) = sup (⟨p, r=2t⟩ − ∥r=2t∥cb,∗)/∥r=2t∥∞,∗

s.t. r=2t ∈ VP ,

which concludes the proof. 2

8. An open question

Let P be a partition of of [n] in 2t subsets and let p ∈ VP with ∥p∥∞ ≤ 1.
From the characterization of quantum t-query algorithms of [ABP19] we know
that there is a quantum query algorithmA that outputs p/∥p∥cb on expectation.
In particular,

|E[A(x)]− p(x)| =
∣∣∣∣ p(x)∥p∥cb

− p(x)

∣∣∣∣ ≤ ∥p∥∞
(
1− 1

∥p∥cb

)
.

As a consequence, one has that

(23) E(p, t) ≤ ∥p∥∞
(
1− 1

∥p∥cb

)
.

Our Theorem 4.1 implies that both sides of Equation (23) are equal when you
take the supremum over all p ∈ VP . We wonder if that is true for every p ∈ VP .

Question 8.1. Let P be a partition of [n] in 2t subsets and let p ∈ VP . Is it
true that

E(p, t) = ∥p∥∞
(
1− 1

∥p∥cb

)
?

A positive answer to this question would strengthen our main technical con-
tribution, Theorem 4.1. Also, if we focus on the case t = 1, it would imply that
the method proposed in [AAI+16] to give an algorithm that computes p/∥p∥cb
with 1 query, provides the best 1 query approximation for every p (here the best
means the one that minimizes E(p, 1)). The analogue would be true with the
following method to the case t ≥ 1: take the algorithm that outputs p/∥p∥cb,
whose existence is ensured by the main result of [ABP19]. Finally, for the case
t = 1, it would imply a clean link between the biases of two player XOR games
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and quantum query algorithms. Indeed, given a matrix A ∈ Rn×n it both de-
fines a bounded bilinear form pA(x, y) = xTAy and a two player XOR game
GA, where the referee asks the pair of questions (i, j) with probability

π(i, j) =
|Ai,j|∑

i,j∈[n] |Ai,j|
and the payoff is given by

µ(i, j, a, b) =
1 + ab · sgn[Ai,j]

2
.

Corollary 3.6 states that

∥pA∥∞ = ∥A∥∞ and ∥pA∥cb = ∥A∥cb,
while Tsirelson’s work [Tsi80] implies that the classical and quantum biases of
GA are

β(GA) = ∥A∥∞ and β∗(GA) = ∥A∥cb.
Thus, a positive answer to Question 8.1 would imply that

E(pA, 1) = β(GA)
(
1− 1

β∗(GA)

)
.
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Appendix A. Explicit witnesses for Theorem 1.3

Here we show how the ideas from [BEG22], combined with Propositions 3.3
and 4.4, can be used to explicitly describe a sequence of polynomials rn ∈ VPn

that satisfies
∥rn∥cb,∗
∥rn∥∞,∗

→ 0,

where Pn = {{1, . . . , n}, {n+1, . . . , 2n}, {2n+1, . . . , 3n}, {3n+1}}. Below, C
will denote an absolute positive constant whose value may be different at each
occurrence.

We begin by introducing the Möbius function f0 : N → {−1, 0, 1}. An
integer a ∈ N has a unique prime-factorization a = pn1

1 · · · pnt
t for distinct

primes p1 < p2 < · · · < pt and positive integers n1, . . . , nt. We say that a is
square-free if all nis equal 1. Define

f0(a) :=

 1 if a is square-free and has an even number of prime factors
−1 if a is square-free and has an odd number of prime factors
0 if a is not square-free.

Then, we define qn ∈ R[x1, . . . , x3n] by

(24) qn(x) :=
∑

a,b∈Zn

x[a]nxn+[a+b]nx2n+[a+2b]nf0([a+ 3b]n),

where [a]n is the only integer belonging to [n] that is congruent with a mod n.
A basic bound on the number of square-free integers [HW+79, page 269] shows
that

∥qn∥22 ≥ Cn2.(25)

http://www.dtc.umn.edu/~reedsj/bound2.dvi
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Moreover, a recent result of Tao and Teräväinen [TT21] on the Gowers 3-
uniformity norm of qn and the generalized von Neumann inequality from addi-
tive combinatorics [TV06, Lemma 11.4] give that

∥qn∥∞ ≤ n2

(log log n)C
.(26)

Now define pn, rn ∈ VPn by

pn(x, x3n+1) :=
q(x)x3n+1

∥qn∥∞
,

rn(x, x3n+1) := q(x)x3n+1.

Since ∥pn∥∞ = 1, it follows from (25) and (26) that

(27) ∥rn∥∞,∗ ≥ ⟨rn, pn⟩ =
∥qn∥22
∥qn∥∞

≥ C(log log n)C .

To upper bound ∥rn∥cb,∗, one can use the following lemma proved in [BEG22],
which is a basic variant of an idea of Varopoulos [Var74].

Lemma A.1 (tri-linear Varopoulos decomposition). For qn as in (24), there
exist d ∈ N, A : [3n] → BMd

and u, v ∈ Sd−1 such that7

0 = ⟨u,A(i)A(j)A(k)A(l)v⟩
3!(Tqn)ijk = ⟨u,A(i)A(j)A(k)v⟩

0 = ⟨u,A(i)A(j)v⟩
0 = ⟨u,A(i)v⟩,

for all i, j, k, l ∈ [3n].

If we extend the operator-valued map A : [3n] → BMd
from the above lemma

by defining A(3n+ 1) := Id, then, for all i, j, k, l ∈ [3n+ 1], we have

4!(Trn)ijkl = ⟨u,A(i)A(j)A(k)A(l)v⟩.

Thus, from Propositions 3.3 and 4.4 it follows that ∥rn∥cb,∗ ≤ 1. Combining
with (27), we obtain the desired result

∥rn∥cb,∗
∥rn∥∞,∗

≤ 1

C(log log n)C
→ 0.

7Strictly speaking, 0 = ⟨u,A(i)A(j)A(k)A(l)v⟩ is not proven in Lemma 5 of [BEG22], but
the matrices defined in the proof of that lemma are easily verified to satisfy this.
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