
Exploring the Limits of Domain Model Recovery
Paul Klint, Davy Landman, Jurgen Vinju

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{Paul.Klint, Davy.Landman, Jurgen.Vinju}@cwi.nl

Abstract—We are interested in re-engineering families of legacy
applications towards using Domain-Specific Languages (DSLs).
DSL design is hard because next to language engineering skills it
requires a deep and complete understanding of the domain. Is it
worth to invest in harvesting domain knowledge from the source
code of legacy applications?

Reverse engineering domain knowledge from source code is
sometimes considered very hard or even impossible. Is it also
difficult for “modern legacy systems”? More specifically, we
would like to know if there are opportunities to harvest domain
knowledge from high-level object-oriented code.

To explore this question, we compare manually recovered
domain models of two open-source applications to a reference
model extracted from domain literature.

The recovered models are accurate: they cover a significant
part of the reference model and they do not contain much
junk. We conclude that manually recovering domain knowledge
from “modern legacy” code is viable and therefore is a valuable
component of a domain re-engineering process.

I. INTRODUCTION1

There is ample anecdotal evidence [1] that the use of Domain-
Specific Languages (DSLs) can significantly increase the produc-
tivity of software development, especially the maintenance part.
DSLs model expected variations in both time (versions) and
space (product families) such that some types of maintenance
can be done on a higher level of abstraction and with higher
levels of reuse. However, the initial investment in designing a
DSL can be prohibitively high because a complete understanding
of a domain is required. Moreover, when unexpected changes
need to be made that were not catered for in the design of the
DSL the maintenance costs can be relatively high. Both issues
indicate how both the quality of domain knowledge and the
efficiency of acquiring it are pivotal for the success of a DSL
based software maintenance strategy.

In this paper we investigate the source code of existing
applications as valuable sources of domain knowledge. DSLs are
practically never developed in green field situations. We know
from experience that rather the opposite is the case: several
comparable applications by the same or different authors are
often developed before we start considering a DSL. So, when
re-engineering a family of systems towards a DSL, there is
opportunity to reuse knowledge directly from people, from
the documentation, from the user interface (UI) and from the
source code. For the current paper we assume the people are
no longer available, the documentation is possibly wrong or
incomplete and the UI may hide important aspects, so we scope

1The introduction and the conclusions of this paper were revised after
considering the helpful feedback of the program committee of ICPC 2013.

the question to recovering domain knowledge from source code.
Is valuable domain knowledge present that can be included in
the domain engineering process?

From the field of reverse engineering we know that recover-
ing this kind of design information can be hard [2]. Especially
for legacy applications written in low level languages, where
code is not self-documenting, it may be easier to recover
the information by other means. On the other hand, if a
legacy application was written in a younger object-oriented
language, should we not expect to be able to retrieve valuable
information about a domain? This sounds good, but we would
like to observe precisely how well domain model recovery
from source code could work in reality. Note that both the
quality of the recovered information and the position of the
observed applications in the domain are important factors.

A. Positioning domain model recovery

One of the main goals of reverse engineering is design
recovery [2] which aims to recover design abstractions from any
available information source. A part of the recovered design is
the domain model.

Design recovery is a very broad area, therefore, most research
has focused on sub-areas. The concept assignment problem [3]
tries to both discover human-oriented concepts and connect
them to the location in the source code. Often this is further
split into concept recovery [4]–[6]2, and concept location [7].
Concept location, and to a lesser extent concept recovery, has
been a very active field of research in the reverse engineering
community.

However, the notion of a concept is still very broad and
features are an example of narrowed-down concepts and one
can identify the sub-areas of feature location [8] and feature
recovery. Domain model recovery as we will use in this paper
is a closely related sub-area. We are interested in a pure domain
model, without the additional artifacts introduced by software
design and implementation. The location of these artifacts is
not interesting either. For the purpose of this paper, a domain
model (or model for short) consists of entities and relations
between these entities.

Abebe et al.’s [9], [10] domain concept extraction is similar
to our sub-area. As is Ratiu et al.’s [11] domain ontology
recovery. In Section IX we will further discuss these relations.

B. Research questions

To learn about the possibilities of domain model recovery
we pose this question: how much of a domain model can be

2Also known as concept mining, topic identification, or concept discovery.



Reference Model (REF)

Observed Model (OBS)
Recovered Model (REC)

Fig. 1. Idealized picture of domain model recovery.

recovered under ideal circumstances? By ideal we mean that
the applications under investigation should have well-structured
and self-documenting object-oriented source code.

This leads to the following research questions:
Q1. Which parts of the domain are implemented by the

application?
Q2. Can we manually recover those implemented parts from

the object-oriented source code of an application?
Note that we exclude automated recovery here because any

inaccuracies introduced by tool support could be misleading.
Figure 1 illustrates the various domains that are involved:

The Reference Model (REF) represents all the knowledge about
a specific domain and acts as oracle and upper limit for the
domain knowledge that can be recovered from any application
in that domain. The Recovered Model (REC) is the domain
knowledge obtained by inspecting the source code of the
application. The Observed Model (OBS) represents the part
of the reference domain that an application covers, i.e. all the
knowledge about a specific application in the domain that a
user may obtain by observing its external behavior and its
documentation but not its internal structure.

In Section II we describe our research method, explaining
how we will analyze, amongst others, the relations between
OBS/REF, REC/REF and OBS/REC in order to answer Q1 and Q2.
The results of each step are described in detail in Sections III
to VIII. Related work is discussed in Section IX and Section X
(Conclusions) completes the paper.

II. RESEARCH METHOD

In order to investigate the limits of domain model recovery
we study manually extracted domain models. The following
questions guide this investigation:

A) Which domain is suitable for this study?
B) What is the upper limit of domain knowledge, or what

is our reference model (REF)
C) How to select two representative applications?
D) How do we recover domain knowledge that can be

observed by the user of the application (Q1 & OBS)?
E) How do we recover domain knowledge from the source

code (Q2 & REC)?
F) How do we compare models that use different vocabu-

laries (terms) for the same concepts? (Q1, Q2)?
G) How do we compare the various domain models to

measure the success of domain model recovery? (Q1,Q2)?
In Figure 1 we already illustrated the relations between the

Observed (OBS) and Recovered Model (REC). Figure 2 describes

Reference Model (REF)

Observed Model (OBS)

Recovered Model (REC)

Application
non-domain

User Model
(USR)

non-domain

Source Model
(SRC)

Fig. 2. Actual picture of domain model recovery for one application.

how OBS and REC relate to an application during actual domain
model recovery. Of particular interest are the size and relative
positions of the Observed Model and the Recovered Model.
Ideally, both domain models should completely overlap, but
there could be entities in OBS not present in REC. The largest
difference between Figures 1 and 2 are the entities in REC
that are not in OBS, these entities could be a failure in our
construction of the Observed Model (OBS) or they could be
concepts not exposed in any interface.

We will now answer the above questions in turn. Although
we are exploring manual domain model recovery, we want to
make this manual process as traceable as possible since this
enables independent review of our results. Where possible we
automate the analysis (calculation of metrics, precision and
recall), and further processing (visualization, table generation)
of manually extracted information. Both data and automation
scripts are available online.3

A. Selecting a target domain

We have selected the domain of project planning for this study
since it is a well-known, well-described, domain of manage-
able size for which many open source software applications
exist. We use the Project Management Body of Knowledge
(PMBOK) [12] published by Project Management Institute (PMI)
for standard terminology in the project management domain.
Note that as such the PMBOK covers a lot more than just project
planning.

B. Obtaining the Reference Model (REF)

Validating the results of a reverse engineering process is difficult
and requires an oracle, i.e., an actionable domain model suitable
for comparison and measurement. We have transformed the
descriptive knowledge in PMBOK into such a reference model
using the following, traceable, process:

1) Read the PMBOK book.
2) Extract project planning facts.
3) Assign a number to each fact and store its source page.
4) Construct a domain model, where each entity, attribute,

and relation are linked to one or more of the facts.
5) Assess the resulting model and repeat the previous steps

when necessary.
The resulting domain model will act as our Reference Model.
and Section III gives the details.

3See http://www.cwi.nl/~landman/icsm2013/.

http://www.cwi.nl/~landman/icsm2013/


C. Application selection

In order to avoid bias towards a single application, we need
at least two project planning applications to extract domain
models from. Section IV describes the selection criteria and
the selected applications.

D. Observing the application

A user can observe an application in several ways, ranging from
its UI, command-line interface, configuration files, documenta-
tion, scripting facilities and other functionality or information
exposed to the user of the application. In this study we use the
UI and documentation as proxies for what the user can observe.
We have followed these steps to obtain the User Model (USR)
of the application:

1) Read the documentation.
2) Determine use cases.
3) Run the application.
4) Traverse the UI depth-first for all the use cases.
5) Collect information about the model exposed in the UI.
6) Construct a domain model, where each entity and relation

are linked to a UI element of the application.
7) Assess the resulting model and repeat the previous steps

when necessary.
We report about the outcome in Section V.

E. Inspecting the source code

We have designed the following traceable process to extract a
domain model from each application’s source code, the Source
Model (SRC):

1) Read the source code.
2) Collect source locations (file name and line number)

related to the application’s model.
3) Construct a model, where each entity, attribute, and

relation is linked to a source location in the application’s
source code.

4) Assess the model and repeat the previous steps when
necessary.

The results appear in Section VI.

F. Mapping models

After performing the above steps we have obtained five domain
models for the same domain, derived from different sources:
• The Reference Model (REF) derived from PMBOK.
• For each of the two applications:

– User Model (USR).
– Source Model (SRC).

While all these model are in the project planning domain,
they all use different vocabularies. Therefore, we have to
manually map the models to the same vocabulary. Mapping the
USR and SRC models onto the REF model, gives the Observed
(OBS) and Recovered Model (REC).

The final mapping we have to make, is between the SRC and
USR models. We want to understand how much of the User
Model (USR) is present in the Source Model (SRC). Therefore,

we also map the SRC onto the USR model, giving the Intra-
Application Model (INT). The results of all these mappings are
given in Section VII.

G. Comparing models

To be able to answer Q1 and Q2, we will compare selected
pairs of the 11 produced models. Following other research
in the field of concept assignment, we use the most common
information retrieval (IR) approach, recall and precision, for
measuring quality of the recovered data. Recall measures how
much of the expected model is present in the found model,
and precision measures how much of the found model is part
of the expected model.

To answer Q1, the recall between REF and USR explains how
much of the domain is covered by the application. Note that
the result is subjective with respect to the size of REF: a bigger
domain may require looking at more different applications
that play a role in it. By answering Q2 first, analyzing the
recall between USR and SRC, we will find out whether source
code could provide the same recall as REF and USR. The
relation between REF and SRC will confirm this conclusion.
Our hypothesis is that since the selected applications are small,
we can only recover a small part of the domain knowledge,
i.e. a low recall.

The precision of the above mappings is an indication
of the quality of the result in terms of how much extra
(unnecessary) details we accidentally would recover. This is
important for answering Q2. If the recovered information would
be overshadowed by junk information, the recovery would
have failed to produce the domain knowledge as well. We
hypothesize that due to the high-level object-oriented designs
of the applications we will get a high precision.

Some more validating comparisons, their detailed motivation
and the results of all model comparisons are described in
Section VIII.

III. PROJECT PLANNING REFERENCE MODEL

Since there is no known domain model or ontology for project
planning that we are aware of, we need to construct one
ourselves. The aforementioned PMBOK [12] is our point of
departure. PMBOK avoids project management style specific
terminology, making it well-suited for our information needs.

A. Gathering facts

We have analyzed the whole PMBOK book. This analysis has
been focused on the concept of a project and everything related
to project planning therefore we exclude other concepts and
processes in the project management domain.

After analyzing 467 pages we have extracted 151 distinct
facts related to project planning. A fact is either an explicitly
defined concept, an implicitly defined concept based on a
summarized paragraph, or a relations between concepts. These
facts were located on 67 different pages. This illustrates that
project planning is a subdomain and that project management
as a whole covers many topics that fall outside the scope of
the current paper. Each fact was assigned a unique number



TABLE I
NUMBER OF ENTITIES AND RELATIONS IN THE CREATED MODELS, AND THE

AMOUNT OF LOCATIONS IN THE PMBOK BOOK, SOURCE CODE, OR UI
SCREENS USED TO CONSTRUCT THE MODEL.

Source Model # entities # relations unique
observa-
tionsassociations specializations total

PMBOK REF 74 75 32 107 83

Endeavour USR 23 30 8 38 19
SRC 26 51 8 59 80

OpenPM USR 22 24 3 27 13
SRC 28 44 6 50 68

and the source page number where it was found in PMBOK.
Two example facts are: “A milestone is a significant point or
event in the project.”(id:108, page: 136) and “A milestone may be
mandatory or optional.” (id:109, page: 136).

B. Creating the Reference Model REF

In order to turn these extracted facts into a model for project
planning, we have translated the facts to entities, attributes
of entities, and relations between entities. The two example
facts (108 and 109), are translated into a relation between the
classes Project and Milestone, and the mandatory attribute for
the Milestone class. The meta-model of our domain model
is a class diagram. We use a textual representation in the
meta-programming language Rascal [13] which is also used to
perform calculations on these models (precision, recall).

Table I characterizes the size of the project planning reference
domain model REF by number of entities, relations and
attributes; it contains of 74 entities and 107 relations. There
is also a set of 49 attributes, but this is incomplete is due to
the lack of details in PMBOK. Therefore, we did not use the
attributes of the reference model to calculate similarity.

The model is too large to include in this paper, however for
demonstration purposes, a small subset of the model is shown
in Figure 3.

Not all the facts extracted from PMBOK are used in the
Reference Model. Some facts carry only explanations. For
example “costs are the monetary resources needed to complete
the project”. Some facts explain dynamic relations that are not
relevant for an entity/relationship model. These two categories
explain 55 of the 68 unused facts. The remaining 13 facts were
not clear enough to be used or categorized. In total 83 of the
151 observed facts are represented in the Reference Model.

C. Discussion

We have created a Reference Model that can be used as
oracle for domain model recovery and other related reverse
engineering tasks in the project planning domain. The model
was created by hand by the second author, and care was taken
to make the whole process traceable. We believe this model
can be used for other purposes in this domain as well, such as
application comparison and checking feature completeness.

Threats to validity: We use PMBOK as main source of
information for project planning. There are different approaches
to project planning and a potential threat is that some are not

Human Resource Plan

+project roles
+responsibilities
+required skills
+reporting relationships
+staffing management plan
+authority
+training needs

Resource calendar

plans

Life cycle

Phase

+focus

composed of

Deliverable

Composite resource calendar

available

Supplies

Resource

Equipment MaterialPeople

Objective

Change Control Board

Approver

Project management

Process

+input
+tools
+technique

related to

Result

achieves

Activity duration

+is estimation
+duration

Scope

Project

+name
+number
+begin
+end

describes

Product

describes

Constrain

Budget Schedule

Schedule data

consists of

Project schedule

consists of Schedule baseline

consists of

Risk

+characteristics
+probability
+impact

affects

affects

Quality

Organisation

Stakeholder

+identity
+needs
+concerns
+expectations

Person

Activity

+identifier
+scope of work description
+name
+lag time
+lead time

produce

takes

Milestone

+mandatory
+lag time
+lead time

previousnext

Team Member

assigned to

Work Breakdown Structure

consists of

Activity Attribute

+name
+value

described by

Activity sequence

+mandatory

depends onrequires

Action

previousfollowing

StartStart

Activity Dependency

FinishFinishFinishStart StartFinish

Activity template

Defect

Requirement

+version

mismatches

related to

Environment

influences

OrganizingPreparing Main Closing

Defect repair

repairs

Change request

+state

Corrective actionPreventive action

alternatives

Activity resource

+is estimation
+quantity

requires

Information

based on

based on

previous version

Documentation

includes

based on

based on

schedules schedules

Portfolio

contains

Planned work

Resource calendar availability

+when
+how long
+type
+capabilities

follows

has

hassubdivided in

has

Project plan

+version

follows

has balances

creates

Work Breakdown Structure Component

decomposed in

Project schedule network diagram

contains dependents on

objective priorityneeds

previous

Communications plan

+strategy

previous

available

Activity list

lists

Work Package

consists ofplans

Service

competes withrelated to

completes

previousfollowing

External Internal

Schedule Dates

+begin
+end

creates accomplishes

consists out of

sequence

influences

approved by rejected by

influences

Risk management plan

influences

manages

based on

Composite resource calendar availability

+capabilities
+skills

sequence

needs

requires

available

schedules schedules

available

Fig. 3. Fragment of reference model REF visualized as UML class diagram.

covered in this book. Since PMBOK is an industry standard
(ANSI and IEEE), we consider this to be a low-risk threat and
have not mitigated it.

Another threat is that model recovery by another person
could lead to a different model. The traceable extraction of the
reference model makes it possible to understand the decisions
on which the differences are based. Due to the availability of
our analysis scripts, the impact of differences can be easily
computed.

IV. APPLICATION SELECTION

We are interested in finding “ideal” project planning systems to
manually read and extract domain models from. The following
requirements have guided our search:
• Source code is available: to enable analysis at all.
• No more than 30 KSLOC: to keep manual analysis feasible.
• Uses an explicit data model, for example Model View

Controller (MVC), or an Object-relational mapping (ORM):
to ensure that domain elements can be identified in the
source code.

We have made a shortlist of 10 open source project
planning systems4. The list contains applications implemented
in different languages (Java, Ruby, and C++) and sizes ranging
from 18 KSLOC to 473 KSLOC.

From this Endeavour and OpenPM satisfy the aforemen-
tioned requirements. Endeavour is a Java application that uses a
custom MVC design with ThinWire as front-end framework, and
Hibernate as ORM. OpenPM uses Java servlets in combination
with custom JavaScript. It also uses Hibernate as ORM. Table II
and III describe the structure and size of the two applications5.
Note that OpenPM’s view package contained MVC controller
logic, and the servlets the MVC views.

Both systems aim at supporting the process of planning
by storing the process state but they hardly support process
enforcement, except recording dependence between activities.

V. OBTAINING THE USER MODEL

We have used the UI and documentation of the applications
to construct the User Model (USR). Use cases were extracted

4 ChilliProject, Endeavour, GanttProject, LibrePlan, OpenPM, OpenProj,
PLANdora, project.net, taskjuggler, Xplanner+.

5Number of files and SLOC are calculated using the cloc tool [14].



TABLE II
ENDEAVOUR: STRUCTURE AND SIZE.

Package # files SLOC description

model 29 4474 MVC model.
view 108 10480 MVC view (UI).
controller 49 3404 MVC controller.
Total 186 18358

TABLE III
OPENPM: STRUCTURE AND SIZE.

Package # files SLOC description

model 29 5591 MVC model.
view 21 1546 MVC controller.
servlets 33 3482 MVC view (UI).
test 75 7137 UI & integration tests.
Total 158 17756

from the documentation when possible.6 Following these use
cases, a depth-first exploration of the UI is performed. For
every entity and relation we have recorded in which UI screen
we first observed it. Table I describes the User Models for both
Endeavour and OpenPM.

For example the Task entity in Endeavour’s USR Model
was based on the sub-window “Task Details“ of the “Home”
window.

A. Discussion

We have tried to understand the domain knowledge represented
by the applications by manually inspecting it from the user’s
perspective. Both applications used Ajax to provide an interac-
tive experience.

Endeavour uses the Single Page Application style, with a
windowing system similar to MS Windows R©. The UI is easy
to understand, and different concepts are consistently linked
across the application. OpenPM uses a more modern interface.
However, we experienced more confusion on how to use it.
It assumes a specific project management style (SCRUM), and
requires more manual work by the user.

We have observed that creating a User Model is simple.
For systems of our size, a single person can construct a User
Model in one day. This is considerably less than creating a
Source Model and suggests that the UI is an effective source
for recovering domain models.

Threats to validity: We use the User Model as a proxy for
the real domain knowledge exposed by the application. The
limit of this knowledge is hard to define, but we believe our
approach is an accurate approximation.

We can not be sure about our coverage of the User Model. It
could be possible there are other interfaces to the application we
are unaware of. Moreover, there could be conditions, triggers,
or business rules only observable in very specific scenarios.
Some of these issues will be observed in the various model
comparisons. We are not aware of other approaches to further
increase confidence in our coverage.

6Unfortunately, OpenPM does not provide documentation.

VI. OBTAINING MODELS FROM SOURCE CODE

A. Domain model recovery

We have chosen the Eclipse Integrated Development Environ-
ment (IDE) to read the source code of the selected applications.
Our goal was to maximize the amount of information we could
recover. Therefore, we have first read the source code and then
used Rascal to analyze relations in the source code. Rascal uses
Eclipse’s JDT to analyze Java code, and provides a visualization
library that can be used to quickly verify hypothesis formed
during the first read-through.

For the actual creation of the model, we have designed and
followed these rules:
• Read only the source code, not the database scheme/data.
• Do not run the application.
• Use the terms of the applications, do not translate them

to terms used in the Reference Model.
• Include the whole model as seen by the application, do

not filter out obvious implementation entities.
• Do read comments and string literals.
We have used the same meta-model as used for describing

the Reference Model. We replaced the fact’s identifiers with
source locations (filename and character range), which are a
native construct in Rascal. To support the process of collecting
facts from the source code we added a menu-item to the context-
menu of the Java editor to write the cursor’s source location
to the clipboard.

The domain model for each application was created in a
similar fashion as we did when creating the reference model.
All the elements in the domain model are based on one or
more specific observations in the source code.

For example the relation between Task and Dependency in
Endeavour’s SRC model is based on the List<Dependency>

dependencies field found on line 35.

B. Results

Table I shows the sizes of the extracted models for both
applications expressed in number of entities, relations and
attributes and the number of unique source code locations
where they were found.

1) Endeavour: In Endeavour 26 files contributed to the
domain model. 22 of those files were in the model package,
the other 4 were from the controller package. The controller
classes were single occurrences, 155 of the source locations
were from the model package.

2) OpenPM: In OpenPM 22 files contributed to the domain
model. These files were all located in the model package.

C. Discussion

We have performed domain model recovery on two open source
software applications for project planning.

Both applications use the same ORM system, but a different
version of the API. Endeavour also contains a separate view
model, which is used in the MVC user interface. However, it has
been implemented as a pass-through layer for the real model.



TABLE IV
CATEGORIES FOR SUCCESSFULLY MAPPED ENTITIES

Mapping name Description

Equal Name Entity has the same name as an entity in the
other model. Note that this is the only category
which can also be a failure when the same
name is used for semantically different entities

Synonym Entity is a direct synonym for an entity in the
other model, and is it not a homonym.

Extension Entity captures a wider concept than the same
entity in the other model.

Specialization Entity is a specific or concrete instance of the
same entity in the other model.

Implementation
specialization

Comparable to specialization but the special-
ization is related to an implementation choice.

TABLE V
CATEGORIES FOR UNSUCCESSFULLY MAPPED ENTITIES

Mapping name Description

Missing The domain entity is missing in the other model,
i.e. a false positive. This is the default mapping
failure when an entity cannot be mapped via
any of the other categories.

Implementation The entity is an implementation detail and is
not a real domain model entity.

Domain detail The entity is a detail of the sub domain.

Too detailed An entity is a domain entity but is too detailed
in comparison with the other model.

Threats to validity: A first threat (to internal validity) is that
manual analysis is always subject to bias from the performer.
We have mitigated this by maximizing the traceability of our
analysis: we have followed a fixed analysis process and have
performed multiple analysis passes over the source code.

A second threat (to external validity) is the limited size of
the analyzed applications, both contain less than 20 KSLOC
Java. Larger applications would make our conclusions more
interesting and general, but they would also make the manual
analysis less feasible.

VII. MAPPING MODELS

We now have five domain models of project planning: one
reference model (REF) to be used as oracle, and four domain
models (SRC, USR) obtained from the two selected project
planning applications. These models use different vocabulary,
we have to map them onto the same vocabulary to be able to
compare them.

A. Lightweight domain model mapping

We manually map the entities between different comparable
models. The question is how to decide whether to entities are
the same. Strict string equality is too limited and should be
relaxed to some extent.

Table IV and V show the mapping categories we have
identified for the (un)successful mapping of model entities.

TABLE VI
ENDEAVOUR: ENTITIES IN THE MAPPED MODELS, PER MAPPING CATEGORY

Category USR REF SRC REF SRC USR

Equal Name 7 7 7 7 21 21
Synonym 2 3 2 3 3 2
Extension 0 0 0 0 0 0
Specialization 5 3 5 3 0 0
Implementation
specialization 1 1 1 1 0 0

Total 15 14 15 14 24 23

Equal Name† 1 - 1 - 0 -
Missing 1 - 2 - 0 -
Implementation 1 - 2 - 2 -
Domain Detail 5 - 6 - 0 -
Too Detailed 0 - 0 - 0 -

Total 8 - 11 - 2 -
† A false positive, in Endeavour the term Document means something different then

the term Documentation in the Reference Model.

TABLE VII
OPENPM: ENTITIES IN MAPPED MODELS, PER MAPPING CATEGORY

Category USR REF SRC REF SRC USR

Equal Name 1 1 1 1 18 18
Synonym 3 3 4 4 4 4
Extension 1 1 1 1 0 0
Specialization 0 0 0 0 0 0
Implementation
specialization 1 1 1 1 0 0

Total 6 6 7 7 22 22

Missing 2 - 2 - 1 -
Implementation 12 - 17 - 5 -
Domain Detail 0 - 0 - 0 -
Too Detailed 2 - 2 - 0 -

Total 16 - 21 - 6 -

B. Mapping results

We have manually mapped all the entities in the User Model
(USR) and the Source Model (SRC) to the Reference Model
(REF), and SRC to USR. For each mapping we have explicitly
documented the reason for choosing this mapping. For example,
in Endeavour’s SRC model the entity Iteration is mapped to
Milestone in the Reference Model using specialization, with
documented reason: “Iterations split the project into chunks of
work, Milestones do the same but are not necessarily iterative.”

Table VI and VII contain the number of mapping categories
used for both applications, per mapping. For some mapping
categories, it is possible for one entity to map to multiple, or
multiple entities to one. For example the Task and WorkProduct
entities in Endeavour’s SRC model are mapped on the Activity
entity in the Reference Model. Therefore, we report the
numbers of the entities in both the models, the source and the
target.

The large number of identically named entities between
Endeavour and the reference model is due to the presence of
a similar structure of five entities, describing all the possible
activity dependencies.

An example of a failed mapping is the ObjectVersion entity in



TABLE VIII
ENTITIES FOUND IN THE VARIOUS DOMAIN MODELS.

Source Model Entities†

PMBOK REF Action, Activity, Activity Attribute, Activity Dependency, Activity
duration, Activity list, Activity resource, Activity sequence, Ac-
tivity template, Approver, Budget, Change Control Board, Change
request, Closing, Communications plan, Composite resource calen-
dar, Composite resource calendar availability, Constrain, Corrective
action, Defect, Defect repair, Deliverable, Documentation, Envi-
ronment, Equipment, External, FinishFinish, FinishStart, Human
Resource Plan, Information, Internal, Life cycle, Main, Material,
Milestone, Objective, Organisation, Organizing, People, Person,
Phase, Planned work, Portfolio, Preparing, Preventive action, Pro-
cess, Product, Project, Project management, Project plan, Project
schedule, Project schedule network diagram, Quality, Requirement,
Resource, Resource calendar, Resource calendar availability, Result,
Risk, Risk management plan, Schedule, Schedule Dates, Schedule
baseline, Schedule data, Scope, Service, Stakeholder, StartFinish,
StartStart, Supplies, Team Member, Work Breakdown Structure,
Work Breakdown Structure Component, Work Package

Endeavour USR Actor, Attachment, Change Request, Comment, Defect, Doc-
ument, Event, FinishFinish, FinishStart, Glossary, Iteration,
Project, ProjectMember/Stakeholder, Security Group, StartFinish,
StartStart, Task, Task Dependency, Test Case, Test Folder, Test
Plan, Use Case, X

Endeavour SRC Actor, Attachment, ChangeRequest, Comment, Defect, Depen-
dency, Document, Event, FinishFinish, FinishStart, Glossary-
Term, Iteration, Privilege, Project, ProjectMember, Security-
Group, StartFinish, StartStart, Task, TestCase, TestFolder, Test-
Plan, TestRun, UseCase, Version, WorkProduct

OpenPM USR Access Right, Attachment, Button, Comment, Create, Delete, Ef-
fort, Email Notification, FieldHistory, HistoryEvent, Iteration, La-
bel, Link, ObjectHistory, Product, Splitter, State, Tab, Task, Type,
Update, User

OpenPM SRC Access, Add, Attachment, Comment, Create, Delete, Effort, Email-
Subscription, EmailSubscriptionType, Event, FieldType, FieldVer-
sion, Label, Link, Milestone, ObjectType, ObjectVersion, Product,
Remove, Splitter, Sprint, Tab, Task, TaskButton, TaskState, Task-
Type, Update, User

† Bold entity in Reference Model is used in application models. Bold entity in
application model could be mapped to entity in Reference Model.

the Source Model of OpenPM. This entity is an implementation
detail. It is a variant of the Temporal Object pattern7 where
every change of an entity is stored to explicitly model the
history of all the objects in the application.

Table VIII contains all the entities per domain model, and
highlights the mapped entities.

C. Discussion

We have used a lightweight approach for mapping domain
models. Our mapping categories may be relevant for other
projects and can be further extended and evaluated.

At most half of the domain models recovered from the
applications could be mapped to the reference model. The
other half of the extracted models regarded details of the
domain or the implementation.

Threats to validity: A threat to external validity is that we
have used an informal approach to map the domain models
of the two applications to the reference model. The mapping
categories presented above, turned out to be sufficient for these
two applications, however we have no guarantees for other
application of these categories. The categories have evolved
during the process and each time a category was added or
modified all previous classifications have been reconsidered.

7See http://martinfowler.com/eaaDev/TemporalObject.html.

VIII. COMPARING THE MODELS

We now have five manually constructed and six derived domain
models for project planning:
• One reference model (REF) to be used as oracle.
• Four domain models (SRC, USR) obtained from each of

the two selected project planning applications.
• Six derived domain models (OBS, REC, INT) resulting from

the mapping of the previous four (SRC, USR).
How can we compare these models in a meaningful way?

A. Recall and Precision

The most common measures to compare the results of an IR
technique are recall and precision. Recall and precision are
calculated between two datasets: the expected dataset and the
retrieved one. Recall is a measure for how much of the expected
dataset is retrieved. Precision is a measure for how much of the
retrieved dataset was actually expected. Often it is not possible
to get the 100% in both, and we have to discuss which measure
is more important in the case of our model comparisons.

We have more than two datasets, and depending on the
combination of datasets, recall or precision is more important.
Table IX explains in detail how recall and precision will be
used and explains for the relevant model combinations which
measure is useful and what will be measured.

Given two models M1 and M2, we use the following notation.
The comparison of two models is denoted by M1 �M2 and
results in recall and precision for the two models. If needed,
M1 is first mapped to M2 as described in Tables VI and VII.

B. Results

Tables X and XI shows the results for, respectively, Endeavour
and OpenPM. Which measures are calculated is based on the
analysis in Table IX.

C. Relation Similarity

Since recall and precision for sets of entities provides no insight
into similarity of the relations between entities, we need an
additional measure. Our domain models contain entities and
their relations. Entities represent the concepts of the domain,
and relations their structure. If we consider the relations as a
set of edges, we can directly calculate recall and precision in
a similar fashion as described above.

We also considered some more fine grained metrics for
structural similarity. Our domain model is equivalent to a
subset of UML class diagrams and several approaches exist for
calculating the minimal difference between such diagrams [15],
[16]. Such “edit distance” methods give precise indications
of how big the difference is. Similarly we might use general
graph distance metrics [17]. We tried this latter method and
found that the results, however more sophisticated, were harder
to interpret. For example, USR and REF were 11% similar for
Endeavor. This seems to be in line with the recall numbers, 6%
for relations and 19% for entities, but the interesting precision
results (64% and 15%) are lost in this metric. So we decided
not to report these results and stay with the standard accuracy
analysis.

http://martinfowler.com/eaaDev/TemporalObject.html


TABLE IX
RECALL AND PRECISION EXPLAINED PER MODEL COMBINATION.

Retrieved Expected Recall Precision

USR REF Which part of the domain is covered by an application. This is
subjective to the size of REF.

How many of the concepts in USR are actually domain concepts,
e.g., how much implementation details are in the application?

SRC REF How much of REF can be recovered from SRC. If high then this
should confirm high recall for both USR � REF and SRC � USR.

How much of SRC are actually domain concepts, e.g., how much
implementation junk is accidentally recovered from source?

SRC USR How much of USR can be recovered by analyzing the source
code (SRC). This gives no measure of the amount of actual
domain concepts found.

How many details are in SRC, but not in USR? If USR were a
perfect representation of the application knowledge, this category
would only contain dead-code and unexposed domain knowledge.

TABLE X
ENDEAVOUR: RECALL AND PRECISION.

Comparison
Recall Precision

entities relations entities relations

USR � REF 19% 6% 64% 15%
SRC � REF 19% 6% 56% 13%
SRC � USR 100% 92% 92% 74%

TABLE XI
OPENPM: RECALL AND PRECISION.

Comparison
Recall Precision

entities relations entities relations

USR � REF 7% 3% 23% 16%
SRC � REF 9% 6% 25% 18%
SRC � USR 100% 80% 79% 44%

D. Discussion

1) Low precision and recall for relations: On the whole the
results for the precision and recall of the relation part of the
models are lower than the quality of the entity mappings. We
investigated this by taking a number of samples. The reason
is that the Reference model is more detailed, introducing
intermediate entities with associated relations. For every
intermediate entity, two or more relations are introduced which
can not be found in the recovered models.

These results indicate that the recall and precision metrics
for sets of relations underestimate the structural similarity of
the models.

2) Precision of OBS: USR � REF: We found the precision of
OBS to be 64% (Endeavour) and 23% (OpenPM), indicating
that both applications contain a significant amount of entities
that are unrelated to project planning as delimited by the
Reference Model. For Endeavour, out of the 8 unmappable
entities (see Table VI in section VII), only 2 were actual
implementation details. The other 6 are sub-domain details not
globally shared within the domain. If we recalculate to correct
for this, Endeavour’s Observed Model even has a precision of
91%. For OpenPM there are only 2 out of the 16 for which
this correction can be applied, leaving the precision at 36%.
For the best scenario, in this case represented by Endeavour,
90% of the User Model (USR) is part of the Reference Model
(REF).

3) Recall of OBS: USR � REF: The recall for the Observed
Model (OBS) is for Endeavour 19% and for OpenPM 7%.

TABLE XII
COMBINED: RECALL AND PRECISION.

Comparison
Recall Precision

entities relations entities relations

USR � REF 22% 7% 40% 14%
SRC � REF 23% 9% 36% 13%

Which means both applications cover less then 20% of the
project planning domain.

4) Precision of REC: SRC � REF: The precision of the
Recovered Model (REC) is for Endeavour 56% (corrected 88%),
and for OpenPM 25% (corrected 39%). This shows that for
the best scenario, represented again by Endeavour, the Source
Model only contains 12% implementation details.

5) Recall of REC: SRC � REF: The recall for the Observed
Model (REC) is for Endeavour 19% and for OpenPM 9%. The
higher recall for OpenPM, compared to OBS, for both entities
and relations is an example where the Source Model contained
more information then the User Model, which we will discuss
in the next paragraph.

6) Precision and recall for INT: SRC � USR : How much of
the User Model can be recovered by analyzing only the Source
Model? For both Endeavour and OpenPM, recall is 100%. This
means that every entity in the USR model was found in the
source code. Endeavour’s precision was 92% and OpenPM’s
79%. OpenPM contains an example where information in the
Source Model is not observable in the User Model: comments
in the source code explain the Milestones and their relation to
Iterations.

The 100% recall and high precision mean that these
applications were indeed amenable for reverse engineering
(as we hypothesized when selecting these applications). We
could extract most of the information from the source code.

For this comparison, even the relations score quite high. This
indicates that User Model and Source Model are structurally
similar. Manual inspection of the models confirms this.

7) Recall for Endeavour and OpenPM combined: Endeav-
our’s and OpenPM’s recall of USR�REF and SRC�REF measure
the coverage of the domain a re-engineer can achieve. How
much will the recall improve if we combine the recovered
models of the two systems?

We only have two small systems, however, Table XII contains
the recall and precision for Endeavour and OpenPM combined.
A small increase in recall, from 19% to 23%, indicates that



there is a possibility for increasing the recall by observing
more systems. However, as expected, at the cost of precision.

8) Interpretation: Since our models are relatively small,
our results cannot be statistically significant but are only
indicative. Therefore we should not report exact percentages,
but characterizing our recall and precision as high seems valid.
Further research based on more applications is needed to
confirm our results.

IX. RELATED WORK

There are many connections between ontologies and domain
models. The model mappings that we need are more specific
than the ones provided by general ontology mapping [18].

Abebe and Tonella [9] introduced a natural language parsing
(NLP) method for extracting an ontology from source code.
They came to the same conclusion as we do: this extracted
ontology contains a lot of implementation details. Therefore,
they introduced an IR filtering method [10] but it was not as
effective as the authors expected. Manual filtering of the IR
keyword database was shown to improve effectiveness. Their
work is in the same line as ours, but we have a larger reference
domain model, and we focus on finding the limits of domain
model recovery, not on an automatic approach. It would be
interesting to apply their IR filtering to our extracted models.

Ratiu et al. [11] proposed an approach for domain ontology
extraction. Using a set of translation rules they extract domain
knowledge from the API of a set of related software libraries.
Again, our focus is on finding the limits of model recovery,
not on automating the extraction.

Hsi et al. [19] introduced ontology excavation. Their
methodology consists of a manual depth-first modeling of
all UI interactions, and then manually creating an ontology,
filtering out non-domain concepts. They use five graph metrics
to identify interesting concepts and clusters in this domain
ontology. We are interested in finding the domain model
inside the user-interface model, Hsi et al. perform this filtering
manually, and then look at the remaining model. Automatic
feature extraction of user interfaces is described in [20].

Carey and Gannod [6] introduced a method for concept
identification. Classes are considered the lowest level of
information of an object-oriented system and Machine Learning
is used in combination with a set of class metrics. This
determines interesting classes, which should relate to domain
concepts. Our work is similar, but we focus on all the
information in the source code, and are interested in the
maximum that can be recovered from the source. It could
be interesting to use our reference model to measure how
accurately their approach removes implementation concerns.

UML class diagram recovery [21], [22] is also related to
our work but has a different focus. Research focuses on the
precision of the recovered class diagrams, for example the
difference between a composition and aggregation relation. We
are interested in less precise UML class diagrams.

Work on recovering the concepts, or topics, of a software
system [4], [5] has a similar goal as ours. IR techniques are
used to analyze all the terms in the source code of a software

system, and find relations or clusters. Kuhn et al. [5] report
on the importance of identifier naming and the difficulty of
evaluating their results. Our work focuses less on structure
and grouping of concepts and we evaluate our results using a
constructed reference model.

Reverse engineering the relation between concepts or fea-
tures [8], [23], assumes that there is a set of known features
or concepts and tries to recover the relations between them.
These approaches are related to our work since the second
half of our problem is similar: after we have recovered domain
entities, we need to understand their relations.

DeBaud et al. [24] report on a domain model recovery
case study on a COBOL program. By manual inspection of the
source code, a developer reconstructed the data constructs of
the program. They also report that implementation details make
extraction difficult, and remark that systems often implement
multiple domains, and that the implementation language plays
an important role in the discovery of meaning in source code.

We do not further discuss other related work on knowledge
recovery that aims at extracting facts about architecture or
implementation. One general observation in all the cited
work is that it is hard to separate domain knowledge from
implementation knowledge.

X. CONCLUSIONS

We have explored the limits of domain model recovery via a
case study in the project planning domain. Here are our results
and conclusions.

A. Reference model

Starting with PMBOK as authoritative domain reference we have
manually constructed an actionable domain model for project
planning. This model is openly available and may be used for
other reverse engineering research projects.

B. Lightweight model mapping

Before we can understand the differences between models,
we have to make them comparable by mapping them to a
common model. We have created a manual mapping method
that determines for each entity if and how it maps onto the
target model. The mapping categories evolved while creating
the mappings. We have used this approach to describe six
useful mappings, four to the Reference Model and two to the
User Model.

C. What are the limits of domain model recovery?

We have formulated two research questions to get insight in the
limits of domain model recovery. Here are the answers we have
found (also see Table IX and remember our earlier comments
on the interpretation of the percentages given below).

Q1: Which parts of the domain are implemented by the
application? Using the user view (USR) as a representation of
the part of the domain that is implemented by an application,
we have created two domain models for each of the two selected
applications. These domain models represent the domain as
exposed by the application. Using our Reference Model (REF)



we were able to determine which part of USR was related to
project planning. For our two cases 80% and 90% of the User
Model (USR) can be mapped to the Observed Model (OBS).
This means only 20% and 10% of the UI is about topics not
related to the domain. From the user perspective we could
determine that the applications implement 19% and 7% of the
domain.

The tight relation between the USR and the SRC model (100%
recall) shows us that this information is indeed explicit and
recoverable from the source code. Interestingly, some domain
concepts were found in the source code that were hidden by
the UI and the documentation, since for OpenPM the recall
between USR and REF was 7% where it was 9% between SRC
and REF.

So, the answer for Q1 is: the recovered models from source
code are trustworthy, and only a small part of the domain is
implemented by these tools (they implement only 10-20% of
the domain).

Q2: Can we recover those implemented parts from the source
of the application? Yes, see the answer to Q1. The high recall
between USR and SRC shows that the source code of these two
applications explicitly models parts of the domain. The high
precisions (92% and 79%) also show that it was feasible to
filter implementation junk manually from these applications
from the domain model.

D. Perspective
For this research we manually recovered domain models
from source code to understand how much valuable domain
knowledge is present in source code. We have identified several
follow-up questions:
• How does the quality of extracted models grow with the

size and number of applications studied? (Table XII)
• How can differences and commonalities between appli-

cations in the same domain be mined to understand the
domain better? Here we may explore the results of the
variability engineering community.

• How does the quality of extracted models differ between
different domains, different architecture/designs, different
domain engineers?

• How can the extraction of a User Model help domain
model recovery in general. Although we have not formally
measured the effort for model extraction, we have noticed
that extracting a User Model requires much less effort
than extracting a Source Model.

• How do our manually extracted models compare with
automatically inferred models?

• What tool support is possible for (semi-)automatic model
extraction?

• How can domain models guide the design of a DSL?
Our results of manually extracting domain models are en-
couraging. They suggest that when re-engineering a family of
object-oriented applications to a DSL their source code is a
valuable and trustworthy source of domain knowledge, even if
they only implement a small part of the domain.

REFERENCES

[1] M. Mernik, J. Heering, and A. Sloane, “When and how to develop
domain-specific languages.” ACM Comput. Surv., no. 37, pp. 316–344,
2005.

[2] T. Biggerstaff, “Design recovery for maintenance and reuse,” Computer,
vol. 22, no. 7, pp. 36–49, Jul. 1989.

[3] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept assign-
ment problem in program understanding,” in Proc. 15th international
conference on Software Engineering, ser. ICSE ’93. IEEE Computer
Society Press, May 1993, pp. 482–498.

[4] E. Linstead, P. Rigor, S. K. Bajracharya, C. V. Lopes, and P. Baldi,
“Mining concepts from code with probabilistic topic models,” in 22nd
IEEE/ACM International Conference on Automated Software Engineering,
2007, pp. 461–464.

[5] A. Kuhn, S. Ducasse, and T. Gîrba, “Semantic clustering: Identifying
topics in source code,” Information & Software Technology, vol. 49,
no. 3, pp. 230–243, 2007.

[6] M. M. Carey and G. C. Gannod, “Recovering Concepts from Source
Code with Automated Concept Identification,” in 15th International
Conference on Program Comprehension, 2007, pp. 27–36.

[7] V. Rajlich and N. Wilde, “The Role of Concepts in Program Compre-
hension,” in 10th International Workshop on Program Comprehension,
2002, pp. 271–280.

[8] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source
code,” IEEE Trans. Software Eng., vol. 29, no. 3, pp. 210–224, 2003.

[9] S. L. Abebe and P. Tonella, “Natural language parsing of program element
names for concept extraction,” in 18th IEEE International Conference
on Program Comprehension, 2010, pp. 156–159.

[10] ——, “Towards the Extraction of Domain Concepts from the Identifiers,”
in 18th Working Conference on Reverse Engineering, 2011, pp. 77–86.

[11] D. Ratiu, M. Feilkas, and J. Jürgens, “Extracting domain ontologies
from domain specific APIs,” in 12th European Conference on Software
Maintenance and Reengineering, vol. 1, 2008, pp. 203–212.

[12] P. M. Institute, Ed., A Guide to the Project Management Body of
Knowledge, 4th ed. Project Management Institute, 2008.

[13] P. Klint, T. van der Storm, and J. J. Vinju, “RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation,” in Proc. 9th
IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, September 2009, pp. 168–177.

[14] “Count Lines of Code Tool,” http://cloc.sourceforge.net.
[15] U. Kelter, J. Wehren, and J. Niere, “A Generic Difference Algorithm for

UML Models,” in Software Engineering 2005, ser. LNI, P. Liggesmeyer,
K. Pohl, and M. Goedicke, Eds., vol. 64, 2005, pp. 105–116.

[16] D. Ohst, M. Welle, and U. Kelter, “Differences between versions of UML
diagrams,” SIGSOFT Softw. Eng. Notes, vol. 28, no. 5, pp. 227–236, Sep.
2003. [Online]. Available: http://doi.acm.org/10.1145/949952.940102

[17] H. Bunke and K. Shearer, “A graph distance metric based on the maximal
common subgraph,” Pattern Recognition Letters, vol. 19, no. 3-4, pp.
255–259, 1998.

[18] N. Choi, I.-Y. Song, and H. Han, “A survey on ontology mapping,”
SIGMOD Rec., vol. 35, no. 3, pp. 34–41, Sep. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1168092.1168097

[19] I. Hsi, C. Potts, and M. M. Moore, “Ontological Excavation: Unearthing
the core concepts of the application,” in 10th Working Conference on
Reverse Engineering, 2003, pp. 345–352.

[20] M. Bacíková and J. Porubän, “Analyzing stereotypes of creating graphical
user interfaces,” Central Europ. J. Computer Science, vol. 2, no. 3, pp.
300–315, 2012.

[21] K. Wang and W. Shen, “Improving the Accuracy of UML Class
Model Recovery,” in 31st Annual International Computer Software and
Applications Conference (COMPSAC 2007), 2007, pp. 387–390.

[22] A. Sutton and J. I. Maletic, “Mappings for Accurately Reverse Engi-
neering UML Class Models from C++,” in 12th Working Conference on
Reverse Engineering, 2005, pp. 175–184.

[23] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Reverse
engineering feature models,” in Proc. 33rd International Conference on
Software Engineering, 2011, pp. 461–470.

[24] J.-M. DeBaud, B. Moopen, and S. Rugaber, “Domain Analysis and
Reverse Engineering,” in Proc. the International Conference on Software
Maintenance, 1994, pp. 326–335.

http://cloc.sourceforge.net
http://doi.acm.org/10.1145/949952.940102
http://doi.acm.org/10.1145/1168092.1168097

	Introduction
	Positioning domain model recovery
	Research questions

	Research method
	Selecting a target domain
	Obtaining the Reference Model (REF)
	Application selection
	Observing the application
	Inspecting the source code
	Mapping models
	Comparing models

	Project Planning Reference Model
	Gathering facts
	Creating the Reference Model REF
	Discussion

	Application selection
	Obtaining the User Model
	Discussion

	Obtaining models from source code
	Domain model recovery
	Results
	Endeavour
	OpenPM

	Discussion

	Mapping models
	Lightweight domain model mapping
	Mapping results
	Discussion

	Comparing the models
	Recall and Precision
	Results
	Relation Similarity
	Discussion
	Low precision and recall for relations
	Precision of OBS: USRREF
	Recall of OBS: USRREF
	Precision of REC: SRCREF
	Recall of REC: SRCREF
	Precision and recall for INT: SRCUSR 
	Recall for Endeavour and OpenPM combined
	Interpretation


	Related work
	Conclusions
	Reference model
	Lightweight model mapping
	What are the limits of domain model recovery?
	Perspective

	References

