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Abstract

Block-based environments are visual programming environ-
ments that allow users to program by interactively arranging
visual jigsaw-like blocks. They have shown to be helpful in
several domains but often require experienced developers
for their creation. Previous research investigated the use
of language workbenches to generate block-based editors
based on grammars, but the generated block-based editors
sometimes provided too many unnecessary blocks, leading
to verbose environments and programs. To reduce the num-
ber of interactions, we propose a set of transformations to
simplify the original grammar, yielding a reduction of the
number of (useful) kinds of blocks available in the resulting
editors. We show that our generated block-based editors
are improved for a set of observed aesthetic criteria up to
a certain complexity. As such, analyzing and simplifying
grammars before generating block-based editors allows us
to derive more compact and potentially more usable block-
based editors, making reuse of existing grammars through
automatic generation feasible.

CCSConcepts: • Software and its engineering→Visual

languages; Domain specific languages; Graphical user
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1 Introduction

Block-based environments have become popular thanks to
their ease of use, especially for end-users [3]. A block-based
environment is a visual interactive programming environ-
ment, inwhich language constructs are represented by jigsaw-
like puzzle pieces, called blocks. Blocks have different visual
cues, for instance, their shape, color, or connections. These
cues help users to understand how different blocks (language
constructs) can be snapped together to create valid programs.
Benefits of block-based interfaces include the what-you-see-
is-what-you-get (WYSIWYG) programming experience and
avoidance of syntax errors [25, 28, 34, 35].
An example of a block-based environment is shown in

Figure 1. It consists of a palette (left part of Figure 1) that
contains all the language constructs that can be used to cre-
ate programs; the canvas (middle-part of Figure 1), where
users create their programs by dragging and dropping blocks
from the palette into the canvas; and an optional stage (right
part of Figure 1) that is used to display output of a program’s
execution. Block-based environments have been used in dif-
ferent domains across different disciplines (e.g., Computer
Science, Software Engineering, Education, Science, Music,
and Art) [24].

Figure 1. Block-based editor created using Google Blockly.
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Block-based editors can be constructed in a variety of
ways, ranging fromprogramming from scratch, usingDomain-
Specific Languages (DSLs) for block definition, or visual lan-
guages. Most of these require considerable overhead or boil-
erplate, involving various technologies and frameworks [24].

Earlier research proposed a tool named Kogi for deriving
block-based editors from declarative Context-Free Gram-
mars (CFGs) [33]. While Kogi enabled automating most of
the effort in constructing block-based editors, the usability
of the derived block-based editors is limited as the derivation
mechanism followed the exact structure of the input gram-
mar. In this paper, we extend and improve Kogi’s approach
by analyzing the input grammar and applying structural
changes to the grammar to produce block-based editors that
follow a set of aesthetic guidelines we establish in Section 3.
The contributions of this paper are as follows:

• an analysis and a set of simplification rules of CFGs to
improve the usability of generated block-based editors
(Section 3).

• an extension of Kogi, S/Kogi, that implements the de-
scribed simplification rules (Section 4).

• an evaluation that demonstrates the impact of the sim-
plification rules for deriving block-based editors using
six different languages, including Java and JavaScript
(Section 5).

We continue this paper with a discussion of limitations
and trade-offs, particularly considering the type and com-
plexity of the grammars, as well directions for future work
(Section 6). Finally, we present related work (Section 7), and
conclude our paper (Section 8).

2 Generating Block-Based Editors from
Grammars

In this section, we summarize Kogi’s method for mapping
grammar rules to blocks. Then, we analyze some limitations
related to Kogi’s generated block-based editors, and finally,
present a set of aesthetic criteria.

2.1 Mapping Top-Level Alternatives to Blocks

As mentioned in Section 1, there are three ways to develop
block-based editors: implementation from scratch, extend-
ing existing block-based editors, or using libraries [24]. An
alternative is presented in the work by Verano and van der
Storm [33], called Kogi, which derives block-based editors
from context-free grammars [23]. The resulting block-based
editors use Google’s Blockly library [13]. Given a grammar,
Kogi analyzes it to create a mapping between grammar con-
structs and a generic Algebraic Data Type (ADT) that de-
scribes the elements of a block-based environment. From
this ADT, Kogi derives a set of named categories contain-
ing a set of blocks, where the blocks represent all possible
representations of the rules of the grammar.

Table 1. Mapping between grammar rules and blocks.

Type Rule Block

VarDecl Type Id ";"

Stmt
"{" Stmt* "}"

| "while" "(" Expr ")" Stmt

| ...

Kogi’s mapping from grammars to blocks is based on a
set of heuristics [33]. In the following, we will summarize
Kogi’s method using the example of MiniJava (a subset of
the Java language that captures the essential object-oriented
features of the full Java language [1, 7]). The implementation
of this language is available on GitHub[32].

Table 1 shows two rules from the MiniJava grammar and
their mapping to blocks as generated by Kogi. The first rule,
VarDecl, consists of three symbols and acts as a block for
declaring variables. Its first symbol is Type which is a non-
terminal symbol and thus gets turned into a value input for
the resulting block. The second symbol, Id, is a rule that will
map to a lexical 1, which is turned into a text field instead of
an input. The third symbol is the semicolon, which is a termi-
nal and is added as a label on the block. The second rule, Stmt,
is an excerpt from the MiniJava rule for statements. Rules
that have top-level alternatives are turned into a category in
the palette, where each alternative is turned into a block of
that category. We show two representative examples. First,
the curly braces that enclose a statement block are turned
into a block where the terminals act as labels again. The Stmt*

non-terminal, rather than producing a value input, is turned
into a so-called statement input, as the star indicates that
multiple statements can be added here. Second, the while
loop’s keyword and parenthesis are turned into labels again.
The Expr identifier gets turned into a value input. Finally, the
Stmt non-terminal has been used with a star in the previous
rule (as shown in Table 1). Because of this, even though it is
not repeated in the while-loop, we still generate a statement

input, rather than a value input as the same type of block
cannot have two different types of input shapes.
Kogi’s main limitation is that it preserves the mapping

of the original grammar exactly, mapping each rule and
top-level alternative to one category or block, respectively.
Since grammars are used for parsing text, grammar designers
often need to add syntactic elements (such as parentheses,
statement terminators, etc.) to ensure that the language is
unambiguous or can be parsed efficiently. In a block-based
editor, however, such textual markers are often not relevant,

1In Rascal, lexical symbols are like syntax non-terminals, but are not modi-

fied with interleaved layout non-terminals.
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because in a block-based editor programmers manipulate
Abstract Syntax Trees (ASTs) directly.

Another drawback is that Kogi takes as input general
CFGs with explicit constructs for operator precedence and
disambiguation as supported by the Rascal language work-
bench [18]. However, many grammars out there have been
adapted into forms that are acceptable by parsing algorithms
that require a more verbose formulation of rules, such as
LL(k) or LR(k). This means the grammars contain “tricks”, for
instance, to avoid left-recursion, or to encode precedence us-
ing layered non-terminals. Feeding such grammars to Kogi
would lead to very unbalanced and difficult-to-use block-
based editors.

2.2 Limitations of Kogi

In the following, we will describe examples of issues we have
identified in block-based editors generated by Kogi using the
MiniJava grammar (Appendix A). From this, we will then
derive our aesthetic criteria for blocks, following a heuristic
evaluation as proposed by Nielsen and Molich [27], which
allows us to identify the current limitations of Kogi and
study how these limitations can be addressed. We are aware
that this type of evaluation does not suggest guidelines on
how to address such limitations, the purpose of this paper,
however, is to show how these limitations can be mitigated
by transforming the rules within a CFG to produce block-
based editors that closely resemble popular, hand-crafted
editors. Similar to Holwerda and Hermans in their evalua-
tion of block-based user interfaces [15], we will apply the
Cognitive Dimensions of Notations (CDN) framework [4] to
the MiniJava block-based editor. Note that while Holwerda
and Hermans focused on the user interface, our focus lies on
how the underlying language is mapped to blocks.

Special-purpose Grammar Rules. The MiniJava gram-
mar contains an ExpressionList rule for method call argu-
ments:
syntax MethodCall = Expr "." Identifier "(" ExpressionList? ")";

syntax ExpressionList = Expr ( "," ExpressionList )?;

As such, when users want to invoke a method in the de-
rived block-based editor, they experience repetition viscosity,
where a single desired action in the user’s mental model
requires multiple repetitive actions, as they have to fetch
both a method call block and an expression list block. In the
following screenshot, the block equivalent of the expression
this.init(false) is shown, where the purple expression list
block had to be added before the argument could be placed.

Further, these special-purpose blocks will likely contradict
the program structure in which users typically think, leading

to higher diffuseness of the notation, where more space in
the notation is taken up to express a certain construct. As
the generated editor also does not communicate the need for
the expression list block, higher error-proneness in the use of
the editor can be expected.

Blocks for Leaf Nodes. When writing a simple expres-
sion such as 2 + 2 - 3, users must place a block for each
language construct, in this case three numbers and two op-
erators.

This might make the typical use of numbers and identi-
fiers with operators feel cumbersome. Again, this may lead
to diffuseness and viscosity for entering mathematical expres-
sions.
Similarly, the deeply nested blocks may impact visibility,

where parts of the notation may not be readily identifiable
by the user. Further, users may find themselves routinely
pre-fetching number blocks that are no longer needed later
on, leading to cases of premature commitment. This issue
concerns all blocks that will contain leaf nodes in editors
generated by Kogi. We also notice the frequent occurrence
of special-purpose blocks around leaf nodes, as seen in the
above example where the numbers must be doubly nested,
requiring three additional blocks.

Limited Reuse of Blocks. Many generated blocks tend
to be closely related to one another, such as binary operators,
where the structure of inputs stays the same and only a label
changes. However, in the MiniJava grammar (see Appen-
dix A), each mathematical binary operator receives its own
block type. Consequently, changing an addition to a subtrac-
tion operation requires replacing the block, migrating its
arguments, and deleting the old operator.

As such, reformulating expressions, even to very similar
structures, has high knock-on viscosity, where a single de-
sired change cascades to require multiple steps. Further, as
users experiment with expressions, they may again have to
prematurely commit to an operator while still unsure of the
algorithm, with high costs to change the operator later on.

Unclear Block Composition. Value and statement in-
puts in generated editors are not explicitly labeled. Thus
users are left to infer the correct types of blocks to place in
the open slots based on the knowledge of the underlying
language, or worse, the internal structure of the grammar.
For example, a method declaration in the MiniJava grammar
requires several inputs (e.g., parameters types and identi-
fiers).
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Ambiguous inputs lead to blockswith low role-expressiveness,
where the purpose of an aspect of the notation is not readily
recognizable, and low visibility when interacting with the
block palette, particularly for novice and end-users.

List CompositionwithRecursion. Grammars commonly
make use of recursion, for example, to define sequencing
(lists). In MiniJava, the expression list is defined as:

syntax ExpressionList = Expression ( "," ExpressionList )?;

As such, users are required to fetch expression list blocks
each time they want to add another expression as shown
below.

Recursive rules that signify lists have low role-expressiveness,
as well as low consistency, where users apply knowledge from
other parts of the notation to new parts, as other forms of
lists in the generated editor make use of statement inputs
instead. Further, as adding elements requires fetching an
additional block each time, the operation has high viscosity.

2.3 Aesthetic Criteria

In the following, we briefly describe aesthetic criteria derived
from popular, hand-crafted block-based editors, as a set of
guidelines for evaluating the improvements of our approach.

ProvideOnlyHigh-level Constructs. The generated block-
based editor should merge special-purpose blocks with the
blocks that the user would know based on the language’s
domain. In the previous example, the method call would thus
directly allow placing expression blocks as arguments.

Provide Prefilled Leaf-nodes. Blockly editors can make
use of so-called shadow blocks, which are placeholders that
users can choose to replace or just use as-is. If the editor pro-
vides suitable shadow blocks, users can typically use larger
block groups directly, without the need to fetch a block for
each leaf-node input. In Blockly’s example language, the pre-
viously shownmathematical expression can be entered using
just two operator blocks, which both come with numbers
prefilled as their shadow blocks.

Enable BlockReconfiguration. Blockly editors often pro-
vide drop-down fields for configuring the exact semantics of
structurally identical blocks. For example, the mathematical
binary operator in Blockly’s example language can change
its operator, allowing users to keep the blocks’ structure.

Advertise Block Types. Similar to pre-filling leaf nodes,
shadow blocks can be used to advertise the type of blocks
that can be used in a slot. This additional cue allows users
to either recognize the right type of block or find the right
type in the palette. In the below example from Blockly, users
are shown that the is empty block expects a string as input,
as indicated by the quotation marks.

Map Lists to Mutators or Statements. Block-based ed-
itors using Blockly will typically either use sequences of
statement blocks or mutators for lists. Below, on the left,
a mutator dialog from MIT App Inventor is shown, where
users can add item blocks, thus extending the block on the
canvas to take more inputs. On the right, with Microsoft
MakeCode’s array blocks, inputs can be added using the plus
and minus buttons.

3 Grammar Simplification

This section describes our approach to analyze rules within
grammars and apply transformations that simplify them,
resulting in a block-based editor that follows our previously
defined aesthetic criteria. We then outline the changes we
made to Kogi’s block generation process to further support
the aesthetic criteria.
When considering block-based interfaces, Holwerda and

Hermans [15] formulate a distinction between language and
editor design. During the transformation process, it is im-
portant to note that neither the semantics of the language
should change, nor should aspects of the language design
that are not part of the editor design be changed. Otherwise,
if language-specific elements (e.g., labels) are manipulated,
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users might not recognize language constructs they are in-
teracting with.

3.1 Simplification Rules

Our simplification pipeline consists of four major phases,
which can be further divided into transformation steps. (1) Re-
move grammatical noise related to encoding operator prece-
dence, (2) remove unnecessary syntax, (3) merge rules to
produce a more concise block-based editing interface, and
(4) translate the simplified grammar to running code for a
block-based editor. On an algorithmic level, most steps work
the same: we do a deep pre-order traversal of the grammar’s
syntax tree and try to match each node’s structure to the
pattern we want to transform. If a match occurs, we mutate
the syntax tree accordingly, either by changing values in
existing nodes or by replacing nodes with new ones.

Phase 1: Eliminating Operator Precedence Encoding.

The first phase is optional and adapts grammars that have
been written in a formalism that does not have explicit
support for operator precedence. Without explicit operator
precedence, the typical pattern for expressing precedence is
via chained, recursive rules, for example:

syntax Exp = Exp "+" MulExp | MulExp;

syntax MulExp = MulExp "*" PrimaryExp | PrimaryExp;

syntax PrimaryExp = "(" Exp ")" | digit+;

This would lead to different categories of blocks for every
level in the precedence hierarchy. Since operator precedence
essentially is a disambiguation technique (and such ambi-
guities cannot exist in a block-based editor), we can safely
“squash” such a hierarchy of non-terminals into a single non-
terminal, like this:

syntax Exp = Exp "+" Exp | Exp "*" Exp; | "(" Exp ")" | digit+;

Here, we flattened the chained rules such that it is im-
mediately obvious that each operator’s operand must be an
Exp block. This transformation is applicable, for instance,
to left-recursive LR(k) grammars that do not use operator
precedence (for instance as provided by Yacc [17]).

Grammars written in formalisms that do not support left-
recursion (e.g., standard PEG [11]), have to circumvent it
using another common grammar idiom:

syntax Exp = Exp1 ("||" Exp1)*;

syntax Exp1 = Exp2 ("&&" Exp2)*;

syntax Exp2 = Exp3 ("|" Exp3)*;

...

Once a rule conforming to either of these patterns is iden-
tified, we try and locate the top-most rule that no longer
conforms to the pattern. Once this rule is identified, we
can use it for the left- and right-hand-side operands and
transform and inline the derived rules as alternatives of the
top-most rule. This type of operation is sometimes known
as “deyaccification” [19, 37].

Phase 2: Removing Unnecessary Syntax. In the second
phase, we prepare the grammar for further processing by try-
ing to find common patterns of syntactic terminal symbols
that are unnecessary in block-based editors. Most impor-
tantly, this concerns list separators, as blocks are delineated
through the use of user interface elements.

This transformation is realized by searching for commonly
used patterns for list separators. For example, the following
examples are detected by our heuristic and transformed to
the rules with a _changed suffix below.

syntax List1 = (Element ",")* Element?

syntax List1_changed = Element*

syntax List2 = (Element ",")* Element

syntax List2_changed = Element+

syntax List3 = Element ("," List3)?

syntax List3_changed = Element+

Our algorithm traverses the entire grammar once for each
type of list structure shown above, matches the expected
structure against the current nodes, and, if a match occurs,
rewrites the grammar’s sub-tree as shown. The transformed
rules are then straightforward to translate into statement

inputs using Kogi’s existing transformation logic.
Additionally, in this second phase, we remove all elements

in the grammar that only serve to disambiguate the textual
sequence of characters and will as such not have an impact
on the desired layout and appearance of blocks, such as
lookaheads or Rascal’s follow conditions.

Phase 3: Merging Rules. In phase three, multiple steps are
involved, summarized as follows:

(1) Inline "simple" rules,
(2) merge terminals of structurally identical alternatives,
(3) merge consecutive terminals,
(4) hoist non-top-level alternatives, and
(5) inline chain rules.

Inline “Simple” Rules. By heuristically finding "simple"
rules and inlining them, we try to undo the decomposition
introduced by the grammar’s authors. This step’s goal is thus
to support our aesthetic criterion of reducing special-purpose
blocks. We define a simple rule as a rule with the following
characteristics: (i) it is not a lexical rule, (ii) it contains at most
a single non-terminal (but arbitrary numbers of terminals),
(iii) and its top-level expression is not an alternative that
includes non-terminals.

Below, we give some examples that match this definition
and some that do not:

// Does match
syntax Type = "int" | "float" | "double"

syntax Align = ("left" | "right") ("top" | "bottom") Fill?

syntax Group = "(" Expression+ ")"

// Does not match
syntax ComplexType = "int" | "float" | "double" | Identifier

syntax MethodCall = Identifier "(" ExpressionList ")"

lexical identifier = Letter+
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We do not inline lexical rules because they will be trans-
formed into text fields. We observed that rules with multi-
ple non-terminals are often complex enough; therefore, we
found that having a separate block for them was beneficial.
Finally, rules that have a top-level alternative, including a sin-
gle non-terminal, like the ComplexType example above (which
would match the other two criteria), will become nested al-
ternatives if inlined. However, we want to avoid introducing
more nested alternatives, as these will require expanding a
block to multiple blocks in the "hoist non-top-level alterna-
tives" step further down the pipeline.

In the concrete example below, we have an expression list
rule that no longer contains list separators. Per our defini-
tion, it qualifies as a simple rule. When applying the trans-
formation, its usage is replaced by its definition and the
ExpressionList rule is deleted as it is no longer used in the
grammar after inlining.

syntax ExpressionList = Expression*

syntax MethodCall = identifier "(" ExpressionList ")"

syntax MethodCall_changed = identifier "(" Expression* ")"

This step is applied multiple times throughout the pipeline,
as subsequent steps may result in more simple rules to be
generated.

Merge Terminals of Structurally Identical Alterna-
tives. This step analyzes all top-level alternatives of a single
rule. If it encounters a pattern of more than one alternative
that only differ by a single terminal, it will group these. For
example, a common case are binary operators:

syntax Expr = Expr "+" Expr | Expr "-" Expr | digit+;

syntax Expr_changed = Expr ("+" | "-") Expr | digit+;

Here, we grouped all operator terminal symbols in one
nested alternative. During the final block generation, this will
result in a single binary operator block where all operator
symbols are offered in a drop-down list.

This heuristic will ensure that structurally identical blocks
end up being convertible in the final block-based editor, thus
allowing users to reuse block structures if they only need to
change a label. Note that through the previously described
“inline simple rules” steps many small differences between
rules will already have disappeared. For example, a renaming
such as the one below will have been inlined and the alter-
natives will thus also be considered structurally identical.

syntax Expr = Expr "+" Expr | A "-" Expr;

syntax A = Expr;

Merge Consecutive Terminals. As a small optimization,
we merge consecutive terminals with spaces inserted be-
tween them. Otherwise, during block generation, we would
generate a separate label for each terminal, leading to large
gaps between the words. This step should take place only
after matching against structurally identical block, otherwise
some previously structurally identical blocks may appear
different with merged terminals.

syntax Statement = "while" "(" Expr ")" Statement;

syntax Statement_changed = "while (" Expr ")" Statement;

HoistNon-top-level Alternatives. As preparation for gen-
erating blocks, we now walk through the entire grammar
and locate rules that contain non-top-level, non-terminal
alternatives. Any that are found are expanded into separate
top-level alternatives. For example:

syntax VariableDeclaration

= (identifier | "int") identifier ";";

syntax VariableDeclaration_changed

= identifier identifier ";"

| "int" identifier ";";

Without this step, there is no clear mapping to blocks,
as alternatives mixing different identifiers or identifiers and
terminals cannot be displayed in a field on a block. If there are
multiple non-top-level alternatives, we generate the product
of all possible combinations.

Inline Chain Rules. If during the above steps any rules
ended up being chain rules, we nowfinally inline these before
generating the block-based editor.

syntax Function = "function" "(" id* ")" Statement;

syntax Expression = Function | Expression "+" Expression;

syntax Expression_changed = "function (" id* ")" Statement

| Expression "+" Expression;

If not inlined, the Function reference would yield a sin-
gle empty block with one value input where the dedicated
Function rule block needs to be inserted to act as an expres-
sion. By inlining the Function rule instead, a proper Function
block can directly be used as an expression.

3.2 Block Generation

Once the simplification is done, we take the resulting gram-
mar and generate a Blockly configuration for it. The proce-
dure for this is largely the same as performed by Kogi, except
for two important exceptions.

For one, we generate block shadows for each block input,
as described in Section 2.3. We do so by trying to determine
the most primitive alternative that each rule is offering by
looking for blocks with as few inputs as possible but pre-
ferring those that contain just a text field. For inputs that
require a grammar’s "Expression", this will most likely be
an identifier or number block. If no good match is found,
we pick the first alternative. Even a random pick will, at
a minimum, give away the right color of the input block
and can be hovered for a textual description, but, more com-
monly, may also include visual cues such as keywords or
other descriptive terminals.
Second, repeated or optional expressions that contain

more than just a single identifier are placed in a special
mutator inspired by Microsoft MakeCode’s implementation
with Blockly. An example can be seen in Section 2.3, where
the plus button can be used to add further arguments. This
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special mutator button is necessary as there is otherwise no
mapping of rules such as this one:

syntax MethodDeclaration = Type identifier "(" (Type identifier)* ")"

To be able to enter the repeating sequence Type identifier it
would either need to be extracted into a separate block or
be added to the parent block as dynamic new inputs. This
dynamic type of block is enabled by the mutator. Similarly,
optional elements in the grammar can be toggled using the
same interface.

4 Implementation

In this section, we present S/Kogi’s architecture and selected
implementation details. S/Kogi is an extension of the pre-
viously described Kogi [33]. Unlike Kogi, which was imple-
mented in the Rascal Language Workbench, S/Kogi is an
alternative implementation in Squeak/Smalltalk [16]. It uses
a generalized superset of Rascal and Ohm grammars as its
input, as special features of neither grammar dialect are re-
quired for the simplification or block generation process.

Figure 2. S/Kogi’s architecture.

Figure 2 shows S/Kogi’s architecture. While no special
features from the grammar dialects are required, their struc-
ture tends to differ as outlined in Section 3.1. As such, there
are two entry points for using S/Kogi: a Parsing Expression
Grammar (PEG) [12]/Ohm grammar or a CFG. If the input
is a PEG, we first transform it into a Rascal-like grammar.
Through this step, we reach the second entry point that ap-
plies to Context-Free Grammars (i.e., Rascal grammars) and
now also our modified PEG grammars. The input grammar
then traverses the pipeline steps described in Section 3.1.
The simplified grammar, conceptually, can then be passed to
the original Kogi. In our concrete implementation, the trans-
lation step from the simplified grammar to Blockly code for
the block-based editor was also modified as described in
Section 3.2.

Users can apply minor customizations through the gram-
mar’s domain objects in Smalltalk code, as discussed in Sec-
tion 5 and Section 6. An example of a block generation invo-
cation including customization is shown in Listing 1.

Here, the user renames all usages of the VariableDeclaration-
NoIn rule to omit the NoIn suffix and then deletes the rule, be-
fore the grammar is passed to the pipeline. After the pipeline
has finished, the user assures that Statement rules will receive
statement outputs instead of value outputs, to override our
built-in heuristic. Finally, the user specifies that the optional
Ohm2Rascal phase should be run and invokes the pipeline,
which generates an HTML file and opens it in the user’s
browser.

BlockGenerator new

grammar: '...';

preDo: [:g | | oldRule |

oldRule := grammar ruleNamed: 'VariableDeclarationNoIn'.

oldRule allUsagesDo: [:identifier |

identifier contents: 'VariableDeclaration'].

oldRule delete];

postDo: [:g | (g ruleNamed: 'Statement') kogiOutput: #statement];

isOhm: true;

simplifyAndOpen

Listing 1. Customization for the editor generation process.

5 Evaluation

In this section, we will first evaluate the impact of our simpli-
fication rules on MiniJava before considering several other
language grammars with different purposes as small case
studies.

5.1 Simplified MiniJava

As previous research [22, 33] had demonstrated limitations
of the applicability of generated general-purpose program-
ming (GPL) block-based environments, we will describe the
improvements in MiniJava based on our aesthetic criteria
defined in Section 2 more closely. As part of the further
case studies, we also offer a short evaluation of JavaScript, a
complete GPL.

Provide Only High-level Constructs. Below, we show
on the left Kogi’s original MiniJava palette and on the right,
the version generated by S/Kogi.

Except for the "Stmt to Expr" category (discussed in Sec-
tion 6.1), all terms found in the S/Kogi palette should appear
familiar to Java developers. Exceptions in the Kogi palette
are the FormalList and ExpressionList rules that are both rec-
ognized as "simple" rules in S/Kogi and inlined.
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Provide Pre-filled Leaf-nodes. In the below example, we
show the variable declaration and binary operator blocks
generated by S/Kogi.

In both cases, our heuristic selected the simplest block of
the options (in the first case of rule Type, and in the second
of rule Expression), both containing just a text field.

Enable Block Reconfiguration. Our step of merging ter-
minals of structurally identical alternatives allowed the type
and operator blocks to offer drop-downs, rather than appear-
ing as individual blocks each.

As such, users can quickly change between the related
instances of Boolean, type, and operator blocks.

Advertise Block Types. The method block in S/Kogi on
the right offers users a way to either visually distinguish
the types of input blocks, or, if the shapes are ambiguous, to
hover blocks and see a tooltip that indicates the block type.

For example, in Kogi’s version on the left, users may need
to resort to trying various types of blocks to find out that the
first statement input is meant for variable declarations and
only the second is meant for statements. In S/Kogi’s version,
the types of blocks are hinted at through the block’s shape.

Map Lists to Mutators or Statements. In the above fig-
ure, one can see a plus-sign mutator (+) that allows users to
add more arguments to the method block. Similarly, repeti-
tions of single identifiers are turned into statement inputs,
as typically expected for Blockly-based editors.

Figure 3. A statement input, allowing users to add multiple
blocks without use of recursive blocks.

5.2 Case Studies

In the following, we describe a broader range of grammars
and their generated block-based editors. Examples of each
can be found in Appendix B.

Cloud Configuration Language (CCL). This language
is inspired by the format in Amazon Web Services Cloud-
Formation [31] for allocating cloud resources. It differs from
typical DSLs or GPLs in that its structure is fixed and only
values change for the most part.

For this grammar, the "inline simple rules" step has the
strongest impact. While the block-based editor generated
by Kogi places each of the mandatory fields in their own
blocks, our simplified version provides one large block, with
all mandatory inputs already in place. Similarly, the value
inputs are turned into inline input fields and drop-downs.

Questionnaire Language (QL). This language supports
the definition of interactive questionnaires and was used
to evaluate and benchmark language workbenches [10]. QL
targets end-users and supports basic control-flow structures.
We reused an existing implementation in Rascal [20].

For QL, merging terminals of structurally identical alter-
natives was responsible for the most significant cleanup of
blocks, as it otherwise comes with 12 separate binary opera-
tors. Here too, inlining simple rules ensured that the question
block had all its mandatory inputs already built-in.

Sonification Blocks. This language is designed for data
sonification and teaches basic principles of sound produc-
tion, programming, and data flow manipulation [2]. The lan-
guage’s authors heavily customized the block-based editor,
for example by adding images of sound waves in blocks.

The grammar [21] contains several alternatives that act as
chain rules. These were translated by Kogi to blocks that take
a single input of the indicated type, making it exceedingly
difficult for users to find the right match. In the simplified
version, these alternatives have been inlined, such that users
can directly use the high-level block.

Figure 4. On the left, Kogi’s output requires placing distinct
wrapper blocks for each type of statement. Our simplified
version on the right allows using the statements directly.

State Machine. This language is a simple DSL for describ-
ing state machines [33]. For our quantitative evaluation, it
acts as a baseline, since it is rather small and the generated
block-based editors are essentially identical, demonstrating
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that only with a minimum of complexity any benefits of
S/Kogi can be observed.

Java. As a popular language [6] and a language of a size
that challenges the block-based interaction metaphor we
included Java to explore our approach’s applicability to com-
plex GPLs.

Interestingly, the S/Kogi version of the grammar [5] yielded
significantly more blocks than the Kogi version, as shown in
Table 3. This is mostly because lists of expression rules were
unrolled and could not be merged in phase 1 of the pipeline
because various parts of the grammar referred to subsets of
the expression rules. Merging these would have thus created
an invalid grammar. When S/Kogi then started inlining rules,
it ended up creating duplicates of the expression rules in var-
ious places of the grammar. The total number of categories,
mapping to groups of language constructs, was still halved
in size by S/Kogi, however.

For this type of grammar, it may be desirable to create an
invalid grammar that where making more aggressive simpli-
fications is allowed but generate code for a linter that can
guide users if they attempt to combine blocks that are not le-
gal in Java. Further, some of the restrictions are not relevant
in a block-based editor, for example, several rules have du-
plicate versions that explicitly exclude "short if statements"
as these would clash syntactically.

JavaScript. We used a version of JavaScript with some
extensions on top of ECMAScript 5, used for teaching source-
to-source transformations (desugaring) using Rascal [8], for
which a Rascal grammar was available. Its grammar is sim-
ilar to MiniJava’s but offers more language constructs and
presents different structures of rules.

Because of the size of the grammar, using the block-based
editor generated by Kogi is difficult: many blocks that need
to be combined to form a semantic unit are spread across
various categories in the palette. Further, the type of block
needed in a given slot is not always clear. Our simplified
version improves the generated block-based editor by, first,
aggressively merging and inlining rules to end up with a se-
lect few that indeed roughly correspond to what a JavaScript
programmer may name as language constructs in the lan-
guage, and second, through the use of shadow blocks that
hint the types of blocks that are required as inputs.

Some peculiarities of JavaScript are still found in our sim-
plified version, however: for example, there is a separate
block for property assignments because in JavaScript these
can be either strings, numbers, or identifiers. As such, prop-
erty assignments do not qualify as simple blocks and will
thus not be inlined. To remedy this, our logic for detecting
appropriate shadow blocks will select the likely most com-
monly used identifier by default for object properties. Thus,
users will rarely have to interact with the other property
assignment blocks and can use the inlined shadow block
directly instead.

Simple customizations can improve some issues. For ex-
ample, JavaScript contains two variable declaration rules:

syntax VariableDeclaration = Id "=" Expression | Id;

syntax VariableDeclarationNoIn = Id "=" Expression!in | Id;

The second declaration excludes the JavaScript "in" ex-
pression from appearing and is used in some contexts where
the "in" expressions are not valid in the grammar, which is
only important for correct parsing. In Listing 1 we show a
customization users can apply to the grammar to merge the
two separate rules, as doing this in an automated manner
will likely be prone to produce false positives.

5.3 Complexity Reduction

This section presents a quantitative evaluation of the results
obtained after generating block-based environments using
both Kogi and S/Kogi for each of the six case studies de-
scribed earlier. First, we look at the number of Source Lines
of Code (SLOC) for each generated environment as a proxy
for editor complexity. To measure the SLOC of each case
study, we used SonarQube [30]. Then, we look in more detail
at each of the generated editors to evaluate the number of
categories in their palettes and the number of blocks of each
language in both (Kogi and S/Kogi) versions.
Table 2 presents a detailed view of the number of SLOC

per environment for each case study. The first column con-
tains the name of the language. The following two columns
contain the information regarding the environments gen-
erated using Kogi and S/Kogi, respectively. Each of these
columns is divided into two sub-columns that contain the
number of generated XML and JS (JavaScript) SLOCs. The
number of HTML SLOCs is not included in the table because
all the case studies were embedded into the same HTML
application containing 23 SLOCs. In most environments gen-
erated using S/Kogi, there is a reduction in the number of
SLOCs, except for the State Machine language in which there
is an increase of almost 10% in the number of JS SLOC. The
reason for this is that S/Kogi uses additional Blockly fea-
tures (e.g., shadow blocks). In the remaining case studies,
there was a reduction in the number of SLOC, and the most
significant impact is evidenced in the JavaScript language,
with a reduction of more than 86% SLOC compared to the
Kogi version. The reduction in the SLOC in most of the case
studies might benefit language engineers and developers for
further fine-tuning their environments since the projects are
smaller and, therefore, may be easier to modify than projects
with more SLOC.

Table 3 displays descriptive statistics about the block-
based editors generated for each of the case studies. The
table is divided into two columns, Kogi and S/Kogi. The first
contains the information related to the block-based environ-
ments generated using Kogi, and the latter contains the in-
formation of the environments generated using S/Kogi. The
table shows three main aspects of the generated block-based
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Table 2. Comparison between the number of lines of code
(SLOC) of block-based environments generated by Kogi
against S/Kogi.

Languages
Kogi (SLOC) S/Kogi (SLOC)

XML JS XML JS

State Machine 15 142 19 155
MiniJava 63 1217 147 320
CCL 41 401 8 146
Sonification 71 926 94 263
QL 37 797 66 246
JavaScript 231 4580 341 598
Java 1022 13336 3803 5381

editors; it counts the number of categories in the palette of
each language (# Blocks ), the total number of blocks per
language (# Cats.), and the number of blocks required for
defining an example program in each environment shown
in Appendix B.

Based on the collected results, we observe that through the
simplification rules, environments generated using S/Kogi
have fewer blocks, which is an expected result since that
was one of the limitations that we identified in Section 2.
The case study that presented the most significant reduc-
tion in the number of blocks is CCL; the S/Kogi version has
almost 88% (14) fewer blocks than the same environment
using Kogi. The only exception is the Java language, for the
reasons described in Section 5.2. Looking at the number of
categories, on the one hand, the language that benefited the
most with fewer categories is also CCL with more than 81%
(nine categories) fewer categories. On the other hand, the
State Machine and the QL languages were the ones whose
palette was reduced but less than the other case studies with
only 25% (one category) fewer categories. The reduced num-
ber of blocks and categories does not mean that the editors
generated by S/Kogi are less expressive, but they inline rules
based on the heuristics defined in Section 3. Overall, as pro-
grams written using editors generated by S/Kogi require
fewer blocks, as shown in # Block Prog. columns (Table 3),
it is expected that users will find them easier to use. A dis-
cussion of this follows in Section 6.2. Similarly, as palettes
contain fewer categories and blocks, users’ cognitive load
is likely reduced when looking for a specific construct or
browsing the available blocks.

6 Discussion and Future Work

As described, S/Kogi offers improvements with respect to
our established aesthetic criteria over Kogi. This section
discusses consequences and limitations of the proposed sim-
plification rules and points out directions for future work.

6.1 Statement vs. Expression Ambiguity

Blockly requires blocks to either occur as values or as state-
ments, each with a differing jigsaw puzzle socket. An exam-
ple of both types can be seen in Table 1. If a block occurs in
both contexts, we provide a rubber element as a workaround,
seen for example in Figure 3. However, since the rubber ele-
ment always requires users to think about the context they
want to use a block in, the default shape of a block should
reflect its most common usage.

To find this usage, we currently defer to a user annotation
in difficult cases. For instance, the example below may lead
to false assumptions about the default intended shape:

Statement = "if" Expression Statement

| "{" Statement* "}"

| ...

Here, statements are used as a simple non-terminal and
a form in curly braces is provided to parse a sequence of
multiple statements. Similar patterns are commonly found
for expressions, so a heuristic based on this pattern is not
feasible:

Expression = "[" Expression* "]" | ...

The built-in heuristic counts occurrences of a rule in re-
peating contexts vs. non-repeating contexts and chooses
the more common option. If this choice contradicts the in-
tended semantics, user intervention through an explicit tag
is required:

(grammar ruleAt: 'Statement') kogiOutput: #statement

Here, we get the “Statement” rule and set its output to
explicitly be of statement-type for Blockly, such that the
generated block can be directly repeated.

6.2 Inlining Depth

Our current approach focuses on reducing the number of
blocks as much as possible. At times, it may be desirable for
blocks to remain separate. For example, rather than com-
bining all binary operators into one block, it may benefit
users to have all arithmetic operators in one block, and all
comparison operators in a separate one.

Further, fewer, more complex blocks may sometimes also
hinder usability: similar to how users may copy-paste only a
region of a larger construct like a method declaration in text,
duplicating a part of a more complex block may sometimes
be desirable. An example may be found in the Cloud Con-
figuration Language, where almost the entire language is
reduced to a single block through our simplifications. While
this makes creating a single instance quick and easy, copying
just a part of the configuration to another instance becomes
significantly more difficult as decomposing and copying just
parts is no longer possible with the combined block.
On this end, we considered allowing users to configure

how often the inlining rules are being called. This would
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Table 3. Comparison of the total number of blocks, palette categories, and blocks used in an example program in block-based
editors generated by Kogi and S/Kogi, and the reduction from Kogi to S/Kogi. Note that for Java derived types in the block-based
editors were broken, not allowing to create a full program.

Languages
# Blocks # Cats. # Blocks Program

# Kogi # S/Kogi Reduction # Kogi # S/Kogi Reduction # Kogi # S/Kogi Reduction

State Machine 4 3 25% 4 3 25% 8 6 25%

MiniJava 36 25 30% 12 8 33% 47 17 34%

CCL 16 2 88% 11 2 82% 15 3 80%

Sonification 38 18 53% 15 7 53% 13 6 54%

QL 26 14 46% 4 3 25% 21 9 57%

JavaScript 152 63 59% 38 9 76% 36 15 58%

Java 507 664 -19% 256 135 47% N/A N/A N/A

Figure 5. On the left, only shadow blocks are used. The
expression can only be a number unless users fetch their
own assignment block first. On the right, the assignment is
already added, but the expression is left as a shadow, allowing
the "12" to be replaced by other blocks.

allow users to control how many levels deep the inlining pro-
cess should go. Additionally, we considered allowing users
to pin rules, thus telling the system to not further inline a
specific rule.

6.3 Block Shadows

As demonstrated in our examples, Blockly supports a con-
cept of block shadows, where a shadow, for one, signals the
type of block that fills an input, and second, if chosen well,
allows users to directly use the shadow rather than having
to fetch a block for a leaf node. Our heuristic for identifying
appropriate default shadow blocks worked out well for our
examples, but already, if the rules are specified in different
orders, the heuristic could make sub-optimal choices. Ad-
ditionally, it is not only possible to combine a block with
shadow blocks, but also pre-build larger constructs of multi-
ple blocks that users fetch from the palette all at once, as seen
in Figure 5. We allow users to specify that this is desirable
for certain rules but currently make no attempt to compute
this ourselves.

6.4 Block Labels

S/Kogi currently does not generate optimal layouts of la-
bels on blocks. We considered remembering the boundaries
of inlined rules and using these boundaries as markers for
when a line break could be appropriate. Even then it remains
questionable whether labels will end up optimal, without
involving the user to manually set line breaks and spaces.

S/Kogi only removes terminals that it recognizes as list
separators. As other delimiters such as curly braces are not
needed as syntactic dividers in a block-based editor, we con-
sidered also removing these but found that in many cases
this would lead to seemingly identical blocks. For example,
in JavaScript, there is a block for an array surrounded by
square braces, and a block for a sequence of statements sur-
rounded by curly braces. These act as important signifiers
for users to identify the type of block, in particular, if they
have prior experience with the underlying textual language.
The name of the rule of the grammar is already used as

the tooltip for blocks. To help disambiguation, S/Kogi could
try and detect cases where blocks appear ambiguous and
insert the name of the rule as a label on the block.

6.5 Lexical Rules

The handling of lexical rules, summarized here as rules that
would likely yield a single token in a traditional parser such
as a single literal, is not ideal in S/Kogi. At the moment, we
simply always generate a single block with a text field for
each lexical rule. This has some benefits and some down-
sides: for one, there is no distinction between numbers or
identifiers, so users are free to type either, and during export,
a distinction has to be made involving the help of a parser.
If there was a distinction, we could also make better use of
the various types of fields that Blockly offers for different
input data. Block-based editors also commonly make use of
domain-specific graphical elements for data entry, so S/Kogi
could allow users to customize the appearance of lexicals in
the future.

6.6 DSLs vs General-Purpose PLs

Our case studies illustrate that once a minimum level of
complexity is exceeded, S/Kogi will significantly reduce the
number of blocks in block-based editors compared to Kogi.
We argue that for language grammars with significant

complexity, such as Java, where S/Kogi performs worse, it
may be infeasible to create suitable block-based editors, using
Blockly’s patterns. In Java, many optional special cases exist
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throughout the grammar. When writing Java textually, users
can omit optional elements such as annotations, while in a
block editor, explicit actions for creating optional elements
must exist, for example through mutators.
Additionally, especially for larger languages and some-

times in our smaller examples, different groupings for palettes
could have been helpful to the user. For example, while the
switch part of a switch-case statement is placed in the state-
ment category in JavaScript, the case element is placed in
the separate CaseClause category.

6.7 Usability

As shown in Section 5, the block-based environments gener-
ated using S/Kogi contain fewer blocks and categories. This
is translated to less visual noise for users; the search space
for browsing language constructs is smaller than in the same
environments generated using Kogi. As shown in the case
studies, users need fewer blocks to create their programs.
While creating the example programs, we noticed that the
time required to define programs is shorter in S/Kogi gen-
erated editors. However, we plan to conduct a formal user
study to determine whether this is true for other programs
and languages and how time relates to the user’s experience.

7 Related Work

There is a lack of tools that help users to develop block-
based environments [24]. Most of the existing tooling re-
quires developers to make manual implementations of the
desired block-based environments. Programming environ-

ment generation is an active research line focused on devel-
oping tools for existing and new languages. In this direction,
Rascal2MPS [22] follows a similar approach as the one used
in Kogi [23, 33]; it analyzes CFGs to derive projectional ed-
itors. However, Rascal2MPS presents some limitations, as
described by the authors, regarding the usability of the gen-
erated projectional editors. S/Kogi is a first step towards
generating better editors by analyzing language definitions.
For instance, using Blockly’s mutator features improves the
creation of structural editors, which resembles in a way the
so-called editor actions of MPS [26], or transformations in
the Synthesizer Generator [29]. Some of the simplification
rules described in Section 3 might provide good results for
improving the generated projectional editors as well.
The transformations described in this paper can be seen

in the context of grammar convergence [19]. The goal of
grammar convergence is to align grammatical structures
represented in different formalisms or styles, and to estab-
lish equivalence properties. As an example, consider two
grammars for the same language, written for different parser
generators, such as ANTLR and Yacc. Both parser genera-
tors use different algorithms, and hence require different
idioms to encode certain syntactic structures or disambigua-
tion. Examples of such idioms are left-recursion removal,

or encoding precedence using a hierarchy of non-terminals.
Convergence then consists of systematically transforming
one grammar to the other. Examples of such transformations
include deyaccification (if a grammar formalism does not
support explicit precedence handling), left recursion intro-
duction, renaming, etc.

In this paper, existing grammars are taken as input and are
“converged”, so to speak, to block-based definitions that do
not yet exist but follow certain aesthetic principles. Neverthe-
less, just like in the original work on grammar convergence,
equivalence properties are at stake. The generated block-
based language should, for instance, allow the construction
of all the programs that the original grammar captures. Sim-
ilarly, the transformations should not introduce ambiguities
that do not exist in the original language.

A more specific instance of convergence is abstract syntax
generation from context-free grammars [36]. This work was
further refined in the SDF syntax definition formalism [14],
and later in Stratego/XT where algebraic signatures are de-
rived from context-free grammars [9]. In a sense, the block-
based definitions derived from grammars in this paper are a
specific kind of abstract syntax, where some details of the
concrete syntax are indeed elided (e.g., whitespace, operator
precedence, etc.), but others are not (e.g., keyword literals).

8 Conclusion

We described S/Kogi, an improvement over Kogi, to sim-
plify and optimize block-based editors generated using lan-
guage grammars, such that existing language infrastructure
can also be applied to artifacts from the block-based editor.
We demonstrated that the simplifications we apply to the
grammar significantly reduce the number of blocks in the
block-based editor and improve their usability. As evaluation,
we showed that languages of different complexities benefit
from the simplification process and only rarely small user
interventions were needed to arrive at editors that fulfill
our established aesthetic criteria. We thus consider S/Kogi
an important step to making use of automatically derived
block-based editors feasible.
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A Complete MiniJava Grammar

lexical Integer = natural: [0-9]+;

lexical Identifier = id: [a-zA-Z]+;

syntax Expression

= i: Integer inte

2https://hpi.de/en/research/research-school.html
3https://hpi.de/en/dtrp/
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| len: Expression ex "." "length"

| t: "true" t

| f: "false" f

| id: Identifier i

| this: "this" this

| ne: "new" "int" "[" Expression a "]"

| ne2: "new" Identifier b "(" ")"

| bracket "(" Expression x ")"

| a: Expression "[" Expression v "]"

| v: Expression a "." Identifier v

"(" ExpressionList? opt ")"

> d: "!" Expression e

> mul: Expression e "*" Expression e

> b: Expression e "+" Expression e

| c:Expression e "-" Expression e

> e: Expression e "\<" Expression e

> and: Expression e "&&" Expression e;

syntax ExpressionList

= e: Expression ExpressionList*;

syntax Statement

= s1: "{" Statement* body "}"

| s2: "if" "(" Expression e ")"

Statement s "else" Statement s

| s3:"while" "(" Expression e")" Statement s

| s4:"System" "." "out" "." "println"

"(" Expression e ")" ";"

| s5: Identifier i "=" Expression e ";"

| s6: Identifier i "[" Expression e "]"

"=" Expression e ";"

| s67: Expression ";";

syntax FormalList = lst: Type t Identifier i ;

syntax Type = i: "int" "[" "]" | b: "boolean"

| i2: "int" | id: Identifier i;

syntax MethodDecl

= "public" Type Identifier

"(" FormalList v")" "{"

VarDecl* a Statement* s "return" Expression ";"

"}";

syntax VarDecl = var: Type Identifier ";";

syntax ClassDecl = clsdcl: "class" Identifier "{"

VarDecl* dcls MethodDecl* mtds

"}";

syntax MainClass = "class" Identifier "{"

"public" "static" "void" "main"

"(" "String" "[" "]" Identifier ")" "{"

Statement

"}"

"}";

start syntax Program = pro: MainClass c ClassDecl* cls;

Listing 2. Definition of the MiniJava grammar in Rascal.

Figure 6. Example program using the QL block-based envi-
ronment generated by Kogi.

Figure 7. Example program using the QL block-based envi-
ronment generated by S/Kogi.

Figure 8. Example program using the State Machine block-
based environment generated by Kogi.

B Example Programs

This appendix contain screenshots of the example programs
developed in Section 5.
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Figure 9. Example program using the State Machine block-
based environment generated by S/Kogi. The color of some
transitions is different due to the use of the shadow blocks
as explained in Section 2.2.

Figure 10. Example program using the JavaScript block-
based environment generated by Kogi.

Figure 11. Example program using the JavaScript block-
based environment generated by S/Kogi.

Figure 12. Example program using the CCL block-based
environment generated by Kogi.

Figure 13. Example program using the CCL block-based
environment generated by S/Kogi.

Figure 14. Example program using theMiniJava block-based
environment generated by Kogi.
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Figure 15. Example program using theMiniJava block-based
environment generated by S/Kogi.

Figure 16. Example program using the Sonification blocks
block-based environment generated by Kogi.

Figure 17. Example program using the Sonification blocks
block-based environment generated by S/Kogi.
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