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Abstract. In grammar-based testing, context-free grammars may be
used to generate relevant test inputs for language processors, or meta
programs, such as programming language compilers, refactoring tools,
and implementations of software quality metrics. This technique can be
used to test these meta programs, but the amount of sentences, and
syntax trees thereof, which needs to be generated to obtain reasonable
coverage of the input language is exponential.
Pattern matching is a programming language feature used often when
writing meta programs. Pattern matching helps because it automates the
frequently occurring task of detecting shapes in, and extracting informa-
tion from syntax trees. However, meta programs which contain many
patterns are difficult to test using only randomly generated sentences
from grammar rules. The reason is that statistically it is uncommon to
directly generate sentences which accidentally match the patterns in the
code.
To solve this problem, in this paper we extract information from the
patterns in the code of meta programs to guide the sentence generation
process. We introduce a new coverage criterion, called Pattern Coverage,
which focuses on providing a test strategy to reduce the amount of test
necessary cases, while covering the relevant parts of the meta program.
An initial experimental evaluation is presented and the result is compared
with traditional grammar-based testing.

Keywords: Software test, meta program, pattern matching, grammar-
based testing.

1 Introduction

Meta programs are tools which read sentences of software languages, such as
programming languages, and produce any kind of output [9]. Examples of meta
programs are compilers, interpreters, refactoring tools, static analysis tools, and
source code metrics tools. The amount and diversity of such tools are growing as
processing power and large memory become available to the machines on which
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software is being developed, but verifying such tools is quite a challenge. Even
simple metric tools are known to contain many bugs [24].

Meta programs for real programming languages are complex and hard to
prove or test because the languages are big (more than 400 context-free grammar
rules is quite normal) and their semantics is often unclear. Apart from some
notable exceptions [23], proofs of correctness of meta programs are not to be
expected. Therefore we wish to quickly find common errors in meta programs
by exercising their code based on test generation.

Grammar-based testing is a preferred approach for testing meta programs [5,
20]. The input syntax of most meta programs can be modeled precisely using
context-free grammars (CFG). From such CFG specifications we can define sets
of input sentences which satisfy different coverage criteria of the input language.
However, the amount of sentences necessary to cover an entire language is in-
tractable. For Java, for example, if we consider only sentences generated by
derivation tree up to height 7 the amount of sentences that can be generated is
around 46.26 × 109. If we increase this value to 10, the amount goes to around
9.43 × 1043. But, even if we can run a Java processor on such corpus of inputs
in reasonable time, chances are the corpus will still not lead to good coverage
of the code of the processor itself as some constructs will only appear deeper in
the grammar.

The reason for the bad coverage is that a context-free grammar describes
all possible inputs for a meta program, but it does not specify precisely which
part of the language is used by the given meta program or how different parts
of the language are distributed over the meta program. A random distribution
over an input grammar will therefore typically not generate an effective test
set for a given meta program. The grammars of real programming languages
have hundreds of (recursive) rules, generating a super-exponential amount of
syntactically correct inputs. Due to the size of such grammars, statistically it is
hard to generate exactly the right combination to cover a meta program with
a limited (feasible) set of test cases. To further aggravate this problem, some
important semantic information, which is dealt with in the meta program, is
often missing from context-free grammar descriptions.

Pattern matching is an interesting feature which is often used during the
development of meta programs. With it, it is simpler to describe specific sit-
uations over the input language, simplifying the implementation of this kind
of programs. Many meta programming languages (specialized languages for the
development of meta programs) and libraries are based on expressive forms of
pattern matching (Haskell [15], Scala [28], TOM [3], ASF+SDF [6], Maude [8],
StrategoXT [7], ELAN [4] and Rascal [18,19]).

The challenge we address is: given a grammar which describes syntactically
correct inputs, to generate a minimal amount of inputs which will cover the meta
program. Our contribution is the notion of pattern coverage which links grammar
coverage to conditional coverage in meta programs which use pattern matching.
We propose the use of patterns as reference for the definition of test data and
a pattern-based coverage criterion which defines a set of test data requirements
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from a set of language patterns. These patterns may be extracted from different
sources: from language or meta program specifications, from the patterns used in
the code of the meta program, or even from a non pattern-based meta program
from which some mining of patterns has been carried out.

The main contributions of this paper are then:

– the definition of the Pattern Coverage criterion;
– an initial algorithm for generating sentences for Pattern Coverage;
– an empirical evaluation of the relation between Pattern Coverage and exist-

ing notions of grammar coverage.

We conduced the evaluation using two meta programs that implement the Cy-
clomatic Complexity algorithm [25] for Java and Pico [12] languages. To evaluate
and compare the pattern coverage criterion we used the mutation technique [11]
to evaluate the generated test sets. As result of pattern coverage use we could
observe a reduction on the test set size and the preservation of the quality level
for the pattern coverage test set.

The remainder of this article is organized as follows. Section 2 presents the
basic theoretical foundation used to the work presentation. Section 3 define the
pattern coverage criterion and present the test data generation algorithm. The
Section 4 present the evaluation process and the results obtained during the
process. Related work is discussed in Section 5, followed by concluding remarks
in Section 6.

2 Background

In this section we briefly introduce and discuss the theoretical background on
which this paper is based. First, in Section 2.1, some grammar-based testing
concepts are introduced and discussed. Then, we define pattern matching, the
mechanism used to simplify the structure of meta programs and that our pro-
posal uses to make meta program testing more efficient.

2.1 Grammar-based Testing

There are many different criteria for software testing in the literature. They
may be classified in different (often orthogonal) ways, depending on: the stage
of the software development in which they are to be applied (e.g., unit, system
or regression testing), the reference artifact used for test design (e.g., white and
black box testing), the kind of abstraction used to extract requirements from
the reference artifact (e.g., graphs, logical expressions or grammars).

As pointed out in [1], the most important classification when it comes to
define or chose a criterion is the used abstraction. As our focus here are meta
programs, and the classical way of dealing with criteria-based test design for
meta programs is through grammar-based coverage criteria, where tests are de-
rived from grammar descriptions of the software or of some software artifact. As
these criteria are defined in terms of grammar components, in the following, we
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present the definition of the most commonly used type of grammar (Context-Free
Grammar (CFG)) where those components are introduced.

Definition 1 (Context-Free Grammar). A Context-Free Grammar G is a
4-tuple (N,S, T, P ) such that:

1. N is a finite set of nonterminals;
2. T is a finite set of terminals;
3. P is a finite subset of N × (T ∪N)∗ called production rules
4. S ∈ N is a start symbol.

Every grammar G defines a language (set of sentences), which is noted L(G).
The sentences of the language are the sequences of terminals of G which can be
derived from the initial symbol S by sequences of production rule applications
(derivations)6.

The grammar-based test design process starts with the application of the
chosen criterion to the grammar to define a set of test requirements. These test
requirements specify properties that need to be satisfied by the set of test cases
(test set), and a test requirement is said to be satisfied if at least one of the test
cases of the test set satisfies the specified property.

The typical grammar-based test criteria are defined in terms of terminals,
production rules or language sentences or derivations.

Definition 2 (Grammar-based Coverage Criteria). For a grammar G =
(N,S, T, P ),

– Terminal Coverage (TSC): for each terminal symbol t ∈ T there exists exactly
one test requirement: t occurs in the sentence, or, simply, t. So, TSC = {t ∈
T} is the set of test requirements to cover this criterion;

– Production Coverage (PDC): for each production rule ρ ∈ P there exists
exactly one test requirement: ρ is used in the derivation of the sentence, or,
simply, ρ. So, PDC = {ρ ∈ P} is the set of test requirements to cover this
criterion;

– Derivation Coverage (DC): for a grammar G, each derivation represented by
s ∈ L(G) one test requirement. So, the set DC = {s ∈ L(G)} represents all
test requirements to cover this criterion.

While Terminal Coverage and Production Coverage usually require a small
amount of test cases (test sentences) to be attained, Derivation Coverage is
obviously impossible to achieve in most cases. A variant is often used [21, 27],
then, which is to limit the length of the considered strings or derivations to some
fixed limit and define as requirements the subset of L(G) up to length n.

There are some tools that use those coverage criteria to generate test cases,
for example the YouGen [14], XTextGen [13] and LGen [27] tools. These tools

6 In the absence of grammar ambiguity, there is a one-to-one correspondence between
sentences and derivation. We assume here non ambiguous grammars to simplify
presentation.
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N. Instruction Description

1 int x := 3; Typed pattern, the x variable is
bound to value 3.

2 if (add(l, r) := add(var("x"), var("y")))
println(l + "," r);

Constructor pattern, the identifier
add is the constructor and the vari-
ables l and r are bound to val-
ues var("x") and var("b"), re-
spectively.

3 for (/str x := add(var("x"), var("y")))
println(x);

Deep matching pattern, the match-
ing can happen on any level of the
term.

Table 1. Example of some pattern-based instructions in Rascal.

basically receive a context-free grammar as input and some additional restric-
tions and generate a set of test cases (language sentences). These restrictions
are necessary to limit the size of the resulting set, since, in general, the language
associated to the input grammar is infinite.

2.2 Pattern Matching Mechanism

Pattern matching is a programming language feature. It is common to implement
meta programs using pattern matching because it facilitates the description of
interesting cases over the object language and dubs as a de-structuring variable
binding mechanism.

Formally, the pattern matching problem is, given two terms s and l, determine
if there is a substitution σ, such that σ(l) = s [2]. The substitution itself, if it
exists, represents the binding of variables which can be used by the program
after the match.

Table 1 depicts a number of pattern types as used in the Rascal language [18].
Each line shows a value on the right and a pattern on the left of the match :=

operator.
A most basic form of pattern, the congruence pattern, is an arbitrarily nested

expression using only constructors and open variables. On table item 2, a pattern
is used as a condition to the if statement. The congruence match succeeds
because the value builds and add term, which the pattern matches literally.
Then the children of the add term, var("x") and var("y") can be matched to the
unconditional variables l and r respectively. The l and r variables may now be
used in the program as normal variables, for example by printing them.

A more advanced pattern is the deep match on table item 3. It can be arbi-
trarily combined with any other match operator; in this case a typed variable.
The current pattern will recursively traverse the matched value and succeed if
a value of type str is found anywhere or fail otherwise. Such a pattern is non-
unitary in the sense that it could match a single value in many ways (twice in
this example). Using the for loop the programmer can iterate over all possible
bindings of x, namely "x" and "y".



6 Cleverton Hentz, Jurgen J. Vinju and Anamaria M. Moreira

Listing 1.1. Example of a pattern-based meta program written in Rascal [22].

1 int calcCC(Statement impl) {

2 int result = 1;

3 visit (impl) {

4 case \if(_,_) : result += 1;

5 case \if(_,_,_) : result += 1;

6 case \case(_) : result += 1;

7 case \do(_,_) : result += 1;

8 case \while(_,_) : result += 1;

9 case \for(_,_,_) : result += 1;

10 case \for(_,_,_,_) : result += 1;

11 case \foreach(_,_,_) : result += 1;

12 case \catch(_,_): result += 1;

13 case \conditional(_,_,_): result += 1;

14 case \infix(_,"&&",_) : result += 1;

15 case \infix(_,"||",_) : result += 1;

16 }

17 return result; }

3 Testing Meta Programs Using Pattern Coverage

Our proposal to deal with the original problem is to use the pattern information
related to a meta program and with it generate a test set that will be used in the
test process. This strategy may be applied on white-box testing, if the patterns
are derived from the program, or black-box testing, if they are extracted from
some more abstract model or specification of the meta program.

During this section, we will use a meta program (presented on Listing 1.1)
as example to illustrate the concepts introduced on the section. This example
is a typical implementation for the Cyclomatic Complexity (CC) [25] algorithm.
The implementation of CC is coded in Rascal and was used by Landman [22] to
calculate and analyze the correlation between the CC and source lines of code
on a large corpus of Java code. For the purpose of the current paper this code
is assumed to be correct. The visit statement generates a recursive traversal
and each case represents a pattern to detect in the traversed tree, and after the
colon (:) an action to perform when it matches (increasing a counter). Most
of the cases define simple patterns which identify a particular node type, but
two are more interesting, filtering only infix expressions with either && or || as
operators. The same code was used into our evaluation process and it will be
detailed on section 4.

Our first step to address the test of meta programs is to define a coverage
criterion that formalizes the requirements for a set of test cases. On Section 3.1
we introduce this criterion. After that, we introduce on Section 3.2 a proto-
type of algorithm to generate a test set that contains test cases to satisfy those
requirements.
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3.1 A Pattern-based Coverage Criterion

Our proposal is, given some pattern information corresponding to a meta pro-
gram, to generate test cases exercising these patterns, i.e., to generate sentences
that match them. To systematize this strategy, we define a new coverage crite-
rion:

Definition 3 (Pattern Coverage). For a pattern-based meta program m, and
Pm, the set with all instances of patterns of m, the test requirement set TR
contains each element of the pattern set Pm. Satisfaction of each of these re-
quirements is attained by any subject which matches the corresponding pattern.

To illustrate the pattern coverage definition, we can apply the definition
to the CC implementation on Listing 1.1. For the given code the pattern set
produced by collecting patterns is Pm = {Statement impl, \if(_,_), \if(_,_,_),
. . . , infix(_,"||",_) }. Since in Rascal functions are dispatched by patterns, the
formal parameter Statement impl is also considered a pattern, namely matching
only abstract syntax trees of type Statement. The set TR = Pm, and to cover TR
the test data must include the set of java statements that match the correspond-
ing patterns. For example, the pattern \if(_,_) would be covered by a program
including the statement “if (true) {}”, and an input which covers also the pat-
terns for the Boolean operators would be “if (true && false || true) { }”.

3.2 A Simple Algorithm to Generate Pattern Covering Test Sets

We propose an effective algorithm to generate test cases from grammars which
cover a selected set of patterns extracted from the meta program under test. In
this algorithm, we assume one constructor in a pattern corresponds to one labeled
production rule of a context-free grammar. This initial algorithm guarantees full
pattern coverage but not minimality of the set of test inputs. We shall see in the
evaluation that the expected amount of tests generated is already so small that
optimization in this direction is not necessarily an interesting avenue.

Given the set of pattern requirements corresponding to the meta program
under test, the algorithm takes the following steps, for each pattern instance on
the set:

1. Identify the open variables and their type (nonterminal);
2. Create a term for each identified variable for the given type using standard

grammar-based test input generation;
3. Substitute the variable by the generated term in the pattern;
4. From the start symbol of the input grammar generate a sentence in the

language including the previously generated term;
5. Add the result sentence to the test set.

On the first step, the algorithm identifies the open variables inside the term
and generate terms to bind with them (step 2). Next step is apply a substitution
of variable by the generated term (step 3). With this, we have a term that
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Listing 1.2. Example of a Java sentence produced by the generation algorithm.

1 public class id0 {

2 static {

3 if (true)

4 return ;

5 }

6 }

matches the original patterns, but it is only part of a full input program. So,
we generate a sentence using the input grammar (step 4). It is created from the
start symbol and needs to reach the same nonterminal associated with the partial
term that was generated on the last step. This step could be easily automated by
adapting the traditional grammar-based testing algorithms. Finally, the resulting
sentence is added to the test set (step 5).

To illustrate the algorithm execution, we use the implementation of CC on
Listing 1.1 as example. The test requirement \if(_,_) is a pattern of type con-
structor and it has two open variables named as _. According to step 1 in the
algorithm these two variable are detected and their nonterminal symbols are
identified. The next step is to create a subterm for each of them: the first is a
Java Boolean expression and the second a Java statement. For example these
terms could be true and return;. On step 3 the variables are substituted by these
terms and the result is a new subterm, in our example, if (true) return ;. The
last step to produce the test data is to generate a sentence from the grammar
start symbol including the previous subterm as an instance of its corresponding
nonterminal. The Listing 1.2 shows a possible resulting Java sentence generated
by this algorithm for the test requirement \if(_,_).

In this paper we propose the use of patterns as reference for the definition of
test data and a pattern-based coverage criterion which defines a set of test data
requirements from a set of language patterns. These patterns may be extracted
from different sources: from language or meta program specifications, from the
patterns used in the code of the meta program, or even from a non pattern-based
meta program from which some mining of patterns has been carried out.

The algorithm presented here was used in the evaluation process described
in Section 4.

4 Evaluation

To evaluate our claim of effectiveness, we compare our new method of generating
test inputs for meta programs to the state-of-art grammar-based testing methods
in this section. Our evaluation is scoped to Rascal meta programs, which we
assume to be representative for all meta programs which strongly depend on
pattern matching.

The evaluations questions are:
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Operator Code Description

OP0 Remove pattern rewrite.

OP1 Remove pattern with action.

OP2 Remove if conditionals. Simple if.

OP3 Remove if conditionals. Remove if code block.

OP4 Remove if conditionals. Remove else code block.

OP5 Remove while conditionals.

OP6 Remove for conditionals.
Table 2. Table of Rascal Mutation Operators.

RQ1 : How efficient and effective are standard grammar-based testing techniques
efficient for testing of Rascal meta programs?

RQ2 : Is pattern-based testing more efficient and more effective than grammar-based
testing for testing Rascal meta programs?

4.1 Evaluation Method

We use two variables to measure the efficiency and effectiveness of this criterion:
test set size for cover a given coverage criterion and mutation score, respectively.

The mutation score is a measure of effectiveness based on the concept of muta-
tion testing [1,11]. Mutation testing provides a repeatable process for measuring
the effectiveness of test cases and identifying disparities in (random) test sets.
It involves the use of original software under test to create a variation of it that
contains an artificial fault. Each fault inserted in original software produces a
mutant and the specific fault injected is called mutation operator. After the ap-
plication of a mutation operator the mutant is executed using the test set under
evaluation, if the test indeed fails for one of the generated test cases the mutant
is killed and the test set is good enough to detect that mutant operator. Oth-
erwise, if all all tests set run without any failure, the mutant is alive and the
random test case generation is deemed ineffective. For this last case there are
two possibilities: the test set is indeed not good enough to trigger the mutant or
the mutant is accidentally semantically equivalent to the original program. At
the end, the percent of mutants killed by the test set is called mutation score.

The mutation process used in the evaluation is implemented in Rascal for
Rascal. The set of mutation operators (Table 2) introduces bugs randomly, sim-
ulating programmers forgetting cases, making errors in patterns and making
errors in the code that is triggered after a pattern is matched. Rascal is a pattern-
oriented language, where patterns govern both data (binding) and control flow
(conditionals) dependency. Patterns occur in the conditions of all structured
control-flow statements and the parameters of functions (dynamic dispatch).
Common Rascal programming errors are forgetting to update a pattern when a
language has changed, accidentally overlapping patterns for which the code is
then never or always executed, and writing overly restrictive patterns acciden-
tally. The mutation operators are designed to highlight code which is executed
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conditionally under a pattern, in order to make observable whether and how
quickly the test set can trigger code which depends on (possibly buggy) pat-
terns.

To evaluate the efficiency, we measure the number of test cases necessary to kill
100% of the mutants.

The comparison process. To provide an answer to the second question, we then
run the same process using a test set that covers the pattern coverage criterion.
The result of this second experiment is then compared with to the previous ex-
periment. The comparison process is shown in Figure 1. The circles represent
the process and the rectangles represent data. The process starts with the gen-
eration of a set of test data based on the language’s context-free grammar using
the algorithm in Section 3.2. An initial test data set is used with the software
under test (Listing 1.1) to generate the expected results for this set of input.
Since we use mutation testing to evaluate the test set effectivity we may use the
not mutated version as the oracle. Given this generated test set and the gener-
ated oracle, the mutation process is started and each mutant is tested. This test
process logs the two metrics (mutation score and number of test cases).

Selected languages and program under test. We use Java and Pico as the object
languages for our experiment and a typical algorithm for computing the Cyclo-
matic Complexity (CC) [25] of a program for both languages (see Listing 1.1).
CC is a basic but non-trivial algorithm, so this evaluation should be seen as
an initial experiment and proof-of-concept. Lincke et al. [24] showed how even
relatively basic and often used software metric implementations are inconsistent
with each other, and thus broken, underlying the relevance of a feasible method
for testing them thoroughly.

Test Data
SUT

Execution
Test Set

Mutation
Process

Mutation
Score

Software
under Test

Evaluation Process

Fig. 1. An overview of evaluation process.

For the Java language, we used the Java Specification Language [17] and
the ANTLR Java Grammar 7 specification as references. Since Java is a big
language and therefore our initial demonstration and evaluation first focuses

7 https://github.com/antlr/examples-v3/blob/master/java/java/Java.g

https://github.com/antlr/examples-v3/blob/master/java/java/Java.g
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on a smaller language with a mini grammar: Pico [12]. The Pico language is a
small educational programming language with a Rascal implementation8. This
initial evaluation would also detect bugs in either our implementations or our
evaluation methods. After this we continue with our evaluation on the Java
language. Table 3 lists the sizes of the Pico and Java grammars we used.

Structure
Size

Pico Java

Production Rules 18 272

Terminals 23 98

Nonterminals 9 142
Table 3. Grammar statistics for Java and Pico used in the evaluation.

To generate production coverage test data we used the LGen tool [27]. For
both languages we generated the test data and after that ran the software under
test, the cyclomatic complexity algorithms, to create the expected result and
produce the complete test set.

4.2 Results for Pico Cyclomatic Complexity

For the Pico language the results obtained by the evaluation method is presented
in Table 4. Using the production coverage test set we reach 100% of mutation
score. It means that all mutations generated by mutation process have been
killed by the test set. The pattern coverage test set we also killed all mutants,
but in this case with a lower number of test cases. This results provides an initial
evaluation about the pattern coverage’s efficiency but without enough confidence
on it because its small scale and low complexity of the Pico language.

Coverage Criterion Test Set Size Mutation Score

Production Coverage 10 100%

Pattern Coverage 2 100%
Table 4. Results obtained by the evaluation using the Pico language.

4.3 Results for Java Cyclomatic Complexity

The results obtained from Java case are shown in Table 5. In this case, we observe
a reduction over on the number of test cases using the pattern coverage criterion.
This is related to the amount of patterns used on program 1.1. Furthermore, the
mutation score for this coverage criterion shows an increase in relation to the
production coverage criterion.

8 http://tutor.rascal-mpl.org/Recipes/Languages/Pico/Pico.html

http://tutor.rascal-mpl.org/Recipes/Languages/Pico/Pico.html
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Coverage Criterion Test Set Size Mutation Score

Production Coverage 85 8.33%

Pattern Coverage 12 83.33%
Table 5. Results obtained by the evaluation using the Java language.

4.4 Discussion and Threats to Validity

Even given the small size and complexity, from the Pico experiment we learn
that pattern coverage may reduce the amount of required test cases dramatically
without sacrificing test quality. This small demonstration can not be generalized
to other languages or meta programs, but it motivates to continue investigating
and served as an integration test for our experimental setup.

The Java language results show that the approach will scale to full pro-
gramming languages. We observe that indeed the number of test cases drops
significantly without loss of test quality.

The main threat to validity of the above observations is the size and complex-
ity of the meta program under test, which is not representative of the broader set
of meta programs we wish to target. These initial results are promising neverthe-
less. We expect future investigation on larger meta programs to produce more
specific patterns (which does not incur an overhead since pattern extraction is
linear in the size of the meta program). More specific patterns will likely lead to
larger but not more test cases. We hypothesize that pattern-based testing will
still outperform exhaustive grammar-based testing in the number of test cases,
while we need to find out experimentally what the mutation scores will show.
The mutation score is influenced by the internal complexity of the meta program
which may use other kinds of predicates and queries next to pattern matching to
guide control flow. More complex meta programs will also require us to extend
the set of mutation operators to generate representative mutations. Our future
target is a group of type analysis and type inference tools for Rascal, Java and
PHP which we wish to test exhaustively.

We believe that future work to extend pattern-based testing to other applica-
tion domains based on schemata and patterns may be fruitful (XML processing,
DOM manipulation and model driven engineering)

5 Related Work

Grammar-based testing has been used in compiler testing for many years [5,20].
Compilers are a specific kind of meta programs and could be tested using sim-
ilar techniques. The YouGen tool [14] generates test data based on grammar
definitions, controlling depth of derivation trees based on annotations. The ma-
jor difference is about the algorithm based on enumeration and filtering of the
derivation trees. This also reduces the number of test data generated, but the
filtering is guided only using information from the grammar. Our approach also
uses information from the program under test.
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In the same direction, the XTextGen [13] generates test-data based from
grammars. This tool has a different approach to generate the data. It uses Cantor
pairing and mandatory multiplicity control. The generation process is split into
two phases. First, an enumeration process and then a semantics-directed post-
processing over the result a set of transformation. With XTextGen it should
be possible, in principle, to simulate pattern-based testing as we propose in the
current paper. An appropriate encoding would have to be developed to do so,
which would amount to an alternative implementation of our sentence generation
algorithm.

Jagannath et al. [16] propose several ways of reducing the cost of bounded
exhaustive testing (the generalization of grammar-based testing) by test priori-
tization and by merging smaller inputs into fewer bigger inputs. Our approach
also reduces the cost of exhaustive testing, by selecting the right test inputs to
run, but in a completely different way.

SafeRefactor [10] also uses bounded exhaustive search for generating test pro-
grams (in AST format and for the purpose of refactoring tools). A key ingredient
is programmable specialization of the generated ASTs to better fit the specific
meta program under test. This framework, which was elaborated on later for
scalability [26, 30], could be extended with our approach to automatically feed-
back patterns back into the AST generators.

With concolic testing [29] a similar effect of selecting the right test cases
could be achieved as our approach can. Concolic testing is based on symboli-
cally simulating a program for a given test input and using a SMT solver or
theorem prover to generate the next input which will cover a different execution
path than the previous test input did. One would need to add a theory for gram-
mar and pattern matching to the solver and a simulation engine for the meta
language for this approach to work. Our approach is different and much more
lightweight, neither requiring a hard-to-obtain efficient solver nor a symbolic
execution engine, just a pattern extraction tool and a grammar-based sentence
generator.

6 Conclusions and Future Work

In this paper, we presented a new coverage criterion for test case design, pat-
tern coverage) and its preliminary evaluation of effectiveness in the context of
pattern-based meta programs. The evaluation considered the amount of test
cases and mutation score, taking as reference traditional grammar-based testing.
We conclude that our experiments indicate a significant reduction in necessary
test cases to achieve coverage, while improving the quality of the tests in terms
of mutation score. Further evaluation with a richer set of meta programs and
mutation operators is planned in the next steps of the research.

This work is part of a more general research direction in which we are investi-
gating lightweight techniques to more effectively test meta programs: extracting
constraints from the source code of the programs under test (or their specifica-
tions) to direct a sentence generator.
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4. P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek. Elan: A
logical framework based on computational systems. Electronic Notes in Theoretical
Computer Science, 4(0):35 – 50, 1996.

5. A. S. Boujarwah and K. Saleh. Compiler test case generation methods: a survey
and assessment. Information Software Technology, 39(9):617–625, 1997.

6. M. Brand, A. Deursen, J. Heering, H. Jong, M. Jonge, T. Kuipers, P. Klint, L. Moo-
nen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The ASF+SDF
Meta-Environment: a component-based language development environment. In
R. Wilhelm, editor, Compiler Construction (CC ’01), volume 2027 of Lecture Notes
in Computer Science, pages 365–370. Springer-Verlag, 2001.

7. M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/xt 0.17. a
language and toolset for program transformation. Science of Computer Program-
ming, 72(1–2):52 – 70, 2008. Special Issue on Second issue of experimental software
and toolkits (EST).

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The maude 2.0 system. In R. Nieuwenhuis, editor, Rewriting Techniques and
Applications (RTA 2003), number 2706 in Lecture Notes in Computer Science,
pages 76–87. Springer-Verlag, June 2003.

9. K. Czarnecki and U. W. Eisenecker. Generative programming - methods, tools and
applications. Addison-Wesley, 2000.

10. B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing of refactoring
engines. In Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ESEC-FSE ’07, pages 185–194, New York, NY, USA,
2007. ACM.

11. R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help
for the practicing programmer. Computer, 11(4):34–41, 1978.

12. A. V. Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An Alge-
braic Specification Approach: Vol. V. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 1996.
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