
LDTA’03 Preliminary Version

Generalized Parsing and Term Rewriting:
Semantics Driven Disambiguation

M.G.J. van den Brand2,4, A.S. Klusener3,4, L. Moonen1, J.J. Vinju1

1 Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, NL-1098 SJ
Amsterdam, The Netherlands

Leon.Moonen@acm.org, Jurgen.Vinju@cwi.nl
2 LORIA-INRIA, 615 rue de Jardin Botanique, BP 101, F-54602

Villers-lès-Nancy Cedex, France
3 Software Improvement Group, Kruislaan 419, NL-1098 VA Amsterdam, The

Netherlands
4 Vrije Universiteit, Division of Mathematics and Computer Science, De Boelelaan

1081A, NL-1081 HV Amsterdam, The Netherlands
{markvdb,steven}@cs.vu.nl

Abstract

Generalized parsing technology provides the power and flexibility to attack real-
world parsing applications. However, many programming languages have syntacti-
cal ambiguities that can only be solved using semantical analysis. In this paper we
propose to apply the paradigm of term rewriting to filter ambiguities based on se-
mantical information. We start with the definition of a representation of ambiguous
derivations. Then we extend term rewriting with means to handle such derivations.
Finally, we apply these tools to some real world examples, namely C and COBOL.
The resulting architecture is simple and efficient as compared to semantic directed
parsing.

1 Introduction

Generalized parsing is becoming more popular because it provides the power
and flexibility to deal with real existing programming languages and domain
specific languages [3,9]. It solves many problems that are common in more
widely accepted technology based on LL and LR algorithms [2,13].

We start by briefly recalling the advantages of generalized parsing. It
allows arbitrary context-free grammars instead of restricting grammars to
classes like LL(k) or LALR(k). Due to this freedom, a grammar can bet-
ter reflect the structure of a language. This structure can be expressed even
better using modularity. Modularity is obtained because context-free gram-
mars are closed under union, as opposed to the more restricted classes of
grammars.

An obvious advantage of allowing arbitrary context-free grammars is that
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Van den Brand & Klusener & Moonen & Vinju

the number of grammars accepted is bigger. It seems that real programming
languages (e.g. Pascal, C, C++) do not fit in the more restricted classes at all.
Without ‘workarounds’, such as semantic actions that have to be programmed
by the user, off-the-shelf parsing technology based on the restricted classes can
not be applied to such languages.

The main reason for real programming languages not fitting in the re-
stricted classes is that they are ambiguous in one way or the other. Some
grammars have simple conflicts that can be solved by using more look-ahead
or by trying more alternative derivations in parallel. Generalized parsing offers
exactly this functionality. Other grammars contain more serious ambiguities,
which are all accepted as valid derivations. The result is that after parsing
with a generalized parser we sometimes obtain a collection of derivations (a
parse forest) instead of a single derivation (a parse tree).

1.1 Examples

Many examples of the more serious ambiguities can be found in existing pro-
gramming languages. In this section we will discuss briefly a number of am-
biguous constructs which are hard to solve given traditional parsing technol-
ogy.

Typedefs in C In the C programming language certain identifiers can be parsed
as either type identifiers or variable identifiers due to the fact that certain
operators are overloaded:

{ Bool *b1; }

The above statement is either a statement expression multiplying the Bool

and b1 variables, or a declaration of a pointer variable b1 to a Bool. The
latter derivation is chosen by the C compiler only if Bool was declared to be a
type using a typedef statement somewhere earlier in the program, otherwise
the former derivation is chosen. Section 4 describes a solution for this problem
via the technology presented in this paper.

Offside rule Some languages are designed to use indentation to indicate blocks
of code. Indentation, or any other line-by-line oriented position information is
obviously not properly expressible in any context-free grammar, but without
it the syntax of such a language is ambiguous. The following quote explains
the famous offside rule [19] from the users’ perspective:

“The southeast quadrant that just contains the phrase’s first symbol must
contain the entire phrase except possibly for bracketed sub-segments.”

For example, the following two sentences in typical functional programming
style illustrate an ambiguity:

2

Van den Brand & Klusener & Moonen & Vinju

a = b a = b

where b = d where b = d

where d = 1 vs. where d = 1

c = 2 c = 2

On the left-hand side, the variable c is meant to be part of the first where

clause. Without interpretation of the layout of this example, c could just as
well part of the second where clause, as depicted by the right-hand side.

There are several languages using some form of offside rule, among others,
Haskell [12]. Each of these languages applies “the offside rule” in a different
manner making a generic definition of the rule hard to formalize.

Nested dangling constructions in COBOL For C and Haskell we have shown
ambiguities that can only be solved using context information. A similar prob-
lem exists for COBOL, however we will present a different type of ambiguity
here that is based on complex nested statements. 1

The following example resembles the infamous dangling else construction,
but it is more complex due to the fact that more constructs are optional.
Consider the following piece of COBOL code in which a nested ADD statement
is shown:

0001 ADD A TO B

0002 SIZE ERROR

0003 ADD C TO D

0004 NOT SIZE ERROR

0005 CONTINUE

0006 .

The SIZE ERROR and NOT SIZE ERROR constructs are optional post-fixes of the
ADD statement. They can be considered as a kind of exception handling. In
order to understand what is going on we will present a tiny part of a COBOL
grammar, which is based on [18]:

Add-stat ::= Add-stat-simple Size-error-phrases

Size-error-phrases ::= Size-error-stats? Not-size-error-stats?

Size-error-stats ::= "SIZE" "ERROR" Statement-list

Not-size-error-stats ::= "NOT" "SIZE" "ERROR" Statement-list

Statement-list ::= Statement*

The above grammar shows that the COBOL language design does not provide
explicit scope delimiters for some deeply nested Statement-lists. The result
is that in our example term, the NOT SIZE ERROR can be either part of the
ADD-statement on line 0001 or 0003. The period on line 0006 closes both
statements.

The COBOL definition does not have an offside rule. Instead it states that
in such cases the “dangling” phrase should always be taken with the innermost

1 There are many versions of the COBOL programming language. In this paper we limit
ourselves to IBM VS COBOL II.

3

Van den Brand & Klusener & Moonen & Vinju

Grammar Generator Parser Tree Filters TreeForestTable

Input String

Fig. 1. General parsing and disambiguation architecture

construct, which is in our case the ADD-statement on line 0003. There are 16
of such ambiguities in the COBOL definition. Some of them interact because
different constructs might be nested.

In some implementations of LL and LR algorithms such dangling cases are
implicitly resolved by a heuristic that always chooses the deepest derivation.
In this paper we describe a more declarative and maintainable solution that
does not rely on such a heuristic.

Discussion The above examples indicate that all kinds of conventions or com-
puted information might have been used in a language design in order to
disambiguate its syntax. This information can be derivable from the original
input sentence, or from any other source.

Generalized parsing is robust against any grammatical ambiguity. So, we
can express the syntax of ambiguous programming languages as descriptive
context-free grammars. Still, in the end there must be only one parse tree.
The structure of this parse tree should faithfully reflect the semantics of the
programming language. In this paper we will fill this gap between syntax and
semantics, by specifying how to disambiguate a parse forest.

1.2 Related work on filtering

The parsing and disambiguation architecture used in this paper was proposed
earlier by [15] and [24]. An overview is shown in Figure 1. This architecture
clearly allows a separation of concerns between syntax definition and dis-
ambiguation. The disambiguation process was formalized using the general
notion of a filter, quoted from [15]:

“A filter F for a context-free grammar G is a function from sets of parse
trees for G to sets of parse trees for G, where the number of resulting parse
trees is equal to or less than the original number.”

This rather general definition allows for all kinds of filters and all kinds of
implementation methods. In [9] several declarative disambiguation notions
were added to context-free grammars. Based on these declarations several
filter functions were designed that discard parse trees on either lexical or
simple structural arguments. Because of their computational simplicity several
of the filters could be implemented early in the parsing process. This was also
possible because these filters were based on common ambiguity concepts in
language design.

In this paper we target more complex structural parse tree selections and
selections based on non-local information. More important, we aim for lan-

4

Van den Brand & Klusener & Moonen & Vinju

guage specific disambiguations, as opposed to the more reusable disambigua-
tion notions. Such filters naturally fit in at the back-end of the architecture,
just before other semantics based tools will start their job. In fact, they can
be considered part of the semantic analysis.

Wagner and Graham [24] discuss the concept of disambiguation filters
including an appropriate parse forest formalism, but without presenting a
formalism for implementing disambiguation filters. This paper complements
their work by describing a simple formalism based on term rewriting which
allows the user to express semantics-guided disambiguation. Furthermore, we
give a ‘proof of concept’ by applying it to real programming languages.

The notion of semantics/attribute directed parsing [1,5] also aims to re-
solve grammatical ambiguities that can be solved using semantical informa-
tion. However, the approach is completely different. In case of semantics
directed parsing the parser is extended to deal with derived semantic informa-
tion and directly influence the parsing process. Both in the specification of a
language and in the implementation of the technology syntax and semantics
become intertwined. We choose a different strategy by clearly separating syn-
tax and semantics. The resulting technology is better maintainable and the
resulting language specifications also benefit from this separation of concerns.
For example, we could replace the implementation of the generalized parser
without affecting the other parts in the architecture 2 .

1.3 Filtering using term rewriting

Given the architecture described, the task at hand is to find a practical lan-
guage for implementing language specific disambiguation filters. The func-
tionality of every disambiguation filter is similar, it analyzes and prunes parse
trees in a forest. It does this by inspecting the structure of sub-trees in the
parse forest and/or by using any kind of context information.

An important requirement for every disambiguation filter is that it may
never construct a parse forest that is ill-formed with respect to the grammar
of a language. This requirement ensures that the grammar of a language
remains a valid description of the parse forest and thus a valuable source of
documentation [14], even after the execution of any disambiguation filters.

The paradigm of term rewriting satisfies all above mentioned requirements.
It is designed to deal with terms (read trees); to analyze their structure and
change them in a descriptive and efficient manner. Term rewriting provides
exactly the primitives needed for filtering parse forests. Many implementations
of term rewriting also ensure well-formedness of terms with respect to the
underlying grammar (a so-called signature). Term rewriting provides a solid
basis for describing disambiguation filters that are concise and descriptive.

2 If the parse forest representation remains the same.

5

Van den Brand & Klusener & Moonen & Vinju

Bool "|" Bool -> Bool

"true" -> Bool LAYOUT? "|" LAYOUT? "false" -> Bool

"true" " " " " "false"

Fig. 2. A parse tree for “true | false”.

1.4 Plan of the paper

In the rest of this paper we give the implementation details of disambiguation
filters with term rewriting. In Section 2, we give a description of the parse
tree formalism we use. Section 3 briefly describes term rewriting basics before
we extend it with the ability to deal with forests instead of trees. In Section
4 we give a number of examples with details to show that it works for real
programming languages. In Section 5, we discuss how our techniques can be
applied to other paradigms and describe our future plans. We present our
conclusions in the final section.

2 Parse Forest Representation

Based on a grammar, the parser derives valuable information about how a
sentence has to be structured. However, the parser should also preserve any
information that might be needed for disambiguation later on. The most
obvious place to store all this information is in the syntax tree.

Furthermore, we need a practical representation of the alternative deriva-
tions that are the result of grammatical ambiguity. Ambiguities should be
represented in such a way that the location of an ambiguous sub-sentence in
the input can be pinpointed easily. Just listing all alternative parse trees for
a complete sentence is thus not acceptable.

In this section we describe an appropriate parse tree formalism, called
AsFix. A more elaborate description of AsFix can be found in [21]. We will
briefly discuss its implementation in order to understand the space and time
efficiency of the tools processing these parse trees.

AsFix is a very simple formalism. An AsFix tree contains all original
characters of the input, including white-space and comments. This means
that the exact original sentence can be reconstructed from its parse tree in a
very straightforward manner. Furthermore, an AsFix tree contains a complete
description of all grammar rules that were used to construct it. In other words,
all valuable information present in the syntax definition and the input sentence
is easily accessible via the parse tree.

Two small examples illustrate the basic idea. Figure 2 shows a parse tree of
the sentence “true | false”. Figure 3 shows a parse tree of the ambiguous
input sentence “true | false | true”. We have left out the white-space

6

Van den Brand & Klusener & Moonen & Vinju

Bool

Bool "|" Bool -> Bool Bool "|" Bool -> Bool

Bool "|" Bool -> Bool "|" "true" -> Bool

"true" -> Bool "|" "false" -> Bool

"true" "false"

"true"

"true" -> Bool "|" Bool "|" Bool -> Bool

"true" "false" -> Bool "|" "true" -> Bool

"false" "true"

Fig. 3. A parse forest with two ambiguous derivations for “true | false | true”.

nodes in latter picture for the sake of presentation. The diamond represents
an ambiguity node which indicates that several derivation are possible for a
certain sub-sentence. The following grammar (in SDF [11]) was used to parse
these two sentences:

context-free syntax

"true" -> Bool

"false" -> Bool

Bool "|" Bool -> Bool

The implementation of AsFix is based on the ATerm library [7]. An AsFix
parse tree is an ordinary ATerm, and can be manipulated as such by all utilities
offered by the ATerm library. The ATerm library is a library that implements
the generic data type ATerm. ATerms are a simple tree-like data structure
designed for representing all kinds of trees. The characteristics of the ATerm
library are maximal sub-term sharing and automatic garbage collection.

The maximal sharing property is important for AsFix for two reasons.
Firstly, the parse trees are completely self-contained and do not depend on a
separate grammar definition. It is clear that this way of representing parse
trees implies much redundancy. Maximal sharing prevents unnecessary occu-
pation of memory caused by this redundancy. Secondly, for highly ambiguous
languages parse forests can grow quite big. The compact representation using
ambiguity nodes helps, but there is still a lot of redundancy between alter-
native parse trees. Again, the ATerm library ensures that these trees can be
stored in an minimal amount of memory. To illustrate, Figure 4 shows the
parse forest of Figure 3 but now with full sharing.

3 Extending Term Rewriting

In this section we explain how a parse tree formalism like AsFix can be
connected to term rewriting. This connection allows us to use term rewrit-
ing directly to specify disambiguation filters. The important novelty is the
lightweight technique that is applied to be able to deal with ambiguities. After
explaining it we present a small example to illustrate the style of specification

7

Van den Brand & Klusener & Moonen & Vinju

Bool

Bool "|" Bool -> Bool Bool "|" Bool -> Bool

Bool "|" Bool -> Bool

"true" -> Bool "|" "false" -> Bool

"true" "false"

Bool "|" Bool -> Bool

Fig. 4. A parse forest with maximal sharing.

used for defining disambiguation filters. More elaborate examples are given
in Section 4. We start by briefly and informally describing the basics of term
rewriting.

3.1 What is term rewriting?

In short, a Term Rewriting System (TRS) is the combination of a signature
and a collection of rewrite rules. The signature defines the prefix terms that
are to be rewritten according to the rewrite rules. We refer to [16] for a
detailed description of term rewriting.

Signature A many-sorted signature defines all possible terms that can occur
in the rewrite rules and the term that is to be rewritten. Usually a signature
is extended with a collection of variables, which are needed for specifying the
rewrite rules. The following is an example signature, with constants (nullary
functions), function applications, and a variable definition:

signature

true -> Bool

false -> Bool

or(Bool,Bool) -> Bool

variables

B -> Bool

This signature allows ground terms like: “or(true,or(false,true))”. Ground
means containing no variables. Terms containing variables are called open
terms.

Rules A rewrite rule is a pair of such terms T1 = T2. Both T1 and T2 may
be open terms, but T2 may not contain variables that do not occur in T1.
Furthermore, T1 may not be a single variable. A ground term is called a redex
when it matches a left-hand side of any rule. Matching means equality modulo
occurrences of variables. The result of a match is a mapping that assigns the
appropriate sub-terms to the variable names. A reduct can be constructed by
taking the right-hand side of the rule and substituting the variables names
using the constructed mapping. Replacing the original redex by the reduct is

8

Van den Brand & Klusener & Moonen & Vinju

called a reduction. Below we give an example of a set of rewrite rules:

rules

or(true, B) = true

or(false, B) = B

The redex “or(false, false)” matches the second rule, yielding the binding
of B to the value false. The reduct is false after substitution of false for B
in the right-hand side.

In most implementations of term rewriting, the rewrite rules are guaran-
teed to be sort-preserving. This implies that the application of any rewrite
rule to a term will always yield a new term that is well-formed with respect
to the signature.

Normalization Given a ground term and a set of rewrite rules, the purpose of
a rewrite rule interpreter is to find all possible redexes in a larger term and
applying all possible reductions. Rewriting stops when no more redexes can
be found. We say that the term is then in normal form.

A frequently used strategy to find redexes is the innermost strategy. Start-
ing at the leafs of the tree the rewriting engine will try to find reducable ex-
pressions and rewrite them. For example, “or(true,or(false,true))” can
be normalized to true by applying the above rewrite rules in an innermost
way.

Associative matching Lists are a frequently occurring data structure in term
rewriting. Therefore, we allow the * symbol to represent repetition in a sig-
nature:

signature

set(ELEM*) -> SET

variables

E -> ELEM

Es[123] -> ELEM*

The argument of the set operator is a list of ELEM items. By using list vari-
ables 3 , we can now write rewrite rules over lists. The following examples
removes all double elements in a SET:

rules

set(Es1,E,Es2,E,Es3) = set(Es1,E,Es2,Es3)

A list variable may bind any number of elements, so left-hand sides that
contain list variables may match a redex in multiple ways. One possible choice
of semantics is to take the first match that is successful and apply the reduction
immediately.

3 Es[123] declares three variables, Es1, Es2 and Es3, using character class notation.

9

Van den Brand & Klusener & Moonen & Vinju

3.2 Rewriting parse trees

Grammars as signatures The first step is to exploit the obvious similarities
between signatures and context-free grammars. We replace the classical pre-
fix signatures by arbitrary context-free grammars in a TRS. There are three
immediate consequences. The non-terminals of a grammar are the sorts. The
grammar rules are the function symbols. Terms are valid parse trees over the
grammar. Of course, the parse trees can be obtained automatically by parsing
input sentences using the user-defined grammar.

Rules in concrete syntax If we want to rewrite parse trees, the left-hand side
and right-hand side of rewrite rules should be parse trees as well. We use the
same parser to construct these parse trees. 4 In order to parse the variables
occurring in the rules, the grammar has to be extended with some variables
as well.

Using grammars as signatures and having rules in concrete syntax, the
TRS for the or can now be written as:

context-free syntax

"true" -> Bool

"false" -> Bool

Bool "|" Bool -> Bool

variables

"B" -> Bool

rules

true | B = true

false | B = B

A formalism like this allows us to use term rewriting to analyse anything that
can be expressed using an unambiguous context-free grammar.

Brackets In order to be able to explicitly express the structure of terms and to
be able to express rewrite rules unambiguously, the notion of bracket rules is
introduced. The following grammar adds a bracket production to the booleans:

context-free syntax

"(" Bool ")" -> Bool {bracket}

Bracket productions may only be sort-preserving. This allows that applica-
tions of bracket productions can be removed from a parse tree without destroy-
ing the well-formedness of the tree. The result of this removal is a parse tree
with the structure that the user intended, but without the explicit brackets.

3.3 Rewriting parse forests

The step from rewriting parse trees to rewriting parse forests is a small one.
If we want to use term rewriting to design disambiguation filters, we want to

4 We implicitly extend the user-defined grammar with syntax rules for the rewrite rule
syntax, e.g. Bool "=" Bool -> Rule, is added to parse any rewrite rule for booleans.

10

Van den Brand & Klusener & Moonen & Vinju

amb({Bool ","}*) -> Bool {amb}

Bool "|" Bool -> Bool Bool "|" Bool -> Bool

Bool "|" Bool -> Bool "|" "true" -> Bool

"true" -> Bool "|" "false" -> Bool

"true" "false"

"true"

"true" -> Bool "|" Bool "|" Bool -> Bool

"true" "false" -> Bool "|" "true" -> Bool

"false" "true"

Fig. 5. Translating an ambiguity node to an ambiguity constructor.

be able to address ambiguities explicitly in a TRS.

Extending the signature The ambiguity nodes that exist in a parse forest are
made visible to a TRS by augmenting the signature automatically with a new
function symbol for every sort in the signature. The new function symbols are
referred to as ambiguity constructors. For example, the following ambiguity
constructor is added for Bool expressions:

context-free syntax

amb({Bool ","}*) -> Bool {amb}

Each ambiguity constructor has a comma separated list of children. These chil-
dren represent the original ambiguous derivations for a certain sub-sentence.

Preprocessing before rewriting Just before the normalization process begins we
translate each amb node in the parse forest of an input term to an application
of an ambiguity constructor as described in the previous paragraph. The result
of this translation is a single parse tree, representing a parse forest, that is
completely well-formed with respect to the augmented signature of the TRS.

Figure 5 depicts the result of this translation process. It shows how the
parse forest from Figure 3, containing an ambiguity node, is translated to
a parse tree with an explicit ambiguity constructor. Due to the reserved
production attribute {amb} the translation back is a trivial step. This is done
after the normalization process is finished and there are still ambiguities left.
This step is necessary in order to make the normal form completely well-formed
with respect to the original grammar.

Since the extended signature allows empty ambiguity clusters, e.g. amb(),
the final translation can sometimes not be made. In this case we return an
error message similar to a parse error. An empty ambiguity constructor can
thus be used to indicate that a term is semantically incorrect.

Rewrite rules Using the ambiguity constructors, we can now define rewrite
rules which process ambiguity clusters. The following example specifies the
removal of right-associative application of the "|" operator. This is performed
by the first rewrite rule

11

Van den Brand & Klusener & Moonen & Vinju

variables

"Bs"[12] -> Bool*

"B"[123] -> Bool

rules

amb(Bs1, B1 | (B2 | B3), Bs2) = amb(Bs1, Bs2)

amb(B1) = B1

The second rule transforms an ambiguity cluster containing exactly one tree
into an ordinary tree. Using innermost normalization, the above rewrite rules
will rewrite a parse forest of the ambiguous term “true | false | true” to
a parse tree that represents “(true | false) | true”.

The following features of term rewriting are relevant for this example.
Concrete syntax allows specification of the functionality directly in recogniz-
able syntax. The use of brackets is essential to disambiguate the left-hand
side of the first rewrite rule. Associative matching is used to locate the fil-
tered derivation directly without explicit list traversal. Finally, the innermost
strategy automatically takes care of executing this rewrite rule at the correct
location in the parse tree.

4 Practical Experiences

The above ideas have been implemented in ASF+SDF [10], which is the com-
bination of the syntax definition formalism SDF and the term rewriting lan-
guage ASF. ASF+SDF specifications look almost like the last examples in the
previous section.

C typedefs To test the concept of rewriting parse forests, we developed a small
specification that filters one of the ambiguities in the C language. We started
from an ambiguous syntax definition of the C language.

The ambiguity in question was discussed in the introduction. Depending
on the existence of a typedef declaration an identifier is either interpreted
as a type name or as a variable name. The following specification shows how
a C CompoundStatement is disambiguated. We have constructed an envi-
ronment containing all declared types. If the first Statement after a list of
Declarations is a multiplication of an identifier that is declared to be a type,
the corresponding sub-tree is removed. Variable definitions have been left out
for the sake of brevity.

context-free syntax

"types" "[[" Identifier* "]]" -> Env

filter(CompoundStatement, Env) -> CompoundStatement

equations

[]Env = types[[Ids1 Id Ids2]]

===========================

filter(amb(CSs1,{Decls Id * Expr;Stats},CSs2),Env) = amb(CSs1,CSs2)

Note the use of concrete C syntax in this example. The filter function searches

12

Van den Brand & Klusener & Moonen & Vinju

and removes ambiguous block-statements where the first statement uses an
identifier as a variable which was declared earlier as a type. Similar rules
are added for every part of the C syntax where an ambiguity is caused by
the overlap between type identifiers and variable identifiers. This amounts to
about a dozen rules. Together they both solve the ambiguities and document
exactly where our C grammar is ambiguous.

The offside rule in Sasl We have experimented with Sasl [20], a functional
programming language, to implement a filter using the offside rule. The fol-
lowing function uses column number information that is stored in the parse
forest to detect whether a certain parse tree is offside.

[] Col = get-start-column(Expr),

minimal(Expr,Col) < Col = true

==============================

is-offside(NameList = Expr) = offside

An expression is offside when a sub-expression is found to the left of the
beginning of the expression. The function minimal (not shown here) computes
the minimal column number of all sub-expressions.

After all offside expressions have been identified, the following function
can be used to propagate nested offside tags upward in the tree:

[] propagate(Expr WHERE offside) = offside

[] propagate(NameList = offside) = offside

[] propagate(offside WHERE Defs) = offside

Next, the following two rules are used to remove the offside expressions:

[] amb(Expr*1, offside, Expr*2) = amb(Expr*1,Expr*2)

[] amb(Expr) = Expr

Note that if no expressions are offside, the ambiguity might remain. Rules
must be added that choose the deepest derivation. We have left out these
rules here for the sake of brevity because they are similar to the next COBOL
example.

Complex nested dangling COBOL statements The nested dangling constructs
in COBOL can be filtered using a simple specification. There is no context
information involved, just a simple structural analysis. The following rewrite
rules filter the derivations where the dangling block of code was not assigned
to the correct branch:

equations

[] amb(ASs1, AddStatSimple1

SIZE ERROR Stats1 AddStatSimple2

NOT SIZE ERROR Stats2,

ASs2) = amb(ASs1, ASs2)

13

Van den Brand & Klusener & Moonen & Vinju

Size Lines Parse time Number of Filter time

(bytes) (seconds) ambiguities (seconds)

Smallest file 10,454 158 16.57 0 0.46

Largest file 203,504 3,020 36.66 1 10.55

File with most
ambiguities

140,256 2,082 28.21 8 7.21

Largest file with-
out ambiguities

124,127 1,844 26.61 0 8.79

Totals of all files 5,179,711 79,667 1818.67 125 259.25

Averages 59,537 916 20.90 1.44 2.98

Table 1
Some figures on parsing and filtering performance.

The variable AddStatSimple2 terminates the nested statement list. In the
rule, the NOT SIZE ERROR is therefore assigned to the outer AddStatSimple1
statement instead of the inner AddStatSimple2.

This is exactly the alternative that is not wanted, so the rule removes it
from the forest. We have defined similar disambiguation rules for each of the
16 problematic constructions.

Performance To provide some insight in the computational complexity of the
above COBOL disambiguation we provide some performance measures. We
used a rewrite rule interpreter for these measurements. Compiling these rules
with the ASF-compiler [6] would lead to a performance gain of at least a factor
100. However, it is easier to adapt the ASF interpreter when prototyping new
language features in ASF. In Table 1 we compare the parsing time to time the
rewriter used for filtering. The figures are based on a test system of 87 real
COBOL sources, with an average file size of almost 1,000 lines of code.

The parse times include reading the COBOL programs and the parse table
from disk, which takes approximately 15 seconds, and the construction and
writing to disk of the resulting parse forests. The parse table for this full
COBOL grammar is really huge, it consists of 28,855 states, 79,081 actions,
and 730,390 gotos. The corresponding grammar has about 1,000 productions.
It was derived from the original Reference Manual of IBM via the technique
described in [18].

The time to execute this set of disambiguation filters for COBOL is pro-
portional to the size of the files and not to the number of ambiguities. The
computation visits every node in the parse tree once without doing extensive
computations.

14

Van den Brand & Klusener & Moonen & Vinju

5 Discussion

Object-oriented programming We demonstrated the concept of semantic filters
via rewriting. An important question is what is needed to apply the same idea
in a more general setting, for instance using Java or an Attribute Grammar
formalism. We will formulate the requirements and needed steps as a recipe:

(i) It is necessary to have a parse forest or abstract syntax forest representa-
tion which has ambiguity clusters. The amount and type of information
stored in the trees influences the expressiveness of the disambiguation
filters directly.

(ii) The ambiguity nodes should be made addressable by the user.

(iii) It is necessary to create a mapping from the output of the parser to this
parse forest representation. This mapping should preserve or derive as
much information as possible from the output of the parser.

(iv) If possible, it is preferable to guarantee that the output of a filter is
well-formed with respect to the grammar.

Programming filters becomes a lot simpler if there exists a practical application
programming interface (API) to access the information stored in the parse
forest representation. JJForester [17] is a Java class hierarchy generator that
provides a mapping from AsFix to a typed abstract syntax tree in Java that is
ready for the Visitor design pattern. The current implementation of JJForester
also incorporates a representation for abstract syntax forests.

Strategic programming In our description of term rewriting we have not ad-
dressed the notion of first class rewriting strategies that is present in languages
like Stratego [22] and Elan [4]. Rewriting strategies allow the specification
writer to explicitly control the application of rewrite rules to terms, as opposed
to using the standard innermost evaluation strategy. Ambiguity constructors
can be combined seamlessly with rewriting strategies, allowing disambigua-
tion rules to be applied under a certain user-defined strategy. Recently both
Elan and Stratego started to use SDF to implement concrete syntax too, [8]
and [23], respectively.

6 Conclusions

Starting from the notion of generalized parsing we have presented a solution
for one of its implications: the ability to accept ambiguous programming
languages. Term rewriting can be extended in a simple manner to filter parse
forests. Specifying filters by explicitly addressing ambiguity clusters is now as
simple as writing ordinary rewrite rules.

The resulting architecture provides a nice separation of concerns and declar-
ative mechanisms for describing syntax and disambiguation of real program-
ming languages.

15

Van den Brand & Klusener & Moonen & Vinju

Practical experience shows that writing filters in term rewriting with con-
crete syntax is not only feasible, but also convenient. This is due to the seam-
less integration of context-free syntax definition, parse forests and rewrite
rules. Based on a large collection of COBOL programs we have presented
performance figures of an interpreter executing a collection of simple disam-
biguation filters.

References

[1] R. op den Akker, B. Melichar, and J. Tarhio. Attribute Evaluation and Parsing.
In H. Alblas and B. Melichar, editors, International Summer School on Attribute
Grammars, Applications and Systems, volume 545 of LNCS, pages 187–214.
Springer-Verlag, 1991.

[2] J. Aycock. Why Bison is becoming extinct. ACM Crossroads, Xrds-
7.5:electronic publication, 2002.

[3] J. Aycock and R.N. Horspool. Directly-executable earley parsing. In
R. Wilhelm, editor, CC’01, volume 2027 of LNCS, pages 299–243, Genova,
Italy, 2001. Springer-Verlag.

[4] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and Ch. Ringeissen.
An Overview of ELAN. In C. Kirchner and H. Kirchner, editors, Second Intl.
Workshop on Rewriting Logic and its Applications, volume 15 of Electronic
Notes in Theoretical Computer Science, 1998.

[5] M.G.J. van den Brand. Pregmatic: A Generator for Incremental Programming
Environments. PhD thesis, Katholieke Universiteit Nijmegen, 1992.

[6] M.G.J. van den Brand, J. Heering, P. Klint, and P.A. Olivier. Compiling
language definitions: The asf+sdf compiler. ACM Transactions on
Programming Languages and Systems, 24(4):334–368, 2002.

[7] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient
Annotated Terms. Software, Practice & Experience, 30(3):259–291, 2000.

[8] M.G.J. van den Brand, P.-E. Moreau, and C. Ringeissen. The ELAN
environment: a rewriting logic environment based on ASF+SDF technology.
In M.G.J van den Brand and R. Lämmel, editors, Proceedings of the 2st
International Workshop on Language Descriptions, Tools and Applications,
volume 65. Electronic Notes in Theoretical Computer Science, 2002.

[9] M.G.J. van den Brand, J. Scheerder, J.J. Vinju, and E. Visser. Disambiguation
Filters for Scannerless Generalized LR Parsers. In R. Nigel Horspool, editor,
Compiler Construction, volume 2304 of LNCS, pages 143–158. Springer-Verlag,
2002.

[10] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An
Algebraic Specification Approach, volume 5 of AMAST Series in Computing.
World Scientific, 1996.

16

Van den Brand & Klusener & Moonen & Vinju

[11] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The Syntax Definition
Formalism SDF - reference manual, 1992. Earlier version in SIGPLAN Notices,
24(11):43-75, 1989.

[12] P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report on the
Programming Language Haskell. A Non-strict Purely Functional Language
(Version 1.2). ACM SIGPLAN Notices, 27(5), May 1992.

[13] S. C. Johnson. YACC—yet another compiler-compiler. Technical Report CS-
32, AT & T Bell Laboratories, Murray Hill, N.J., 1975.

[14] M. de Jonge and J. Visser. Grammars as contracts. In Greg Butler and Stan
Jarzabek, editors, Generative and Component-Based Software Engineering,
Second International Symposion, GCSE 2000, volume 2177 of LNCS, pages
85–99, Erfurt, Germany, 2001. Springer-Verlag.

[15] P. Klint and E. Visser. Using filters for the disambiguation of context-
free grammars. In G. Pighizzini and P. San Pietro, editors, Proc. ASMICS
Workshop on Parsing Theory, pages 1–20, Milano, Italy, 1994. Tech. Rep. 126–
1994, Dipartimento di Scienze dell’Informazione, Università di Milano.

[16] J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
1–110. Oxford University Press, 1992.

[17] T. Kuipers and J. Visser. Object-oriented tree traversal with JJForester.
In M. G. J. van den Brand and D. Parigot, editors, Proc. Workshop on
Language Descriptions, Tools and Applications, volume 44 of Electronic Notes
in Theoretical Computer Science, pages 28–52. Elsevier Science Publishers,
2001.

[18] R. Lämmel and C. Verhoef. Semi-Automatic Grammar Recovery. Software—
Practice & Experience, 31(15):1395–1438, December 2001.

[19] P.J. Landin. The next 700 programming languages. In CACM, volume 9, pages
157–165, March 1966.

[20] D.A. Turner. SASL Language Manual. University of Kent, Canterbury, 1979.

[21] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University
of Amsterdam, 1997.

[22] E. Visser. Stratego: A language for program transformation based on rewriting
strategies. System description of Stratego 0.5. In A. Middeldorp, editor,
RTA’01, volume 2051 of LNCS, pages 357–361. Springer-Verlag, 2001.

[23] E. Visser. Meta-programming with concrete object syntax. In D. Batory
and C. Consel, editors, Generative Programming and Component Engineering
(GPCE’02), volume 2487 of LNCS. Springer-Verlag, 2002.

[24] T.A. Wagner and S.L. Graham. Incremental analysis of real programming
languages. In Proceedings of the 1997 ACM SIGPLAN conference on
Programming language design and implementation, pages 31–43. ACM Press,
1997.

17

