
Path-Sensitive Atomic Commit: Local Coordination Avoidance for
Distributed Transactions

Tim Soethouta,b, Tijs van der Stormb,c, and Jurgen J. Vinjub,d

a ING Bank, Amsterdam, The Netherlands
b Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
c University of Groningen, Groningen, The Netherlands
d Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract Context Concurrent objects with asynchronous messaging are an increasingly popular way to struc-
ture highly available, high performance, large-scale software systems. To ensure data-consistency and sup-
port synchronization between objects such systems often use distributed transactions with Two-Phase Locking
(2pl) for concurrency control and Two-Phase commit (2pc) as atomic commitment protocol.

Inquiry In highly available, high-throughput systems, such as large banking infrastructure, however, 2pl
becomes a bottleneck when objects are highly contended, when an object is queuing a lot of messages because
of locking.

Approach In this paper we introduce Path-Sensitive Atomic Commit (psac) to address this situation. We
start from message handlers (or methods), which are decorated with pre- and post-conditions, describing
their guards and effect.

Knowledge This allows the psac lock mechanism to check whether the effect of two incoming messages at
the same time are independent, and to avoid locking if this is the case. As a result, more messages are directly
accepted or rejected, and higher overall throughput is obtained.

Grounding We have implemented psac for a state machine-based DSL called Rebel, on top of a runtime
based on the Akka actor framework. Our performance evaluation shows that psac exhibits the same scalability
and latency characteristics as standard 2pl/2pc, and obtains up to 1.8 times median higher throughput in
congested scenarios.

Importance We believe psac is a step towards enabling organizations to build scalable distributed applica-
tions, even if their consistency requirements are not embarrassingly parallel.

ACM CCS 2012
Information systems→ Distributed database transactions;
Software and its engineering→ Domain specific languages; State systems; Model-driven software
engineering;
Applied computing→ Enterprise architectures; Event-driven architectures;

Keywords Synchronization, Coordination avoidance, Atomic commitment protocols, Enterprise architectures

The Art, Science, and Engineering of Programming

Submitted October 1, 2019

Published June 8, 2020

doi 10.22152/programming-journal.org/2020/5/3

© Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 5, no. 1, 2020, article 3; 37 pages.

https://doi.org/10.22152/programming-journal.org/2020/5/3
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

1 Introduction

Structuring a software system as a collection of actively communicating objects is
an increasingly popular architecture for large-scale, high performance, and high
availability IT infrastructure. A common challenge in systems is to maintain high
availability and consistency when communicating objects need to synchronize. This is
particularly challenging in the context of large, scalable, highly available enterprise
software. Our experience in the context of ING Bank1 is that financial institutions deal
with large and complex IT landscapes, consisting of many communicating software
applications and components under high request loads, which need to synchronize
to keep data consistent. These systems often perform operations that span multiple
different applications and server nodes with consistency and durability guarantees.

A safe and well-known distributed transaction protocol to implement these dis-
tributed transactions, is Two-Phase Locking (2pl) [35] for isolation with Two-Phase
Commit (2pc) [19] for atomicity. While this approach ensures consistency and serial-
izability, it limits throughput in high-contention objects [5, 22, 27], since transactions
have to wait on locks of other transactions on the same object. High-contention objects
limit the throughput and latency of other objects they communicates with. Depending
on the use case, this can be a problem. Examples with high-contention and strong
consistency requirements are:

tax bank accounts, involved in many money transfers and strict regulations on
turnaround time;
a video view counter on a popular video used for advertisement income calculations;
cases with long-running transactions, where objects stay locked for long periods.

More general, applications with a long tail usage pattern, combined with strict perfor-
mance and consistency requirements, will have high-contention objects.

This paper studies the performance of high-load strict 2pl/2pc in high- and low-
contention use cases and introduces a novel concurrency mechanism named Path-
Sensitive Atomic Commit (psac), which minimizes waiting in busy entities by exploit-
ing high-level, functional knowledge about object behavior to reduce contention.

psac trades computing power for reduced waiting on locks, in order to achieve
higher throughput than strict 2pl. By detecting whether two or more incoming requests
have independent effects psac can start processing more requests in parallel than 2pl.

A request is independent of an already in-progress request if the acceptance or
rejection of it is not influenced by whether the in-progress requests commit or abort.
More details are discussed in section 3.

psac works under the assumptions that:
all objects are state machine-based objects with clearly defined actions;
the behavior of actions is defined by pre- and post-conditions on the local object,
using first order logic with support for integer constraints, respectively describing
their applicability and state effect;

1 https://www.ing.com

3:2

https://www.ing.com

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

an object handles an action as an atomic step, checking the preconditions and
applying its post-conditions;
objects communicate by synchronized actions, which describe an atomic step of a
group of actions on multiple objects;
a group of actions is effectively a transaction among multiple objects.
Separating this functional specification of business objects from their implementa-

tion allows experimenting with different back-ends. In this case we have developed a
code generator mapping high-level specifications, written in a state machine based
domain specific language for financial products called Rebel [43, 44, 45], to an im-
plementation based on the Akka actor framework, employing either 2pl/2pc or psac.
The psac back-end then exploits the model’s action pre- and post-conditions to detect
independence of actions at run time.

Based on these two implementations we evaluate the performance of psac, and com-
pare its performance in the same scenario to the standard of distributed transactions
(acid [21]), which is 2pl/2pc. Our results show that psac consistently outperforms
2pl/2pc in high-contention scenarios. Furthermore, psac retains the same scalability
characteristics as 2pc, but does not guarantee serializability.

The contributions of this paper are as follows:
We introduce psac, a novel concurrency mechanism that exploits semantics of
operations to allow transactions to proceed in parallel if it can be detected that
their effects are independent (section 3).
We describe the implementation of psac based on Rebel, targeting the Akka actor
framework, which provides the basis for our experimental setup (section 4).
We evaluate the performance of both 2pl/2pc and psac, and show that psac
outperforms 2pl/2pc in high-contention scenarios (section 5).

The paper starts with a background on distributed transactions (section 2) and con-
cludes with a discussion of the evaluation (section 6), related work (section 7), further
directions for research (section 8) and conclusion (section 9). Evaluation data is
available on Zenodo [40].

2 Background: Distributed Transactions

Transactions are a mechanism to limit the complexities inherent to concurrent and dis-
tributed systems, such as dealing with hardware failure, application crashes, network
interruptions, multiple clients writing to same resource, reading of partial updates
and data and race conditions [27]. Transactions simplify solving these issues for
clients. They group reads and writes together in a logical unit of work, where either
all commit, or all abort, even in presence of failures. Transactions can be long running
when parties take a long time to respond, for example because of waiting on user
input. The safety guarantees for Transactions are acid [21]: Atomicity, Consistency,
Isolation and Durability.

Historically Isolation in acid guarantees serializability for transactions, meaning op-
erations take effect in a manner equivalent to some serial schedule. However, modern

3:3

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

database systems offer a range of isolation properties weaker than serializability [4].
The reason is the trade-off between safety guarantees and performance of the database.
Weaker isolation guarantees allow for optimization in performance, especially in a
distributed systems setting, where coordination is expensive due to network latency.

This is related to a trade-off in the level of details in the specification of an application.
The more that is explicitly known about an application’s correctness criteria, the more
specific the isolation guarantees can be specialized. In the general case you have to fall
back to stronger isolation guarantees. psac should simulate the behavior of 2pl/2pc
on the object level; since we assume specifications are also on the object level. Strong
system-wide guarantees such as serializability are not scrutinized in the current paper,
although there is a discussion in section 6.2.

Implementing distributed transactions for distributed objects is the focus of this
paper. We use the available semantic knowledge to trade some global isolation guar-
antees for more local performance, resulting in lower latency and higher throughput.

Distributed Transactions ensure atomicity over multiple application nodes or dis-
tributed objects. Two-Phase Locking (2pl) [7, 19, 35] is a concurrency control mech-
anism and makes sure that serializable isolation is maintained on the application
nodes. Two-Phase Commit (2pc) [7, 19, 35] is an atomic commitment protocol that
guarantees Atomicity and Durability.

Concurrency Control and Two-Phase Locking Consider a bank account object with
withdrawal and deposit methods, where a withdrawal should never make an ac-
count balance negative. Without concurrency control, it could be the case that two
withdrawal actions are simultaneously applied to the account. Both read the same
balance and find that individually they do not make the balance negative and are
executed, but together they do make the balance negative, violating the invariant. In
a serializable situation this is not allowed, since only an outcome state equivalent to a
serial execution of both actions would be valid.

Two-Phase Locking (2pl) is a concurrency control mechanism that guarantees
serializable isolation (the i in acid) for a local node or resource. 2pl uses locking to
make sure no concurrent changes are made to a resource. It achieves this by using
two phases, a growing phase and a shrinking phase in this strict order.

In the withdrawal example, the account resource is locked when the action starts
and waits until the first withdrawal action is completed before accepting new actions.

Atomic Commit and Two-Phase Commit Two-Phase Commit (2pc) is an atomic com-
mitment protocol that guarantees Atomicity and Durability (from acid). In itself it
does not guarantee Consistency and Isolation. Consistency is achieved by making
sure the application invariants are maintained by all operations on the resource. The
protocol consists of one Transaction Coordinator and multiple Transaction Partic-
ipants per transaction. Their internal state is persisted to a durable log, and thus
can be recovered in case of failure. The coordinator asks the participants to vote on
the transaction. If all participants respond with YES, the coordinator tells them to
commit the transactions. If any votes NO, the coordinator tells them to abort. When a
participant voted YES, it promises that it will commit when the coordinator requests it,

3:4

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

even in case of failures. 2pc is considered blocking, because if the coordinator fails in
the specific case when participants have voted, but not yet received a commit decision
by the coordinator, the participants are blocked until the coordinator recovers.

Distributed Transactions 2pc and 2pl are combined to implement acid distributed
transactions. 2pl’s locks are only released when the 2pc transactions are finalized.

2pl locks the resource even though a new incoming transaction might be compatible
with the current in-progress transaction, and coordination between the two actions is
not actually necessary. This depends on the functional application requirements, which
could be less strict than serializability while still maintaining all internal consistency
guarantees. The key idea of psac is to use available semantic knowledge to determine
this, e.g. the outcome of the first withdrawal can never interfere with the acceptance
of the second withdrawal when enough run-time balance is available for both. The
incoming transaction can be already started, without violating consistency of the
balance with respect to its specification. We explore this idea in the next section.

3 Path-Sensitive Atomic Commit (psac)

In this section we present Path-Sensitive Atomic Commit (psac), which exploits
statically known preconditions and post-effects to prevent unnecessary locking at run
time, and thus increases performance of the overall system in terms of throughput
and availability. Intuitively psac, like 2pl, is a blocking access protocol between
transaction and object, but instead of the opaque “locked” indicator of 2pl, psac
filters incoming actions which would interact with concurrent actions while letting
independent actions through. The strictness of the gate is determined at run time
using the possible outcomes of in-progress actions determined by the post-effects, and
the preconditions to validate the incoming actions against the outcomes.

Previous work [41] defines independent actions as follows: I E(e1, e2, s) = ∀s′ ∈
State. pre(e1, s)∧post(e1, s, s′) =⇒

�

pre(e2, s) ⇐⇒ pre(e2, s′)
�

. An action e2 is indepen-
dent of an in-progress action e1 in run-time state s, if and only if its preconditions
check result is the same in s and in the post state s′, where e1’s effect is applied, e.g.
two withdrawals when enough balance is available on the bank account. In order
for psac to leverage this at run time, the pre- and post-conditions are required to be
locally checkable and computable, and totally denote the actions’ effects.

psac gives the same atomicity and linearizability guarantees as 2pl/2pc, while
allowing higher throughput when no local dependency exists. Serializability is not
guaranteed, which is discussed in section 6.2. Linearizabilty guarantees an atomic
real-time ordering of operations on a single object, as opposed to the global, multiple
object-guarantees of serializability. Functional correctness in the local participant is
maintained and actions’ effects are applied in the original order of arrival.

psac combines a variant of 2pl with locks that take the semantics of the actions into
account with 2pc. Each resource can have a shared lock when it can be determined that
actions are semantically independent. This includes commutative actions. However,
even for non-commutative actions psac will potentially avoid blocking if actions are

3:5

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

independent in the current run-time state, e.g., two withdrawal actions are non-
commutative, but will run in parallel by psac if the run-time balance is sufficient for
both because neither of them would affect the success or failure of the other one.

psac is faster in accepting actions and increases parallelism when possible, and falls
back to the safe 2pl locking approach when not enough information is available. In
practice, we limit the number of allowed in-progress actions to be sure that the system
can make progress and is not overflowed with accepting new actions on objects. As
a consequence, when limiting the maximum number of parallel actions to 1, psac
degrades gracefully to standard 2pl/2pc, since new actions are delayed until the
single in-progress action’s lock clears.

In a scenario with many participants andmany requests, but in different transactions
(low contention), an application using 2pl/2pc (or psac) is embarrassingly parallel.
This means that each of the participants can do their own computations without the
need to synchronize with others. These kinds of computations are more easily spread
over multiple application nodes.

psac’s performance gain over 2pl/2pc becomes evident when multiple actions on
the same participant are requested in an overlapping time span. The ability to do
parallel processing when application invariants allow it, results in less waiting, and
thus more throughput. It also results in processing actions that would otherwise have
timed out. This benefit becomes clear at a higher request rate, especially in a higher
contention use case, when a few objects are participating in many transactions.

On the other hand, there is also an upper bound to the performance improvement
of psac over 2pl/2pc. If the servers running this application are already maxed out
on one or more resources, such as cpu, memory or network bandwidth, we expect
less improvement, because psac can no longer trade the extra cpu cycles for extra
precondition computations and the extra parallel transactions. In the high-contention
use-case with a high number of requests, 2pl waits most of the time on locks to clear
and many resources are underused. Here lies the biggest performance gain for psac.

3.1 psac in action

figure 1 and figure 2 visualize the general difference between 2pl/2pc and psac when
two actions arrive at the same object in a small time frame. Both figures depict an
object sequence diagram. Comment boxes show the internal state of the object, with
actions in parenthesis as pending updates. Arrows denote sending and receiving of
messages, with withdrawals of €i depicted as ‘−€i’. “apply” and “defer” respectively
denote applying of effects and deferring committed effects until later.

Figure 1, on the left, shows the sequence of events when using 2pl/2pc to syn-
chronize. Consider an account object with balance €100 and a precondition check
on the withdrawal action that prohibits a negative balance after withdrawal. When
withdrawal action C1 (−€30) arrives 1 , its preconditions are checked against the
current balance. C1 is allowed, the resource is locked and a new 2pc-transaction
starts. Even though the account allows the transaction, it is not yet known if the
transaction will be committed or aborted by the coordinator, due to processing in
other transaction participants. Then another withdrawal action C2 (−€50) arrives 2 .

3:6

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

 −€30𝐶1

2P
C

Start −€30

Commit −€30

2P
C

Start −€50

Commit −€50

 −€50𝐶2

€100
 (−€30)

€70
apply −€50
€20

€100
apply −€30
€70

Success −€50

Success −€30

1

2

3

4

Account Entity
2PL/2PC

time

Delay −€50

€70
 (−€50)

Initial balance: €100

Account Entity
PSAC

 −€30𝐶1

2P
C

Start −€30

Commit −€30
2P

C

Start −€50

Commit −€50

 −€50𝐶2

€100
 (−€30)

€100
 (−€30)
 (−€50)

€100
 (−€30)
defer −€50

€100
apply −€30
defer −€50
€70
apply −€50
€20

Success −€50

Success −€30

1

2

3

4

Initial balance: €100

Figure 1 Vanilla Two-Phase Commit Figure 2 Path-Sensitive Atomic Commit

3:7

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

Because the account object is locked, the action is delayed. When C1 commits 3 , its
effects are applied to the account state, resulting in a new balance of €70 and the
object is unlocked. Now, the delayed withdrawal C2 can start, eventually it commits 4

and its effect is applied. This results in the new state of €20. 2pl effectively serializes
the two parallel transactions.

The amount of locking performed by 2pl/2pc can be problematic in situations where
a lot of transactions happen on a single object. For instance, in the case of ING Bank,
when the tax authority pays out benefits to citizens, the bank is required to handle
all these transactions within a specific time frame. The tax authority’s bank account
is highly contended because it is involved with all individual transfers. This would
not scale on such an object-oriented message-based distributed system, because each
withdrawal will have to wait on the previous to finish.

psac improves on this situation by detecting at run time if transactions can be
processed in parallel anyway. The same execution scenario is visualized in figure 2,
illustrating how psac differs from 2pl. We again consider an account object with initial
state €100 and a precondition check that prohibits negative balance. Similar to 2pl,
when withdrawal action C1 is received 1 and no other transactions are in progress, a
new 2pc-transaction is started, but contrary to 2pl, the object is not completely blocked.
When another withdrawal action C2 arrives 2 , it is started because it is independent
of whether the earlier action commits or aborts, since there is enough balance to allow
the withdrawal to proceed in either case. Therefore, C2 is immediately started. psac
can detect this independence, based on in-depth knowledge of the functionality of a
bank account via the preconditions and post-effects of its actions.

In the example scenario, C2 commits 3 earlier than C1, but its effect is delayed to
maintain linearizability of the account. The original requester can be already notified
of the successful result (Success −€50), but not yet the new state of the account, since
this is dependent on the outcome of C1. C2’s effect is deferred. Now, when C1 commits
4 , both effects are applied in order to the account, resulting in a new state of €20.
In situations with non-uniform loads, psac delivers on allowing more transactions

per time span than 2pl/2pc (and thus higher scalability in terms of throughput).
An example with abort is shown in appendix A. We detail the algorithm below and
evaluate these claims in section 5.

3.2 psac Algorithm

listing 1 shows the psac algorithm in pseudo-code. The algorithm maintains three
lists, inProgress containing transactions that have been started, but have not finished
yet; delayed, containing the deferred transactions that have to wait till at least one of
the in-progress transactions completes; and finally queued, containing the transactions
that are successful, but not yet applied to the state of the object, to maintain the
original order of arrival.

On arrival of a command Cnew, its preconditions are checked against all possible
outcomes of the transactions that are currently in progress. If it is allowed in all possible
states, the action is independent and can start processing. For such transactions it is
as if the object is not locked. If there is no possible outcome where the preconditions

3:8

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Listing 1 Pseudo-code of a psac-enabled object

inProgress = []
delayed = []
queued = []

while true:
if incoming command Cnew:
See figure 3 for this part of the algorithm.
S = set of all possible outcome states of Ci ∈
,→ inProgress

if ∀s ∈ S. preconditions of Cnew hold:
inProgress += Cnew

start Cnew

else if ¬∃s ∈ S such that preconditions of Cnew

,→ hold:
reply Fail(Cnew) to requester of Cnew

else
delayed += Cnew

else if commit of Cn:
reply Success(Cn) to requester of Cn

queued += Cn

else if abort of Cn:
reply Fail(Cn) to requester of Cn

inProgress -= Cn

Cm = head(inProgress)
if Cm ∈ queued:
apply Cm

inProgress -= Cm

queued -= Cm

currentDelayed = delayed
delayed = []
for Ci in currentDelayed:
handle Ci as incoming command

of Cnew hold, the action is immediately rejected with a failure reply. Otherwise, if
there is at least one possible state where the preconditions of Cnew hold, the action is
dependent on one of the transactions that are currently in progress, so it is delayed
by adding it to delayed. For such a transaction, the semantics of psac is equal to 2pl.

Whenever an action commits, it is queued for applying the effects to the object’s
state. Since all actions are stored in order of arrival in inProgress, it will be applied
to the state in the same order. This way non-commutative actions do not violate
linearizability. If a transaction aborts, the requester is notified of the failure, and it is
removed from the inProgress list. Finally, if the first element of inProgress is in queued, its
effects are applied to the state, it is removed from inProgress and queued, and all delayed
actions are retried. This results in applying the effects in original arrival order and
makes sure delayed actions are retried as soon as possible.

The key idea of the algorithm is the use of the preconditions and actions’ effects
to construct a tree of all possible outcome states of the set of transactions that are
currently in progress. At run time, given the current object state, the set of in-progress
actions and the new incoming action, we calculate all possible outcome states of
the in-progress actions using the post-effects. This is done by simulating the first
in-progress action in the current state, branching into two possible outcomes: one
where the in-progress action actually commits and the post-effect is applied, and one
where it is aborted and thus not applied. Doing this for all in-progress actions results
in a tree with in its leaves the possible outcome states of the object.

figure 3 shows an example of the potential outcome tree S corresponding to the
scenario of figure 2 and how it is updated when actions arrive. The leaves represent the
potential outcomes. Withdrawal C1 (−€30) arrives 1 at a bank account instance using
psac. The preconditions are valid for C1, and given tentative Abort (−) or Commit (+)
by the 2pc transaction, the possible outcome tree branches to two possible outcomes:
S0 and S0+1, respectively corresponding to a balance of €100 and €70. Withdrawal
C2 (−€50) arrives 2 and its preconditions are valid in all possible outcomes S0 and

3:9

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

Account Instance
PSAC

 -€30𝐶1

 -€50𝐶2

Success 𝐶2

1

Precondition:
Balance €0≥

Initial State
€100

𝑆0

€100
𝑆0

€70
𝑆0+1

+-

€100
𝑆0

€50
𝑆0+2

+-

€70
𝑆0+1

€20
𝑆0+1+2

- +

 -€60𝐶3

 preconditions fail in and : delay until finishes.𝐶3 𝑆0+2 𝑆0+1+2 𝐶3 𝐶2 Commit 𝐶2

€20
𝑆0+1+2

€50
𝑆0+2

€50
𝑆0+2

€20
𝑆0+1+2

Fail 𝐶3

Commit 𝐶1Success 𝐶2

Start 𝐶1

Start 𝐶2

2

3
4

5

6

€20
𝑆0+1+2

time

Figure 3 psac example with internal possible outcome tree and decisions on commands

S0+1, so both possible outcomes branch in similar fashion. Withdrawal C3 (−€60)
arrives 3 , but its preconditions are not valid in all possible states, in particular not
in S0+2 and S0+1+2. C3 is delayed until it is independent from the in-progress actions.
In this case C3 is only dependent on C2. The outcome tree is unchanged, since C3 is
not accepted for processing yet. When C2 is committed by the 2pc coordinator 4 ,
the possible outcome tree is pruned, because the branches where C2 is aborted are
no longer valid, leaving only S0+2 and S0+1+2. After an in-progress action commits or
aborts, in this case C2 5 , delayed actions are retried, here C3. Now preconditions fail
in all possible outcome states, C3 is independent and thus rejected. When C1 commits
6 , the possible outcome tree is pruned again and a single state S0+1+2 remains. The
new state is now calculated by applying the effects in order.

Given all possible outcome states we can check the new incoming action against
all outcomes using its precondition. This gives insight if the action conflicts with any
in-progress action or combinations thereof. If all or none of possible outcomes satisfy
the preconditions, the incoming action is independent and is accepted for processing
or immediately rejected.

A difference from 2pl/2pc is that actions that come in later could be accepted for
commit earlier. Then the effect of the action is delayed until after the previous actions
are committed or aborted, making sure that linearizability of the object is maintained.

3:10

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

4 Implementation: Rebel and Akka

To compare psac to 2pl/2pc in a realistic environment, we prototyped a small ac-
counting service on top of Akka. For the pre- and post-conditions of transactions we
use the Rebel specification language, which aligns with the design requirements of
psac. Our specific use of Rebel and Akka are not essential to the operation of psac
but they are part of our evaluation setup for the performance evaluation in section 5.

4.1 Rebel: a DSL for Financial Products

Rebel is a domain specific language (dsl) for describing financial products, designed
in collaboration with ING Bank, as an experiment to tame the complexity of large
financial IT landscapes [43, 44, 45]. Declarative specifications functionally describe
financial products, such as current- and savings accounts and financial transfers
between them. Rebel specifications are designed to facilitate unambiguous communi-
cation with domain experts, support simulation, verification, testing, and execution
through code generation. Rebel and proprietary derivatives are used by ING Bank
to prototype and understand many different financial products, such as European
payments and open data regulations, banking cards and business lending use cases.
For example the sepa specifications consist of 26 Rebel specifications, totaling 964
lines of code.

An example similar to the bank account example used throughout this paper is
shown in a Rebel-like specification in listing 2. A specification declares an identity
(using the annotation @identity), data fields, and describes the life cycle of a product
as a state machine with actions and pre- and post-conditions on those actions in
predicate logic plus integer constraints.

Listing 2 shows the specification of two classes, Account and MoneyTransfer. An Account is
identified by its iban bank account number, and has a current balance. The life cycle
of an account is as follows: it can be opened, then any number of withdrawals and
deposits may occur, and finally it can be closed. Transitions among states are triggered
by the actions Open, Withdraw, Deposit, and Close respectively. Each event is guarded by
preconditions and describes its effect in terms of post-conditions. For instance, the
Withdraw action requires that the withdrawn amount is greater than zero, and that the
withdrawal does not produce a negative balance. The effect of withdrawal is then
specified as a post-condition on the balance of this account.

The second class MoneyTransfer in listing 2 models a transfer of money between two
accounts. It can simply be booked via the Book action. The Book action is triggered on
two accounts. The effect of booking a money transfer consists of synchronizing the
Withdraw event on the from account, with the Deposit event on the to account. The sync

represents an atomic transaction between two or more entities. In other words, an
underlying implementation must guarantee that either both Withdraw and Deposit
should fail or both should succeed.

The fact that the functional requirements on financial products are formally speci-
fied in Rebel separates the “what” from the “how”. In other words, decoupling the
description of a financial product from its implementation platform allows us to ex-

3:11

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

Listing 2 Rebel specification and state charts of a simple bank account: an Account sup-
ports events Open, Withdraw, Deposit, and Close. A MoneyTransfer can be booked by
synchronizing Withdraw and Deposit on two accounts.

class Account
accountNumber: Iban @identity
balance: Money

initial init
on Open(initialDeposit: Money): opened
pre: initialDeposit ≥ €0
post: this.balance ≡ initialDeposit

opened
on Withdraw(amount: Money): opened
pre: amount > €0, balance - amount ≥ €0
post: this.balance ≡ balance - amount
on Deposit(amount: Money): opened
pre: amount > €0
post: this.balance ≡ balance + amount
on Close(): closed

final closed

class MoneyTransfer
initial init
on Book(amount: Money, to: Account, from:
,→ Account): booked

sync:
from.Withdraw(amount)
to.Deposit(amount)

final booked

Account

Open
Deposit

Withdraw

Close
opened

Transaction
Book

periment with different back-ends for Rebel specifications, by developing different
code generators for different platforms or different run-time architectures. Below
we show how Rebel classes are mapped to Scala classes that can be executed as
actors on the Akka platform. In particular this allows us to experiment with different
implementations of the sync construct, such as 2pl/2pc and psac.

The consistency of the Rebel classes is fully determined by their life-cycle and pre-
and post-conditions and local to the class specification. Isolation guarantees however
are undefined for Rebel synchronization [45], although Rebel’s simulator and model
checker use sequential non-overlapping events, which implies serializability.

4.2 Executing Rebel on Akka

Deployment To support fault tolerance and scalability, the execution of Rebel entities
is deployed on at least two servers so that customer requests can still be processed
when one of the servers breaks down. This means the generated application is a
distributed system. One style of implementing a distributed system is by using the
actor model [25]. Akka [1] is a well-known toolbox for actor-based systems that runs on
the JVM and is widely used to build distributed, message-driven applications. Mapping
Rebel objects to Akka actors is a natural fit and provides sufficient low-level controls
to vary the implementation of the sync construct. This implementation approach
is similar to other reactive architectures such as presented by Debski, Szczepanik,
Malawski, Spahr, and Muthig [13].

Each concrete Rebel class instance is run as an actor in isolation and enables
distribution of the computation over multiple cluster nodes. Class instance actors
are automatically spread over the available cluster nodes to allow for more optimal

3:12

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

spread over resources such as ram and cpu. This enables scaling in and out by moving
the actors to other nodes if needed. Each actor runs as an independent object, so it
performs work without having to wait on other actors, allowing concurrent work. In
theory this means that actor systems scale out linearly, until they have to synchronize.
In practice this means that an actor system scales up until too many of its actors are
blocked by multiple transactions at the same time.

Rebel to Akka Each instance or entity of a Rebel state machine is implemented as
an actor. We use the following features of Akka: Cluster for cluster management
and communication between application nodes; Sharding for distributing actors
over the cluster by sharding on the identity; Persistence enables event sourcing for
durable storage and recovery; and Http for http endpoints definitions and connection
management. These combined Akka features allow us to spread the Rebel instance
actors over a dynamically sized cluster of application nodes. More details on the
implementation using Akka are found in appendix C. The back-end for persistence
is an append-only event sourcing log, for which we use the distributed and linearly
scalable Cassandra database [9].

The runtime guarantees that there is a single actor instance per Rebel class instance
and thus guarantees linearizability on instance level, in the sense that operations
always see all previous updates. Each operation is persisted to the journal before
processing the next, to allow for recoverability and durability in case of failure. The
journal data is replicated over three Cassandra nodes. Reads and writes use the built-in
quorum consistency level of Cassandra to make sure no stale data is read.

An example of the generated Scala code for the Account and MoneyTransfer example of
listing 2 is shown and explained in appendix B.

Synchronization We first consider the 2pl/2pc synchronization strategy. Our imple-
mentation of 2pc follows the description by Tanenbaum and Van Steen [46] extended
with the flattened commit protocol [47] to support nested synchronization in Rebel,
where 2pc participants can add more transaction participants. As optimization the
transaction manager does not wait on the votes of the other participants and immedi-
ately aborts the transaction when one participant aborts. There is a single transaction
manager per transaction and one or more transaction participants, respectively im-
plemented by Akka Persistent FSMs named TransactionManager and TransactionParticipant.
They both define a state machine following the definition and also persist their state
to the persistence back-end, and thus can be recovered in case of failure.

Both manager and participants have timeouts on their initial states, this means that
when no initialization message is received within a given time duration, they will
timeout and abort the transaction. This makes sure that the system does not deadlock,
although it might result in overhead in creation of transaction actors and messaging
when lots of timeouts are triggered.

To make sure no deadlocks happen in other states, timeouts are in place that
trigger retries and eventually stop the actor. In the unlikely case that a participant or
coordinator is not running, the combination of Akka Sharding and Persistence will
make sure it is restarted. This also works when some of the cluster nodes shut down,

3:13

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

are killed, or become unreachable for whatever reason; in that case other nodes will
take over automatically,2 restore the actors and continue the protocol. The blocking
aspect of 2pc, when a transaction manager crashes, is also partly mitigated by message
retries and recovering on another application node.

psac is implemented on top of 2pc. Whenever a new action is received by the actor,
an action decider function decides if the action can be safely executed concurrently.
If the configurable maximum number of parallel transactions per actor is reached,
the action is queued. Otherwise, it calculates the possible outcome states by iterating
all the possible in-progress action interleavings and checks the preconditions in the
calculated states to decide if it can safely start the 2pc transaction for this action. If
dependency is detected, the action is also queued. Note that reducing the maximum
number of parallel transactions to 1 results in vanilla 2pl/2pc behavior.

5 Performance Evaluation

5.1 Research Objectives

In this section, we evaluate the performance of psac relative to 2pl/2pc. First, we find
out in which scenarios 2pl/2pc is sufficient as a Rebel synchronization back-end and
in which scenarios it can no longer maintain sufficient performance. Furthermore, we
are interested in determining when psac performs better for the cases where 2pl/2pc
is no longer sufficient. In order to look at applications that can scale with business
requirements, we focus on scalable and resilient applications that can continue to
grow when performance demands keep growing. We study applications that can scale
over multiple servers.

The experiments are created to fairly compare psac and 2pl/2pc against each other
in the same synthetic scenarios with same load and configuration. We are interested
in the scalability of both 2pl/2pc and psac under similar loads. In other words, we
are interested in to what extent the throughput increases when more nodes are added
to the cluster.

It might seem counter-intuitive that the extra work in psac of calculating the possible
outcomes tree and checking the preconditions against all of these states, can result
in higher performance compared to 2pl/2pc. For an ideally-scheduled batch based
system all extra calculations would worsen performance, since every cpu cycle counts.
In this case, the most time in 2pl/2pc is lost by waiting for the unlock. psac’s parallel
transactions use this otherwise lost time in between for these extra calculations, to
determine safe extra parallelization.

We expect that:
Hypothesis 1. 2pl/2pc and psac perform similarly in maximum sustainable through-
put for actions without synchronization, because objects do not have to wait on each
other.

2 The fundamental problem of determining when to fail over, because node failure, slowness
and network delay are indistinguishable, is out of scope for this paper.

3:14

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

 Application nodes𝑁 or Load generator(s)1 𝑁 Database nodes2𝑁

Gatling Rebel cluster
Node C*

Requests Persists

InfluxDB

 Metrics host1

Experiment/system metrics

Application/system metrics

Database/system metrics

Figure 4 Experiment setup on N nodes. A single or more load generators do http requests
randomly over N Rebel application nodes, backed by 2N Cassandra database
nodes. Relevant experiment and system metrics are reported to InfluxDB for later
analysis.

Hypothesis 2. 2pl/2pc and psac perform similarly in maximum sustainable through-
put for actions with low contention synchronization, because synchronization is evenly
spread over the objects.
Hypothesis 3. psac performs better than 2pl/2pc in maximum sustainable through-
put for actions with high-contention synchronization, because 2pl/2pc has to block
for in-progress actions, where psac allows multiple parallel transactions.

Before it can be determined if psac is generally useful, first we need to find out
whether psac pays off in high-contention scenarios. Since PSAC is a new algorithm
running a complex technological context the answers to these hypotheses are not
trivial: first the expected gain may not be significant compared to other relevant
factors and second the cost of the additional overhead for every transaction may
outweigh the benefits. So, these experiments are designed to first isolate the effect of
psac as compared to 2pl/2pc, and then to try and invalidate the above hypotheses.
If the experiments can not invalidate our claims, then we gain confidence in the
relevance of the new algorithm.

To be sure that we are not running into the limits of (configuring) the infrastructure,
but really into limits of the synchronization implementation, we investigate first how
far we can take the Akka infrastructure without any logic or synchronization.
Hypothesis 0. The actor system infrastructure enables horizontal scalability, which
means that adding more compute nodes increases throughput.

5.2 Deployment Setup

In order to scale to multiple nodes, our experiment setup runs on Amazon ecs (Elastic
Container Service) using Docker images for the Database (Cassandra), the Application,
Metrics (InfluxDB), and the Load generator (Gatling [17]). Figure 4 shows an overview
of the setup. The Cassandra version is 3.11.2 on OpenJDK 64-Bit Server VM/1.8.0_171.
The application runs on Akka version 2.5.13, Oracle Java 1.8.0_172-b11, with tuned
garbage collector G1 with MaxGCPauseMillis=100.

3:15

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

In order to prevent cpu or memory starvation/contention between the application
and the load generator tool, we deploy each of the application components on a
different virtual host on Amazon Web Services (aws). We use ec2 instance type
m4.xlarge3 for all VMs, which are located in the Frankfurt region in a single data
center and availability zone.

Each of these containers is deployed on its own container instance (host), with
the exception of Metrics and Load generator, which share a host. Metrics being sent
asynchronously over udp, to ensureminimal interference with application performance.
cpu and other system metrics are monitored to prevent this.

For realism of the experiments we use the production-ready persistent journal
implementation Cassandra as an append-only log for the persistent actors, so limited
synchronization is done on the database level, although it gives realistic overhead. We
over-provision the database to make sure it is not a bottleneck.

Our tooling supports running the performance load from multiple nodes. Experi-
mentally we discovered that setting up the correct experiment for high load is not
trivial: such as the correct number of file descriptors for connections; garbage col-
lection tuning; library versions with bugs; careful load generation to capture the
sustainable throughput; ratio of application, load and database nodes; collection of
metrics for all components; and validating correct deployment before running the
experiment. We collect system metrics for all machines in order to monitor overload
of any specific part. The low-overhead JDK Flight Recorder profiling is also enabled
for after-the-fact bottleneck analysis of our application nodes. The experiment metrics
results and profiling files are available at Zenodo [40].

When load testing applications, the crafting of the load is very important, and not
trivial. A distinction often used is closed versus open systems [39]. Closed systems
have a fixed number of users, each doing requests to the service, one after another,
limiting the total number of tcp connections. Open systems have a stream of users
requesting at a certain rate, meaning there is no such maximum of concurrent requests
as in a closed system. Typically closed systems are used for batch systems and open
systems for online usage.

For all experiments presented in this paper, we employ a closed system workload
approach. Finding the maximum throughput using an open-world workload quickly
results in an overloaded application, both for 2pl/2pc and psac, which obscures the
differences between them. In an enterprise setting, such as a bank, a (hardware) load
balancer translates the open workload behavior to a more closed world behavior by
limiting the number of network connections and reusing them.

Each request from the load generator to the application will spawn a 2pc coordina-
tor actor for the request a 2pc participant actor for each synchronization participant.
For the bank transfer experiments, this means that for each request, a new Rebel
MoneyTransfer entity actor is started, one 2pc coordinator actor, and three 2pc partici-
pants (for the money transfer and the two accounts). So the number of actors created

3 m4.xlarge: 4 vCPU, 16GiBMemory, EBS-based SSD storage, 750Mbit/s network bandwidth.

3:16

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Table 1 Baseline experiment fit to Amdahl’s law and asymptote

experiment λ (tps) σ ainf = λσ−1 (tps)

Bare 16 751 0.002 923 3 5 729 998
Simple 10 372 0.000 877 3 11 822 028
Sharding 6303 0.004 728 5 1 332 920
Persistence 1928 0.008 159 7 236 281

is roughly five times the number of requests. For our experiment scenarios all actors
are equally spread over all the Akka cluster nodes.

5.3 Baseline Experiments: Akka Scalability

To make sure that Akka or our setup does not influence the result of evaluating the per-
formance of psac, we run four experiments on top of plain Akka to establish horizontal
scalability. The goal of this experiment is to isolate (environment) noise and reduce
confounding factors. The baseline experiments use a setup as similar as possible to
the more involved experiments discussed later. We run multiple variants that increase
in complexity, building up to all the features used by the Rebel implementation, and
measure the maximum sustainable throughput (requests/transactions per second)
per each increment of application complexity.

The following experiments were run:
1. Bare – http: responses are immediately given by the http layer.
2. Simple – http + Actors: each request creates an actor which sends the response.
3. Sharding – http + Sharded Actors: actors are equally spread over the cluster

and send the response
4. Persistence – http + Sharded Persistent Actors: actors are spread equally over

the cluster and wait for a successful write to the persistence layer (Cassandra)
before responding to the request.

The application responds with a json message when the work is described is done. A
request is successful when a 200 http status code is received.

Figure 5 shows the throughput results of the experiments. Data points are through-
put in terms of successful responses per second during the stable load of the experi-
ment, after warm-up and ramp-up of users. For warm- and ramp-up we increase the
number of simulated users over time, to give the application some time to get up to
speed. The plot also shows a fit to Amdahl’s [2] law using a non-linear least squares
regression analysis. For intuitive comparison we include the upper bound of linear scal-
ability line for each of the experiments. Amdahl’s law is defined as: X (N) = λN

1+σ(N−1) ,
where X (N) is the throughput when N nodes are used. Linear scalability means that
the contention σ is 0 and the throughput grows with λ, which denotes the throughput
of the single application node. The fitted values for λ and σ are shown in table 1.

All variants have very different performance per node. This is expected, by the in-
creasingly complex actions performed. Increasingly complex variants have increasing

3:17

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

0k

100k

200k

300k

400k

0 5 10 15 20

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
)

variant Bare Simple Sharding Persistence

Figure 5 Throughput X (N) (violins), Amdahl fit (colored line) and linear scalability upper
bound (transparent line) of baseline experiments

σ, which can be explained by increased synchronization between the Akka application
nodes. All experiments show horizontal scalability up until an expected peak through-
put on Amdahl’s law asymptote (ainf = λσ−1), which is the theoretical maximum
throughput which can not be further improved by adding more nodes.

The results show that our implementation using Akka exhibits horizontal scalability
and corroborates hypothesis 0.

5.4 Synchronization Experiments: psac vs 2pl/2pc

To compare the performance of psac and 2pl/2pc, we run three experiments with
different synchronization characteristics, linked to the relevant hypothesis:
1. NoSync – OpenAccount: A Rebel operation without sync. (Hypothesis 1)
2. Sync – Book: A Rebel operation with sync, synchronizing with Withdraw and

Deposit on two accounts. (Hypothesis 2)
3. Sync1000 – Book on a limited number of accounts, to increase the contention.

(Hypothesis 3)
These different scenarios enable us to see if and when psac improves over 2pl/2pc,
especially in the Sync1000 high-contention experiment. On the one hand NoSync
and Sync show where psac performs similarly 2pl/2pc. On the other hand Sync1000
shows the high-contention scenario where psac improves over 2pl/2pc.

All three experiments use a closed system approach [39], where we limit the number
of concurrent total users. This ensures that the application is not overloaded by too
many requests, causing high failure rates. Each experiment is run consecutively for
increasing node count N , with N load generator nodes (except Sync1000) to grow
the load proportionally. Sync1000 runs a single load generator which increases the

3:18

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

load in incremental steps in order to determine the maximum throughput until the
application overloads.

The high-contention scenario Sync1000 is designed to be as close as possible to a
realistic industry setting, where high-contention objects become a bottleneck. This is
similar to the NewOrder benchmark of the well-known tpc-c [37] online transaction
processing benchmark suite, where a high-contention object is responsible for handing
out order IDs.

In all experiments we compare 2pl/2pc’s and psac’s throughput (X (N)) for a varying
number of application nodes N .

NoSync The NoSync experiment is the Open Account scenario which does not
contain a Rebel sync. It corresponds to hypothesis hypothesis 1, which states that 2pl/
2pc and psac should have similar throughput when there is no synchronization for the
actions involved. The results are plotted in figure 6a. We observe that the throughput
of the two variants is similar, as expected and thus corroborates hypothesis 1. The
throughput is only limited by the cpu-usage on the nodes and the creation of records
in the data store. The metrics data shows that the application cpu usage drops to
around 80% and the data store cpu usage is almost 100%.

Sync The Sync experiment contains a sync in the Book action and corresponds to
hypothesis 2, which states that we expect that psac and 2pl/2pc also have similar
throughput in this low-contention scenario. The results are shown in figure 6b. Here
we also see the same performance for both 2pl/2pc and psac, corroborating hypoth-
esis 2. This can be explained by the experiment setup: The Book actions are done
between two accounts uniformly picked from 100.000 accounts initialized before
the experiment. With a maximum throughput of roughly 1500 and uniformly spread
bookings the probability of overlapping transactions on a single account is low.

The absolute throughput numbers are lower than NoSync, however, which is
explained by the fact that Book has to do more work, since it involves three instances:
one MoneyTransfer and two Accounts.

Sync1000 Finally, Sync1000 introduces artificial contention by reducing the number
of accounts to 1000, corresponding with hypothesis 3. Hypothesis 3 states in high-
contention scenarios that psac is expected to have higher throughput than 2pl/2pc,
because it is able to avoid blocking where 2pl/2pc can not. This results in a difference
between 2pl/2pc and psac, as seen in figure 6c. Since this is the most interesting case
we have run the experiment for higher node counts, and include a fit on Amdahl’s
law, shown in figure 7. Figure 6d contains the fitted parameters. The results show
that psac consistently achieves higher throughput than 2pl/2pc.

The metrics show that both application and data store cpu usage starts dropping
for node counts > 9. This can be explained by contention: busy entities are at their
maximum throughput for 2pl/2pc transactions. In the case of psac this also hap-
pens, because the number of parallel transactions is limited by configuration at 8.
Nevertheless, psac consistently achieves higher throughput.

3:19

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

0

1000

2000

3000

4000

1 3 6 9

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
) variant NoSync2PL/2PC NoSyncPSAC

(a) Throughput X (N) of NoSync

0

500

1000

1500

1 3 6 9

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
) variant Sync2PL/2PC SyncPSAC

(b) Throughput X (N) of Sync

0

1000

2000

1 3 6 9

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
) variant 10002PL/2PC 1000PSAC

(c) Throughput X (N) of Sync1000

variant λ (tps) σ

2pl/2pc 180 0.049 880 9
psac 296 0.049 587 8

(d) Sync1000 experiment fit to Amdahl’s law

Figure 6 Throughput X (N) against number of nodes N . This pirate plot is a combination
of violin plot, box plot and bar chart. Line is the median, points are the data
points. This gives a complete overview of the data (data points and distribution
in violin plot) and an aggregated view.

The graphs in figure 8 display the latency percentiles against increasing throughput.
Since the Y-axis of the different graphs is the same, we can see that the latencies for
all node sizes are similar, but the throughput grows larger when node size increases.
This also shows clearly that psac reaches higher throughput levels and that psac is on
par or better latency-wise with 2pl/2pc up to at least the breaking point of 2pl/2pc,
which is explained by the improved parallelism on psac.

6 Discussion

6.1 Threats to Validity

We distinguish between construct validity, internal and external threats to validity.
Construct validity discusses if the test measures what it claims to measure. Internal
threats are concerned with problems of configuration and bugs in the implementation.
External threats are about the generalization of the results.

Contruct validity Regarding construct validity we have mitigated this risk by first
doing a infrastructure and a NoSync experiment (hypothesis 0), in order to make

3:20

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

0.0k

1.0k

2.0k

3.0k

4.0k

0 5 10 15 20 25

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
)

variant 10002PL/2PC 1000PSAC

Figure 7 Plot of Amdahl fit and corresponding linear scalability upper bound (transparent)
for Sync1000 on higher node counts

n: 18 n: 21 n: 24

n: 9 n: 12 n: 15

n: 1 n: 3 n: 6

0 1000 2000 0 1000 2000 3000 0 1000 2000 3000

0 500 1000 1500 20000 500 1000 1500 2000 0 1000 2000

0 100 200 300 0 200 400 600 0 500 1000

30
100
300

1000
3000

30
100
300

1000
3000

30
100
300

1000
3000

Throughput (tps)

L
a

te
n

c
y
 (

m
s
)

percentiles 50p 95p 99p variant 10002PL/2PC 1000PSAC

Figure 8 Latency percentiles (logarithmic scale) of Sync1000 grouped by number of nodes
(n). Y-axis shared for latency comparison, lower is better. X-axis: higher is better.

3:21

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

sure that we actually measure the intended construct: comparing psac against 2pl/
2pc. How sure can we be that in our situation with a noisy cloud environment, the
results are significant compared to coincidental variation? Our experiments compare
between variants under the same benchmark and implementation to be sure we are
correctly comparing the relevant synchronization implementation parts of the setup.
The baseline experiment (hypothesis 0) makes sure that the setup and environment
are correctly configured, and provides bounds in throughput and latency in which the
results of the actual experiments are to be interpreted. The Sync1000 experiment is
set up in such a way that if psac did not significant improve performance, this would
be visible in the results. The other experiments (NoSync, Sync1000) are its baseline
to show psac’s and 2pl/2pc’s variance is limited in other (low-contention) situations.
This shows that psac’s performance improvement in the high-contention scenario is
not due to noise or external factors.

Internal threats to validity To make sure there are no differences in configuration
and deployment of our experiments, we designed and implemented an experiment
runner to automatically run the different scenarios required for each experiment on
the available aws VMs. The experiments are defined using declarative configuration,
to make them reproducible and without configuration mistakes. For each experiment
each node size is run separately on aws. The use of Docker images and automated
tooling makes sure that the configuration and artifacts for each of the experiments
are the same, except for the specific differences that we want to compare.

Another threat is the Amazon virtual machine environment: this can be a noisy
environment, which influences our experiments. Nodes are run on possibly shared
hosts, which may impact performance depending on noisy neighbors, differences in
hardware, or even time of day. Warm up time is frequently the bottleneck in data
parallel distributed systems on the jvm [30], so this factor may not be eliminated
by our experiments. Experiments may also not have been run long enough to obtain
reliable results. We mitigated this threat partially by (a) designing our experiments to
compare between variants under the same conditions and (b) running the experiments
on many different occasions and manually validating that the results are similar to
previous runs. There is a threat that our findings do not generalise to a broader range
of scenarios.

Another possible influence on the performance results is the persistence layer. In
order to make sure the persistence layer is not the bottleneck, we should monitor
metrics of the database nodes, such as cpu, io and memory usage. If none of them
continuously peak, we assume this is not a bottleneck. However, during the execution
of some of the experiments the persistence layer has not been monitored consistently.

External threats to validity For psac to be correct and consistent, the defined pre-
and post-conditions have to be precise and fully define the checks and effects of an
implementation. In practice psac’s implementation uses the same non-side-effecting
code to calculate the possible outcomes as for the actual state changes. When psac is
used as part of another implementation, care has to be taken.

3:22

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

The load might be too hard on the system, resulting in higher throughput but worse
response times than we want. This could obscure comparison and generalization. For
instance, the Sync1000 experiment for psac showed overall higher throughput, but
also increasing latencies. We expect that tuning of the load reduces the pressure on the
application and will result in improved latencies to 2pl/2pc but at higher throughput.

The experiments reported on in this section are still relatively isolated. In order to
claim generalized applicability, further work is needed to obtain results in different
settings, and different kinds of loads. Related work [41] studies statically independent
events, which is a subset of the independent actions discussed in this paper. They
show that at least 60% of event pairs in state machine models from industry can
benefit from independent actions. To show psac’s performance gains in real-life
scenarios, orthogonal research is needed to show that these independent actions
occur in high-contention scenarios. For instance, it would be interesting to see how
psac performs on some well-known benchmarks, such as tpc-c [37], the twitter-like
Retwis Workload [29], ycsb [10], the SmallBank benchmark [8] and the OLTPBench
benchmark runner [14]. Modeling Ttpc-c’s NewOrder is non-trivial in Rebel, because
of a mismatch with sql transactions, which can contain multiple queries and updates
based on each other, where a Rebel event is non-interactive.

A geo-located setup, furthermore, would make the experiments more realistic,
because round trip times to application nodes and database nodes are relatively large.
We expect contention to be more of a problem there, because the latency of individual
transactions (and thus the amount of locking) goes up. psac could be extended to
employ techniques similar to Explicit Consistency [6] to allow parallel multi-regional
actions without immediate communication.

6.2 Limitations

psac results in performance gains when actions are independent and there is much
contention. So in practice the benefit depends on the use case, because it might not
be a high-contention scenario. psac’s benefit is most clear in the situation where
(a) objects are involved in many (long running) synchronized actions from different
other objects, making that single object a bottleneck for the others and (b) when all
actions being used for synchronization are independent. This situation results in a
scalability limiting factor where psac improves throughput and latency performance
over 2pl/2pc. In the case with many objects which do not interact via synchronization
or the request volume is low, psac’s performance gain is limited, although never worse
than 2pl/2pc in the same situation, as shown by the NoSync and Sync experiments.

A current limitation of psac is that it does not offer fairness for dependent actions.
psac accepts new independent actions when there are also dependent actions in the
wait queue. In a pathological scenario this results in a new in-progress action that
keeps the queued action dependent, and thus will potentially never be removed from
the queue. A potential solution is to consider the dependency of the queued actions
on the incoming action, when determining independence, so that queued actions are
never requeued indefinitely. Another, simpler but less fair, solution is to make sure
only a limited number of independent actions can go before the dependent action.

3:23

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

timeAccount 𝐴

Account 𝐵

𝑇1

𝑇2

Deposit(50)

Withdraw(50)

Interest(10%)

Interest(10%)

€100

€100

Locked
by : Wait𝑇1

Locked by
: Wait𝑇2

Time-out:
 restarts𝑇2

Withdraw(50)

€50

€150

Deposit(50)

Interest(10%)

Interest(10%)

€55

€165

 restarts𝑇2Deadlock continues𝑇1

(a) 2pl/2pc is serializable

time
Account 𝐴

Account 𝐵

𝑇1

𝑇2

Deposit(50)

Withdraw(50)

Interest(10%)

Interest(10%)

€100

€100

€150 €165

€110 €60

(b) psac is not serializable

Figure 9 Example with two events, to show difference in isolation between 2pl/2pc and
psac

psac is not Serializable psac does not guarantee serializability, while 2pl/2pc does.
Consider the following situation, as shown in in figure 9: Two distributed transactions
T1 and T2 are concurrently started. T1 consists of two actions, Deposit(50) and With-
draw(50) on respectively Account A and Account B, both with a balance of €100. T2

consists of two actions Interest(10%) on both Account A and Account B. T1 first arrives
at Account A and T2 arrives first at Account B.

For strict 2pl (see figure 9a) this means that A is locked by T1 and B is locked by
T2. Now both transactions are waiting on the other Account to acquire locks. This
deadlock situation is solved by a deadlock mechanism, such as timeouts: one of the
two transactions times out, its lock is released and the other makes progress.

In this situation psac will allow both transactions to take a shared lock (see fig-
ure 9b), since for each transaction the already in-progress event’s outcome does
not influence the validity of the precondition of the other: Interest(10%) is valid on
Account A, regardless of the commit or abort of Deposit(50). The same holds vice
versa for Account B. Both transactions commit and have their effects applied. For
Account A this results in applying the effects in order or arrival, first Deposit(50),
then Interest(10%): (100+ 50) ∗ 1.10 = 165. For Account B first Interest(10%), then
Withdraw(50): (100 ∗ 1.10)− 50= 60. Both accounts are in a valid state according to
their specification, but notice that the transactions are applied in different order for
the accounts. A first applies T1, then T2. B first applies T2, then T1.

For a valid serializable schedule for the whole system, in this case the two entities,
the resulting state should be equivalent to an outcome state of a sequential execution
of all transactions. Serializability requires one of two possible histories: 〈T1, T2〉 or
〈T2, T1〉. The results of these histories are respectively:
{A : 100, B : 100} →T1 {A : 150, B : 50} →T2 {A : 165, B : 55} and
{A : 100, B : 100} →T2 {A : 110, B : 110} →T1 {A : 160, B : 60}

The outcome for psac in this situation, {A : 165, B : 60}, which is not one of the
valid serializable configurations. Ergo, this counter example shows that psac is not
serializable. Determining the isolation guarantees of psac more precisely is part of
future work.

3:24

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

6.3 Evaluation

We have seen in the previous section that psac outperforms 2pl/2pc in throughput
and its request latency is on par or better. This is due to less locking by psac, which is
isolated by the NoSync experiment, where both psac and 2pl/2pc perform similarly
when no transaction have to wait due to locking. However, psac does not give the
same serializable isolation guarantee as 2pl/2pc. In our experiment scenarios with
withdraw and deposit events this does not lead to different results or outcome states
as in a serializable schedule, because these event’s effects are commutative and result
in serializable histories with psac.

7 Related work

Distributed Transactions in Actor Systems Orleans [34] is an actor based distributed
application framework that implements transactions [15] in a similar way to 2pl/2pc,
but with a central Transaction Manager, which decides if transactions are incompatible.
To support high throughput the distributed object releases the 2pl lock when it
prepares successfully, and already applies the new state. If a transaction triggers an
abort, all the actions on top are also aborted (cascading abort). This solution enables
high throughput, but it drops when aborts happen regularly on congested instances.

Reactors [38] is a distributed computing framework defined on reactors: actors
reacting to events. It uses Reactor transactions with nested sub-transactions, but is
not yet tested in a cluster of nodes. Their current implementation also uses 2pc in the
transaction manager.

Coordination More recent work in distributed systems is investigating requirements
to keep a program functionally correct, instead of focusing on data consistency (or
memory consistency) where registers with single data items are always in a consistent
state, which is what 2pl ensures. The CALM paper [23] hints at creating programs that
are monotonic by construction, by using languages that help monotonic specification.
psac makes sure objects only increases monotonically on the life-cycle lattice of an
entity as defined by its specification. Parallel events are only allowed when the func-
tional application properties (pre-/post-conditions) allow this. This makes sure that
entities are monotonic by construction, w.r.t. their specification. This is a step towards
CALM in the sense that it allows designers to write specifications with coordination,
which in the end are run without local coordination by psac.

ROCOCO [31] reorders transactions at run time, whenever possible, instead of
aborting. It uses offline detection, but only works on stored procedures. Coordination
Avoidance [3, 5] focuses on lock-free algorithms in a geo-replicated setting. It makes
sure that transactions do not conflict, and allows them on multiple geo-located data
centers without coordination. They are eventually merged in an asynchronous fashion.
Bailis [3] states: “Invariant Confluence captures a simple, informal rule: coordination
can only be avoided if all local commit decisions are globally valid.” psac focuses on

3:25

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

local avoidance of coordination of transactions on objects and it is yet to be seen how
well it works in a geo-replicated setting.

psac is based on detecting independence of actions at run time. A compatible
approach [41] to avoid blocking is to use static analysis of pre- and post-conditions to
determine whether certain types of actions are always independent of other types of
actions for all possible run-time states and action field values. Actions which never
influence the outcome of later actions, such as depositing money in the running exam-
ple, can always be safely started in parallel, without checking all possible outcomes of
in-progress actions.

Using commutative operations to reduce coordination is a productive area [3, 5, 6,
18, 23, 32, 36, 48]. Commutative operations always result in the same outcome state,
even when the operations are reordered. These works prevent coordination by relying
on reordering and commutativity of operations in order to allow parallel operations
in mainly geo-distributed data center environments.

Other related work The Escrow Method [33, 47] is a way to handle high-contention
records for long running transactions. Balegas, Duarte, Ferreira, Rodrigues, Preguiça,
Najafzadeh, and Shapiro [6] discuss Escrow reservations with numeric fields divided
over multiple (geo-located) nodes. Each node locally decides up to a maximum
amount, and communicates with the rest when it needs more. In the banking example
this is analogous to splitting the balance of an account in parts and allow nodes to
locally mutate that part without synchronization. Although psac is not optimized for
geo-separation, since an object is not divisible in multiple parts, it is not limited to
numeric fields.

psac is related to Predicate locks [16, 20, 26] and Precision locks [20, 26], but differs
in the sense that the latter operate at the level of tuples. psac supports more granular
locking because two independent actions can change the same field or tuple.

Phase Reconciliation [32] is a run-time technique that splits high-contention objects
over multiple cpu cores. It allows specific commutative operations of a single type
to be processed locally on the core in parallel and after a configurable window the
results are reconciled again. psac operations also cannot return values, however psac
does not require commutative operations or all operations to be of a single type.

Flat Combining [24] is a technique to speed up concurrent access to data structures.
The first thread to get the lock on a shared data structure, processes the operations of
concurrent operations in a batch and informs the requester threads of their respective
results, resulting in improved throughput. psac focuses on distributed transactions,
where the actual transition is determined externally from the object by a transaction
manager and not on applying operations sequentially as fast as possible.

8 Further Directions

In this paper, we have presented psac informally. Further research is needed to obtain
precise results about the isolation guarantees that psac offers. A potential direction

3:26

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

could be to formally verify the correctness of psac, for instance, using TLA+ [28], or
state-based formalization [11].

Further, the implementation of psac could be improved by applying well-known
optimizations of 2pc. For instance, using half round trip time locks [3] the set of
participants is forwarded by the previous participant to the next, in a linked list-like
fashion. This results in half the round trip time for acquiring the locks compared to
the approach where locks are acquired one-by-one by the transaction coordinator.

Additional optimizations are possible in the representation of the outcome tree. For
instance, outcomes could be grouped by abstractions, such as minimum or maximum
values, sets of outcomes, or predicates deduced from pre- and post-conditions. This
reduces the size of the tree, and thus faster precondition checking.

psac can be further improved by reordering of actions, however this requires
commutative operations. At run time it can be checked if an incoming action is
commutative with all in-progress actions, and safely reordered. However, the pre-
and post-conditions should be explicit about time sensitive or otherwise important
functional action ordering.

The depth of the possible outcomes tree is limited by configuration, because it
grows exponentially in the number of in-progress actions. Benchmarks, not shown in
this paper, show that when it grows too big for the bank transfer use case, actions
start timing out. This performance impact of varying this depth greatly depends on
how computationally expensive actions are and how much contention there is, but
also how many other resources are running and their contention. More in-progress
actions, result in more running actors and extra calculations of the tree. It is future
work to find an approach to tune this tree depth.

In order to evaluate the boundaries of applicability of psac, an extra experiment that
tries to maximize the overhead of psac can be created. If computing preconditions
or post states is expensive, the extra calculation overhead could result in worse
performance than the sequential 2pl/2pc approach.

For online user experience keeping tail latencies low is important. We can apply the
techniques presented in The Tail at Scale [12] to make psac more latency tail-tolerant.
This requires sending multiple omnipotent requests to different application nodes and
effectively increasing replication factors of the entities. The current design does not
fit this yet, since the runtime makes sure only one instance of each entity is alive in
the cluster. psac can be extended, however, to support read-only versions, inferring
actions that are commutative to be applied on different nodes in arbitrary order order.

9 Conclusion

Large organizations such as banks require enterprise software with ever higher de-
mands on consistency and availability, while at the same time controlling the complex-
ity of large application landscapes. In this paper, we have introduced path-sensitive
atomic commit (psac), a novel concurrency mechanism that exploits domain knowl-
edge from high-level specifications that describe the functionality of distributed ob-
jects or actors. psac avoids locking participants in a transaction by detecting whether

3:27

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

requests sent to objects can be handled concurrently. Whether the effects of two or
more requests are independent is established by analyzing the applicability and effects
of message requests at run time.

psac has been implemented in the actor-based back-end of Rebel, a state machine-
based DSL for describing business objects and their life cycle. Rebel specifications are
mapped to actors running on top of the Akka framework. Using different code gener-
ators this allowed us to explicitly compare standard 2pl to psac as locking strategies
for when objects need to synchronize in transactions. We conducted an empirical
evaluation on an industry-inspired case of psac compared to an implementation based
on standard two-phase commit with strict two-phase locking (2pl/2pc). We designed
multiple experiments to show specifically where psac and 2pl/2pc perform similar
and where psac outperforms 2pl/2pc.

Our results show that in low contention scenarios with and without synchronization
the throughput is similar, because no actions can be parallelized. However, psac
performs up to 1.8 times better than 2pl/2pc in terms of median throughput in high-
contention scenarios. This is especially relevant, for instance, when a bank has to
execute a large number of transactions on a single bank account. Latency-wise psac
is on par or better than 2pl/2pc. Furthermore, psac scales as well as 2pl/2pc, and
under specific non-uniform loads even better.

References

[1] Akka. 2018. url: https://akka.io (visited on 2018-12-21).
[2] Gene M. Amdahl. “Validity of the single processor approach to achieving large

scale computing capabilities”. In: Proceedings of the April 18-20, 1967, spring
joint computer conference on - AFIPS ’67 (Spring). Volume 30. AFIPS Conference
Proceedings. ACM Press, 1967, pages 483–485. doi: 10.1145/1465482.1465560.

[3] Peter Bailis. “Coordination Avoidance in Distributed Databases”. PhD thesis.
University of California, Berkeley, USA, 2015. url: http://www.escholarship.
org/uc/item/8k8359g2.

[4] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. “Highly available transactions. virtues and limitations”. In: Proc.
VLDB Endow. 7.3 (Nov. 2013), pages 181–192. issn: 2150-8097. doi: 10.14778/
2732232.2732237.

[5] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. “Coordination avoidance in database systems”. In: Proc. VLDB
Endow. 8.3 (Nov. 2014), pages 185–196. issn: 2150-8097. doi: 10.14778/2735508.
2735509.

[6] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça,
Mahsa Najafzadeh, and Marc Shapiro. “Putting consistency back into eventual
consistency”. In: Proceedings of the Tenth European Conference on Computer
Systems - EuroSys ’15. ACM Press, 2015, 6:1–6:16. isbn: 978-1-4503-3238-5. doi:
10.1145/2741948.2741972.

3:28

https://akka.io
https://doi.org/10.1145/1465482.1465560
http://www.escholarship.org/uc/item/8k8359g2
http://www.escholarship.org/uc/item/8k8359g2
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2741948.2741972

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

[7] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987. isbn: 0-201-
10715-5. url: http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx.

[8] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. “Serializable isolation for
snapshot databases”. In: ACM Trans. Database Syst. 34.4 (Dec. 2009), pages 1–42.
issn: 0362-5915, 1557-4644. doi: 10.1145/1620585.1620587.

[9] Cassandra. 2019. url: https://cassandra.apache.org/ (visited on 2019-07-31).

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. “Benchmarking cloud serving systems with YCSB”. In: Proceedings
of the 1st ACM symposium on Cloud computing - SoCC ’10. Edited by Joseph
M. Hellerstein, Surajit Chaudhuri, and Mendel Rosenblum. ACM Press, 2010,
pages 143–154. isbn: 978-1-4503-0036-0. doi: 10.1145/1807128.1807152.

[11] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. “Seeing is
Believing. A Client-Centric Specification of Database Isolation”. In: Proceedings
of the ACM Symposium on Principles of Distributed Computing. Edited by Elad
Michael Schiller and Alexander A. Schwarzmann. ACM, July 2017, pages 73–82.
isbn: 978-1-4503-4992-5. doi: 10.1145/3087801.3087802.

[12] Jeffrey Dean and Luiz André Barroso. “The tail at scale”. In: Commun. ACM
56.2 (Feb. 2013), page 74. issn: 0001-0782. doi: 10.1145/2408776.2408794.

[13] Andrzej Debski, Bartlomiej Szczepanik, Maciej Malawski, Stefan Spahr, and
Dirk Muthig. “A Scalable, Reactive Architecture for Cloud Applications”. In:
IEEE Softw. 35.2 (Mar. 2018), pages 62–71. issn: 0740-7459. doi: 10.1109/ms.
2017.265095722.

[14] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. “OLTP-Bench. an extensible testbed for benchmarking relational
databases”. In: Proc. VLDB Endow. 7.4 (Dec. 2013), pages 277–288. issn: 2150-
8097. doi: 10.14778/2732240.2732246.

[15] Tamer Eldeeb and Phil Bernstein. Transactions for Distributed Actors in the
Cloud. Technical report. Oct. 2016. url: https : //www .microsoft . com/en-
us/research/publication/transactions-distributed-actors-cloud-2/.

[16] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger. “The notions of consistency
and predicate locks in a database system”. In: Commun. ACM 19.11 (Nov. 1976),
pages 624–633. issn: 0001-0782. doi: 10.1145/360363.360369.

[17] Gatling. 2018. url: https://gatling.io/ (visited on 2018-07-23).

[18] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Sys-
tems. Volume 1032. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 1996. isbn: 978-3-540-60761-8. doi: 10.1007/3-540-60761-7.

3:29

http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
https://doi.org/10.1145/1620585.1620587
https://cassandra.apache.org/
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1109/ms.2017.265095722
https://doi.org/10.1109/ms.2017.265095722
https://doi.org/10.14778/2732240.2732246
https://www.microsoft.com/en-us/research/publication/transactions-distributed-actors-cloud-2/
https://www.microsoft.com/en-us/research/publication/transactions-distributed-actors-cloud-2/
https://doi.org/10.1145/360363.360369
https://gatling.io/
https://doi.org/10.1007/3-540-60761-7

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

[19] Jim Gray. “Notes on Data Base Operating Systems”. In: Operating Systems, An
Advanced Course. Edited by Michael J. Flynn, Jim Gray, Anita K. Jones, Klaus
Lagally, Holger Opderbeck, Gerald J. Popek, Brian Randell, Jerome H. Saltzer,
and Hans-Rüdiger Wiehle. Volume 60. Lecture Notes in Computer Science.
Springer, 1978, pages 393–481. isbn: 3-540-08755-9. doi: 10.1007/3-540-08755-
9_9.

[20] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993. isbn: 1-55860-190-2.

[21] Theo Haerder and Andreas Reuter. “Principles of transaction-oriented database
recovery”. In: ACM Comput. Surv. 15.4 (Dec. 1983), pages 287–317. issn: 0360-
0300, 1557-7341. doi: 10.1145/289.291.

[22] Pat Helland. “Opinion”. In: 2007 First ACM/IEEE International Conference on
Distributed Smart Cameras. IEEE, 2007, pages 132–141. isbn: 978-1-4244-1354-6.
doi: 10.1109/icdsc.2007.4357494.

[23] Joseph M. Hellerstein and Peter Alvaro. “Keeping CALM: When Distributed
Consistency is Easy”. In: CoRR abs/1901.01930 (2019). arXiv: 1901.01930. url:
http://arxiv.org/abs/1901.01930.

[24] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. “Flat combining and
the synchronization-parallelism tradeoff”. In: Proceedings of the 22nd ACM
symposium on Parallelism in algorithms and architectures - SPAA ’10. ACM Press,
2010, pages 355–364. isbn: 978-1-4503-0079-7. doi: 10.1145/1810479.1810540.

[25] Carl Hewitt, Peter Bishop, Irene Greif, Brian Smith, Todd Matson, and Richard
Steiger. “Actor induction and meta-evaluation”. In: Proceedings of the 1st annual
ACM SIGACT-SIGPLAN symposium on Principles of programming languages -
POPL ’73. ACM Press, 1973, pages 235–245. doi: 10.1145/512927.512942.

[26] J.R. Jordan, J. Banerjee, and R.B. Batman. “Precision locks”. In: Proceedings
of the 1981 ACM SIGMOD international conference on Management of data -
SIGMOD ’81. Edited by Y. Edmund Lien. ACM Press, 1981, pages 143–147. isbn:
0-89791-040-0. doi: 10.1145/582318.582340.

[27] Martin Kleppmann. Designing Data-Intensive Applications: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems. O’Reilly, 2016. isbn: 978-1-4493-
7332-0. url: http://shop.oreilly.com/product/0636920032175.do.

[28] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2002. isbn: 0-321-14306-X.

[29] Costin Leau. Spring data redis-retwis-j. 2013. url: https://docs.spring.io/spring-
data/data-keyvalue/examples/retwisj/current/.

[30] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski, and Ding
Yuan. “Don’t Get Caught in the Cold, Warm-up Your JVM: Understand and
Eliminate JVMWarm-up Overhead in Data-Parallel Systems”. In: OSDI. USENIX
Association, 2016, pages 383–400.

3:30

https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1145/289.291
https://doi.org/10.1109/icdsc.2007.4357494
https://arxiv.org/abs/1901.01930
http://arxiv.org/abs/1901.01930
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1145/512927.512942
https://doi.org/10.1145/582318.582340
http://shop.oreilly.com/product/0636920032175.do
https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

[31] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. “Extracting
More Concurrency from Distributed Transactions”. In: 11th USENIX Symposium
on Operating Systems Design and Implementation, OSDI ’14, Broomfield, CO,
USA, October 6-8, 2014. Edited by Jason Flinn and Hank Levy. ACM Press,
2014, pages 479–494. isbn: 1-880446-82-0. doi: 10.1145/238721. url: https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/mu.

[32] Neha Narula, Cody Cutler, Eddie Kohler, and Robert Tappan Morris. “Phase
Reconciliation for Contended In-Memory Transactions”. In: OSDI. USENIX
Association, 2014, pages 511–524.

[33] Patrick E. O’Neil. “The Escrow transactional method”. In: ACM Trans. Database
Syst. 11.4 (Dec. 1986), pages 405–430. issn: 0362-5915, 1557-4644. doi: 10.1145/
7239.7265.

[34] Orleans. 2018. url: https://dotnet.github.io/orleans/ (visited on 2018-12-21).
[35] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems,

Third Edition. Springer New York, 2011. isbn: 978-1-4419-8834-8. doi: 10.1007/
978-1-4419-8834-8.

[36] Nuno M. Preguiça, Carlos Baquero, and Marc Shapiro. “Conflict-free Replicated
Data Types (CRDTs)”. In: CoRR abs/1805.06358 (2018). arXiv: 1805.06358. url:
http://arxiv.org/abs/1805.06358.

[37] Francois Raab, Walt Kohler, and Amitabh Shah. “Overview of the TPC bench-
mark C: The order-entry benchmark”. In: Transaction Processing Performance
Council, Tech. Rep (2013).

[38] Reactors. 2018. url: http://reactors.io/ (visited on 2018-12-21).
[39] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. “Open Versus

Closed: A Cautionary Tale”. In: 3rd Symposium on Networked Systems Design
and Implementation (NSDI 2006), May 8-10, 2007, San Jose, California, USA,
Proceedings. Edited by Larry L. Peterson and Timothy Roscoe. USENIX, 2006.
url: http://www.usenix.org/events/nsdi06/tech/schroeder.html.

[40] Tim Soethout. Path-Sensitive Atomic Commit: Local Coordination Avoidance for
Distributed Transactions Evaluation Data. Oct. 2019. doi: 10.5281/zenodo.3405371.
url: http://dx.doi.org/10.5281/zenodo.3405371.

[41] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. “Static local coordination
avoidance for distributed objects”. In: Proceedings of the 9th ACM SIGPLAN Inter-
national Workshop on Programming Based on Actors, Agents, and Decentralized
Control - AGERE 2019. ACM Press, 2019, pages 21–30. isbn: 978-1-4503-6982-4.
doi: 10.1145/3358499.3361222.

[42] Open API Specification. 2018. url: https://github.com/OAI/OpenAPI-Specificati
on (visited on 2018-09-25).

[43] Jouke Stoel. Rebel. 2020. url: https://github.com/cwi-swat/rebel (visited on
2020-01-10).

[44] Jouke Stoel. Rebel. 2020. url: https://github.com/cwi-swat/rebel2 (visited on
2020-01-10).

3:31

https://doi.org/10.1145/238721
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/mu
https://doi.org/10.1145/7239.7265
https://doi.org/10.1145/7239.7265
https://dotnet.github.io/orleans/
https://doi.org/10.1007/978-1-4419-8834-8
https://doi.org/10.1007/978-1-4419-8834-8
https://arxiv.org/abs/1805.06358
http://arxiv.org/abs/1805.06358
http://reactors.io/
http://www.usenix.org/events/nsdi06/tech/schroeder.html
https://doi.org/10.5281/zenodo.3405371
http://dx.doi.org/10.5281/zenodo.3405371
https://doi.org/10.1145/3358499.3361222
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/cwi-swat/rebel
https://github.com/cwi-swat/rebel2

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

[45] Jouke Stoel, Tijs van der Storm, Jurgen Vinju, and Joost Bosman. “Solving the
bank with Rebel: On the design of the Rebel specification language and its
application inside a bank”. In: Proceedings of the 1st Industry Track on Software
Language Engineering - ITSLE 2016. ACM Press, 2016, pages 13–20. isbn: 978-1-
4503-4646-7. doi: 10.1145/2998407.2998413.

[46] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - principles
and paradigms, 2nd Edition. Pearson Education, 2007. isbn: 978-0-13-239227-3.

[47] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems.
Elsevier, 2002. isbn: 978-1-55860-508-4. doi: 10.1016/c2009-0-27891-3.

[48] Xin Zhao and Philipp Haller. “Observable atomic consistency for CvRDTs”. In:
Proceedings of the 8th ACM SIGPLAN International Workshop on Programming
Based on Actors, Agents, and Decentralized Control - AGERE 2018. ACM Press,
2018, pages 23–32. isbn: 978-1-4503-6066-1. doi: 10.1145/3281366.3281372.

A Example 2pl/2pc and psac diagrams with abort

Figures 10 and 11 show the same example situation as used in section 3.1, but in this
case the first action 2pc transaction aborts. We see at figure 10. 3 and figure 11. 4 that
action −€30 is aborted by the 2pc coordinator. With psac −€50 still starts, since both
outcomes (commit and abort) where taken into account.

B Actor class definition

The library using Akka expects the Rebel specifications to implement a Scala trait
RebelSpec. A simplified version of the Scala code generated from the Account example
of listing 2 is shown in listing 3.

The algebraic data types AccountState and AccountCommandmodel respectively the Rebel
state machine states and actions . The methods initialState, allStates, and finalStates encode
metadata of the life cycle of an entity. The method nextState encodes how transitions
are performed and via which events. The preconditions and actions’ effects required
for psac are known from the Rebel specification and generated into the actor code.
checkPre checks the preconditions for each incoming action. As a result, the method
apply calculates the new state of the account given the current state and action.

Finally, the syncOps method returns a set of operations between entities that must
be synchronized as per the sync construct. Since the Account class requires no synchro-
nization it returns the empty set.

The Rebel library contains a restful http API which derives endpoints for all the
specifications and actions. These are used to trigger actions on the actors.

The translation of the MoneyTransfer class follows the same pattern. However, in this
case the method syncOps does not return the empty set. It is shown in listing 4. Each
sync action is translated to a SyncAction with a ContactPoint, which enables sending

3:32

https://doi.org/10.1145/2998407.2998413
https://doi.org/10.1016/c2009-0-27891-3
https://doi.org/10.1145/3281366.3281372

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

 −€30𝐶1

2P
C

Start −€30

Abort −€30

2P
C

Start -€50

Commit −€50

 −€50𝐶2

€100
 (−€30)

€100
apply -€50
€50

€100

Success −€50

Failure −€30

1

2

3

4

Account Entity
2PL/2PC

time

Delay -€50

€100
 (−€50)

Initial balance: €100

Account Entity
PSAC

 −€30𝐶1

2P
C

Start −€30

Abort −€30
2P

C

Start −€50

Commit −€50

 −€50𝐶2

€100
 (−€30)

€100
 (−€30)
 (−€50)

€100
 (−€30)
defer −€50

€100
apply -€50
€50

Success −€50

Failure −€30

1

2

3

4

Initial balance: €100

Figure 10 Vanilla Two-Phase Commit Figure 11 Path-Sensitive Atomic Commit

3:33

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

Listing 3 Generated Scala code for the Rebel Account entity (slightly simplified)
class AccountActor extends RebelFSMActor with RebelSpec[AccountState, AccountData, AccountCommand]{
val initialState: AccountState = Init
val allStates : Set[AccountState] = Set(Blocked, Closed, Init, Opened)
val finalStates : Set[AccountState] = Set(Closed)

def nextState: PartialFunction[(AccountState, AccountCommand), AccountState] = {
case (Uninit, _: Open) => Opened
case (Opened, _: Withdraw) => Opened
case (Opened, _: Deposit) => Opened
case (Opened, _: Close) => Closed
}

def checkPre(data: AccountData, now: DateTime): PartialFunction[AccountCommand, CheckResult] = {
case OpenAccount(accountNumber, initialDeposit) =>
checkPreCondition(initialDeposit ≥ EUR(50.00))
case Close() =>
checkPreCondition(data.get.balance.get == EUR(0.00))
case Withdraw(amount) =>
checkPre(amount > EUR(0.00)) combine
checkPre(data.get.balance.get - amount ≥ EUR(0.00))
case Deposit(amount) =>
checkPreCondition((amount > EUR(0.00)))

}

def apply(data: AccountData): PartialFunction[AccountCommand, AccountData] = {
case OpenAccount(accountNumber, initialDeposit) =>
Initialized(AccountData(accountNumber = Some(accountNumber), balance = Some(initialDeposit)))
case Withdraw(amount) =>
data.map(r => r.copy(balance = r.balance.map(_ - amount)))
case Deposit(amount) =>
data.map(r => r.copy(balance = r.balance.map(_ + amount)))

}

def syncOps(data: RData): PartialFunction[AccountCommand, Set[SyncOp]] = Set.empty
}

messages to the sync participant living somewhere in the cluster, and the action on
the sync participant itself.

C Detailed Rebel implementation using Akka

FSM Each Rebel specification describes a single financial product. Each of these
products can have multiple instances, which we call entities, that can be identified by
their unique Rebel @ke y. This nicely maps to an actor definition per specification,
where each running instance of this actor is an entity. Since a specification describes a
state machine we piggyback on the Akka Domain Specific Language (DSL) for Finite
State Machines (FSM). Akka FSM provides constructs for States, Data and Transitions.
Notable features are Timeouts when no commands are received and batching of events
to the persistence layer for improved performance.

3:34

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Listing 4 Generated code corresponding to the sync action in the MoneyTransfer
def syncOps(data: MoneyTransferData): PartialFunction[MoneyTransferCommand, Set[SyncOp]] = {
case Book(amount, from, to) => Set(
SyncAction(ContactPoint(Account, from), Withdraw(amount)),
SyncAction(ContactPoint(Account, to), Deposit(amount))
)

}

Cluster The Akka cluster feature allows us to run our application on multiple servers,
by supplying a mechanism to add extra nodes to the Akka cluster and location-
transparently send messages to actors on remote cluster nodes. Akka takes care of the
setting up of the cluster and and the joining and leaving of nodes. This is what allows
our application to scale horizontally in the number of nodes and therefore total the
number of running actors and the amount system resources.

Sharding Rebel specifications allow interaction with other specification in pre-, post-
conditions and synchronised actions. Other entities can be accessed by using the
specification name and identity (@ke y), e.g. Account[this. f rom]. The identity refer-
enced, can be from a specification field or event field.

Akka Sharding allows us to distribute the running actors over the cluster nodes.
Each cluster node can start a shard region, which is used to send messages to a certain
type of actor somewhere in the cluster. An actor can be reached by a unique logical
identifier. The sharding feature makes sure that for each unique identifier only one
actor is active in the whole cluster. If a message is send to an identity that is not yet
running, the corresponding actor will be started somewhere in the sharding cluster.

Rebel identity nicely maps to the logical identity of Akka Sharding. In the target
application we use a sharding region per specification. This allows us to send messages
to each individual actor, without knowing or caring on which node it is running in
the actual Actor Cluster. If the entity is not yet created, Sharding will make sure it is
started and usable. This is called location transparency.

Persistence Sharding allows us to distribute the actors over the system and makes
sure only once actor is running per entity. In order to be able to durably store the
data and state of an entity we use Akka Persistence.

Akka Persistence is based on Event Sourcing (ES) and Command Query Respon-
sibility Segregation (CQRS). This means that for each event that a Rebel entity can
process, a Command and an Event is defined. Respectively denoting the intention to
let the event happen and the immutable proof that the event occurred.

Event sourcing means that we create an immutable log of all sequential immutable
events that happened.

3:35

Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions

In our application this means that for each actor corresponding with a Rebel entity
we store the incoming command after a precondition check in our persistency layer4

as an intention to execute this command. After successfully persisted, the command is
executed. If valid an event of the transition will be committed to the persistence layer
and side effects to the internal state will be executed. Akka Persistence makes sure
other incomming commands are delayed until the in-progress command is handled
completely.

The result of recording all the events in a persisted log is that we can restart an actor
and replay all the events that happened and get it back into the last committed state.
Because Sharding makes sure there is only one actor with the same logical identity
running at a single moment in time, we can be sure that only a single persistent actor
is writing to the log and know that its internal entity level state is consistent.5

In the event of an actor or cluster node crashes, the entity can be restarted on another
node without loss of data. This also means that the persistency guarantees are heavily
dependent on the guarantees of the underlying persistence journal implementation.

As persistence backend we use Cassandra 3. This is a production-ready backend for
Akka Persistence and also the mostly used.

HTTP The Rebel events are exposed as REST endpoint for each logical identifier on
which commands can be triggered to the corresponding actors.6 This uses Akka HTTP
for non-blocking IO and can be automatically derived from the available generated
specification and event implementations. We use the circe JSON library to automatically
derive JSON encoders and decoders for each of the events, based on the generated
case classes. This means that for the entire REST interface almost no additional code
has to be generated, next to the field and event definitions. A Scala worksheet file is
available to manually generate example JSON-documents that the system accepts.

An Open API specification[42] definition is generated which corresponds to the
generated REST interface. This allows for easy consumption of the interface.

These endpoints are used for the experiment by the load generator.

4 We use Cassandra, but many more journaling plugins are available. The queries are config-
ured to write and read with Quorum, so we know that each command is persisted safely
before it is handled.

5 Also because the actor only handles a single message and therefore a single command at
the same time

6 url template: POST /specification-name/:id/event-name

3:36

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

About the authors

Tim Soethout is a senior software developer at ING Bank. As guest
researcher in the Software Analysis and Transformation group at
Centrum Wiskunde & Informatica (CWI) he works on his PhD-
research on leveraging domain models to improve performance
and scalability of distributed enterprise applications. He can be
reached at Tim.Soethout@ing.com.

Tijs van der Storm is senior researcher in the Software Analysis
and Transformation group at Centrum Wiskunde & Informatica
(CWI), and full professor in Software Engineering at the University
of Groningen. His research focuses on improving programmer expe-
rience through new and better software languages and developing
the tools and techniques to engineer them in a modular and inter-
active fashion. For more information, see http://www.cwi.nl/~storm.
He can be reached at T.van.der.Storm@cwi.nl.

Jurgen J. Vinju is full professor of Automated Software Analysis
at Eindhoven University of Technology, research group leader at
Centrum Wiskunde & Informatica (CWI), and senior language
engineer and co-founder of SWAT.engineering. He studies the
design and evaluation of (applications of) meta programming
systems to get the complexity of source code maintenance under
control. Examples are metrics and analyses for quality control or
debugging, and model driven engineering for code generation.
For more information, see http://www.cwi.nl/~jurgenv. He can be
reached at Jurgen.Vinju@cwi.nl.

3:37

mailto:Tim.Soethout@ing.com
http://www.cwi.nl/~storm
mailto:T.van.der.Storm@cwi.nl
http://www.cwi.nl/~jurgenv
mailto:Jurgen.Vinju@cwi.nl

	1 Introduction
	2 Background: Distributed Transactions
	3 Path-Sensitive Atomic Commit (psac)
	3.1 psac in action
	3.2 psac Algorithm

	4 Implementation: Rebel and Akka
	4.1 Rebel: a DSL for Financial Products
	4.2 Executing Rebel on Akka

	5 Performance Evaluation
	5.1 Research Objectives
	5.2 Deployment Setup
	5.3 Baseline Experiments: Akka Scalability
	5.4 Synchronization Experiments: psac vs 2pl/2pc

	6 Discussion
	6.1 Threats to Validity
	6.2 Limitations
	6.3 Evaluation

	7 Related work
	8 Further Directions
	9 Conclusion
	References
	A Example 2pl/2pc and psac diagrams with abort
	B Actor class definition
	C Detailed Rebel implementation using Akka
	About the authors

