
RANDOM RESTRICTIONS OF HIGH-RANK TENSORS
AND POLYNOMIAL MAPS
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Abstract. Motivated by a problem in computational complexity,
we consider the behavior of rank functions for tensors and polyno-
mial maps under random coordinate restrictions. We show that,
for a broad class of rank functions called natural rank functions,
random coordinate restriction to a dense set will typically reduce
the rank by at most a constant factor.

1. Introduction

Different but equivalent definitions of matrix rank have been general-
ized to truly different rank functions for tensors. Although they have
proved useful in a variety of applications, the basic theory of these
rank functions, describing for instance their interrelations and elemen-
tary properties, is still far from complete.

Without going into the definitions (which are given in Section 2), we
mention a number of these rank functions to indicate some of the con-
texts in which they have appeared. The slice rank of a tensor was in-
troduced by Tao [33, 34] to reformulate the breakthrough proof of the
cap set conjecture due to Croot, Lev and Pach [8] and Ellenberg and
Gijswijt [11]. Slice rank is generalized by the partition rank, which was
introduced by Naslund to prove bounds on the size of subsets of Fnq
without k-right corners [27], as well as provide exponential improve-
ments on the Erdős–Ginzburg–Ziv constant [26]. The analytic rank is
based on a measure of equidistribution for multilinear forms associated
to tensors over finite fields, and was introduced by Gowers and Wolf
to study solutions to linear systems of equations in large subsets of
finite vectors spaces [15]. Geometric rank, defined and studied by Kop-
party, Moshkovitz and Zuiddam in the context of algebraic complexity

This work was supported by the Dutch Research Council (NWO) as part of the
NETWORKS programme (grant no. 024.002.003).

1
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theory [23], gives a natural analogue of analytic rank for tensors over
infinite fields.

Closely related to these rank functions for tensors are notions of rank
for multivariate polynomials. As quadratic forms on finite-dimensional
vector spaces are naturally represented by matrices after choosing a
basis, matrix rank gives a corresponding notion of rank for quadratic
forms. This, in turn, may be generalized to rank functions for arbitrary
polynomials by considering their associated homogeneous multilinear
forms. Specific problems concerning multivariate polynomials might
also give rise to other notions of rank more well-suited to the application
at hand.

A notion of polynomial rank akin to the partition rank of tensors was
used already in the ’80s by Schmidt in work on algebraic geometry [31].
This notion has been re-discovered and proven useful on several occa-
sions (see Section 3), and is referred to by several different names in
the literature; here we will refer to it as Schmidt rank. Work on the
Inverse Theorem for the Gowers uniformity norms led Green and Tao
to define the notion of degree rank [16], which quantifies how hard it
is to express the considered polynomial as a function of lower-degree
polynomials; this notion was shown to be closely linked to equidistri-
bution properties of multivariate polynomials over prime fields Fp. Tao
and Ziegler [35] later studied the relationship between the degree rank
of a polynomial and its analytic rank, defined as the (tensor) analytic
rank of its associated homogeneous multilinear form, and exploited
their close connection in order to prove the general case of the Gowers
Inverse Theorem over Fnp .

Recent work on constant-depth Boolean circuits by Buhrman, Neu-
mann and the present authors gave rise to a problem on equidistri-
bution properties of higher-dimensional polynomial maps under biased
input distributions [5]. This motivated a new notion of analytic rank
for (high-dimensional) polynomial maps and prompted the study of
rank under random coordinate restrictions, which is the topic of this
paper.

Common to the tensors, polynomials and polynomial maps considered
here is that they can be viewed as maps on FX , where F is a given
field and X is a finite set indexing the variables. The main question
addressed in this paper is whether, if a map ϕ on FX has high rank,
most of its coordinate restrictions ϕ|I on FI also have high rank for
dense subsets I ⊆ X (where we also respect the product structure
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of X in the case of tensors). Our main results show that this is the
case for all “natural” rank functions, which include all those mentioned
above.

1.1. The matrix case. It is instructive to first consider the case of
matrices, which is simpler and illustrates the spirit of our main results.
For a matrix A ∈ Fn×n and subsets I, J ⊆ [n], denote by A|I×J the
sub-matrix of A induced by the rows in I and columns in J . Given
σ ∈ (0, 1), consider a random set I ⊆ [n] containing each element inde-
pendently with probability σ; we write I ∼ [n]σ when I is distributed
as such. Note that, if I ∼ [n]ρ and J ∼ [n]σ are independent, then
I ∪ J ∼ [n]η with η = 1− (1− ρ)(1− σ).

Proposition 1.1. For every σ ∈ (0, 1] there exists κ ∈ (0, 1] such that
for every matrix A ∈ Fn×n we have

PrI∼[n]σ

[
rk(A|I×I) ≥ κ · rk(A)

]
≥ 1− 2e−κ rk(A).

Proof: Write ρ = 1 −
√
1− σ and let J, J ′ ∼ [n]ρ be independent ran-

dom sets; note that J ∪ J ′ ∼ [n]σ. Let r = rk(A), and fix a set S ⊆ [n]
of r linearly independent rows of A. By the Chernoff bound [17], the
probability that the set J satisfies |J ∩ S| < ρr/2 is at most e−ρr/8.

Now let B := A|(J∩S)×[n] be the (random) sub-matrix of A formed
by the rows in J ∩ S. Since its rows are linearly independent, the
rank of B is precisely |J ∩ S|; let T ⊆ [n] be a set of |J ∩ S| linearly
independent columns of B. Then the probability that |J ′∩T | < ρ|T |/2
is at most e−ρ|T |/8, and the rank of B|(J∩S)×(J ′∩T ) = A|(J∩S)×(J ′∩T ) is
equal to |J ′ ∩T |. It follows from the union bound and monotonicity of

rank under restrictions that, with probability at least 1−2e−ρ
2r/16, the

principal sub-matrix of A induced by J ∪ J ′ has rank at least ρ2r/4.
The result now follows since J ∪ J ′ ∼ [n]σ. 2

1.2. Main results and outline of the paper. Here we generalize
Proposition 1.1 to tensors and polynomial maps for rank functions
that satisfy a few natural properties, namely “sub-additivity”, “mono-
tonicity”, a “Lipschitz condition” and, in the case of polynomial maps,
“symmetry” (see Section 2 and Section 3 for the precise definitions).
Those functions which satisfy these properties are called natural rank
functions ; we note that all notions of rank mentioned above are natural
rank functions.
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Since our results are independent of the field considered (which can be
finite or infinite), we will always denote it by F and suppress statements
of the form “let F be a field” or “for every field F”. We begin by
considering the case of tensors.

Definition 1.2 (Tensors). For finite sets X1, . . . , Xd ⊂ N, a d-tensor is
a map T : X1× · · ·×Xd → F. We will associate with any d-tensor T a
multilinear map FX1 ×· · ·×FXd → F and an element of FX1 ⊗· · ·⊗FXd

in the obvious way, and also denote these objects by T .

Definition 1.3 (Restriction of tensors). For a tensor T as in Defini-
tion 1.2 and subsets I1 ⊆ X1, . . . , Id ⊆ Xd, denote I[d] = I1 × · · · × Id
and write T|I[d] for the restriction of T to I[d]. If T is viewed as an

element of FX1 ⊗ · · · ⊗ FXd , then T|I[d] is simply a sub-tensor.

We define (F∞)⊗d to be the set of d-tensors over F with finite support.
Note that the tensors defined on finite sets naturally embed into this
set, and that the rank functions for tensors discussed above are invari-
ant under this embedding. Our main result regarding tensors is then
as follows:

Theorem 1.4. For every d ∈ N and σ ∈ (0, 1], there exist constants
C, κ > 0 such that the following holds. For every natural rank function
rk : (F∞)⊗d → R+ and every d-tensor T ∈

⊗d
i=1 Fni we have

PrI1∼[n1]σ ,...,Id∼[nd]σ

[
rk

(
T|I[d]

)
≥ κ · rk(T )

]
≥ 1− Ce−κ rk(T ).

As noted before, the union of independent Bernoulli-random subsets
of [n] is again a Bernoulli-random subset. As a consequence of this
and monotonicity under restrictions, in the standard case of “cubic”
tensors where every row is indexed by the same set, one also obtains
the following symmetric version of the last theorem:

Corollary 1.5. For every d ∈ N and σ ∈ (0, 1], there exist constants
C, κ > 0 such that the following holds. For every natural rank function
rk : (F∞)⊗d → R+ and every d-tensor T ∈ (Fn)⊗d we have

PrI∼[n]σ

[
rk

(
T|Id

)
≥ κ · rk(T )

]
≥ 1− Ce−κ rk(T ).

Whereas the proof of the matrix case (Proposition 1.1) uses the fact
that a rank-r matrix contains a full-rank r× r submatrix, the proof of
the general case of Theorem 1.4 proceeds differently and instead uses
ideas from probability theory, in particular concerning concentration
inequalities on product spaces. It will be presented in Section 2.
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Recently, the topic of high-rank restrictions of tensors was explored in
detail by Karam [20], and Gowers provided an example of a 3-tensor
of slice rank 4 which does not have a full-rank 4× 4× 4 subtensor (see
[20, Proposition 3.1]). There are some interesting parallels between
our results and those of Karam, which will be discussed later on in
Section 4; to the best of our knowledge, his results do not suffice to
establish our main theorem above, or the other way around.

Next we consider the setting of polynomial maps, which are formally
defined as follows:

Definition 1.6 (Polynomial map). A polynomial map is an ordered tu-
ple ϕ(x) =

(
f1(x), . . . , fk(x)

)
of polynomials f1, . . . , fk ∈ F[x1, . . . , xn].

We identify with ϕ a map Fn → Fk in the natural way. The degree of ϕ
is the maximum degree of the fi.

Definition 1.7 (Restriction of polynomial maps). For a polynomial
map ϕ : Fn → Fk and a set I ⊆ [n], define the restriction ϕ|I : FI → Fk
to be the map given by ϕ|I(y) = ϕ(ȳ), where ȳ ∈ Fn agrees with y on
the coordinates in I and is zero elsewhere.

We denote the space of all polynomial maps ϕ : Fn → Fk of degree at
most d by Pol≤d(Fn,Fk), and write

Pol≤d(F∞,Fk) =
⋃
n∈N

Pol≤d(Fn,Fk).

Our main result in this setting is the following:

Theorem 1.8. For every d ∈ N and σ, ε ∈ (0, 1], there exist con-
stants κ = κ(d, σ) > 0 and R = R(d, σ, ε) ∈ N such that the following
holds. For every natural rank function rk : Pol≤d(F∞,Fk) → R+ and
every map ϕ ∈ Pol≤d(Fn,Fk) with rk(ϕ) ≥ R, we have

PrI∼[n]σ

[
rk(ϕ|I) ≥ κ · rk(ϕ)

]
≥ 1− ε.

The proof of this theorem will be given in Section 3. For reasons
that will be made clear in that section, this proof will be (at least
superficially) quite different from that of the tensor case, Theorem 1.4;
it relies instead on results from analysis of Boolean functions taken
together with elementary combinatorial arguments.

In Section 4 we discuss the relationship between our work and other
works present in the literature. In particular, we will explain the spe-
cific problem which led to the study of rank under random coordinate
restrictions. We will also give a simple conditional proof of our main
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theorems mimicking the case of matrices given in Proposition 1.1, as
long as we assume the existence of a so-called “linear core” which would
generalize (in a somewhat weak sense) the existence of a full-rank r×r
submatrix inside matrices of rank r. Finally, we propose some open
problems to further our understanding of rank functions.

1.3. Notation. Here we collect some notation that will be used through-
out the paper. Given sets I1, . . . , Id, we write I[d] = I1 × · · · × Id. For
a set J and some σ ∈ [0, 1], we denote by πJσ the product distribu-
tion on {0, 1}J where each coordinate is independently set to 1 with
probability σ, or to 0 with probability 1 − σ; when J = [n], we write
simply πnσ . We write Jσ for the probability distribution over subsets
of J where each element is present independently with probability σ.
To denote that a random variable X is distributed according to a dis-
tribution µ, we write X ∼ µ.

2. Tensors

Recall that, for a field F and integer d ≥ 2, we denote by (F∞)⊗d the
set of all d-tensors of finite support over F. All our results (including
the values of the implied constants) will hold independently of the field
considered, so we will always denote it by F without further comment.

The notions of tensor rank we will consider here are those called natural
rank functions as defined below:

Definition 2.1 (Natural rank). We say that rk : (F∞)⊗d → R+ is a
natural rank function if it satisfies the following properties:

(1) Sub-additivity:
rk(T + S) ≤ rk(T ) + rk(S) for all T, S ∈ (F∞)⊗d.

(2) Monotonicity under restrictions:
rk

(
T|I[d]

)
≤ rk(T ) for all T ∈ (F∞)⊗d and all sets I1, . . . , Id ⊂ N.

(3) Restriction Lipschitz property:

rk
(
T|J[d]

)
≤ rk

(
T|I[d]

)
+
∑d

i=1 |Ji \ Ii| for all T ∈ (F∞)⊗d and all
sets I1 ⊆ J1, . . . , Id ⊆ Jd.

In order to motivate this definition, we now discuss several examples
(and one non-example) of natural rank functions that have been studied
in the literature. In what follows, given i ∈ [d] and an element u ∈ Xi,
the restriction of T : X1×· · ·×Xd → F to the set X1×· · ·Xi−1×{u}×
Xi+1× · · ·×Xd is referred to as a slice. Note that property (3) implies
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that a slice has rank at most 1; conversely, under the assumption of
property (1), property (3) is satisfied provided that slices have rank at
most 1.

Slice rank. The notion of slice rank was introduced by Tao [33] to give a
more symmetric version of Ellenberg and Gijswijt’s proof [11] of the cap
set conjecture, and was later further studied by Sawin and Tao [34]. It
has been used in the study of several extremal combinatorics problems,
such as bounding the maximal sizes of tri-colored sum-free sets [2] and
sunflower-free sets [28], as well as obtaining essentially tight bounds for
Green’s arithmetic triangle removal lemma [12].

A nonzero d-tensor T (viewed as a multi-linear form) has slice rank 1
if there exist i ∈ [d], R : FXi → F and S :

∏
j∈[d]\{i} FXj → F such

that T can be factored as T = RS. In general, the slice rank of T ,
denoted srank(T ), is then defined as the least r ∈ N such that there is
a decomposition T = T1+ · · ·+Tr where each Ti has slice rank 1. Slice
rank is sub-additive since the sum of decompositions of two tensors
S, T gives a decomposition of S + T . It is monotone under restrictions
since a decomposition of T induces a decomposition of its restrictions.
The restriction Lipschitz property can easily be verified inductively
slice-by-slice using sub-additivity.

Partition rank. The partition rank was introduced by Naslund [27] as
a more general version of the slice rank which allows one to handle
problems that require variables to be distinct. It was first used to
provide bounds on the size of subsets of Fnq not containing k-right
corners [27], as well as an upper bound for the Erdős-Ginzburg-Ziv
constant of Fnp [26].

A nonzero d-tensor T is defined to have partition rank 1 if there is
a nonempty strict subset I ⊂ [d] and tensors S :

∏
i∈I FXi → F and

R =
∏

i∈[d]\I FXi → F such that T can be factored as T = SR . In

general, the partition rank of T , denoted prank(T ), is defined as the
least r ∈ N such that there is a decomposition T = T1 + · · · + Tr
where each Ti has partition rank 1. The properties of Definition 2.1 for
partition rank follow for the same reasons as for slice rank.

Analytic rank. The notion of analytic rank was introduced by Gowers
and Wolf [15] when studying an arithmetic notion of complexity for
linear systems of equations over Fnp . It gives a quantitative measure of
equidistribution for the values taken by a tensor, and as such are well
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suited for arguments relying on the dichotomy between structure and
randomness. The analytic rank was further studied by Lovett [25], and
more recently it was used by the first author in a problem concerning
a random version of Szemerédi’s theorem over finite fields [4].

The analytic rank is defined only if F is finite. For a non-trivial additive
character χ : F → C∗, the bias of a d-tensor T is defined by

bias(T ) = Ex1∈FX1 ,...,xd∈FXdχ
(
T (x1, . . . , xd)

)
;

this definition is easily shown to be independent of the character χ
chosen. The analytic rank of T is then defined by

arank(T ) = − log|F| bias(T ).

Lovett proved that the analytic rank is sub-additive [25, Theorem 1.5].
Monotonicity follows from [25, Lemma 2.1]. The restriction Lipschitz
property now follows from sub-additivity and the fact that a single slice
has analytic rank at most 1.

Geometric rank. Motivated by applications in algebraic complexity
theory and extremal combinatorics, as well as an open problem posed
by Lovett, the geometric rank was introduced by Kopparty, Moshkovitz
and Zuiddam [23] as a natural extension of analytic rank beyond finite
fields. While its definition is algebraic geometric in nature, it turns
out to have deep connections with partition rank and analytic rank, as
shown by Cohen and Moshkovitz [7, 6].

For an algebraically closed field F, the geometric rank of a d-tensor T
is defined as

GR(T ) = codim{(x1, . . . , xd−1) : T (x1, . . . , xd−1, ·) = 0},
where codim denotes the codimension of an algebraic variety. If the
field F considered is not algebraically closed, then the geometric rank
is naturally defined via the embedding of F in its algebraic closure.
Sub-additivity and monotonicity of this rank function follow directly
from Lemma 4.2 and Lemma 4.4 of [23], respectively. The restriction
Lipschitz property follows from these properties and the fact that a
single slice has geometric rank at most 1.

Tensor rank. It is also instructive to remark on an important non-
example, the notion usually known simply as tensor rank, which is
an important notion in the context of computational complexity (see
for instance [24, 29]). A nonzero d-tensor T has tensor rank 1 if it
decomposes as T =

⊗
i∈[d] ui for some functions ui : FXi → F. The
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tensor rank of a general d-tensor T is then defined as the least r ∈ N
such that T = T1 + · · ·+ Tr, where each Ti has rank 1.

This rank function is not natural according to our Definition 2.1 be-
cause it fails the restriction Lipschitz property. Consider for instance
the 3-tensor T ∈ Fn×n×2 consisting of the identity matrix stacked on
top of an all-ones matrix. The identity slice has tensor rank n (which
implies that T has tensor rank at least n), while the all-ones slice has
tensor rank 1. Thus, removing the identity slice reduces the tensor
rank of T by at least n − 1, instead of reducing it by at most 1 as re-
quired by the restriction Lipschitz condition. This should not be taken
as an indication that our definition is too restrictive, however, as this
example also shows that Theorem 1.4 does not hold for tensor rank: a
σ-random restriction of T has tensor rank at most 1 with probability
1− σ. (This simple example can also be generalized in many ways.)

The main result of this section concerns how natural rank functions
behave under random coordinate restrictions. Intuitively, it shows that
random restrictions of high-rank tensors will also have high rank with
high probability. For convenience, we repeat below its formal statement
as given in the Introduction.

Theorem 2.2 (Theorem 1.4 restated). For every d ∈ N and σ ∈
(0, 1], there exist constants C, κ > 0 such that the following holds. For
every natural rank function rk : (F∞)⊗d → R+ and every d-tensor

T ∈
⊗d

i=1 Fni we have

PrI1∼[n1]σ ,...,Id∼[nd]σ

[
rk

(
T|I[d]

)
≥ κ · rk(T )

]
≥ 1− Ce−κ rk(T ).

We note that our proof also obtains good quantitative bounds for the
parameters in the theorem, namely

C = d

√
3

2σ
and κ =

ln 2

3

(σ
4

)d
if σ ∈ (0, 1/2),

C = d
√
2 and κ =

ln 2

2

(1
6

)d
if σ ∈ [1/2, 1].

Note that one must always have κ ≤ σd, as can be seen by considering a
diagonal tensor T and the slice rank function srank, which for diagonal
tensors equals the size of their support [33, Lemma 1].

2.1. Concentration for monotone sub-additive functions. The
main step in our proof of Theorem 1.4 is a type of concentration in-
equality for monotone sub-additive functions on the hypercube.
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In order to obtain such a result we will consider a notion of two-point
distance from sets A ⊆ {0, 1}n, which intuitively measures how many
coordinates of some given point x cannot be captured by any two ele-
ments of A.

Definition 2.3. Given a point x ∈ {0, 1}n and a set A ⊆ {0, 1}n, the
two-point distance between x and A is

h2(x;A) = min
y,z∈A

∣∣{i ∈ [n] : xi ̸= yi & xi ̸= zi
}∣∣.

Note that this “distance” h2(x;A) can be zero even if x /∈ A; for
instance, h2

(
00; {01, 10}

)
= 0. The reason for considering this notion

is that one gets much better concentration for h2 than one does for the
usual Hamming distance. This is shown by the following result, which
is a special case of an inequality of Talagrand [32, Theorem 3.1.1]:

Theorem 2.4. Let A ⊆ {0, 1}n be a set and µ =
⊗n

i=1 µi be a product
probability measure on {0, 1}n. Then

Prx∼µ
[
h2(x;A) ≥ k

]
≤ 2−kµ(A)−2 for all k ≥ 0.

The next lemma is the key result needed for proving our main theorem
for tensors, and it deals more abstractly with monotone, sub-additive
Lipschitz functions on the hypercube. We endow {0, 1}n with the usual
partial order, where x ≤ y if the support of x is contained in the
support of y. A function f : {0, 1}n → R is monotone if f(x) ≤ f(y)
whenever x ≤ y, and it is sub-additive if f(x+ y) ≤ f(x) + f(y) for all
x, y ∈ {0, 1}n with disjoint supports. Finally, f is 1-Lipschitz if∣∣f(x)− f(y)

∣∣ ≤ ∣∣{i ∈ [n] : xi ̸= yi
}∣∣ for all x, y ∈ {0, 1}n.

For a string x ∈ {0, 1}n and set I ⊆ [n], we let xI ∈ {0, 1}n be the string
that equals x on the indices in I and is zero elsewhere. The lemma that
follows and its proof are inspired by an argument of Schechtman [30,
Corollary 12].

Lemma 2.5 (Concentration inequality). Let f : {0, 1}n → R+ be a
monotone, sub-additive 1-Lipschitz function with maximum value r.
Then

Prx∼πn
σ

[
f(x) ≤ σr/4

]
≤

√
3

2σ
2−σr/12 if 0 < σ < 1/2,

Prx∼πn
σ

[
f(x) ≤ r/6

]
≤

√
2 2−r/12 if 1/2 ≤ σ ≤ 1.
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Proof: We first prove the first inequality above. Let σ ∈ (0, 1/2), and
consider the set

A =
{
x ∈ {0, 1}n : f(x) ≤ σr/4

}
.

By Talagrand’s Inequality (Theorem 2.4) we have

Prx∼πn
σ

[
h2(x;A) ≥ σr/6

]
≤ 2−σr/6 Prx∼πn

σ

[
f(x) ≤ σr/4

]−2
,

so to finish the proof it suffices to show that

Prx∼πn
σ

[
h2(x;A) ≥ σr/6

]
≥ 2σ/3.

We claim that
(1){

x ∈ {0, 1}n : f(x) ≥ 2σr/3
}
⊆

{
x ∈ {0, 1}n : h2(x;A) ≥ σr/6

}
.

Indeed, if h2(x;A) < σr/6 then there are y, z ∈ A such that∣∣{i ∈ [n] : xi ̸= yi & xi ̸= zi
}∣∣ < σr/6.

Denote I =
{
i ∈ [n] : xi ̸= yi & xi ̸= zi

}
, J =

{
i ∈ [n] : xi = yi

}
and

J ′ =
{
i ∈ [n] : xi ̸= yi & xi = zi

}
; note that these sets partition [n],

and by assumption |I| < σr/6. We then have

f(x) ≤ f(xI + xJ) + f(xJ ′)

= f(xI + yJ) + f(zJ ′)

≤ |I|+ f(yJ) + f(zJ ′)

≤ |I|+ f(y) + f(z)

< 2σr/3,

so
{
h2(x;A) < σr/6

}
⊆

{
f(x) < 2σr/3

}
and inclusion (1) follows. It

thus suffices to show that Prx∼πn
σ

[
f(x) ≥ 2σr/3

]
≥ 2σ/3.

We will next prove that, for any integer k ≥ 1, we have

(2) Prx∼πn
1/k

[
f(x) ≥ r/k

]
≥ 1/k.

This is done by a simple coupling argument, which will be important
for us again later on. Consider a uniformly random ordered k-partition
(I1, . . . , Ik) of [n]; thus the k sets Ii are pairwise disjoint and have
union [n], with each of the kn possible such k-tuples having the same
probability. Denoting by 1I the indicator function of set I, we have

r = f(1[n]) = f(1I1 + · · ·+ 1Ik) ≤
k∑
i=1

f(1Ii),
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so f(1Ii) ≥ r/k holds for at least one i ∈ [k] in every ordered partition
(I1, . . . , Ik). By symmetry, it follows that Pr

[
f(1I1) ≥ r/k

]
≥ 1/k.

Since the marginal distribution of 1I1 (and every other 1Ii) is precisely
πn1/k, we conclude that

Prx∼πn
1/k

[
f(x) ≥ r/k

]
= Pr

[
f(1I1) ≥ r/k

]
≥ 1/k,

as wished.

Now let k = ⌈1/σ⌉. Since 0 < σ < 1/2, we have 2σ/3 ≤ 1/k ≤ σ, and
so by monotonicity of f

Prx∼πn
σ

[
f(x) ≥ 2σr/3

]
≥ Prx∼πn

1/k

[
f(x) ≥ 2σr/3

]
≥ Prx∼πn

1/k

[
f(x) ≥ r/k

]
.

From inequality (2) we then conclude that

Prx∼πn
σ

[
f(x) ≥ 2σr/3

]
≥ 1/k ≥ 2σ/3,

finishing the proof of the first inequality in the statement of the lemma.

The second inequality is proven using the same arguments, now applied
to the parameter σ = 1/2 and the set A =

{
x ∈ {0, 1}n : f(x) ≤ r/6

}
.

We obtain slightly better bounds since in this case 1/σ = 2 is an
integer, and so no rounding errors occur. By monotonicity of f , the
same bound continues to hold for all σ > 1/2. 2

2.2. The Random Restriction Theorem. It is now a simple mat-
ter to use Lemma 2.5 to prove the Random Restriction Theorem for
tensors.

Proof of Theorem 1.4: Let rk : (F∞)⊗d → R be a natural rank func-

tion, and T ∈
⊗d

i=1 Fni be a tensor. We wish to show that

PrI1∼[n1]σ ,...,Id∼[nd]σ

[
rk

(
T|I[d]

)
≥ κ(σ) · rk(T )

]
≥ 1− C(σ)e−κ(σ) rk(T )

for some well-chosen constants C(σ), κ(σ) > 0 depending only on the
value of σ > 0 and the order d of the tensor. We consider here the case
where σ < 1/2, as the case where σ ≥ 1/2 is analogous.1

Define the function f1 : {0, 1}n1 → R+ as follows: for x ∈ {0, 1}n1 with
support J , f1(x) is the rank of the subtensor of T whose indices of the
first row belong to J . In formula:

f1(1J) = rk
(
T|J×

∏d
j=2[nj ]

)
for all J ⊆ [n1].

1This second case is also an immediate consequence of first case together with
monotonicity of rk under restrictions.
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By the definition of natural rank, f1 is a monotone, sub-additive 1-
Lipschitz function with maximum value rk(T ). Since 1J ∼ πn1

σ when
J ∼ [n1]σ, it follows from Lemma 2.5 that

(3) PrI1∼[n1]σ

[
rk

(
T|I1×

∏d
j=2[nj ]

)
≥ σ rk(T )

4

]
≥ 1−

√
3

2σ
2−

σ
12

rk(T ).

For any fixed I1 ⊆ [n1] satisfying f1(1I1) ≥ σ rk(T )/4, we define the
function f2 : {0, 1}n2 → R+ by

f2(1J) = rk
(
T|I1×J×

∏d
j=3[nj ]

)
for all J ⊆ [n2].

This function is again monotone, sub-additive and 1-Lipschitz, and it
has maximum value at least σ rk(T )/4. By Lemma 2.5 we have

PrI2∼[n2]σ

[
rk

(
T|I1×I2×

∏d
j=3[nj ]

)
≥

(σ
4

)2

rk(T )

]
≥ 1−

√
3

2σ
2−

σ
12

σ
4
rk(T ).

Since this holds whenever f1(1I1) ≥ σ rk(T )/4, taking the union bound
together with inequality (3) we obtain

PrI1∼[n1]σ ,I2∼[n2]σ

[
rk

(
T|I1×I2×

∏d
j=3[nj ]

)
≥

(σ
4

)2

rk(T )

]
≥ 1−2

√
3

2σ
2−

σ
12

σ
4
rk(T ).

Proceeding in this same way for each row of the tensor, and always
taking the union bound, we eventually conclude that

PrI1∼[n1]σ ,...,Id∼[nd]σ

[
rk

(
T|I[d]

)
≥

(σ
4

)d
rk(T )

]
≥ 1−d

√
3

2σ
2−

σ
12

(σ
4
)d−1 rk(T ),

which finishes the proof. 2

3. Polynomial maps

Next we consider the setting of polynomials and higher-dimensional
polynomial maps. Recall that Pol≤d(Fn,Fk) is the space of all poly-
nomial maps ϕ : Fn → Fk of degree at most d, and Pol≤d(F∞,Fk) =⋃
n∈N Pol≤d(Fn,Fk) is the space of all k-dimensional polynomial maps

over F of degree at most d.

Definition 3.1 (Natural rank). We say that rk : Pol≤d(F∞,Fk) → R+

is a natural rank function if it satisfies the following properties:

(1) Symmetry:
rk(ϕ) = rk(−ϕ) for all ϕ ∈ Pol≤d(F∞,Fk).

(2) Sub-additivity:
rk(ϕ+ γ) ≤ rk(ϕ) + rk(γ) for all ϕ, γ ∈ Pol≤d(F∞,Fk).
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(3) Monotonicity under restrictions:
rk(ϕ|I) ≤ rk(ϕ) for all ϕ ∈ Pol≤d(F∞,Fk) and all sets I ⊂ N.

(4) Restriction Lipschitz property:
rk(ϕ|I∪J) ≤ rk(ϕ|I) + |J | for all ϕ ∈ Pol≤d(F∞,Fk) and all
sets I, J ⊂ N.

Below we discuss some natural rank functions for polynomial maps
which have appeared in the literature. Symmetry holds trivially for
each of the ranks discussed.

Degree rank. Motivated by proving a version of the Gowers Inverse
Theorem for polynomial phase functions, Green and Tao defined the
notion of degree rank for functions over Fnp and showed that it is closely
related to equidistribution properties of polynomials [16]. For an inte-
ger d ≥ 1, the degree-d rank of a function f : Fn → F, denoted rkd(f),
is the least r ∈ N such that there exist polynomials Q1, . . . , Qr ∈
F[x1, . . . , xn] of degree at most d and a function Γ : Fr → F such that f
can be decomposed as f(x) = Γ

(
Q1(x), . . . , Qr(x)

)
. A slightly modi-

fied version of this rank function, where one also allows “nonclassical
polynomials” to enter the decomposition, was instrumental in the proof
of the general Gowers Inverse Theorem over Fnp by Tao and Ziegler [35].

It turns out that, restricted to polynomials of degree at most d, the
function 1

2
rkd−1 is a natural rank function. (The need to divide by 2 is a

normalization matter which has no important impact.) Sub-additivity
of this rank function follows directly since the sum of decompositions of
two polynomials P,Q gives a decomposition of their sum P+Q. Mono-
tonicity follows since a decomposition of P induces a decomposition of
any restriction P|I . The restriction Lipschitz property can be verified
inductively using the fact that for a polynomial P ∈ F[x1, . . . , xn] of de-
gree at most d, we have that P = P|[n−1]+xnP

′ for some polynomial P ′

of degree at most d− 1. This shows that rkd−1(P ) ≤ rkd−1(P|[n−1])+ 2,
where the extra 2 comes from the polynomials P ′ and xn.

Schmidt rank. A refinement of the notion of degree-d rank was intro-
duced by Schmidt in [31], which was rediscovered independently on
multiple occasions later on. The same notion, specialized to cubic
polynomials, was defined in [9] and referred to as q-rank, while in [21]
it was defined for homogeneous polynomials and referred to simply as
rank. It appeared under the name strength in [1], it was studied in [18]
without being explicitly defined and then again in [19], where it was
called strong rank.
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A polynomial P ∈ F[x1, . . . , xn] has Schmidt rank 1 if it is reducible
(i.e., it factors as P = QR for two non-constant polynomialsQ,R). The
Schmidt rank of a general polynomial, which we will denote prank(P )
to reflect its similarity with partition rank for tensors, is the least r ∈ N
such that P can be decomposed as P = P1 + · · ·+Pr, where each Pi is
reducible. Sub-additivity and monotonicity follow for the same reasons
as for slice and partition rank. The argument used for degree-d rank
shows the restriction Lipschitz property.

Analytic rank. The next notion of rank is defined more generally for
higher-dimensional polynomial maps, and requires the field F to be
finite. It was introduced in the context of circuit complexity and error-
correcting codes [5]; see Section 4 for more details. For a finite field F,
the analytic d-rank of a map ϕ ∈ Pol≤d(Fn;Fk) is defined by

arankd(ϕ) = − log|F|

(
max

ψ:Fn→Fk, deg(ψ)<d
Prx∈Fn

[
ϕ(x) = ψ(x)

])
.

Sub-additivity, monotonicity and the restriction Lipschitz property for
this rank function were proven in [5, Section 5].

Finally, we note that there is also another notion of analytic rank spe-
cific to polynomials, which equals the tensor analytic rank of their
associated homogeneous multilinear form. It was introduced together
with the notion of tensor analytic rank by Gowers and Wolf [15], and
can be equivalently defined for polynomials P of degree d by

− log|F| ∥χ(P )∥2
d

Ud ,

where χ is a nontrivial additive character of F and ∥ ·∥Ud is the Gowers
uniformity norm of order d. Sub-additivity and monotonicity under re-
strictions follow from the corresponding properties for tensor analytic
rank. Upon normalization by a factor 1/d, the restriction Lipschitz
property follows from the same property for the analytic rank of ten-
sors. This notion of rank was also important in Tao and Ziegler’s proof
of the Gowers Inverse Theorem over Fnp [35].

Our main result shows that random restrictions of a high-rank poly-
nomial map will also have high rank with high probability. We recall
below its formal statement as given in the Introduction.

Theorem 3.2 (Theorem 1.8 restated). For every d ∈ N and σ, ε ∈
(0, 1], there exist constants κ = κ(d, σ) > 0 and R = R(d, σ, ε) ∈ N
such that the following holds. For every natural rank function rk :
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Pol≤d(F∞,Fk) → R and every map ϕ ∈ Pol≤d(Fn,Fk) with rk(ϕ) ≥ R,
we have

PrI∼[n]σ

[
rk(ϕ|I) ≥ κ · rk(ϕ)

]
≥ 1− ε.

The proof of this theorem proceeds differently from the proof of The-
orem 1.4, which gives the analogous result for tensors. The reason for
this is that the natural choice of function f : {0, 1}n → R+ to which
one might apply the concentration inequality in Lemma 2.5, given by
f(1I) = rk(ϕ|I) (for some rank function rk), might fail to be 1-Lipschitz.
For instance, consider (in dimension k = 1) a 2n-variate polynomial
p(x1, . . . , xn, y1, . . . , yn) such that each monomial contains both an x
variable and a y variable. Then the rank of p restricted only to its x
variables is zero, and similarly for the restriction to the y variables,
while rk(p) can be of order Θ(n). This shows that rk(p|I∪J) can be
much larger than rk(p|I)+rk(p|J), and the argument used in the tensor
case breaks down.

3.1. The proof in expectation. The first step in our proof of Theo-
rem 1.8 is to show that the desired result is true in expectation, rather
than with high probability. More precisely, our next lemma shows that
the rank of random restrictions of a polynomial map are, in expecta-
tion, comparable to the rank of the full map.

Lemma 3.3 (Linear expectation). For every σ ∈ (0, 1] and every in-
teger d ≥ 1 there exists a constant c(σ, d) > 0 such that the following
holds. For all n, k ≥ 1 and all maps ϕ ∈ Pol≤d(Fn,Fk) we have

EJ∼[n]σ rk(ϕ|J) ≥ c(σ, d) rk(ϕ).

This will be shown by an inductive argument which requires some fur-
ther restrictions on the variables of the polynomial map, as well as
some further notation. Given a polynomial map ϕ : Fn → Fk and a
set I ⊆ [n], we denote by degI(ϕ) the total degree of the variables in-
dexed by I in ϕ, when all other variables are taken as constants. For
instance, if n = 4, k = 1 and

ϕ(x1, x2, x3, x4) = x21x2x4 + 2x23x4,

then (as long as char(F) ̸= 2) we have deg{1,2}(ϕ) = deg{1,4}(ϕ) = 3,
deg{2,3}(ϕ) = 2 and deg{4}(ϕ) = 1. Note that, in general, degI(ϕ) ̸=
deg(ϕ|I) due to the presence of monomials containing both variables
indexed by I and variables indexed by [n] \ I (which are then regarded
as constants).
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We denote by Ic := [n] \ I the complement of the set I, and (as usual)
J ∼ Iσ denotes the random process of choosing a subset of I where
each element i ∈ I belongs to J independently with probability σ.
Lemma 3.3 follows as a special case of the more technical lemma bellow
when we take I = [n] and ℓ = d.

Lemma 3.4. For every σ ∈ (0, 1] and every integer ℓ ≥ 1 there exists
a constant c(σ, ℓ) > 0 such that the following holds. Let d, n, k ≥ 1 be
integers, ϕ ∈ Pol≤d(Fn,Fk) be a polynomial map and I ⊆ [n] be a set
for which degI(ϕ) ≤ ℓ. Then

EJ∼Iσ rk(ϕ|J∪Ic) ≥ c(σ, ℓ) rk(ϕ).

Proof: Denote m = ⌈1/σ⌉. We will proceed by induction on ℓ ≥ 1
(note that the result is trivial if degI(ϕ) = 0).

For the base case, suppose that degI(ϕ) = 1. If rk(ϕ|Ic) > rk(ϕ)/2m we
can conclude by monotonicity, so suppose that rk(ϕ|Ic) ≤ rk(ϕ)/2m.
Let I = J1∪· · ·∪Jm be any partition of I into m parts. We claim that
we can decompose ϕ as

ϕ = ϕ|Ic +
m∑
i=1

(ϕ|Ji∪Ic − ϕ|Ic).

Indeed, let xα := xα1
1 · · ·xαn

n be a monomial in the support of ϕ, for
some α ∈ Zn≥0. If supp(α)∩ I = ∅, then xα = (xα)|Ic = (xα)|Ji∪Ic for all
i ∈ [m]. Otherwise, since degI(ϕ) = 1, we have that supp(α) ∩ Ji ̸= ∅
for exactly one i ∈ [m], and so (xα)|Ic = 0 and xα = (xα)|Ji∪Ic for
exactly one i ∈ [m].

By sub-additivity of rk, and since rk(−ϕ) = rk(ϕ), it then follows that

rk(ϕ) ≤ (m− 1) rk(ϕ|Ic) +
m∑
i=1

rk(ϕ|Ji∪Ic).

Since this holds for every m-partition of I, it follows from the same
coupling argument as in the proof of Lemma 2.5 that

EJ∼I1/m rk(ϕ|J∪Ic) ≥
rk(ϕ)− (m− 1) rk(ϕ|Ic)

m
≥ rk(ϕ)

2m
.

By monotonicity of rank under restrictions we conclude that

EJ∼Iσ rk(ϕ|J∪Ic) ≥ EJ∼I1/m rk(ϕ|J∪Ic) ≥
rk(ϕ)

2m
,

so in this case the lemma holds with c(σ, 1) = 1/2m.



18 JOP BRIËT AND DAVI CASTRO-SILVA

Suppose now that ℓ ≥ 2 and we have already proven the lemma up to
degree ℓ− 1. Suppose degI(ϕ) = ℓ and recursively define α0 = 1,

αr = 1+
1

c(σ, ℓ− 1)2

r−1∑
j=0

(
r

j

)
αj for 1 ≤ r ≤ ℓ, and

γ =

( ℓ∑
j=0

(
m

j

)
αj

)−1

.

Note that γ > 0 depends only on σ and ℓ.

We can assume that rk(ϕ|Ic) < γ rk(ϕ), as otherwise we immediately
conclude by monotonicity. If every m-partition I = A1 ∪ · · · ∪ Am
contains some part Ai satisfying rk(ϕ|Ai∪Ic) ≥ γα1 rk(ϕ), then the same
coupling argument as in the proof of Lemma 2.5 allows us to conclude
(taking c(σ, ℓ) = γα1/m, say). We may then assume there is some
(fixed) partition I = A1 ∪ · · · ∪ Am with

rk(ϕ|Ai∪Ic) < γα1 rk(ϕ) for all i ∈ [m].

Given a set S ⊆ [m] define AS =
⋃
i∈S Ai. For a polynomial map ϕ,

denote by ϕ[S] the polynomial map that remains by keeping in ϕ only
those monomials with variables in AS ∪ Ic and which have at least one
variable in each Ai, i ∈ S. For instance, ϕ[∅] = ϕ|Ic and ϕ[{i}] =
ϕ|Ai∪Ic − ϕ|Ic for each i ∈ [m]. Note that the set of monomials in ϕ[R]
is disjoint from the set of monomials in ϕ[S] if R ̸= S; moreover, every
monomial of ϕ appears in some ϕ[S] with |S| ≤ ℓ (since degI(ϕ) = ℓ
by assumption). It follows that

(4) ϕ =
∑

S⊆[m]: |S|≤ℓ

ϕ[S],

and more generally

(5) ϕ|AS∪Ic =
∑

R⊆S: |R|≤ℓ

ϕ[R] for all S ⊆ [m].
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From identity (4) we conclude there exists some S ⊆ [m] with |S| ≤ ℓ
for which rk(ϕ[S]) ≥ γα|S| rk(ϕ), as otherwise we would have

rk(ϕ) ≤
∑

S⊆[m]: |S|≤ℓ

rk(ϕ[S])

<
∑

S⊆[m]: |S|≤ℓ

γα|S| rk(ϕ)

= γ

ℓ∑
j=0

(
m

j

)
αj rk(ϕ)

= rk(ϕ).

Take some S ⊆ [m] of minimal size such that rk(ϕ[S]) ≥ γα|S| rk(ϕ);
by assumption we have that 2 ≤ |S| ≤ ℓ.

Fix some arbitrary i ∈ S and denote S ′ := S \ {i}; note that S ′ ̸= ∅.
Denote ψ := ϕ[S] : FAS∪Ic → Fk, and note that degAi

(ψ) < ℓ and
degAS′ (ψ) < ℓ. Apply the induction hypothesis to obtain

EJi∼(Ai)σ rk(ψ|Ji∪AS′∪Ic) ≥ c(σ, ℓ− 1) rk(ϕ[S]).

For any fixed Ji ⊆ Ai, we can apply the induction hypothesis to ψ|Ji∪AS′∪Ic

and obtain

EJS′∼(AS′ )σ rk(ψ|Ji∪JS′∪Ic) ≥ c(σ, ℓ− 1) rk(ψ|Ji∪AS′∪Ic),

from which we conclude

EJS∼(AS)σ rk(ψ|JS∪Ic) = EJi∼(Ai)σEJS′∼(AS′ )σ rk(ψ|Ji∪JS′∪Ic)

≥ c(σ, ℓ− 1)2 rk(ϕ[S])

≥ γα|S|c(σ, ℓ− 1)2 rk(ϕ).

Using identity (5) restricted to the variables in JS∪Ic, by sub-additivity
and monotonicity of rank we have

rk(ϕ|JS∪Ic) ≥ rk(ϕ[S]|JS∪Ic)−
∑
R⊊S

rk(ϕ[R]|JS∪Ic)

≥ rk(ϕ[S]|JS∪Ic)−
∑
R⊊S

rk(ϕ[R]),
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and so by taking expectation

EJS∼(AS)σ rk(ϕ|JS∪Ic) ≥ γα|S|c(σ, ℓ− 1)2 rk(ϕ)−
∑
R⊊S

rk(ϕ[R])

≥ γ

(
α|S|c(σ, ℓ− 1)2 −

|S|−1∑
j=0

(
|S|
j

)
αj

)
rk(ϕ)

= γc(σ, ℓ− 1)2 rk(ϕ).

Since EJ∼Iσ rk(ϕ|J∪Ic) ≥ EJS∼(AS)σ rk(ϕ|JS∪Ic) by monotonicity, the in-
duction step is proven with c(σ, ℓ) = γc(σ, ℓ − 1)2 > 0. The lemma
follows. 2

3.2. Monotone functions on the hypercube and boosting. Our
next result is a lemma which allows us to boost the probability of some
events (such as having high rank under random restrictions) from ε
to 1− ε by paying a relatively small price.

It will again be convenient to take a more abstract approach and deal
with Boolean functions rather than restrictions of polynomials. For a
Boolean function g : {0, 1}n → {0, 1}, the total influence of g under
distribution πnσ is given by

I(σ)(g) =
n∑
i=1

Ex∼πn
σ

∣∣g(x)− g(xi)
∣∣,

where xi differs from x only in the ith coordinate. Denote by µσ[g] :=
Ex∼πn

σ

[
g(x)

]
its expectation.

Lemma 3.5 (Boosting lemma). For every σ > 0 there is a con-
stant Cσ > 0 such that the following holds. Let n ∈ N, f : {0, 1}n → R+

be a monotone 1-Lipschitz function and ε ∈ (0, 1/2]. If r ≥ 1 satisfies

Prx∼πn
σ

[
f(x) ≥ r

]
> ε,

then Prx∼πn
1.01σ

[
f(x) ≥ r − C

1/ε2

σ

]
> 1− ε.

Proof: Consider the Boolean function g(x) := 1
[
f(x) ≥ r

]
. Note that

there exists q ∈ [σ, 1.01σ] such that I(q)(g) ≤ 100/σ, as otherwise by
the Margulis-Russo formula we would have

µ1.01σ[g] = µσ[g] +

∫ 1.01σ

σ

dµq[g]

dq
dq ≥

∫ 1.01σ

σ

I(q)(g)dq > 1.
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Let γ ∈ (0, ε/2) be a constant to be chosen later. By Friedgut’s junta
theorem [13], there is a C(q)100/γσ-junta h : {0, 1}n → {0, 1} such that

Prx∼πn
q

[
g(x) ̸= h(x)

]
< γ;

let J ⊆ [n], |J | ≤ C(q)100/γσ, be the set of variables on which h depends.
Then

µq[h] ≥ µq[g]− γ ≥ µσ[g]− γ > ε/2,

which implies Prz∼πJ
q

[
h(z) = 1

]
> ε/2. Since

Ez∼πJ
q
Pry∼πJc

q

[
g(y, z) ̸= h(z)

]
< γ,

it follows that

Prz∼πJ
q

[
Pry∼πJc

q

[
g(y, z) ̸= h(z)

]
≥ ε

]
< γ/ε.

Taking γ = ε2/2, we conclude there exists z ∈ {0, 1}J such that h(z) =
1 and

Pry∼πJc
q

[
g(y, z) ̸= 1

]
< ε.

Since f is 1-Lipschitz by assumption, we have

f(y, z) ≥ r =⇒ f(y, z′) ≥ r − |J | ∀z′ ∈ {0, 1}J ,

and thus by monotonicity

Prx∼πn
1.01σ

[
f(x) ≥ r − |J |

]
≥ Prx∼πn

q

[
f(x) ≥ r − |J |

]
= Ez′∼πJ

q
Pry∼πJc

q

[
f(y, z′) ≥ r − |J |

]
≥ max

z∈{0,1}J
Pry∼πJc

q

[
f(y, z) ≥ r

]
> 1− ε.

This is precisely what we wanted to prove, with constant

Cσ = sup
q∈[σ, 1.01σ]

C(q)200/σ.

2

3.3. The Random Restriction Theorem. Our main result, Theo-
rem 1.8, follows easily from the lemmas given above. Recall that we
wish to show that

PrJ∼[n]σ

[
rk(ϕ|J) ≥ κ(d, σ) · rk(ϕ)

]
≥ 1− ε

whenever rk(ϕ) ≥ R(d, σ, ε), for some well-chosen constants R(d, σ, ε)
and κ(d, σ) > 0.



22 JOP BRIËT AND DAVI CASTRO-SILVA

Proof of Theorem 1.8: Applying Lemma 3.3 with σ substituted by 0.9σ,
we obtain

EJ∼[n]0.9σ rk(ϕ|J) ≥ c(0.9σ, d) rk(ϕ).

Since rk(ϕ|J) ≤ rk(ϕ) for all subsets J ⊆ [n], we conclude that

PrJ∼[n]0.9σ

[
rk(ϕ|J) ≥

c(0.9σ, d)

2
rk(ϕ)

]
≥ c(0.9σ, d)

2
.

By possibly decreasing ε a little, we may assume that ε < c(0.9σ, d)/2.
Denote

κ(d, σ) =
c(0.9σ, d)

4
and R(d, σ, ε) =

4C
1/ε2

0.9σ

c(0.9σ, d)
,

where C0.9σ > 0 is the constant guaranteed by the boosting lemma,
Lemma 3.5. Applying the boosting lemma to the function J 7→ rk(ϕ|J)
with r = c(0.9σ, d) rk(ϕ)/2, we get

PrJ∼[n]0.9σ

[
rk(ϕ|J) ≥ r

]
≥ c(0.9σ, d)/2 > ε

=⇒ PrJ∼[n]σ

[
rk(ϕ|J) ≥ r − C

1/ε2

0.9σ

]
> 1− ε.

Since c(0.9σ, d) rk(ϕ)/2−C1/ε2

0.9σ ≥ κ(σ, d) rk(ϕ) whenever rk(ϕ) ≥ R(d, σ, ε),
this concludes the proof. 2

4. Discussion and open problems

The motivation for this work stems from a problem from theoretical
computer science which concerns decoding corrupted error-correcting
codes (ECCs) with NC0[⊕] circuits [5]. An ECC is a map E : Fk2 → Fn2
with the property that the points in its image (codewords) are well-
separated in Hamming distance, enabling retrieval of encoded messages
provided codewords are not too badly corrupted during transmission
or storage. A standard noise model for corruption is the symmetric
channel : for a parameter σ ∈ [0, 1] and given an element y ∈ Fn2 , this
channel samples a set I ∼ [n]σ and, for each i ∈ I, replaces the coordi-
nate yi with a uniformly distributed element over F2. The problem is
to determine whether NC0[⊕] circuits are capable of correctly decoding
corrupted codewords with good probability over this noise distribution.

It turns out that the mappings such circuits can effect are precisely
constant-degree polynomial maps ϕ : Fn2 → Fk2. One of the main results
in [5] shows that the fraction of messages such maps can correctly de-
code with non-negligible probability (over the symmetric channel noise
model) tends to zero as the size k of the messages grows. The proof of
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this result uses a structure-versus-randomness strategy to analyze the
decoding capability of ϕ based on the value arankd(ϕ) for d = deg(ϕ)
(the proof uses no assumptions on the specific ECC). The key to ana-
lyzing the case when this rank is high – the pseudorandom setting – is
to understand how this rank behaves under random restrictions origi-
nating from the symmetric channel noise; this is what motivated The-
orem 1.8. While in this application the degree of ϕ may exceed the
field size, a similar result but with quantitatively stronger bounds can
be obtained in the high-characteristic setting, where char(F) > deg(ϕ),
by using Theorem 1.4.

As already remarked in the Introduction, our proof of Theorem 1.4
for higher-order tensors proceeds quite differently from the matrix case
(Proposition 1.1). The reason for this is that an analogous proof would
require the existence of a high-rank sub-tensor; to explain this more
precisely, we introduce the following definition.

Definition 4.1 (Core property). Let A,B : R+ → R+ be unbounded
increasing functions, and let rk : (F∞)⊗d → R+. We say that rk satisfies
the (A,B)-core property if, for every d-tensor T ∈ (F∞)⊗d of high
enough rank rk(T ), there exist sets J1, . . . , Jd ⊂ N of size at most
A(rk(T )) such that rk(T|J[d]) ≥ B(rk(T )). We say that rk satisfies the

linear core property if it satisfies the (A,B)-core property for linear
functions A(r) = Kr and B(r) = cr, with K, c > 0.

Draisma [10] proved that slice rank has a core-like property, up to local
linear transformation and provided F is infinite. In particular his result
shows that, for every d, r ∈ N and every d-tensor T ∈

⊗d
i=1 FXi of slice

rank at least r, there are linear maps φi : FXi → Fn such that the
tensor (φ1⊗· · ·⊗φd)T also has slice rank at least r, where n = n(d, r)
is a constant depending only on d and r.

More in line with Definition 4.1, Karam [20] recently proved that several
rank functions for tensors defined in terms of decompositions, including
the slice rank, partition rank and tensor rank, satisfy the (A,B)-core
property for some functions A and B. For partition rank over finite
fields, for instance, he obtains explicit functions A(r) = exp(Od,F(r))
and B(r) = Ωd(r/(log r)

d); for the slice rank of 3-tensors he shows that
one can take A(r) = O(r) and B(r) = Ω(r1/3); and for tensor rank,
he shows the “perfect” linear core property A(r) = B(r) = r. Karam
conjectures, moreover, that all these rank functions in fact satisfy the
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linear core property [20, Conjecture 13.1]. In this case, a similar argu-
ment to the one we used for matrices in the introduction allows us to
easily deduce a Random Restriction Theorem:

Theorem 4.2. Suppose rk : (F∞)⊗d → R+ satisfies the linear core
property, monotonicity under restrictions and the restriction Lipschitz
property. Then for every σ ∈ (0, 1] there exist constants C, κ > 0 such

that, for every d-tensor T ∈
⊗d

i=1 Fni, we have

PrI1∼[n1]σ ,...,Id∼[nd]σ

[
rk

(
T|I[d]

)
≥ κ · rk(T )

]
≥ 1− Ce−κ rk(T ).

Proof: Let K, c > 0 be the constants in the linear core property of rk,
and denote λ = c/(3dK). For a given d-tensor T ∈

⊗d
i=1 Fni , fix sets

J1 ⊆ [n1], . . . , Jd ⊆ [nd] of size K rk(T ) such that rk(T|J[d]) ≥ c rk(T ).

Let I1 ∼ (J1)1−λ, . . . , Id ∼ (Jd)1−λ be random sets and consider the
random event

E =
{
|Ii| ≥ (1− 2λ)|Ji| for all 1 ≤ i ≤ d

}
.

Whenever E holds, by the restriction Lipschitz property we have

rk(T|I[d]) ≥ rk(T|J[d])−
d∑
i=1

|Ji \ Ii|

≥ c rk(T )− d · 2λK rk(T )

= c rk(T )/3.

By the Chernoff bound and union bound, the probability of E is at
least 1− d e−(c/12d) rk(T ); it then follows from monotonicity that

PrI1∼[n1]1−λ,...,Id∼[nd]1−λ

[
rk(T|I[d]) ≥

c

3
rk(T )

]
≥ 1− d e−

c
12d

rk(T ).

Now we apply the same argument to the (random) tensor T̃ = T|I[d] ,

and union-bound with the event
{
rk(T|I[d]) ≥ c rk(T )/3

}
. Since (Ii)1−λ

is distributed as [ni](1−λ)2 when Ii ∼ [ni]1−λ, we conclude that

PrI1∼[n1](1−λ)2 ,...,Id∼[nd](1−λ)2

[
rk(T|I[d]) ≥

( c
3

)2

rk(T )

]
≥ 1−2d e−

c
12d

c
3
rk(T ).

In general, applying this same argument recursively t times in total,
we get

PrI1∼[n1](1−λ)t ,...,Id∼[nd](1−λ)t

[
rk(T|I[d]) ≥

( c
3

)t
rk(T )

]
≥ 1−td e−

c
12d

( c
3
)t−1 rk(T ).

The theorem now follows by taking t to be the smallest integer for
which (1− λ)t ≤ σ, and using monotonicity under restrictions. 2
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We quickly remark on another interesting connection between our re-
sults and recent work on high-rank maps by Gowers and Karam [14].
These authors studied equidistribution properties of polynomials and
multilinear forms on Fnp when the variables are restricted to subsets
of their domain; this setting is quite similar to what motivated our
studies, as explained in the beginning of this section. A crucial step
in their arguments was a result (Proposition 3.5 in [14]) showing that
the values taken by multilinear forms of high partition rank must be
close to uniformly distributed under a wide range of non-uniform in-
put distributions. Under the well-known conjecture (within additive
combinatorics) that the partition rank and analytic rank of tensors are
equivalent up to a multiplicative constant, their result would straight-
forwardly imply the conclusion of our Random Restriction Theorem
(Theorem 1.4) when restricted to either the partition rank or the ana-
lytic rank of tensors, although making use of very different arguments.

Analogous to Definition 4.1, it also makes sense to define a core prop-
erty for polynomial maps (which include single polynomials by setting
k = 1).

Definition 4.3. Let A,B : R+ → R+ be unbounded increasing func-
tions, and let rk : Pol≤d(Fn;Fk) → R+. We say that rk satisfies the
(A,B)-core property if, for every polynomial map ϕ ∈ Pol≤d(Fn;Fk)
of high enough rank rk(ϕ), there exists a sets I ⊆ [n] of size at most
A(rk(ϕ)) such that rk(ϕ|I) ≥ B(rk(ϕ)). We say that rk satisfies the
linear core property if it satisfies the (A,B)-core property for linear
functions A(r) = Kr and B(r) = cr, with K, c > 0.

A property comparable to a core property for polynomial maps was
proved by Kazhdan and Ziegler [22]. For simplicity, we state it here only
for polynomials. They showed that a polynomial P ∈ F[x1, . . . , xn] with
high Schmidt rank and deg(P ) < char(F) is universal in the following
sense: If prank(P ) ≥ r, then for anyQ ∈ F[x1, . . . , xm] of degree deg(P )
there is an affine map ϕ : Fm → Fn such that Q = P ◦ ϕ, provided r is
large enough in terms of m. Taking Q to be a polynomial of maximal
Schmidt rank m shows that, up to an affine transformation, P restricts
to an m-variate polynomial of maximal Schmidt rank.

It would be of interest to know which notions of rank for polynomial
maps have a core property, and especially if any of the rank functions
discussed here have the linear core property (see [3] for recent progress
on this). The same proof as given for Theorem 4.2 shows that a linear
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core property implies a Random Restriction Theorem for polynomial
maps that is quantitatively stronger than Theorem 1.8. Finally, it
would also be interesting to know if there exists an example analogous
to that of Gowers for slice rank mentioned in Section 1, that would rule
out the possibility of a perfect linear core property (i.e. with A(r) =
B(r) = r, for functions A and B as in Definition 4.3).
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