
Disambiguation Filters for Scannerless

Generalized LR Parsers

M.G.J. van den Brand1,4, J. Scheerder2, J.J. Vinju1, and E. Visser3

1 Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ
Amsterdam, The Netherlands, {Mark.van.den.Brand,Jurgen.Vinju}@cwi.nl

2 Department of Philosophy, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht,
The Netherlands, js@phil.uu.nl

3 Institute of Information and Computing Sciences, Utrecht University, P.O. Box
80089, 3508TB Utrecht, The Netherlands, visser@acm.org

4 LORIA-INRIA, 615 rue du Jardin Botanique, BP 101, F-54602 Villers-lès-Nancy
Cedex, France

Abstract In this paper we present the fusion of generalized LR parsing
and scannerless parsing. This combination supports syntax definitions
in which all aspects (lexical and context-free) of the syntax of a lan-
guage are defined explicitly in one formalism. Furthermore, there are no
restrictions on the class of grammars, thus allowing a natural syntax
tree structure. Ambiguities that arise through the use of unrestricted
grammars are handled by explicit disambiguation constructs, instead of
implicit defaults that are taken by traditional scanner and parser gener-
ators. Hence, a syntax definition becomes a full declarative description
of a language. Scannerless generalized LR parsing is a viable technique
that has been applied in various industrial and academic projects.

1 Introduction

Since the introduction of efficient deterministic parsing techniques, parsing is
considered a closed topic for research, both by computer scientists and by practi-
cioners in compiler construction. Tools based on deterministic parsing algorithms
such as LEX & YACC [15,11] (LALR) and JavaCC (recursive descent), are con-
sidered adequate for dealing with almost all modern (programming) languages.
However, the development of more powerful parsing techniques, is prompted by
domains such as reverse engineering and domain-specific languages.

The field of reverse engineering is concerned with automatically analyzing
legacy software and producing specifications, documentation, or reimplementa-
tions. This area provides numerous examples of parsing problems that can only
be tackled by using powerful parsing techniques.

Grammars of languages such as Cobol, PL1, Fortran, etc. are not naturally
LALR. Much massaging and default resolution of conflicts are needed to im-
plement a parser for these languages in YACC. Maintenance of such massaged
grammars is a pain since changing or adding a few productions can lead to
new conflicts. This problem is aggravated when different dialects need to be

supported—many vendors implement their own Cobol dialect. Since grammar
formalisms are not modular this usually leads to forking of grammars. Further
trouble is caused by the embedding of ‘foreign’ language fragments, e.g., as-
sembler code, SQL, CICS, or C, which is common practice in Cobol programs.
Merging of grammars for several languages leads to conflicts at the context-free
grammar level and at the lexical analysis level. These are just a few examples of
problems encountered with deterministic parsing techniques.

The need to tackle such problems in the area of reverse engineering has led
to a revival of generalized parsing algorithms such as Earley’s algorithm, (vari-
ants of) Tomita’s algorithm (GLR) [14,21,17,2,20], and even recursive descent
backtrack parsing [6]. Although generalized parsing solves several problems in
this area, generalized parsing alone is not enough.

In this paper we describe the benefits and the practical applicability of scan-

nerless generalized LR parsing. In Section 2 we discuss the merits of scannerless
parsing and generalized parsing and argue that their combination provides a
solution for problems like the ones described above. In Section 3 we describe
how disambiguation can be separated from grammar structure, thus allowing a
natural grammar structure and declarative and selective specification of disam-
biguation. In Section 4 we discuss issues in the implementation of disambigua-
tion. In Section 5 practical experience with the parsing technique is discussed. In
Section 6 we present figures on the performance of our implementation of a scan-
nerless generalized parser. Related work is discussed where needed throughout
the paper. Finally, we conclude in Section 7.

2 Scannerless Generalized Parsing

2.1 Generalized Parsing

Generalized parsers are a class of parsing algorithms that are not constrained by
restrictions on the class of grammars that they can handle, contrary to restricted
parsing algorithms such as the various derivatives of the LL and LR algorithms.
Whereas these algorithms only deal with context-free grammars in LL(k) or
LR(k) form, generalized algorithms such as Earley’s or Tomita’s algorithms can
deal with arbitrary context-free grammars. There are two major advantages to
the use of arbitrary context-free grammars.

Firstly, the class of context-free grammars is closed under union, in contrast
with all proper subclasses of context-free grammars. For example, the compo-
sition of two LALR grammars is very often not a LALR grammar. The com-
positionality of context-free grammars opens up the possibility of developing
modular syntax definition formalisms. Modularity in programming languages
and other formalisms is one of the key beneficial software engineering concepts.
A striking example in which modularity of a grammar is obviously practical is
the definition of hybrid languages such as Cobol with CICS, or C with assembly.
Sdf [10,23] is an example of a modular syntax definition formalism.

Secondly, an arbitrary context-free grammar allows the definition of declar-
ative grammars. There is no need to massage the grammar into LL, LR, LALR,

2

or any other form. Rather the grammar can reflect the intended structure of the
language, resulting in a concise and readable syntax definition. Thus, the same
grammar can be used for documentation as well as implementation of a language
without any changes.

Since generalized parsers can deal with arbitrary grammars, they can also
deal with ambiguous grammars. While a deterministic parser produces a single
parse tree, a non-deterministic parser produces a collection (forest) of trees com-
pactly representing all possible derivations according to the grammar. This can
be helpful when developing a grammar for a language. The parse forest can be
used to visualize the ambiguites in the grammar, thus aiding in the improvement
of the grammar. Contrast this with solving conflicts in a LALR table. Disam-
biguation filters can be used to reduce a forest to the intended parse tree. Filters
can be based on disambiguation rules such as priority and associativity declara-
tions. Such filters solve the most frequent ambiguities in a natural and intuitive
way without hampering the clear structure of the grammar.

In short, generalized parsing opens up the possibility for developing clear and
concise language definitions, separating the language design problem from the
disambiguation problem.

2.2 Scannerless Parsing

Traditionally, syntax analysis is divided into a lexical scanner and a (context-
free) parser. A scanner divides an input string consisting of characters into a
string of tokens. This tokenization is usually based on regular expression match-
ing. To choose between overlapping matches a number of standard lexical dis-
ambiguation rules are used. Typical examples are prefer keywords, prefer longest
match, and prefer non-layout. After tokenization, the tokens are typically inter-
preted by the parser as the terminal symbols of an LR(1) grammar.

Although this architecture proves to be practical in many cases and is globally
accepted as the standard solution for parser generation, it has some problematic
limitations. Only few existing programming languages are designed to fit this
architecture, since these languages generally have an ambiguous lexical syntax.
The following examples illustrate this misfit for Cobol, PL1 and Pascal.

In an embedded language, such as SQL in Cobol, identifiers that are reserved
keywords in Cobol might be allowed inside SQL statements. However, the im-
plicit “prefer keywords” rule of lexical scanners will automatically prohibit them
in SQL too.

Another Cobol example; a particular “picture clause” might look like "PIC

99", where "99" should be recognized as a list of picchars. In some other part
of a Cobol program, the number "99" should be recognized as numeric. Both
character classes obviously overlap, but on the context-free level there is no
ambiguity because picture clauses do not appear where numerics do. See [13] for
a Cobol syntax definition.

Another example of scanner and parser interference stems from Pascal. Con-
sider the input sentence "array [1..10] of integer", the range "1..10" can
be tokenized in two different manners, either as the real "1." followed by the

3

real ".10", or as the integer "1" followed by the range operator ".." followed by
the integer "10". In order to come up with the correct tokenization the scanner
must “know” it is processing an array declaration.

The problem is even more imminent when a language does not have reserved
keywords at all. PL1 is such a language. This means that a straightforward
tokenization is not possible when scanning a valid PL1 sentence such as "IF

THEN THEN = ELSE; ELSE ELSE = THEN;".

Similar examples can be found for almost any existing programming lan-
guage. A number of techniques for tackling this problem is discussed in [3].
Some parser generators provide a complex interface between scanner and parser
in order to profit from the speed of lexical analysis while using the power of a
parser. Some lexical scanners have more expressive means than regular expres-
sions to be able to make more detailed decisions. Some parser implementations
allow arbitrary computations to be expressed in a programming language such
as C to guide the scanner and the parser. All in all it is rather cumbersome
to develop and to maintain grammars which have to solve such simple lexical
disambiguations, because none of these approaches result in declarative syntax
specifications.

Scannerless parsing is an alternative parsing technique that does not suffer
these problems. The term scannerless parsing was introduced in [18,19] to indi-
cate parsing without a separate lexical analysis phase. In scannerless parsing, a
syntax definition is a context-free grammar with characters as terminals. Such
an integrated syntax definition defines all syntactic aspects of a language, includ-
ing the full details of the lexical syntax. The parser derived from this grammar
directly reads the characters of the input string and finds its phrase structure.

Scannerless parsing does not suffer the problems of implicit lexical disam-
biguation. Very often the problematic lexical ambiguities do not even exist at
the context-free level, as is the case in our Cobol, Pascal and PL1 examples. On
the other hand, the lack of implicit rules such as “prefer keywords” and “longest
match” might give rise to new ambiguities at the context-free level. These ambi-
guities can be solved by providing explicit declarative rules in a syntax definition
language. Making such disambiguation decisions explicit makes it possible to ap-
ply them selectively. For instance, we could specify longest match for a single
specific sort, instead of for the entire grammar, as we shall see in Section 3.

In short, scannerless parsing does not need to make any assumptions about
the lexical syntax of a language and is therefore more generically applicable for
language engineering.

2.3 Combining Scannerless Parsing and Generalized Parsing

Syntax definitions in which lexical and context-free syntax are fully integrated
do not usually fit in any restricted class of grammars required by deterministic
parsing techniques because lexical syntax often requires arbitrary length looka-
head. Therefore, scannerless parsing does not go well with deterministic parsing.
For this reason the adjacency restrictions and exclusion rules of [18,19] could

4

only be partly implemented in an extension of a SLR(1) parser generator and
led to complicated grammars.

Generalized parsing techniques, on the other hand, can deal with arbitrary
length lookahead. Using a generalized parsing technique solves the problem of
lexical lookahead in scannerless parsing. However, it requires a solution for dis-
ambiguation of lexical ambiguities that are not resolved by the parsing context.

In the rest of this paper we describe how syntax definitions can be disam-
biguated by means of declarative disambiguation rules for several classes of am-
biguities, in particular lexical ambiguities. Furthermore, we discuss how these
disambiguation rules can be implemented efficiently.

3 Disambiguation Rules

There are many ways for disambiguation of ambiguous grammars, ranging from
simple syntactic criteria to semantic criteria [12]. Here we concentrate on am-
biguities caused by integrating lexical and context-free syntax. Four classes of
disambiguation rules turn out to be adequate.

Follow restrictions are a simplification of the adjacency restriction rules of
[18,19] and are used to achieve longest match disambiguation. Reject produc-
tions, called exclusion rules in [18,19], are designed to implement reserved key-
words disambiguation. Priority and associativity rules are used to disambiguate
expression syntax. Preference attributes are used for selecting a default among
several alternative derivations.

3.1 Follow Restrictions

Term ::= Id | Nat | Term Ws Term

Id ::= [a-z]+

Nat ::= [0-9]+

Ws ::= [\ \n]*

%restrictions

Id -/- [a-z]

Nat -/- [0-9]

Ws -/- [\ \n]

Figure 1. Term language with follow restrictions.

Star ::= [*]

CommentChar ::= ~[*] | Star

Comment ::= "(*" CommentChar* "*)"

Ws ::= ([\ \n] | Comment)*

%restrictions

Star -/- [\)]

Ws -/- [\ \n] | [\(].[*]

Figure 2. Extended layout definition with follow restrictions.

Suppose we have the simple context-free grammar for terms as presented in
Figure 1. An Id is defined to be one ore more characters from the class [a-z]+

5

and two terms are separated by whitespace consisting of zero or more spaces or
newlines.

Without any lexical disambiguation, this grammar is ambiguous. For exam-
ple, the sentence "hi" can be parsed as Term(Id("hi")) or as Term(Id("h")),
Ws(""), Term(Id("i")). Assuming the first is the intended derivation, we add
a follow restriction, Id -/- [a-z], indicating that an Id may not directly be
followed by a character in the range [a-z]. This entails that such a charac-
ter should be part of the identifier. Similarly, follow restrictions are added for
Nat and Ws. We have now specified a longest match for each of these lexical
constructs.

In some languages it is necessary to have more than one character lookahead
to decide the follow restriction. In Figure 2 we extend the layout definition of
Figure 1 with comments. The expression ~[*] indicates any character except
the asterisk. The expression [\(].[*] defines a restriction on two consecutive
characters. The result is a longest match for the Ws nonterminal, including com-
ments. The follow restriction on Star prohibits the recognition of the string "*)"

within Comment. Note that it is straightforward to extend this definition to deal
with nested comments.

3.2 Reject Productions

Program ::= "begin" Ws Term Ws "end"

Id ::= "begin" | "end" {reject}

Figure 3. Prefer keywords using reject productions

Reject productions are used to implement keyword reservation. We extend
the grammar definition of Figure 1 with the begin and end construction in
Figure 3. The sentence "begin hi end" is either interpreted as three consecutive
Id terms separated by Ws, or as a Program with a single term hi. By rejecting

the strings begin and end from Id, the first interpretation can be filtered out.

The reject mechanism can be used to reject not only strings, but entire
context-free languages from a nonterminal. We focus on its use for keyword
reservation in this paper and refer to [23] for more discussion.

3.3 Priority and Associativity

Exp ::= [0-9]+

Exp ::= Exp "+" Exp {left}

Exp ::= Exp "*" Exp {left}

%priorities

Exp ::= Exp "*" Exp > Exp ::= Exp "+" Exp

Figure 4. Associativity and priority rules.

For completeness we show an example of the use of priority and associativity
in an expression language. Note that we have left out the Ws nonterminal for

6

brevity1. In Figure 4 we see that the binary operators + and * are both defined
as left associative and the * operator has a higher priority than the + operator.
Consequently the sentence "1 + 2 + 3 * 4" is interpreted as "(1 + 2) + (3

* 4)".

3.4 Preference Attributes

Term ::= "if" Nat "then" Term {prefer}

Term ::= "if" Nat "then" Term "else" Term

Id ::= "if" | "then" | "else" {reject}

Figure 5. Dangling else construction disambiguated

A preference rule is a generally applicable rule to choose a default among
ambiguous parse trees. For example, it can be used to disambiguate the notorious
dangling else construction. Again we have left out the Ws nonterminal for brevity.
In Figure 5 we extend our term language with this construct.

The input sentence "if 0 then if 1 then hi else ho" can be parsed in
two ways: if 0 then (if 1 then hi) else ho and if 0 then (if 1 then

hi else ho). We can select the latter derivation by adding the prefer attribute
to the production without the else part. The parser will still construct an am-
biguity node containing both deriviations, namely, if 0 then (if 1 then hi

{prefer}) else ho and if 0 then (if 1 then hi else ho) {prefer}. But
given the fact that the top node of the latter derivation tree has the prefer at-
tribute this derivation is selected and the other tree is removed from the ambi-
guity node.

The dual of {prefer} is the {avoid} attribute. Any other tree is preferred
over a tree with an avoided top production. One of its uses is to prefer keywords
rather than reserving them entirely. For example, we can add an {avoid} to
the Id ::= [a-z]+ production in Figure 1 and not add the reject productions
of Figure 3. The sentence "begin begin end" is now a valid Program with the
single derivation of a Program containing the single Id "begin".

4 Implementation Issues

Our implementation of scannerless generalized parsing consists of the syntax
definition formalism Sdf that supports concise specification of integrated syn-
tax definitions, a grammar normalizer that injects layout and desugars regular
expressions, a parse table generator and a parser that interprets parse tables.

The parser is based on the GLR algorithm. For the basic GLR algorithms we
refer to the first publication on generalized LR parsing by Lang [14], the work
by Tomita [21], and the various improvements and implementations [17,2,20].
We will not present the complete SGLR algorithm, because it is essentially the

1 By doing grammar normalization a parse table generator can automatically insert
layout between the members in the right-hand side. See also Section 5.

7

standard GLR algorithm where each character2 is a separate token. For a detailed
description of the implementation of GLR and SGLR we refer to [17] and [22]
respectively.

The algorithmic differences between standard GLR and scannerless GLR
parsing are centered around the disambiguation constructs. From a declarative
point of view each disambiguation rule corresponds to a filter that prunes parse
forests. In this view, parse table generation and the GLR algorithm remain un-
changed and the parser returns a forest containing all derivations. After parsing
a number of filters is executed and a single tree or at least a smaller forest is
obtained.

Although this view is conceptually attractive, it does not fully exploit the
possibilities for pruning the parse forest before it is even created. A filter might
be implemented statically, during parse table generation, dynamically, during
parsing, or after parsing. The sooner a filter is applied, the faster a parser will
return the filtered derivation tree. In which phase they are applicable depends
on the particulars of specific disambiguation rules. In this section we discuss the
implementation of the four classes of disambiguation rules.

4.1 Follow Restrictions

Our parser generator generates a simple SLR(1) parse table, however we deviate
at a number of places from standard algorithm [1]. One modification is the calcu-
lation of the follow set. The follow set is calculated for each individual production
rule instead of for each nonterminal. Using priority and associativity relations
may lead to different follow sets for productions with the same non-terminal in
the left-hand side. Another modification is that the transitions between states
(item-sets) in the LR-automaton are not labeled with a nonterminal, but with
a production rule. These more fine-grained transitions increase the size of the
LR-automaton, but it allows us to generate parse tables with fewer conflicts.

Follow restriction declarations with a single lookahead can be used during
parse table generation to remove reductions from the parse table. This is done
by intersecting the follow set of each production rule with the set of characters
in the follow restrictions for the produced nonterminal. The effect of this filter is
that the reduction in question cannot be performed for characters in the follow
restriction set.

Restrictions with more than one lookahead must be dealt with dynamically
by the parser. The parse table generator marks the reductions that produce a
nonterminal that has restrictions with more than one character. Then, while
parsing, before such a reduction is done the parser must retrieve the required
number of characters from the string and check them with the restrictions. If
the next characters in the input match these restrictions the reduction is not al-
lowed, otherwise it can be performed. This parse-time implementation prohibits
shift/reduce conflicts that would normally occur and therefore saves the parser
from performing unnecessary work.

2 The current implementation of SGLR supports the Latin-1 character set.

8

4.2 Reject Productions

Disambiguation by means of reject productions cannot be implemented stati-
cally, since this would require computing the intersection of two syntactic cat-
egories, which is not possible in general. Even computing such intersections for
regular grammars would lead to very large automata. When using a generalized
parser, filtering with reject productions can be implemented effectively during
parsing.

Consider the reject production Id ::= "begin" {reject}, which declares
that "begin" is not a valid Id in any way (Figure 3). Thus, each and every
derivation of the subsentence "begin" that produces an Id is illegal. During
parsing, without the reject production the substring "begin" will be recognized
both as an Id and as a keyword in a Program. By adding the reject production to
the grammar another derivation is created for "begin" as an Id, resulting in an
ambiguity of two deriviations. If one derivation in an ambiguity node is rejected,
the entire parse stack for that node is deleted. Hence, "begin" is not recognized
as an identifier in any way. Note that the parser must wait until each ambiguous
derivation has returned before it can delete a stack3. The stack on which this
substring was recognized as an Id will not survive, thus no more actions are
performed on this stack. The only derivation that remains is where "begin" is
a keyword in a Program.

Reject productions could also be implemented as a backend filter. However,
by terminating stacks on which reject productions occur as soon as possible a
dramatic reduction in the number of ambiguities can be obtained.

4.3 Priority and Associativity

Associativity of productions and priority relations can be processed during the
construction of the parse table. We present an informal description here and
refer to [23] for details.

There are two phases in the parse table generation process in which associa-
tivity and priority information is used. The first place is during the construction
of the LR-automaton. Item-sets in the LR-automaton contain dotted produc-
tions. Prediction of new items for an item-set takes the associativity and prior-
ity relations into consideration. If a predicted production is in conflict with the
production of the current item, then the latter production is not added to the
item-set. The second place is when shifting a dot over a nonterminal in an item.
In case of an associativity or priority conflict between a production rule in the
item and a production rule on a transition, the transition will not be added to
the LR-automaton.

We will illustrate the approach described above by discussing the construction
of a part of the LR-automaton for the grammar presented in Figure 4. We create
the transitions in the LR-automaton for state si which contains the items

[Exp ::= . Exp "+" Exp] [Exp ::= . Exp "*" Exp] [Exp ::= . [0-9]+]

3 Our parser synchronizes parallel stacks on shifts, so we can wait for a shift before
we delete an ambiguity node.

9

In order to shift the dot over the nonterminal Exp via the production rule Exp

::= Exp "+" Exp every item in si is checked for a conflict. The new state sj

has the item-set

[Exp ::= Exp . "+" Exp]

Note that sj does not contain the item [Exp ::= Exp . "*" Exp], since that
would cause a conflict with the given priority relation "*" > "+".

By pruning the transitions in a parse table in the above manner, conflicts
at parse time pertaining to associativity and priority can be ruled out. How-
ever, if we want priority declarations to ignore injections (or chain rules) this
implementation does not suffice. Yet it is natural to ignore injections when ap-
plying disambiguation rules, since they do not have any visible syntax. Priorities
module chain rules require an extension of this method or a parse-time filter.

4.4 Preference Attributes

The preference filter is an typical example of an after parsing filter. In principle it
could be applied while parsing, however this will complicate the implementation
of the parser tremendously without gaining efficiency. This filter operates on an
ambiguity node, which is a set of ambiguous subtrees, and selects the subtrees
with the highest preference.

The simplest preference filter compares the trees of each ambiguity node by
comparing the avoid or prefer attributes of the top productions. Each preferred
tree remains in the set, while all others are removed. If there is no preferred tree,
all avoided trees are removed, while all others remain. Ignoring injections at the
top is a straightforward extension to this filter.

By implementing this filter in the backend of the parser we can exploit the
redundancy in parse trees by caching filtered subtrees and reusing the result
when filtering other identical subtrees. We use the ATerm library [5] for repre-
senting a parse forest. It has maximal sharing of subterms, limiting the amount
of memory used and making subtree identification a trivial matter of pointer
equality.

For a number of grammars this simple preference filter is not powerful enough,
because the production rules with the avoid or prefer are not at the root (mod-
ulo injectons) of the subtrees, but deeper in the subtree. In order to disambiguate
these ambiguous subtrees, more subtle preference filters are needed. However,
these filters will always be based on some heuristic, e.g., counting the number of
“preferred” and “avoided” productions and applying some selection on the basis
of these numbers, or by looking a the depth at which a “preferred” or “avoided”
production occurs. In principle, for any chosen heuristic counter examples can
be constructed for which the heuristic fails to achieve its intended goal, yielding
undesired results.

10

5 Applications

5.1 Asf+Sdf Meta-Environment

In the introduction of this paper we claimed that generalized parsing techniques
are applicable in the fields of reverse engineering and language prototyping, i.e.,
the development of new (domain-specific) languages. The Asf+Sdf Meta-En-
vironment [4] is used in both these fields. This environment is an interactive
development environment for the automatic generation of interactive systems
for manipulating programs, specifications, or other texts written in a formal
language. The parser is this environment and in the generated environments is an
SGLR parser. The language definitions are written in the Asf+Sdf formalism [8]
which allows the definition of syntax via Sdf (Syntax Definition Formalism) [10]
as well as semantics via Asf (Algebraic Specification Formalism). Figure 6 shows
an Sdf specification of the previous examples.

Asf+Sdf has been used in a number of industrial and scientific projects.
Amongst others it was used for parsing and compiling Asf+Sdf specifications,
automatically renovating Cobol code, program analysis of legacy code via so-
called island grammars [16], and development of new Action Notation syntax [9].

5.2 XT

XT [7] is a collection of basic tools for building program transformation systems
including the Stratego transformation language [24], and the syntax definition
formalism Sdf supported by SGLR. Tools standardize on ATerms [5] as common
exchange format. Several meta-tools are provided for generating transformation
components from syntax definitions, including a data type declaration generator
that generates the data type corresponding to the abstract syntax of an Sdf

syntax definition, and a pretty-printer generator that generates default pretty-
print tables.

To promote reuse and standardization of syntax definitions, the XT project
has initiated the creation of the Online Grammar Base4 currently with some 25
syntax definitions for various general purpose and domain-specific languages, in-
cluding Cobol, Java, SDL, Stratego, YACC, and XML. Many syntax definitions
were semi-automatically reengineered from LEX/YACC definitions using gram-
mar manipulation tools from XT, producing more compact syntax definitions.
Sdf/SGLR based parsers have been used in numerous projects built with XT
in areas ranging from software renovation and grammar recovery to program
optimization and compiler construction.

6 Benchmarks

We have benchmarked our implementation of SGLR by parsing a number of
larger files and measuring the user time. Table 1 shows the results with and
4 http://www.program-transformation.org/gb
5 All benchmarks were performed on a 1200 Mhz AMD Athlon(tm) with 512Mb mem-

ory running Linux.

11

module Program

imports If

exports

sorts Program

context-free syntax

"begin" Term "end" -> Program

"begin" | "end" -> Id {reject}

module If

imports Terms

exports

context-free syntax

"if" Nat "then" Term -> Term {prefer}

"if" Nat "then" Term "else" Term -> Term

"if" | "then" | "else" -> Id {reject}

module Terms

imports Comment

exports

sorts Term

lexical syntax

[0-9]+ -> Nat

[a-z]+ -> Id

lexical restrictions

Id -/- [a-z]

Nat -/- [0-9]

context-free syntax

Term Term -> Term {left}

Id | Nat -> Term

module Comment

exports

lexical syntax

[*] -> Star

~[*] | Star -> CommentChar

"(*" CommentChar* "*)" -> Comment

[\ \n] | Comment -> LAYOUT

lexical restrictions

Star -/- [\)]

context-free restrictions

LAYOUT? -/- [\ \n] | [\(].[*]

Figure 6. A modular Sdf definition combining some of the previous examples. This
example also shows the use of a special "LAYOUT" nonterminal, the use of regular
expressions (e.g. "|" for alternative and "*" for repetition) and the use of multiple
start nonterminals.

12

Grammar Average Characters/second Characters/second
file size with filter & tree5 w/o filter & tree5

ATerms 106,000 chars 108,000 340,000
BibTEX 455,000 chars 85,000 405,000
Box 80,000 chars 34,000 368,000
Cobol 170,000 chars 58,000 146,000
Java 105,000 chars 37,000 210,000
Java (LR1) 105,000 chars 53,000 242,000

Table 1. Some figures on SGLR performance.

Grammar Productions States Actions Actions with Gotos
conflicts

ATerms 104 128 8531 75 46569
BibTEX 150 242 40508 3129 98901
Box 202 385 19249 1312 177174
Cobol 1906 5520 170375 32634 11941923
Java 726 1561 148359 5303 1535446
Java (LR1) 765 1597 88561 3354 1633156

Table 2. Some figures on the grammars and the generated parse tables.

without parse tree construction and backend filtering. All filters implemented in
the parse table or during parsing are active in both measurements. The table
shows that the parser is fast enough for industrial use. An interesting observation
is that the construction of the parse tree slows down the entire process quite a
bit. Further speedup can be achieved by optimizing parse tree construction.

Table 2 shows some details of the SLR(1) parse tables for the grammars
we used. We downloaded all but the last grammar from the Online Grammar
Base. ATerms is a grammar for prefix terms with annotations, BibTEX is a
bibliography file format, Box is a mark-up language used in pretty-print tools.
Cobol and Java are grammars for the well-known programming languages. We
have benchmarked two different Java grammars. The first is written from scratch
in Sdf, the second was obtained by transforming a Yacc grammar into Sdf. So,
the first is a more natural definition of Java syntax, while the second is in LR(1)
form.

The number of productions is measured after Sdf grammar normalization6.
We mention the number of states, gotos and actions in the parse table. Remem-
ber that the parse table is specified down to the character level, so we have more
states than usual. Also, actions and gotos are based on productions, not nonter-
minals, resulting in a bigger parse table. The number of actions with more than
one reduce or shift (a conflict) gives an indication of the amount of “ambiguity”
in a grammar. The two Java results in Table 1 show that ambiguity of a gram-
mar has a limited effect on performance. Note that after filtering, every parse in
our testset resulted in a single derivation.

6 So this number does not reflect the size of the grammar definition.

13

7 Conclusions

In this paper we discussed the combination of generalized LR parsing with scan-
nerless parsing. The first parsing technique allows for the development of mod-
ular definition of grammars whereas the second one relieves the grammar writer
from interface problems between scanner and parser. The combination supports
the development of declarative and maintainable syntax definitions that are not
forced into the harness of a restricted grammar class such as LL(k) or LR(k).
This proves to be very beneficial when developing grammars for legacy languages
such as Cobol and PL/I, but it also provides greater flexibility in the develop-
ment of new (domain-specific) languages.

One of the assets of the SGLR approach is the separation of disambiguation
from grammar structure. Thus, it is not necessary to encode disambiguation
decisions using extra productions and non-terminals. Instead a number of dis-
ambiguation filters, driven by disambiguation declarations solve ambiguities by
pruning the parse forest. Lexical ambiguities, which are traditionally handled by
adhoc default decisions in the scanner, are also handled by such filters. Filters
can be implemented at several points in time, i.e., at parser generation time,
parse time, or after parsing.

SGLR is usable in practice. It has been used as the implementation of the
expressive syntax definition formalism Sdf. SGLR is not only fast enough to
be used in interactive tools, like the Asf+Sdf Meta-Environment, but also to
parse huge amounts of Cobol code in an industrial environment.

SGLR and the Sdf based parse table generator are open-source and can be
downloaded from http://www.cwi.nl/projects/MetaEnv/.

Acknowledgements

User feedback has been indispensable while developing SGLR. Hayco de Jong
and Pieter Olivier dedicated considerable time on improving SGLR efficiency.
Merijn de Jonge and Joost Visser were instrumental in the development of the
Online Grammar Base that serves as a testbed for SGLR. Jan Heering and Paul
Klint provided valuable input when discussing design and implementation of
SGLR.

References

1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Principles, Techniques and Tools.
Addison-Wesley, 1986.

2. J. Aycock and R.N. Horspool. Faster generalized LR parsing. In S. Jähnichen,
editor, CC’99, volume 1575 of LNCS, pages 32–46. Springer-Verlag, 1999.

3. J. Aycock and R.N. Horspool. Schrödinger’s token. Software, Practice & Experi-
ence, 31:803–814, 2001.

4. M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J.J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-Environment: a Component-Based Language
Development Environment. In R. Wilhelm, editor, CC’01, volume 2027 of LNCS,
pages 365–370. Springer-Verlag, 2001.

14

5. M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient Anno-
tated Terms. Software, Practice & Experience, 30(3):259–291, 2000.

6. J.R. Cordy, C.D. Halpern-Hamu, and E. Promislow. TXL: A rapid prototyping
system for programming language dialects. Computer Languages, 16(1):97–107,
1991.

7. M. de Jonge, E. Visser, and J. Visser. XT: A bundle of program transformation
tools. In M. G. J. van den Brand and D. Parigot, editors, Workshop on Language
Descriptions, Tools and Applications (LDTA’01), volume 44 of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 2001.

8. A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping, volume 5
of AMAST Series in Computing. World Scientific, 1996.

9. K.-G. Doh and P.D. Mosses. Composing programming languages by combining
action-semantics modules. In M.G.J. van den Brand and D. Parigot, editors, Elec-
tronic Notes in Theoretical Computer Science, volume 44, 2001.

10. J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition for-
malism SDF – reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

11. S. C. Johnson. YACC—yet another compiler-compiler. Technical Report CS-32,
AT & T Bell Laboratories, Murray Hill, N.J., 1975.

12. P. Klint and E. Visser. Using filters for the disambiguation of context-free gram-
mars. In G. Pighizzini and P. San Pietro, editors, Proc. ASMICS Workshop on
Parsing Theory, pages 1–20, Milano, Italy, 1994. Tech. Rep. 126–1994, Diparti-
mento di Scienze dell’Informazione, Università di Milano.

13. R. Lämmel and C. Verhoef. VS COBOL II grammar7, 2001.
14. B. Lang. Deterministic techniques for efficient non-deterministic parsers. In

J. Loeckx, editor, Proceedings of the Second Colloquium on Automata, Languages
and Programming, volume 14 of LNCS, pages 255–269. Springer-Verlag, 1974.

15. M. E. Lesk and E. Schmidt. LEX — A lexical analyzer generator. Bell Laboratories,
1986. UNIX Programmer’s Supplementary Documents, Volume 1 (PS1).

16. L. Moonen. Generating robust parsers using island grammars. In Proceedings of
the 8th Working Conference on Reverse Engineering, pages 13–22. IEEE Computer
Society Press, 2001.

17. J. Rekers. Parser Generation for Interactive Environments. PhD thesis, University
of Amsterdam, 1992. ftp://ftp.cwi.nl/pub/gipe/reports/Rek92.ps.Z.

18. D.J. Salomon and G.V. Cormack. Scannerless NSLR(1) parsing of programming
languages. SIGPLAN Notices, 24(7):170–178, 1989.

19. D.J. Salomon and G.V. Cormack. The disambiguation and scannerless parsing of
complete character-level grammars for programming languages. Technical Report
95/06, Dept. of Computer Science, University of Manitoba, 1995.

20. E. Scott, A. Johnstone, and S.S. Hussain. Technical Report TR-00-12, Royal Hol-
loway, University of London, Computer Science Dept., 2000.

21. M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm for Prac-
tical Systems. Kluwer Academic Publishers, 1985.

22. E. Visser. Scannerless generalized-LR parsing. Technical Report P9707, Program-
ming Research Group, University of Amsterdam, 1997.

23. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, 1997.

24. E. Visser. Stratego: A language for program transformation based on rewriting
strategies. System description of Stratego 0.5. In A. Middeldorp, editor, RTA’01,
volume 2051 of LNCS, pages 357–361. Springer-Verlag, 2001.

7 http://www.cs.vu.nl/grammars/browsable/vs-cobol-ii/

15

