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Abstract

Assessing the understandability of source code remains
an elusive yet highly desirable goal for software developers
and their managers. While many metrics have been sug-
gested and investigated empirically, the McCabe cyclomatic
complexity metric (CC) — which is based on control flow
complexity — seems to hold enduring fascination within
both industry and the research community despite its known
limitations. In this work, we introduce the ideas of Control
Flow Patterns (CFPs) and Compressed Control Flow Pat-
terns (CCFPs), which eliminate some repetitive structure
from control flow graphs in order to emphasize high-entropy
graphs. We examine eight well-known open source Java
systems by grouping the CFPs of the methods into equiv-
alence classes, and exploring the results. We observed sev-
eral surprising outcomes: first, the number of unique CFPs
is relatively low; second, CC often does not accurately re-
flect the intricacies of Java control flow; and third, meth-
ods with high CC often have very low entropy, suggesting
that they may be relatively easy to understand. These find-
ings challenge the widely-held belief that there is a clear-cut
causal relationship between CC and understandability, and
suggest that CC and similar measures need to be reconsid-
ered as metrics for code understandability.

1 Introduction

Understandability of source code is an important qual-
ity attribute of software systems. It strongly influences the
effectiveness of programmers who try to extend, modify,
or fix the source code as it evolves within a changing so-
cial and technical environment. However, measuring under-
standability in a way that is repeatable, scientifically mean-
ingful, and conforms to common sense is difficult, as there
is no consensus within the community on a precise defini-
tion of the term.

While performing psychology-oriented experiments
with real-world developers is one possible path, such ex-
periments are expensive to perform and may be of limited
generality. Instead, practitioners and researchers often rely
on a definition of understandability that is based on con-
crete and measurable properties of the source code, such
as counting lines of code (LOC), measuring the interface
size and complexity (i.e., function points) [1], and counting
the number of linearly independent control flow paths (i.e.,
McCabe’s Cyclomatic Complexity) [2]. While some recent
studies have suggested that many metrics correlate strongly
with LOC [3] — which is trivial to measure — the cyclo-
matic complexity metric (CC) continues to be widely used
as a measure of the likely understandability of source code.
It is an integral part of many metric tool suites, both open-
source as well as commercial. Consequently, it is worth-
while to investigate the reasonableness of using CC to mea-
sure understandability of source code.

1.1 The case for CC in-the-small

Cyclomatic complexity applied at the method level mea-
sures the number of linearly independent control flow paths
within the method.1 The intuition behind it is that to fully
understand the flow of a method, one must understand at
least all of its possible paths. So, high CC should indicate
low understandability.

However, there are control flow idioms that do not con-
tribute to a higher CC, yet may cause problems with un-
derstandability. For example, for a given procedure written
in a structured style it is often possible to create a func-
tionally equivalent procedure using GOTOs and “spaghetti”
logic, yet with the same CC value; Figure 1 shows a some-
what contrived example in the C language. The procedural
code is usually considered to be easier to understand — and
harder to misunderstand — than its unstructured equivalent,
yet the CC metric does not distinguish between them.

1“Linearly independent” means each path has some unique edges.
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i = 0;
goto body;

loop:
if (i == 10)
goto done;

i++;
body:

print(i);
goto loop;

done:

i = 0;
do
print(i);

while (i++ != 10);

Figure 1. These two C-language snippets
have the same functionality and the same CC
value, yet the structured version on the right
seems much simpler to understand.

At the same time, there exist control flow idioms that
lead to high CC, yet would seem to be fairly easy to un-
derstand. For example, a large state machine that is imple-
mented as a number of switch statements with a case for
each outgoing edge of each state will result in high CC. Yet
this design pattern seems easy to grasp conceptually, since
it conforms to our mental model of a state-machine, and
each of the case statements has the same general shape:
test a condition, then activate the next state. So, a high CC
value may predict low understandability where the code is
in fact fairly easy to understand; that is, CC may have false
positives.

1.2 The case for CC in-the-large

Cyclomatic complexity can also be applied at the system
level by aggregating the values of its components; the intu-
ition here is that systems that have many methods with high
CC generally exhibit more bugs and higher maintenance
costs [4]. For example, the SIG maintainability model ag-
gregates CC by counting the percentage of LOC that con-
tribute to methods with a high CC (> 10) as compared to
the total LOC of a system [5]. Their model is applied on
a daily basis to rapidly identify the “suspect” parts of large
software systems.

Although the correlation of high aggregated CC with
higher-than-expected maintenance problems has intuitive
appeal, they may be several underlying factors at play (Fig-
ure 2). For example, the CC metric has been shown to corre-
late strongly with method size [3]. So, if a large system has
many methods with high CC, then these are probably also
the longer methods; in turn, this may indicate an inability
of the programmers to form coherent abstractions and build
robust, reusable units of code. So, is it this inability for
high quality design that is causing poor understandability in
many different ways, or is it just the high CC values?

To the best of our knowledge, there has been no analysis
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Figure 2. Two comparable explanations for
correlation of high CC with failure.

yet published that isolates the CC metric from other factors
concerning software understanding and explicitly addresses
the influence of CC on the effectiveness of programmers
while doing maintenance. This paper aims to shed light in
this area by studying the varieties of code control flow pat-
terns across a set of large open source Java systems.

1.3 Contributions

In this paper we investigate the relationship between the
shape of control flow patterns observed in Java methods to
their CC metric values. We introduce the notions of abstract
control flow patterns (CFPs) and compressed control flow
patterns (CCFPs), which allow us to produce statistical evi-
dence that the CC metric indeed does not adequately model
the likely complexity of control flow in Java methods. In
particular, we make the argument that an understandabil-
ity metric should discount control flow patterns that exhibit
internally repetitious structures — such as large switch
statements — or occur often within the codebase and so
may be examples of well known programming idioms.

2 Case studies: CC vs. control flow patterns

The control flow graph of a method is constructed from
statements such as if, while, break, and return that
may break the “straight line” flow of execution; Table 1
shows a full list for the Java language. These statements de-
fine the shape of the control flow graph, each adding nodes
and edges.2

2Some definitions of CC model expressions, such as logical AND and
OR, that can cause different branching behaviour due to short circuit eval-
uation. For simplicity, we consider control flow only at the statement level.

2



case catch do-while
if for foreach
while
block break continue
labeled return switch
synchronized throw try

Table 1. The CC of a Java method is calculated
by adding one for each occurrence of each
keyword in the first list. The CFC is calculated
by adding one for each occurrence of each
keyword in both lists.

The CC metric makes a big conceptual leap in abstract-
ing the shape of a method. It characterizes the control flow
graph as simply the sum of the fan-outs of its nodes, and
in so doing it flattens the dimensionality of the graph into a
single number. This flattening makes comparisons and di-
agnoses easier, but at the cost of reduced precision and loss
of information. In this work, we seek a middle ground by
reducing some of the detail of a control flow graph while
retaining its essential shape; this is very much in the spirit
of program dependence graphs (PDGs) as used in program
slicing and token-based clone detection tools.

We start by observing that the CC metric represents only
a subset of all control flow statements and their net effect
on the construction of the corresponding graph. One must
ask: If CC is intended to measure understandability of the
control flow of a method, can it afford to ignore important
semantic details, such as fall-through and disruptive jumps
introduced by break, continue, return, and throw
statements? These statements can significantly influence
the control flow semantics of method body, yet because they
do not add linearly independent paths they are ignored by
the CC metric.

2.1 Computing control flow patterns

In order to study a very large number of methods we
introduce the notion of a “control flow pattern”. Instead of
studying each method as it occurs in the wild with full AST-
level information, we map the methods to a normalized for-
mat that removes inessential details. More precisely,

A control flow pattern (CFP) is an abstract syntax
tree of a method from which all nodes that are
not one of the control flow constructs have been
replaced by ⊥, and list elements that have been
reduced to ⊥ are removed.

Below is an example Java snippet that is reduced to
a CFP; note that the “x--;” line does not add a ⊥.

Project #Meth #Pat #Patcomp #Comp
compendium 7,736 1,271 (16%) 1,234 (15%) 455 (36%)
Tomcat70 16,018 2,211 (13%) 2,158 (13%) 931 (43%)
dsbudget 306 64 (20%) 64 (20%) 18 (28%)
xml-
commons-
external

3,346 91 (2%) 89 (2%) 30 (33%)

apache-ant 10,278 1,391 (13%) 1,349 (13%) 555 (41%)
bcel 3,076 286 (9%) 268 (8%) 120 (44%)
hsqldb 5,326 1,013 (19%) 969 (18%) 438 (45%)
smallsql 2,556 353 (13%) 332 (12%) 158 (47%)

Merged 48,642 5,633 (11%) 5,434 (11%) 2,455 (43%)

Table 2. Control flow pattern statistics.

while (x >= 0) {
if (x % 2 == 0)

print("even");
x--;

}
return 1;

while (⊥) {
if (⊥)
⊥

}
return ⊥;

2.1.1 Method

We have extracted CFPs from eight large open source
Java systems: compendium, Tomcat70, dsbudget,
xml-commons-external, apache-ant, bcel,
hsqldb, and smallsql. First, we parsed all source
code for these systems and collected the abstract syntax
trees of each method using the JDT library of the Rascal
meta-programming environment [6]. This library accesses
the Java parser of the Eclipse JDT and produces abstract
syntax trees in term format. Then we applied a tree
transformation to reduce each method to its representative
pattern. This transformation performs a single bottom-up
pass on each tree.

When applying this transformation we construct a table
that maps each original method to its reduced pattern. This
table is the basis from which further metrics and statistics
are computed; it also allows us to trace back from each ab-
stract CFP to the set of all methods in the original source
code that the pattern models.

We note that the transformation is surjective but not in-
jective: each Java method has a unique corresponding CFP,
but several methods may map to the same representative
CFP. This is by design, of course; CFPs represent the es-
sential structure of the underlying control flow but without
the distraction of inessential details.

2.1.2 Results

Table 2 summarizes the effect of reducing methods to pat-
terns. In our dataset, we found that about 11% of the meth-
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Figure 3. An overview of methods and patterns in the 8 studied systems.

ods introduced a new pattern, while the remaining 89%
shared a pattern with at least one other method. Some pat-
terns had a very high occurrence rate; for example, out of
the 48,642 methods we examined, we found that three triv-
ial patterns — “null”, “calculate-an-expression-and-return-
it”, and “if-then-else” — had more than 1600 occurrences
each.

The right-most graph in Figure 3 is a histogram that
shows the frequency distribution of the patterns found in
the corpus. The patterns are ordered by size from smallest
to largest along the x-axis. We have removed the three most
common patterns mentioned above as well as patterns that
occur only once; the remaining data points in the graph are
the first five hundred such patterns (and we ignore longer
patterns as none of them occur very often). We can see im-
mediately that smaller patterns occur more often than larger
patterns.

2.1.3 Analysis

In theory, the number of possible CFPs increases exponen-
tially with their size. It is in O(ns), where n is the size and s
the amount of types of control flow constructs. In practice,
of course, the frequency of sizes of real methods decreases
rapidly: there are hardly any very long methods as com-
pared to the very short methods.

While we have analyzed only a handful of open source
Java systems, the results shown in the graphs of Figure 3
conform to common sense. Specifically, we found that:

• pattern size frequency drops off rapidly,

• method size frequency rises quickly at first, but then
also drops off rapidly,

• there are many different patterns,

• there is a high degree of similarity between smaller
methods, and

• pattern frequency depends heavily on pattern size.

These observations provide the background for the discus-
sions that follow. The shape of pattern frequency distribu-
tions influences the interpretation of the following experi-
ments: larger methods simply do not occur very often as
compared to smaller patterns.

The main benefit of analyzing individual patterns as op-
posed to the original methods is that we can now reason
about the individual patterns regardless of how many times
they occur. This circumvents the effects of the observed
extreme drop in frequency of the larger method bodies and
allows us to focus on what CC means “in-the-small”, for
any given method.

2.2 What does CC miss?

To compute CC we count the occurrences of control flow
branching. Yet there are many other statements that influ-
ence control flow that may need to be understood. For a
start, it was recognized as early as 1984 that the CC metric
ignores multiple exit points of procedures, and this can in-
fluence control flow semantics significantly [7]. Moreover,
CC does not distinguish between code that uses intricate
combinations of break and continue and code that uses
only simple structured control flow.

2.2.1 Method

Our hypothesis is that CC does not adequately reflect all
intricacies of control flow. Still, it may be the case that due
to high correlation between the branching statements and
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the other statements, the distinction may be of no practical
consequence. Is it possible to predict with high accuracy
how many other control flow statements are used, starting
from the CC metric?

Lacking a “true” metric for understandability of control
flow, we will use the size of the CFP as a proxy. If there is no
linear correlation between this (less lossy) metric with CC,
then we will argue that CC cannot meaningfully measure
the understandability of a specific method either.

The control flow complexity (CFC) of a CFP is the
number of control flow operators (Table 1) in the
original syntax tree of (any of) the methods that
the pattern originates from.

The CFC of a pattern can be measured by simply count-
ing the number of syntax tree nodes. We note that for any
method m and its corresponding CFP p, the following hold:

CC(m)≤CFC(m) (1)
CFC(m) =CFC(p) (2)

CC(m) =CC(p) (3)

After measuring CC and CFC for all patterns we ex-
tracted from the systems under investigation, we can show
distribution graphs and scatter plots. By visual inspection
we can then assess if there appears to be a linear correla-
tion.

2.2.2 Results

Figure 4 depicts the relation between the CFC and CC of
the CFPs from our corpus. The top right scatter plot zooms
in on the top left scatter plot to show the first 50 sizes of pat-
terns. We see that there appears to be linear correlation. Cy-
clomatic complexity makes up for between 30% and 100%
of the size of the pattern, which is consistent with results
observed by Jbara et al. [8].

Yet, when we look more closely, the smaller pat-
terns cover practically all possible cyclomatic complexities
within the 30% to 100% range. For the larger methods, if
we focus on each size of method in turn (imagine a vertical
bar shooting upwards from any position on the x-axis), then
we observe that cyclomatic complexity appears to be fairly
randomly distributed in this range as well.

The distance to the least-squares linear fit is plotted in
the bottom-right of Figure 4. It shows the error gets pro-
gressively worse for larger methods, as well as errors that
are in the same order of magnitude as the measure itself for
smaller errors.

2.2.3 Analysis

The plots in Figure 4 show how unrelated the CC metric is
to CFC. CC is distributed between 30% and 100% of the

control flow for every specific size. So, there is a rough
linear relation between CFC and CC, but this is probably
caused by the size of the method. Larger methods have both
more control flow and more control flow splits. However,
between control flow splits and control flow in general there
seems no clear cut relation.

We hypothesize that a linear causal relation exists be-
tween the size of the method and a minimum amount of
branches that will be at least used in most methods; this
would explain the results of Jbara et al. [8], and at the same
time account for the broad spectrum of values that we see
in our results.

From the distribution patterns of CC and CFC we see that
CFC is much flatter and thus has more distinctive capability
then CC does. CC has a tendency of mapping larger set of
methods into the same bucket than CFC does. Specifically
around before threshold of 10, which is commonly used as a
badness threshold for CC [5], we see that CC equates many
different kinds of CFPs. From this we may stipulate that in
the lower regions, CC misses the accuracy to detect prob-
lematic CFPs.

For the really large methods, with CC > 20, one could
argue that the distinction is mostly irrelevant. The meth-
ods become hard to understand and high CC in this cases
indicates poor understandability just as accurately as CFC
or LOC do. Still, in medium-range methods, a relatively
“harmless” CC count easily masks messy control flow full
of breaks, continues and similar (and this can be ob-
served in Figure 4 under the 10 bar for CC which has several
entries above 20 for CFC).

From the above analysis we learn that indeed the other
control flow statements, apart from the ones identified by
CC, are a relevant factor in real open-source Java software
systems. Of course, this analysis is not conclusive, but it
seems clear that CC is not an accurate predictor for CFC
within our corpus.

At least to understand the control flow of a method, one
could argue that you would have to digest all of its control
flow statements. If CC cannot approximate CFC, then this
casts doubt on the ability of CC to predict the more difficult
to define “understandability” of a method at all.

2.3 Is CC overzealous?

The previous analysis focused on finding code that may
be more complex than CC suggests, but the other side of
this question is equally interesting: What methods does CC
label “complex” that may be quite easy to understand?

2.3.1 Method

To make our metrics more sensitive to measuring “true” un-
derstandability, it makes sense to de-emphasize patterns that
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Figure 4. Comparing control flow complexity to cyclomatic complexity of control flow patterns

may score highly on CC or CFC, yet seem straightforward
to comprehend. One such category are patterns that fea-
ture repetitive control structures. For example, the follow-
ing pattern has a relatively high CC value of 9, but seems
easy to understand due to its repetitive nature:

switch(⊥) {
case ⊥ : return ⊥;
case ⊥ : return ⊥;
case ⊥ : return ⊥;
case ⊥ : return ⊥;
case ⊥ : return ⊥;
case ⊥ : return ⊥;
case ⊥ : return ⊥;
case ⊥ : return ⊥;

}

If such regularity occurs often, then we may question the
relevance of the CC metric when applied to real software
systems.

We now introduce an abstraction that de-emphasizes
control structures that occur repeatedly at the same struc-
tural level:

A compressed control flow pattern (CCFP) is a
control flow pattern where each list e1,e2, . . . ,en
of n > 1 consecutive tree nodes in the pattern that
are structurally equal is replaced by a single node
R (e1).

We note that compression is performed bottom-up recur-
sively, so that nested regularity may emerge and then be
compressed again. The CCFP for the above example would
be:

switch (⊥) {
R (case ⊥ : return ⊥;)

}

We can now trivially extend the CFC metric to CCFPs:

The compressed control flow complexity (CCFC)
of a method is the number of nodes in its CCFP.

We note that for any method m, it must be the case that:

CCFC(m)≤CFC(m) (4)
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However, we cannot automatically infer an inequality be-
tween CCFC and CC, as neither value is necessarily higher
or lower than the other.

Our hypothesis is now that there should be many meth-
ods that are highly compressible. If so, then we deduce that
the CC metric commonly overestimates control flow under-
standability. Using the above definition of a CCFP we have
reduced all the patterns of the systems in Table 2. This al-
lows us to plot the relation between the sizes of CFPs and
compressed CFPs, and observe their respective distribution
patterns. From this we can see how often there is repetition
and how much repetition there is in the control flow of Java
methods in the corpus.

2.3.2 Results

In Table 2 we see that compression occurs in more than 40%
of all the patterns. At the same time, the statistics show that
compression does not collapse many patterns together.

Figure 5 shows the compression per CFP; we can see that
compression is common for all sizes of patterns, and that
compression rates can be high for all sizes. Smaller pat-
terns, if they compress, are more likely to compress a little
than a lot. Larger patterns, of which there are many fewer,
often compress highly. Using a least squares approach, we
have plotted linear, quadratic, and square root fits; the data
set seems to favour small compression rates (i.e., many dots
are printed on top of each other). We found that the square
root model fits best for this data set, confirming that com-
pression is more effective on larger patterns.

We have also manually examined several of the larger
methods within the corpus to better understand what code
would compress. We found the most extreme compres-
sion occurred in code that had been automatically gener-
ated, such as by lexer and parser generators. While this may
be unsurprising, it is interesting to see that such generated
patterns are compressible by simply eliminating repetition.

The following is an example of a nested compressed
CFP, found in the smallsql system:

switch (⊥) {
R (case ⊥: switch (⊥) {

R ( case ⊥: return ⊥; )
})

}

We have simplified it here for presentation purposes by
leaving out the context around the switch and removing
some irregular cases. This pattern was associated with a
single method that interprets boolean expressions in SQL
with a CC of 126. The CCFC of the (real) method is 7
and the CC of the compressed pattern is 27 (the simplified
pattern above has CCFC of 7 and CC of 3). The method
dispatches on the types of the arguments of an expression

with the outer switch, and then on the operator kind in
the nested switch and computes the result of the expres-
sion via recursion. This is a straightforward design for an
interpreter, and it seems easy for an experienced program-
mer to understand. In theory, the particular nested pattern
may represent a quadratic number of methods, depending
on how many repetitions occur at each level. In practice,
we found that it occurs only once in the systems that we
investigated.

The method with the largest compressed size (CCFC)
was found in compendium: 179. It has an original CC
of 141, its CFC is 198 and the CC of the compressed pat-
tern is still 119. This is the worst case compression rate we
found for such larger methods. The code dispatches on key
press events and directly implements the associated actions.
The control flow structure is governed mostly by nested if-
then and if-then-else statements with an occasional nested
switch. Since in many cases single outermost conditional
span multiple pages of source text, it is difficult to see which
parts of the code are mutually exclusive and which are exe-
cuted in order.

The effects of compression on the distributions of sizes
of patterns and their cyclomatic complexity is shown in Fig-
ure 6. Between compressed and uncompressed, the distribu-
tions have the same general shape, but compressed patterns
have a larger peek below the threshold of size 10. This is a
significant observation since 10 is a common threshold with
CC for labeling a method to be “bad”. In other words, many
patterns go from being “bad” to being “good” by eliminat-
ing repetitive structure.

2.3.3 Analysis

Compressing repetition can lead to a significant reduction in
pattern size. The reduction is most evident in the larger pat-
terns, although there are comparatively fewer of them. We
can conclude that compression may be used to filter large
methods that are easy-to-understand patterns and perhaps
even generated. However, there are so few of such larger
patterns that we should not jump to the conclusion that CC
is not a good way of finding hard-to-understand patterns.

For smaller patterns the compression may be less evi-
dent, yet is has significant effect on the interpretation of
the metrics. Although smaller patterns are usually not com-
pressed below 50%, the compression does affect the inter-
pretation of the metrics via the commonly used threshold
of 10. From this perspective we can learn that systems that
are easy to understand because they have repetitive control
flow structures may be judged harshly while they in fact
have easy-to-understand control flow structures.

We conclude that CC indeed often underestimates the
understandability of CFPs; it is most pronounced in larger
methods (which are much less common), but it is still signif-
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Figure 5. What compression does to the size of CFP.
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Figure 6. Size and CC distributions with and without compression

icant in the shorter methods (which are very common). This
suggests that the CC metric is not very accurate for judg-
ing individual methods on understandability, and that when
used for aggregation over whole systems using a threshold
care must be taken in interpreting the results if there are
many methods whose CFC are in the range of 10 to 20.

3 Related work

There is a large body of work on the generation, inter-
pretation, and experimental validation of software metrics
(e.g., the work by Halstead [9]). We do not have the space
here to explore this topic in detail, so we mention only rel-
evant and more recent developments.

Herraiz and Hassan argued we do not need complexity
metrics because they correlate strongly with the number of

lines of code (LOC) [3]. While our results also found such
a correlation, we draw a slightly different conclusion. The
McCabe cyclomatic complexity metric correlates in gen-
eral with the size of a method because every method has
at least a few branches scattered over its body. However,
this does not accurately predict the complexity of the rest
of the code that may or may not use more than this mini-
mal number of branches. We distinguish explicitly between
interpretation on a method-by-method basis versus a global
system-to-system aggregated comparison. Herraiz and Has-
san’s conclusion remains valid for the latter perspective, but
on the smaller scale we feel that it is reasonable to assert
that there is still room for better complexity metrics.

Vasilescu et al. [10, 11] have studied the effect of dif-
ferent aggregations for software metrics on their interpre-
tation, which is very noticeable. The SIG maintainability
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model also pays attention directly to the effect of aggrega-
tion on their judgement of quality [5]. We have learned this
lesson and avoided computing aggregate measures such as
averages. Indeed, the statistical distributions shown in this
paper are interpreted directly rather than framing them in a
statistical model.

Jbara et al. have also investigated the relationship be-
tween CC and understandability, using the Linux kernel
source code as a case study [8]. They found evidence of
code that was classified as complex by CC, yet seemed to
them to be “well structured” enough for understanding, and
indeed was under active maintenance. Our results corrob-
orate theirs in that respect. Jbara also concludes, like Mc-
Cabe mentioned in the original paper on cyclomatic com-
plexity [2], perhaps large switch cases should not be
counted. We have taken this idea one step further and
eliminated all locally repetitive structures. Our paper also
adds another perspective, namely that cyclomatic complex-
ity may miss the opportunity of spotting hard-to-understand
code next to mislabelling easy code as complex.

Alves et al. studies the construction of benchmarks from
software metrics [12]. They also notice that software met-
rics like CC are often distributed according to (what seems
to be) a power law.3 They automatically derive threshold
values in an objective and repeatable way. It may very well
be that by replacing CC with CCFM some systems fall in
entire different categories in the benchmarks they produce.
Our work therefore is highly relevant to the industry of soft-
ware quality verification and monitoring.

4 Threats to validity

We now discuss threats to validity pertaining to the work
presented here.

4.1 CC and short-circuit semantics

In the interests of conceptual simplicity, we have cho-
sen to ignore the influence of short-circuit semantics for
boolean && and || operators in Java. Strictly speaking,
these should be modelled, as they introduce additional lin-
early independent control flow paths into the graph; in prac-
tice, they are often ignored by existing metric suite imple-
mentations. We take the position that developers are more
likely to consider understandability at the statement level
than the expression level, and so we have chosen to ignore
these operators; this also slightly simplifies our implemen-
tation, but this is not the primary reason for adopting it.

3Clauset et al. point out how hard it is to verify that a data set is accu-
rately modelled by a power law distribution [13].

4.2 Selection of example systems

A key requirement for selecting example systems for the
corpus was compatibility with our analysis front-end; that
is, we selected systems that were relatively easy to compile
using Eclipse. We needed fully compilable Java code be-
cause our front-end performs name and type analysis, and
it will not produce a syntax tree in case of an error. All sys-
tems are open-source, and two of them are SQL interpreters,
which may have an influence on our analysis.

Apart from the two databases, we chose systems from a
variety of application domains. We see no specific shared
characteristics that may skew the results of our analysis in
favor of our conclusions. Adding more different systems to
this initial experiment should confirm this.

4.3 CFC as a proxy for understandability

We used the size of CFPs to argue against the predictive
capability of cyclomatic complexity for understandability.
Note however, that we did not need to assume that CFC is
measuring understandability in any way. Our assumption is
that if CC cannot model CFC, than it certainly cannot model
understandability.

This assumption may be wrong, if for example creat-
ing an accurate mental model of the control flow method
does not require reading it fully. This might happen if the
source code comments are of particularly high quality or if
the names of the method carry a significant amount of cog-
nitive information about the functionality. In our experi-
ence, both are relatively unlikely events: reading the source
code is still the most trusted method used by developers for
learning what a method does.

4.4 Do people understand control flow by recog-
nizing patterns?

We used the occurrence of local repetitive structure in
control flow patterns to search for methods that may be
easier to understand than CC might indicate. The under-
lying assumption is that code that looks regular is easier to
“chunk” [14] and therefore easier to understand. The ex-
treme examples that were discussed are suggestive, but it
may be the case that less extensive compression has less of
an influence on understanding. It is interesting to observe
that compression does not add to the “uniqueness” of con-
trol flow patterns much, which means that if you have seen
the compressed version and understand it, you have seen an
unambiguous representation of a control flow pattern that
may be larger but not different.
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5 Conclusions

In this paper we have investigated the relation between
the shape of control flow in Java methods and the cyclo-
matic complexity metric (CC). We have collected empirical
evidence from eight open source Java systems that suggests
that CC can, and often does, underestimate and overesti-
mate the understandability of methods. This implies that
the CC metric, when applied to judge a single method on
understandability, must be taken with a grain of salt. It also
implies that the strategy of comparing entire systems using
thresholds for high CC may have to be re-evaluated with
compressibility and the presence of other control flow state-
ments in mind.

The enabling concepts for doing these experiments are
two-fold. First, we introduced control flow patterns (CFPs),
an abstraction of the abstract syntax trees that removes all
but control flow statements. Control flow patterns allowed
us to unveil where and how many times CC underestimates
the complexity of control flow. Second, we introduced com-
pressed control flow patterns (CCFPs), which summarize all
consecutively repetitive control flow structure. Compres-
sion allowed us to identify where and how many times CC
might overestimate the complexity of control flow. These
concepts should be applicable in a broader context of exper-
imentally studying the shape of control flow and the relation
of control flow statement usage to software maintainability.

Data availability

The corpus of eight open source Java systems, the extrac-
tion of basic data, the reduction to control flow patterns, the
compression algorithm, the metrics calculation, and csv
output files can all be found online [15].
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