
How to make a bridge between transformation

and analysis technologies?

J.R. Cordy and J.J. Vinju

July 19, 2005

1 Introduction

At the Dagstuhl seminar on “Transformation Techniques in Software Engineer-
ing” we had an organized discussion on the intricacies of engineering practicle
connections between software analysis and software transformation tools. This
abstract summarizes it. This discussion contributes mainly by explicitly fo-
cussing on this subject from a general perspective, and providing a first sketch
of a domain analysis. First we discuss the solution space in general, and then
we compare the merits of two entirely different designs: the monolithic versus
the heterogeneous approach.

Acknowledgements There were many people attending this discussion,
among others: James R. Cordy, Thomas R. Dean, Rudolf Ferenc, Michael God-
frey, Robert Hirschfeld, Kim Mens, Tom Mens, Alberto Pettorossi, Markus
Pizka, Roel Wuyts, Jurgen J. Vinju. The subject has been discussed earlier at
the STS workshop in Vancouver, collocated with GPCE 2004.

Two domains We start from the premise that transformation of source code
and analysis of source code are two different domains. For each domain specific
tooling has been constructed with success. From practical experience, we have
concluded that analysis and transformation technology complement eachother
naturally when applied to general automated software engineering activities.
Examples of transformation tooling are the domain specific languages TXL [2],
ASF+SDF [1] and Stratego [8]. Tools like Grok [5], SQL, or even Prolog are
considered to be analysis tools from the perspective of this discussion.

Source code representations Each domain is specialized on different kinds
of source code representations. On the one hand, transformation tools work on
representations of source code that closely follow the structure of the original
source code. Examples of such representations are the files themselves, parse
trees and abstract syntax trees or graphs. On the other hand, analysis tools deal
with more abstract representations, that are frequently referred to as “facts”

1
Dagstuhl Seminar Proceedings 05161
Transformation Techniques in Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2006/426



Source Code

Transformation

Abstractions
Abstraction

Documentation

Conversion

FormalizationGeneration

Presentation

Analysis

Figure 1: Three source code representation tiers

about source code. Such facts are usually represented in data-bases containing
relations between selected source code artefacts.

Question Figure 1 illustrates possible connections between source code rep-
resentation tiers. Apparently, such connections play a central role in the design
and implementation of automated software engineering tools. The following
quality attributes are most important for these bridges: transparency, efficiency,
and consistency. Secundary quality attributes we consider are ease-of-use, sep-
aration of concerns and maximal reuse of existing technologies. The overall
question we pose is:

Given one arbitrary transformation tool, and one arbitrary analysis
tool, how to construct a high quality bridge between the two?

We do not exclude the possiblity that the choice of transformation and analysis
tools heavily influences the answer to this question. However, we do wish to
focus on the actual bridge, not the intricasies of the separate tools.

2 The solution space

By discussing several examples of bridges that have been applied successfully in
the past we analyzed the solution space. In the interest of brevity, we present
here only the results of this analysis, not the particular examples we discussed
to obtain it. The examples discussed were TXL/Grok, Soul [6], Columbus [4],
ASF+SDF/Rscript, and Stratego.

We first identified the fact that we deal mainly with Computation in both
the transformation and analysis domains, and Communication between these
domains. We explicitly ignore the solution space and variability of the computa-
tions. However, there is one requirement that the respective computations must
satisfy that is virtually impossible to separate from the actual computation.

2.1 Computation

The concept of identity of source code artefacts is pivotal in the construction of a
bridge. A source code artefact is a selected piece of information from the source
code, such as a class name or a method body. To be able to communicate, both
computations need to agree on a unique encoding of each artefact. Uniqueness

2



ensures consistency of facts across the bridge, such that each fact refers to the
right source code artefact(s) of the source code in either domain.

Obtaining and maintaining unique encodings of source code artefacts
is hard.

The complete syntax, static semantics and for some programming languages
even dynamic semantics may be needed to compute a unique representation
of a source code artefact. For example, scoping rules influence computing an
identify of a source code artefacts, because names may be reused in different
scopes. A method name is not unique enough to identify a particular method.

Note that an encoding can be application specific, object language specific
but application independent, or completely object language idendependent. In
our examples, we saw mainly language specific solutions, that provided a specific
mapping from source code artefacts to unique representations for one particu-
lar object language. One system used a language independent mapping; each
artefact was identified by a location encoded by filename, with the offset and
length in characters in the file for each artefact.

2.2 Communication

Figure 2 illustrates the variability of the communication process that we iden-
tified. Of course this communication process is governed by general communi-
cation principles. Here we will briefly touch upon each branch in Figure 2, and
detail its importance in the context of our general question.

Protocol Regarding the communication protocol, we identified two possibili-
ties. Either it is implemented using Co-routines between the two computational
processes, or by staging the computation processes seperately and communicat-
ing via serialized representations (files). In the co-routine case, we must select
a driver computation that calls the other computational process at the appro-
priate times. The direction is two-way in this case, parameters are given to the
co-routine and results are returned back from it. In the batch case, we may
freely choose the direction depending on the application in mind.

On the one hand, the co-routine solution is attractive because the bridge is
completely transparant and consistency of facts may be easily obtained due to
the tight integration. However, the construction of co-routines either requires
a complete integration of two tools, or a tailor-made low level communication
protocol between to tools, or the use of possibly complex middleware.

On the other hand the batch approach ensures reuse of existing tools without
much plumbing. The process may be easily streamlines using simple middleware
solutions (XML). However, maintaining data consistency may be hard because
the two computations are so independent, and the serialization process that
comes with it may become hard to understand (not transparent).

3



Figure 2: How to communicate source code artefacts

Granurality The usefullness of a bridge is influenced by the granularity of
the facts that communicated over it. The efficiency of the bridge also depends
on this measure. High granularity often implies a lot more facts that need to
be communicated. Three classes of granularity of source code fact extraction
have been identified in a previous Dagstuhl seminar, in order of decreasing
granularity: low level, mid-level and architectural [7]

Identification We discussed the identification issue above, since it influences
both the computation and the communication processes. In terms of commu-
nication we witnessed examples of identification by reference, and identification
by value. Using by value, a representation of an entire artefact is passed to
the other computation. Using by reference, some coded identifier is given to
each source code artefact before communication starts. These identifiers may
be stable or unstable across runs of the transformation and analysis tools.

Marshalling The actual transport of data, the marshalling can be done by
serialization, putting the data somewhere such that the other computation may
get it. It may also be done by linking the two processes together and using shared
memory. In both cases, transformation of the data from one representation into
another may be necessary. An examples of such a transformations is an export

4



filter to GXL [9].
Note that the type of marshalling that is needed depends highly on the

communication protocol that is chosen. A co-routine based protocol combines
easily with shared memory, while batch protocols require serialized data.

Representation The representation chosen to communicate may highly in-
fluence quality attributes of a bridge. For high granulirity facts, a compact
or even shared representation may avoid a communication bottleneck. On the
other hand, a readable representation improves the transparency of a connection
(for debugging purposes).

Most systems use a generic representation mechanism, such that it can be
reused in several automated software engineering application. Examples of file
based representations are RSF and GXL. ATerms are used to easily construct
maximally shared representations.

3 Monolithic versus Heterogeneous

We compared two designs. The monolithic design links the two computations
together in one process and uses co-routines to alternate. The data is mar-
shalled using an API that translates source code artefacts on-the-fly to either
representation.

The heterogeneous design picks a batch approach, staging the two commu-
nications by filtering serialized representations. It uses import/export filters to
marshall the serialized representations.

Monolithic approach Advantages are that fact consistency is easier, and
the marshalling layer can be extremely thin. The disadvantages are that the
benefits of specializing on a particular domain (analysis or transformation) may
be lost. We refer to Czarnecki [3] for the benefits of domain specific languages.
Another disadvantage is the tight coupling on both the implementation level
and the user level: everything depends on everything.

Heterogeneous approach One advantage is that the serialization process
enforces an explicit (documented) contract between the two communication par-
ties. Another is that a tool may be easily replaces by another in this architecture,
due to the loose coupling. A big disadvantages are that the marshalling of data
may be very complex. The identification issue is more complex in the batch
approach (stability of identifiers). Moreover, the consistency of extracted facts
is harder to validate automatically: source code may be updated which may not
be reflected in previously serialized and transported facts.

Discussion We were unable to ascertain which design offers higher quality.
The circumstances, or goals of an automated software engineering tool, influence
this. For example, in an interactive setting, the monolithic approach may be

5



advisable to optimize response time. The heterogeneous approach is much more
flexible, and may therefore be better applicable to object language independent
settings.

4 Conclusion

We have briefly touched upon several issues regarding the construction of bridges
between analysis and transformation tools. The contribution of the discussion
is that we have identified this as a subject of study, as opposed to considering it
a trivial engineering issue. The quality of automated software engineering tools
depends on it.

Future work We should invest in a rigorous domain analysis of this subject,
including requirements, trade-offs and constraints, with practical solutions that
may be applied in different circumstances. We may use a thorough analysis of
several existing systems from this perspective to validate our recommendations.

References

[1] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de
Jonge, T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J.J.
Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-Environment: a
Component-Based Language Development Environment. In R. Wilhelm,
editor, CC’01, volume 2027 of LNCS, pages 365–370. Springer-Verlag, 2001.

[2] J.R. Cordy, C.D. Halpern-Hamu, and E. Promislow. TXL: A rapid pro-
totyping system for programming language dialects. Computer Languages,
16(1):97–107, 1991.

[3] K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[4] Rudolf Ferenc, Árpád Beszédes, and Tibor Gyimóthy. Fact Extraction and
Code Auditing with Columbus and SourceAudit. In Proceedings of the 20th
International Conference on Software Maintenance (ICSM 2004), page 513.
IEEE Computer Society, September 2004.

[5] R.C. Holt. An introduction to the Grok programming language. Technical
report, University of Waterloo, May 2002.

[6] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software devel-
opment through declaratively codified programming patterns. Journal on
Expert Systems with Applications, December 2002.

[7] Erhard Ploedereder Timothy Lethbridge, Sander Tichelaar. The Dagstuhl
Middle Metamodel: A schema for reverse engineering. Electronic Notes in
Theoretical Computer Science, 94:7–18, 2004.

6



[8] E. Visser. Stratego: A language for program transformation based on rewrit-
ing strategies. System description of Stratego 0.5. In A. Middeldorp, editor,
RTA’01, volume 2051 of LNCS, pages 357–361. Springer-Verlag, 2001.

[9] A. Winter, B. Kullbach, and V. Riediger. An overview of the GXL graph
exchange language. In Revised Lectures on Software Visualization, Interna-
tional Seminar, pages 324–336, London, UK, 2002. Springer-Verlag.

7


