
Comparing Bottom-up with Top-down Parsing1

Architectures for the Syntax Definition Formalism2

from a Disambiguation standpoint3

Jurgen J. Vinju !Ï4

NWO-I Centrum Wiskunde & Informatica5

TU Eindhoven, The Netherlands6

Abstract7

Context-free general parsing and disambiguation algorithms are threaded throughout the research and8

engineering career of Eelco Visser. Both our Ph.D. theses featured the study of “disambiguation.” Disambiguation9

is the declarative definition of choices among different parse trees, derived using the same context-free grammar,10

for the same input sentence.11

This essay highlights the differences between syntactic disambiguation for context-free general parsing in12

a top-down architecture and a bottom-up architecture. The differences between top-down and bottom-up are13

mainly observed as practical aspects of the software architecture and software implementation. Eventually, the14

concept of data-dependent context-free grammar brings all engineering perspectives of disambiguation back15

into a conceptual (declarative) framework independent of the parsing architecture. The novelty in this essay16

is the juxtaposition of three general parsing architectures from a disambiguation point of view: SGLR, SGLL,17

and DDGLL. It also motivates design decisions in the parsing architectures for SDF{1,2} and Rascal with18

previously unpublished detail. The essay falls short of a literature review and a tool evaluation since it does not19

investigate the disambiguation methods of the many other parser generator tools that exist. The fact that only the20

implementation algorithms are different between the compared parsing architectures, while the syntax definition21

formalisms have practically the same formal semantics for historical reasons, nicely “isolates the variable” of22

interest.23

We hope this essay lives up to the enormous enthusiasm, curiosity, and drive for perfection in syntax24

definition and parsing that Eelco always radiated. We dearly miss him.25

2012 ACM Subject Classification Software and its engineering→ Syntax26

Keywords and phrases parser generation, context-free grammars, GLR, GLL, algorithms, disambiguation27

Digital Object Identifier 10.4230/OASIcs.EVCS.2023.1228

Acknowledgements This essay would not have been possible without the past teamwork with Eelco Visser,29

Paul Klint, Jan Heering, Jeroen Scheerder, Mark van den Brand, Chris Verhoef, Alex Sellink, Pieter Olivier,30

Hayco de Jong, Georgios (Rob) Economopoulos, Martin Bravenboer, Tijs van der Storm, Joost Visser, Merijn de31

Jonge, Jørgen Iversen, Arnold Lankamp, Ali Afroozeh, Anastasia Izmaylova, Bas Basten, Martin Bravenboer,32

Adrian Johnstone and Elizabeth Scott on the topic of context-free general parsing and disambiguation and33

supporting technologies. However, any error or inconsistency in the following is all mine.34

1 Introduction35

This essay focuses on qualitative differences in the design and implementation of Syntax Definition,36

Parser Generation, and Disambiguation between two classes of Parsing algorithms: GLR and GLL.37

Disambiguation is a function of an entire Parsing Architecture with the goal of reducing the set of38

Parse Trees (the Parse Forest) to exactly one using declarative definitions. Extensions of the Syntax39

Definition Formalisms (languages for context-free grammars) allow expressing preferences between40

different Parse Trees as produced by the Grammar. It is helpful to see Disambiguation as orthogonal41

to Parsing, where the latter produces Parse Trees and the former removes them again. However, in42

actual Parsing Architectures, this distinction is virtually invisible due to efficiency considerations. In43

this essay, we emphasize declarative and correct parsing over efficiency.44

© Jurgen J. Vinju, NWO-I Centrum Wiskunde & Informatica;
licensed under Creative Commons License CC-BY 4.0

Eelco Visser Commemorative Symposium (EVCS 2023).
Editors: Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann; Article No. 12; pp. 12:1–12:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jurgen.Vinju@cwi.nl
http://homepages.cwi.nl/~jurgenv
https://orcid.org/0000-0002-2686-7409
https://doi.org/10.4230/OASIcs.EVCS.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

12:2 Comparing Bottom-up with Top-down Parsing from a Disambiguation standpoint

1.1 History of Disambiguation with the SDF45

A brief and selective history of disambiguating context-free grammars written in the “Syntax Defini-46

tion Formalism” (SDF) is due first. We focus on the parsing architectures of the Syntax Definition47

Formalism (SDF) [18, 15, 19] and its later incarnations SDF2 [26, 45] (a part of the “new” ASF+SDF48

Meta-Environment [7, 12] and of StrategoXT [13]), and its further parallel offspring in Rascal [24, 25]49

and Spoofax [22] (SDF3 [4]). This history motivates the comparison of parsing architectures later50

and establishes their origins and dependencies for the sake of full disclosure. We are not comparing51

independently designed artifacts.52

Already in the first SDF from the early 1980’s its users wrote context-free grammars in a BNF-like53

format [18], plus regular extensions such as lists and optionals (a.k.a. “EBNF”), plus disambiguation54

declarations. The non-terminal notation of SDF was taken from the meta notation used in Paul55

Klint’s PhD thesis [23]. These definitions were then used to generate parsers and other useful56

language tooling such as unparsers, syntax highlighters, structure editors, etc. SDF used general57

parsing algorithms from the very start. Initially, it was based on Jay Earley’s algorithm [16], but58

SDF switched to Tomita’s GLR parsing algorithm [37] quickly. Earley’s and GLR would allow any59

kind of grammars —not just LL(1) or LR(1) or LALR, but any. This was a unique and stimulating60

feature for a parser generator, since putting together rules from different modules would also work61

(i.e. parsing would happen) and often it would do the right thing. SDF with GLR as its underlying62

execution mechanism offered the powers of modularity, language embeddings, and compositionality63

of grammars that were eminently useful and also deemed elegant.64

However, ambiguity and its cure disambiguation are neither modular nor compositional. By this,65

we mean that two arbitrary unambiguous modules when composed can easily become ambiguous66

and that two arbitrary modules with disambiguation constructs without parsing errors could when67

composed, easily generate spurious parsing errors. Ambiguity of context-free grammars is generally68

undecidable (with and without disambiguation constructs) [36], and this conundrum is the main69

motivation for all our research into the “diagnostics and treatment” of ambiguity in the SDF world [43].70

Ambiguity made the SDF sometimes hard to use, despite its elegance and compositionality, or perhaps71

because of it. On top of this, the non-determinism of SDF grammars (ambiguous or not) is also a72

source of inefficiency of Tomita’s GLR. The same disambiguation constructs that were proposed73

would also have a positive effect on efficiency as well.74

Rewinding, this history starts with the implementation of SDF which was documented in Jan75

Rekers’ thesis on incremental general parser generation in 1992. SDF existed before this and76

was documented in the technical reports of the ESPRIT project “GIPE - Generating Interactive77

Programming Environments” and GIPE II in ESPRIT 2 ([18] not digitized). SDF and the initial78

implementations of SDF2 were implemented using ASF+SDF itself, which was implemented in79

“LeLisp” [15]. The scanner in SDF was non-deterministic as well: scanning would produce all80

possible tokens at a given input position, from which the non-deterministic parsers could choose. This81

was necessary to achieve the desired modularity and compositionality of real programming languages82

like PL/I, Pascal, and COBOL. Disambiguation was featured in SDF by the associativity and priority83

declarations between rules, to help declare the binding strength of unary, binary, and n-ary expression84

operators without having to factor a grammar and without introducing any helper non-terminals.85

Writing and maintaining SDF grammars was attractive because due to these two disambiguation86

constructs the number of rules needed to define the syntax of a language was kept close to the number87

of actual constructs in the language. The interactions between the scanner and parser were sometimes88

unpredictable due to complex feature interactions with language composition and rules like longest89

match and keyword reservation. Incremental parsing was important at that time for feasibility of90

running complex and lively updated IDEs on small and slow machines. Wilco Koorn and Jan Rekers91

extended the GLR algorithm for substring parsing [32] to that end, and also to improve error recovery92

J.J. Vinju 12:3

and auto-completion IDE features. This pushed the interaction between the parsing and the scanning93

algorithms to the limit.94

Eelco’s Ph.D. thesis on SDF2 in 1997 followed [45], and we completed an implementation of its95

parsing and disambiguation mechanisms (SGLR and PGEN) in C and ASF+SDF in 2000 together96

with Jeroen Scheerder and Mark van den Brand [7]. A main driving force at that time was the97

COBOL grammar by Chris Verhoef and Ralf Lämmel [27], as well as the “Island Grammars” by Leon98

Moonen [29] that kept pushing the boundaries of what was possible with declarative disambiguation.99

Peter Mosses and the Action Notation [9] (design and implementation) we considered important100

to satisfy as our “customer on-site.” Eelco had been inspired by Solomon and Cormack [33] and101

introduced “scannerless parsing” to SDF by removing the entire scanner from the architecture,102

thereby introducing lexical ambiguity to the playground of SDF2. This design decision removed103

the aforementioned hard-to-predict interactions between a non-deterministic scanner and a non-104

deterministic parser.105

Eelco’s thesis contains the mitigations necessary to make scannerless parsing workable. These106

are two new disambiguation constructs: follow restrictions for longest match and reject rules for107

keyword reservation [39]. He also introduced a simplified representation of parse trees, with only108

three kinds of nodes: applications of grammar rules, unordered ambiguity clusters, and terminal109

characters. The grammar rules were represented in the abstract syntax of SDF2 as an algebraic data110

type in the ATerm format (Pieter Olivier, Hayco de Jong, Mark van den Brand, Paul Klint) [11, 10].111

This algebraic format of constructors for parse trees, called AsFix2, was derived from earlier parse112

tree export formats (AsFix1) that were designed by Mark van den Brand to bootstrap ASF+SDF off113

of the LeLisp implementation [38] and as the intended exchange format between the various tools of114

the ASF+SDF Meta-Environment [7] that was under development at that time.115

Since SDF2 was partly implemented in ASF+SDF itself, a bootstrap was required. Mark van116

den Brand and Pieter Olivier completed the LeLisp-independent ASF+SDF compiler in ASF+SDF117

in 2001, which included a compilation of the implementation of SDF2 and a re-implementation118

of the back-end table generator in C. My own thesis work included disambiguation for SDF2 [42].119

That was in collaboration with Eelco, Jeroen Scheerder, and Mark van den Brand [39], on how to120

implement the filtering ideas in Eelco’s thesis [26, 45]. The work with Rob Economopoulos was121

about integrating RNGLR [34] into SGLR in 2013 [17], which could simplify some of the filters but122

complicated others. Diagnosing ambiguity with Bas Basten was a parallel track [43, 5] (2011).123

SDF2 as-is was used for many years by the ASF+SDF Meta-Environment, ELAN4 environ-124

ment [12, 41], Action Environment [9] and StrategoXT [13] communities. In this essay we focus on125

the differences between the bottom-up parsing architecture of SDF2 as it was in the early 2010’s and126

the Rascal top-down architecture in the same period.127

SDF2’s Scannerless Generalized LR parsing algorithm (SGLR) is by Eelco Visser [45]. What128

makes it different from its predecessors, namely Rekers’ fixed version [31] of Tomita’s GLR [37], is129

the semantics or implementation of disambiguation filters specific to scannerless parsing and specific130

to declarative definitions of operator precedence and associativity in expression grammars. SGLR131

is the parsing architecture made ready to implement SDF2, the syntax definition formalism from132

the thesis of Eelco Visser. The predecessor of SDF2, SDF had similar disambiguation constructs133

for operator precedence, but not for disambiguating lexical syntax. Hence Eelco named “SGLR”:134

“Scannerless GLR”, and the efficient and declarative disambiguation of lexical syntax is its core135

contribution.136

Lexical ambiguity aside, what we never really solved (at that time) was the context-free ambiguity137

problem in general. Context-free general parsing produces multiple parse trees, sometimes, and it138

is hard to predict when. And, SGLR offers specific disambiguation constructs for specific kinds of139

ambiguity [5], but it can not solve arbitrary ambiguity. So, we experimented (from the very start)140

EVCS 2023

12:4 Comparing Bottom-up with Top-down Parsing from a Disambiguation standpoint

with far more general disambiguation constructs, such as the “multiset filter” algorithm [26, 45]. The141

multiset filter lifts the strict partial order of priority rules to entire parse trees by considering them142

“sets of rules” and applying a strict partial order of sets of partially ordered elements on entire trees.143

The more advanced the filters became, the less declarative and the more heuristic they became. Also,144

new disambiguation filters tended to be hard to implement correctly (more on this later) or efficiently145

(they all became back-end tree filters). Every new disambiguation concept added to SGLR required146

almost the effort of a PhD thesis. At the end of the 2010’s, we found a resting point, eventually, to be147

able to filter parse trees using general purposes tree manipulators, such as Stratego, ASF+SDF, and148

Rascal—a.k.a. semantics directed disambiguation [8].149

The second bootstrap stage of Rascal in 2011 provided us with a choice again. We had the150

opportunity to start from scratch in terms of parsing architecture. Having wrestled with the GLR151

algorithm for decades, we decided to flip the perspective and go top-down to Scott and Johnstone’s152

GLL [35]. The one and only motivation was the simplicity and elegance of the new architecture,153

promising also simple and elegant disambiguation filters. A scannerless version of GLL [35] with154

disambiguations based on all the filters of SDF2 was indeed produced for Rascal 0.4.x. After this155

experimenting with new filters became really easy, intuitive, and fast. It is the goal of the current156

essay to substantiate this story.157

The PhD thesis of Izmaylova and Afroozeh contains the idea of mapping the semantics of158

disambiguation filters to (lexical) constraints in data-dependent context-free grammars [1]. The159

team of Jim, Mandelbaum, and Walker had shown with their Jakker parser generator that data-160

dependent grammars are an elegant formalism for expressing the unambiguous syntax of programming161

languages [20, 21]. Moreover, such data-dependent grammars with lexical constraints seem to162

effectively model almost every hack we have seen in hand-written top-down parsers as well. Even the163

offside rule in Haskell, which is described as a hack of introducing an extra token in the token stream164

in an error state, can be simulated using a DDCFG in Iguana [2], and also symbol tables such as used165

in the scanning of C programs are expressible in data-dependent context-free grammars [1].166

2 Comparing Syntax Definition Formalisms167

These are the three main disambiguation constructs in SDF2 and Rascal:168

Priorities and associativity for binding strength of operators in expression languages;169

Reject rules for keyword reservation170

Follow restrictions for longest and first match171

2.1 Associativity and Priority Disambiguation172

In Figure 1 the use of priority and associativity declarations is shown for the same language “Exp”173

in both SDF2 and Rascal. Associativity can be applied to a single rule, e.g. ∗, or a group of rules174

(− and +). We see a binary ordering > which is to be interpreted as a strict partial order (transitive,175

irreflexive, asymmetric) between rules.176

In both formalisms, each priority and associativity declaration defines a set of disallowed deriva-177

tion steps in the respective grammar. Namely for “left” associative binary recursive rules a rule in the178

same group must not be derived on the right-hand side non-terminal of the rule. Vice versa for “right”179

associativity. If a rule is not binary recursive (i.e. it is of the form X ::= X ... X then the filter has no180

effect.181

Also, both formalisms share similar semantics for the priority relation. If production A has a182

higher priority than another production B, then never shall B be a direct child of A. No non-terminal183

of A will be recognized using the application of rule B. SDF2 priority rules have no effect unless184

the two rules in question are shaped like so: X ::= ε X ... | ... X ε or so: X ::= ... X ε | ε X185

J.J. Vinju 12:5

1 module ExpInSDF2
2 context-free syntax
3 Id -> Exp
4 "(" Exp ")" -> Exp {bracket}
5
6 context-free priorities
7 Exp "[" Exp "]" -> Exp <0> >
8 Exp "*" Exp -> Exp {left} >
9 { left:

10 Exp "+" Exp -> Exp
11 Exp "-" Exp -> Exp }

1 module ExpInRascal
2 syntax Exp
3 = Id
4 | bracket "(" Exp ")"
5 | Exp "[" Exp "]"
6 > left Exp "*" Exp
7 > left (Exp "+" Exp
8 | Exp "-" Exp
9);

10 _
11 _

Figure 1 Comparing expression language definition between SDF2 and Rascal; minor meta-syntax differ-
ences but conceptually the same.

1 module RejectInSDF2
2 context-free syntax
3 Id -> Exp
4 Keyword -> Id {reject}
5 "begin" -> Keyword
6 "end" -> Keyword

1 module RejectInRascal
2 syntax Exp = Id \ Keywords;
3 keyword Keywords
4 = "begin"
5 | "end"
6 ;

Figure 2 Comparing reject rules between SDF2 and Rascal.

The recursive positions must overlap at a left-most or right-most position (or their pre/postfixes must186

derive the empty sequence ε).187

For SDF2, if the user makes a mistake and defines a priority relation that is reflexive or symmetric188

(A > B and B > A), then the filter may remove too many derivations from the generated parser with189

parse errors as a result. Also, SDF2 removes all nested derivations of B under A if A > B, including190

the position between brackets in Exp "[" Exp "]". This would make it impossible to write a[1+2]. And191

so SDF2 users write < 0 > before that rule to limit the filter to the first argument position and ignore it192

for the second. For Rascal the set of generated filter positions is filtered itself; only the positions that193

are guaranteed to generate ambiguity are filtered and the other positions are ignored. If the priority194

relation is not a partial order, the user is provided with an error message.195

In short: the semantics of associativity and priority disambiguation is described in terms of196

derivation step filters on the grammar level. We refer to Eelco’s thesis [45], this paper on ambiguity197

diagnostics [5], and this on disambiguating expression grammars [3], which explain the above198

formally.199

The correctness of the semantics of these constructs relies on the guaranteed ambiguity of binary200

expression operators that are left and/or right-recursive, such that the filter does not remove the201

last derivation from a Parse Tree [3]. So, their implementation should prevent the effects of such202

derivations or remove them, somewhere in the respective parsing architecture in order to implement203

this filtering behavior.204

2.2 Reject Rules205

Figure 2 depicts the two styles of reserving keywords as a disambiguation mechanism. The reject206

tag was introduced by Eelco Visser in 1997. The semantics is that any subsentence recognized by any207

derivation for Id which can also be recognized as Keyword, at that same input position and having the208

same length, must be filtered. As described, the mechanism extends context-free grammars to include209

the intersection of context-free non-terminals and it should be possible to generate parsers for the210

famous non-context-free example anbncn. Later we read why this was not accomplished with SDF2.211

EVCS 2023

12:6 Comparing Bottom-up with Top-down Parsing from a Disambiguation standpoint

1 module RestrictionsInSDF2
2 lexical syntax
3 [A-Za-z][A-Za-z0-9]* -> Id
4 lexical restrictions
5 Id -/- [A-Za-z0-9]

1 module RestrictionsInRascal
2 lexical Id
3 = [A-Za-z][A-Za-z0-9]*
4 !>> [A-Za-z0-9];
5 _

Figure 3 Comparing follow restriction between SDF2 and Rascal.

The Rascal reflection of this design is the \ operator that removes the language of Keywords from212

that specific use of Id in Exp. The difference is thus that Rascal defined a derivation step filter for213

a specific position of Id in a specific rule, while SDF2 defined a filter for all uses of Id in any rule.214

Nevertheless, the expressive power would be the same, if the Rascal designers had not limited the215

keyword non-terminals to generate non-empty and finite languages only.216

2.3 Follow restrictions217

Here in Figure 3 we even more clearly step out of the realm of context-free grammars. Follow218

restrictions in Rascal and SDF2 express, literally, constraints on what comes after the character yield219

of a recognized non-terminal. In SDF2 we define a filter that removes all derivations of Id anywhere220

if the single character that would follow it in the input is a member of the character class [A-Za-z0-9].221

Although this is not a local property of a Parse Tree, it is a local input of most parsing algorithms that222

move from left to right through the input. The next character or token in the stream is usually referred223

to as the “lookahead token.” SDF2 also has multi-character lookahead tokens for restrictions, which224

lead to the same semantics (but an arguably much more complex implementation).225

In Rascal the semantics is similar, but we define the derivation filter not for all instances of the226

non-terminal, but only for the position in the rule that the restriction is applied. Next to this Rascal227

features the complement: a follow requirement declares that a non-terminal must be followed by a228

certain character class, and their analogous duals: precede restrictions and requirements. Rascal, like229

SDF2, also features multiple look-ahead characters.230

While explaining the semantics of the three disambiguation constructs we used only ideas such231

as Grammar, Derivation steps, Parse Trees, and Input sentences. There is no distinction between232

top-down and bottom-up because we have yet to dive into the implementations of these filters.233

3 Comparing Parsing and Disambiguation Algorithms234

We are comparing the parsing and disambiguation algorithms SGLR and SGLL as they were part235

of the parsing architectures for SDF2 and Rascal as they were in 2010. We will show details of the236

SGLR implementation in C and ASF+SDF and in Java and Rascal of the Rascal implementation.237

Figure 4 shows the parsing and disambiguation architecture of SDF2 with SGLR in it. As you can238

see a disambiguation filter may end up filtering a rule from a grammar completely, modify the SLR239

parse table to prevent certain derivations to occur at all, or inject itself in the parser run-time to prevent240

parser driver operations that have the same effect. Eventually, every filter could be implemented by a241

post-parse tree transformation.242

Figure 5 shows a different architecture because there is no intermediate stage for parse table243

generation. However, Rascal does have a grammar rule merging step while loading a new grammar244

that captures some of the partial evaluation that is done while building parse tables as well.245

The two premises of implementing SDF2’s disambiguation constructs are [26, 39]246

efficiency: implement filters as early as possible in the parsing architecture; preventing non-247

determinism is better than fixing ambiguity later. For Rascal, we adopted a similar but less248

J.J. Vinju 12:7

Grammar Parsetable
Generator Parsetable

SGLRSource code Parse forest

Tree Filter Parse tree
Extra disambiguation

information

Figure 4 Bottom-up SDF2 architecture based on SGLR

Grammar

SGLLSource code Parse forest

Tree Filter Parse treeExtra disambiguation
information

Figure 5 Top-down Rascal architecture based on SGLL

far-fetching dogma: better filter while predicting than filter while accepting a derivation.249

grammar neutrality: do not change the shape of the grammar rules, such that also the shape of250

the Parse Trees is unaffected. This adds to the predictability of the shape of the forests as well as251

efficiency since tree structure does not need to be reconstructed. For Rascal, this is also a core252

design constraint.253

3.1 Implementing priority and associativity254

In a bottom-up parser, it is possible to completely prevent the creation of derivations that do not satisfy255

the constraints generated from associativity and priority declarations1 The major vehicle for this is256

the parse table generator.257

SDF2 uses DeRemer’s SLR(1) [14] table construction. An SLR(1) parse table is something most258

students must be able to generate from a grammar by hand in their Compiler Construction course.259

The table represents a state machine for a pushdown automaton driver that will recognize a string or260

not, using the information in the table. One could look at the table as a partially evaluated parsing261

algorithm (typically Earley’s algorithm [16]) where the grammar is interpreted but the input sentence262

is left open. Eelco’s idea is that any reduce P1 actions going out of a state can be completely removed263

if said state witnesses that P2 is its parent at the wrong position according to P2 > P1.264

However, SLR(1)’s follow sets are defined on non-terminals and not production rules, so they do265

not represent rules that clearly. Every goto action out of a state may represent a union of rules for266

different non-terminals and different positions in different rules of the same non-terminal. Seeing that267

we use a non-deterministic parsing driver, Eelco observed that it was possible to redefine SLR follow268

sets per production instead of per non-terminal; and this enabled a full implementation of the priority269

and associativity semantics. The overhead is that different rules would exit a state on sometimes the270

same follow set to the same state, but at least never could an illegal transition be made anymore. The271

1 Later Peter Mosses found out that there are cases where SDF2 is theoretically incomplete for expressing binding
strength using single derivation step filters and that required the development of a new theory and new implementa-
tions. This is out of the scope of the current paper.

EVCS 2023

12:8 Comparing Bottom-up with Top-down Parsing from a Disambiguation standpoint

breakthrough here was that this solution, on top of Rekers’ version of Tomita’s GLR, could deal with272

any context-free grammar and not only the LR(k) class.273

The actual code that implements this filter in SDF2 is written in ASF+SDF and C (against ApiGen-274

generated ATerm interfaces). The expensive part is the transitive closures and cartesian products part,275

which was ported to C after the declarative version in ASF+SDF proved to be a bottleneck. This276

implementation derives triples (P1, pos,P2) that explain for every rule P1 at which position pos the277

other rule P2 should be disallowed. The worst-case size of the set of these triples is quadratic in the278

number of original production rules. Later the relatively simple SLR table generator takes this set as279

an additional argument and surgically does not add reductions if they occur in the set (Figure 6).280

The Rascal implementation of the same filter uses a comparable triplet computation but is written281

in (higher-level) Rascal. The Rascal code also first proves ambiguity for left-most and right-most282

recursive positions, instead of applying the filter to all arguments of every production. With SGLL,283

the set of triplets is not used at parser generation time but during the prediction stages of the top-down284

parsing algorithm (Figure 7). Rascal’s SGLL (designed and implemented by Arnold Lankamp) filters285

rules the moment they are applied by looking at their parent node. At this moment of rule reduction,286

the triplet set is queried. This has the exact same effect as the SDF2 implementation, at the cost of a287

hash-table lookup. In fact, the SGLL implementation numbers every production with a low integer288

and uses a small array to look up all the conflicting rules at a certain position. In a correct SGLL or289

SGLR implementation, all these solutions for priority and associativity filtering have the same effect290

of removing reductions without breaking the algorithm, at the cost of extra bookkeeping.291

The SGLL algorithm prevents certain recursive steps dynamically while the SDF2 algorithm292

filters certain derivations. From a slight distance, both algorithms simulate a grammar transformation293

that would introduce non-terminals for every production rule and disallow certain rules based on294

the same constraint triplets. A factored grammar, such as we see when using LALR parsers, would295

probably not be much different. One could say that by requiring not to change the grammar, we296

have to simulate those grammar changes on a lower level of abstraction to achieve the same effect.297

Accidentally, a similar “set of integer production rules representation” used by Arnold Lankamp in298

SGLL, Eelco had envisioned earlier with “character-class grammars” [44]. There each non-terminal299

would also be represented by a set of active production rules for that level in the grammar and300

removing a production would entail implementing a filter on the grammar level.301

The SDF2/SGLR solution requires theory: does the implementation satisfy all the constraints302

derived from the semantics of the formalism? Well, only if we change the concept of what an SLR(1)303

table is a bit, such that it fits. The solution does not generalize to other standard table formats, like304

LALR(1). The Rascal/SGLL solution sits very tightly on the concept of top-down parsing where305

recursion on the way down models prediction and coming back up models acceptance/reduction; it306

can be added to any (G)LL(1) algorithm implementation technique.307

3.2 Implementing reject308

The way we write SDF2 reject rules already leaks something about the implementation strategy of309

keyword reservation. We simply schedule the rejected rule along with the rest of the grammar. Then,310

when all alternatives for the Id non-terminal have finished, we check if one of them was accidentally311

a reject rule and if so we remove all those derivations from the computation.312

With this elegant approach, Eelco had found a near-optimal solution [45]. We do not have to start313

a whole other parser with its own stack. Instead, we surf on the non-deterministic graph-structured314

stack of Tomita’s algorithm and pay only a low overhead of recognizing an additional alternative.315

However, this implementation had to be revisited and revised many times between the years 2000316

and 2005, and eventually, we had to admit general non-terminals could not be “rejected” by this317

algorithm. The problem with reject is very much akin to the original bug in Tomita’s algorithm, which318

J.J. Vinju 12:9

1 ATermList shift_prod(ItemSet items, int prodNr) {
2 Item item, newitem;
3 PT_Symbol symbol;
4 ATermList newvertex = ATempty;
5 ItemSetIterator iter;
6 PT_Production prod = PGEN_getProductionOfProdNumber(prodNr);
7
8 symbol = PT_getProductionRhs(prod);
9

10 ITS_iteratorPerDotSym(items, symbol, &iter);
11 while (ITS_hasNext(&iter)) {
12 item = ITS_next(&iter);
13 assert(PT_isEqualSymbol(symbol, IT_getDotSymbol(item)));
14 newitem = IT_shiftDot(item);
15 if (newitem != NO_ITEM
16 && !PGEN_isPriorityConflict(item, prodNr)) {
17 newvertex = ATinsert(newvertex, IT_ItemToTerm(newitem));
18 } }
19
20 return newvertex; }

Figure 6 C code snippet in the SDF2 parser generator with a single surgical addition predicate on line 16 to
implement associativity/priority filtering. Small intervention: big impact.

occurred with hidden left recursion. Sometimes the graph-structured stack would miss reductions319

and Farshi fixed that [30] with an additional stage to search for the missing reductions. The reject320

implementation very much depends on the algorithm identifying a moment where all rules for the321

restricted non-terminal Id have reduced, but the original algorithm for it did not achieve this. The322

reject “aspect” of SGLR is scattered in different places making it hard to theorize what its effect323

really is. And so sometimes rules would continue even though they should have been rejected with324

spurious ambiguity as a result. After several experiments, the diagnosis was left-nullable rules for325

the restricting could lead to “escaped” reductions. Further complicating the algorithm with yet more326

searching on top of Farshi’s fix was deemed inefficient.327

The reject filter in Rascal is either an implementation of an ICompletionFilter or an IEnterFilter.328

The latter prevents going into a production when it is predicted while the former removes the effect329

of recognizing a production when it is completed. This is the general filtering scheme, which gives330

access to the input character array, the start, and end index of the currently recognized input, etc.331

Other (static) information, like which non-terminal or production is captured by the object that332

implements the filter. The reject filter in SGLL simply compares the input subsentence with a given333

list of keywords that are not allowed and fails on a match. A more complex implementation could334

parse the substring using another parser (or recognizer). Setting up a nested parser is not as complex335

or expensive in Java as it was in SGLR’s C version.336

The parameters of a completion filter in SGLL (see Figure 8) make explicit what can be safely337

used as information to filter without breaking the algorithm’s assumptions. The dynamic programming338

techniques that are used to stay in polynomial time for an exponential number of parse trees, or even339

cubic, are predicated upon the identification of reusable parse stacks for reusable subsentences. When340

context information breaks into this equation, it breaks the underlying assumptions for sharing com-341

putations leading to false positives (spurious derivations) as well as false negatives (spurious filtering342

of derivations). Every new filter introduced requires new theory. The definition of ICompletionFilter343

and IEnterFilter in Rascal’s SGLL mitigate this by allowing any filter based on the given information344

and guaranteeing algorithmic correctness. If you need something more, it’s back to the drawing board345

just as with SGLR.346

EVCS 2023

https://github.com/cwi-swat/meta-environment/blob/master/pgen/src/goto.c

12:10 Comparing Bottom-up with Top-down Parsing from a Disambiguation standpoint

1 private void handleEdgeListWithRestrictions(...) {
2 firstTimeRegistration.clear(); firstTimeReductions.clear();
3 for (int j = edgeSet.size() - 1; j >= 0; --j) {
4 AbstractStackNode<P> edge = edgeSet.get(j);
5 int resultStoreId = getResultStoreId(edge.getId());
6
7 if (!firstTimeReductions.contains(resultStoreId)) {
8 if (firstTimeRegistration.contains(resultStoreId)) continue;
9

10 firstTimeRegistration.add(resultStoreId);
11
12 if (!filteredParents.contains(edge.getId())) {
13 AbstractContainerNode<P> resultStore = null;
14 if (edgeSet.getLastVisitedLevel(resultStoreId) == loc)
15 resultStore = edgeSet.getLastResult(resultStoreId);
16 ... /* elided error recovery code */
17 resultStore.addAlternative(production, resultLink);
18 } else {
19 AbstractContainerNode<P> resultStore = edgeSet.getLastResult(resultStoreId);
20 stacksWithNonTerminalsToReduce.push(edge, resultStore);
21 } } } }

Figure 7 Java code snippet in Rascal’s SGLL parser run-time, with a single additional predicate on line 14
to filter associativity/priority violations. Again: small intervention; big impact.

1 public interface ICompletionFilter {
2 boolean isFiltered(int[] input, int start, int end, PositionStore positionStore); }

Figure 8 Rascal’s SGLL completion filter interface code.

3.3 Implementing follow restrictions347

The final filter, however innocuous, proved to be another grand challenge for implementing in SDF2348

and SGLR. Firstly, the basic implementation for single-character lookahead was simply to remove349

the given characters from the lookahead sets in the SLR(1) table [45]. Secondly, multiple character350

lookahead would be implemented by dynamically filtering reductions in the inner parser loop. With351

the right internal administration that associates the lookaheads with every production rule, the code352

change in the algorithm is minimal.353

However, at the time we were using the ATerm library for representing parse trees with its maximal354

sharing ability. Parse tree nodes that were structurally equal, would always be shared. Sharing was355

thus based on the contents of the trees’ sub-nodes, and not on the context. This design decision is356

efficient in the context of ambiguity where lots of sub-nodes would be structurally equal (whitespace).357

With a theory of context-free grammars this all works fine. With the theory of context information358

with follow restrictions, maximal sharing breaks the parser. To fix the bugs, we ended up introducing359

an additional lookup table for ambiguous parse trees where the starting position in the input sentence360

became part of the lookup key.361

Having learned from the experience, the Rascal SGLL implementation used its own intermediate362

SPPF-like [37] data structure for parse forests, which is then serialized to AsFix Parse Trees after the363

parse is done. The aforementioned ICompletionFilter can be used to implement follow restrictions in364

a single line of code. IEnterFilter would be used for the precede variants. If you’d start from scratch365

to implement SGLR in Java, for example, you would use the same trick. Indeed the JSGLR code by366

Karl Trygve Kalleberg in Spoofax, uses an ambiguity hash-table that also includes the start position367

of every tree.368

https://github.com/usethesource/rascal/blob/main/src/org/rascalmpl/parser/gtd/SGTDBF.java
https://github.com/usethesource/rascal/blob/main/src/org/rascalmpl/parser/gtd/stack/filter/ICompletionFilter.java
https://github.com/metaborg/jsglr/blob/master/org.spoofax.jsglr/src/org/spoofax/jsglr/client/AmbiguityManager.java

J.J. Vinju 12:11

Feature Grammar Implementation

SDF2 Priority / Associativity P1 > P2, left, right 1. Compute constraint triplets
2. SLR(1) follow-sets per rule
3. Filtering goto’s in SLR(1)

Rascal Priority / Associativity P1 > P2, left, right 1. Compute constraint triplets
2. Filter forest edge creation

SDF2 Keyword reservation Kw -> Id {reject} 1. Grouping reductions
2. Filter reductions

Rascal Keyword reservation Id \ Kw 1. ICompletionFilter

SDF2 Longest Match Id -/- [A-Z] 1. Goto Filter on follow sets
2. Reduction filter for k lookahead

Rascal Longest Match Id !>> [A-Z] 1. ICompletionFilter

Table 1 Overview of the disambiguation implementations for either SDF2 (bottom-up) or Rascal (top-down).

3.4 Top-down disambiguation is easier to get right369

Table 1 summarizes how the three declarative implementation constructs were implemented in either370

a top-down (Rascal) or bottom-up (SDF2) parsing architecture. Once you have the theory straight, the371

implementation of a disambiguation filter seems a surgical incision in either algorithm: a conditional372

around the scheduling of the next step. If only this were true.373

Implementing the Reject and Follow Restriction filters has proven to be complex for the SGLR374

architecture while it is straightforward in SGLL. Moreover, the priorities and associativity filter on the375

parse table level can never be complete, even though it is elegant. Small changes in the parse table,376

such as filtering a goto edge, may break the conditions under which parse stacks or parse tree nodes377

can be shared later in the GLR algorithm. These semantic links are platonic, in the sense that they do378

not lead to explicit dependencies on the source code level of SGLR, however, when not taken care of379

complex bugs do arise. Concretely, the addition of Follow Restrictions to the SLR table construction380

algorithm broke many of the underlying assumptions of the SGLR implementation and required the381

reconsideration of all of its internal data structures. On the other hand, for SGLL a follow restriction382

was a simple conditional while scheduling the next algorithmic step.383

The reject filter for SGLR proved to be even more difficult to implement. The actual filter384

operation is to remove all other reductions for a non-terminal in the presence of a "rejected" one for385

the same sub-sentence and non-terminal. The SGLR algorithm does not schedule reductions in such a386

way that a clear moment arises when all possible reductions for a subsentence have been collected.387

Sometimes graph stack nodes are processed already for further reductions (chain rules), and that way388

a tree would escape that would otherwise have been filtered. Sometimes the rejected stack node itself389

would be processed too early, letting later nodes escape. The first problem was solved by changing the390

GLR algorithm to group reductions in the same starting position of the input. The latter problem was391

solved by disallowing more complex non-terminals to be rejected, limiting them to finite non-nullable392

languages. The reject filter in SGLL is a simple reduction filter.393

We conclude that top-down is much easier to experiment with and extend. Bottom-up could be394

faster due to partial evaluation, but still, additional bookkeeping and less sharing are required to filter395

correctly. Rascal’s SGLL in Java is as fast as the SDF2’s SGLR in C.396

EVCS 2023

12:12 Comparing Bottom-up with Top-down Parsing from a Disambiguation standpoint

4 Perspective on contextual disambiguation with DDCFGs397

Let’s step back from the comparison made between top-down general and bottom-up general parsing398

with disambiguation and zoom out to the general problem of disambiguation.399

All three disambiguation constructs use context information.400

Each of the three disambiguation constructs is an ad-hoc extension of the SDF [43, 6].401

Each disambiguation construct deeply impacts the parsing algorithm.402

Never mind that they are easier to implement in GLL, but what is the best way of formulating the403

next disambiguation construct on the SDF level? Say we want to support the offside rule [28]. How404

to implement it in (S)GLL? Disambiguation always adds “context” to the algorithm of constructing405

parse trees as compared to “context-free” grammars. At the LDTA conference in 2011, Trevor406

Jim and Yithzak Mandelbaum demonstrated the utility and elegance of data-dependent context-free407

grammars with their Yakker parser generator [21, 20]. Much earlier, Mark van den Brand in his PhD408

thesis [40] also demonstrated that parse-time semantic predicates can be used elegantly and efficiently409

to disambiguate (lexical and context-free) ambiguity.410

A Data-dependent Constraint Grammar is a context-free grammar with three major extensions: (a)411

the non-terminal on the left-hand side of any rule may receive additional data parameters, (b) every412

symbol on the right-hand side may be conditional on said data parameters using constraint formulas,413

and (c) data from the input sentence or of syntax trees already processed may be passed as parameters414

to non-terminals or constraints. Typical "data" would be the character string of a sub-sentence, the415

start and ending position of every rule, the current indentation level, etc. Typical formulas would416

be integer arithmetic (for layout positioning), and string (in)equality, but in general, any predicate417

without side-effects written in the host programming language is ok.418

Afroozeh and Izmaylova [2, 1] mapped all of SDF’s and Rascal’s disambiguation mechanisms to419

their Iguana formalism which is based on data-dependent grammars, and then immediately added420

many more disambiguation constructs. For example, with Iguana it is possible to declaratively express421

the offside rule and many other “two-dimensional” layout constraints for programming languages422

such as Haskell and Python. Iguana is a top-down parsing architecture, as the reader might expect. It423

is also possible to implement data-dependent grammars on top of Earley’s algorithm [21, 16].424

However, the semantics of Disambiguation remains the same whether you implement your425

DDCFG parsing algorithm in a top-down or a bottom-up data-dependent context-free general frame-426

work. The formal semantics of data-dependent context-free grammars acts as a virtual machine427

for disambiguation constructs, making it easier to reason about correctness independent of the428

implementation in a complex parsing algorithm [1].429

5 Conclusion430

First, contextual disambiguation is a pleonasm. Second, it is arguably easier to design and implement431

(new) disambiguation constructs with GLL than with GLR. Third, data-dependent context-free432

grammars add the level of formality and generality that we were always searching for when inventing433

new disambiguation schemes (as exemplified by the Jakker and Iguana Parsing Architectures). We434

conclude that a top-down implementation of data-dependent context-free parsing is the way to go for435

Rascal as well as SDF3.436

References437

1 Ali Afroozeh and Anastasia Izmaylova. One Parser to Rule Them All. In Proceedings of the 2015 ACM438

International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software,439

Onward! 2015, pages 151–170. ACM, 2015. doi:10.1145/2814228.2814242.440

https://doi.org/10.1145/2814228.2814242

J.J. Vinju 12:13

2 Ali Afroozeh and Anastasia Izmaylova. Iguana: a practical data-dependent parsing framework. In441

Ayal Zaks and Manuel V. Hermenegildo, editors, Proceedings of the 25th International Conference on442

Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, pages 267–268. ACM, 2016.443

doi:10.1145/2892208.2892234.444

3 Ali Afroozeh, Mark van den Brand, Adrian Johnstone, Elizabeth Scott, and Jurgen J. Vinju. Safe445

specification of operator precedence rules. In International Conference on Software Language Engineering446

(SLE), LNCS. Springer, 2013.447

4 Luís Amorim and Eelco Visser. Multi-purpose Syntax Definition with SDF3, pages 1–23. 09 2020.448

doi:10.1007/978-3-030-58768-0_1.449

5 Bas Basten and Jurgen Vinju. Parse forest diagnostics with dr. ambiguity. In International Conference on450

Software Language Engineering (SLE), LNCS. Springer, 2011.451

6 Bas Basten and Jurgen Vinju. Parse forest diagnostics with Dr. Ambiguity. In International Conference452

on Software Language Engineering (SLE), LNCS. Springer, 2011.453

7 Mark G.J. van den Brand, Arie van Deursen, Jan Heering, Hayco A. de Jong, Merijn de Jonge, Tobias454

Kuipers, Paul. Klint, Leon Moonen, Pieter .A. Olivier, Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser,455

and Joost Visser. The ASF+SDF Meta-Environment: a Component-Based Language Development456

Environment. In R. Wilhelm, editor, Compiler Construction (CC ’01), volume 2027 of Lecture Notes in457

Computer Science, pages 365–370. Springer-Verlag, 2001.458

8 Mark G.J. van den Brand, Steven Klusener, Leon Moonen, and Jurgen J. Vinju. Generalized Parsing and459

Term Rewriting - Semantics Directed Disambiguation. In Barret Bryant and João Saraiva, editors, Third460

Workshop on Language Descriptions Tools and Applications, Electronic Notes in Theoretical Computer461

Science. Elsevier, 2003.462

9 Mark van den Brand, Jørgen Iversen, and Peter Mosses. An Action Environment. Electr. Notes Theor.463

Comput. Sci., 110:149–168, 12 2004.464

10 Mark van den Brand and Paul Klint. ATerms for manipulation and exchange of structured data: It’s all465

about sharing. Information & Software Technology, 49:55–64, 01 2007.466

11 Mark van den Brand, Paul Klint, Hayco de Jong, and Pieter Olivier. Efficient annotated terms. Software—467

Practice & Experience, 30(2), January 2000.468

12 Mark van den Brand, Pierre-Etienne Moreau, and Jurgen Vinju. Environments for term rewriting engines469

for free! In Proceedings of the 14th International Conference on Rewriting Techniques and Applications,470

RTA’03, page 424–435, Berlin, Heidelberg, 2003. Springer-Verlag.471

13 Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT 0.17. a language472

and toolset for program transformation. Science of Computer Programming, 72(1):52–70, 2008. Special473

Issue on Second issue of experimental software and toolkits (EST). doi:https://doi.org/10.1016/j.474

scico.2007.11.003.475

14 Frank DeRemer. Simple lr(k) grammars. Commun. ACM, 14(7):453–460, 1971. doi:10.1145/362619.476

362625.477

15 Arie Van Deursen, Jan Heering, and Paul Klint. Language Prototyping: An Algebraic Specification478

Approach: Vol. V. World Scientific Publishing Co., Inc., USA, 1996.479

16 Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13:94–102, February 1970.480

doi:http://doi.acm.org/10.1145/362007.362035.481

17 Giorgios R. Economopoulos, Paul Klint, and Jurgen J. Vinju. Faster scannerless GLR parsing. In482

Oege de Moor and Michael I. Schwartzbach, editors, Compiler Construction (CC), volume 5501 of483

Lecture Notes in Computer Science, pages 126–141. Springer, 2009. doi:http://dx.doi.org/10.1007/484

978-3-642-00722-4_10.485

18 J. Heering and P. Klint. A syntax definition formalism. Technical report, 1986. ESPRIT”86: Results and486

Achievements, page 619–630.487

19 Jan Heering, Paul R. H. Hendriks, Paul Klint, and Jan Rekers. The syntax definition formalism SDF —488

reference manual. SIGPLAN Not., 24(11):43–75, nov 1989. doi:10.1145/71605.71607.489

20 Trevor Jim and Yitzhak Mandelbaum. Delayed semantic actions in yakker. In Claus Brabrand and Eric Van490

Wyk, editors, Language Descriptions, Tools and Applications, LDTA 2011, Saarbrücken, Germany, March491

26-27, 2011. Proceeding, page 8. ACM, 2011. doi:10.1145/1988783.1988791.492

EVCS 2023

https://doi.org/10.1145/2892208.2892234
https://doi.org/10.1007/978-3-030-58768-0_1
https://doi.org/https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1145/362619.362625
https://doi.org/10.1145/362619.362625
https://doi.org/10.1145/362619.362625
https://doi.org/http://doi.acm.org/10.1145/362007.362035
https://doi.org/http://dx.doi.org/10.1007/978-3-642-00722-4_10
https://doi.org/http://dx.doi.org/10.1007/978-3-642-00722-4_10
https://doi.org/http://dx.doi.org/10.1007/978-3-642-00722-4_10
https://doi.org/10.1145/71605.71607
https://doi.org/10.1145/1988783.1988791

12:14 Comparing Bottom-up with Top-down Parsing from a Disambiguation standpoint

21 Trevor Jim, Yitzhak Mandelbaum, and David Walker. Semantics and algorithms for data-dependent493

grammars. In Manuel V. Hermenegildo and Jens Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-494

SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January495

17-23, 2010, pages 417–430. ACM, 2010. doi:10.1145/1706299.1706347.496

22 Lennart C.L. Kats and Eelco Visser. The Spoofax language workbench: Rules for declarative specification497

of languages and IDEs. SIGPLAN Not., 45(10):444–463, oct 2010.498

23 Paul Klint. From SPRING to SUMMER: design, definition and implementation of programming languages499

for string manipulation and pattern matching. PhD thesis, Technische Hogeschool Eindhoven, March500

1982.501

24 Paul Klint, Tijs van der Storm, and J.J. Vinju. EASY meta-programming with Rascal. In João Fernandes,502

Ralf Lämmel, Joost Visser, and João Saraiva, editors, Generative and Transformational Techniques in503

Software Engineering III, volume 6491 of LNCS, pages 222–289. Springer Berlin / Heidelberg, 2011.504

25 Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. Rascal: A domain specific language for source505

code analysis and manipulation. In Ninth IEEE International Working Conference on Source Code506

Analysis and Manipulation (SCAM), pages 168–177. IEEE Computer Society, 2009. doi:http://doi.507

ieeecomputersociety.org/10.1109/SCAM.2009.28.508

26 Paul Klint and Eelco Visser. Using filters for the disambiguation of context-free grammars. In G. Pighizzini509

and P. San Pietro, editors, Proc. ASMICS Workshop on Parsing Theory, pages 1–20, Milano, Italy, 1994.510

Tech. Rep. 126–1994, Dipartimento di Scienze dell’Informazione, Università di Milano.511

27 Ralf Lämmel and Chris Verhoef. Semi-automatic Grammar Recovery. Software—Practice & Experience,512

31(15):1395–1438, December 2001.513

28 P. J. Landin. The next 700 programming languages. Commun. ACM, 9:157–166, March 1966.514

29 Leon Moonen. Generating robust parsers using island grammars. Proceedings Eighth Working Conference515

on Reverse Engineering, pages 13–22, 2001.516

30 Rohman Nozohoor-Farshi. Handling of ill-designed grammars in tomita’s parsing algorithm. In Pro-517

ceedings of the First International Workshop on Parsing Technologies, pages 182–192, Pittsburgh,518

Pennsylvania, USA, August 1989. Carnegy Mellon University. URL: https://aclanthology.org/519

W89-0219.520

31 J. Rekers. Parser Generation for Interactive Environments. PhD thesis, University of Amsterdam, 1992.521

32 Jan Rekers and Wilco Koorn. Substring parsing for arbitrary context-free grammars. In Proceedings of the522

Second International Workshop on Parsing Technologies, pages 218–224, Cancun, Mexico, February 13-25523

1991. Association for Computational Linguistics. URL: https://aclanthology.org/1991.iwpt-1.25.524

33 D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) parsing of programming languages. In Pro-525

ceedings of the ACM SIGPLAN 1989 Conference on Programming language design and implementation,526

PLDI 1989, pages 170–178. ACM, 1989. doi:http://doi.acm.org/10.1145/73141.74833.527

34 Elizabeth Scott and Adrian Johnstone. Right nulled GLR parsers. ACM Trans. Program. Lang. Syst.,528

28(4):577–618, jul 2006.529

35 Elizabeth Scott and Adrian Johnstone. GLL parsing. ENTCS, 253(7):177 – 189, 2010. Proceedings of the530

Ninth Workshop on Language Descriptions Tools and Applications (LDTA 2009).531

36 Thomas A. Sudkamp. Languages and Machines: An Introduction to the Theory of Computer Science.532

Addison-Wesley Longman Publishing Co., Inc., USA, 1997.533

37 M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm for Practical Systems. Kluwer534

Academic Publishers, 1985.535

38 Mark van den Brand, Jan Heering, Paul Klint, and Pieter A. Olivier. Compiling language definitions: The536

ASF+SDF compiler. CoRR, cs.PL/0007008, 2000. URL: https://arxiv.org/abs/cs/0007008.537

39 Mark van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser. Disambiguation filters538

for scannerless generalized LR parsers. In R. Nigel Horspool, editor, Compiler Construction, 11th539

International Conference, CC 2002, volume 2304 of LNCS, pages 143–158. Springer, 2002.540

40 Mark G. J. van den Brand. PREGMATIC - a generator for incremental programming environments. PhD541

thesis, Radboud University Nijmegen, 1992.542

41 Mark G. J. van den Brand, Pierre-Etienne Moreau, and Christophe Ringeissen. The ELAN Environment:543

an Rewriting Logic Environment based on ASF+SDF Technology. In Workshop on Language Descriptions,544

https://doi.org/10.1145/1706299.1706347
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/SCAM.2009.28
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/SCAM.2009.28
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/SCAM.2009.28
https://aclanthology.org/W89-0219
https://aclanthology.org/W89-0219
https://aclanthology.org/W89-0219
https://aclanthology.org/1991.iwpt-1.25
https://doi.org/http://doi.acm.org/10.1145/73141.74833
https://arxiv.org/abs/cs/0007008

J.J. Vinju 12:15

Tools and Applications - LDTA’02, volume 65/3 of Electronic Notes in Theoretical Computer Science,545

page 7 p, Grenoble, France, April 2002. Colloque avec actes et comité de lecture. internationale. URL:546

https://hal.inria.fr/inria-00101028.547

42 J.J. Vinju. Analysis and Transformation of Source Code by Parsing and Rewriting. PhD thesis, Universiteit548

van Amsterdam, November 2005.549

43 Jurgen J. Vinju. SDF disambiguation medkit for programming languages. Technical Report SEN-1107,550

Centrum Wiskunde & Informatica, 2011. http://oai.cwi.nl/oai/asset/18080/18080D.pdf.551

44 Eelco Visser. From context-free grammars with priorities to character class grammars. In Mieke Brune552

Arie van Deursen and Jan Heering, editors, Dat Is Dus Heel Interessant, Liber Amicorum dedicated to553

Paul Klint. Centrum Wiskunde & Informatica and IVI Universiteit van Amsterdam, 1997.554

45 Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis, Universiteit van Amsterdam, 1997.555

EVCS 2023

https://hal.inria.fr/inria-00101028
http://oai.cwi.nl/oai/asset/18080/18080D.pdf

	1 Introduction
	1.1 History of Disambiguation with the SDF

	2 Comparing Syntax Definition Formalisms
	2.1 Associativity and Priority Disambiguation
	2.2 Reject Rules
	2.3 Follow restrictions

	3 Comparing Parsing and Disambiguation Algorithms
	3.1 Implementing priority and associativity
	3.2 Implementing reject
	3.3 Implementing follow restrictions
	3.4 Top-down disambiguation is easier to get right

	4 Perspective on contextual disambiguation with DDCFGs
	5 Conclusion

