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Abstract. Non-malleable codes (NMCs) protect sensitive data against degrees of corruption that
prohibit error detection, ensuring instead that a corrupted codeword decodes correctly or to some-
thing that bears little relation to the original message. The split-state model, in which codewords
consist of two blocks, considers adversaries who tamper with either block arbitrarily but inde-
pendently of the other. The simplest construction in this model, due to Aggarwal, Dodis, and
Lovett (STOC’14), was shown to give NMCs sending k-bit messages to O(k7)-bit codewords. It is
conjectured, however, that the construction allows linear-length codewords.

Towards resolving this conjecture, we show that the construction allows for code-length O(k5).
This is achieved by analysing a special case of Sanders’s Bogolyubov-Ruzsa theorem for general
Abelian groups. Closely following the excellent exposition of this result for the group Fn

2 by Lovett,
we expose its dependence on p for the group Fn

p , where p is a prime.

1. Introduction

1.1. Non-malleable codes. Non-malleable codes (NMCs) aim to protect data when it is subjected
to the kind of corruption that renders reliable error correction and detection impossible. The
defining feature of such codes is that an adversary who tampers with a codeword will have little
control over what it decodes to. Despite having appeared only recently [DPW10], these codes
already emerged as a fundamental object at the intersection of coding theory and cryptography,
such as in the construction of non-malleable commitment schemes [CGM+15, GPR15] and non-
malleable encryption schemes [CMTV15, CDTV16]. The study of non-malleable codes falls into
a much larger cryptographic framework of providing counter-measures against various classes of
tampering attacks. This work was pioneered by the early works of [ISW03, GLM+03, IPSW06],
and has since led to many subsequent models (see [KKS11, LL12] for an extensive discussion of
these models).

No code can protect against a completely unrestricted adversary. For this reason, NMCs are only
required to work for restricted families of “tampering functions” that an adversary may inflict. An
NMC limits an adversary’s control over the decoded message by introducing randomness in the en-
coding procedure, whereby the encoding function randomly samples a codeword from a distribution
that depends on the message. More formally, for an alphabet Γ and a family of tampering func-
tions F mapping Γn to itself, an NMC that protects against F consists of a randomized encoding
function Enc : {0, 1}k → Γn, mapping messages to Γn-valued random variables, and a deterministic
decoding function Dec : Γn → {0, 1}k ∪ {⊥}, where ⊥ denotes error detection. Roughly, the pair
(Enc,Dec) satisfies the following property. For every x ∈ {0, 1}n and for every f ∈ F , the (random)
codeword X = Enc(x) decodes correctly as Dec(X) = x, but the corrupted version Y = f(X)
either decodes to x, or to a random variable Dec(Y ) whose distribution is close to a distribution Df
depending on f but not on x.1 The main goal is to design NMCs for large classes of tampering
functions while maximizing the rate k/(n log |Γ|).

J. B. was supported by a VENI grant from the Netherlands Organisation for Scientific Research (NWO).
1 We refer to [DPW10] for a more formal definition.

1



The class of tampering functions that has been studied most in the past literature arises in the so-
called split-state model. In this model, the codeword index-set [n] is partitioned into two roughly
equally-sized sets I1, I2 ⊆ [n] and the tampering functions consist of pairs f = (f1, f2), where
fi : ΓIi → ΓIi is arbitrary. Codewords are then seen as being “split” into two states X = (X1, X2),
where Xi ∈ ΓIi , and tampered codewords have the form Y = (f1(X1), f2(X2)).

Aggarwal, Dodis, and Lovett [ADL14] gave the first and by far the simplest construction in the
split-state model. For a prime number p and positive integer n, their encoding function sends
{0, 1}k into Fnp × Fnp , giving split-state codewords of length 2n over the alphabet Γ = Fp. Based on
an improved construction of a so-called affine-evasive set due to [Agg15], their proof shows that the
construction has the desired properties when log p = Ω(k) and n = Ω(log6 p), which translates to
a rate of roughly log−6 k. However, the authors conjecture that their construction gives NMCs for
constant n (independent of p), giving constant-rate codes. Although constant-rate split-state NMCs
were later shown in [ADKO15], trying to search for the best-possible parameters for the [ADL14]
construction is interesting for the following two reasons. First, the construction from [ADL14] is
much simpler than the construction of [ADKO15], which was obtained by adding several layers of
encodings to an already complex construction of Chattopadhyay and Zuckerman [CZ14]. Second,
though the rate of [ADKO15] is a constant, this constant is very small and given the number of
layers used in the construction, it is unlikely that it can be improved significantly. In contrast,
there is no obvious reason why the construction of [ADL14, Agg15] cannot yield codes of rate 1/20.

Towards determining the optimal parameters for the [ADL14] construction, we show that it still
works when n = C log4 p for a sufficiently large constant C, giving rate roughly log−4 k. To this end,
we improve a key element of the security proof of the construction, namely the following striking
property of the inner-product function.

Theorem 1.1 (Aggarwal–Dodis–Lovett). There exist absolute constants c, C ∈ (0,∞) such that
the following holds. Let p be a prime, n ≥ C log6 p be an integer, L,R be independent uniformly
distributed random variables on Fnp and f, g : Fnp → Fnp be functions. Then, there exist random
variables u, a, b on Fp such that u is uniformly distributed, (a, b) is independent of u, and the

distributions of (〈L,R〉, 〈f(L), g(R)〉) and (u, au+ b) have statistical distance at most 2−cn
1/6

.

The result roughly says that for any f, g, the random variable 〈f(L), g(R)〉 is correlated with
some random variable of the form au+ b. The restriction on n imposed in the theorem is directly
responsible for the restriction on the codeword length in the [ADL14] construction. Improving this
therefore implies higher-rate codes. The proof of Theorem 1.1 relies crucially on a breakthrough
result of Sanders [San12] in additive combinatorics, concerning sumsets in general Abelian groups
(see below). We improve Theorem 1.1 by simply exposing the dependence of Sanders’s result on
the magnitude of p when one restricts to the group Fnp . In particular, we obtain the following result
(where all unspecified objects are as in Theorem 1.1).

Theorem 1.2. There exist absolute constants c, C ∈ (0,∞) such that the following holds. Let
n ≥ C log4 p be an integer and f, g : Fnp → Fnp be functions. Then, there exist random variables
u, a, b on Fp such that u is uniformly distributed, (a, b) is independent of u, and the distributions

of (〈L,R〉, 〈f(L), g(R)〉) and (u, au+ b) have statistical distance at most 2−cn
1/4

.

1.2. The Quasi-polynomial Frĕıman-Ruzsa Theorem. For a finite Abelian group G and a
subset A ⊆ G, define the sum set and difference set to be A + A = {a + b : a, b ∈ A} and
A − A = {a − b : a, b ∈ A}, respectively. The sizes of these sets are clearly bounded by |A|2, but
if A is a coset of a subgroup of G, then these sizes are exactly |A|. Conversely, if |A ± A| = |A|,
then A must be a coset of a subgroup. The identity |A±A|/|A| = 1 thus allows one to infer that A
possesses a lot of structure. One of the most important conjectures in additive combinatorics,
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the Polynomial Frĕıman-Ruzsa (PFR) Conjecture (attributed to Marton in [Ruz99]), states that
similar inferences can be made for sets in the group Fn2 that satisfy |A+A|/|A| � |A|.

Conjecture 1.3 (PFR Conjecture). Let A ⊆ Fn2 be such that |A−A| ≤ K|A|. Then, there exists
a set B ⊆ A of size |B| ≥ |A|/C1(K) that is contained in a coset of a subspace of size at most
C2(K)|A|, where C1(K) and C2(K) are polynomial in K.

This conjecture is sometimes stated differently in the literature; see [Gre] for the equivalence
of five common formulations. The above formulation is the one which appears most frequently in
Theoretical Computer Science, where it found several important applications, such as in linearity
testing [Sam07], extractors [ZBS11, AHL15], error-correcting codes [BDL13] and communication
complexity [BSLRZ14]. Major progress towards proving the PFR conjecture was made not long
ago by Sanders [San12], whose result applies to general Abelian groups as opposed to just to Fn2 .
Recall that an Abelian group G has torsion r if rg = 0 for every g ∈ G.2 The groups we care about
here, namely Fnp , thus have torsion p. For groups of bounded torsion, Sanders’s result implies the
following [San12, Theorem 11.1].

Theorem 1.4 (Bogolyubov-Ruzsa Lemma for bounded torsion Abelian groups). For every positive
integer r there exists a c(r) ∈ (0,∞) such that the following holds. Let G be an Abelian group of
torsion r, let A,B ⊆ G be such that |A+B| ≤ K min{|A|, |B|}. Then, (A−A) + (B−B) contains

a subgroup |V | of size at least |V | ≥ |A+B|/2c log4 2K .

Standard arguments (see the proof of Lemma 1.6 in Section 2) show that Theorem 1.4 im-
plies the quasi-polynomial Frĕıman-Ruzsa Theorem: the statement of Conjecture 1.3 but with

C1(K) = 2−C log4K and C2(K) = Kc for absolute constants C, c ∈ (0,∞). For NMCs, it was
shown in [ADL14] that the following corollary of [San12] — an Fp-analogue of the quasi-PFR
Theorem [ADL14, Lemma 10] — implies Theorem 1.1.

Lemma 1.5. There exist absolute constants C, c ∈ (0,∞) such that the following holds. Let p be a
prime, n be a positive integer, A ⊆ Fnp be such that |A−A| ≤ K|A|. Then, there exists a set B ⊆ A
of size |B| ≥ |A|/pC log6K such that Span(B)| ≤ Kc|A|.

Our improvement over Theorem 1.1, Theorem 1.2, follows from the following variant of the above
lemma, which we derive by exposing the dependence on the torsion p of Fnp in Theorem 1.4.

Lemma 1.6. Let A ⊆ Fnp be such that |A − A| ≤ K|A|. Then, there exists a set B ⊆ A of size

|B| ≥ |A|/pC log4(Kp) such that |Span(B)| ≤ pKc|A|, for absolute constants C, c ∈ (0,∞).

This improves Lemma 1.5 if K = poly(p). Since this is the case for the application to NMCs,
the proof of Theorem 1.1 given in [ADL14], but based on Lemma 1.6 instead of Lemma 1.5, gives
Theorem 1.2.

1.3. Linearity testing. One further application of Lemma 1.6 is to linearity testing. The linearity
test of Samoronidsky [Sam07] checks if a function f : Fnp 7→ Fnp is linear by picking x, x′ ∈ Fnp
uniformly at random and accepting (declaring f linear) if and only if f(x − x′) = f(x) − f(x′).
Based on Lemma 1.5 it was shown in [Sam07, ADL14] that the test rejects if f is far from being
linear. More precisely, it was shown that if Prx,x′∈Fn

p
[f(x − x′) = f(x) − f(x′)] ≥ ε, then there

exists a linear function g : Fnp → Fnp such that Pr[f(x) = g(x)] ≥ ε′, where ε′ = p−O(log6(1/ε))

for an absolute constant c ∈ (0,∞). Using Lemma 1.6 in the proof instead results in a bound of

ε′ = p−O(log4(p/ε)), which is an improvement if ε = p−Ω(1).

2If the group operation is written multiplicatively, then the group is said to have exponent r.
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2. Reduction to a Bogolyubov-Ruzsa Lemma for large sets

To avoid repeating the phrase “for absolute constants” many times, in the sequel C,C ′ will denote
such constants whose value in (0,∞) may change from line to line. For the proof of Lemma 1.6 we
closely follow Lovett’s excellent exposition [Lov15] of the result for the group Fn2 . The first step is
a standard reduction to the following special case of Theorem 1.4.

Theorem 2.1. Let A ⊆ Fnp be such that |A| ≥ pn−1/K24 and |A− A| ≤ K|A|. Then, there exists

a subspace V ⊆ 2A− 2A of size |V | ≥ p−C log4(K·p)|A|.

The reduction uses the fact that Theorem 2.1 implies the following seemingly stronger version
in which |A| is not bounded.

Theorem 2.2. Let A ⊆ Fnp be such that |A−A| ≤ K|A|. Then, there exists a subspace V ⊆ 2A−2A

of size |V | ≥ |A|/pC log4(K·p).

Lemma 1.6 follows by combining the above theorem with the following result of Plünnecke [Plü69].

Lemma 2.3 (Plünnecke). Let G be an Abelian group and A ⊆ G be such that |A − A| ≤ K|A|.
Then, for positive integers k, `, we have |kA− `A| ≤ Kk+`|A|.

Proof of Lemma 1.6: Let V ⊆ 2A − 2A be a subspace as in Theorem 2.2. Let R ⊆ A be a
maximal set such that no two elements from R belong to the same coset of V . By Lemma 2.3,

|R||V | = |R + V | = |A + V | ≤ K5|A|. It follows that |R| ≤ K5pC log4(K·p). Let B = A ∩ (V + g)

be such that |B| is maximal. Then, |B| ≥ |A|/|R| ≥ |V |/K5 ≥ |A|/K5pC log4(K·p) and moreover,
|Span(B)| ≤ | Span(V + g)| ≤ p|V | ≤ pK4|A|. 2

Lemma 2.4. Theorem 2.1 implies Theorem 2.2.

The proof of Lemma 2.4 uses the following definition and proposition.

Definition 2.5. Let A ⊆ Fnp be a subset and t,m be positive integers and φ : Fnp → Fmp be a linear
map. Then φ is a Freiman homomorphism of order t of the set A if for any k, ` ∈ N∪{0}, k+ ` = t,
it maps distinct elements a, b ∈ kA− `A to distinct elements φ(a), φ(b) in Fmp .

Proposition 2.6. Let A ⊆ Fnp be a subset and let t be a positive integer. Let m be the smallest
integer such that there exists a Freiman homomorphism φ : Fnp → Fmp of order t of the set A.
Then, φ(Fp · (tA− tA)) = Fmp .

Proof: Towards a proof by contradiction, assume that there exists an x ∈ Fmp such that for any
α ∈ Fp \ {0}, α · x 6∈ φ(tA− tA). We will show that the existence of such a vector contradicts the
assumption that m is minimal. To this end, let ψ : Fmp → Fm−1

p be an arbitrary linear map whose

kernel is the subspace S of Fmp spanned by x. We show that ψ ◦ φ : Fnp → Fm−1
p is also a Freiman

homomorphism of order t of A, which implies our contradiction to the minimality of m.
Let a, b be arbitrary distinct vectors in kA−`A for some k, ` ∈ N∪{0}, k+` = t. Moreover, since

(by assumption) φ is linear and in particular a Freiman homomorphism, and S ∩φ(tA− tA) = {0},
we have φ(a)− φ(b) = φ(a− b) 6∈ S. Hence, since the composition of two linear operators is again
linear, ψ ◦ φ(a) − ψ ◦ φ(b) = ψ

(
φ(a − b)

)
6= 0, which is to say that ψ ◦ φ maps distinct elements

of kA − `A to distinct elements in Fm−1
p . In other words ψ ◦ φ is a Freiman homomorphism of

order t of A, giving the desired contradiction. 2

Proof of Lemma 2.4: Let A ⊆ Fnp be a set such that |A − A| ≤ K|A| as in the statement of
Theorem 2.2. We begin by observing that without loss of generality, we may assume that 0 ∈ A.
To see this, let a ∈ A be an arbitrary element and consider the set A′ = A − a, which certainly
contains the origin. Also, A′ −A′ = A−A and therefore |A′ −A′| = |A−A| ≤ K|A| = K|A′|, but
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also 2A′− 2A′ = 2A− 2A. Hence, if there exists a subspace V ⊆ 2A′− 2A′ of the size promised by
Theorem 2.2 then V is also a subspace of 2A− 2A.

Notice that since the assumption 0 ∈ A implies that `A ⊆ tA for every ` ∈ [t], it follows that a
Freiman homomorphism of order t of A is also a Freiman homomorphism of order ` of A.

To deduce the conclusion of Theorem 2.2 from Theorem 2.1 we use a Freiman homomorphism to
embed A into a smaller space such that it occupies a large fraction of it. To this end, let φ : Fnp → Fmp
be a Freiman homomorphism of order 12 of A such that m is minimal. Let B = φ(A) ⊆ Fmp be the
embedding of A into Fmp . Notice that since φ is also a Freiman homohorphism of order 2 of A, we
have |B −B| = |A−A| ≤ K|A| = K|B|. Moreover, by Lemma 2.3 and Proposition 2.6,

pm = |Fmp | = |φ(Fp · (12A− 12A))| = |Fp(12φ(A)− 12φ(A))| ≤ K24 · p · |B|,
where the third equality uses linearity of φ. Thus |B| satisfies the conditions of Theorem 2.1.

Theorem 2.1 says that there exists a subspace V ⊆ 2B − 2B of size |V | ≥ p−C log4(K·p)|B|.
Since |B| = |A|, the subspace |V | has the same size as the subspace promised to exist by The-
orem 2.2. We now lift V into the larger space Fnp such that it becomes contained in 2A − 2A.
To this end, recall that φ maps distinct elements of 2A − 2A into distinct elements of 2B − 2B,
since 2B − 2B = φ(2A − 2A) and φ is a Freiman homomorphism of order 4 of A. Hence for each
element v ∈ V there is a unique element v′ ∈ 2A− 2A such that φ(v′) = v. Let V ′ ⊆ 2A− 2A be
the set of size |V ′| = |V | such that φ(V ′) = V .

What is left is to show that V ′ is in fact a subspace of Fnp . Clearly it suffices to show that
if u′, v′ ∈ V ′ then u′ + v′ ∈ V ′. Let u = φ(u′) and v = φ(v′). Since V is a linear subspace,
w = u+ v ∈ V . Let w′ be the unique element in V ′ such that φ(w′) = w. Since u′, v,′w′ ∈ 2A− 2A
we have u′ + v′ − w′ ∈ 6A − 6A. As φ is a Freiman homomorphims of order 12 of A and must
map 0 ∈ 12A to 0 ∈ Fmp , we have φ(u′+ v′−w′) = u+ v−w = 0. This implies u′+ v′−w′ = 0 and
thus u′ + v′ = w′ ∈ V ′ as desired. 2

3. Proof of Theorem 2.1

The proof of Theorem 2.1 is split into two parts.

3.1. Part 1: A large gentle shifting set. The first part uses the following standard notational
conventions and definitions. For a set A ⊆ Fnp , let 1A : Fnp 7→ {0, 1} be the indicator function of A,
and let ρA(x) = (pn/|A|)1A(x) be its density function. For a ∈ Fnp , we shorthand ρ{a}(x) by ρa(x).
The convolution of two functions f, g : Fnp 7→ R is defined by

f ∗ g(x) = Ey∈Fn
p
[f(y)g(x− y)]

and their inner product by
〈f, g〉 = Ex∈Fn

p
[f(x)g(x)].

Note the identities ρA ∗ f(x) = Ea∈A[f(x− a)] and ρx ∗ f(a) = f(x− a).
The main result of this section is as follows.

Lemma 3.1. Let A ⊆ Fnp be such that |A| ≥ pn/L. Then, for any τ > 0, there exists a set X ⊆ Fnp
of size |X| ≥ pn/(2LCτ2 log3 L) such that for every positive integer t ≤ τ logL and every x ∈ tX, we
have Ea,b∈A[1A−A(a− b− x)] ≥ 0.9.

The proof of the above lemma relies crucially on the following Fnp -version of a more general result
of Croot and Sisask [CS10].

Lemma 3.2. Let A ⊆ Fnp be such that |A| ≥ pn/L and let f : Fnp → [0, 1] be a function. Then,

for any q ≥ 1 and ε ∈ (0, 1), there exists a set X ⊆ Fnp of size |X| ≥ pn/(2Lq/ε
2
) such that for

every x ∈ X,
‖ρx ∗ ρA ∗ f − ρA ∗ f‖q ≤ Cε.
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Proof: Set ` = q/ε2. We show that for each x ∈ Fnp , at least half of the `-tuples (a1, . . . , a`) ∈ A`
satisfy

(1)
∥∥ρ(A+x) ∗ f −

1

`

∑̀
i=1

ρai ∗ f
∥∥
q
≤ Cε

2
.

To see why this suffices, for each x ∈ Fnp let Sx ⊆ (Fnp )` be the set of `-tuples in A` such that (1)

holds. We have |Sx| ≥ |A|`/2 ≥ pn`/(2 · L`). By the Pigeonhole Principle, there exists an `-tuple
(a1, . . . , a`) ∈ A` that, for some set X ′ ⊆ Fnp of size at least pn/(2 · L`), belongs to Sx for each
x ∈ X ′. By the triangle inequality, this implies that for every x, x′ ∈ X ′, we have

‖ρA+x ∗ f − ρA+x′ ∗ f‖q ≤
∥∥ρ(A+x) ∗ f −

1

`

∑̀
i=1

ρai ∗ f
∥∥
q

+
∥∥ρ(A+x′) ∗ f −

1

`

∑̀
i=1

ρai ∗ f
∥∥
q

≤ Cε.(2)

Since the `q norm is invariant under permutations of the coordinates, the left-hand side of (2)
equals

‖ρA+x ∗ f − ρA+x′ ∗ f‖q = ‖ρA+x+x′ ∗ f − ρA ∗ f‖q.
For any x ∈ X ′, the set X = X ′ + x then has the desired properties since |X| = |X ′| ≥ pn/(2L`).

We thus set out to prove that for every x ∈ Fnp , inequality (1) holds for at least half of A`.
Let a1, . . . , a` be independent uniformly distributed A-valued random variables. For each i ∈ [`]
and x, y ∈ Fnp define the random variable Y x

i (y) = ρA+x ∗ f(y) − ρai ∗ f(y). Notice that since the
functions ρA+x ∗ f and ρai ∗ f are [0, 1]-valued, we have |Y x

i (y)| ≤ 2. Hence, by definition of the `q
norms, linearity of expectation and the definition of the Y x

i (y) random variables,

E
[∥∥ρA+x ∗ f −

1

`

∑̀
i=1

ρai ∗ f
∥∥q
q

]
= E

[
Ey∈Fn

p

[∣∣1
`

∑̀
i=1

(
ρA+x ∗ f(y)− ρai ∗ f(y)

)∣∣q]]
= Ey∈Fn

p

[
E
[∣∣1
`

(
Y x

1 (y) + · · ·+ Y x
` (y)

)∣∣q]]
≤ (C ′q/`)q/2

= (
√
C ′ε)q,

where the last two lines follow from the Marcinkiewicz-Zygmund inequality [MZ37] and our choice
of `. Hence, by Markov’s inequality,

(3) Pr
[∥∥ρA+x ∗ f −

1

`

∑̀
i=1

ρai ∗ f
∥∥
q
≤
√
Cε

2

]
≥ 1

2
,

showing that if we let C =
√
C ′, at least half of the `-tuples in A` satisfy (1) as required. 2

Proof of Lemma 3.1: Let q ≥ 1 and ε ∈ (0, 1) be parameters to be set later and let X ⊆ Fnp be a
set as promised to exist by Lemma 3.2. Let t be a positive integer. We begin by observing that for
every x ∈ tX,

Pra,b∈A[a− b− x ∈ A−A] = Ea,b∈A[1A−A(a− b− x)]

= 〈ρx ∗ ρA ∗ 1A−A, ρA〉.
Moreover, by Hölder’s inequality,

1− 〈ρx ∗ ρA ∗ 1A−A, ρA〉 = 〈ρA ∗ 1A−A − ρx ∗ ρA ∗ 1A−A, ρA〉
≤ ‖ρA ∗ 1A−A − ρx ∗ ρA ∗ 1A−A‖q‖ρA‖r,(4)
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where r is defined by 1/q + 1/r = 1. To lower bound the above expectations we upper bound the

two norms in (4). By our assumption on the size of A, we have ‖ρA‖r = (pn/|A|)(r−1)/r ≤ L1/q.
Let x = x1 + · · ·+ xt, where xi ∈ X for 1 ≤ i ≤ t. To bound the remaining norm we telescope the
difference

ρA ∗ 1A−A − ρx1+···+xt ∗ ρA ∗ 1A−A =
t∑
i=1

(ρx1+···+xi−1 ∗ ρA ∗ 1A−A − ρx1+···+xi ∗ ρA ∗ 1A−A).

Then, by the triangle inequality, invariance of the `q norm under permutations of the coordinates
and Lemma 3.2 we get

‖ρA ∗ 1A−A − ρx1+···+xt ∗ ρA ∗ 1A−A‖q ≤
t∑
i=1

‖ρx1+···+xi−1 ∗ ρA ∗ 1A−A − ρx1+···+xi ∗ ρA ∗ 1A−A‖q

=
t∑
i=1

‖ρA ∗ 1A−A − ρxi ∗ ρA ∗ 1A−A‖q ≤ tCε.

Hence, for every x ∈ tX, we have

Ea,b[12A(x+ a+ b)] ≥ 1− ‖ρA ∗ 1A−A − ρx ∗ ρA ∗ 1A−A‖q‖ρA‖r ≥ 1− tCε · L1/q .

Set ε = 1/(20Ct), q = logL. Then, for t ≤ τ logL the above bound becomes 0.9 and the size of X

is at least |X| ≥ pn/(2Lq/ε2) ≥ pn/(2L400C2τ2 log3 L). 2

3.2. Part 2: A subspace from the Fourier support. Denote ω = e2πi/p. For X ⊂ Fnp , u ∈ Fnp ,
and γ ∈ [0, 1], define

X̂(u) = Ex∈X [ω〈u,x〉]

and define
Specγ(X) = {u ∈ Fnp : |X̂(u)| ≥ γ}.

For Y ⊆ Fnp , let

Y ⊥ = {v ∈ Fnp : 〈u, v〉 = 0, ∀u ∈ Y }.

Theorem 3.3 (Chang [Cha02]). Let X ⊆ Fnp . Then

dim(Specγ(X)) ≤ 8γ−2 log(pn/|X|).

Lemma 3.4. Let t be a positive integer, A,X ⊆ Fnp . Let a, b ∈ A, x1, . . . , xt ∈ X be independent
uniformly distributed random variables and let x = x1 + · · ·+ ct. Assume that

(5) E[1A−A(a− b− x)] ≥ 1− ε.
Set V = Span(Spec1/2(X))⊥. Then, for an independent and uniformly distributed v ∈ V , we have

(6) E[1A−A(a− b− x+ v)] ≥ 1− ε− 1

2t
pn

|A|
.

Proof: We will show that

(7)
∣∣∣E[1A−A(a− b− x)− E[1A−A(a− b− x+ v)]

∣∣∣ ≤ pn

2t|A|
.

To this end, we begin by observing that by the Fourier Inversion Formula, the first and second
expectation in (7) can be written as∑

u∈Fn
p

Â(u)Â(−u)X̂(−u)t1̂A−A(u) and
∑
u∈Fn

p

Â(u)Â(−u)X̂(−u)tV̂ (u)1̂A−A(u),

respectively.
7



Since V is a subspace, V̂ (u) = 1 if u ∈ V ⊥ and V̂ (u) = 0 otherwise. The left-hand side of (7)
therefore becomes ∣∣∣ ∑

u6∈V ⊥
Â(u)Â(−u)X̂(−u)t1̂A−A(u)

∣∣∣.
By definition of V we have V ⊥ = Span(Spec1/2(X)). It follows that if u 6∈ V ⊥ then |X̂(−u)| < 1/2.

Also it is easy to see that |1̂A−A(u)| ≤ 1. Hence,∣∣∣ ∑
u6∈V ⊥

Â(u)Â(−u)X̂(−u)t1̂A−A(u)
∣∣∣ ≤ 1

2t

∑
u6∈V ⊥

|Â(u)Â(−u)|

≤ 1

2t

∑
u∈Fn

p

|Â(u)| · |Â(−u)|

≤ 1

2t
· p

n

|A|
,

which gives the result. 2

Proof of Theorem 2.1: Recall that A has size at least |A| ≥ 2n/L for L = K24 · p. Lemma 3.1 says

that there exists a set X ⊆ Fnp of size |X| ≥ pn/(2L100C log3 L) such that for any t ≤ 10 logL and
any x ∈ tX, we have Ea,b∈A[1A−A(a − b − x)] ≥ 0.9. Theorem 3.3 and Lemma 3.4 combined give

us a subspace V of size at least |V | ≥ pn/(232pC
′ log4 L) where C ′ = 3200C, such that the left-hand

side of (5) can be written as and bounded by

E
[
Ev∈V [1A−A(a− b− x+ v)]

]
≥ 0.8,(8)

where the outer expectation is taken over uniformly distributed a, b ∈ A and x1, . . . , xt ∈ X.
We show that V ⊆ 2A − 2A, implying the result. By the averaging principle, (8) shows that

there exist a, b ∈ A and x ∈ tX such that 80% of the v ∈ V satisfy a − b − x + v ∈ A − A. This
implies that v ∈ A − A − a + b + x. We use the pigeon hole principle to show that this implies
that V ⊆ 2A− 2A. To this end, fix a v ∈ V \{0} and notice that there exists a complete matching
of |V |/2 pairs (v1, v2) ∈ V × V such that v = v1 + v2 (take any v1 ∈ V and set v2 = v − v1). This
implies that their exists v1, v2 ∈ A−A− a+ b+x such that v1 + v2 = v, which in turn implies that
v ∈ 2A− 2A. 2
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[MZ37] J. Marcinkiewicz and A. Zygmund. Quelques théoremes sur les fonctions indépendantes. Fund. Math,
29:60–90, 1937.
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