
Contract-Based Return-Value Commutativity
Safely Exploiting Contract-Based Commutativity for Faster Serializable Transactions

Tim Soethout
ING Bank, Amsterdam

CWI, Amsterdam
TheNetherlands

Tim.Soethout@ing.com

Tijs van der Storm
CWI, Amsterdam

University of Groningen, Groningen
The Netherlands
storm@cwi.nl

Jurgen J. Vinju
CWI, Amsterdam

Eindhoven University of Technology
The Netherlands

Jurgen.Vinju@cwi.nl

Abstract
A key challenge of designing distributed software systems is
maintaining data consistency.We can define data consistency
and data isolation guarantees –e.g. serializability– in terms
of schedules of atomic reads and writes, but this excludes
schedules that would be semantically consistent. Others use
manually provided information on “non-conflicting opera-
tions” to define guarantees that work formore applications al-
lowingmore parallel schedules. To be safe, an engineer might
avoid marking operations as non-conflicting, with detrimen-
tal effects to efficiency. To be fast, they might mark more
non-conflicting operations than is strictly safe.

Ourgoal is tohelpengineersbyautomaticallyderivingcom-
mutative operations (using their respective contracts) such
that more parallel schedules with global consistency are pos-
sible.We define a new general consistency and isolation guar-
antee named “Return-Value Serializability” to check consis-
tency claims automatically, and we present distributed event
processing algorithms that make use of the same “Contract-
based Commutativity” information. We validated both the
definitions and the algorithms using model-checking with
tla+. Previous work provided evidence that local coordina-
tion avoidance such as applied here has a significant positive
effect on the performance of distributed transaction systems.

Client-centric return-value commutativity promises to hit
a sweet spot in design trade-offs for business applications,
such as payment systems, that must scale-out while their
operations are not embarrassingly parallel and consistency
guarantees are of the highest priority. It can also provide de-
sign feedback, indicating that some operations will simply
not scale together even before a line of code has been written.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
AGERE ’21, October 17, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9104-7/21/10…$15.00
https://doi.org/10.1145/3486601.3486707

CCS Concepts: • Information systems→ Distributed data-
base transactions; •Softwareanditsengineering→Domain
specific languages; State systems; Model-driven software en-
gineering.

Keywords: distributed systems, transactions, distributed ob-
jects, model checking, coordination

ACMReference Format:
TimSoethout, Tijs van der Storm, and Jurgen J. Vinju. 2021. Contract-
Based Return-Value Commutativity: Safely Exploiting Contract-
Based Commutativity for Faster Serializable Transactions. In Pro-
ceedings of the 11th ACM SIGPLAN International Workshop on Pro-
grammingBased onActors, Agents, andDecentralizedControl (AGERE
’21), October 17, 2021, Chicago, IL, USA.ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3486601.3486707

1 Introduction
Fast implementations of serializability and other strongly con-
sistent isolation levels are inherently complex in a distributed
setting, due to the inherent trade-off between performance
and consistency. Typical approaches to increase concurrency
of distributedoperationsoperate at the level of low-level reads
andwrites. Looking at higher-level abstractions (methods, op-
erations, etc.), however, allows formore leniency:more sched-
ules of operations are serializable because the semantics of
high-level operations isuseddirectly, rather thandecomposed
in their constituent parts. Weikum’s multi-level serializabil-
ity [28] is amodel of how this canwork. State-dependent com-
mutativity and return-value commutativity describe when it
is safe to reorder operations without violating serializability.
For instance, deposits on the same bank account are commuta-
tive and therefore non-conflicting. In practice this means that
deposit operations can be reordered (swapped) resulting in
the same account balance, but potentially better performance.
As long as no later operations expose the intermediate state
this swap is valid under serializability.

These descriptive formalisms are not usedmuch in practice
due to use-case specificity and the need for manual specifica-
tion of non-conflicting operations. In this paper we propose a
constructive alternative, called Contract-Based Commutativ-
ity (cbc) that can be leveraged at run time to determine if op-
erations are potentially commutative. Next to that we formal-
ize (and implement), Local-Coordination Avoidance (LoCA),
which uses cbc to increase parallelism in high-contention

https://doi.org/10.1145/3486601.3486707
https://doi.org/10.1145/3486601.3486707

AGERE ’21, October 17, 2021, Chicago, IL, USA Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Table 1.All contributions, concepts and abbreviations introduced and referenced in this paper.

Abbr. Description Contribution
or related work

Sect.

cbc Contract-Based Commutativity (cbc), a constructive definition to determine which
operations can safely run concurrently at run timewithout violation of serializability.
A sufficient condition for sdc and rvc.

Contribution 3

cbc* Optimized variant of cbc, used in the LoCA implementation. Contribution 3
scbc Static cbc, an encoding in smt that allows computing static cbc for state-machine

models, including an comparison between SIE and scbc.
Contribution 5.1

rv-ser Return-Value Serializability (rv-ser), a serializability definition and formalization
for high-level operations in tla+ which defines if a schedule is compatible with
observed return values when swapping operations, using the same contract as cbc.

Contribution 4, 6, 7

LoCA Local Coordination Avoidance (LoCA), an algorithm, formalization and implemen-
tation leveraging conflict-relations at run time to increase concurrency. Contributed
conflict-relations cbc* and statically determined scbc maintain rv-ser.

Contribution
and Soethout
et al. [23, 25]

5, 6, 7

2pl/2pc Two-Phase Locking/Two-Phase Commit, respectively providing Isolation and
Atomicity. Used as building blocks for LoCA and to show rv-ser is sufficient to find
serializability violations in a bugged formalization.

Gray and
Lamport [10], tla+
model [24]

5, 6, 7

IE Independent Events, a definition of independent operation pairs, guaranteeing local
internal state machine consistency, but not global serializability.

Soethout et al. [23,
25]

5

SIE Subset of IE, statically determined for all possible object states using an smt solver. Soethout et al. [23] 5
ci Client-Centric Isolation model, on which rv-ser is inspired, based on low-level

reads and writes.
Crooks et al. [7],
tla+ model [24]

4, 7

sdc State-Dependent Commutativity, a definition based on return values, describing
when schedules with swapped operations are serializable given a specific state.

Weikum and
Vossen [28]

2, 3

rvc Return-Value Commutativity, a definition based on return values, describing when
schedules with swapped operations are serializable given an arbitrary sequence
of previous operations.

Weikum and
Vossen [28]

2, 3

scenarios, while maintaining serializability isolation guaran-
tees. In order to validate the correctness of the algorithm, the
notion of Return-Value Serializability (rv-ser), based on the
same contracts as cbc, is defined and formally specified in
tla+. The LoCA algorithm is validated using model checking
to maintain rv-ser.

Our approach focuses on (distributed) state machines with
clearly defined operations, but can be generalized to other
settings. Communication is done via transactions of synchro-
nizedoperations, inwhichmultipleobjectsdoatomic synchro-
nized transitions. For instance, a withdraw on a bank account
needs to happen atomicallywith a deposit on another account
statemachine.The contract is that each operation has a return
value and effect given an object state.

For example, take a simple bank account, with a bal-
ance 1, and higher level operations Deposit and Withdraw.
The contract is denoted as: operation(arguments)/effect↑
return value. To prevent overdraft, Withdraws check if enough
balance is available and only then returns an updated state:
Withdraw(0)/if (1 ≥ 0) 1 − 0 else 1↑1 ≥ 0. Deposits always

return success (ok): Deposit(0)/1+0↑ok.The simplest way
to guarantee isolation is to only have a single operation active
at any moment in time, but this also means that operations
have to wait on each other. LoCAwith cbc allows multiple
operations active at the same moment in time, but only when
local object invariants and global serializability invariants are
maintained, e.g. multiple Withdraw operations can only run in
parallel if there is enough balance available for all. cbc checks
if committing or aborting the operation does not change the
return values (success of the withdraw) of the others.

Earlier variants of LoCA based on Independent Events [23,
25] insteadofcbc, canexhibitnon-serializablebehaviorwhere
operations are applied in different order on different objects,
even though the behavior is locally consistent and does not
violate the object consistency/lifecycle definitions.This paper
improves on this by guaranteeing serializable behavior with
cbc. Since LoCA parallelizes operations when they are non-
conflicting, performance improvements in high-contention

Contract-Based Return-Value Commutativity AGERE ’21, October 17, 2021, Chicago, IL, USA

scenarios are similar to IndependentEvents [23, 25] forcbcop-
erations.The formalization of LoCA and rv-ser in tla+ also
enables validating of run-time schedules of implementations.

This paper’s contributions are detailed in Table 1 including
section references and themost important abbreviations used.
Section 2 gives background on the grounding of rv-ser and
cbc. Sections 3 to 6 describe themain contributions. Section 7
evaluates the formalizations with model checking approach
in tla+ to show that interleaved processes using LoCA
indeed maintain rv-ser. Discussion of the work including
threats to validity are found in Section 8. Lastly we discuss re-
lated work (Section 9), and conclude in Section 10. All source
code and reproducibility scripts are available on Zenodo [22].

2 Background:
State-Dependent Commutativity (sdc)
and Return-Value Commutativity (rvc)

Aguilera andTerry [2] identify two kinds of consistency: state
consistency and operation consistency. State consistency cov-
ers when an application is in a correct state using invariants
on states.This definition is very application specific, because
it is defined on application dependent states and corresponds
to the consistency in acid. Operation consistency concerns
operations that may return values and relates to isolation in
acid. This is often depicted as abstract operations such as
reads, writes on data items. Note that operation consistency
allows an application’s state to be inconsistent as long as it
is not visible/inconsistent for clients querying/doing oper-
ations: external operation consistency is maintained. State
consistency is defined by invariants on operations and the
local object state.
Weikum and Vossen look at higher-level operations and

describe State-Dependent Commutativity and Return-Value
Commutativity [28] as a way that enables multi-level serializ-
ability. Informally, non-conflicting, commutative operations
can be swapped in a schedule while maintaining serializabil-
ity. Swapping commutative operations is a proof that the
schedule is equivalent to a serial schedule and thus also valid
under serializable isolation. The main insight is that opera-
tions are commutative on a higher semantic level, and if their
direct lower level children such as reads andwrites on data are
atomic (no crossing tree arcs), they can be swapped without
loss of serializability.
Non-conflicting operations are either on different ob-

jects (�.Deposit(G) and �.Withdraw(G)); or commutative
(�.Deposit(G) and�.Deposit(~)).

A schedule with operations, �.Withdraw(G) and
�.Deposit(G) of transaction C8 on object � are abbreviated
respectively as +GC8

�
and −GC8

�
. Schedule −10C1

�
−20C2

�
+20C2

�
+10C1

�

is not serializable under Adya’s [1] and Crooks’[7] read-
s/writes level models, since there is a cycle in the dependency
graph between transactions: C1 ↔ C2. However at a higher
operation level it is equivalent to serializable orders:

−10C1
�
+10C1

�
−20C2

�
+20C2

�
and −20C2

�
+20C2

�
−10C1

�
+10C1

�
, because it

results in the same end state.

sdc. State-Dependent Commutativity describes if two
operations ? and@ are commutative in a concrete object state
f . ? and @ are sdc if schedule ?@l =⇒ @?l , where the return
values of ? , @ and all possible later operationsl should stay
the same when ? and @ are swapped given state f .

rvc. Return-Value Commutativity abstracts from a
concrete run-time state and looks at all possible sequences
of previous operations U , instead of only to a state f :
U?@l =⇒ U@?l , where also the return values should be the
same when ? and @ are swapped.

Return Values. Both definitions depend on the notion of
return values. An operation (e.g. +20

�
↑ok) is invoked on an

entity (�), has a name or type (Deposit/+), input parameters
(20) and return values (ok). All operation have an either
explicit (+50

�
↑nok) or implicit (GetBalance

�
↑100) success

(ok) or failure (nok) return value.These return values should
not differ when ? and @ are swapped.

3 Contract-Based Commutativity:
actionable sdc and rvc

sdc and rvc describe formally when sequences of operations
are serializable. In order to use this knowledge in practice we
require a constructive form that can be used at run time to
determinewhen swapping and concurrent operations are safe.
Contract-Based Commutativity (cbc) is geared towards

local run-time computability in an object, without commu-
nication with other objects. Given in-progress operations, it
determines if a new incoming operation can run concurrently
without violating consistency and isolation guarantees. cbc
defines constructive requirements, which are sufficient for
sdc and rvc.
To exploit these higher level semantics cbc depends on

detecting conflicting operations. Operations on different
objects are always non-conflicting and operations that expose
the same return values when swapped are non-conflicting
depending on the operations and the object state. In order
to detect the latter, cbc requires a contract on the operations
of the object, consisting of two deterministic side-effect free
functions. The effect determines the next internal object’s
state and the return value determine which values are
exposed to the outside.
First we look at computing dynamically cbc at run time.

An object locally determines which operations are safe to
run in parallel. Next (Section 5.1) we look at which of these
operations are always safely parallelized independently
of the run-time state. This reduces run-time computation
overhead for specific use cases. The parallel here is with
respectively sdc and rvc. Dynamic cbc is valid in a specific
run-time state f from sdc, where static cbc holds in all

AGERE ’21, October 17, 2021, Chicago, IL, USA Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Table 2. cbc for different return values ok / nok. Properties
in braces are always true/tautologies. ≡ is state equivalence.

cbc(B,?,@) @↑ok @↑nok
? ↑ok @↑ok in B ∧

@↑ok in B? ∧
(? ↑ok in B) ∧
? ↑ok in B@ ∧
B?@ ≡B@?

@↑nok in B ∧
@↑nok in B? ∧
(? ↑ok in B) ∧
(? ↑ok in B@) ∧
B?@ ≡B@?

? ↑nok (in B) @↑ok in B ∧
(@↑ok in B?) ∧
(? ↑nok in B) ∧
? ↑nok in B@ ∧
B?@ ≡B@?

@↑nok in B ∧
(@↑nok in B?) ∧
(? ↑nok in B) ∧
(? ↑nok in B@) ∧
(B?@ ≡B@?)

possible run-time states, corresponding with all possible
previous sequences of operations U from rvc.

3.1 Computing cbc at Run Time
Consider a run-time object which receives an operation
(return value yet to be calculated). Its current internal state
B is known. Now, since the operation is part of a larger set
of operations on multiple objects (transaction), it can abort
due to another object. So, before the operation is definitely
committed, it is not final and its effects can not yet be applied.
The object can thus have one or more of these tentative
operations queued.When another operated arrives, it decides
wether it can already determine the return values, or wait
until more tentative operations finish.
In order to define cbc(B, ?,@), for a runtime state B and

operations ? and @ we look at a simple abstraction, based on
operations that can only return ok and nok. Table 2 contains
the different case distinctions possible, ? and @ either return
ok or nok.This directly correspondswith sdc’s?@l =⇒ @?l .
The matching return values inl are over-approximated by
equating the post state in both orders (B?@ ≡ B?@), since any
difference in return values in later operations can only come
from difference in internal state. The first row corresponds
with cbc(B,? ↑ok,@), where @ has two possible return values
(per column). Operation ? with return value ok is already
in progress, meaning it is waiting on the transactions to
signal to commit and apply ? . cbc holds if @ returns the
same values in state B and B? . B? denotes state B with ?’s
effects applied. ? tautologically returns ok in B for this row,
because ? is already in-progress given state B . For the @↑ok
column it has to be checked if ? still returns ok when@ is first
applied. For @↑nok this is always the case, because effects
of nok operations are always empty, meaning that B ≡ B@ .
When leaving in the tautological properties a pattern can be

observed that generalizes to arbitrary return values:
cbc(B,?,@)= @↑rv@ in B ∧

@↑rv@ in B? ∧
? ↑rv? in B ∧
? ↑rv? in B@ ∧
B?@ ≡B?@

where @’s return value rv@ is the same in B and after ? in B? ,
and ?’s return value rv? is the same in B and after @ in B@ .

Above definition leads to a constructive, computable defini-
tionunder the assumption that returnvalues canbe calculated
deterministically without side effects from a state and an
operation using retVal(B,>) :State×Operation→ReturnValue.
cbc is defined as follows:

cbc(B,?,@)= retVal(B,?) ≡ retVal(B@,?)∧
retVal(B? ,@) ≡ retVal(B,@)∧

B?@ ≡B@?
B?@ ≡B@? might lead to false negatives (operations not being
marked as cbc), but never to false positives (operations
erroneously being marked as cbc).
If B?@ ≡ B@? would be omitted, the definition would be

wrong. For example, when tracking a history of past deposits
and withdrawals in a bank accoun t and a later query
operation (part of l) returns this sequence, Deposit and
Withdraw should no longer be cbc. Because the history is not
represented in the return values of ? and @ but can be visible
in later operations. Such a model with a history sequence
is thus inherently non-parallelizable, but another model, for
example tracking a set instead of sequence is. cbc can be
used to detect this, as is shown in Section 7.

Example. Consider the following examplewith cbc, based
on money transfers between two bank accounts without
overdraft (balance ≥ e 0). There are three transactions
)1 : �

e10−→ �,)2 : �
e20−→ �,)3 : �

e30−→ � , transferring money
between the accounts � to � with a respective starting
balance of e 0 and e 100. Where each transfer consists of
a withdrawal (−10�) and deposit (+10�) operation on the
relevant account. A Withdraw returns nok if not enough
balance is available, otherwise ok. Deposit always returns ok.
A possible run-time trace is:

+10�+30�+20�−20�−30�−10� , where all operations
have ok return values. Operations are ordered differently on
the different accounts, because of arrival order.:� : 〈)1,)2,)3〉
and � : 〈)3,)2,)1〉
Applying cbc shows if this schedule is compatible with

a serializable schedule. A schedule is serializable when all
operations of all transactions do not interleave with other
transaction’s operations. In order to find out if the current
schedule is compatible or equivalent with a serial schedule,
we consider swappable operations with respect to cbc.
Operations on different objects (or in this case accounts) are

Contract-Based Return-Value Commutativity AGERE ’21, October 17, 2021, Chicago, IL, USA

always commutative and can be swapped, so it is sufficient
to see if both accounts’ operations can be swapped to arrive
at the same transaction order.
For � to arrive at 〈)1,)2,)3〉 two cbc-swaps are required:

+30�−20�−10�
cbc(�+30,−20,−10)

=⇒ +30�−10�−20�
cbc(�,+30,−10)

=⇒
−10�−20�+30� , where �+30 represents the state of � with
effects of shown operation applied. So, if cbc(e 130,−20,−10)
and cbc(e 100,+30,−10) hold, these schedules are compatible
and the original schedule is serializable.

cbc(e 130,−20,−10)=ok≡ok∧ok≡ok∧e 100≡e 100

cbc(e 100,+30,−10)=ok≡ok∧ok≡ok∧e 120≡e 120

Both hold, so the swap is valid, and thus the original
schedule is cbc-equivalent to a serial order and thus serial-
izable. Note that both cbc-checks above are also checked by
computing cbc(�, [+30,−20],+10) in an implementation, as
covered in the next section.
A non-equivalent schedule with the same order of

operations, but with account � also starting with a state of
e 0, results in not allowing the same swaps and therefore not
being serializable, since cbc(e 0,+30,−10) does not hold:

cbc(e 30,−20,−10)=ok≡ok∧ok≡ok∧e 0≡e 0

cbc(e 0,+30,−10)=ok≡ok∧ok≡nok∧e 20≡e 30

This property can be calculated at run time, because all
arguments are available locally. When more operations
are in progress, the new incoming operation should be cbc
with all of them, meaning it can be swapped to become the
earliest operation in progress. When an incoming operation
is not cbc it need to be delayed until offending in-progress
operations commit or abort.

3.2 cbc forMultiple In-progress Operations
The approach sketched so far only considers a pair of two
operations. This section describes the induction step from
cbc(B,>1,>8) to cbc(B, [>1, ..,>=],>8), where >1, ..,>= represent
multiple in-progress operations.
For example, first no operations are in progress on an

object. A first operation >1, part of a transaction C1 can start
processing. Due to other (slower) participants, it is not known
if the >1 actually commits and if >1’s effects should be applied.
In a locking implementation, another arriving operation >2
has towait unit C1 commits or aborts. However, if cbc(B,>1,>2)
holds,>1 and>2 can effectively be swapped, without changing
the return values of both. Schedules >1>2 and >2>1 are
compatible, because cbc(B,>1,>2) holds.Therefore >2 can also
be started. Now there are two operations in progress.
When another operation >3 arrives, it effectively must be

swappablewithboth in-progressoperations inorder tostayse-
rializable, because all swapping orders need to be compatible.
cbc with multiple in-progress operations, represented as

a list of operations in the second argument, is reducible to
cbc with a single in-progress operation:

cbc(B,[>],>8) = cbc(B,>,>8)
cbc(B,[>1,..,>=−1,>=],>8) = cbc(B,[>1,..,>=−1],>8)∧ (A)

cbc(B1..=−1,>=,>8)∧ (B)
cbc(B,[>1,..,>=−1],>=) (C)

cbc holds when: (A) >8 is cbc without the last operation in
progress; (B) >8 is cbc with the last in-progress operations in
the state with all earlier operations applied (B1..=−1); and (C)
also the last in-progress operation >= is cbc with all previous
in-progress operations.
An implementation can skip calculating part C, because

arriving at an incoming operation >8 at cbc(B, [>1, ..,>=],>8),
means that cbc(B, [>1, ..,>=−1],>=) is already determined at
an earlier stage, when >= was the incoming operation. This
means that an implementation can compute cbc as follows:

cbc*(B,$,>8)=∀>= ∈$.cbc(B1..=−1,>=,>8) (1)

where $ is de sequence of in-progress operations. This
optimized version of cbc, dubbed cbc*, is used in the LoCA
implementation in Section 5 to achieve serializable isolation
with increased concurrency.

4 Return-Value Serializability
Definitions of isolation guarantees, such as Adya [1], use read
and write operations to determine violations. In order to also
define these guarantees on higher level operations and fairly
evaluate algorithms leveraging cbc, this section introduces
Return-Value Serializability (rv-ser). rv-ser defines which
schedules are serializable w.r.t. commutative operations
and is formalized in tla+, which enables model checking
of schedules of operations and algorithms which capture
such schedules. The definitions follow a structure similar to a
client-centric isolation model from Crooks et al. [7], referred
to as Crooks’ Isolation (ci), and the formalization in tla+
builds on earlier work [24].

Crooks’ Isolation. This client-centric model of database
isolation defines which sets of observed transactions,
consisting of read and write operations with their values,
are valid under different isolation levels. For each level, such
as serializability, a commit test defines if the set complies.
Only a single possible ordering of transactions, adhering to
the commit test has to exist. This means that the observed
transaction could have occurred under that isolation level.

∃4 ∈�.∀C ∈) :CT� (C,4)
defines for an isolation level � , and its commit test CT� ,
where � is the set of all possible orderings of transactions
(executions) and) is the set of observed transactions.
Executions � consist of transactions as a whole, constructed
by applying the writes of the transaction to the previous state.
Commit tests check if reading from earlier state is valid. In
this paper we focus on serializability, but the approach can be

AGERE ’21, October 17, 2021, Chicago, IL, USA Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

extended to different levels.The commit test for serializability
under ci specifies that all reads should be able to read the
observed value from the direct parent state.

rv-ser. Themain insight for rv-ser is to not look at reads
and writes, or try to map higher operations to lower level
reads/writes, but to consider operations at a higher level
as a whole. This is based on multi-level serializability by
Weikum and Vossen [28], which states that if operations
are not interleaving on a lower-level, they can be swapped
on the higher level if non-conflicting, while maintaining
serializability. Similar to the client-centric approach, rv-ser
considers observed values from the operations, in this case
the values returned by the operations. For low levels this
corresponds to the read or written values, but for higher level
operations, this is different, e.g. a Withdraw or Depositmight
just return ok or nok to signal operation success of failure
and a GetBalance operation returns a single balance value.
As commit test for serializability, rv-ser defines that

newly computed return values for all operations should be
the same as the observed return values:

∀> ↑> ′∈) .retVal(B? ,>) ≡> ′ (2)

where > ′ represents the observed return value, which should
be equivalent to the return values in >’s parent state in the
execution B? .

The main differences with Crooks’ Isolation are:
• Operations consist of observed return values, a retVal
function to calculate return values given arbitrary state
and an effect function to calculate next state eff (B,>).
This is the same contact as for cbc.

• Commit test checks return values, instead of read/write
values

Examples. Consider the same execution schedule as be-
fore, now including return values:+10� ↑ok;+30� ↑ok;+20� ↑
ok;−20� ↑ok;−30� ↑ok;−10� ↑okconsisting of three transac-
tions:)1 = 〈+10� ↑ok,−10� ↑ok〉,)2 = 〈+20� ↑ok,−20� ↑ok〉
and)3= 〈−30� ↑ok,+30� ↑ok〉.
Below we see the execution of 〈)1,)2,)3〉. An execution

consists of data(base) states with keys and values, each next
state is determined by applying the operations of the relevant
transactions.

B0{
� ↦→ 0
� ↦→100

}
)1−→

B1{
� ↦→10
� ↦→90

}
)2−→

B12{
� ↦→30
� ↦→70

}
)3−→

B123{
� ↦→ 0
� ↦→100

}
For all transactions, as per the commit test above (Equa-

tion (2)) all operations have the same return values given the
parent state in this execution as the observed return value,
e.g. for)2: retVal(B1,+20�) = ok and retVal(B1,−20�) = ok.
This means that this execution is serializable, and therefore
the original schedule is compatible and also serializable.
The other example with the same schedule, except �’s

starting balance is also 0, results in a different execution.

Note that Withdraw operations do not update the balance
when not enough balance is available.

B0{
� ↦→0
� ↦→0

}
)1−→

B1{
� ↦→10
� ↦→ 0

}
)2−→

B12{
� ↦→30
� ↦→ 0

}
)3−→

B123{
� ↦→ 0
� ↦→30

}
Now the commit test for)2 fails: retVal(B1,+20�) = ok and
retVal(B1,−20�)=nok, which are different from the observed
return values in the schedule. Other executions with different
transaction orderings also fail the commit test. This means
that this schedule is not rv-ser.

rv-ser intla+. rv-ser is formalized intla+ andconfirms
these examples. tla+ [15] is a formal specification language
for action-based modeling of programs, algorithms and (dis-
tributed) systems [6, 10, 11, 17, 18]. tla+ models states and
transitions and its accompanying model checker tlc checks
properties on each state, providing counter examples with
error traces.This formalization enables checking sets of ob-
served transactions, and validating if algorithms (tracking ob-
served transactions) implement rv-ser.The source code and
instructions on how to run are found on Zenodo [22]. In Sec-
tion 7 we see that rv-ser finds serializability bugs in a known
serializable algorithm (Two-PhaseLocking)whenbug-seeded
and validates LoCAwhich leverages cbc to be serializable.

5 Local Coordination Avoidance (LoCA)
The LoCA algorithm leverages cbc* in a local object at run
time, in order to increase concurrency and with that improve
throughput and latency, while maintaining (return-value) se-
rializability. It supports statically computed cbc pairs or com-
putes cbc at run timebased on current state, and effects and re-
turn values of operations using Equation (1). LoCA is also im-
plemented [23, 25] using theAkka actor framework, using 2pc
for atomicity. LoCA is compatible with sdifferent consensus
or atomic commit algorithms, such as Raft [19] and Paxos [14].

LoCA in a nutshell. LoCA is an algorithm that can be
locally run in a (distributed) object that receives commands
to execute. It requires a conflict relation, such as cbc, to deter-
mines when it is safe to run multiple operations concurrently.
If objects need to synchronize with other objects LoCA uses
the two-phase commit (2pc) protocol in order to assure atom-
icity: either all objects do the operation, or none. Two-phase
locking (2pl) is used to ensure isolation, but different conflict
relations result in different isolation guarantees. LoCAwith
cbc as conflict relation is (return-value) serializable.
When a LoCA object receives an operation, it starts a

2pc resource manager to handle communication with other
objects. If other operations are already in progress, it first
checks if the incoming operation is compatible (using the
conflict relation) with already in-progress operations. If
non-compatible the operation is delayed until compatibility
is detected or all in-progress operations finish.

Contract-Based Return-Value Commutativity AGERE ’21, October 17, 2021, Chicago, IL, USA

Table 3. Static commutative (scbc) of bank account opera-
tions. Static independency (SIE) values shown abbreviated
in braces. �1 in rows, �2 in columns. Accept (A) and Reject
(R) for SIE correspond to Go for scbc since scbc does not
distinguish between direct accepts and rejects, because
failing preconditions do not necessarily abort the transaction.
Delay corresponds with No.

scbc(�1,�2) Open Deposit Withdraw Interest

Open No No Go (R) No
Deposit No (R) Go No No (A)
Withdraw Go (R) No (A) No No (A)
Interest No (R) No (A) No Go

5.1 LoCAwith Independent Events
In earlier work LoCAwas used with (Statically) Independent
Events ((s)ie) [23, 25]. In this paper we maintain the global
algorithm (and implementation) and swap in cbc in order
to achieve serializability.

Static cbc at compile time using smt. A subset of
cbc, dubbed static cbc (scbc), is independent of the current
run-time state, e.g. deposits are always allowed, independent
of the actual amount or balance. Determining scbc offline
results in less computational overhead at run time. Table 3
shows static scbc and how values differ with SIE for a simple
bank account example. Both are generated by leveraging
an smt-solver (z3 [8]) in which the resource’s preconditions,
effects and states are modeled (or generated from another
specification), similarly to SIE’s analysis [23].

scbc is a subset of cbc: scbc(?,@)=∀B .cbc(B,?,@), denoting
which operations are always cbc independently of a specific
run-time state, corresponding to rvc. The smt-solver finds
these pairs of non-conflicting operations by searching for
counter examples where operations do conflict.

SIE is more lenient because it assumes that in-progress
operations are valid on the resource (return ok). In order
to maintain rv-ser, scbc is more strict and also requires
operations to be swapped without exposing different return
values next to the ok or nok of an operation. Also note that
scbc does not have any Reject since it considers nok to be
just another return value.
Since this analysis is offline, LoCA can use the results to

reduce computational overhead at run time.

6 Model Checking LoCA and rv-ser
In this section we look at two algorithms for synchronization
and atomic commitment, their formalization in tla+ and
their conformance to rv-ser. We also seed bugs and wrong
input models to validate that the model checker finds
mistakes with counter examples in Section 7.This shows that
LoCA is indeed rv-ser.

rv-ser is formalized similarly to ci [24] in tla+. The for-
malization of 2pl/2pc and cbc are structured similarly to the
formalization of 2pl/2pc and Crooks’ Isolation [7] in related
work [24]. Full tla+ source code is available online [22].

rv-ser. Transactions are encoded as sequences of opera-
tions, which consist of operation types, parameters and ob-
served return values. tla+ module extensions enable mod-
ularization by extending different models, representing dif-
ferent objects with their own operations, internal state and
effect functions.The rv-ser and cbc definitions only require
RetVal(s,o) and Eff(s,o) functions to be present. rv-ser it-
self is a direct specification of commit test in Equation (2).
rv-ser is checked with the property: RVSerializability(
InitialState, transactions). This enables a) “unit testing”
bymodel checkinghardcodedvaluesandb)model checkingof
conformance for algorithms represented in tla+ or pluscal.

2pl/2pc. The formalization of 2pl/2pc specifies two
processes: the transactionmanager and the resourcemanager.
The transactions manager asks multiple resources to vote on
an operation of the transaction. If all accept, the transaction
manager tells the resources to commit the operation. If one of
the resources voted abort, the manager aborts all operations
in the transactions.This guarantees atomic commit: either all
resources commit the transaction, or none.The assumptions
are, without loss of generality, that messages between these
resources are a monotonically growing shared set, meaning
that they are never lost, but can be received out of order.
When a resource manager commits an operation, the

operation with observed return value is tracked.Themodel
checker tlc checks if the operations are valid under rv-ser
for each execution state. It turns out this is indeed the case
for models up to at least 3 transactions and resources.

LoCA. The formalization of LoCA follows the same format
as the 2pl/2pc formalization, except the resourcemanager can
have multiple transactions in progress at the samemoment
in time, hence the improved concurrency. After handling
messages, the resource processes the queued (committed) and
delayed operations when applicable. Committed operations
are tracked for rv-ser property validation by the model
checker. LoCA only allows operations in parallel that pass
the constructive cbc from property Equation (1).
LoCA’s pseudo-specification is found in Listing 1 and

follows the message contract of a 2pc resource manager.The
main difference with 2pl/2pc is the simultaneous receiving of
all message types of 2pl/2pc representing being in multiple
transactions at the same time when operations are cbc*.
Variable operations tracks the observed operations per
transaction, which are in turn checked to be rv-ser. The
either/or construct denotes that any of these branches can
occur when running the algorithm, which is important for
defining the whole state space.The algorithm also branches
at pick s.t., which picks a value such that the right hand

AGERE ’21, October 17, 2021, Chicago, IL, USA Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Listing 1. LoCA formalization
queued = {}; inProgress = []; delayed = [];
state = InitialState; operations = {}

while true:
receive any of the 2PC messages
on receive of VoteRequest:
either # Either vote yes
o = pick s.t. CBC*(state, inProgress, o)
inProgress += o
reply VoteCommit(o)

or # vote no/abort
reply VoteAbort(o)

or # or delay until dependent operations finish
o = pick s.t. ¬CBC*(state, inProgress, o)
delayed += o

on receive of GlobalCommit(o):
queued += o # queue for commit

on receive of GlobalAbort(o):
inProgress -= o
delayed -= o

Apply all applicable
queued (ready for commit/apply) operations

while Head(inProgress) ∈ queued:
inP = Head(inProgress)
track per transaction for

RV-SER-check, including observed return value
operations[inP.tId] += <inP, RetVal(inP, state)>;
state = Eff(inP, state); # Apply Eff to state
inProgress -= inP
queued -= inP
if next delayed is CBC, then start voting
while CBC*(state, inProgress, Head(delayed)):
o = Head(delayed)
either
reply VoteCommit(o)
inProgress += o

or
reply VoteAbort(o)

delayed -= o

side is true. Global variables are defined on top, where {}

and [] respectively represent (empty) sets and sequences.
Appending (+=) to sequences is at the end. Removing (-=)
removes all instances of the element from the set or sequence.

LoCA’s formalization is generic in the sense that it requires
only two functions (Eff and RetVal) and InitialState

available that capture domain knowledge. CBC* uses these
functions and follows Equation (1). Multiple conflict relations
can be configured, including IE, SIE, cbc and scbc.

7 Initial Validation
Bug seeding. In order to validate our definition of both

cbc and rv-ser we introduce some bugs so that the model
checker finds them in:

• the formalization of 2pl/2pc, where a resource could
commit a different transaction than already voted for.
The rv-ser property found an error trace, showing
that it is capable of detecting non-serializability in
algorithms.

• the formalization of LoCA with cbc rules for a bank
account, and a bugwhere delayed (non-cbc) operations
where not correctly aborted the model checker found
an error trace where the resource processes terminate
with still in-progress operations.

• the formalization of LoCA, when not checking
for cbc-enabled operations, and thus allowing all
operations to occur and vote instead of delay. rv-ser
is violated and a counter example is found, with a
non-serializable schedule.

• the formalization of LoCA with static SIE, where
it finds non-rv-ser traces for non-commutative
operation pairs.This shows that SIE is not serializable
and rv-ser detects this correctly.

• the formalization of cbc with B?@ ≡B@? left out and the
account specification changed to track a list of previous
transfers on Withdraw and Deposit. The checker finds
a problematic example where the order of transfers is
different on different accounts.

2pl/2pc is rv-ser. To confirm the formalization of
rv-ser we introduce a bug in the 2pl/2pc formalization,
for which the model checker should find a problematic
case. The formalization is serializable for read/write level
operations [24], so if the same bug is also found by rv-ser,
it gives us more confidence of its correctness.
The bug in the formalization allows resources to abort

after voting for a different transaction.The counter example
exploits this by aborting an earlier accepted transaction,
therefore violating atomicity. Eventually this leads to
different resources committing to transactions in different
orders. The rv-ser model check finds operations which
expose values which are not observable under serializability.

LoCA with cbc* is rv-ser. The formalization of LoCA
is model checked with a bank account instance for the
RetVal and Eff functions. For small numbers of objects and
transactions, it does not violate rv-ser, as designed.
When a bug is introduced where delayed operations are

not correctly aborted, the model checker finds a counter
example where not all in-progress events are handled.

LoCA without cbc* is not rv-ser. When introducing
a bug similar to the LoCA formalization, where resources
can commit transactions not yet voted for, rv-ser finds a
counter example where a balance is returned by GetBalance

Contract-Based Return-Value Commutativity AGERE ’21, October 17, 2021, Chicago, IL, USA

that would not be visible in a serializable schedule. This
strengthens our claim that rv-ser defines serializability and
that cbc* is sufficient for achieving serializability.

LoCA with SIE is not rv-ser. In order to validate both
cbc* and rv-ser, LoCA is configured to use a conflict relation
as defined by SIE (see Table 3). The model checker find an
error set of transactions, containing a pair of Withdraw and
Deposit operations.Thet are SIE, but not cbc*, since the effect
of an in-progress Withdraw never influences the acceptance
of a Deposit. However, in order to be cbc it should also be
possible to swap the operations without changing the return
value. In this case a Deposit coming earlier can switch a
Withdraw↑nok to Withdraw↑ok, when availability of enough
balance is dependent on the Deposit. The rv-ser property
is sufficient to find such is problem.This gives us confidence
that cbc* indeed leads to rv-ser behavior and also that
rv-ser is a sufficient for cbc, and thus serializability.

cbc requires B?@ ≡ B@? . The previous examples do not
show the need for B?@ ≡ B@? in cbc, since there are no later
operations that readnon-directly changed state. If the account
operations also store the history of transfers in internal state
and directly exposes this in the return value, this becomes
problematic, because a future query operation can now ex-
pose this in a non-serializable fashion. In this case the history
becomes ordered differently for different objects, which is
not serializable.The found counter example shows this.

8 Discussion
cbc, rv-ser and models. cbc and rv-ser support use

of higher-level operations or complete models, with as
much tool support as possible. rv-ser enables automatic
checking using model checkers of specific scenarios and
models. A change in the modeling approach can have big
impact in performance, e.g. a Covid vaccination appointment
could be a modeled as lots of separate timeslot objects,
for which concurrency needs to be managed individually.
Another modelling approach where timeslots are grouped
per location and time and a counter of the total available
slots at that time. This is similar to an AddRemove counter
crdt[20, 21], which does not require coordination. Tradeoffs
in performance/modeling become explicit by analyses with
(s)cbc. Now this tradeoff a business decision backed by data,
instead of a problem of the implementers.

Contract. cbc requires a quite strong contract on all
operations with associated deterministic, side-effect-free
functions. Applications have to be modelled in this sense to
reap the benefits. In related work [23], a similar constraint
is valid in up to 61 % of operations for realistic use cases. We
expect cbc to hold similarly.

IE and rv-ser. Another conflict relation compatible with
LoCA is IE [23, 25] (IE(B,? ↑ok,@)= retVal(B? ,@) ≡ retVal(B,@)).

IE however, is not serializable, since does not considerl or
the swapped states, allowing different orderings on multiple
objects, also for non-commuting operations.
rv-ser defines which instances of IE are non-serializable.

However, a subset of IE operations, coinciding with cbc is
still serializable, i.e. the commutative parts.

LoCAwith cbc* computesmore (just as IE) at runtime than
2pl/2pc, so this is really beneficial if waiting/blocking/locks
become the bottleneck, and spare cpu power is available. Due
to graceful degradation to 2pl/2pc with no in-progress and
non-cbc operations, performance is always on par or better
than 2pl/2pc in practice [23, 25].
All discussed conflict-relations are related: SIE ⊆ IE,

cbc⊆ IE, scbc⊆ cbc, scbc⊆ SIE. IE is the “most concurrent”.
Each static variant is stricter than its dynamic counterpart.
Previous performance evaluations using (s)IE [23, 25]

show that LoCA increases throughput and reduces latency
in high-contention scenarios. Since scbc has similar Go
results, as shown in Table 3, performance improvement of
LoCAwith (s)cbc will be on par with LoCAwith (B)IE, since
performance evaluation would follow the same pattern.
LoCA with cbc gives serializable isolation guarantees,

which is closer towhatmodellers and business experts expect
whenworkingwithmodeling languages such as Rebel. Subtle
non-serializable behavior of LoCAwith IE can be a problem
for them. Also, one can model with serializability in mind,
but swap out cbc for IE when more performance is needed
and extra studying the specific behavior.

SIE [23] has two variants (Accept/Reject) in order to
reduce overhead and increase parallelism at run time: either
directly vote commit or abort an incoming operation. Since
an abort vote directly finishes the transaction for that
resource, it no longer has to consider this operation when
handling other incoming operations. For some more domain
specific use cases, such as Rebel [26, 27] for SIE, specialized
static analyses based on some grouping of return values can
be useful, but it is not generalizable.

Similarly to Adya’s [1] and Crooks’ [7] formalizations, rv-
ser does only consider committed transactions. Transactions
can abort by different functional (failing preconditions) and
non-functional (deadlock, time-out, etc) reasons. One can
argue that operations aborted for functional reasons, should
still abort when swapped, but this is out of scope for this
paper and could be encoded in the return values of committed
operations. 2pl/2pc and LoCA only emit operations of
committed transactions. Model checking with tla+ speci-
fication of return-value serializability does indeed find that
all possible executions produced this way are serializable.

8.1 Threats to Validity
8.1.1 Limitations. This approach focusses on distributed
objects that communicate via messages or methods and, to
guarantee serializable isolation, requires that these methods
are the only way to change and query the object state.

AGERE ’21, October 17, 2021, Chicago, IL, USA Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

This is a good fit for generating an implementation from
higher level domain models, but might not be for low-level
implementations, where extra care has to be taken to not
break the abstraction.

State space explosion. The model checking in the vali-
dation is run only on small model instances and on a single
bank account example.The state space explosion that comes
with larger model instances (more objects and transactions)
make it unfeasible to model check due to time constraints.
However, in line with the small scope hypothesis [13], we
assume that most isolation violations can be found in small
examples. Anomalies with larger error traces or complex
interleaving of multiple objects, transactions and mixed
use cases might not be found with the current approach.
The definition of rv-ser can be implemented separately to
improve performance and thus increase feasibility.

9 RelatedWork
cbc is powered by contacts and models of objects. This fits
well with Domain-Driven Design [9] and Command-Query
Responsibility Segregation. More work [4, 5] is being done
on reusing models to increase parallelism and performance.

Coordination Avoidance, Confluence and calm.
Confluence[12] looks at observable behavior. A program is
considered confluent if it produces the same set of outputs for
all orderings of its input. Changes in the order of messages
do not influence the observable outcomes, such as the return
values. Invariant confluence is a necessary and sufficient
condition for coordination avoidance [3]: a coordination-free
execution. Non-invariant-confluent operations require
coordination for correctness. This is similar to what LoCA
with cbc guarantees: a subset of operations can be run
concurrently without coordination. For non-cbc operations,
coordination or delay is required to maintain correctness.

The calm theorem [12] describes thatmonotonic programs
only move forward, and never back. They do not need to
retract any output. LoCA with cbc should never have to
retract a value returned to a client and maintains them
when operations are swapped internally. LoCA, cbc* and
scbc-tooling are a constructive approach towards calm
programs, including runtime performance optimizations.
Conflict-free Replicated Data Types [20, 21] are data

structures that allow updates without coordinating. However,
they are non-trivial to use, due to limited operations. LoCA
with cbc allows programmers and designers to write models
and code as they would normally and automatically enables
high-performance where cbc allows this.
Observable Atomic Consistency [29], related to RedBlue

Consistency [16], makes distinction between commutative
and totally ordered operations. Commutative operations can
interleave on different replicas, but as soon as total operation
is requested the replicas synchronize andother (commutative)

operations should wait. In a sense, LoCAwith cbc achieves
the same by allowing commuting operations to swap and
interleave. It differs in providing both run-time and static ap-
proaches to automatically detect this. LoCAdoes not focus on
replicas at the moment, but could be extended to support this.

10 Conclusion
Data consistency and performance are a trade-off in many
cases. Coordination is required to keep data in sync. However,
commutative operations can be done without coordination,
because the order of operations does not influence the
resulting state and observed return values.

This paper focusses on return-value commutativity, which
looks at the client-perspective of higher level operations.
Swapped operations should return the same return values
when operations are executed in different order. If this is
the case, non-serializable schedules of lower level read/write
operations, are serializable on a higher level, because
swapped operations are identical from client perspective to
a serializable schedule.This insight enables using invariants
from higher level operations to allow more schedules and
with that improve throughput and latency.

We propose Return-Value Serializability (rv-ser), a defini-
tionof higher level operations,whichdefineswhena schedule
is serializable with respect to the observed return values.
Next to that we define, Contract-Based Commutativity (cbc),
an implementable definition leading to rv-ser. The Local-
CoordinationAvoidance (LoCA) algorithmuses an optimized
constructive variant (cbc*) of cbc to allow swapping of cbc
operations at run time, which results in improved parallelism
where possible.This leads to reduction inhigh-contention bot-
tlenecks, which increases performance and reduces latency.
rv-ser and LoCA are formalized in tla+ and validated

by seeding bugs, which are detected by a model checking.
Static cbc (scbc) is the subset of statically determinable

cbc operations, e.g. depositing money can always done
in parallel. An algorithm can use this information to
shortcut potentially expensive dynamic cbc computations
at run time. scbc is determined for a set of operations by
using an smt solver. We compare scbc for a bank account
example to a non-serializable conflict relation SIE. The tla+
formalization also detects non-serializability of SIE and
confirms serializability of static and dynamic cbc.

Commutativity-based rescheduling of higher-level opera-
tions is often discussed, but not often used in practice, because
it requires (manual) definingof the conflictingoperations.Our
approach enables automatically deriving of conflicting oper-
ations at both run and compile time and we believe this is a
sweet-spot between over-specifying and error-prone manual
specifying of conflicting operations. It also lowers the bar
for model driven approaches for distributed objects, where
modellerswrite intuitivemodel based on serializable isolation
semantics, and our tools can optimize for speedwhen it is safe.

Contract-Based Return-Value Commutativity AGERE ’21, October 17, 2021, Chicago, IL, USA

Acknowledgments
We thank the anonymous reviewers for their thorough re-
views and feedback, and ING Bank for funding this research.

References
[1] AtulAdya. 1999.WeakConsistency: AGeneralizedTheory andOptimistic

Implementations for Distributed Transactions. Ph. D. Dissertation.
Massachusetts Institute of Technology, USA.

[2] Marcos K. Aguilera and Douglas B. Terry. 2016. The Many
Faces of Consistency. IEEE Data Eng. Bull. 39, 1 (2016), 3–13.
http://sites.computer.org/debull/A16mar/p3.pdf

[3] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M.
Hellerstein, and Ion Stoica. 2014. Coordination avoidance in
database systems. Proc. VLDB Endow. 8, 3 (Nov. 2014), 185–196.
https://doi.org/10.14778/2735508.2735509

[4] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues,
Nuno Preguiça, Mahsa Najafzadeh, and Marc Shapiro. 2015. Putting
consistency back into eventual consistency. In Proceedings of the Tenth
European Conference on Computer Systems - EuroSys ’15. ACM Press,
6:1–6:16. https://doi.org/10.1145/2741948.2741972

[5] Susanne Braun, Annette Bieniusa, and Frank Elberzhager. [n. d.].
Advanced Domain-Driven Design for Consistency in Distributed
Data-Intensive Systems. In Proceedings of the 8thWorkshop on Principles
and Practice of Consistency for Distributed Data (Online United
Kingdom, 2021-04-26). ACM, 1–12. https://doi.org/10/gjs3st

[6] MarcBrooker, TaoChen, and FanPing. 2020. Millions of TinyDatabases.
In 17th USENIX Symposium onNetworked Systems Design and Implemen-
tation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, Ranjita
Bhagwan and George Porter (Eds.). USENIX Association, 463–478.

[7] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017.
Seeing isBelieving. InProceedings of theACMSymposiumonPrinciples of
DistributedComputing, EladMichael Schiller andAlexanderA. Schwarz-
mann (Eds.). ACM, 73–82. https://doi.org/10.1145/3087801.3087802

[8] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An
Efficient SMT Solver. In TACAS (Lecture Notes in Computer Science,
Vol. 4963). Springer, 337–340.

[9] Eric Evans and Eric J Evans. 2004. Domain-driven design - tackling
complexity in the heart of software. Addison-Wesley.

[10] Jim Gray and Leslie Lamport. 2006. Consensus on Transaction
Commit. ACM Transactions on Database Systems 31, 1 (2006), 133–160.
https://doi.org/10.1145/1132863.1132867

[11] Jason Gustafson and Guozhang Wang. 2020. Hardening Kafka
Replication. https://github.com/hachikuji/kafka-specification.

[12] Joseph M. Hellerstein and Peter Alvaro. 2019. Keeping CALM:
When Distributed Consistency is Easy. CoRR abs/1901.01930 (2019).
arXiv:1901.01930 http://arxiv.org/abs/1901.01930

[13] Daniel Jackson. 2006. Software Abstractions - Logic, Language, and
Analysis. MIT Press.

[14] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput.
Syst. 16, 2 (1998), 133–169. https://doi.org/10.1145/279227.279229

[15] Leslie Lamport. 2002. Specifying Systems, The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley.

[16] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M.
Preguiça, and Rodrigo Rodrigues. 2012. Making Geo-Replicated
Systems Fast as Possible, Consistent when Necessary. InOSDI. USENIX

Association, 265–278.
[17] Microsoft. 2020. High-Level TLA+ Specifications for the

Five Consistency Levels Offered by Azure Cosmos DB.
https://github.com/Azure/azure-cosmos-tla.

[18] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. 2015. How Amazon web services
uses formal methods. Commun. ACM 58, 4 (March 2015), 66–73.
https://doi.org/10.1145/2699417

[19] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In 2014 USENIX Annual Technical
Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014,
Garth Gibson and Nickolai Zeldovich (Eds.). USENIX Association,
305–319. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ongaro

[20] NunoM. Preguiça, Carlos Baquero, andMarc Shapiro. 2018. Conflict-
free Replicated Data Types (CRDTs). CoRR abs/1805.06358 (2018).
arXiv:1805.06358 http://arxiv.org/abs/1805.06358

[21] Marc Shapiro, NunoM. Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In SSS (Lecture Notes in
Computer Science, Vol. 6976). Springer, 386–400.

[22] Tim Soethout. 2021. TimSoethout/cbc-artifacts: Artifacts for AGERE’21
paper “Contract-Based Return-Value Commutativity: Safely exploiting
contract-based commutativity for faster serializable transactions”.
https://doi.org/10.5281/zenodo.5497756

[23] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. 2019. Static local
coordination avoidance for distributed objects. In Proceedings of the
9th ACM SIGPLAN International Workshop on Programming Based on
Actors, Agents, and Decentralized Control - AGERE 2019. ACM Press,
21–30. https://doi.org/10.1145/3358499.3361222

[24] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. 2020. Automated
Validation of State-Based Client-Centric Isolation with TLA+. In
Software Engineering and Formal Methods. SEFM 2020 Collocated
Workshops - ASYDE, CIFMA, and CoSim-CPS, Amsterdam,The Nether-
lands, September 14-15, 2020, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 12524), Loek Cleophas and Mieke Massink (Eds.).
Springer, 43–57. https://doi.org/10.1007/978-3-030-67220-1_4

[25] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. 2021. Path-
Sensitive Atomic Commit - Local Coordination Avoidance for
Distributed Transactions. The Art, Science, and Engineering of
Programming 5, 1 (2021), 3. https://doi.org/10.22152/programming-
journal.org/2021/5/3

[26] Jouke Stoel, Tijs van der Storm, Jurgen Vinju, and Joost Bosman. 2016.
Solving the bank with Rebel: On the design of the Rebel specification
language and its application inside a bank. In Proceedings of the 1st
Industry Track on Software Language Engineering - ITSLE 2016. ACM
Press, 13–20. https://doi.org/10.1145/2998407.2998413

[27] Jouke Stoel, Tijs van der Storm, and Jurgen Vinju. 2021. Mod-
eling with Mocking. In 2021 IEEE 14th International Conference
on Software Testing, Validation and Verification (ICST). 59–70.
https://doi.org/10.1109/ICST49551.2021.00018

[28] GerhardWeikum andGottfried Vossen. 2002. Transactional Information
Systems. Elsevier. https://doi.org/10.1016/c2009-0-27891-3

[29] Xin Zhao and Philipp Haller. 2018. Observable atomic con-
sistency for CvRDTs. In Proceedings of the 8th ACM SIGPLAN
International Workshop on Programming Based on Actors, Agents,
and Decentralized Control - AGERE 2018. ACM Press, 23–32.
https://doi.org/10.1145/3281366.3281372

http://sites.computer.org/debull/A16mar/p3.pdf
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2741948.2741972
https://doi.org/10/gjs3st
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.1145/1132863.1132867
https://github.com/hachikuji/kafka-specification
https://arxiv.org/abs/1901.01930
http://arxiv.org/abs/1901.01930
https://doi.org/10.1145/279227.279229
https://github.com/Azure/azure-cosmos-tla
https://doi.org/10.1145/2699417
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://arxiv.org/abs/1805.06358
http://arxiv.org/abs/1805.06358
https://doi.org/10.5281/zenodo.5497756
https://doi.org/10.1145/3358499.3361222
https://doi.org/10.1007/978-3-030-67220-1_4
https://doi.org/10.22152/programming-journal.org/2021/5/3
https://doi.org/10.22152/programming-journal.org/2021/5/3
https://doi.org/10.1145/2998407.2998413
https://doi.org/10.1109/ICST49551.2021.00018
https://doi.org/10.1016/c2009-0-27891-3
https://doi.org/10.1145/3281366.3281372

	Abstract
	1 Introduction
	2 Background: State-Dependent Commutativity (sdc) and Return-Value Commutativity (rvc)
	3 Contract-Based Commutativity: actionable sdc and rvc
	3.1 Computing cbc at Run Time
	3.2 cbc for Multiple In-progress Operations

	4 Return-Value Serializability
	5 Local Coordination Avoidance (LoCA)
	5.1 LoCA with Independent Events

	6 Model Checking LoCA and rv-ser
	7 Initial Validation
	8 Discussion
	8.1 Threats to Validity

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

