
Generalized Type-Based Disambiguation of Meta
Programs with Concrete Object Syntax

Martin Bravenboer1, Rob Vermaas1, Jurgen Vinju2, and Eelco Visser1

1 Department of Information and Computing Sciences,
Universiteit Utrecht, P.O. Box 80089 3508 TB, Utrecht, The Netherlands

{martin,robv,visser}@cs.uu.nl
2 Centrum voor Wiskunde en Informatica (CWI),

Kruislaan 413, NL-1098 SJ, Amsterdam, The Netherlands
{jurgen.vinju}@cwi.nl

Abstract. In meta programming with concrete object syntax, object-level pro-
grams are composed from fragments written in concrete syntax. The use of small
program fragments in such quotations and the use of meta-level expressions with-
in these fragments (anti-quotation) often leads to ambiguities. This problem is
usually solved through explicit disambiguation, resulting in considerable syn-
tactic overhead. A few systems manage to reduce this overhead by using type
information during parsing. Since this is hard to achieve with traditional parsing
technology, these systems provide specific combinations of meta and object lan-
guages, and their implementations are difficult to reuse. In this paper, we general-
ize these approaches and present a language independent method for introducing
concrete object syntax without explicit disambiguation. The method uses scan-
nerless generalized-LR parsing to parse meta programs with embedded object-
level fragments, which produces a forest of all possible parses. This forest is
reduced to a tree by a disambiguating type checker for the meta language. To
validate our method we have developed embeddings of several object languages
in Java, including AspectJ and Java itself.

1 Introduction

Meta-level programs analyze, transform, and generate object-level programs. It is com-
monly agreed that such program manipulations are best carried out on a structured
representation of the object program in order to achieve compositionality of trans-
formations and to guarantee well-formedness of the resulting program. Furthermore,
structured representations support type safety and hygiene more easily. However, the
notation for structured representations is usually verbose and rather different from the
notations of the language under consideration, rendering it impractical as a syntax for
object programs. Using the concrete syntax of the object language as a notation for this
structured representation provides the best of both worlds. The meta program can be
written using the concise, well-known syntax of the object language, while the under-
lying representation is still structured.

Syntactically checked concrete object syntax is now available in many meta pro-
gramming systems. Syntax macro systems such as <bigwig> [6], code generators such

as Jak (JTS/AHEAD) [4] and Meta-AspectJ (MAJ) [22], and program transformation
systems such as ASF+SDF [14], Stratego/XT [20], DMS [5] and TXL [12] all pro-
vide concrete object syntax. Some of these systems are designed for a specific object
language, others are configurable for different object languages. In [20] we presented
a general architecture for introducing concrete object syntax for any object language
in any meta language. The approach employs modular syntax definition in SDF and
Scannerless Generalized-LR (SGLR) parsing for defining the syntax and parsing the
combined meta and object language [19,10].

A remaining problem of concrete object syntax is that the syntax of the combined
meta and object languages is usually highly ambiguous if the object language is embed-
ded using a single pair of quotation and anti-quotation symbols. Most systems solve this
by using a different quotation and anti-quotation symbol for each non-terminal of the
object language, leading to considerable syntactic clutter and requiring the meta pro-
grammer to be intimately familiar with the syntactic structure of the object language.
Because of the irregularity of the embedding, the set of syntactic categories that can be
quoted and unquoted is usually limited. Moreover, in a language with manifest typing
that already requires programmers to declare the types of all variables, the disambigua-
tion of quotations feels redundant. For example, consider the following fragment written
in Jak (part of the JTS/AHEAD Tool Suite [4]):

Stmt s = stm{ if($exp(exp)) {$stm(stm); }; }stm;

Here a statement s is constructed from an expression exp and a statement stm . The
syntactic categories of the quotation of the entire fragment and the antiquotation of the
variables within it are explicitly indicated using identifiers.

Meta-AspectJ (MAJ) [22], an extension of Java for the generation of AspectJ pro-
grams, reduces the need for different quotation and anti-quotation symbols by means of
a context-sensitive parser, taking variable declarations into account during parsing. For
example, in MAJ the Jak fragment above can be written as follows:

Stmt s = ‘[if(#exp) { #stm }]

The syntactic categories of the fragment and the variables are inferred from the explicit
declaration of their types in the program. Thus, MAJ requires from the programmer less
knowledge of the embedding and the syntactical details of the object language. How-
ever, the implementation of MAJ is specific to the embedding of AspectJ in Java, and is
not easily reusable for embeddings of other languages, due to a number of limitations.
First, the scanner for meta and object language is the same, which precludes embed-
ding of languages with a different lexical syntax. Second, it is not possible to extend
the meta language with concrete object syntax for multiple languages, since the imple-
mentations of context-sensitive parsing do not compose. Finally, the implementation of
parsing and type checking is tangled, which leads to complex and hard to maintain code
that has limitations that might surprise users. For example, MAJ cannot always handle
overloaded methods that are invoked with quoted arguments.

In this paper, we describe an extension of our general architecture for concrete
object syntax with type-based disambiguation that allows embeddings with minimal
syntactic overhead. The main characteristic of our approach is that ambiguities are pre-
served by the parser and are solved in a separate phase by an extension of a type checker

2

Parsing

Meta program
with

concrete object
syntax

Abstract syntax
forest

meta+object
language

Abstract syntax
forest

meta
language

Meta program

Assimilation Type checking

Fig. 1. Architecture of generalized type-based disambiguation.

that operates on an abstract syntax forest. This separation of phases is illustrated in Fig-
ure 1. As a result, language embedding and assimilation (expansion of embedded object
code to the meta language) can remain compositional. Therefore, it is easy to add new
object languages and to combine object language embeddings. Since ambiguities are
solved after assimilation, the implementation of disambiguation for a meta language is
object language independent. However, we require that the underlying representation
of object programs in the meta language is typed and that distinct syntactical categories
have a different type in this representation (see Section 4.4 and 5 for a discussion of
this). Since disambiguation is achieved via a localized, but general, extension of the
type checker, there are no exceptional cases where certain undefined choices are made
or disambiguation is impossible for implementation complexity reasons. Also, the ap-
proach is not restricted to a single meta language. However, there are some restrictions
to the type system of the meta language. The method is restricted to a statically typed
meta language and is particularly suitable (and desirable) for languages that use mani-
fest typing (e.g. C, Java, C#).

We proceed as follows. In the next section we recapitulate the embedding and as-
similation of an object language in a meta language. In Section 3 we examine the ambi-
guities caused by such embeddings and previous solutions used for them. In Section 4
we present a generalized type-based disambiguation method for concrete object syntax.
In Section 5 we describe our experience with the method in a generic disambiguation
implementation for Java as a meta language with embeddings of AspectJ and Java itself.
In Section 6 we discuss previous, related, and future work.

2 Meta Programming with Concrete Object Syntax

In this section, we recapitulate the general method for adding support for concrete ob-
ject syntax to a meta language, which was presented in [20,11]. Introduction of concrete
object syntax notation in a meta language requires (1) embedding the syntax of the ob-
ject language in the meta language and (2) assimilation of the embedded object code
fragments to the meta language, expressed in terms of the underlying structured repre-
sentation. The generality of the approach is based on syntax definition in the modular
syntax definition formalism SDF for defining the embedding and the transformation
language Stratego for the assimilation. We illustrate the approach with the introduction
of concrete syntax for Java in Java.

3

module JavaJava

imports Java-15-Prefixed Java-15

exports
context-free syntax

[A] "|[" Expr "]|" -> MetaExpr {cons("ToMetaExpr")}

[B] "#[" MetaExpr "]" -> Expr {cons("FromMetaExpr")}

Fig. 2. Syntax definition for simple embedding of Java in Java

2.1 Embedding

The embedding of an object language in a meta language requires the combination of
syntax definitions for both languages. From this combined syntax definition a parser is
generated, which is used to parse meta programs that use concrete object syntax. Thus,
the embedding of Java in Java is achieved by the module in Figure 2. The module im-
ports the Java syntax twice; once as the meta language and once as the object language.
To avoid confusion between the two languages (or language roles in this case), the non-
terminals of the meta language are prefixed with ‘Meta’ by renaming them in the import
declaration.

Next, to actually integrate the meta and object language, the combination of these
syntax definitions is extended with productions that determine the possible transi-
tions from the meta language to the object language (quotation) and vice versa (anti-
quotation). A quotation quotes a fragment of an object-level program and embeds it in a
meta-level program. Production A in Figure 2 defines that an object-level Expr between
|[and]| can be used as a meta-level MetaExpr. The cons annotation in the produc-
tion declares the constructor to be used in the abstract syntax tree. The following Java
statement illustrates the quotation of a Java method call:

Expression x = |[resultSet.getInt(4)]|

The meaning of this statement is Java code for the construction of the abstract syntax
tree corresponding to the quoted fragment, as will be further discussed below.

An anti-quotation is an escape from a quotation to the meta-level, to splice in pieces
of object code computed elsewhere. Production B in Figure 2 declares that a MetaExpr
between #[and] can be used as an object-level Expr. For example, in the following
quotation the method argument is an expression foreignkey that is determined from
some domain specification:

Expression x = |[resultSet.getInt(#[foreignkey])]|;

2.2 Assimilation

Assimilation transforms a program with embedded object code to a pure meta-level
program by translating the embedded fragments to code in the meta language that con-
structs the underlying abstract syntax tree representation. For example, in our Java in
Java embedding we use the Eclipse JDT Core DOM [15] for representing the object
programs. Hence, the Java constructs must be translated to invocations of the methods

4

in this API. The following Stratego rewrite rules illustrate the assimilation for some
Java language constructs. The first rule translates a return statement, the second rule a
method invocation. The Stratego rewrite rules use concrete object syntax as well.

Assimilate(rec) : |[return;]| -> |[_ast.newReturnStatement()]|

Assimilate(rec) : |[e .y (e*)]| -> |[

{| MethodInvocation x = _ast.newMethodInvocation();

x .setName(~e:<AssimilateId(rec)> y);

x .setExpression(~e:<rec> e);

bstm* | x |}]|

where <newname> "inv" => x

; <AssimilateArgs(rec | x)> e* => bstm*

In the assimilation rules we use a small extension {|stmt* |expr |} of Java, called an
eblock, that allows the inclusion of statements in expressions. The value of an eblock is
the expression. In the assimilation rules, the italic identifiers (e.g. e , y , and e*) in-
dicate meta-level variables, a convention we use in all the code examples. ~e: denotes
an anti-quotation where the result is a Java expression. <s > p applies the rewriting s

to the pattern p . s => p matches the result of s to p . newname creates a fresh, unique,
name, which guarantees hygiene in the assimilation. AssimilateArgs is a helper strat-
egy that assimilates a list of expressions to arguments of the method invocation.

As an example, consider the result of assimilating the last example above, which
illustrates the advantage of concrete syntax.

MethodInvocation inv = _ast .newMethodInvocation();

inv .setName(_ast .newSimpleName("getInt"));

inv .setExpression(_ast .newSimpleName("resultSet"));

List<Expression> args = inv .arguments();

args .add(foreignkey);

Expression x = inv ;

In the examples of this paper, the assimilation is embedding specific, since the map-
ping of the object language to an existing API is inherently embedding specific. How-
ever, if there is a fixed correspondence between the syntax definition and the API, then
the assimilation can be generic. This is typically the case if the API is generated from
the syntax definition using an API generator such as ApiGen [8].

3 Ambiguity in Concrete Object Syntax

In this section we discuss how ambiguities can arise when using concrete object syntax.
Also, we discuss how these ambiguities are handled in related work.

3.1 Causes of Ambiguity

Lexical State If a separate lexical analysis phase is used to parse a meta program, then
ambiguities will arise if the lexical syntax of the object language is different from the
meta language. The set of tokens of both languages cannot just be combined, since

5

[A] "|[" CompUnit "]|" -> MetaExpr {cons("ToMetaExpr")}

[B] "|[" TypeDec "]|" -> MetaExpr {cons("ToMetaExpr")}

[C] "|[" BlockStm "]|" -> MetaExpr {cons("ToMetaExpr")}

[D] "|[" BlockStm* "]|" -> MetaExpr {cons("ToMetaExpr")}

[E] "#[" MetaExpr "]"-> ID {cons("FromMetaExpr")}

[F] "#[" MetaExpr "]"-> Expr {cons("FromMetaExpr")}

Fig. 3. Syntax definition for embedding of Java in Java

the tokens of both languages are only allowed in certain contexts of the source file.
For example, pointcut is a keyword in embedded AspectJ, but should not be in the
surrounding Java code.

Quotation Ambiguous quotations can occur if the same quotation symbols are used
for different non-terminals of the object language. If the object code fragment in the
quotation can be parsed with both non-terminals, then the quotation itself is ambiguous
as well. For example, consider the SDF productions A and B in Figure 3 that define a
quotation for a compilation unit and a type declaration. With these two quotation rules,
the fragment |[class Foo { }]| is ambiguous, since the quoted Java fragment can
be parsed as a compilation unit as well as a type declaration. Note that not all quotations
are ambiguous: if the object code includes a package declaration or imports, then it can-
not be parsed as a type declaration. A similar ambiguity issue occurs if the embedding
allows quotation of lists of non-terminals as well as single non-terminals. For example,
consider the SDF productions C and D in Figure 3 for quoting block statements. A quo-
tation containing a single statement is now ambiguous, since it can be parsed using both
production rules.

Anti-Quotation Similar ambiguity problems occur when using the same anti-quotation
symbols for different non-terminals of the object language. For example, consider the
anti-quotations E and F in Figure 3 for identifiers and expressions. The anti-quotation
in |[#[a] + 3]| is ambiguous, since #[a] can represent an identifier as well as a
complete expression.

3.2 Solutions

Lexical State Most systems use a separate scanner. The consequence is that the lexical
analysis must consider lexical states and will often assume fixed quotation symbols
to determine the current state. Alternatively, the scanner can interact with the parser
to support a more general determination of the lexical state. Some other systems just
take the union of the lexical syntax, hence forbidding reserved keywords of the object
language in the meta language. MAJ also reserves several keywords to work around
lexical ambiguities (e.g. pointcut is a meta keyword) and some of these keywords are
not even part of the object language (e.g. VarDec and args). ASF+SDF and Stratego
both use scannerless parsing for parsing meta programs. Lexical ambiguities are not
an issue in scannerless parsing, since they inherently only occur if a separate scanner is
used.

6

Explicit Typing Ambiguous quotations and anti-quotations can be solved by requir-
ing explicit disambiguation by using different quotation symbols. For example, JTS
uses different quotations for the class example: prg{...}prg for compilation units
and cls{...}cls for class declarations. Stratego uses the same solution, but the dis-
ambiguated versions of the quotations are optional: if there is no ambiguity, then the
general quotation symbols can be used. For example, |[package foo; class Foo
{}]| is not ambiguous (it is a compilation unit), but a plain class declaration requires
an explicit disambiguation, e.g. comp-unit |[class Foo {}]|.

JTS solves ambiguities between quotations of a single non-terminal and a list of
non-terminals in two different ways. First, there are specific quotations for lists, for
example xlst{...}xlst for the arguments of a method call. Second, some non-
terminals only have a single quotation instead of two, where this single quotation always
represents a list. In Stratego, list quotations are explicitly disambiguated, e.g. bstm* |[
x = 5;]|.

Context-sensitive Parsing MAJ uses context-sensitive parsing to solve ambiguous quo-
tations and anti-quotations, by using type information at parse-time to infer the type
of the quotation or anti-quotation to be parsed. Concerning list quotations, if infer is
used, MAJ uses a single element if possible and an array if it must be a list. If the type
of the variable is declared, then this type is considered. For example, the quotation in
the statement Stmt[] stms = ‘[x = 4;]; will be parsed to the construction of
an array instead of a single statement. Hence, explicit disambiguation of the quotation
itself is not necessary. Unfortunately, MAJ does not implement full support for the type
system of Java and uses common interfaces for conceptually different AST classes to
workaround issues in the quotation inference. Section 5 discusses these problems in
more detail.

Grammar Specialization ASF+SDF is a system with first order types. It translates
this type system to a context-free grammar, thus parsers can be generated that accept
only type correct meta programs. As a result, neither quoting of object fragments, or
anti-quoting of meta variables is necessary in ASF+SDF, nor explicit typing. However,
the type system is limited to first order types only. Remaining ambiguities are cur-
rently solved by using heurstic disambiguation filters, such as injection count. In [18] a
type-based solution for these ambiguities is presented, where grammar generation is no
longer necessary.

4 Generalized Type-Based Disambiguation

In summary, quotation and anti-quotation can be used to introduce concrete syntax for
object-level program fragments, but need some form of disambiguation. Explicit disam-
biguation methods introduce syntactic clutter that obscures meta programs. Reduction
of this syntactic clutter can be achieved by using type information for disambiguation.
While MAJ does a great job at achieving this for the specific embedding of AspectJ
in Java, its implementation is hard to generalize to other object languages and to the
combination of multiple object languages, because of the poor compositionality of its
context-sensitive parsing algorithm.

7

Editor

Meta
Syntax

Object
Syntax

Combined
Syntax Assimilation

Rules

Meta
Program

Parser Assimilator Ambiguous
Program

Compiler

Programmers'
perspective

Meta
Language Typechecker

Executable

Object
Language

Program

Error messages

Fig. 4. Architecture of embedding and assimilation framework with type-based disambiguation.

In this section, we introduce an alternative approach that generalizes easily to ar-
bitrary object languages. Indeed it is generic in the embedded object language and can
easily be transposed to other meta languages, considering the restrictions on the type
system, as mentioned in the introduction. We illustrate the method with the embedding
of Java in Java, but stress that the architecture and implementation is object language
independent. The basic idea of the approach is to perform type-based disambiguation of
an abstract syntax forest after assimilation. The architecture of our method is illustrated
in Figure 4. In the rest of this section we describe the elements of the pipeline.

4.1 Syntax Definition and Parsing

The first stage of the pipeline consists of parsing the meta program with a parser gen-
erated from the combined syntax definition. This phase preserves all the ambiguities in
the meta program, by employing generalized-LR parsing. The result is a parse forest,
that is, a compact representation of all possible parses of the program. At points where
multiple parses are possible the forest contains ambiguity nodes consisting of a set of all
alternative parse trees, or in fact forests, since ambiguities can be nested. As a technical
note, we actually consider abstract syntax forests, that is parse forests with irrelevant
information such as whitespace, comments, and literals removed. For example, the Java
assignment statement dec = |[class Foo {}]|; is parsed to the following abstract
syntax forest in term notation (where we have elided some details of the structure of
class declarations having to do with modifiers and such):

Assign(ExprName(Id("dec")),

1> ToMetaExpr(CompUnit(... ClassDec(... Id("Foo")...) ...))

2> ToMetaExpr(ClassDec(... Id("Foo") ...))

3> ToMetaExpr([ClassDec(... Id("Foo") ...)]))

In this forest it is clear that the right-hand side of the assignment is ambiguous and
has three alternative parses. We use the notation 1>...n> to indicate the alternatives
of an ambiguity node. The three alternatives are a compilation unit containing a class
declaration, a class declaration on its own, and a singleton list of a body declaration
declaring an inner class (see Section 3.1 for a discussion of ambiguities caused by
lists). The ToMetaExpr constructor represents a transition from the meta language to
the object language (see Figure 3).

8

4.2 Assimilation

The second stage in the pipeline is assimilation, i.e., the translation of the embedded
language fragments to their implementation in the meta language as described in Sec-
tion 2.2. The only difference is that assimilation now transforms a forest instead of
a tree. If the assimilation rules are compositional (i.e. the transformed fragments are
small) there is no interference between regular assimilation rules and ambiguities, that
is, ambiguities are preserved during assimilation. Thus, after assimilation, the abstract
syntax forest only contains meta language constructs and ambiguity nodes. For exam-
ple, the following code fragment shows the intermediate result after assimilation of the
example above to the Eclipse JDT Core DOM (again some details have been elided).

1> {| CompilationUnit cu_0 = _ast.newCompilationUnit(); ...

TypeDeclaration class_0 = _ast.newTypeDeclaration();

class_0.setName(_ast.newSimpleName("Foo"));

... | cu_0 |}

2> {| TypeDeclaration class_1 = _ast.newTypeDeclaration();

class_1.setName(_ast.newSimpleName("Foo"));

... |class_1 |}

3> {| List<BodyDeclaration> decs_0 = new ArrayList<BodyDeclaration>();

decs_0.add(...);

... | decs_0 |}

4.3 Type-Based Disambiguation

In the final stage of processing the meta program, ambiguities are resolved. The disam-
biguation operates on an abstract syntax forest of the meta language without any traces
of the object language. Thus, the disambiguation phase does not have to be aware of
quotations and anti-quotations, or of their contents. The disambiguation is implemented
as an extension of a type checker for the meta language that analyses the abstract syntax
forest and eliminates the alternatives that are not type correct. The algorithm for disam-
biguation is sketched in Figure 5. From within the type checker the disambiguate
function is invoked for every node node in the abstract syntax forest after typing it.

The disambiguate function distinguishes three cases, which we discuss in reverse
order. If the node node is not ambiguous it is just returned. If one of the sub-nodes of
node is ambiguous, its alternatives are lifted to the current node by lift-ambiguity.
Its definition states that if n is equal to some ambiguity node within a context c[.],
the context is distributed over the ambiguity (We give an example of distribution of an
assignment shortly). Finally, if the node node is directly ambiguous or after lifting the
ambiguities from its sub-nodes, the resolve function is used to resolve the ambiguity.

The resolve function takes an ambiguous node and removes from it all alternatives
that are not type correct. This may result in an empty set of alternatives (#node’ ==
0), which indicates a type error, a singleton set (#node’ == 1), which indicates that the
ambiguity is solved, or a set with more than one alternative (#node’ > 1). In the latter
case, if the ambiguity involves a statement or declaration no more context information
can be used to select the intended alternative, hence it is reported as an ambiguity error.
Otherwise, in the case of an expression, the ambiguity is allowed to be lifted into its
parent level, where it may be resolved due to context information.

9

disambiguate(node) =

if node is ambiguous then
return resolve(node)

else if node has ambiguous child then
return resolve(lift-ambiguity(node))

else return node

resolve(node) =

node’ := remove from node all alternatives which are not type correct

if #node’ == 0 then report type error

else if #node’ == 1 then return node’

else if #node’ > 1 then
if node’ contains a meta statement or declaration then

report ambiguity error

else return node’

lift-ambiguity(node) =

if node == c [1> node1 2> node2 ... j> nodej] then
return 1> c [node1] 2> c [node2] ... j> c [nodej]

Fig. 5. Algorithm for type-based resolution of ambiguities.

To illustrate the lifting and elimination of ambiguities, consider the ambiguity be-
tween the compilation unit, type declaration and list of body declarations in the assimi-
lated example. If this ambiguous expression occurs in an assignment, i.e.

dec = 1> CompUnit 2> TypeDec 3> List<BodyDec>

then the ambiguity will be lifted out of the assignment (for brevity, the actual expression
has been replaced by its type). This will result in a new ambiguity node with three
alternatives for this assignment, i.e.

1> dec = CompUnit 2> dec = TypeDec 3> dec = List<BodyDec>

Depending on the type of the variable dec , two of these assignments will most likely
be eliminated. For example, if the variable has type TypeDec, then the CompUnit and
List<BodyDec> assignments will be eliminated, since these assignments cannot be
typed. Note that this mechanism requires variables to be declared with a reasonably
specific type. That is, if the variable dec has type Object then all the assignments can
be typed and an ambiguity error will be reported.

Similarly, ambiguities are lifted out of method invocations: For example,

f(1> CompUnit 2> TypeDec 3> List<BodyDec>)

is lifted to

1> f(CompUnit) 2> f(TypeDec) 3> f(List<BodyDec>)

If f is just defined for one of these types, then just one of the invocations can be typed.
Thus, the other invocations will be eliminated. On the other hand, if f is overloaded
or defined for a supertype of two or more of the types, then the ambiguity will be

10

preserved. It might be eliminated later, if the result types of f are different. If this is not
the case, then an ambiguity will be reported, similar to an ambiguous method invocation
in plain Java.

4.4 Explicit Disambiguation

For cases that are inherently ambiguous or just unclear, explicit disambiguation can be
used. Most systems introduce special symbols for this purpose, but due to our integra-
tion in the type checker one may use casting to ensure the type checker that some-
thing should a have certain type. The implementation of the explicit disambiguation
comes for free, since incorrect casts cannot be type checked. Thus, these alternatives
will be eliminated. For example, in our running example a cast to a compilation unit
(CompilationUnit) |[public class Foo {}]| will cause the alternatives to be
eliminated. In this way, any object language construct can be disambiguated, not only
the ones that the developer of the embedding happens to support.

However, there is a situation where not even casting will help. Our method requires
that the underlying structured representation of the object language is typed and that
distinct syntactical categories in the object language have a different type in this repre-
sentation. For example, if the structured representation is a universal data format such
as XML or ATerms, then our method will not be able to disambiguate the concrete ob-
ject syntax, since the different syntactical categories are not represented by different
types in the meta language. Fortunately, a sufficiently typed representation is preferable
anyway, since it would otherwise be possible to construct invalid abstract syntax trees.
Note that similar problems occur in a dynamically typed languages. As mentioned in
the introduction, our method is most suitable for statically typed languages.

5 Experience

To exercise the general applicability of our method to the embedding of different object
languages, we implemented two large embeddings. Small fragments of the first appli-
cation have already been presented in several examples: the embedding of Java in Java
using assimilation to the Eclipse JDT Core DOM. We call this embedding JavaJava. The
second application embeds AspectJ in Java and mimics the object language specific im-
plementation of MAJ. Although AspectJ is a superset of Java, these two applications are
quite different, since the embedding of AspectJ assimilates to the MAJ abstract syntax
tree. The applications substantiate our claims, but also give some interesting insights in
the limitations and the relation to object language specific implementations.

JavaJava The implementation of JavaJava consists of a syntax definition (small frag-
ment presented in Figure 3) and a set of assimilation rules that translate Java 5.0 abstract
syntax tree constructs to the Eclipse JDT Core DOM [15] (examples have been shown
in Section 2.2).

The mapping from the syntax definition to the Eclipse DOM is natural, since both
are based on the Java Language Specification. Furthermore, the DOM is well-designed

11

and uses distinct classes to represent distinct syntactical categories. Because of this, our
type-based disambiguation works quite well for JavaJava.

An interesting issue is the types of containers used in the DOM. The DOM uses un-
parameterized standard Java collections, as opposed to arrays, or type specific contain-
ers. So although the DOM itself can represent parameterized types in an object program,
the DOM implementation itself does not use parameterized types. Our disambiguating
type checker would benefit from parameterized collections, by harvesting the additional
type information about the elements of a collection (e.g. List<Expression>). Fortu-
nately, parameterized types and unparameterized types can be freely mixed, i.e. we can
still use parameterized types in meta programs. However, we prefer a more precisely
typed DOM, such that unchecked conversions or explicit casts can be avoided. Note
that this shows that a sufficiently typed representation is important for our method.

Meta-AspectJ We developed the embedding of AspectJ in Java to compare our gener-
alized and staged disambiguation solution to a specific implementation, namely MAJ.
For this, we also had to study the behaviour of MAJ in more detail. Our syntactical em-
bedding is based on a modular AspectJ and Java syntax definition in SDF and exactly
mimics the syntax of MAJ. The syntactical embedding was very easy to implement
using SDF: basically we just have to combine the existing syntax definitions in a new
module. The syntax definition also supports the explicit disambiguations of MAJ, but
these are not really necessary, since casts can be used in our embedding method. For
the underlying structured representation we use the MAJ AST.

We learned that our generalized implementation of disambiguation in a separate
type checker has the advantage that it is much easier to implement support for more ad-
vanced Java constructs. For example, our implementation fully supports disambiguation
of quotations in method invocations by performing complete method overload resolu-
tion, which MAJ does not. So, given the following overloaded method declarations:

Stmt foo(CompilationUnit cu) { ... }

JavaExpr foo(ClassDec dec) { ... }

our implementation can disambiguate invocations of the foo method that take quoted
AspectJ code as an argument:

Stmt stmt = foo(‘[class MyClass {}]);

JavaExpr expr = foo(‘[class MyClass {}]);

On the other hand, MAJ as an object language specific implementation provides
some additional, object language specific, functionality that is not available in our gen-
eralized implementation. For instance, MAJ supports the conversion of Java (meta-
level) values to AspectJ (object-level) expressions. For example, an array can be used
as a variable initializer without converting it to the object-level by hand. Unfortunately,
this conversion cannot be handled in a generic way, since it is not applicable to all ob-
ject languages. However, for the specific embedding of Java in Java this could be added
to the type checker (see future work).

We have not implemented the infer feature of MAJ, which supports inferring the
type of a local variable declaration. Hence, the types of all variables should be de-
clared in our implementation. The infer feature itself is not hard to implement, but we

12

would have to introduce heuristics to disambiguate ambiguous expressions, since no
type is declared for the variable. MAJ applies such heuristics, for example by choosing
a ClassDec if the type of the variable is infer, even if a MajCompilationUnit would
also be possible. To work around incorrect choices, similar abstract syntax tree classes
implement a common interface. For example, ClassDec and MajCompilationUnit
implement the common interface CompUnit. This is a nice example of the problem
mentioned in Section 4.4: distinct syntactical categories share a common interface.
Thus, the declaration CompUnit c = ‘[class Foo {}]; will result in an ambigu-
ity error in our approach.

6 Discussion

Previous Work We use the modular syntax definition formalism SDF [19], with inte-
grated lexical and context-free syntax and declarative syntactical disambiguation con-
structs. It is implemented using scannerless generalized LR parsing [19,10]. SDF is
developed in the context of the ASF+SDF Meta-Environment [14], but is used in sev-
eral other projects such as ELAN [9]. Our Stratego/XT [21] program transformation
system uses SDF for parsing meta programs with concrete object syntax [20]. Stratego
is not statically type checked. Therefore, it employs quoting with explicit typing, where
necessary.

The ASF+SDF Meta-Environment is a meta programming system based on term
rewriting. It uses grammar specialization to resolve ambiguities caused by object lan-
guage fragments. To let the type system of ASF+SDF deal with parametric polymor-
phism, in [18] a separate disambiguating type checker replaces the grammar generation
scheme. This solution instantiates the framework described in this paper for ASF+SDF.

Section 2 describes previous work on hosting arbitrary object languages in any host
language [11], which generalizes the approach taken for Stratego [20] to any general
purpose programming language. In the examples of [11], Java was used as the host
language and we also embedded Java as the object language in Java. However, ex-
plicit disambiguation was required and an untyped underlying representation was used.
The contribution of generalized type-based disambiguation, as presented in the cur-
rent paper, is the introduction of a disambiguating type checker to remove the need for
explicit typing. Moreover, the implementation is generic in the embedded object lan-
guage. Thus, we obtain a similar notation as found in ASF+SDF, but can handle more
than simple first order type systems, and use no disambiguation heuristics.

Related Work The subject of embedding the syntax of object languages into host lan-
guages has a long history. The following discussion is meant to position our work more
precisely. Early work on syntactic embeddings revolves around the concept of syntax
macros [17]. They allow a user to dynamically extend a general purpose programming
language with syntactic abstractions. These abstractions are defined in programs them-
selves. Implementations of this idea have been limited to certain subclasses of gram-
mars, like LL(1) and LALR, as an argument of a fixed macro invocation syntax. Thus,
these approaches can not be transferred to our setting of hosting arbitrary object lan-
guages.

13

The work of Aasa [1] in ML is strongly related to our setting. By merging the pars-
ing and type checking phases for ML, and using a generalized parsing algorithm, this
system can cope with arbitrary context-free object languages. It uses a fixed set of quo-
tation and anti-quotation symbols that allow explicit typing to let the user disambiguate
in case the type system can not decide. As opposed to this solution, our approach com-
pletely disentangles parsing from type checking, and allows user defined quotation and
anti-quotation symbols.

DMS [5] and TXL [12] are specialized meta programming environments similar
to ASF+SDF and Stratego/XT. In DMS the user can define AST patterns using con-
crete syntax, which are quoted and guarded by explicit type declarations. TXL has an
intuitive syntax with keywords that limit the scope of object code fragments, instead
of quoting symbols that surround every code fragment. Each code fragment, and each
meta variable is explicitly annotated by a type in TXL.

The Jakarta Tool Suite [4] and the Java Syntax Extender [2] are Java based solutions
for meta programming and extensible syntax. Our framework, consisting of scannerless
generalized-LR parsing and type-based disambiguation, is more general than the pars-
ing techniques used by these systems. JTS uses explicit quotation and explicit typing,
which can be avoided with our framework. Maya [3] uses extensible LALR for pro-
viding extensible syntax. Multi-dispatch is used to allow multiple implementations of
new syntax, where the alternatives have access to the types of the arguments. Unfortu-
nately, a separate scanner and LALR limit the syntactical flexibility. MAJ [22] obtains
type-based disambiguation for the embedding AspectJ in Java, using context-sensitive
parsing. We contribute by disentangling the parser from the type checker, resulting in
an architecture that can handle any context-free object language. Our architecture stays
closer to the original Java type system, in order to limit unexpected behavior.

Camlp4 [13] is preprocessor for OCaml for the implementation of syntax exten-
sions using an extensible top down recursive descent parser. New language constructs
are translated to OCaml code by syntax expanders that are associated to the syntax
extensions. Camlp4 provides quotations and anti-quotations to allow the generation of
OCaml code using concrete syntax. The contents of quotations is passed a string to a
quotation expander, which can then process the string in arbitrary ways. A default quo-
tation expander can be defined, but all other expanders have to be specified explicitly
in the quotation. Ambiguous anti-quotations have be disambiguated explicitly by using
anti-quotation labels. As opposed to Maya, the syntax and quotation expanders can not
use an environment or type information in deciding what code to produce.

The method of disambiguation we use is an instance of a more general language de-
sign pattern called “disambiguation filters” [16]. Although there are lightweight meth-
ods for filtering ambiguities that are very close to the syntactic level [10], disambigua-
tion filters can generally not be expressed using context-free parsing. For example, any
parser for the C language will use an extra symbol table to disambiguate C programs.
Either more computational power is merged in parsers, or separate disambiguation fil-
ters are implemented on sets of parse forests [7]. We prefer the latter approach, because
it untangles parsing from abstract syntax tree processing.

The problem of disambiguating embedded object languages is different from dis-
ambiguation issues in type checkers, such as resolution of overloaded methods and op-

14

erators. First, disambiguation in type checkers can be done locally, based on the types of
the arguments of the expression. Hence, lifting of the ambiguity, an essential part of our
algorithm, is not used in such type checkers. Second, in our approach large fragments
of the program can be ambiguous and are represented incompletely different ways. For
typical ambiguities in programming languages, such as overloaded operators, the alter-
natives can conveniently be expressed in a single tree.

Future Work We are considering to widen the scope of the framework in two di-
rections. Firstly, we would like to experiment with languages that have other kinds of
type systems, such as languages with type inferencing and languages with union types.
Secondly, the assimilation of an embedded domain-specific language (beyond object
languages) often requires more complex transformations of the meta program and the
object fragments. Applying type-based disambiguation after assimilation is a problem
in this case. Extending the type checker of the host language with object language spe-
cific functionality is one of the options to investigate for this purpose.

7 Conclusion

We have extended an existing generic architecture for implementing concrete object
syntax. The application of a disambiguating type checker, that is separate from a gener-
alized parser, is key for providing single quotation and anti-quotation operators without
explicit typing. This approach differs from other approaches due to this separation of
concerns, which results in object language independence. It can still handle complex
configurations such as Java embedded in Java. We have validated our design by means
of two different realistic embeddings of object languages into Java, and comparing the
results to existing systems for meta programming. The instances of our framework con-
sist of meta programming languages that use manifest typing (i.e. Java), combined with
object languages that have a well-typed meta representation (e.g., Eclipse JDT Core
DOM). We explicitly do not provide heuristics to automate or infer types, such that
the architecture’s behavior remains fully declarative and is guaranteed to be compatible
with the type system of the meta programming language.

Acknowledgements At Universiteit Utrecht this research was supported by the NWO
Jacquard project TraCE, and at CWI by the Senter ICT-doorbraak project CALCE. We
would like to thank Karl Trygve Kalleberg and Eelco Dolstra for providing detailed
feedback.

References

1. A. Aasa, K. Petersson, and D. Synek. Concrete syntax for data objects in functional lan-
guages. In Proceedings of the 1988 ACM conference on LISP and functional programming,
pages 96–105. ACM Press, 1988.

2. J. Bachrach and K. Playford. The Java syntactic extender (JSE). In Proceedings of the
16th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’01), pages 31–42. ACM Press, 2001.

15

3. J. Baker and W.C. Hsieh. Maya: multiple-dispatch syntax extension in java. In PLDI ’02:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pages 270–281. ACM Press, 2002.

4. D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools for implementing domain-specific
languages. In Proceedings Fifth International Conference on Software Reuse (ICSR’98),
pages 143–153. IEEE Computer Society, June 1998.

5. I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS R©: Program transformations for practical
scalable software evolution. In ICSE ’04: Proceedings of the 26th International Conference
on Software Engineering, pages 625–634. IEEE Computer Society, 2004.

6. C. Brabrand and M.I. Schwartzbach. Growing languages with metamorphic syntax macros.
In Proceedings of the 2002 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
based Program Manipulation (PEPM’02), pages 31–40. ACM Press, 2002.

7. M.G.J. van den Brand, S. Klusener, L. Moonen, and J.J. Vinju. Generalized Parsing and
Term Rewriting - Semantics Directed Disambiguation. In B. Bryant and J. Saraiva, editors,
LDTA’03, volume 82 of ENTCS. Elsevier, 2003.

8. M.G.J. van den Brand, P.E. Moreau, and J.J. Vinju. A generator of efficient strongly typed
abstract syntax trees in Java. IEE Proceedings - Software, May 2005. to appear.

9. M.G.J. van den Brand and C. Ringeissen. ASF+SDF parsing tools applied to ELAN. In
Third International Workshop on Rewriting Logic and Applications, ENTCS, 2000.

10. M.G.J. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation filters for scan-
nerless generalized LR parsers. In N. Horspool, editor, Compiler Construction (CC’02),
volume 2304 of LNCS, pages 143–158. Springer-Verlag, April 2002.

11. M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-specific language em-
bedding and assimilation without restrictions. In Douglas C. Schmidt, editor, Proceedings of
the 19th ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages,
and Applications (OOPSLA’04), pages 365–383. ACM Press, October 2004.

12. J.R. Cordy, C.D. Halpern-Hamu, and E. Promislow. TXL: A rapid prototyping system for
programming language dialects. Computer Languages, 16(1):97–107, 1991.

13. Daniel de Rauglaudre. Camlp4 reference manual, September 2003.
14. A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping, volume 5 of AMAST

Series in Computing. World Scientific, 1996.
15. Eclipse Java Development Tools (JDT) website. http://www.eclipse.org/jdt/.
16. P. Klint and E. Visser. Using filters for the disambiguation of context-free grammars. In

G. Pighizzini and P. San Pietro, editors, Proc. ASMICS Workshop on Parsing Theory, pages
1–20. Tech. Rep. 126, Università di Milano, 1994.

17. B. M. Leavenworth. Syntax macros and extended translation. Commun. ACM, 9(11):790–
793, 1966.

18. J. Vinju. A type driven approach to concrete meta programming. Technical Report SEN-
E0507, Centrum voor Wiskunde en Informatica, 2005.

19. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of Amsterdam,
September 1997.

20. E. Visser. Meta-programming with concrete object syntax. In D. Batory, C. Consel, and
W. Taha, editors, Generative Programming and Component Engineering (GPCE’02), vol-
ume 2487 of LNCS, pages 299–315. Springer-Verlag, October 2002.

21. E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and systems
in StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific Program Generation,
volume 3016 of LNCS, pages 216–238. Spinger-Verlag, June 2004.

22. D. Zook, S.S. Huang, and Y. Smaragdakis. Generating AspectJ programs with Meta-AspectJ.
In G. Karsai and E. Visser, editors, Generative Programming and Component Engineering:
Third International Conference, GPCE 2004, volume 3286 of LNCS, pages 1–19. Springer,
October 2004.

16

