
Concrete Syntax with Black Box Parsers

Rodin T. A. Aarssena,b, Jurgen J. Vinjua,b, and Tijs van der Storma,c

a Centrum Wiskunde & Informatica; Amsterdam, The Netherlands
b Eindhoven University of Technology; Eindhoven, The Netherlands
c University of Groningen; Groningen, The Netherlands

Abstract Context: Meta programming consists for a large part of matching, analyzing, and transforming
syntax trees. Many meta programming systems process abstract syntax trees, but this requires intimate knowl-
edge of the structure of the data type describing the abstract syntax. As a result, meta programming is error-
prone, and meta programs are not resilient to evolution of the structure of such ASTs, requiring invasive,
fault-prone change to these programs.

Inquiry: Concrete syntax patterns alleviate this problem by allowing the meta programmer to match and
create syntax trees using the actual syntax of the object language. Systems supporting concrete syntax pat-
terns, however, require a concrete grammar of the object language in their own formalism. Creating such
grammars is a costly and error-prone process, especially for realistic languages such as Java and C++.

Approach: In this paper we present Concretely, a technique to extend meta programming systems with
pluggable concrete syntax patterns, based on external, black box parsers. We illustrate Concretely in the
context of Rascal, an open-source meta programming system and language workbench, and show how to
reuse existing parsers for Java, JavaScript, and C++. Furthermore, we propose Tympanic, a DSL to declar-
atively map external AST structures to Rascal’s internal data structures. Tympanic allows implementors of
Concretely to solve the impedance mismatch between object-oriented class hierarchies in Java and Rascal’s
algebraic data types. Both the algebraic data type and AST marshalling code is automatically generated.

Knowledge: The conceptual architecture of Concretely and Tympanic supports the reuse of pre-existing,
external parsers, and their AST representation in meta programming systems that feature concrete syntax
patterns for matching and constructing syntax trees. As such this opens up concrete syntax pattern matching
for a host of realistic languages for which writing a grammar from scratch is time consuming and error-prone,
but for which industry-strength parsers exist in the wild.

Grounding: We evaluate Concretely in terms of source lines of code (SLOC), relative to the size of the
AST data type and marshalling code. We show that for real programming languages such as C++ and Java,
adding support for concrete syntax patterns takes an effort only in the order of dozens of SLOC. Similarly,
we evaluate Tympanic in terms of SLOC, showing an order of magnitude of reduction in SLOC compared to
manual implementation of the AST data types and marshalling code.

Importance:Meta programming has applications in reverse engineering, reengineering, source code analy-
sis, static analysis, software renovation, domain-specific language engineering, and many others. Processing
of syntax trees is central to all of these tasks. Concrete syntax patterns improve the practice of constructing
meta programs. The combination of Concretely and Tympanic has the potential to make concrete syntax
patterns available with very little effort, thereby improving and promoting the application of meta program-
ming in the general software engineering context.

ACM CCS 2012
Software and its engineering→ Translator writing systems and compiler generators; Domain specific
languages; API languages;

Keywords meta programming, concrete syntax patterns, black box parsers, grammar mapping

The Art, Science, and Engineering of Programming

Submitted October 2, 2018

Published February 1, 2019

doi 10.22152/programming-journal.org/2019/3/15

© Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm
This work is licensed under a “CC BY-NC 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 3, no. 3, 2019, article 15; 23 pages.

https://doi.org/10.22152/programming-journal.org/2019/3/15
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en

Concrete Syntax with Black Box Parsers

1 Introduction

Meta programming refers to the art of writing programs that analyze, manipulate, or
generate source code. Examples of meta programs include compilers, type checkers,
obfuscators, interpreters, static analyzers, and many others. Many meta programming
systems use Abstract Syntax Trees (ASTs) to represent source code. Meta program-
ming then consists for a large part of visiting, analyzing, and transforming ASTs.
Unfortunately, this requires intimate knowledge of the data type or class hierarchy
defining the abstract syntax. This problem is especially severe in a reverse engineering
context where meta programming is applied to analyze large bodies of code written in
“large” languages, such as COBOL, PHP, Java, and C++. The abstract syntax of such
languages often consists of more than hundred constructors, divided over multiple
syntactic categories.

Concrete syntax patterns [2, 7, 24] alleviate this situation by allowing meta programs
to match and create syntax trees using the actual concrete syntax of the object
language. As a result, such patterns are less dependent on constructor names or
class names, and avoid having to deal explicitly with “empty nestings” as a result of
chain rules in the syntax. Unfortunately, systems supporting concrete syntax patterns,
such as Asf+Sdf [7], Rascal [18], and Spoofax [15], require a concrete grammar of
the object language in their respective formalisms for parsing concrete fragments.
Developing such grammars is a costly and error-prone endeavor, especially for real-life
programming languages such as Java [17].

In this paper we present Concretely, a simple but effective technique to extend
meta programming systems with concrete syntax patterns using black box parsers.
Given a mapping from the external parser’s syntax tree structures to the meta pro-
gramming system’s internal data structures, Concretely allows meta programmers
to plug such external parsers into the pattern matching engine of a meta programming
system. As a result, tried and proven off-the-shelf parsers can be reused as is, while
gaining the benefits of concrete syntax patterns.

We have implemented Concretely in Rascal, an open-source meta programming
language and language workbench [18]1. We evaluate the technique by connecting
external parsers for Java, C++, JSON, and JavaScript to Rascal’s pattern matching
engine, and assessing the effort required. These results show that, given a mapping
from external AST to internal AST, supporting concrete syntax patterns requires very
little effort.

Concretely requires marshalling the native ASTs from the external parser to
internal Rascal ASTs. Writing such mappings by hand is tedious and error-prone. To
alleviate this situation, we introduce Tympanic, a declarative language to define a
mapping between a Java class hierarchy and an algebraic data type (ADT) in Rascal.
The data type itself is inferred from a Tympanic specification, and all marshalling
code is automatically generated.

The contributions of this paper can be summarized as follows:

1 https://www.rascal-mpl.org (last accessed on 2019-01-30).

15:2

https://www.rascal-mpl.org

Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm

We motivate the benefits of concrete syntax patterns for meta progamming and
identify the primary challenges in reusing black box parsers for its implementation
(Section 2).
We present Concretely, a lightweight API in Rascal for supporting concrete syntax
using external parsers, and discuss its implementation (Section 3).
We present Tympanic, a declarative mapping language to automatically obtain
Rascal ADTs and marshalling code from external AST to internal AST (Section 4).
We evaluate Concretely using concrete syntax bindings for Java, JavaScript and
C++, reusing existing parsers, and qualitatively assess the effort it took to create
them (Section 5.1). Futhermore, we show the benefits of using Tympanic in terms
of code reduction compared to manual implementation of AST marshalling code
(Section 5.2).

The paper concludes with a discussion of limitations, directions for further research,
and related work (Section 6).

2 Concrete Syntax Patterns

Figure 1 Matching nullary void C++ functions: abstract (left) vs concrete (right).

1 void printNullaryFunctions(Program ast) {
2 visit(ast) {
3 case functionDefinition([],
4 declSpecifier([], [],\void()),
5 functionDeclarator([], [], [],
6 name(str n), [], []), [],
7 compoundStatement([], [*_])):
8 println(n);
9 }

1 void printNullaryFunctions(Program ast) {
2 visit(ast) {
3 case (Decl)`void <Name n>() {<Stm* _>}`:
4 println(n);
5 }

2.1 Motivation

Analyzing and transforming source code involves making many case distinctions
between different kinds of syntax constructs, and decomposing syntax trees in their
constituent parts. In the following we take the functional programming perspective,
using Rascal as the language to express examples. Note, however, that our observations
about AST matching and construction apply also to other functional programming
languages or transformation systems with pattern matching, and object-oriented
traversal idioms using, e.g., the Visitor pattern [11, 19].

As an example, consider a meta program to print out the names of nullary void
functions in C++ code. Figure 1 shows two variants of this meta program in Rascal.
The left shows the function printNullaryFunctions using idiomatic AST pattern matching.
Rascal’s built-in traversal operator visit traverses the AST and tries to match the pattern
against every subtree. If it matches, the variable n will be bound to the function’s

15:3

Concrete Syntax with Black Box Parsers

Table 1 Number of AST types and constructors per language, as they are defined in Rascal.

Language #Types #Constructors

JavaScript2 3 113
PHP3 34 171
Java4 7 152
C++5 11 345

name, and is printed. The right of Figure 1 shows an equivalent function, this time
using a concrete syntax pattern. Again, the AST is traversed, but the visit-case now
uses the actual surface syntax of C++ within back ticks. The pattern uses typed
concrete syntax holes (between angular brackets < and >) to match out the name of
the function, and to ignore the statements in the body.

Comparing both versions of the function, we can make the following observations.
First of all, the abstract version is much larger than the concrete version, and con-
tains more syntactic line noise (parentheses, commas, brackets, etc.). In general, the
concrete patterns are much more what-you-see-is-what-you-get (WYSIWYG), which
improves readability of the meta program.

Second, the abstract version is highly dependent on names. Using abstract syntax
matching the programmer needs to know the exact constructor names of each relevant
syntactic construct of the language. In the concrete syntax version only the top-level
syntactic category name is needed (i.e., Decl). Next to the names of tree constructors,
the programmer needs to know the arity of each constructor. In the concrete case this
follows directly from the (familiar) surface syntax of the object language.

Depending on the size of the language, navigating such AST data types can be
a daunting task. For reference, Table 1 shows the number of AST types (syntactic
categories) and the total number of tree constructors for a number of mainstream
languages, as they are defined in Rascal. As can be seen, such AST data types can be
quite intimidating.

Third, abstract syntax structures do not support abstracting over implicit injections
(or “chain rules”). For instance, to match on the void type, the programmer needs to
explicitly match the declSpecifier construct in the second argument of functionDefinition.
In the concrete syntax version this is taken care of by the parser.

Finally, the abstract patterns require the absence of information to be explicitly
accounted for, either using unit values (e.g., []), or dummy placeholders (e.g., _). In
the concrete patterns absence of information is often represented by simply omitting
elements. For instance, to match only on nullary functions, the pattern simply leaves
out any formal parameters.

15:4

Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm

2.2 Implementing Concrete Syntax Patterns

Meta programming systems that support concrete syntax patterns can be divided
in two main categories. The first category consists of languages that support con-
crete syntax over a fixed object language. Examples of this category are Template
Haskell [23] and MetaOCaml [8]. We consider these languages out of scope since
they do not support meta programming for the purpose of reverse engineering or
reengineering [3].

The other category consists of transformation systems which come with their own
grammar formalism such as Asf+Sdf [7], TXL [9], Spoofax [15], and Rascal. In
all these systems the use of concrete syntax patterns presupposes a correct, non-
ambiguous grammar of the object language, defined in the particular system’s gram-
mar formalism. Unfortunately, writing correct, non-ambiguous grammars for real
programming language is very hard [17].

It would therefore be valuable if existing, off-the-shelf, parsing infrastructure could
be used. Many industrial strength parsers for mainstream languages exist in the form
of compilers (e.g., Clang, Javac), IDE frameworks (e.g., Eclipse JDT, CDT, Roslyn C#),
static analysis toolkits (e.g., SonarQube), or actual parsers defined by third parties
(e.g., grammars defined by ANTLR [22]). However, reusing such parsers for concrete
syntax patterns presents two main challenges. We discuss each one of them in turn.

AST marshalling and impedance mismatch Parsers turn source code into trees. How-
ever, the resulting trees of an external parser cannot be reused as is in a meta pro-
gramming system. First of all, the implementation of the AST or concrete syntax tree
(CST) most likely will not match the internal data structures used to represent syntax
trees in the meta programming system. For instance, a parser of the Java language
might build a tree defined by an object-oriented class hierarchy in Java, whereas, for
instance, Rascal uses generic, immutable data structures to represent trees.

Furthermore, when pattern matching syntax trees, we would like to abstract from
accidental parser dependent idiosyncrasies in the tree representation. For instance,
many LALR parser generators (such as Yacc [14]) do not support the EBNF regular
operators (“*”, “+”, “?”) to represent sequences or optionality. As a result, sequencing
and optionality is encoded using additional non-terminals which might pollute the
trees produced by such parsers, leading, for instance, to a sequence of statements

2 https://github.com/cwi-swat/js-air/blob/master/src/lang/javascript/m3/AST.rsc (last ac-
cessed on 2019-01-30).

3 https://github.com/cwi-swat/php-analysis/blob/master/src/lang/php/ast/AbstractSyntax.rsc
(last accessed on 2019-01-30).

4 https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/java/
m3/AST.rsc (last accessed on 2019-01-30) and https://github.com/usethesource/rascal/
blob/master/src/org/rascalmpl/library/lang/java/m3/TypeSymbol.rsc (last accessed on
2019-01-30).

5 https://github.com/cwi-swat/clair/blob/master/src/lang/cpp/AST.rsc (last accessed on 2019-
01-30) and https://github.com/cwi-swat/clair/blob/master/src/lang/cpp/TypeSymbol.rsc
(last accessed on 2019-01-30).

15:5

https://github.com/cwi-swat/js-air/blob/master/src/lang/javascript/m3/AST.rsc
https://github.com/cwi-swat/php-analysis/blob/master/src/lang/php/ast/AbstractSyntax.rsc
https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/java/m3/AST.rsc
https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/java/m3/AST.rsc
https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/java/m3/TypeSymbol.rsc
https://github.com/usethesource/rascal/blob/master/src/org/rascalmpl/library/lang/java/m3/TypeSymbol.rsc
https://github.com/cwi-swat/clair/blob/master/src/lang/cpp/AST.rsc
https://github.com/cwi-swat/clair/blob/master/src/lang/cpp/TypeSymbol.rsc

Concrete Syntax with Black Box Parsers

to be represented as a heavily unbalanced tree. Conversely, parsing systems that do
not support left recursive productions (e.g., earlier versions of ANTLR [21]) might
produce convoluted expression trees which are hard to match.

Limited parsing capabilities Parsers in the wild often offer only a small set of start
nonterminals, at the level of whole programs or compilation units. Unfortunately,
this severely limits the applicability of concrete syntax patterns, where patterns are
often applied at the level of arbitrary subtrees, which requires parsing over arbitrary
nonterminals. Furthermore, concrete syntax patterns might contain holes to match
out or insert subtrees in a pattern. External parsers written for a different purpose
will not support the syntax of holes. Addressing both these problems requires invasive
modifications to the parser. Sometimes this might not even be possible, because the
source code of the parser is unavailable. If it is possible, however, it can be a quite
daunting and error-prone task. Most parsers cannot be modularly extended, so existing
code must be modified. When a parser is generated from a grammar formalism, it
might be slightly easier, but would likely still lead to ambiguities or shift/reduce
conflicts, or degradation of performance due to backtracking.

In the next section we assume that the AST marshalling and impedance mismatch
problem is addressed by the user of Concretely explicitly. That is, we assume that
there is a mapping from the external parser’s syntax tree to, in this case, a Rascal AST
structure conforming to a Rascal-defined Algebraic Data Type (ADT). In Section 4
we introduce the Tympanic language to obtain such mappings automatically from a
declarative specification. The second problem is addressed by Concretely, which we
discuss first.

3 Concretely in Rascal

3.1 Introduction

Concretely provides an interface to Rascal meta programmers to connect external
parsers producing ASTs conforming to Rascal data types, leveraging the concrete
pattern matching engine on those ASTs. In this section we introduce the API using
the example language of JSON.

The abstract syntax and Concretely interface for JSON in Rascal are shown in
Figure 2. The abstract syntax is defined by the algebraic data type JSON. It defines con-
structors for booleans, strings, numbers, null, arrays, and objects. An object contains
a list of properties. A Prop property has an identifier (Id) as its name, and a JSON value.
Identifiers of type Id simply wrap a string6.

6 Note that we could have defined an object’s properties simply as a map[str, JSON], using
Rascal’s built-in map data structure, but at present the pattern matching engine does not
support maps, so we fall back to an explicit list of properties. We revisit this problem in
Section 6.

15:6

Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm

Figure 2 A Rascal Concretely module for JSON.

1 module JSONConcretely
2
3 data JSON
4 = boolean(bool b) | number(real n) | string(str s) | array(list[JSON] elts)
5 | null() | object(list[Prop] props);
6
7 data Prop = prop(Id name, JSON val);
8 data Id = id(str name);
9
10 @concreteSyntax{JSON}
11 java JSON parse(str json);
12
13 @concreteSyntax{Prop}
14 Prop parseProp(str prop) = parse("{<prop>}").props[0];
15
16 @concreteHole{JSON}
17 str jsonHole(int id) = "{_hole: <id>}";
18
19 @concreteHole{Prop}
20 str propHole(int id) = "_hole: <id>";

The remaining part makes up the core of the Concretely API. First, for all (abstract)
nonterminals that should be exposed for concrete pattern matching and construction,
a parse function needs to be defined, annotated using the tag @concreteSyntax{T }, where
T represents the nonterminal to be parsed. In this case, when the Rascal interpreter
encounters a concrete syntax fragment of type JSON (e.g., (JSON)`...`), the parse function
is called to turn the pattern into an abstract pattern conforming to the type JSON. Note
that the parse function has the java modifier, which indicates that this function uses
Rascal’s foreign-function interface (FFI) to call an external black box JSON parser
and converter to Rascal’s representation of ASTs.

The parse function may contain more logic to interface with the external parser
if there are restrictions on the start nonterminals of the parser. For instance, if the
external parser can only parse object literals, the parse function could still be defined
as follows:
@concreteSyntax{JSON}
JSON parseWithContext(str json) = parse("{dummy: <json>}").props[0].val;

In this case, the function parseWithContext first wraps the arbitrary JSON string in a
dummy object literal7, parses the object literal using the external parser, and then
returns the property value corresponding to the input. This same technique is used
in the parser for Prop fragments, which are wrapped in curly parentheses to enable
parsing.

The second part of the Concretely API is the construction of placeholder values
for pattern holes. This is realized by the functions jsonHole and propHole, which create
identifiable, dummy JSON strings to represent meta variables in a pattern, without

7 The angular brackets < and > are used for string interpolation here.

15:7

Concrete Syntax with Black Box Parsers

having to modify the external parser. Functions with this purpose are annotated with
@concreteHole{T }, where T represents the nonterminal type of the hole. In this case, a
JSON hole is represented by an object literal of the form {_hole:id}, where id represents a
unique number assigned by Concretely. This unique number is used by Concretely
to replace these dummy placeholders in the result of the external parser with actual
holes before pattern matching or instantiation (cf. Section 3.3).

3.2 Using Concretely

Given a module such as the one shown in Figure 2, it is now possible to use concrete
syntax for matching and construction of JSON terms. Below we show a number of
examples using Rascal’s command-line interface.

For instance, the following snippet shows how to construct a JSON number term8:
> age = (JSON)`29`;
>> number(29.0)

So the user enters actual JSON syntax within the back ticks, and the result is an AST
over the JSON type.

Holes in a pattern can be used to compose more complex terms. The following
interaction shows the construction of an object literal interpolating the previously
created age value as one of its properties:
> p = (JSON)`{name:"Rodin",age:<JSON age>}`;
>> object([prop(id("name"), string("Rodin")), prop(id("age"), number(29.0))])

Concrete patterns can also be used to match ASTs. One way to do pattern matching
in Rascal is by using the infix := operator. The following snippet uses Rascal’s list
matching to check for the presence of a name property in a JSON object:
> (JSON)`{<Prop* _>, name: <JSON _>, <Prop* _>}` := p;
>> true

Effectively, the pattern searches for the first name property in the list of properties in
the object, ignoring properties before and/or after. Internally, the concrete pattern
corresponds to the pattern object([_*, prop(id("name"), _), _*]).

3.3 Implementation

This section describes the implementation of Concretely in the Rascal interpreter.
First, we note that we did not change the grammar of Rascal itself; instead, we reuse
Rascal’s existing notation for concrete syntax fragments, which originally was only
used for languages with a concrete grammar.

This notation consists of two main parts: the type of the concrete syntax fragment
(the nonterminal), and the concrete syntax itself. As an example, consider the following

8 The > character indicates the prompt, and lines starting with >> display the result of evalua-
tion.

15:8

Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm

Concrete pattern (JSON)`{<Prop p>}`

Concretely ⇓ 1©

Textual encoding "{_hole: 0}"

External parser ⇓ 2©

Foreign AST 4
AST marshaller ⇓ 3©

Rascal AST object([prop(id("_hole"), number(0.0))]))

Concretely ⇓ 4©

Abstract pattern object([Prop p])

Figure 3 Steps in the Concretely pipeline.

concrete syntax fragment: (Expr)`1+2`. Here, Expr represents the type, and 1+2 is the actual
object language source fragment.

As seen in the examples, the actual concrete fragment may contain holes <T x> as
placeholders for subtrees. These holes are used to match and bind subtrees of a syntax
tree or insert trees into the pattern. Holes are always qualified with a type to ensure
syntax safety [4].

An overview of the Concretely process is shown in Figure 3. The first step consists
of the interpreter recognizing a concrete pattern and confirming that there is an
ADT with the right name in scope in the interpreter environment (e.g., the JSON data
type of the module JSONConcretely must be visible). Using the functions annotated with
concreteSyntax and concreteHole, the concrete pattern is then converted to an encoded
representation in terms of the ADT (e.g., JSON).

Steps 1©, 2©, and 3© are encapsulated by the concreteSyntax-annotated parse function:
the textual encoding is parsed by the external parser, the output of which is converted
to a Rascal AST.

Concretely then parses the hole placeholders with the applicable concreteSyntax-
annotated parse function to obtain their Rascal equivalent, and replaces occurrences
in the obtained AST with the appropriate hole subtree to turn the resulting AST into
a proper abstract pattern, after which Rascal’s ordinary pattern evaluation logic takes
over. This conforms to Step 4©.

Thus, Concretely reuses the annotated parsers to parse and retrieve the encoded
hole fragments as well. So whenever a function is annotated with concreteHole for some
non-terminal T , this requires a parser for T as well. For instance, in Figure 2, a Prop

hole is encoded as “_hole:n”, but such a string cannot be parsed as is. Therefore, the
function parseProp first wraps such fragments in an object literal and then retrieves the
nested Prop value.

15:9

Concrete Syntax with Black Box Parsers

πJSON

"}"<Prop p>0"{"

lower
−−−−−−→

π̃JSON

"}""_hole:0""{"

flatten
−−−−−−→ "{_hole:0}"

parseJSON
−−−−−−→

object

prop

number

0.0

id

"_hole"

*

lift
−−−−−−→

object

<Prop p>
*

Figure 4 Intermediate representations when processing (JSON)ˋ{<Prop p>}ˋ.

3.4 Formal Description

This section formally describes the individual steps and intermediate representations
in the Concretely pipeline. Let parseT and holeT be the parsing and hole encoding
functions for type T (cf. Section 3.3). To encode hole meta variables in the object
language, we define a mapping lower. First, we index all holes <T x> in a term with
a unique number i. Then, each hole <T x>i is mapped to holeT(i). The lowered hole
is subsequently parsed with parseT to obtain its AST representation. The inverse
mapping lift then maps the obtained AST fragment back to the original hole <T x>. The
mappings lower and lift are defined as follows.

lower=
⋃

<T x>i∈pattern
<T x>i 7→ holeT(i) lift=

⋃

<T x>i∈pattern
parseT(holeT(i)) 7→ <T x>

As an example, consider the pattern of Figure 3. This term describes a JSON object,
containing a hole for a single Prop (cf. Figure 2). Given the parse and hole functions
from Figure 2, the mappings lower and lift are as follows:

lower= {<Prop p>0 7→ "_hole:0"} lift=

prop

number

0.0

id

"_hole"

7→ <Prop p>

Figure 4 illustrates intermediate representations and steps in detail. Internally, the
pattern is translated into a tree over πJSON, the type of concrete patterns over JSON.
This tree has three leaves for its constituent parts, namely the string values "{" and
"}", with a subtree representing the hole <Prop p>0 in the middle. The lower mapping
transforms this tree into a tree over π̃JSON, the type of concrete patterns over JSON
without holes. This tree again has three leaves, namely the string values "{", "_hole:0",
and "}". The intermediate tree is then flattened to a string by concatenating the leaves.
The resulting JSON fragment "{_hole:0}" is input to parseJSON, resulting in a JSON AST
with encoded holes. Finally, the lift mapping turns this tree back into a proper pattern,
this time over the abstract syntax of JSON.

15:10

Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm

4 Tympanic: Mapping AST Class Hierarchies to Algebraic Data Types

4.1 Introduction

External parsers for programming languages come with their own AST representation
for the object language, for instance in the form of an object-oriented class hierarchy
in Java. Meta programming systems, like Rascal, on the other hand, might employ
incompatible paradigms (e.g., class hierarchies vs algebraic data types) to describe
abstract syntax. Using an external parser’s AST in a specific meta programming system,
requires marshalling code to transform an external AST into an internal one, thereby
solving a potentially deep impedance mismatch [13]. This task can be daunting for
two reasons: first, it requires the definition of an abstract grammar on the meta side;
second, it involves writing a transformation that traverses the external AST in order
to build up an internal AST.

In this section we introduce Tympanic9, a mapping DSL that improves this situation
for the case of Java class hierarchies and Rascal’s algebraic data types. Tympanic
supports defining a declarative mapping from Java classes and Rascal data types,
from which the abstract grammar and marshalling code is automatically generated.

4.2 Syntax

Figure 5 shows the (slightly simpified) syntax definition of Tympanic10. A Tympanic
mapping starts with declaring a list of imported Java packages to provide access to
the native ASTs of an external parser. The export clause specifies the qualified name of
the Rascal module that will be generated with the ADT.

The types section provides a mapping from Java types (classes and interfaces) to
Rascal ADTs. Tympanic assumes that a subset of all Java types will map to Rascal ADTs;
multiple Java types can map to the same ADT. This section is used, for instance, to
map a Java interface Expr to a corresponding Rascal ADT Expr, by declaring Expr ⇒ Expr.

The final section defines how concrete objects in a Java AST will be mapped to
constructors of the ADTs introduced in the types section. Every constructor mapping
starts with the declaration of a concrete AST class, followed by one or more patterns
on a Java object, binding and restricting certain Java fields or getters (both captured
by the JavaField nonterminal). In each pattern, the Java fields are positionally mapped
to the arguments of the constructor application after the colon. The types of the
arguments are inferred by analyzing the type hierarchy of Java and the mapping
specification of the types section.

Since in many cases the fields/getters from a Java class do not match directly to con-
structor arguments, fields can be guarded, by restricting their value (e.g., hasBody == true,
or getOp == Operators.PLUS), declaring them optional (e.g., getElse?), or restricting to some

9 The name is inspired by the tympanic cavity in the middle ear, which solves the impedance
mismatch between air and liquid.

10 We use Rascal’s built-in notation for context-free grammars, which mostly corresponds to
standard EBNF. A symbol {S s}∗ indicates a repetition of S, with s as a separator.

15:11

Concrete Syntax with Black Box Parsers

Figure 5 Syntax definition of Tympanic (simplified).

1 start syntax ASTMapping
2 = "mapping" Id Import* "export" {Id "::"}+ "types" Datatype* "constructors" Mapping*;
3
4 syntax Import = "import" {Id "."}+;
5
6 syntax Datatype = Id "=\>" Id;
7
8 syntax Mapping = Id Match+
9
10 syntax Match = "-" {JavaField ","}* ":" Constructor;
11
12 syntax JavaField = Field | "%" Field;
13
14 syntax Field
15 = Id | Id "==" JavaValue | Id "!=" JavaValue | Id "?"
16 | "(" Id ")" Id | "(" Id "[" "]" ")" Id;
17
18 syntax Constructor = Id "(" {Arg ","}* ")";
19
20 syntax Arg = Id | Id Id "=" RascalValue;
21
22 syntax JavaValue = "null" | "true" | "false" | Int | {Id "."}+;
23
24 syntax RascalValue = "true" | "false" | Int | Id "(" {RascalValue ","}* ")";

subtype using Java’s cast notation (e.g., (Integer)getValue). Finally, if a field/getter is
used solely for dispatching but should not end up in the list of constructor arguments,
it can be skipped using %. Optional fields indicated by ? map to Maybe values in Rascal,
since Rascal does not have null-values.

4.3 An Example Tympanic Specification

An example Java AST class hierarchy and corresponding Tympanic mapping specifica-
tion is shown in Figure 6; the resulting Rascal ADT is shown in Figure 7. The class
hierarchy on the right of Figure 6 uses an enum to encode binary operators of the
Binary class. In the mapping each variant is mapped to individual constructors, add, mul,
sub, and div. Since the operator retrieved from getOp is not used in the constructor, it is
skipped using %.

The Cond class implements a conditional expression, but in this case it is known that
the else-branch is optional. Both variants are distinguished using comparison guards
on getElse, mapping to two different AST constructors.

The Block class wraps a sequence of expressions, represented as a Java array. Arrays
and arguments (indirectly) implementing java.util.Iterable are mapped to Rascal lists, as
illustrated on line 6 of Figure 7.

Finally, the Lit class wraps arbitrary Java objects as literal expressions. The Tympanic
mapping specifies three supported types, which are dispatched using the cast notation.

15:12

Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm

Figure 6 Example AST class hierarchy (left) and Tympanic mapping specification (right).

1 package expressions;
2
3 enum Op {
4 PLUS,
5 TIMES,
6 MINUS,
7 SLASH
8 }
9
10 interface Expr { }
11
12 class Binary implements Expr {
13 Expr getLhs() {...}
14 Expr getRhs() {...}
15 Op getOp() {...}
16 }
17
18 class Cond implements Expr {
19 Expr getCond() {...}
20 Expr getThen() {...}
21 Expr getElse() {...}
22 }
23
24 class Block implements Expr {
25 Expr[] getBody() {...}
26 }
27
28 class Lit implements Expr {
29 Object getValue() {...}
30 }

1 mapping ExprAst
2
3 import expressions
4
5 export expr::Expr
6
7 types Expr ⇒ Expr
8
9 constructors
10
11 Binary
12 - %getOp == Op.PLUS, getLhs, getRhs: add(lhs, rhs)
13 - %getOp == Op.TIMES, getLhs, getRhs: mul(lhs, rhs)
14 - %getOp == Op.MINUS, getLhs, getRhs: sub(lhs, rhs)
15 - %getOp == Op.SLASH, getLhs, getRhs: div(lhs, rhs)
16
17 Cond
18 - getCond, getThen, %getElse == null: ifThen(cond, then)
19 - getCond, getThen, getElse != null: ifThenElse(cond, then,

,→ els)
20
21 Block
22 - getBody: block(body)
23
24 Lit
25 - (Integer)getValue: integer(intVal)
26 - (Boolean)getValue: boolean(boolVal)
27 - (String)getValue: string(strVal)

Figure 7 Generated Rascal module from the Tympanic mapping of Figure 6.

1 module expr::Expr
2
3 data Expr
4 = add(Expr lhs, Expr rhs) | mul(Expr lhs, Expr rhs) | sub(Expr lhs, Expr rhs) | div(Expr lhs, Expr rhs)
5 | ifThen(Expr cond, Expr then) | ifThenElse(Expr cond, Expr then, Expr els)
6 | block(list[Expr] body)
7 | integer(int intVal) | boolean(bool boolVal) | string(str strVal);

In this case, the marshalling code generated by Tympanic will convert the Java
primitive types to corresponding Rascal values of type int, bool, and str, respectively.

As an alternative to dispatching each constant of an enum to a unique constructor,
enums can be mapped to inferred Rascal ADTs using the Type arg = ... notation for a
Rascal argument. For instance, the following constructor mapping would implicitly
introduce the Op data type:
Binary
- getOp == Operator.PLUS, getLhs, getRhs: binary(Op op = plus(), lhs, rhs)

In this case, Tympanic will generate the following ADTs:

15:13

Concrete Syntax with Black Box Parsers

data Expr = binary(Op op, Expression lhs, Expression rhs);
data Op = plus();

4.4 Implementation

Tympanic has been implemented in Rascal, and consists of two components, gener-
ating the Rascal ADT and the marshalling Java code, respectively. Both compilation
steps rely on type analysis of the Java class hierarchy. Tympanic uses the JDT binding
to the M3 meta model [6] to inspect the Java type inheritance relation in order to
map constructors to their nonterminal types, and to obtain the types of fields and
getters.

In the first compilation step, the Tympanic specification is compiled to the cor-
responding abstract Rascal grammar, as illustrated in Section 4.3. The types section
is used to obtain the ADT type corresponding to the constructor in a constructor
mapping. To obtain the type of a constructor argument, the return type of the field or
getter is found through the M3 model.

The second compilation step yields a marshaller, which performs the conversion
from the external AST to a value corresponding to the ADT generated in the first
step. The marshaller is essentially a visitor over the external AST, with entry points
for all nonterminals in the specification. For each of the nonterminals, the compiler
detects which mapping rules apply to a subtype of the external type, and generates an
instanceof switch over all possibilities. All relevant mapping constraints (cf. Section 4.2)
are then evaluated to ensure that the rule applies. Finally, all external arguments are
evaluated and visited, so that the Rascal constructor value can be built and returned.

In total the Tympanic implementation consists of ±500 source lines of Rascal code11.
Section 5.2 discusses the benefits in terms of effort when using Tympanic compared
to manual implementation of AST marshalling.

5 Evaluation

5.1 Benefits of Concretely

In Section 3.1, we described the necessary components to implement concrete syntax
pattern matching, and illustrated the technique with the JSON language. In this
section we evaluate Concretely in the context of three mainstream programming
languages, C++, Java, and JavaScript.

Table 2 shows an overview of each of these Concretely instantiations, estimating
effort in terms of source lines of code (SLOC). The C++ binding is based on the
Eclipse CDT parser. C++ is a large language, requiring 7232 SLOC of mapping code;

11 https://github.com/cwi-swat/tympanic/tree/f0e3b454289204a55ba637b4bea196fa0490411d
(last accessed on 2019-01-30).

15:14

https://github.com/cwi-swat/tympanic/tree/f0e3b454289204a55ba637b4bea196fa0490411d

Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm

Table 2 Evaluation of Concretely in terms of SLOC.

Language Parser ADT Mapping Binding

C++12 Eclipse CDT 387 7232 55
Java13 Eclipse JDT 183 1806 49
JavaScript14 Nashorn 130 429 22

Figure 8 An excerpt from Rascal’s abstract C++ grammar.

1 data Declaration
2 = translationUnit(list[Declaration] declarations)
3 | functionDefinition(Expression returnSpec, Declarator declarator, Statement body)
4 | ...
5 ;
6
7 data Statement
8 = compoundStatement(list[Attribute] attributes, list[Statement] statements)
9 | ...
10 ;

in this case, this has been partially generated from the C++ ADT specification. The
actual Concretely code is limited to 55 SLOC, demonstrating that, given a mapping
from foreign AST to Rascal AST, setting up Concretely requires very little effort.

In Rascal, the abstract grammar for C++ consists of more than 300 constructors,
over 11 data types. A small excerpt of the abstract syntax data type is shown in
Figure 8, showing snippets of the Declaration and Statement types. In contrast to JSON,
the C++ syntax has many different syntactic categories, distinguishing, for instance,
statements, expressions, and declarations. The external C++ parser, however, only
accepts whole C++ programs as input. Because of this, the parsing function not only
has to call the external parser, but has to provide some context code for the concrete
syntax fragment, such that the parser is provided with a full program.

This is illustrated using the statement parser shown in Figure 9. The concrete syntax
fragment of a statement is inserted into a function definition. The resulting complete
program is then given to the external parser as input. The (image of the) context
has to be stripped off again from the resulting translationUnit AST (cf. Figure 8), which
produces the image of the concrete syntax fragment.

The Java binding follows a similar pattern, this time reusing the Eclipse JDT pre-
sentation parser as backend. The mapping to Rascal AST is smaller, because there are
fewer constructors and nonterminals in Java’s abstract syntax. The Concretely code
is of comparable size, since for both languages, we have implemented bindings for 5
nonterminals.

12 https://github.com/cwi-swat/clair (last accessed on 2019-01-30).
13 https://github.com/usethesource/rascal-eclipse/tree/master/rascal-eclipse/src/org/

rascalmpl/eclipse/library/lang/java/jdt (last accessed on 2019-01-30).
14 https://github.com/cwi-swat/js-air (last accessed on 2019-01-30).

15:15

https:/ /github.com/cwi-swat/clair
https:/ /github.com/usethesource/rascal-eclipse/tree/master/rascal-eclipse/src/org/rascalmpl/eclipse/library/lang/java/jdt
https:/ /github.com/usethesource/rascal-eclipse/tree/master/rascal-eclipse/src/org/rascalmpl/eclipse/library/lang/java/jdt
https:/ /github.com/cwi-swat/js-air

Concrete Syntax with Black Box Parsers

Figure 9 Concretely code for C++ (excerpt).

1 @concreteSyntax{Statement}
2 Statement parseStatement(str stmt) {
3 str prog = "void dummy() { <stmt> }";
4 Declaration decl = parseFromString(prog);
5 return decl.declarations[0].body.statements[0];
6 }

Table 3 Comparing SLOC of Tympanic vs manual implementation of C++mapping. In the
Tympanic mapping, the ADT and Marshaller code is generated from the Tympanic
specification.

Mapping Tympanic ADT Marshaller

Manual – 387 7232
Tympanic15 411 308 4433

JavaScript is a much smaller language than Java and C++ in terms of syntax.
The SLOC numbers are therefore much lower for the ADT and mapping code. The
Concretely binding code is roughly of the same order of magnitude as the others.

5.2 Tympanic vs Manual Implementation

We have defined a mapping for the Eclipse CDT C++ parser using Tympanic; the
results in terms of lines of code are shown in Table 3. The grammar and marshaller
that are compiled from this Tympanic specification are equally expressive as the
manual implementation discussed in Section 5.1, although there are some differences.

First, next to the grammar and marshaller code that make up the figures in Table 2,
the manual implementation contains additional code for name and type resolu-
tion. Since this functionality is not sufficiently generalizable, this is not included in
Tympanic. Second, the manual implementation does not inline several commonly
occurring fields (such as static, const, and signed) into every constructor, but are bundled
in a list of modifiers, to improve readability. Finally, instead of using Maybe values
(cf. Section 4.2) to encode optionals, the manual implementation uses constructor
overloading instead.

Table 3 shows an overview of both the manual and the Tympanic-generated map-
pings in terms of SLOC. Note that for the Tympanic specification, the ADT and
marshalling code are generated from the Tympanic specification, whereas for the
manual implementation, the ADT was written by hand, and the marshalling code was
manually written or generated using a one-off approach.

15 https://github.com/cwi-swat/tympanic/blob/f0e3b454289204a55ba637b4bea196fa0490411d/
src/tympanic/cdt.tymp (last accessed on 2019-01-30).

15:16

https://github.com/cwi-swat/tympanic/blob/f0e3b454289204a55ba637b4bea196fa0490411d/src/tympanic/cdt.tymp
https://github.com/cwi-swat/tympanic/blob/f0e3b454289204a55ba637b4bea196fa0490411d/src/tympanic/cdt.tymp

Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm

6 Discussion and Related Work

The results shown in Table 2 show that, given an external black box parser and
mapping from foreign AST to Rascal AST, making a language eligible for concrete
syntax matching and construction requires little effort. Nevertheless, there are some
limitations and further directions for Concretely.

6.1 Limitations and Further Directions

Hole Capture First of all, the user-defined encoding of holes should be unique. If
there are ordinary terms that look like holes, the pattern matching engine might
incorrectly turn a term into a pattern. For instance, consider the case that the user
expresses the following JSON term.
(JSON)`{_hole: 0}`

Concretely will (correctly) not identify this as a hole, since the liftmapping is empty
(cf. Section 3.4). However, when there are metavariables in the pattern, this can lead
to confusing ambiguities. For instance, the following expression will be (accidentally)
turned into a non-linear match:
(JSON)`[<JSON x>, {_hole: 0}]` // ⇒array([<JSON x>, <JSON x>])

Currently, it is up to the users of Concretely to ensure that such accidental captures
of holes are unlikely to happen, for instance, by using sufficiently atypical names and
patterns. A possible solution for improving this is to use the source locations (e.g.,
filename and character offset) of the holes in the meta program as part of the unique
representation. The likelihood of such values to be accidentally occurring in object
terms is very small.

Built-in Datatypes The current implementation of Concretely only supports match-
ing and construction of algebraic data type values and lists. Rascal, however, supports
additional built-in data types, such as primitive types for integers, strings, booleans
etc., and a range of collection types, such as sets, n-ary relations, and maps. It would
be interesting to see if Concretely can be extended to support these types in concrete
syntax patterns as well.

For instance, consider the representation of properties in JSON object literals of
Figure 2. Currently this is defined as a list of Prop values, which supports matching
against property ASTs. Alternatively, the object constructor could also have been defined
as follows:
data JSON
= ... | object(map[str, JSON] props);

Here, an object literal simply contains a map from string values to JSON values. The
concrete syntax pattern syntax would then have to change to support patterns like
the following:
(JSON)`{<str name>: <JSON _>} := someJson`

15:17

Concrete Syntax with Black Box Parsers

The pattern now contains a primitive hole of type str, to match out the name of a
property. Furthermore, the pattern matching engine would also have to be extended
to match a sequence of syntactic elements to the actual map structure produced by the
parser.

6.2 Related Work

The relation between concrete syntax (as defined by grammars or parsers) was first
explored in the Popart language [26] and the Syntax Definition Formalism (Sdf) [12].
The Popart language processing system offers an automatic conversion from a concrete
Yacc [14] specification to an abstract BNF-style grammar. The Sdf grammar formalism
explored the relation from an algebraic specification perspective. The definition of
Sdf includes an automatic mapping from concrete grammars and algebraic signatures
on the one hand, and concrete syntax trees and algebraic terms, on the other hand.
In the context of Concretely, this mapping needs to be provided explicitly, for each
black box parser that is used.

Sdf formed one of the two pillars of the Asf+Sdf system [7, 16]. Asf+Sdf is
unique in that it only supports concrete syntax patterns, with an extremely minimal
meta language, consisting of conditional rewrite rules. These rewrite rules operate
on concrete syntax trees (parse trees) directly. The syntax of holes would be explicitly
defined by the programmer (in the Sdf’s variables section), and the grammar would be
merged with Asf’s rewrite rule skeleton syntax.

A mapping similar to the one defined by Sdf is used in the Stratego transformation
system [25], where it is called implode. Stratego has been extended later to support
concrete syntax patterns [24]. To use concrete syntax in Stratego the object language
grammar is merged with the meta language, with additional rules for meta variables
(holes), similar to Asf+sdf’s approach. A meta program is then parsed with the
extended grammar in one go, and the patterns are imploded to abstract patterns, like
in Concretely.

Stratego and Concretely have similarities in approach. For instance, the grammar
attributes ToTerm and FromTerm are similar to Concretely’s concreteHole and concreteSyntax

annotations. In Concretely, however, they apply to functions defined by the user,
whereas in Stratego they represent embedding rules from meta language to object
language and vice versa.

Integrating concrete syntax as part of a functional programming language was
explored earlier in the work of Aasa, Petersson, and Dynek [1, 2]. Programmers can
define conctypes, algebraic data types defined with concrete grammar rules. Again,
however, this requires a built-in grammar formalism and a parser that is able to
parse the combined syntax of the meta language and object language terms. Rascal’s
standard concrete syntax feature uses a two stage approach: first the patterns are
parsed as strings with holes (similar to πJSON in Figure 4), which are then parsed
using an augmented object language grammar with (generic) placeholders for the
holes. Concretely has removed the requirement of the presence of such a concrete
grammar.

15:18

Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm

TXL [9, 10] is a source code transformation system which employs rewrite rules
using concrete syntax. Its implementation uses a variant of LL(1) parsing, with or-
dered alternatives. As a result, new alternatives to a production rule can be added
incrementally to extend a base grammar. Source code is then sequentially parsed by
all overrides, yielding ASTs for matching and rewriting. Unlike in other approaches,
there is no explicit definition of the abstract syntax in the form of algebraic data type
or signature.

Object-relational mapping (ORM) is a technique to make use of relational databases
in object-oriented programming languages [13]. A programmer defines a mapping
between database tables and object structures. This mapping then provides a pro-
grammatic interface to the underlying database. ORM is notoriously known for the
problem of impedance mismatch, resulting from the differences between the underly-
ing paradigms of object-oriented languages and relational databases.

Lämmel and Meijer [20] give an overview of mappings, mapping concepts, and
various instances of impedance mismatches among major data modeling and pro-
cessing paradigms. Tympanic solves the impedance mismatch problem between class
hierarchies and algebraic data types, both representing ASTs for a language.

Migrating from an old API to a new API is a challenging task, even when the APIs are
very similar. Bartolomei, Czarnecki, Lämmel, and Van der Storm [5] describe several
approaches to migrate between the JDOM and DOM APIs for XML, of which using
grammar-based API protocols is the most satisfactory solution. Writing a Tympanic
specification could similarly be seen as writing annotations on a foreign API.

7 Conclusion

Concrete syntax patterns provide a convenient way to match, decompose, and con-
struct syntax trees. However, transformation systems with concrete object syntax
support often require a hand-crafted grammar in the system’s own formalism, which
can be too costly to construct. In this paper, we have presented Concretely, a
lightweight approach to allow the use of concrete syntax patterns by reusing exter-
nal, black box parsers. The programmer writes concrete syntax patterns, but pattern
matches and constructs abstract syntax trees under the hood.

Concretely requires meta programmers to define custom parse functions for each
nonterminal of the abstract syntax of a language, calling out to the external parser
and converting its native AST to the desired AST structure in the meta programming
system. Additionally, the programmer provides functions to encode placeholders
(meta variables) of a pattern into a form that can be understood by the external
parser, and is sufficiently unique for Concretely to translate back to a proper abstract
pattern.

We have implemented Concretely in Rascal, a meta programming system and
language for source code analysis and manipulation [18]. Using this prototype imple-
mentation we were able to define concrete syntax patterns for industrial programming
languages (Java, JavaScript, and C++) using only a few dozen lines of code. Further-
more, to alleviate the burden of writing the mapping between an external parser’s

15:19

Concrete Syntax with Black Box Parsers

AST structures and Rascal’s internal representation, we proposed Tympanic, a DSL
for declaratively mapping Java class hierarchies to algebraic data types. Both the
algebraic data type and marshalling code is generated automatically, realizing an
order of magnitude reduction in lines of code compared to manual implementation.

Directions for further research include supporting a mixture of primitive data type
matching/construction in concrete patterns, making Concretely more robust against
accidental capturing of placeholders, and parsing patterns at compile-time for early
detection of syntax errors.

Acknowledgements The first author was supported by NWO grant BISO.15.04: “Model
Extraction for Re-engIneering Traditional Software (MERITS)”, in collaboration with
Philips Healthcare, Best, The Netherlands.

References

[1] Annika Aasa. “User Defined Syntax”. PhD thesis. Dept of Computer Science,
Chalmers University, Sweden, 1992. isbn: 91-7032-738-6.

[2] Annika Aasa, Kent Petersson, and Dan Synek. “Concrete Syntax for Data Objects
in Functional Languages”. In: Proceedings of the 1988 ACM conference on LISP
and functional programming. LFP’88. ACM, 1988, pages 96–105. doi: 10.1145/
62678.62688.

[3] Robert S. Arnold. Software Reengineering. IEEE Computer Society Press, 1993.
isbn: 0-8186-3271-2.

[4] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. “Repleo: A Syntax-
safe Template Engine”. In: Proceedings of the 6th International Conference on
Generative Programming and Component Engineering. GPCE’07. ACM, 2007,
pages 25–32. doi: 10.1145/1289971.1289977.

[5] Thiago T. Bartolomei, Krzysztof Czarnecki, Ralf Lämmel, and Tijs van der Storm.
“Study of an API Migration for Two XML APIs”. In: SLE 2009: Software Language
Engineering. Volume 5969. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2010, pages 42–61. doi: 10.1007/978-3-642-12107-4_5.

[6] Bas Basten, Mark Hills, Paul Klint, Davy Landman, Ashim Shahi, Michael Stein-
dorfer, and Jurgen Vinju. “M3: a General Model for Code Analytics in Rascal”.
In: Proceedings of the 2005 IEEE 1st International Workshop on Software Analytics.
SWAN’15. IEEE Computer Society, 2015. doi: 10.1109/SWAN.2015.7070485.

[7] Mark van den Brand, Arie van Deursen, Jan Heering, Hielkje de Jong, Merijn
de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter Olivier, Jeroen
Scheerder, Jurgen Vinju, Eelco Visser, and Joost Visser. “The Asf+Sdf Meta-
Environment: A Component-Based Language Development Environment”. In:
Electronic Notes in Theoretical Computer Science 44.1 (2001), pages 3–8. doi:
10.1016/S1571-0661(04)80917-4.

15:20

https://doi.org/10.1145/62678.62688
https://doi.org/10.1145/62678.62688
https://doi.org/10.1145/1289971.1289977
https://doi.org/10.1007/978-3-642-12107-4_5
https://doi.org/10.1109/SWAN.2015.7070485
https://doi.org/10.1016/S1571-0661(04)80917-4

Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm

[8] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. “Implementing
Multi-stage Languages Using ASTs, Gensym, and Reflection”. In: GPCE 2003:
Generative Programming and Component Engineerin. Volume 2830. Lecture
Notes in Computer Science. Springer-Verlag, 2003, pages 57–76. doi: 10.1007/
978-3-540-39815-8_4.

[9] James R. Cordy. “TXL – A Language for Programming Language Tools and
Applications”. In: Electronic Notes in Theoretical Computer Science 110 (2004).
Edited by G. Hedin and E. Van Wyk, pages 3–31. issn: 1571-0661. doi: 10.1016/j.
entcs.2004.11.006.

[10] James R. Cordy, Thomas R. Dean, Andrew J. Malton, and Kevin A. Schneider.
“Source transformation in software engineering using the TXL transformation
system”. In: Information and Software Technology 44.13 (2002), pages 827–837.
doi: 10.1016/S0950-5849(02)00104-0.

[11] Arie van Deursen and Joost Visser. “Source model analysis using the JJTraveler
visitor combinator framework”. In: Software: Practice and Experience 34.14
(2004), pages 1345–1379. doi: 10.1002/spe.616.

[12] Jan Heering, Paul R. H. Hendriks, Paul Klint, and Jan Rekers. “The syntax
definition formalism Sdf – reference manual –”. In: ACM SIGPLAN Notices 24.11
(1989), pages 43–75. doi: 10.1145/71605.71607.

[13] Christopher Ireland, David Bowers, Michael Newton, and Kevin Waugh. “A
classification of object-relational impedance mismatch”. In: Proceedings of the
2009 First International Confernce on Advances in Databases, Knowledge, and
Data Applications. DBKDA’09. IEEE Computer Society. 2009. doi: 10.1109/DBKDA.
2009.11.

[14] Simon C. Johnson. Yacc: Yet another compiler-compiler. Computer Science Techni-
cal Report 32. Bell Labs, 1975.

[15] Karl T. Kalleberg and Eelco Visser. “Spoofax: An Interactive Development Envi-
ronment for Program Transformation with Stratego/XT”. In: Proceedings of the
Seventh Workshop on Language Descriptions, Tools and Applications. Edited by
A. Sloane and A. Johnstone. Electronic Notes in Theoretical Computer Science.
Elsevier, 2007, pages 47–50.

[16] Paul Klint. “A meta-environment for generating programming environments”.
In: ACM Transactions on Software Engineering and Methodology 2.2 (1993),
pages 176–201. doi: 10.1145/151257.151260.

[17] Paul Klint, Ralf Lämmel, and Chris Verhoef. “Toward an Engineering Disci-
pline for Grammarware”. In: ACM Transactions on Software Engineering and
Methodology 14.3 (2005), pages 331–380. doi: 10.1145/1072997.1073000.

[18] Paul Klint, Tijs van der Storm, and Jurgen Vinju. “RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation”. In: Proceedings of the
2009 Ninth IEEE International Working Conference on Source Code Analysis and
Manipulation. SCAM’09. IEEE Computer Society, 2009, pages 168–177. doi:
10.1109/SCAM.2009.28.

15:21

https://doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/10.1016/j.entcs.2004.11.006
https://doi.org/10.1016/j.entcs.2004.11.006
https://doi.org/10.1016/S0950-5849(02)00104-0
https://doi.org/10.1002/spe.616
https://doi.org/10.1145/71605.71607
https://doi.org/10.1109/DBKDA.2009.11
https://doi.org/10.1109/DBKDA.2009.11
https://doi.org/10.1145/151257.151260
https://doi.org/10.1145/1072997.1073000
https://doi.org/10.1109/SCAM.2009.28

Concrete Syntax with Black Box Parsers

[19] Tobias Kuipers and Joost Visser. “Object-oriented tree traversal with JJForester”.
In: Electronic Notes in Theoretical Computer Science 44.2 (2003). Edited by
Mark van den Brand and Didier Parigot, pages 34–58. doi: 10.1016/S1571-
0661(04)80919-8.

[20] Ralf Lämmel and Erik Meijer. “Mappings Make Data Processing Go ’Round”.
In: GTTSE 2005: Generative and Transformational Techniques in Software En-
gineering. Volume 4143. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2006, pages 169–218. doi: 10.1007/11877028_6.

[21] Terence J. Parr and Russell W. Quong. “ANTLR: A predicated-LL(k) parser
generator”. In: Software: Practice and Experience 25.7 (1995), pages 789–810.
doi: 10.1002/spe.4380250705.

[22] Terence Parr and Kathleen Fisher. “LL(*): The foundation of the ANTLR parser
generator”. In: ACM SIGPLAN Notices 46.6 (2011), pages 425–436. doi: 10.1145/
1993498.1993548.

[23] Tim Sheard and Simon Peyton Jones. “TemplateMeta-programming for Haskell”.
In: ACM SIGPLAN Notices 37 (2002), pages 60–75. doi: 10.1145/581690.581691.

[24] Eelco Visser. “Meta-programming with Concrete Object Syntax”. In: GPCE 2002:
Generative Programming and Component Engineering. Edited by Don S. Batory,
Charles Consel, and Walid Taha. Volume 2487. Lecture Notes in Computer
Science. Springer, 2002, pages 299–315. doi: 10.1007/3-540-45821-2_19.

[25] Eelco Visser. “Program transformation with Stratego/XT”. In: Domain-specific
program generation. Edited by Christian Lengauer. Volume 3016. Lecture Notes
in Computer Science. Springer-Verlag, 2004, pages 216–238. doi: 10.1007/978-3-
540-25935-0_13.

[26] David S. Wile. “Abstract Syntax from Concrete Syntax”. In: Proceedings of the
19th International Conference on Software Engineering. ICSE’97. ACM, 1997,
pages 472–480. doi: 10.1145/253228.253388.

15:22

https://doi.org/10.1016/S1571-0661(04)80919-8
https://doi.org/10.1016/S1571-0661(04)80919-8
https://doi.org/10.1007/11877028_6
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/581690.581691
https://doi.org/10.1007/3-540-45821-2_19
https://doi.org/10.1007/978-3-540-25935-0_13
https://doi.org/10.1007/978-3-540-25935-0_13
https://doi.org/10.1145/253228.253388

Rodin T. A. Aarssen, Jurgen J. Vinju, and Tijs van der Storm

About the authors

Rodin T. A. Aarssen is a PhD candidate in the Software Analysis
and Transformation group at Centrum Wiskunde & Informati-
ca (CWI) and Eindhoven University of Technology. His research
focuses on meta programming techniques to perform analyses
and transformations on existing software. He can be reached at
Rodin.Aarssen@cwi.nl.

Jurgen J. Vinju is full professor of Automated Software Analysis
at Eindhoven University of Technology, research group leader at
Centrum Wiskunde & Informatica (CWI), and senior language
engineer and co-founder of SWAT.engineering. He studies the
design and evaluation of (applications of) meta programming
systems to get the complexity of source code maintenance under
control. Examples are metrics and analyses for quality control or
debugging, and model driven engineering for code generation.
For more information, see http://www.cwi.nl/~jurgenv. He can be
reached at Jurgen.Vinju@cwi.nl.

Tijs van der Storm is senior researcher in the Software Analysis
and Transformation group at Centrum Wiskunde & Informatica
(CWI), and full professor in Software Engineering at the University
of Groningen. His research focuses on improving programmer expe-
rience through new and better software languages and developing
the tools and techniques to engineer them in a modular and inter-
active fashion. For more information, see http://www.cwi.nl/~storm.
He can be reached at T.van.der.Storm@cwi.nl.

15:23

mailto:Rodin.Aarssen@cwi.nl
http://www.cwi.nl/~jurgenv
mailto:Jurgen.Vinju@cwi.nl
http://www.cwi.nl/~storm
mailto:T.van.der.Storm@cwi.nl

	1 Introduction
	2 Concrete Syntax Patterns
	2.1 Motivation
	2.2 Implementing Concrete Syntax Patterns

	3 Concretely in Rascal
	3.1 Introduction
	3.2 Using Concretely
	3.3 Implementation
	3.4 Formal Description

	4 Tympanic: Mapping AST Class Hierarchies to Algebraic Data Types
	4.1 Introduction
	4.2 Syntax
	4.3 An Example Tympanic Specification
	4.4 Implementation

	5 Evaluation
	5.1 Benefits of Concretely
	5.2 Tympanic vs Manual Implementation

	6 Discussion and Related Work
	6.1 Limitations and Further Directions
	6.2 Related Work

	7 Conclusion
	About the authors

