
An Architecture for Context-sensitive Formatting∗

Extended Abstract

M.G.J. van den Brand, A.T. Kooiker, J.J. Vinju
Centrum voor Wiskunde en Informatica

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
{Mark.van.den.Brand, Taeke.Kooiker, Jurgen.Vinju}@cwi.nl

N.P. Veerman
Department of Computer Science, Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
nveerman@cs.vu.nl

1 Introduction

The layout and style of program source code are crucial
for the time required to understand and thus modify it [5].
In fact, these aspects are too integral to the coding aspect to
be changed effectively later [4, p399]. However, a system
may be initiated with a proper coding standard but years of
evolution causes the code to deviate from it. For instance,
some programmers format code to a preferred style by hand
before making changes. The result is a mixture of different
programming styles, which increases the time for mainte-
nance.

A solution to these problems is to format source code
with automatic tools. Automatic formatting improves
the productivity of maintenance programmers, but pretty-
printers hardly implement the company specific conven-
tions. There exist some language-specific formatting tools
that can be used off-the-shelf, but these tools suffer from
a profusion of command line arguments required to deal
with the highly variable formatting conventions that users
of the tool will have. When a language-specific formatting
tool is not available for a certain legacy or domain-specific
language, generic formatting (e.g. tools [1, 6, 9]) can be
applied. Such tools allow a formatting convention for any
language to be defined and can then generate the format-
ting tool from this definition. They can even provide a more
flexible alternative to existing language-specific formatters.
However, one of the limitations of the generic formatters
mentioned above is that these can not use context informa-
tion, which can be required when formatting according to

∗The research was supported by the Dutch Ministry of Economic Af-
fairs via contract SENTER-TSIT3018 CALCE: Computer-aided Life Cycle
Enabling of Software Assets.

industrial coding standards. The goal of this research is to
rapidly obtain a formatter for any language that implements
arbitrary formatting requirements.

Contributions We present an architecture for context-
sensitive formatting, and demonstrate it in a formatting case
with an industrial Cobol system. We claim that our architec-
ture can handle all kinds of unexpected formatting conven-
tions in any programming language. This architecture needs
no default formatter to be generated and allows arbitrary
computational power while mapping language constructs to
formatting instructions. More detailed information, as well
as a discussion on related work, can be found in [7].

An industrial case with context-sensitive formatting re-
quirements In the context of a software renovation re-
search project, we were asked by a company to enforce a
corporate formatting standard to the source code of a Cobol
system covering nearly 80 thousand lines of code.

We obtained the company specific conventions for for-
matting a number of Cobol language constructs. These are
summarized in Table 1. For several constructs, the assigned
starting columns and indentation depths are displayed. The
requested standard is illustrated by a code example in Fig-
ure 1, containing column numbers, data declarations and a
number of statements. The code example shows a record
structure for storing a date. Level 03 sub-records are used
to store the day, month and year, and a level 88 condition
entry (a flag variable) is declared to check if a date exists.
Then in the PROCEDURE DIVISION, if no date is present
in the record, the date is retrieved from the system clock. In
addition to this, the date is stored in another record.

Many formatting conventions are geared to clarify the

Table 1. Required layout standard.
Description Column
Start of divisions, sections, declarations, paragraphs 01
Start of PIC and REDEFINES clauses 41
Start of VALUE, COMP and OCCURS clauses 51
Start of statements 09
Second part of statements (e.g. MOVE Id TO . . .) 25
Third part of Statements (e.g. MOVE Id TO . . .) 49
Fourth part of Statements (e.g. MOVE . . . TO Id) 53
Description Indent
A nested data declaration (record) should indent with re-
spect to its associated group variable

4

A level 88 data declaration should indent with respect to its
preceding variable

4

In a data declaration, a level number and a variable name
are separated

2

Indentation of nested statements 4

logical structure of the source code. For example, the state-
ments inside an IF are indented to clearly indicate that their
execution is subject to the conditional. However, this par-
ticular layout standard also contains some more subjective
rules. Figure 1 shows how the FROM part of the ACCEPT
statement is aligned with the TO parts of MOVE statements
that are outside the conditional. This is an example of
alignment that crosscuts the logical structure of the pro-
gram. When using a logical structure, the FROM part of
the ACCEPT statement would be indented relative to the
beginning of the entire statement. Instead, the standard dic-
tates that we must indent the first ACCEPT part according to
the context, and put the FROM part at an absolute column,
regardless of the current indentation level. This requires
context-sensitive information.

Another construct which requires context information
are the data declarations. The general scheme is that dec-
larations with a higher number should be indented more.
However, the level 88 condition entry field is an exception,
since it always appears directly under its preceding vari-
able, whereas a regular level number (e.g. 01, 03, ..) is
indented with respect to its associated group variable. It is
a formatting exception that assigns a particular meaning to
the number 88, requiring context information.

So both the statements and the data declarations in this
layout standard require context-sensitive formatting.

2 Context-sensitive formatting architecture

Our industrial case illustrates that formatting is a process
which heavily depends on specific user requirements, re-
quiring context information in some cases. The application
of formatting source codes is bound by strict, but possibly
irregular rules given by the owner of the code base. Both the
used language, as well as the corporate conventions may be
unique.

Existing generic pretty-printing, apart from [9], do not
cope well with unexpected formatting conventions that re-
quire more elaborate analysis of the source code. Extra in-

Column 10 20 30 40 50 60 70
12345678901234567890123456789012345678901234567890123456789012345678901

DATA DIVISION.
WORKING-STORAGE SECTION.

01 WD_DATE VALUE ZERO.
88 WD_NO_DATE VALUE ZERO.
03 WD_DD PIC 9(02).
03 WD_MM PIC 9(02).
03 WD_JJ PIC 9(02).

PROCEDURE DIVISION.
INITIALIZE_DATE SECTION.
INIT_00.

IF WD_NO_DATE
ACCEPT WD_DATE FROM DATE

END-IF
MOVE WD_DD TO WR_DD
MOVE WD_MM TO WR_MM
MOVE WD_JJ TO WR_JJ.

Figure 1. Layout according to Table 1.

formation such as nesting depth, specific identifiers, or rel-
ative positions between several constructs in a language is
often important; this is context-sensitive information.

When language constructs are mapped during pretty-
printing, we should allow more elaborate user-defined com-
putation. Nevertheless, default pretty-printing is very prac-
tical because it automates the major part of creating a for-
matting tool. Therefore, the formatting process in our ar-
chitecture is split into three stages, see Figure 2.

Stage 1: user-defined mapping The input for Stage 1 is
a parse tree. The user-defined mapping that is applied to
this parse tree consists of transforming particular language
constructs to Box [9] constructs. Box is a special purpose
language for formatting. The language constructs that are
transformed, depend on the formatting requirements that are
not handled as desired by the default mapping in Stage 2.
Any programming language or tool can be used to map cer-
tain selected language constructs to Box constructs. For our
Cobol case we used ASF+SDF [10], because its application
domain is in these kind of language transformations.

Applying a user-defined mapping on the input parse tree
results in a hybrid parse tree containing both source lan-
guage constructs and Box constructs. Figure 3 illustrates
such an hybrid tree, where Box language operators can
have programming language constructs as children, and
vice versa. The borders between the source code language
formalism and Box formalism are guarded by encapsulat-
ing nodes which are marked by two special node attributes:
from-box and to-box. The outermost pyramid shows a
Cobol parse tree that is partially formatted. It has one child
that has been transformed to Box constructs. The transition
from Cobol to Box is guarded by a from-box node. Al-
though this part of the program is not formatted completely,
it does contain an unformatted Cobol part again. The transi-
tion from Box back to Cobol is guarded by a to-box node.
This guarantees the type safe merging of host and Box lan-
guage. Furthermore, Stage 1 contains a tool that correlates
the hybrid tree with the original parse tree to ensure syntax
safety.

Figure 2. The multistage formatting architecture
Figure 3. The hybrid tree

Stage 2: default mapping In Stage 2 the default format-
ting engine applies default pretty-print rules to the hybrid
parse tree result of Stage 1. It is constructed in such a way
that it guarantees syntax safety. All Cobol constructs that
are left in the hybrid tree are then mapped to Box opera-
tors. The algorithm used by the formatting engine skips
over all Box expressions that are between a from-box and
a to-box node, since they have been formatted already
(see Figure 3). The resulting tree contains only Box expres-
sions. It is guaranteed that all source language constructs
have been transformed into Box constructs.

It is surprising that in general more nodes are formatted
in Stage 2 than in Stage 1. Programming languages share
typical syntactic idioms that can be formatted in a similar
way. The most obvious example is the block structure: a
syntax rule that begins and ends with a literal, and has a list
of other constructs in the middle. There is an easy oppor-
tunity for reuse. Stage 2 benefits from these similarities by
using some smart heuristics. It extracts information from
parse trees to identify syntactical idioms, and maps them to
Box expressions. We reuse the default mapping that was
proposed in [9], but now we implement it on the hybrid tree
instead of generating a default implementation that the user
needs to adapt. The benefit is twofold: the user can choose
the technology he prefers to use for the user-defined for-
matter and we avoid common maintenance problems with
generated code altogether.

Stage 3: Box back-ends For Stage 3 several reusable Box
back-ends are available [1, 9] that can be reused to output
formatted programs. The Box tree from Stage 2 contains
different formatting operators. The H and V operators sim-
ply output text horizontally or vertically. However, if the
text in a HV or HOV box does not fit in the horizontal space,
then it is split horizontally between two or more lines or
printed vertically. Other operators work in a similar way; if
the text contained in the operand does not fit the sizes of the
surrounding box, the operator will format the text accord-
ingly.

3 Case study

In this project, we were driven by an industrial case: the
layout of a DEC Cobol system of 78 thousand lines of code
must be standardized according to specific layout standard.
This standard is presented in the Introduction (Table 1). We
describe what kind of effort was needed to create a format-
ter that meets the requirements using the above described

formatting architecture. To illustrate the approach, we give
a user-defined rule for a specific language construct that was
formatted.

Implementation of the formatting architecture The
parser and the user-defined formatting were implemented
using the language specification formalism ASF+SDF [10].
This is a formal language that is well-equipped for trans-
formations of source code. Using SDF grammar produc-
tions, we defined the syntax of DEC Cobol. The SDF gram-
mar was derived from the online IBM VS Cobol II gram-
mar [2, 3] and adapted to be able to parse DEC Cobol-
specific constructs. The generated parser outputs a parse
tree that is used as input for Stage 1 (see Figure 2).

In case the default mapping was different from the layout
standard, ASF rewrite rules were defined to implement the
mapping of Cobol constructs to Box language constructs.
These rewrite rules are applied to the parse tree in Stage 1.
A rule may have complex matching patterns, and by defin-
ing parameterized functions, rules can also receive context
information to guide a transformation. The rules use the
concrete syntax of the manipulated language on both sides
and in the conditions. The mapping of Cobol constructs
to Box constructs is therefore immediately recognizable as
such.

For efficiency reasons, Stage 2 and 3 are linked together
in a new tool called Pandora. Pandora is distributed with
the ASF+SDF Meta-Environment [8] and can be used with
and without a user-defined mapping. In our industrial case
we need most operators of the Box language, and one im-
portant extension: tab stops. Tab stops support placing of
constructs at fixed columns independent of the current in-
dentation level. The crosscutting concern where parts of a
language construct have to be placed at fixed columns has
inspired this extension.

Implementation of user-defined rules The implementa-
tion of a formatter involves specifying at least one rewrite
rule for each construct that the standardization document
describes, unless the default mapping (Stage 2) coincides
with the standard. We present a Cobol construct with its
implementation: the MOVE statement. The user-defined rule
for this construct is illustrated in Figure 4.

The MOVE statement, with keywords MOVE and TO, is
formatted by a single rewrite rule (equation). The context-
free syntax is defined by a production rule, and meta vari-
ables are defined for the sorts IdOrLit (identifier or
literal) and Id-list (list of identifiers) for use in the

context-free syntax
"MOVE" IdOrLit "TO" Id-list -> Move-stat

context-free syntax
from-box(Box) -> Move-stat {from-box}
to-box (IdOrLit) -> Box {to-box}
to-box (Id-list) -> Box {to-box}

variables
"IdOrLit" -> IdOrLit
"Id-list" -> Id-list

equations
[move-statement]
MOVE IdOrLit TO Id-list
=
from-box(
H ["MOVE"

H ts=25 [to-box(IdOrLit)]
H ts=49 ["TO"]
H ts=53 [to-box(Id-list)]

])

Figure 4. User-defined mapping for MOVE.

rewrite rule. The left-hand side of the rewrite rule tagged
[move-statement] matches all instances of this con-
struct. On the right-hand side, we replace the construct by
a Box expression. The from-box and to-box construc-
tors must be defined for the involved sorts, and mark the
borders between the Cobol and Box formalisms, similar to
the hybrid tree in Figure 2. All parts of the construct are
formatted horizontally using a H box, and three individual
members are placed on fixed positions using tabstops (e.g.
ts=25). This is in accordance with the layout standard
from Table 1. The result of applying this user-defined rule
to a MOVE statement can be seen in Figure 1.

Results We were able to develop about 50 user-defined
rules for constructs according to the layout standard. We
measured the performance of application of our implemen-
tation to 78 thousand lines of Cobol code. Parsing 78 KLOC
was done in 420 seconds. Stage 1, using compiled rewrite
rules, took only 22 seconds, while Pandora took 74 seconds
to perform Stage 2 and 3, of which 32 seconds are spent by
the default mapping. The above measurements show that
formatting 78 thousand lines of code using this architecture
is feasible.

4 Conclusions

We have taken a fixed set of formatting requirements for
a Cobol system as spelled out in a standardization docu-
ment, and applied generic formatting technology to imple-
ment them. It appeared that corporate conventions can dic-
tate alignment that crosscuts the logical structure of a pro-
gram, and can even dictate indentation that is dynamically
computed from context information.

We have developed and implemented a formatting archi-
tecture that allows arbitrary computational power for map-

ping language constructs to the Box language. The enabling
feature is a hybrid format that merges Box expressions with
parse trees. Much of the boilerplate part of formatting can
still be automated by a default mapping to Box. Absolute
tab stops, an important feature which is not found in many
Box back-ends, is used extensively in our case study.

References

[1] M. de Jonge. Pretty-printing for software reengineering. In
Proceedings of ICSM 2002, pages 550–559. IEEE Computer
Society Press, Oct. 2002.

[2] R. Lämmel and C. Verhoef. VS Cobol II Grammar, 1999.
http://www.cs.vu.nl/grammars/vs-cobol-ii/.

[3] R. Lämmel and C. Verhoef. Semi-automatic Grammar Re-
covery. Software—Practice & Experience, 31(15):1395–
1438, December 2001.

[4] S. McConnel. Code Complete. Microsoft Press, 1993.
[5] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shnei-

derman. Program indentation and comprehensibility. ACM,
26(11):861–867, 1983.

[6] D. C. Oppen. Prettyprinting. ACM Trans. Program. Lang.
Syst., 2(4):465–483, 1980.

[7] M. G. J. van den Brand, A. T. Kooiker, N. P. Veerman, and
J. J. Vinju. An industrial application of context-sensitive
formatting. Technical Report SEN-R0510, Centrum voor
Wiskunde en Informatica, June 2005.

[8] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A.
de Jong, M. de Jonge, T. Kuipers, P. Klint, P. A. Olivier,
J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The
ASF+SDF Meta-Environment: a Component-Based Lan-
guage Development Environment. In R. Wilhelm, editor,
CC ’01, volume 2027 of LNCS, pages 365–370. Springer-
Verlag, 2001.

[9] M. G. J. van den Brand and E. Visser. Generation of for-
matters for context-free languages. ACM Trans. Softw. Eng.
Methodol., 5(1):1–41, 1996.

[10] A. van Deursen, J. Heering, and P. Klint, editors. Lan-
guage Prototyping: An Algebraic Specification Approach,
volume 5 of AMAST Series in Computing. World Scientific,
1996.

