
M 3: a General Model for Code Analytics in Rascal

Bas Basten†, Mark Hills∗, Paul Klint†, Davy Landman†, Ashim Shahi†, Michael Steindorfer†, Jurgen Vinju†
†Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

{Bas.Basten,Paul.Klint,Davy.Landman,Ashim.Shahi,Michael.Steindorfer,Jurgen.Vinju}@cwi.nl
∗East Carolina University, Greenville, NC, USA

mhills@cs.ecu.edu

Abstract—This short paper introduces M3, a simple and
extensible model for capturing facts about source code for future
analysis. M3 is a core part of the standard library of the Rascal
meta programming language. We motivate it, position it to related
work and detail the key design aspects.

I. MOTIVATION

In the context of the EU FP7 project “OSSMETER” we
have developed an infrastructure for measuring source code.
The goal of OSSMETER is to obtain insight into the quality of
open-source projects from all possible perspectives, including
product, process, and community.1

The challenges faced by our part of the design, which
focuses on source code, are variability, integration, and accu-
racy. Variability is necessary to support the different languages,
including dialects, we support, as well as the different metrics
we will compute. Integration is necessary at a semantic level,
where metrics are computed across programming language
and domain boundaries and are combined for further analysis.
Accuracy is a prerequisite for insightful analyses. When
accuracy is lost in the early stage of fact extraction from
source code, the downstream analyses may show interesting
but nevertheless meaningless information.

The standard solution for variability and integration is
to put an explicit reusable model (e.g., database, graph) in
the center, such that model producers (parsers & extractors)
can be decoupled from model consumers (metrics & visuals).
Examples of such intermediate models are FAMIX [1], RSF [2],
GXL [3], KDM [4], and ATerms [5]. A positive side-effect of
intermediate models is that the data are pushed into a general
form, which enables integrating information from different
sources. We have been inspired by these examples.

This paper is a brief description of M3, a set of code models
which should be easy to construct, easy to extend to include
language specifics, and easy to consume to produce metrics
and other analyses.2 M3 consists of an abstract syntax tree
(AST) layer (hierarchical) and a relational (flat) layer. The AST
layer uses a standard interface, but is expected to be language
specific, while the relational layer is more abstract in nature
and made for reuse.

The main threat to validity of any intermediate model which
is generic enough to be reusable between different programming
languages is that accuracy may be lost. This is why the
M3 standard first prescribes precise language-specific AST

1http://www.ossmeter.org
2An earlier, shorter version of this paper was presented at BENEVOL 2014.

models and then language agnostic relational models where
it is possible to abstract. The reader should be aware that
we do not intend to create a unified model for programming
language semantics. Such a language independent model would
be inaccurate (wrong), and deliver meaningless metrics. Instead
we opt for a unified form for storing facts about programs. This
means that all models will have a predictable shape, but we do
not assume any reusability of metrics or visualizations between
models that are produced by different front-ends. The design
of M3 gives accuracy a higher priority than reuse.

The context of M3 is the Rascal meta-programming lan-
guage [6], [7].3 This is a domain specific language specifically
designed to include primitives we need to model the syntax
and semantics of any programming language, and to analyze
and manipulate these models. Three essential design elements
related to this paper are that Rascal has value semantics for all
in-memory data, including sets and relations; it has support for
URI literals, called “source locations”; and it has term rewriting
and relational calculus primitives to deal with hierarchical and
relational data, respectively. This includes generic traversals [8]
and pattern matching primitives as well as relational operators
such as transitive closure and comprehensions.

The differences between M3 and the aforementioned models
is that M3 deals with purely immutable, typed data which can
be directly produced, manipulated and analyzed using Rascal
primitives. Two unique elements are the introduction of URI
literals to identify source code artifacts in a language agnostic
manner and support for fully structured type symbols.

II. EXPERIENCE REPORT

We developed M3 to satisfy the requirements of the
OSSMETER project, but we have been using it for a broader
range of studies related to software analytics. We have used M3

to construct comparable models of Android API evolution from
three sources: source code, jar files and online documentation.4
Creating the same model out the three sources required
writing three different fact extractors. The first is based on
the Eclipse JDT, the second uses ASM,5 and the last uses
Rascal’s HTML library model. The analysis reveals interesting
differences between the models which may influence the
conclusions of related work [9]. For example, the Android
source code releases contain undocumented public classes and
methods. Nevertheless, these are available after deployment
and developers use them.

3http://www.rascal-mpl.org
4Thanks to the students of the UvA Software Evolution course 2013.
5http://asm.ow2.org/

http://www.ossmeter.org
http://www.rascal-mpl.org
http://asm.ow2.org/

Source
Code

Reuse (External) AST

Parser /
Compiler

Internal
AST

Translator Extractor

M3 relations
(per file)

M3

AST

Linker

Merged
M3

Metrics and
visualisation

Fig. 1. An Overview: From Code to Metrics and Visuals via M3 Models.

For OSSMETER, M3 is applied to measure a plethora
of object-oriented and procedural code metrics [10], [11] for
Java and PHP. The metrics output between Java and PHP are
comparable, and we also achieved some level of reuse when
the metrics were based on the relational part of M3, such as
inheritance, overriding and containment relations.

We are using M3 to improve our PHP static analysis frame-
work called PHP AiR [12], supporting over-approximations of
dynamic features such as file inclusion [13] and types.

We have used M3 to analyze a large body of Java source
code, comparing the cyclomatic complexity of methods to their
size, refuting earlier scientific results reporting on a strong
linear model between the two dimensions [14].

Finally a number of Universiteit van Amsterdam masters
theses are based on using M3 for PHP refactoring, PHP security
analysis, quality metrics, concurrency-related Java refactorings,
and Java reverse engineering.

III. DESIGN ASPECTS

A. Textual Models

M3 is, like all Rascal data, fully typed and fully serializable
as readable text with a standard notation that is equal to the
expression syntax for literals. This means that any intermediate
step can be visualized as plain text and not only searched and
edited using standard text editing facilities, but also stored and
retrieved persistently. One particular aspect of the Rascal IDE
is that all printed source location literals (see below) in editors
and consoles are treated as hyperlinks. M3 models are therefore
“programmer friendly”: easy to explore both interactively and
programmatically using low-brow techniques.

B. Locations

To verify the correctness of metrics, or for explaining them,
we want to trace measurements back to code. For example,
when we present the largest class in a project, we need the
size as well as a link to the source code of this class. In other
words, we want to link information back to source code for all
derived facts we produce. From the semantic web we take the
idea of using URIs (Uniform Resource Identifiers), of the form
|<scheme>://<auth>/<path>?<qry>|(<off>,<len>),
to model the identity of any artifact. We distinguish between two kinds
of code locations: physical and logical. A physical location identifies
a storage location, and may be absolute or relative. Examples of
absolute physical locations are |file:///tmp/Hello.java|
and |http://foo.com/index.html|, while an example of
a relative location is |project://MyPrj/Hello.java|. It is
always the scheme of a URI that defines to which root a URI is
relative. In the case of project, it is an Eclipse project in the
current workspace, while in the case of file it is the file system’s
root. The set of physical schemes is open and extensible, with
schemes for Eclipse projects, Java class resources, OSGI bundle
resources, JDBC data sources, jar files, and other resources.

TABLE I. CORE BINARY RELATIONS OF M3

Layer rel[loc, loc] Description
Generic containment logical containment of code entities
core declarations maps logical loc to physical loc

uses maps physical loc to logical loc
OO extends who extends who (logical loc)

implements who implements who (logical loc)
methodInvocation who invokes who (logical loc)
methodOverrides who overrides who (logical loc)
fieldAccess who accesses who (logical loc)

A logical code location is akin to a fully qualified name. For each
specific language we design a naming scheme for each source code
element that is, in some sense, declared. An example of a logical
location is |java+class://myProject/java/util/List|.
The scheme represents both the language and the kind of artifact
that is identified. The URI authority declares the scope from
which the name is resolved, in this case from myProject which
depends on a particular version of the Java runtime. Finally, the
path identifies the qualified name of the artifact in this scope.
One goal of logical locations is to uniquely link to physical
locations, at a certain moment in time, and at the same time
be more or less stable under irrelevant code movement (such
as moving the root source directory within a project). Another
goal is for such links to be readable, writeable, recognizable and
memorizable by human beings when developing new extractors,
metrics or visuals. For instance, we might explore an M3 model by
projecting the information for an arbitrary class: the Rascal command
m@inheritance[|class://myPrj/java/util/List|]
would produce all interfaces that inherit from java.util.List.

M3 models are built on this concept of logical and physical source
locations. M3 uses binary relations between locations; annotates AST
nodes with these locations; and embeds these locations into symbolic
facts (such as types) to link back to source code whenever possible.

C. Relations

The M3 model is both layered and compositional. This
means that M3 models can be combined (“linked”) and ex-
tended (“annotated”). The core relations are all between code
locations (see Table I). An example containment tuple would be
<|class:///foo/Bar|,|pkg:///foo|>.

This core model is language independent, facilitating not only
volume metrics, browsing visuals (drill-down) and generic aggregation
over containment relations, but also dependence between artifacts and
thus impact and coupling/cohesion analyses. Also note that this core
model is not restricted to handling programming languages. It can be
used to model other kinds of formal languages like grammars, schema
languages, or even pictorial languages.

For modeling language specific information we annotate the above
core model with extra relations. Again these are binary relations
between logical locations (Table I). These relations model key aspects
of the static semantics of a programming language. Note that we never
refer to instantiated or dynamic objects here, not even parametric type
instantiations. All relations refer to source locations literally. For the
accuracy of source code metrics, it is essential that M3 separates what
is written in the source code from what the code means dynamically.
For example, if an abstract method from an interface is called we
should not immediately infer all the call sites and add those to the
invocations relation. Some metrics may want to count the fan-out
to abstract methods, while other metrics want to know the impact
on concrete implementations. You can compute such information by
composing basic facts—e.g. “invocation o overrides” gives
all the concrete callees for calls to abstract methods—and then compute
a metric over the resulting relation.

D. Trees

For abstract syntax trees we use a general concept of algebraic
data-types in Rascal. Every language comes with its own definitions.
Algebraic data-types are easy to extend with new constructors (new
programming language constructs). For M3we standardize some of the
names used in defining AST types. In the core we standardize on five
algebraic sorts to use when defining an abstract syntax: Expression,
Declaration, Statement, Type, Modifier. The goal is to add
as few extra sorts as possible when adding a new language. This leads
to models which over-approximate the possible programs, but also
increases the chance of reuse and extending existing fact extractors.
For example, if all statements are in the same sort, then a basic
function computing the cyclomatic complexity can be extended to
cover a new language by just adding cases for the new types of
statements (e.g. a foreach statement). We also provide annotation
types for specific nodes, i.e. all nodes have a src annotation to point
to the physical source location, all declarations may have a decl
annotation to their logical location identifier and all Expressions may
have a type annotation (see below). Trees are useful mostly for
the computation of metrics over code units that contain statements,
such as cyclomatic complexity, but also to infer data and control flow
information for use in the more advanced analyses.

E. Types

For types we introduce a single sort called TypeSymbol.
We use this to represent any kind of abstract value that vari-
ables and expressions in a language may produce. For Java we
have a default set of type symbols to represent (parameterized)
class and interface types, method signatures, and primitive types.
These symbols can be used to compute with raw and param-
eterized types, either instantiated or uninstantiated. An example
of a type symbol is: class(|class:///java/util/List|,
[class(|class:///java/lang/String|,[])]), meaning
the instantiated parameterized List type generated by the List class
definition with its type parameter instantiated by the String class.
We extended the core M3 model with initial types—a relation from
declarations to the types they generate—and we annotate the trees
of expressions with the types they produce. Using type symbols we
may compute with and reason about dynamic artifacts that are never
declared yet may exist at run-time. For example, an upper-bound for
the number of possible instantiations of a parameterized type can be
computed based on such information.

F. Model Composition

When we extract M3 models we do this incrementally, i.e. per
file, per project, per composition of a project with its dependencies.
Each file (in a given programming language) produces one M3 model.
Then the models for all files in a project are fused into one single
M3 model by applying set union to all the relations of the model.
Finally, if there are project dependencies, we may fuse the M3 models
for different projects. Some analyses are best done before fusion. We
compute the volume of a project before we fuse in the declarations
of the jars we depend on. Other analyses are done only after fusing:
depth of inheritance can only be computed if the models of classes
we depend on are fully available. Since M3 models are immutable
values, like all Rascal values, such models can never be accidentally
mixed. The compose function is called explicitly by the programmer
to union the relation between two M3 models; the link function
does the same, but updates the authority fields of all logical locations
such that uses in one project may point to declarations in another.

G. Efficiency and Memory Consumption

In essence a loaded M3 model is an in-memory database of source
code artifacts. For a large software system, the memory requirements
are large and the efficiency is limited by I/O bottlenecks (network

1 real estimateCoverage(M3 m) {
2 allCalls = m@methodInvocations + implicitCalls(m);
3 allCalls += allCalls o m@methodOverrides<to,from>;
4 testMethods = jUnit4TestMethods(m);
5 ifaceMethods = {met | <t, met> ←m@containment,

isMethod(met), isInterface(t)};
6 reachable = {met | met ←reach(allCalls,

testMethods), met in methods(m)} -
allTestMethods - interfaceMethods;

7 total = methods(m) - testMethods - ifaceMethods;
8 return percentage(size(reachable), size(total),

precision=0.01); }

Listing 1. Statically estimating test coverage using M3.

access, disk access and cache misses). Our current implementation still
suffers from these effects, which are aggravated by value immutability.
Since M3 and Rascal are implemented on the JVM we are using
“soft references” to store M3 models, such that we can re-compute
caches which have been garbage collected. The fused M3 model and
AST models for specific files often drop out of memory because
of this, releasing necessary space. Soft references mitigate memory
limitations nicely at the cost of runtime efficiency. On the other hand
we are investing in low level optimizations for in-memory hierarchical
data-structures [5], [15]. These results are hopeful, making it feasible
to scale to even larger analyses without sacrificing immutability. Also
scaling out in parallel will be facilitated by the immutability of M3.

H. Example

Listing 1 shows a concrete example of an M3 analysis in
Rascal. Function estimateCoverage analyzes any M3 model
produced for Java and produces an over-estimate of a sys-
tem’s test coverage, given a JUnit4 test harness. The basic bi-
nary relations methodInvocations, methodOverrides and
containment are used to find out who calls who. Relational
operators such as infix o (composition), infix + (set union), infix
- (set difference) and postfix + (transitive closure) are used to separate
reachable from unreachable code. Comprehensions are used to generate
and filter intermediate relations, and eventually a library function is
called to compute the overall result, a percentage with given precision.

IV. RELATED WORK

There is far too much related work to fit in this abstract. We only
list primary inspirations for Rascal and M3here as an acknowledgment.
Lexical techniques for fact extraction from source code use regular
expression patterns to extract facts from program source code. These
techniques are supported by languages such as Lex and AWK, Perl, or
Python. Murphy and Notkin [16] extended the basic regular expression
support provided by these tools and languages to include additional
contextual information such that relations can be extracted once
scanning is complete.

Approaches based on grammars naturally handle the nested
constructs common to programming languages Parsing tools such as
Yacc and ANTLR provide basic support for hand-coded fact extraction
using the parser’s semantic actions. A number of tools also exist
with direct support for extracting facts from programs. Examples
are the Rigi system [2], which provides fixed fact extractors for
several languages and represents facts as tuples in the Rigi Standard
Format (RSF). Meta programming languages, such as Stratego [17],
TXL [18] and ASF+SDF [19] provide integrated parsing and tree
processing support for source code fact extraction and manipulation
in any programming language. SrcML [20] generates XML-annotated
source code for the C language which can be queried directly using
XML processors. Frameworks like JastAdd, Silver and Kiama make
use of attribute grammars [21]–[25], using synthesized attributes to
specify facts and inherited attributes to propagate these facts through
the parse tree.

Relational approaches support extracting facts into relations which
can then be combined and analyzed. Rigi relations are formed over RSF
tuples and processed using operations in the Rigi Command Library
(RCL). GROK [26] and CrocoPat [27] (using a notation called RML)
instead use relational algebra; GROK supports only binary relations,
while CrocoPat supports n-ary relations. The DEFACTO system [28],
using RScript [29], also supports n-ary relations and relational algebra,
as does Vankov’s work on formulating program slicing using relational
techniques [30].

Model-based approaches extract facts into models, representing
abstractions of the systems being analyzed. MoDisco [31], [32], a
model-based tool for modernizing legacy systems, supports extracting
information about these systems into models defined using the
Knowledge Discovery Metamodel [4], an OMG standard for modeling
the structure and behavior of software systems. Moose [33], [34]
extracts facts about software systems into models defined using
the FAMIX [1] family of metamodels. Finally, we recommend
reading about source code query mechanisms based on logic meta
programming, such as Ekeko [35] and SOUL [36].

V. CONCLUSION

We have shown you a taste of M3, an extensible and composable
model for source code artifacts based on relations and trees, with
immutable value semantics, source location literals, and extensibility
with new types of binary relations. It has support for basic language
independent analyses, and we have a detailed model for Java and PHP.
M3 is designed for variability, integration and accuracy, all required
for software analytics research with a source code component.

The key open challenges for M3 applications are efficiency and
scalability, which we address using low level optimization techniques
for hash-tries. Otherwise we are adding support for more programming
languages. M3 is open-source, EPL licensed (https://github.com/cwi-
swat/rascal/library/analysis/m3).

REFERENCES

[1] S. Demeyer, S. Tichelaar, and S. Ducasse, “FAMIX 2.1—The FAMOOS
Information Exchange Model,” University of Bern, Tech. Rep., 2001.

[2] H. Müller and K. Klashinsky, “Rigi – A System for Programming-in-
the-Large.” in Proceedings of ICSE’88, April 1988, pp. 80–86.

[3] R. Holt, A. Winter, and A. Schürr, “GXL: Toward a Standard Exchange
Format,” in Proceedings of WCRE’00. IEEE, 2000, pp. 162–171.

[4] Object Management Group, “Knowledge Discovery Metamodel (KDM),”
http://www.omg.org/technology/kdm/index.htm.

[5] M. van den Brand, H. de Jong, P. Klint, and P. Olivier, “Efficient
Annotated Terms,” Software, Practice & Experience, vol. 30, pp. 259–
291, 2000.

[6] P. Klint, T. van der Storm, and J. Vinju, “EASY Meta-programming
with Rascal,” in Post-Proceedings of GTTSE’09, ser. LNCS. Springer,
2011, vol. 6491, pp. 222–289.

[7] P. Klint, T. van der Storm, and J. J. Vinju, “RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation,” in
Proceedings of SCAM’09. IEEE, 2009, pp. 168–177.

[8] M. van den Brand, P. Klint, and J. J. Vinju, “Term rewriting with
traversal functions,” ACM Trans. Softw. Eng. Methodol., vol. 12, no. 2,
pp. 152–190, 2003.

[9] T. McDonnell, B. Ray, and M. Kim, “An Empirical Study of API
Stability and Adoption in the Android Ecosystem,” in Proceedings of
ICSM’13. IEEE, 2013, pp. 70–79.

[10] F. B. e Abreu, “The MOOD Metrics set,” ECOOP 95 Workshop on
Metrics, 1995.

[11] S. Chidamber and C. Kemerer, “A Metrics Suite for Object Oriented
Design,” IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 476–493, 1994.

[12] M. Hills and P. Klint, “PHP AiR: Analyzing PHP Systems with Rascal,”
in Proceedings of CSMR-WCRE’14. IEEE, 2014, pp. 454–457.

[13] M. Hills, P. Klint, and J. J. Vinju, “Static, Lightweight Includes
Resolution for PHP,” in Proceedings of ASE’14. ACM, 2014, pp.
503–514.

[14] D. Landman, A. Serebrenik, and J. Vinju, “Empirical Analysis of the
Relationship between CC and SLOC in a Large Corpus of Java Methods,”
in Proceedings of ICSME’14. IEEE, 2014.

[15] M. J. Steindorfer and J. J. Vinju, “Code Specialization for Memory
Efficient Hash Tries (Short Paper),” in Proceedings of GPCE’14. ACM,
2014.

[16] G. C. Murphy and D. Notkin, “Lightweight Lexical Source Model
Extraction,” ACM TOSEM, vol. 5, no. 3, pp. 262–292, 1996.

[17] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/XT
0.16. Components for transformation systems,” in Proceedings of
PEPM’06. ACM Press, 2006, pp. 95–99.

[18] J. R. Cordy, “The TXL Source Transformation Language,” Science of
Computer Programming, vol. 61, no. 3, pp. 190–210, 2006.

[19] M. van den Brand, A. van Deursen, J. Heering, H. A. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder,
J. J. Vinju, E. Visser, and J. Visser, “The ASF+SDF Meta-environment: A
Component-Based Language Development Environment,” in Proceedings
of CC’01, ser. LNCS, vol. 2027. Springer, 2001, pp. 365–370.

[20] J. I. Maletic, M. Collard, and H. Kagdi, “Leveraging XML Technologies
in Developing Program Analysis Tools,” in Proceedings of the ICSE
Workshop on Adoption-Centric Software Engineering (ACSE), 2004, pp.
80–85.

[21] M. Jourdan, D. Parigot, C. Julié, O. Durin, and C. L. Bellec, “Design,
Implementation and Evaluation of the FNC-2 Attribute Grammar System,”
in Proceedings of PLDI’90, 1990, pp. 209–222.

[22] J. Paakki, “Attribute grammar paradigms - a high-level methodology in
language implementation,” ACM Computing Surveys, vol. 27, no. 2, pp.
196–255, June 1995.

[23] T. Ekman and G. Hedin, “The JastAdd system - modular extensible
compiler construction,” Science of Computer Programming, vol. 69, no.
1–3, pp. 14–26, 2007.

[24] A. M. Sloane, “Lightweight Language Processing in Kiama,” in Post-
Proceedings of GTTSE’09, ser. LNCS. Springer, 2011, vol. 6491, pp.
408–425.

[25] E. V. Wyk, D. Bodin, J. Gao, and L. Krishnan, “Silver: An extensible
attribute grammar system,” Science of Computer Programming, vol. 75,
no. 1-2, pp. 39–54, 2010.

[26] R. Holt, “Binary Relational Algebra Applied to Software Architecture,”
University of Toronto, CSRI 345, March 1996.

[27] D. Beyer, A. Noack, and C. Lewerentz, “Simple and Efficient Relational
Querying of Software Structures,” in Proceedings of WCRE’03, 2003,
pp. 216–225.

[28] H. J. S. Basten and P. Klint, “DeFacto: Language-Parametric Fact
Extraction from Source Code,” in Proceedings of SLE’08, ser. LNCS,
vol. 5452. Springer, 2008, pp. 265–284.

[29] P. Klint, “Using Rscript for Software Analysis,” in Working Session
on Query Technologies and Applications for Program Comprehension
(QTAPC 2008), 2008.

[30] I. Vankov, “Relational approach to program slicing,” Master’s thesis,
University of Amsterdam, 2005.

[31] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot, “MoDisco: A Model
Driven Reverse Engineering Framework,” Information & Software
Technology, vol. 56, no. 8, pp. 1012–1032, 2014.

[32] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: A Generic
and Extensible Framework for Model Driven Reverse Engineering,” in
Proceedings of ASE’10. ACM, 2010, pp. 173–174.

[33] O. Nierstrasz, S. Ducasse, and T. Gı̂rba, “The Story of Moose: An Agile
Reengineering Environment,” in Proceedings of ESEC’05, 2005.

[34] O. Nierstrasz, “Agile Software Assessment with Moose,” ACM SIGSOFT
Software Engineering Notes, vol. 37, no. 3, pp. 1–5, 2012.

[35] C. De Roover and K. Inoue, “The EKEKO/X Program Transformation
Tool,” in Proceedings of SCAM’14. IEEE, 2014, pp. 53–58.

[36] R. Wuyts et al., “A logic meta-programming approach to support
the co-evolution of object-oriented design and implementation,” Ph.D.
dissertation, PhD thesis, Vrije Universiteit Brussel, 2001.

https://github.com/cwi-swat/rascal/tree/master/src/org/rascalmpl/library/analysis/m3
https://github.com/cwi-swat/rascal/tree/master/src/org/rascalmpl/library/analysis/m3
http://www.omg.org/technology/kdm/index.htm

	Motivation
	Experience Report
	Design aspects
	Textual Models
	Locations
	Relations
	Trees
	Types
	Model Composition
	Efficiency and Memory Consumption
	Example

	Related Work
	Conclusion
	References

