
Type-driven Automatic Quotation of Concrete

Object Code in Meta Programs

J.J. Vinju

Centrum voor Wiskunde en Informatica
P.O. Box 94079, NL-1090 GB, Amsterdam, The Netherlands

Jurgen.Vinju@cwi.nl

Abstract. Meta programming can be facilitated by the ability to rep-
resent program fragments in concrete syntax instead of abstract syntax.
The resulting meta programs are more self-documenting. One caveat in
concrete meta programming is the syntactic separation between the meta
language and the object language. To solve this problem, many meta
programming systems use quoting and anti-quoting to indicate precisely
where level switches occur. These “syntactic hedges” can obfuscate the
concrete program fragments. This paper describes an algorithm for infer-
ring quotes, such that the meta programmer no longer needs to explicitly
indicate transitions between the meta and object languages.

1 Introduction

Programs that manipulate programs as data are called meta programs. Exam-
ples of meta programs are compilers, source-to-source translators, type-checkers,
documentation generators, refactoring tools, and code generators. We call the
language that is used to manipulate programs the meta language, and the ma-
nipulated language the object language. Meta programming is the method for
implementing automated software engineering tools.

Any general purpose programming language can be used to write meta pro-
grams. The object program fragments are represented using the data type con-
structs available in the meta language. An old idea to facilitate meta program-
ming is the use of concrete syntax to represent program fragments [1]. Using
concrete syntax, as opposed to abstract syntax, all program fragments in a meta
program are represented in the syntax of the object language [2,3]. Concrete syn-
tax combines the readability of the string representation with the structural and
type-safe representation of abstract syntax trees. The meta programmer embeds
the actual program fragments literally in his meta program, but the underly-
ing representation of these fragments is an abstract syntax tree. The resulting
meta programs are more self-documenting because “what you see is what you
manipulate”.

One caveat in concrete meta programming is the syntactic separation be-
tween the meta language and the object language. Conventional scanning and
parsing technologies have a hard time distinguishing the two levels. To solve



this problem, many meta programming systems use quoting and anti-quoting to
indicate precisely where level switches are made. To further guide the system,
the user is sometimes obliged to explicitly mention the type of the following pro-
gram fragment. These “syntactic hedges” help the parser, but they can obfuscate
the concrete program fragments. In practice, it leads to programmers avoiding
the use of concrete syntax because the benefit becomes much less clear when it
introduces more syntactic clutter than it removes. We would like to infer the
transitions between the object and meta languages automatically without asking
the user to express the obvious.

Contributions and road-map. This paper contributes by removing the techni-
cal need for quotes and anti-quotes. We first explore meta programming with
concrete syntax in some detail by describing a number of existing systems that
implement it (Section 2). We then introduce an algorithm that automatically
detects transitions from meta language to object language (Section 3). The ar-
chitecture around this algorithm is based on scannerless generalized parsing and
a separate type-checking phase that both have been described earlier [4, 5]. By
making the transitions between meta language and object language invisible
we introduce parsing challenges: ambiguous and cyclic grammars. In Section 4
we address these issues. Sections 5 and 6 describe experience and conclusions
respectively.

2 The syntax of program fragments in meta programming

Plain Java. Suppose we use Java as a meta programming language to implement
a Java code generator. Consider the following method that generates a Java
method.

String buildSetter(String name, String type) {
return "public void set" + name + "(" + type + " arg)\n"

+ " this." + name + " = arg; }\n"
}

The string representation is unstructured, untyped and uses quotes and anti-
quotes. There is no guarantee that the output of this method is a syntactically
correct Java method. However, the code fragment is immediately recognizable
as a Java method. The following Java code applies a more structured method to
construct the same fragment:

String buildSetter(String name, String type) {
Method method = method(

publicmodifier(), voidType(), identifier("set" + name),

arglist(formalarg(classType(type),identifier("arg"))),

statlist(stat(assignment(

fieldref(identifier("this"),identifier(name)),

expression(identifier("arg"))))));

return method.toString();

}



This style uses a number of methods for constructing an abstract syntax tree in
a bottom-up fashion. If the used construction methods are strictly typed, this
style exploits the Java type system to obtain a syntactically correct result. That
means that if all toString() methods of the abstract representation are correct,
then the new expression will also generate syntactically correct Java code.

The Jakarta Tool Suite. This is the first system we describe that employs con-
crete syntax. JTS is designed for extending programming languages with domain
specific constructs. It implements and extends ideas of intentional programming
and work in the field of syntax macros [6].

The parser technology used in JTS is based on a separate lexical analyzer and
an LL parser generator. This restricts the number of language extensions that
JTS accepts. The program fragments in JTS are quoted with explicit typing. For
selected non-terminals there is a named quoting and anti-quoting operator, like
mth{...} and $id(...) in the following example:

public FieldDecl buildSetter(String name, String type) {
QualifiedName methodName = new QualifiedName("set" + name);

QualifiedName fieldName = new QualifiedName(name);

QualifiedName typeName = new QualifiedName(type);

return mth{public void $id(methodName) ($id(typeName) arg) {
this.$id(fieldName) = arg; } } }

Concrete syntax in ML. In [7] an approach for adding concrete syntax to ML
is described. This system also uses quotation operators. It employs scannerless
parsing with Earley’s generalized parsing algorithm. Disambiguation of the meta
programs with program fragments is obtained by the following:

– Full integration of the parser and type-checker of ML: a context-sensitive
parser. All type information can be used to guide the parser. Only type
correct derivations are recognized, such that quoting operators do not often
need explicit types like in JTS.

– In case the type-checking parser cannot decide, the user may explicitly an-
notate quoting operators with types, like in JTS.

This system is able to provide typing error messages instead of parse errors.
Both the level of automated disambiguation, and the level of the error messages
are high. The following example shows how anonymous quoting ([|...|]) and
anti-quoting (^. . . ) are used to indicate transitions:

fun buildSetter name type =

[| public void ^(concat "set" name) (^type arg) {
this.^name = arg; } |]

Meta-Aspect/J. This is a tool for meta programming Aspect/J programs in Java
[8]. It employs context-sensitive parsing, in a manner similar to the approach
taken for ML. As a result, this tool also does not need explicit typing.



MethodDec buildSetter(String name, String type) {
String methodName = "set" + name;

return ‘[public void #methodName (#type arg) {
this.#name = arg; } ]; }

Note that Meta Aspect/J offers a fixed combination of one meta language (Java)
with one single object language (Aspect/J), while the other systems combine one
meta language with many object languages.

ASF+SDF. This is a specialized language for meta programming with concrete
syntax. The implementation of ASF+SDF is based on scannerless generalized
LR parsing (SGLR) [4] and conditional term rewriting [9]. The syntax of the
object language is defined in the SDF formalism. Then rewrite rules defined in
ASF implement appropriate transformations, using concrete syntax. The SGLR
algorithm takes care of a number of technical issues that occur when parsing
concrete syntax:

– It accepts all context-free grammars, which are closed under composition.
This allows the combination of any meta language with any object language.

– Due to scannerless parsing, there are no implicit global assumptions like
longest match of identifiers, or reserved keywords. Such assumptions would
influence the parsing of meta programs. The combined language would have
the union set of reserved keywords, which is incorrect in both separate lan-
guages.

– Unlimited lookahead takes care of local conflicts in the parse table.

The following rephrases the examples of the introduction in ASF+SDF:

context-free syntax

buildSetter(Identifier, Type) -> Method

variables

"Name" -> Identifier

"Type" -> Type

equations

[] buildSetter(Name , Type ) =

public void set ++ Name (Type arg) {
this.Name = arg; }

ASF+SDF does not have quoting, or anti-quoting. There are two reasons
for this. Firstly, within program fragments no nested ASF+SDF constructs oc-
cur that might overlap or interfere. Secondly, the ASF+SDF parser is designed
in a very specific manner. It only accepts type correct programs because a
specialized parser is generated for each ASF+SDF module. The type system
of ASF+SDF requires that all equations are type preserving. To enforce this
rule, a special production is generated for each user-defined non-terminal X:
X "=" X -> Equation. So instead of having one Term "=" Term -> Equation

production, ASF+SDF generates specialized productions to parse equations. Af-
ter this syntax generation, the fixed part of ASF+SDF is added. That part



contains the skeleton grammar in which the generated syntax for Equation is
embedded.

The ASF+SDF example shown above has some syntactic ambiguity. For ex-
ample, the meta variable Type may be recognized as a Java class name, or as a
meta variable. Another ambiguity is due to the following user-defined injection
production: Method -> Declaration. Thus, the equation may range over the
Declaration type as well as over the Method type. To disambiguate, ASF+SDF
prefers to recognize declared meta variables over object syntax identifiers, and
shorter derivations over longer derivations. We call these two preferences the
meta disambiguation rules of ASF+SDF. This design offers the concrete syn-
tax functionality we seek, but the assumptions that are made limit its general
applicability:

– The type system of the meta language must be expressible as a context-free
grammar. Consequently, higher-order functions or parametric polymorphism
are not allowed.

– Typing errors are reported as parsing errors which makes developing meta
programs difficult.

Stratego. This is a meta programming language based on the notion of rewrite
rules and strategies [10]. The concrete object syntax feature of Stratego is also
based on SGLR, but the separation between the meta language and the object
language is done by quoting and anti-quoting. The programmer first defines quo-
tation and anti-quotation notation syntax herself, and then the object language
is combined with the Stratego syntax. After parsing, the parse tree of the meta
program is mapped automatically to normal Stratego abstract syntax [11]. This
is natural for Stratego, since it has no type system to guide parsing, and nested
meta programs are allowed in object fragments.

The following example defines the syntax of quotation operators for some
Java non-terminals, with and without explicit types:

context-free syntax

"|[" Method "]|" -> Term {cons("toMetaExpr")}
"Method |[" Method "]|" -> Term {cons("toMetaExpr")}
"~" Term -> Identifier {cons("fromMetaExpr")}
"~id" Term -> Identifier {cons("fromMetaExpr")}

variables

"type" -> Type

strategies

builderSetter(|name, type) =

!|[public void ~<conc-strings> ("set", name)(type arg) {
this.~name = arg; } ]|

The productions’ “cons” attributes are used to guide the automated mapping
to Stratego abstract syntax. The ambiguities that occur in ASF+SDF due to
injections also occur in Stratego, but the user can always use the explicitly
typed quoting operators. In the example, we used both Stratego syntax, like
the ! operator and the conc-strings library strategy, and Java object syntax.



To indicate the difference, we also used an implicit meta variable for the type
argument, and an explicitly anti-quoted variable for the field name that we set.

Stratego leaves part of implementing concrete syntax, namely combining the
meta language with the object language, to the user. The use of quoting operators
makes this job easier, but the resulting meta programs contain many quoting
operators. Questions the user must be able to answer are:

– For which non-terminals should quotation operators be defined.
– When should explicit typing be used.
– What quotation syntax would be appropriate for a specific non-terminal.

If not carefully considered, the answers to these questions might differ for differ-
ent meta programs that manipulate the same object language. The solution to
this problem is to let an expert define the quotation symbols for selected object
languages, and put these definitions in a library.

TXL. TXL [12] is a meta programming language that uses backtracking to
generalize over deterministic parsing algorithms. TXL has a highly structured
syntax, which makes extra quoting unnecessary. Every program fragment is en-
closed by a certain operator. The keywords of the operators are syntactic hedges
for the program fragments:

function buildMethod Name [Identifier] Type [Type]

replace M [Method]

construct MethodName [Identifier]

set [+ Name]

by

public void MethodName (Type arg) {
this.Name = arg; }

end function

The example shows how code fragments and the first occurrence of fresh variables
are explicitly typed. The [...] anti-quoting operator is used for explicit typing,
but it can also contain other meta level operations, such as recursive application
of a rule or function. Keywords like construct, replace, and by cannot be used
inside program fragments, unless they are escaped.

Although technically TXL does use syntactic hedging, the user is hardly
aware of it due to the carefully designed syntax of the meta language. Compared
to other meta programming languages, TXL has more keywords.

Discussion. Table 1 summarizes the concrete meta programming systems just
discussed. The list is not exhaustive, there are many more meta programming
systems, or language extension systems available. Clearly the use of quoting and
anti-quoting is a common design decision for meta programming systems with
concrete syntax. Explicit typing is also used in many systems. Type-safety is
implemented in most of the systems described. From studying the above systems,
we draw the following conclusions:



ASF Stratego ML JTS TXL MAJ

Typed + − + + + +
Implicit quoting + Opt. − − + −
No type annotations + Opt. − − − +
Nested meta code − + + − + −

Table 1. Concrete syntax in several systems.

Meta Syntax

Syntax Merger

Object Syntax

Meta Program Parser
Syntax
Tree

Error
Message

Parser Generator

Type checker and
Disambiguation filter

Forest

Fig. 1. Overview: parsing concrete syntax using type-checking to disambiguate.

– The more typing context provided by the meta programming language, the
less explicit quoting operators are necessary.

– It is hard to validate the claim that less quotation and anti-quotation is
better in all cases. Possibly, this boils down to a matter of taste. Evidently
unnecessary syntactic detail harms programmer productivity, but that argu-
ment just shifts the discussion to what is necessary and what is not. A hybrid
system that employs both quote inferencing and explicit quoting would offer
the freedom to let the user choose which is best.

– A shortcoming of many systems that employ concrete syntax is that the
error messages that they are able to provide are not very informative.

Our goal is to design a parsing architecture that can recognize code fragments
in concrete syntax, without syntactic hedges, embedded in meta programming
languages with non-trivial expression languages with strict type systems. As an
aside, we note that syntax highlighting object code differently and the use of
optional quoting operators are very practical features, but we consider them to
be orthogonal to our contribution.

3 Architecture

We start with a fixed syntax definition for a meta language and a user-defined
syntax definition for an object language. In Fig. 1 the general architecture of the
process starting from these two definitions and a meta program, and ending with
an abstract syntax tree is depicted. The first phase, the syntax merger, combines
the syntax of the meta language with the syntax of the object language.

The second phase parses the meta program using SGLR [4]. Generalized
parsing algorithms do not complain about ambiguities or cycles. In case of am-
biguity they produce a compact representation of a “forest” of trees. This enables
this architecture in which the disambiguation process is merged with the type



M
et

aM
et

a 
sy

nt
ax

anti−quoting transition

quoting transition

sy
nt

axO
bj

ec
t s

yn
ta

x

Fig. 2. A parse tree may contain both
meta and object productions, where
the transitions are marked by quoting
and unquoting transition productions.

Object 
Language Language

Meta

3

4

Term

Meta

1 2

Fig. 3. Classification of ambiguities af-
ter joining a meta language with an ob-
ject language.

checking algorithm of the meta language rather than integrated in its parsing
algorithm.

The final phase type-checks and disambiguates the parse forest, filtering out
type-incorrect trees. This architecture is consistent with the idea of disambigua-
tion by filtering as described by [13], which has been applied earlier [4, 5, 14].

3.1 Syntax transitions

The syntax merger creates a new syntax module, importing both the meta syntax
and the object syntax. We assume there is no overlap in non-terminals between
the meta syntax and the object syntax, or that renaming is applied to accom-
plish this. It then adds productions that link the two layers automatically. For
every non-terminal X in the object syntax the following productions are gener-
ated: X -> Term and Term -> X, where Term is a unique non-terminal selected
from the meta language. For example, for Java, the Term non-terminal would be
Expression, because expressions are the way to build data structures in Java.

We call these productions the transitions between meta syntax and object
syntax. They replace any explicit quoting and unquoting operators. For clar-
ity we will call the transitions to meta syntax the quoting transitions and the
transitions to object syntax the anti-quoting transitions. Figure 2 illustrates the
intended purpose of the transitions: nesting object language fragments in meta
programs, and nesting meta language fragments again in object language frag-
ments.

The collection of generated transitions from and to the meta language are
hazardous. They introduce many ambiguities, including cyclic derivations. An
ambiguity arises when more than one derivation exists for the same substring
with the same non-terminal. Intuitively, this means there are several interpreta-
tions possible for the same substring. A cycle occurs in derivations if and only if
a non-terminal can produce itself without consuming terminal symbols. To get
a correct parser for concrete meta programs without quoting, we must resolve
all ambiguities introduced by the transitions between meta and object syntax.



Figure 3 roughly classifies the ambiguities that may occur. Note that ambiguities
from different classes may be nested.

Class 1: Ambiguity in the object language itself. This is an artifact of
the user-defined syntax of the object language. Such ambiguity must be ig-
nored, since it is not introduced by the syntax merger. The C language would
be a good example of an ambiguous object language, with its overloaded use
of the * operator for multiplication and pointer dereference.

Class 2: Ambiguity of the meta language itself. This is to be ignored
too, since it is not introduced by the syntax merger. Usually, the designer of
the meta language will have to solve such an issue separately.

Class 3: Ambiguity directly via syntax transitions. The Term non-
terminal accepts all sub languages of the object language. Parts of the
object language that are nicely separated in the object grammar, are now
overlaid on top of each other. For example, the isolated Java code fragment
i = 1 could be a number of things including an assignment statement, or
the initializer part of a declaration.

Class 4: Object language and meta language overlap. Certain con-
structs in the meta language may look like constructs in the object
language. In the presence of the syntax transitions, it may happen that
meta code can also be parsed as object code. For example, this hypothetical
Java program constructs some Java declarations: Declarations decls =

int a; int b;. The int b; part can be in the meta program, or in the
object program.

4 Disambiguation filters

We will explicitly ignore ambiguity classes 1 and 2, such that the proposed
disambiguation filters do not interfere with the separate definitions of the meta
language and the object language. We will analyze ambiguity classes 3 and 4, and
explain how a disambiguating type-checker will either resolve these ambiguities.

4.1 Disambiguation by type-checking

Type-checking is a phase in compilers where it is checked if all operators are
applied to compatible operands. Traditionally, a separate type-checking phase
takes an abstract syntax tree as input and one or more symbol tables that define
the types of all declared and built-in operators. The output is either an error
message, or a new abstract syntax tree that is decorated with typing information
[15]. Other approaches incorporate type-checking in the parsing phase [7, 16] to
help the parser avoid conflicts. We do the exact opposite, the parser is kept simple
while the type-checker is extended with the ability to deal with alternative parse
trees [5].

Figure 4 shows the internal organization of a disambiguating type-checker.
Type-checking forests to filter them is a natural extension of normal type-



Forest Type-check Tree Filter
iterate

iterate
Meta Tree Filter

Typed Tree

Error Message

Fig. 4. The organization of the type-checking and disambiguation approach.

checking of trees. A forest may have several sub-trees that correspond to dif-
ferent interpretations of the same input program. Type-checking a forest is the
process of selecting the single type correct tree. If no single type correct tree is
available then we deal with the following two cases:

– No type correct abstract syntax tree is available; present the collection of
error messages corresponding to all alternative trees,

– Multiple type correct trees are available; present an error message explaining
the alternatives.

Note that resolving the ambiguities caused by syntax transitions resembles
type-inference for polymorphic functions [17]. The syntax transitions can be
viewed as overloaded (ad-hoc polymorphic) functions. There is one difference:
the forest representation already provides the type-inference algorithm with the
set of instantiations that is locally available, instead of providing one single
abstract tree that has to be instantiated.

Regarding the feasibility of this architecture, recall that the amount of nodes
in a GLR parse forest can be bounded by a polynomial in the length of the
input string [18, 19]. This is an artifact of smart sharing techniques for parse
forests produced by generalized parsers. Maximal sub-term sharing [20] helps
to lower the average amount of nodes even more by sharing all duplicated sub-
derivations that are distributed across single and multiple derivations in a parse
forest. However, the scalability of this architecture still depends on the size of
the parse forest, and in particular the way it is traversed. A maximally shared
forest may still be traversed in an exponential fashion. Care must be taken to
prevent visiting unique nodes several times. We use memoization to make sure
that each node in a forest is visited only once.

4.2 Class 3. Ambiguity directly via syntax transitions

We further specialize this class intro four parts:

Class 3.1: Cyclic derivations. These are derivations that do not produce any
terminals and exercise syntax transitions both to and from the meta gram-
mar. For example, every X has a direct cycle by applying X -> Term and
Term -> X.

Class 3.2: Meaningless coercions. These are derivations that exercise the
transition productions to cast any X from the object language into another
Y . Namely, every X can be produced by any other Y now by applying
Term -> X and Y -> Term.



Class 3.3: Ambiguous quoting transitions. Several X -> Term are possi-
ble from different Xs. The ambiguity is on the Term non-terminal. For any
two non-terminals X and Y that produce languages with a non-empty inter-
section, the two productions X -> Term and Y -> Term can be ambiguous.

Class 3.4: Ambiguous anti-quoting transitions. Several Term -> X are
possible, each to a different X . For any two productions of the object lan-
guage that produce the same non-terminal this may happen. A -> X and
B -> X together introduce an anti-quoting ambiguity with a choice be-
tween Term -> A and Term -> B.

In fact, classes 3.1 and 3.2 consist of degenerate cases of ambiguities that would
also exist in classes 3.2 and 3.3. We consider them as a special case because
they are easier to recognize, and therefore may be filtered with less overhead.
The above four subclasses cover all ambiguities caused directly by the transition
productions. The first two classes require no type analysis, while the last two
classes will be filtered by type checking.

Class 3.1. Dealing with cyclic derivations The syntax transitions lead to
cycles in several ways. The most direct cycles are the immediate application of
an anti-quoting transition after a quoting transition. Any cycle, if introduced
by the syntax merger, always exercises at least one production X -> Term, and
one production Term -> Y for any X or Y [21].

Solution 1. The first solution is to filter out cyclic derivations from the parse for-
est. With the well known Term non-terminal as a parameter we can easily identify
the newly introduced cycles in the parse trees that exercise cyclic applications
of the transition productions. A single bottom-up traversal of the parse forest
that detects cycles by marking visited paths is enough to accomplish this. With
the useless cyclic derivations removed, what remains are the useful derivations
containing transitions to and from the meta level.

We have prototyped solution 1 by extending the ASF+SDF parser with a
cycle filter. Applying the prototype on existing specifications shows that for
ASF+SDF such an approach is feasible. However, the large amount of meaning-
less derivations that are removed later do slow down the average parse time of
an ASF+SDF module significantly. To quantify, for smaller grammars with ten
to twenty non-terminals we witnessed a factor of 5, while for larger grammars
with much more non-terminals we witnessed factors of 20 times slow down.

Solution 2. Instead of filtering the cycles from the parse forest, we can prevent
them by filtering reductions from the parse table. This technique is based on
the use of a disambiguation construct that is described in [4]. We use priorities
to remove unwanted derivations, in particular we remove the reductions that
complete cycles. The details of this application of priorities to prevent cycles are
described in a technical report [21]. The key is to automatically add the following
priority for every object grammar non-terminal X : X -> Term > Term -> X.



Because priorities are used to remove reductions from the parse table the cyclic
derivations do not occur at all at parsing time.

Prototyping the second scheme resulted in a considerable improvement of the
parsing time. The parsing time goes back to almost the original performance.
However parse table generation time slows down significantly. So when using
solution 2, we trade some compilation time efficiency for run time efficiency. In
a setting with frequent updates to the object grammar, it may pay off to stay
with solution 1.

Class 3.2. Dealing with meaningless coercions For every pair of non-
terminals X and Y of the object language that produce languages that have a
non-empty intersection, an ambiguity can be constructed by applying the pro-
ductions Term -> X and Y -> Term. Effectively, such a derivation casts an
Y to an X , which is a meaningless coercion.

These ambiguities are very similar to the cyclic derivations. They are mean-
ingless derivations occurring as a side-effect of the introduction of the transitions.
Every direct nesting of an unquoting and a quoting transition falls into this cat-
egory. As such they are identifiable by the structure of the tree, and a simple
bottom-up traversal of a parse forest is able to detect and remove them. No type
information is necessary for this. As an optimization, we can again introduce
priorities to remove these derivations earlier in the parsing architecture.

Class 3.3. Dealing with ambiguous quoting So far, no type checking was
needed to filter the ambiguities. This class however is more interesting. The
X -> Term productions allow everything in the object syntax to be Term. If
there are any two non-terminals of the object language that generate languages
with a non-empty intersection, and a certain substring fits into this intersection
we will have an ambiguity. This happens for example with all injection produc-
tions: X -> Y , since the language produced by X is the same as the language
produced by Y .

An ambiguity in this class consists of the choice of nesting an X , or an Y ob-
ject fragment into the meta program. So, either by X -> Term or by Y -> Term

we transit from the object grammar into the meta grammar. The immediate typ-
ing context is provided by the surrounding meta code. Now suppose this context
enforces an X . Disambiguation is obtained by removing all trees that do not
have the X -> Term production at the top.

The example in Fig. 5 is a forest with an ambiguity caused by the injection
problem. Suppose that from a symbol table it is known that f is declared to be
a function from Expression to Identifier. This provides a type-context that
selects the transition to Expression rather than the transition to Identifier.

Class 3.4. Dealing with ambiguous anti-quoting This is the dual of the
previous class. The Term -> X productions cause that at any part of the ob-
ject language can contain a piece of meta language. We transit from the meta



After: Identifier f : Expression -> Identifier Expression Identifier foo

Before: Identifier f : Term -> Term Term Identifier foo

Identifier foo

Expression

Fig. 5. An abstract syntax forest (drawn from left to right) is disambiguated by using
a type declaration for the function f.

grammar into the object grammar. The only pieces of meta language allowed
are produced by the Term non-terminal. The typing context is again provided by
the meta language, but now from below. Suppose the result type of the nested
meta language construct is declared X , then we filter all alternatives that do
not use the Term -> X transition.

Discussion To implement the above four filters a recursive traversal of the
forest is needed. It applies context information on the way down and brings
back type information on the way back. Note that the typing contexts necessary
for the above may be inconclusive. For example, with overloaded methods in
Java a type-checker may not be able to decide which is which. In general, when
several ambiguities remain, a disambiguation type-checker may either choose to
precisely report the conflict, or continue and use some of the filters discussed in
the following.

4.3 Class 4. Object language and meta language overlap

The most common example in this class is how to separate meta variables from
normal identifiers in the object syntax (Section 2). Other examples are more com-
plex: the meta and object program fragments must accidentally have exactly the
same syntax, and both provide type-correct interpretations. The following ex-
ample illustrates this. The meta language is ASF+SDF, and the object language
is Java:
equations

[] int[] foo = int[]

[] foo = bar

equations

[] int[] foo = int[][] foo = bar

The overlapping language constructs are the fragments: “[]” and “=”. For
ASF+SDF, the “[]” is an empty equation tag and “=” is the equation operator,
while in Java “[]” is a part of an array declarator and “=” is the initializer part.
The parser returns two alternative interpretations. The first has two equations,
the second only one. By using suggestive layout, and printing the ASF+SDF
symbols in italics, we illustrate how the right-hand side of the first rule can be
extended to be a two dimensional array declarator that is initialized by bar:
the combination of "[]" overlapping with array declarators and "=" overlap-
ping with variable initializers leads to the ambiguity. Both interpretations are



syntactically correct and type-correct. Note that the above example depends on
a particular Java object grammar.

To solve this class of rare and hard to predict ambiguities we introduce a
separate meta disambiguation phase (Fig. 4). A number of implicit but obvious
rules will provide a full separation between meta and object language. The rules
are not universal. Each meta programming language may select different ones
applied in different orders. Still, the design space can be limited to a number of
choices:

Rule 1: Prefer/avoid declared meta identifiers over object identifiers.
Rule 2: Prefer simpler/more complex object language derivations.
Rule 3: Maximize/minimize the number of meta language productions.
Rule 4: Propose explicit quoting to the user.

Rule 1 is a generalization of the variable preference rule (Section 2). All meta
level identifiers, such as function names and variables are preferred. This rule
may involve counting the number of declared meta identifiers in two alternatives
and choosing the alternative with the least or most meta identifiers.

Rule 2 is needed only when the type context is not specific down to a
first order type, but does impose some constraints. This can happen in sys-
tems with polymorphic operators, like Haskell functions, or the overloaded meth-
ods of Java, or the equations of ASF+SDF. For example: a function with type
f: a -> a -> b maps two objects of any type a to another object of type b.
Even though the function is parameterized by type, the first two arguments must
be of the same type. In the presence of injections like X -> Y , any X can also
be a Y . If the first argument of the function f can be parsed as an X , it could
also be parsed as a Y . Rule 2 then decides whether the “simpler” X or the more
“complex” Y interpretation is picked.

Rule 3 expresses that object language fragments should be either as short,
or as long as possible. The more meta productions are used, the shorter object
fragments become. This takes care of our earlier example involving the "[]" and
"=".

Rule 4 If Rule 3 fails, Rule 4 provides the final fail-safe to all ambiguities
introduced by merging the meta and object syntax.

Discussion The above rules have a heuristic nature and their semantics depend
on the order in which they are applied. They should always be applied after the
type-checker, such that only degenerate cases are subject to these rules. Another
viewpoint is to avoid the application of these heuristics altogether, and propose
explicit disambiguations to the user when necessary.

5 Experience

Parsing. This work has been applied to parsing ASF+SDF specifications. First
the syntax of ASF+SDF was extended to make the meta language more complex:
a generic expression language was added that can be arbitrarily nested with



object language syntax. Before there were only meta variables in ASF+SDF,
now we can nest meta language function calls at arbitrary locations into object
language patterns, even with parametric polymorphism. Then a syntax merger
was developed that generates the transitions, and priorities for filtering cycles.
The generated parsers perform efficiently, while producing large parse forests.

Type based disambiguation. Both experience with post-parsing disambiguation
filters in ASF+SDF [14], and the efficient implementation of type-inference al-
gorithms for languages as Haskell and ML suggests that our cycle removal and
type-checking disambiguation phase can be implemented efficiently. Knowing
the polynomial upper-bound for the size of parse forests, we have implemented a
type-checker for ASF+SDF that applies the above described basic disambigua-
tion rules. Note that the equation operator of ASF+SDF can be viewed as a
parametric polymorphic operator, but we have not yet experimented with user-
defined polymorphic parameters.

Furthermore, in [5] we described a related disambiguation architecture that
also employs disambiguation by type checking. In this approach we show how
such an architecture can remove the need for explicitly typed quotes, but not
the need for explicit quoting in general. We applied the disambiguation by type
checking design pattern to Java as a meta programming language. A Java type
checker is used to disambiguate object language patterns. As reported, such an
algorithm performs very well. We further improve on these results in this paper,
removing the need for explicit quotes altogether.

6 Conclusion

An architecture for parsing meta programs with concrete syntax was presented.
By using implicit transitions syntactic hedges are avoided. We offered a “quote
inference” algorithm, that allows a programmer to remove syntactic hedges if
so desired. Inferring quotes is a feasible algorithm due to sharing and memoiza-
tion techniques of parse forests. We use a three-tier architecture, that efficiently
detects syntax transitions and then resolves ambiguities, including cycles, or
returns precise error messages. Resolving ambiguities occurs either on simple
structural arguments, or on typing arguments, or optionally based on heuristics.

References

1. McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., Levin, M.I.: LISP 1.5
Programmer’s Manual. The MIT Press, Cambridge, Mass. (1966)

2. Sellink, M., Verhoef, C.: Native patterns. In Blaha, M., Quilici, A., Verhoef, C.,
eds.: Proceedings of the Fifth Working Conference on Reverse Engineering, IEEE
Computer Society Press (1998) 89–103

3. Heering, J., Hendriks, P., Klint, P., Rekers, J.: The syntax definition formalism
SDF - reference manual. SIGPLAN Notices 24 (1989) 43–75



4. Brand, M.v.d., Scheerder, J., Vinju, J., Visser, E.: Disambiguation Filters for
Scannerless Generalized LR Parsers. In Horspool, R.N., ed.: Compiler Construction
(CC’02). Volume 2304 of LNCS., Springer-Verlag (2002) 143–158

5. Bravenboer, M., Vermaas, R., Vinju, J., Visser, E.: Generalized type-based disam-
biguation of meta programs with concrete object syntax. In: Generative Program-
ming and Component Engineering (GPCE). (2005) to appear.

6. Leavenworth, B.M.: Syntax macros and extended translation. Commun. ACM 9

(1966) 790–793
7. Aasa, A., Petersson, K., Synek, D.: Concrete syntax for data objects in functional

languages. In: Proceedings of the 1988 ACM conference on LISP and functional
programming, ACM Press (1988) 96–105

8. Zook, D., Huang, S.S., Smaragdakis, Y.: Generating AspectJ programs with Meta-
AspectJ. In Karsai, G., Visser, E., eds.: Generative Programming and Component
Engineering: Third International Conference, GPCE 2004. Volume 3286 of Lecture
Notes in Computer Science., Vancouver, Canada, Springer (2004) 1–19

9. Brand, M., Deursen, A., Heering, J., Jong, H., Jonge, M., Kuipers, T., Klint, P.,
Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J., Visser, E., Visser, J.: The
ASF+SDF Meta-Environment: a Component-Based Language Development En-
vironment. In Wilhelm, R., ed.: CC’01. Volume 2027 of LNCS., Springer-Verlag
(2001) 365–370

10. Visser, E.: Stratego: A language for program transformation based on rewriting
strategies. System description of Stratego 0.5. In Middeldorp, A., ed.: RTA’01.
Volume 2051 of LNCS., Springer-Verlag (2001) 357–361

11. Visser, E.: Meta-programming with concrete object syntax. In Batory, D., Con-
sel, C., eds.: Generative Programming and Component Engineering (GPCE’02).
Volume 2487 of LNCS., Springer-Verlag (2002)

12. Cordy, J., Halpern-Hamu, C., Promislow, E.: TXL: A rapid prototyping system
for programming language dialects. Computer Languages 16 (1991) 97–107

13. Klint, P., Visser, E.: Using filters for the disambiguation of context-free grammars.
In Pighizzini, G., San Pietro, P., eds.: Proc. ASMICS Workshop on Parsing Theory,
Milano, Italy, Tech. Rep. 126–1994, Dipartimento di Scienze dell’Informazione,
Università di Milano (1994) 1–20

14. Brand, M., Klusener, S., Moonen, L., Vinju, J.: Generalized Parsing and Term
Rewriting - Semantics Directed Disambiguation. In Bryant, B., Saraiva, J., eds.:
Third Workshop on Language Descriptions Tools and Applications. Volume 82 of
Electronic Notes in Theoretical Computer Science., Elsevier (2003)

15. Aho, A., Sethi, R., Ullman, J.: Compilers. Principles, Techniques and Tools.
Addison-Wesley (1986)

16. Paakki, J.: Attribute grammar paradigms: a high-level methodology in language
implementation. ACM Comput. Surv. 27 (1995) 196–255

17. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17 (1978) 348–375

18. Johnson, M.: The computational complexity of GLR parsing. In Tomita, M., ed.:
Generalized LR Parsing. Kluwer, Boston (1991) 35–42

19. Billot, S., Lang, B.: The structure of shared forests in ambiguous parsing. In: Pro-
ceedings of the 27th annual meeting on Association for Computational Linguistics,
Morristown, NJ, USA, Association for Computational Linguistics (1989) 143–151

20. Brand, M., Jong, H., Klint, P., Olivier, P.: Efficient Annotated Terms. Software,
Practice & Experience 30 (2000) 259–291

21. Vinju, J.: A type driven approach to concrete meta programming. Technical
Report SEN-E0507, CWI (2005)


