
A L I A F R O O Z E H A N A S T A S I A I Z M A Y L O V A

Practical General Top-down Parsers

A L I A F R O O Z E H A N A S T A S I A I Z M A Y L O V A

Practical General Top-down Parsers

Practical General Top-down Parsers

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex

ten overstaan van een door
het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op dinsdag 11 juni 2019, te 10.00 uur

door

Anastasia Izmaylova

geboren te Moskou

Promotores:

Overige leden:

Universiteit van Amsterdam
Technische Universiteit Eindhoven

University of Minnesota
University of Koblenz-Landau
Universiteit van Amsterdam
Universiteit van Amsterdam
Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

prof. dr. P. Klint
prof. dr. J.J. Vinju

prof. dr. E. Van Wyk
prof. dr. R. Lämmel
prof. dr. K. Sima'an
prof. dr. M. de Rijke
prof. dr. R.V. van Nieuwpoort

Promotiecommissie

The work in this thesis has been carried out at Centrum Wiskunde & Informatica
(CWI) under the auspices of the research school Institute for Programming
research and Algorithmics (IPA) and has been supported by the NWO TOPGO
grant #612.001.011 “Domain-Specific Languages: A Big Future for Small
Programs”.

Promotiecommisie

Promotor: Prof. dr. P. Klint Centrum Wiskunde & Informatica,
Universiteit van Amsterdam

Copromotor: Dr. T. van der Storm Centrum Wiskunde & Informatica,
Universiteit van Amsterdam

Overige leden: Prof. dr. J.A. Bergstra Universiteit van Amsterdam

Prof. dr. J. van Eijck Centrum Wiskunde & Informatica,
Universiteit van Amsterdam

Dr. C. Grelck Universiteit van Amsterdam

Prof. dr. J. Jeuring Universiteit Utrecht,
Open Universiteit

Prof. dr. R. Lämmel Universität Koblenz-Landau

Prof. dr. ir. J.J. van Wijk Technische Universiteit Eindhoven

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The work in this thesis has been carried out at Centrum Wiskunde & Informatica
(CWI) in Amsterdam, under the auspices of the research school IPA (Institute for
Programming research and Algoritmics).

The Iguana photo on the cover is licensed from iStock, credits: Jandrie Lombard.
The sans serif font on the cover is League Gothic, designed by Caroline
Hadilaksono, Micah Rich and Tyler Finck. The serif font on the cover is Cinzel,
designed by Natanael Gama.

Typeset with LATEX
<latexit sha1_base64="cV2CL9DrtgL+CxNURQtQJYAfKJE=">AAACQ3icbVDJSgNBEO1xN25Rj14Gg+hBwkw86FH04sGDQjbIBOnpVGJrL2N3jRqG/INX/R8/wm/wJl4FO8kIbgXdPF694lW9OBHcYhC8eBOTU9Mzs3PzhYXFpeWV4upa3erUMKgxLbRpxtSC4ApqyFFAMzFAZSygEV8fD/uNWzCWa1XFfgJtSXuKdzmj6Kh6dEqr0LwoloJyMCr/LwhzUCJ5nV2settRR7NUgkImqLWtMEiwnVGDnAkYFKLUQkLZNe1By0FFJdh2Nlp34G85puN3tXFPoT9iv09kVFrbl7FTSoqX9ndvSP7Xa6XYPWhnXCUpgmJjo24qfNT+8Ha/ww0wFH0HKDPc7eqzS2ooQ5fQD5c0uUk1wi7CPTItk90v20Kk4M4xkqpOFuWyQRYNheN/xFiuei6HQcFFG/4O8i+oV8rhXrlyXikdHuUhz5ENskl2SEj2ySE5IWekRhi5Ig/kkTx5z96r9+a9j6UTXj6zTn6U9/EJSAWy8A==</latexit>

Practical General Top-down Parsers

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex

ten overstaan van een door
het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op dinsdag 11 juni 2019, te 12.00 uur

door

Ali Afroozeh

geboren te Rafsanjan

Promotores:

Overige leden:

Universiteit van Amsterdam
Technische Universiteit Eindhoven

University of Minnesota
University of Koblenz-Landau
Universiteit van Amsterdam
Universiteit van Amsterdam
Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

prof. dr. P. Klint
prof. dr. J.J. Vinju

prof. dr. E. Van Wyk
prof. dr. R. Lämmel
prof. dr. K. Sima'an
prof. dr. M. de Rijke
prof. dr. R.V. van Nieuwpoort

Promotiecommissie

The work in this thesis has been carried out at Centrum Wiskunde & Informatica
(CWI) under the auspices of the research school Institute for Programming
research and Algorithmics (IPA) and has been supported by the NWO TOPGO
grant #612.001.011 “Domain-Specific Languages: A Big Future for Small
Programs”.

Promotiecommisie

Promotor: Prof. dr. P. Klint Centrum Wiskunde & Informatica,
Universiteit van Amsterdam

Copromotor: Dr. T. van der Storm Centrum Wiskunde & Informatica,
Universiteit van Amsterdam

Overige leden: Prof. dr. J.A. Bergstra Universiteit van Amsterdam

Prof. dr. J. van Eijck Centrum Wiskunde & Informatica,
Universiteit van Amsterdam

Dr. C. Grelck Universiteit van Amsterdam

Prof. dr. J. Jeuring Universiteit Utrecht,
Open Universiteit

Prof. dr. R. Lämmel Universität Koblenz-Landau

Prof. dr. ir. J.J. van Wijk Technische Universiteit Eindhoven

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The work in this thesis has been carried out at Centrum Wiskunde & Informatica
(CWI) in Amsterdam, under the auspices of the research school IPA (Institute for
Programming research and Algoritmics).

The Iguana photo on the cover is licensed from iStock, credits: Jandrie Lombard.
The sans serif font on the cover is League Gothic, designed by Caroline
Hadilaksono, Micah Rich and Tyler Finck. The serif font on the cover is Cinzel,
designed by Natanael Gama.

Typeset with LATEX
<latexit sha1_base64="cV2CL9DrtgL+CxNURQtQJYAfKJE=">AAACQ3icbVDJSgNBEO1xN25Rj14Gg+hBwkw86FH04sGDQjbIBOnpVGJrL2N3jRqG/INX/R8/wm/wJl4FO8kIbgXdPF694lW9OBHcYhC8eBOTU9Mzs3PzhYXFpeWV4upa3erUMKgxLbRpxtSC4ApqyFFAMzFAZSygEV8fD/uNWzCWa1XFfgJtSXuKdzmj6Kh6dEqr0LwoloJyMCr/LwhzUCJ5nV2settRR7NUgkImqLWtMEiwnVGDnAkYFKLUQkLZNe1By0FFJdh2Nlp34G85puN3tXFPoT9iv09kVFrbl7FTSoqX9ndvSP7Xa6XYPWhnXCUpgmJjo24qfNT+8Ha/ww0wFH0HKDPc7eqzS2ooQ5fQD5c0uUk1wi7CPTItk90v20Kk4M4xkqpOFuWyQRYNheN/xFiuei6HQcFFG/4O8i+oV8rhXrlyXikdHuUhz5ENskl2SEj2ySE5IWekRhi5Ig/kkTx5z96r9+a9j6UTXj6zTn6U9/EJSAWy8A==</latexit>

م01 نا(ا- و رد+ و (ام & م$دق!

Посвящается моей любимой маме

Contents

Contents ix

Acknowledgments xiii

Prologue xv

1 Introduction 1
1.1 Evolution of the GLL Parsing Algorithm 6
1.2 Context-free Grammars and Recursive-descent Parsing 10
1.3 Left Recursion in Recursive-descent Parsing 13
1.4 A Generic Framework for Disambiguation 20
1.5 Direct Embedding of Context-free Grammars 22
1.6 Research Questions and Overview of Chapters 25
1.7 Performance Evaluation . 31
1.8 Software Artifacts . 32

2 Faster, Practical GLL Parsing 33
2.1 Introduction . 34
2.2 GLL Parsing . 35
2.3 More Efficient GSS for GLL Parsing 41
2.4 Optimizations for GLL Implementation 45
2.5 Disambiguation Filters for Scannerless GLL Parsing 47
2.6 Performance Evaluation . 49
2.7 Related Work . 52
2.8 Conclusions . 53

ix

x Contents

3 Data-dependent GLL Parsing 55
3.1 Introduction . 56
3.2 The Landscape of Parsing Programming Languages 58
3.3 Parsing Programming Languages with Data-dependent Grammars . . 64
3.4 Implementation . 78
3.5 Evaluation . 87
3.6 Related Work . 93
3.7 Conclusions . 95

4 Safe Specification of Operator Precedence Rules 97
4.1 Introduction . 98
4.2 Motivation . 100
4.3 Syntax and Semantics for Operator-style Disambiguation 103
4.4 Grammar Rewriting to Exclude Illegal Derivations 109
4.5 Validation Using the OCaml Case . 113
4.6 Related Work . 116
4.7 Conclusions . 117

5 Operator Precedence for Data-dependent Grammars 119
5.1 Introduction . 120
5.2 The Problem of Operator Precedence 123
5.3 Operator Precedence for Data-Dependent Grammars 128
5.4 Evaluation . 139
5.5 Related Work . 143
5.6 Conclusions . 148

6 Iguana: a Practical Data-dependent Parsing Framework 151
6.1 Introduction . 152
6.2 Architecture . 152
6.3 Performance Evaluation . 163
6.4 Conclusions . 171

7 Practical, General Parser Combinators 173
7.1 Introduction . 174
7.2 General Cubic CPS Recognizers . 176
7.3 SPPF Construction for Cubic CPS Parsers 185
7.4 Complexity of Johnson’s CPS Recognizers 189
7.5 Complexity of CPS Parsers . 193
7.6 Evaluation . 196
7.7 Related Work . 198
7.8 Conclusions . 202

Contents xi

8 Conclusions 205
8.1 Revisiting the Research Questions . 206
8.2 Future Work . 208
8.3 Concluding Remarks . 209

Bibliography 211

Summary 221

Samenvatting 223

Acknowledgments

We would like to thank Paul Klint, our first promoter for his guidance and support
throughout these years. Paul’s idea to write a dual thesis was brilliant, not only it
made our lives much easier, but also it kept the integrity of our research as a whole.
We are also thankful to Jurgen Vinju, our second promoter, for the freedom he gave
us to explore our ideas. Jurgen has always been enthusiastic and full of new ideas.

We would also like to thank Eric Van Wyk for discussions and feedback on our
papers and this thesis. The discussions on LR parsing, context-aware scanning, and
language composition have been invaluable for this thesis. Finally, we thank Ralf
Lämmel, and other committee members for assessing our thesis.

xiii

Prologue

This thesis is the result of our almost five year research at Centrum Wiskunde &
Informatica (CWI) in Amsterdam. Our journey has been adventurous, and certainly
not very conventional. Written with care and utmost attention to details, this thesis
concludes this bumpy journey, and it is fair to say that it is truly unique, both in
terms of content and also the way it has been formed. When we started our PhD, we
could not envision that our paths would merge and conclude like this, but as Søren
Kierkegaard, Danish philosopher and theologian, says “life can only be understood
backwards”. Now, while writing the last sentences of this thesis, we can look back to
better understand this journey. One thing is for sure, the collaboration between the
two of us has been truly unique, enjoyable and productive!

(Almost) every PhD student starts with big, ambitious dreams about changing the
state of the art, striving at creating something beautiful. However, as we went further
in the journey, we started to realize that there were simply too many hard constraints
on the nature of our research. Hit by the harsh limitations of the reality, we had to be
happy with only incremental improvements over the existing work. Indeed, we could
not solve the problem of parsing, and parsing will remain a difficult topic, but we
hope that our work can help the reader to better understand the trade-offs of different
parsing techniques. Like in every engineering practice, in the end, there are all these
trade-offs that matter.

There are many technical discussions in this thesis, and at the end we reflect on
many technical lessons that we have learned in the course of our research. However,
we like to start the thesis differently: we like to tell some other, non-technical stories
from these years. We have recently watched a movie by Lars von Trier, a Danish
director known for his controversial style, who is a brilliant story teller. In his latest
movie “The House That Jack Built”, Jack, who is also an engineer, on the way to Hell,
divides his life story into five randomly chosen incidents. Although our stories are
neither that dark nor that violent as Jack’s, rather intended to be of humorous nature,
we still liked the idea and decided to tell the informal story of our research journey as
five randomly chosen incidents that happened between 2013 and 2018.

xv

xvi Prologue

Incident 1: The Ceiling

CWI was undoubtedly a great place to work. The new wing of the building, where our
group resided, was modern, with large windows that let a lot of light in. Moreover,
the semi-private, spacious offices shared by two or three PhD students were great.
After leaving CWI and joining the companies where people work in an open office
plan, we can now truly appreciate how great small offices are for productivity.

However, CWI almost killed us, literally. The story dates back to December
15, 2014. Those days we were both living in a student complex in Science park in
Amsterdam, at a walking distance to CWI. We were usually coming back to CWI to
work in the evenings. Moreover, Nikhef, the physics research institute next to CWI,
had an in-house Nespresso coffee machine. Nikhef and its coffee machine were easily
reachable via the corridors of the old wing of the CWI building, thus offering a nice
opportunity for a walk and a cup of good, yet affordable, coffee for just 50 cents. The
smell of the bricks of the old wing and the taste of the coffee are still in our memory.

That evening, while working on the Meerkat parser combinators, we decided to get
another cup of coffee from Nikhef. On the way, when almost entering the old wing,
we heard some weird sounds. We stopped for a moment, however, as there was no
light on the other floors, we concluded that nobody was there, and joked that only
the ghosts of science at CWI could be awake at such a late hour. On the way back,
as we approached our offices, a split second after we passed the corridor, the whole
internal, wooden part of the ceiling collapsed. We were very lucky that the ceiling did
not fall on us.

The next day, Jurgen described the scene as a disaster site! It turned out that
there was a construction problem with the way wooden parts were installed. It was
only a few days later, December 19, 2014, that the notifications for the CC 2015
papers arrived, and our first paper together had been accepted.

Incident 2: The Ring

While working on our data-dependent parsing framework, we had chosen Onward!
as the venue for our initial publication. Having already found a cool idea, we were
looking for a cool title. After all, the conference was radical and ambitious, looking
for “grand visions and new paradigms that could make a big difference in how we
will one day build software”, and the title should have shown that we are ambitious.
While browsing the papers from previous years for inspiration, one title caught our
attention: “One VM to Rule Them All” from Oracle Labs. We decided to choose the
title “One Parser to Rule Them All” as not only it was very cool, but also it described
our data-dependent parsing approach very accurately — one can use data-dependent
grammars to virtually parse anything.

The paper got accepted at Onward! 2015, and we went to Pittsburgh to present
our work. After the presentation, during one of the conference social events, some
people asked us if we were fans of The Lord of the Rings film series. That was a very
strange question, we thought. Why should we be fans of The Lord of the Rings?! How
could data-dependent parsing possibly relate to this series?! Much to our surprise,

xvii

after some discussion aimed at resolving the common confusion, it became clear that
our title was believed to be an adoption of the phrase “One Ring to rule them all”,
known for being part of the lines inscribed on the magic ring, the central element of
the film series.

Not being educated enough on common nerdy topics, for example, not being able
to distinguish between Star Wars and Star Trek, we had absolutely no clue about the
existence of such a phrase. Even to this date we have not watched The Lord of the
Rings film series and do not know for sure what this phrase means.

Incident 3: The Casino

One of the most fun parts of doing a PhD is the opportunity to visit various conferences
and meet new people. And two things we did on every conference trip were visiting a
zoo and a steak house. In April 2015 we went to London to attend ETAPS 2015 and
to present our CC paper. While searching in TripAdvisor for the best steak house
in London, an interesting choice popped up: the Hippodrome Casino in Leicester
square. The choice was made, and together with some newly met Dutch attendees
from Eindhoven and Twente we headed towards the casino. While the steak was quite
decent, though not living up to the raving reviews, the rest of the experience was
something to remember.

From the dining table we could see the crowd playing around with the roulette
machines. The idea came to our mind to give it a try. Other accompanying dinner
members declared the act as too adventurous and decided to leave. Agreed to
invest/lose no more than £15 per person, we exchanged the money for chips and went
to exercise our luck. Having never been around a roulette machine before that night,
we can now attest that gambling will definitely alter the functioning of the brain.
Trying to guess the next number based on the sequence of previous numbers was
very fun. If there have been eight reds in a row, betting on the black should be safe,
right? It turned out that human beings are quite good at seeing patterns in random
events, but dealing with a sequence of independent, equally probable events is not
easy. Nonetheless, the luck was obviously on our side — starting with the small, least
risky bets, we could not resist taking higher and higher risk for larger and larger gain,
winning almost £200 in just about an hour.

While we started the night very good, a break to have a drink ruined the whole
night. We quickly lost everything we won before the break, and after our additional
losses reached £100 we decided to leave the casino. We will never know what would
have happened if we had just continued without taking a break. However, we blamed
the whole thing on the beer and the bad luck it brought. We have never visited a
casino again after that night.

Incident 4: The Steak

While the previous incident happened in a steak house, it was not really about steak,
this one is! One of the biggest dilemmas faced by hungry academics after a full day
of attending some interesting (and many more boring) talks is where to eat. You

xviii Prologue

can identify hungry academics by seeing long lines of people with laptop backpacks
going from one restaurant to another, desperately trying to find a place that can
accommodate such a large group of people without a special reservation. Being yet
very inexperienced in attending conferences, we were also following the crowd, most
often led by a professor from Delft. It was really not fun to follow the crowd!

Having become more experienced, we learned that the ideal size of a group for
dinner is at most eight, and it is better to keep it a secret, because if more hungry
academics hear that you are going to dine, they will follow you and ruin your experience.
It was always a pleasure to hang out with Anya Helene Bagge during academic events.
Not only she knew the best (bird) zoos, but also she was into fine dining. In Pittsburgh,
we teamed up with Anya to find a good steak house. We decided to go to Capital Grille
together with a small group of Swedes. The steak house was classy, and the steaks
were excellent especially when paired with Californian red wine. Remarkably, while
most attendees went for a moderate, according to the American standard, 600-800
gram rib eye steak, one of the Swedish attendees went for a 1600 gram porterhouse
steak, and to everyone’s astonishment finished the whole thing.

After eating a large portion of perfectly cooked medium-rare steak, it was time
for dessert. To adhere to the best practices of academic conferences, and to honor
the best steak session ever organized at an academic conference, by the time of the
the dessert, at our large, round dining table, we had appointed seven session chairs:
seating chair, wine chair, dessert chair, comfy chair, professor chair, beer chair, and
most importantly keynote eater chair.

Incident 5: The Parrot

Amsterdam is a beautiful city. Ignoring the fact that Amsterdam attracts perhaps
the worst kind of tourists in the world, it is one of the best places to live. The city
center with all canals and beautiful 17th century houses is a pleasure to walk around.
Amsterdam is also very green, with many parks. One of the most unusual things one
can notice in Amsterdam is the presence of green parrots in the parks. The origin
is unknown, but the myth says that some owners just set their parrot pets free, and
they started to breed.

One afternoon, we were walking along the Amstel river discussing some aspects of
our research. Heading back towards CWI, we saw a group of parrots flying next to
the OLVG hospital. One of them was flying very low. A car passed by, and we could
not see that parrot anymore. After the car fully passed, we saw a green thing lying in
the middle of the road. It became clear that the car had hit the parrot. We ran and
picked up the parrot from the street. The parrot’s eyes were swirling, and it felt like
these were the parrot’s last moments.

Having an academic approach to things, and not knowing how things are done in
the real world, we ran towards the emergency room in the hospital. When the guard
saw the parrot, he swiftly jumped out of his chair and told us that we cannot bring a
bird to a hospital. If they can treat one animal at the emergency, why not the other,
we asked ourselves. The guard was nice enough to call the animal ambulance, but it
turned out that they cannot just send an ambulance for one parrot! There are simply

xix

very few animal ambulances in Amsterdam. We were left sitting outside, holding the
parrot in hands, sadly waiting for its death. Other patients were gathering around us.
“You are very good people that tried to save the parrot”, said one elderly woman. “I
think he is dying”, sadly concluded the other woman looking at the swirly eyes of the
parrot.

In about half an hour after the tragic accident, the parrot started moving. Although
the parrot’s neck became straight again, and its eyes were not swirling anymore, it
started to make very loud sounds. It was unconceivable how such a small creature can
make such loud, unpleasant sounds. “He is in pain” stated the first elderly woman.
Presumably hearing the sounds of the parrot, the guard appeared again, attempting
to convince us to accept the reality and let it go. “There are 10,000 such parrots
living in Amsterdam” pointed out the guard, apparently alluding to the fact that the
death of one parrot is no big deal. Finally, he suggested us to go to the Oosterpark,
located next to the hospital, put the parrot on the grass and let him die. This was
the moment to accept the parrot’s fate.

Hit by the harshness of reality, we started walking to the park, firmly holding the
poor parrot in hands. By the moment of reaching the park, the parrot was quietly
sitting in hands, awake, and actively looking around. The state of the bird suggested
that there was no internal bleeding, yet the possibility of a broken wing seemed feasible.
Searching for a safe place to release the bird, we crossed a bridge, and all of a sudden,
the parrot started to make the same loud, unpleasant sounds again. Seconds after,
the parrot took a hard bite of Ali’s finger, and freed himself, leaving the lifesavers to
deal with the blood dropping from the finger. After some academic analysis of the
situation, we came to the conclusion that most likely the car did not hit the parrot, it
was the parrot who hit the car and became unconscious. The whole event was very
strange and kept us in shock for some time, but it did not have any long lasting effect
on our ability to work on the thesis.

We assume some things in life just happen for no reason.

Chapter 1

Introduction

Parsing is the process of analyzing a sequence of symbols and producing a hierarchical
structure. Parsing is a common task in many applications, ranging from analyzing
network data to processing natural languages. In this thesis we consider parsing in the
context of programming languages, where a parser constructs a tree representation of
source code according to the grammar of the language.

It is common to hear that parsing is a “solved” problem. Indeed, parsing is a
well-understood subject in computer science. Knuth [54], Aho, Ullman [8] and many
others laid out the theoretical foundation of parsing, and since the 70s we have
efficient, linear-time parsing algorithms. The success of Yacc [44], and its ports to
various programming languages, enabled language engineers to construct parsers from
grammar definitions. However, grammars of most programming languages do not fit
this elegant, classic parsing foundation, and still nowadays many parsers are written
by hand as a set of mutually recursive functions.

When first parsing algorithms appeared, machine resources were scarce, and only
linear-time parsing techniques were considered. The language engineer had to either
use a tool such as Yacc, which accepts a restricted class of context-free grammars, or
write the parser by hand. Since then, machines became more powerful, and the need
for parsers in other areas such as source code analysis, language prototyping, and
building Domain-Specific Languages (DSLs) arose. One of the main focuses of the
research on parsing in the last decades has been on the development of more powerful
parsing techniques that enable a more expressive, easy-to-use grammar specification,
eliminating the need to manually write a parser.

Figure 1.1 shows the spectrum of parsing techniques for programming languages.
On the left end of the spectrum, we consider the classic compiler construction field,
where performance and good error messages are the most important factors. Most
modern programming languages in use today have parsers that are generated using

1

2 Chapter 1. Introduction

Compiler Construction DSLs, Language PrototypingApplication:

Performance, Error Reporting Expressiveness, Ease of UseFocus:

GLR, GLLLL (Recursive-Descent Parsing), LALR (Yacc)Examples:

O(n)Runtime: O(n3)

Figure 1.1: The spectrum of parsing techniques for programming languages.

Bison (an open source variation of Yacc), or have handwritten recursive-descent
parsers. Ruby1, PHP2, Perl3, and OCaml4 have Bison-based parsers, while Java5,
C#6, Scala7, and TypeScript8 have recursive-descent parsers. GCC since version 3.49

has replaced its Yacc-derived C++ parser, and since version 4.110 its Bison-based C
and Objective-C parsers, with handwritten recursive-descent parsers.

Grammars of programming languages in their natural form cannot be used out
of the box for a recursive-descent implementation or by a tool such as Yacc. The
language engineer has to massage the original grammar into a deterministic form,
which can pose considerable difficulty, depending on the nature of the grammar and
the parsing technology. In addition, often a carefully designed lexer, and various
hacks in the interaction between the lexer and parser are required. This process is
time-consuming and often requires deep knowledge of the inner workings of the parsing
technology.

On the right end of the spectrum, we have applications of parsing that benefit
from more freedom in syntax definition. Examples of such applications are domain-
specific languages, language prototyping and reverse engineering. Using deterministic
techniques for constructing parsers for these purposes can be difficult and time-
consuming. In these applications, the language engineer’s goal is to quickly construct
a parser from the most natural version of the grammar that reflects the underlying
language semantics, without the need to transform the grammar to conform to a
more restricted class or to understand the underlying parsing algorithm. For these
1 https://github.com/ruby/ruby/blob/ruby_2_5/parse.y
2 https://github.com/php/php-src/blob/PHP-7.2.3/Zend/zend_language_parser.y
3 http://perldoc.perl.org/perl5100delta.html#New-parser
4 https://github.com/ocaml/ocaml/blob/4.06/parsing/parser.mly
5 http://hg.openjdk.java.net/jdk8/jdk8/langtools/file/1ff9d5118aae/src/share/classes/

com/sun/tools/javac/parser/JavacParser.java
6 https://github.com/dotnet/roslyn/blob/Visual-Studio-2017-Version-15.5/src/

Compilers/CSharp/Portable/Parser/LanguageParser.cs
7 https://github.com/scala/scala/blob/v2.12.4/src/compiler/scala/tools/nsc/ast/

parser/Parsers.scala
8 https://github.com/Microsoft/TypeScript/blob/v2.7.2/src/compiler/parser.ts
9 https://gcc.gnu.org/gcc-3.4/changes.html#cplusplus
10 https://gcc.gnu.org/gcc-4.1/changes.html

https://github.com/ruby/ruby/blob/ruby_2_5/parse.y
https://github.com/php/php-src/blob/PHP-7.2.3/Zend/zend_language_parser.y
http://perldoc.perl.org/perl5100delta.html#New-parser
https://github.com/ocaml/ocaml/blob/4.06/parsing/parser.mly
http://hg.openjdk.java.net/jdk8/jdk8/langtools/file/1ff9d5118aae/src/share/classes/com/sun/tools/javac/parser/JavacParser.java
http://hg.openjdk.java.net/jdk8/jdk8/langtools/file/1ff9d5118aae/src/share/classes/com/sun/tools/javac/parser/JavacParser.java
https://github.com/dotnet/roslyn/blob/Visual-Studio-2017-Version-15.5/src/Compilers/CSharp/Portable/Parser/LanguageParser.cs
https://github.com/dotnet/roslyn/blob/Visual-Studio-2017-Version-15.5/src/Compilers/CSharp/Portable/Parser/LanguageParser.cs
https://github.com/scala/scala/blob/v2.12.4/src/compiler/scala/tools/nsc/ast/parser/Parsers.scala
https://github.com/scala/scala/blob/v2.12.4/src/compiler/scala/tools/nsc/ast/parser/Parsers.scala
https://github.com/Microsoft/TypeScript/blob/v2.7.2/src/compiler/parser.ts
https://gcc.gnu.org/gcc-3.4/changes.html#cplusplus
https://gcc.gnu.org/gcc-4.1/changes.html

3

applications, general parsing techniques that allow more flexibility and expressiveness
in terms of syntax definition are considered.

General Parsing Techniques
To compare different parsing techniques along the spectrum of Figure 1.1, we need to
discuss the concept of non-determinism in parsing. Parsing can be considered as a
search problem. Given an input and a grammar, a parser has to find a sequence of
grammar rules that generates the input. A deterministic parser has to make the right
decision when there is more than one option, as it cannot backtrack to correct the
mistake.

To write deterministic parsers, a language engineer needs to massage the grammar
into the form accepted by the underlying parsing technique, for example, eliminate
left recursion for recursive-descent parsing. In addition, deterministic parsers consider
a fixed (often one) number of lookahead tokens when making a decision. As in most
programming languages whitespace and comment are insignificant and can appear
anywhere in the source program, the parser needs a way to bypass whitespace and
comment to see the next significant token. To solve this problem, a separate lexical
analysis (tokenization) phase is used before parsing. In particular, whitespace and
comment are removed from the grammar during this phase, and the grammar is
written as if no whitespace or comment exists.

Depending on the underlying parsing technology, rewriting a grammar to make
it deterministic may be time-consuming. The separation of lexers and parsers is
also not always straightforward. The main reason is that a tokenizer should decide
about the type of a token without having access to the parsing context it appears in.
Determining the type of a token during the tokenization phase is not always possible,
and may require lexer hacks – feedback loop from the parser to the lexer. A famous
example is the >> token which can represent a right shift operator or two closing
generic type brackets, for example, List<List<T>> in Java.

Allowing more lookahead, or unlimited lookahead through backtracking, has been
a common solution to increase the expressiveness of deterministic parsing techniques.
Naive backtracking techniques, however, may lead to exponential runtime. General
parsing algorithms [18,78,85] support all context-free grammars without any restriction,
and have worst-case cubic runtime. In addition, as the full class of context-free
grammars is closed under composition11, using general parsing allows to write modular
grammars out of the box [34]. This brings the best practices of software engineering
such as reuse and modularity to developing grammars [50]. Moreover, as general
parsing techniques effectively support unlimited lookahead, they can run on character-
level grammars. This eliminates the need for a separate tokenizer and the limitations
it entails.
11 Other subclasses of context-free grammars, e.g., LR, are not closed under composition. There are,

however, more restricted forms of grammar composition for subclasses of context-free grammars.
For example, Schwerdfeger and Van Wyk showed how to statically verify composition of LR
grammars. This technique is used to statically verify composition of grammars for language
extensions [74].

4 Chapter 1. Introduction

The expressiveness and ease of use of general parsers comes at the cost of performance.
General parsers have cubic worst case runtime, but such worst cases do not happen
when used for real programming languages. General parsers, such as GLR [85]
and GLL [78], are adaptive, i.e., they run linearly on the deterministic parts of the
grammar [78]. Since real programming languages are deterministic in most parts,
we can expect a near-linear performance on grammars of programming languages
using general parsers. We note that general parsers tend to be slower than their
deterministic counterparts on the deterministic parts of the grammar, mainly because
the machinery of a general parser is more complicated and resource intensive. As we
discuss in the rest of this chapter, the performance of general parsing is acceptable
for the particular applications they are intended for. Another important consequence
of using general parsing techniques is that the language engineer needs to explicitly
deal with ambiguity. To deal with ambiguity, we follow a declarative view on syntax
definition [34,49].

Declarative Syntax Definition
Exploring all parsing paths of an input string may result in multiple parse trees. In a
declarative syntax definition, the language engineer defines the grammar using its most
natural form, free from any restriction imposed by the underlying parsing technique,
and then specifies the desired parse trees using a set of disambiguation constructs [90].

In this thesis we use the grammar of OCaml [58] as a case study for discussing the
operator precedence ambiguity, which is one of the most common and most difficult
ambiguities to resolve. OCaml is a mixed-paradigm (functional and object-oriented),
expression-based programming language that has a very large expression sublanguage.
OCaml also features some unusual operator precedence rules that pose difficulties
for non-LR parsing techniques12. A simplified excerpt of the OCaml grammar [58],
written in its natural form, is given in Figure 1.2. As can be seen, the grammar
is ambiguous, and has left and right recursive rules without any restriction. The
OCaml language specification provides a precedence table, similar to the one shown in
Figure 1.2 (right), that provides the rules for resolving precedence-related ambiguities.
Figure 1.3 shows an example of declarative disambiguation constructs used to specify
operator precedence rules for the grammar in Figure 1.2. In this example, > specifies
the precedence relationship between operators, and left and right specify associativity.

Such declarative syntax definition schemes can be implemented in different ways.
An obvious way would be to let the parser first produce all the parse trees, and
then discard the ones that do not adhere to the disambiguation rules. Such an
implementation, however, would be very slow and impractical. Another way is to
change the underlying machinery of the parsing algorithm to apply the disambiguation
constructs as early as possible. In this scheme, we apply the disambiguation constructs
at parse time, and prune paths that will definitely lead to undesired parse trees.

Such natural grammars cannot be directly used in traditional deterministic parsing
techniques. In particular, top-down parsers have difficulty in dealing with natural
12 As we discuss in Chapter 5, the operator precedence ambiguities in OCaml map directly to

shift-reduce conflicts in LR parsing.

5

expr ::= expr '.' field
| expr expr
| '-' expr
| expr '*' expr
| expr '+' expr
| expr '-' expr
| 'if' expr 'then' expr 'else' expr
| expr ';' expr
| '(' expr ')'

Operator Associativity

. –
function application left
- (unary) –
* left
+ - left
if –
; right

Figure 1.2: A simplified excerpt of the OCaml expression grammar (left), and its
corresponding table of operator precedence (right).

expr ::= expr '.' field
> expr expr left
> '-' expr
> expr '*' expr left
> (expr '+' expr | expr '-' expr) left
> 'if' expr 'then' expr 'else' expr
> expr ';' expr right
| '(' expr ')'

Figure 1.3: A simplified excerpt of the OCaml grammar augmented with declarative
operator precedence constructs. left and right specify left- and right-associativity,
respectively, and > specifies the relative precedence of rules, according to the precedence
table in Figure 1.2.

grammars because of lack of support for left recursion, and the automatic left-recursion
removal technique leads to parse trees that are not left-associative. The parser for
the OCaml compiler is written using ocamlyacc13, a port of Yacc to OCaml. As Yacc
supports declarative operator precedence disambiguation, constructing a parser for
OCaml using Yacc is much easier than writing a recursive-descent parser. However,
still, the Yacc grammar of OCaml is considerably larger than the natural reference
one, and contains more nonterminals and rules.

In addition to natural parse trees that conform to the original grammar, using
general parsing and explicit disambiguation rules provides the language engineer
with more intuitive debugging and diagnosis options. The language engineer can
always obtain all the parse trees, inspect ambiguities and fix the grammar by adding
appropriate disambiguation rules. We believe such features make grammar debugging
easier in comparison with deterministic and limited-backtracking parsing techniques.
Deterministic LALR parsers report shift/reduce conflicts, which require knowledge of
LALR machinery to understand and fix. Parsers with limited backtracking [9], better
known as Parsing Expression Grammars (PEGs) [25], may report a parse error when
13 http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html

6 Chapter 1. Introduction

the input can be accepted. This happens when the parser selects the wrong path
when having multiple choices. In addition, PEGs may return a wrong parse tree when
there is ambiguity, without reporting ambiguities to the user.

We note that by using a general parser and disambiguation rules we cannot
guarantee that the underlying grammar is unambiguous. Applying a disambiguation
rule wrongly may lead to a parse error, and not fully specifying disambiguation rules
may leave some parts of the grammar ambiguous. To overcome this, the language
engineer has to carefully test the parser with different inputs. We believe this lack
of guarantee for being unambiguous is an acceptable trade-off when using general
parsing algorithms. The language engineer starts with a fully ambiguous grammar and
gradually applies disambiguation rules, and there is always the possibility to compare
alternative parse trees to debug and fix the grammar.

The main question that we seek to answer in this thesis is how to build a correct
and efficient parser directly from a natural grammar specification without resorting
to manual grammar transformations that change the natural shape of the grammar
rules, and as a result, influence the shape of the resulting parse trees.

The most widely used general parsing algorithm for programming languages is
GLR. Notable tools based on GLR are ASF+SDF [88], Elkhound [61], and DMSr

Software Re-engineering Toolkit [11]. GLR is a correct and mature parsing algorithm,
however, as it operates on LR automata, it is hard to understand and modify. It is also
more difficult to produce good error messages from GLR parsers. In 2010 Scott and
Johnstone introduced the Generalized LL (GLL) parsing algorithm [78] that provides
a viable alternative to GLR. GLL parsers are attractive as they are recursive-descent
like and their runtime has a close relationship with the grammar. This makes GLL
parsing easier to understand and modify.

A significant part of our thesis is dedicated to improvements and extension of the
GLL parsing algorithm. In the rest of this chapter we first give a historical overview
of the parsing techniques that led to the development of GLL, and then discuss
generalization of recursive-descent parsing with focus on supporting left recursion.
Then, we discuss our disambiguation framework that can deal with many challenges
of parsing programming languages. Our disambiguation framework is based on
data-dependent grammars [41] and is implemented on top of GLL. We also discuss
embedding of context-free grammars as a set of combinators directly in a programming
language. Our general parser combinators are based on Johnson’s CPS recognizers [43],
which, beside GLL, have been another main influencer of our work. Finally, we give
an overview of our research questions and outline the rest of the chapters.

1.1 Evolution of the GLL Parsing Algorithm

In this section we give a historical overview of the parsing algorithms that influenced
GLL, and discuss how GLL relates to other parsing techniques in a global picture.
This discussion positions our work and provides necessary background for the rest of
this thesis.

1.1. Evolution of the GLL Parsing Algorithm 7

Research in parsing has a long history, and various parsing techniques were developed
in parallel in different communities. Therefore, it is not surprising to see many
similarities between parsing algorithms. In fact, it is sometimes difficult to distinguish
one parsing algorithm from the other. Grune and Jacobs in their book “Parsing
Techniques” [33] observe that existing parsing algorithms are very similar: “Basically
almost all parsing is done by top-down search with left-recursion protection; this is
true even for traditional bottom-up techniques like LR(1), where the top-down search
is built into the LR(1) parse tables.” GLL is particularly interesting in this respect. It
is classified as a generalization of recursive-descent parsing, but from the terminology
and the way it is formulated it appears to be very similar to Earley’s algorithm [18]
and even GLR [85].

Figure 1.4 shows the relationship between parsing algorithms that influenced GLL,
and how they relate to our work. This comparison is inspired by a similar diagram
in Scott and Johnstone’s RNGLR paper [76], where they discuss the evolution of
GLR parsers. At the bottom of Figure 1.4 we have the traditional LR [54] and
recursive-descent parsing. As can be seen, most of the work are related to generalizing
LR parsing, presumably because LR parsing supports left-recursive grammars, and
compared to LL, accepts a larger subclass of context-free grammars. In the rest of
this section, we first discuss the influence of LR parsing on GLL, and then discuss the
relationship between recursive-descent parsing and GLL.

LR parsing was introduced by Knuth in his seminal paper in 1965. Two decades
later, Tomita introduced Generalized LR (GLR) for parsing natural languages [85].
GLR splits the LR parsing stack at each conflict state, and uses a Graph-Structured
Stack (GSS) to share the same segments of the stack. Tomita also introduced the
Shared Packed Parse Forest (SPPF) format for representing all derivation trees of a
sentence.

The original GLR algorithm by Tomita is correct when the grammar is ✏-free14,
and fails on grammars with hidden left recursion [76]. A significant amount of
research on LR parsing in the last decades is related to fixes and improvements to
Tomita’s algorithm. The two most important fixes are by Farshi [67], and Scott and
Johnstone [76]. Another improvement to GLR is by Rekers [71], who shows how
to construct more compact SPPFs from Farshi’s GLR recognizers. Reker’s SPPF
structure has been used in the ASF+SDF Meta-Environment [89].

Although most of the development of GLR is attributed to Tomita, we should also
mention Lang’s theoretical framework for non-deterministic parsing [56], where he
shows how to develop generalized versions of deterministic parsers. Billot and Lang
later extended this theoretical framework to construct shared packed parse forests [12].
Tomita’s GLR can be considered as a concrete realization of Lang’s framework.

Construction of a Tomita-style SPPF leads to O(nk+1) worst-case complexity,
where k is the length of the longest grammar rule. This fact was first presented by
Johnson in 1991 [42]. To guarantee the cubic worst-case runtime performance, which
is common in general recognizers15, the length of the grammar rules should be at most
14 A grammar is ✏-free if it does not contain rules that produce empty string (denoted by ✏).
15 A recognizer only says if an input string is accepted, without producing parse trees.

8 Chapter 1. Introduction

LR Parsing
Knuth '65

Faster GLR Parsing
Aycock and Horspool '99

GLR Parsing
Tomita '85

Recursive-descent Parsing (LL)

Memoization in CFG
Norvig '91

Memoization in CPS
Johnson '95

Right Nulled GLR
(RNGLR) Parsing

Scott and Johnstone '06
RIGLR Parsing

Scott and Johnstone '05

GLL Recognizers
Scott and Johnstone '10

GLL Parsing with More Efficient GSS
Afroozeh and Izmaylova '15

General Parser Combinators
Izmaylova, Afroozeh, et al '16

BRNGLR
Scott and Johnstone '07

GLR Parsing for
 ε-Grammers

Farshi '91

Framework for
Non-deterministic Parsing

Lang '74

Shared Forest in
Ambiguous Parsing
Billot and Lang '89

Compact SPPF
Rekers '92

Recursive-descent
Parsing with

Limited Backtracking
Aho and Ullman '72

PEGs
Ford '04

Practical LL(k)
Parr '93

ANTLR 3, LL(*)
Parr et al '11

ANTLR 4
Adaptive LL(*)

Parr et al '14GLL Parsing
Scott and Johnstone '13

Figure 1.4: Evolution of the GLL parsing algorithm.

1.1. Evolution of the GLL Parsing Algorithm 9

two. Scott and Johnstone introduced the notion of binarized SPPFs [80], which add
additional nodes to the SPPF to effectively simulate grammars of length at most two.
Binarized SPPFs enable general parsing in cubic time and space.

A parallel development in GLR parsing is the introduction of faster GLR parsers
by Aycock and Horspool [10]. They replaced the traditional LR automata with larger
automata that trades space for speed, leading to faster GLR parsing. Aycock and
Horspool’s algorithm does not support grammars with hidden left recursion. Scott and
Johnstone gave a version of Aycock and Horspool’s algorithm that accepts all context-
free grammars [75]. They reported that while working on Aycock and Horspool’s
algorithm, they realized that this algorithm is closer to a generalization of LL than LR.
This was the insight that led to the development of the GLL parsing algorithm [78].

A question that may come to one’s mind is that if GLR is a correct and efficient
algorithm, why there is a need for a new, generalized LL parser. The answer is that
GLR parsers, due to their bottom-up nature, have a complex execution model, and
therefore, are more difficult to understand. As a consequence, it is also more difficult
to modify and extend GLR to implement disambiguation rules. Recursive-descent
parsers, on the other hand, have a very intuitive execution model and have been
extensively used to build parsers for programming languages. Unfortunately, recursive-
descent parsers do not terminate on left-recursive grammars, and can have worst-case
exponential runtime if implemented naively. Therefore, it is desirable to have a general
parsing algorithm that is recursive-descent like, can natively support left recursion,
and can provide an acceptable runtime bound for the worst case.

GLL is a generalization of recursive-descent parsing that supports all context-free
grammars and provides a cubic worst-case runtime bound. At the core of GLL is
the Graph Structured Stack (GSS), which effectively represents all calls as a graph.
In GLL, GSS nodes can have cyclic edges, which allows to handle left recursion. As
GLL parsers have a recursive-descent control flow and maintain a close relationship
with the underlying grammar, they are easy to understand and modify. It is possible
to write a GLL parser by hand, although the task is usually automated by a parser
generator, and it is also possible to debug the parser with a programming language
IDE. These characteristics make GLL attractive for both developing parsers and also
for implementing disambiguation rules.

Although recursive-descent parsing is very intuitive and easy to understand, a
direct generalization of recursive-descent parsing proved to be very difficult. Norvig
in 1991 showed that by memoization we can expect polynomial worst-case runtime in
recursive-descent parsing [66]. This result is not surprising, as memoization is usually
used in dynamic programming techniques [15] to reduce the exponential runtime to
polynomial.

Figure 1.4 shows a number of extensions of recursive-descent parsing that all use
a combination of memoization and limited backtracking techniques to improve the
expressiveness of LL parsing. These approaches, however, do not provide a solution to
the problem of left recursion in top-down parsing. ANTLR 4 [70], the most recent
work in this category, supports almost all context-free grammars, with the exception of
indirect left-recursive ones. ANTLR 4 rewrites the grammar to eliminate left recursion
before parsing, and thus does not natively support left recursion at runtime. In

10 Chapter 1. Introduction

addition, ANTLR 4 does not construct a parse forest, and at most returns one parse
tree.

The problem of left recursion needs a complete rethinking of control flow in recursive-
descent parsing. To the best of our knowledge, the first elegant solution to the problem
of left recursion is presented by Johnson in 1995 [43]. He showed that by formulating
recursive-descent parsers in Continuation-Passing Style (CPS) and memoizing the
results, it is possible to support left recursion in top-down parsing. Johnson’s approach
is formulated in a functional style, as a set of combinators. However, his approach
did not gain much attention, especially in the compiler construction community. Our
experience with both GLL and Johnson’s CPS recognizers shows that the way they
deal with left recursion is so similar that they can be considered the same algorithm.
In fact, we consider Johnson’s algorithm as an implementation of GLL in a functional
style (see Chapter 7).

Our contributions to general top-down parsing in this thesis are influenced by both
GLL and Johnson’s CPS recognizers. Based on our work on Johnson’s recognizers,
we suggested a modification to the GSS structure16 in the original GLL that led to
considerable performance improvement. Moreover, our work on GLL parsing resulted
in an extension to the memoization strategy in Johnson’s recognizers that brings its
worst-case complexity to cubic. We also show how to construct binarized SPPFs from
cubic CPS recognizers in cubic time and space.

1.2 Context-free Grammars and Recursive-descent Parsing

We give now an overview of context-free grammars and parsing that is needed for
the rest of this thesis. For a more extensive treatment of these topics, see [8, 9, 33].
A language is a set of sentences, where each sentence is a sequence of symbols. It is
common to use a grammar to define the language. A grammar is a set of rules that
dictate how sentences of a language can be generated. In context-free grammars, rules
are of the form A ::= ↵, where A (head) is a nonterminal, and ↵ (body) is a possibly
empty sequence of terminal and nonterminal symbols. The empty sequence is written
as ✏. Grammar rules with the same head are usually grouped as A ::= ↵1 | ↵2 | ... | ↵n,
where each ↵i is an alternative of A. As an example, consider the following grammar
for basic arithmetic operations:

E ::= E + E (1)

| E � E (2)

| E ⇤ E (3)

| E / E (4)

| Digit (5)

Digit ::= 0 | 1 | ... | 9 (6)

16 The idea of changing the structure of GSS, by moving labels from GSS nodes to GSS edges,
was first proposed by Alex ten Brink, while he was working on his Master’s thesis at Eindhoven
University of Technology.

1.2. Context-free Grammars and Recursive-descent Parsing 11

E
(1)) E + E

(5)) Digit + E

(6)) 1 + E

(3)) 1 + E ⇤ E

(5)) 1 + Digit ⇤ E

(6)) 1 + 2 ⇤ E

(5)) 1 + 2 ⇤Digit

(6)) 1 + 2 ⇤ 3

E

E + E

Digit Digit

E * E

Digit

1 2 3

Figure 1.5: A left-most derivation of the sentence 1 + 2 ⇤ 3 (left) and its corresponding
derivation tree (right).

Using this grammar, we can generate the sentence 1 + 2 ⇤ 3 as shown in Figure 1.5
(left). The) sign denotes a derivation step, in which a nonterminal is replaced by one
of its alternatives. In Figure 1.5 the number on each derivation step corresponds to
the rule being applied. A derivation is a sequence of derivation steps. The derivation
above is left-most, as at each step, the left-most nonterminal in the body of a rule is
rewritten. We can visualize a derivation using a derivation tree. The derivation tree
for the above derivation is shown in Figure 1.5 (right).

The problem of parsing is how to build a derivation tree for a given sentence,
according to a grammar. Top-down parsing, which is the focus of this thesis, starts
from the start nonterminal and tries to mimic a left-most derivation process that can
generate the sentence. As an example, consider the following simple grammar that
generates a list of a’s, and the input string aaa.

A ::= aA

| a

A top-down parser starts from the start nonterminal, in this case A, and expands
the alternatives until it matches the sentence. The recognition process of a top-down
parser for this grammar is shown in Figure 1.6. Each step shows an expansion of A

to one of its alternatives. The paths that are still expanding are shown with dashed
arrows. Steps 1-3 expand the first alternative, A ::= aA, and there is a match for
terminal a. At step 4, no more a can be matched, therefore, the parser goes back to
the previous step and tries the other alternative of A, i.e., A ::= a, which also fails. At
step 6, the parser again goes one step back and tries the other alternative. As there is
a match, and there is no more symbols left in the input, the parser reports success.

Top-down parsers are also called LL parsers, where the first L stands for left to
right scan of the input, and the second L for creating a left-most derivation. When

12 Chapter 1. Introduction

A

a A

A

a A

Aa

A

a A

Aa

Aa

A

a A

Aa

Aa

a

A

a A

Aa

a

A

a A

Aa

Aa

Aa

(1) (2) (3) (4) (5) (6)

✓

✓

✓

✕ ✕

✓

Figure 1.6: A top-down parser recognition steps for the grammar A ::= aA | a and
the input aaa.

selecting the alternatives of a nonterminal, a top-down parser has two choices. In
backtracking parsers, the alternatives are tried in order, while in predictive parsers,
the parser selects the right alternative. The grammars that admit predictive parsers
are called LL(k), where k is the number of symbols (lookahead) to look into the input
when selecting an alternative. LL(k) is a small class of context-free grammars, and
many syntactic constructs in programming languages cannot be readily defined by
LL(k) grammars.

Top-down parsers can be implemented in either a table-driven or recursive-descent
way. In table-driven top-down parsers, the grammar is represented as a tabular data
structure, and the parser is a simple stack-based program that interprets the table
against the input. A more common way to implement top-down parsers is to directly
write the parser in a programming language as a set of (mutually recursive) functions,
one for each nonterminal. A call to the nonterminal function first selects one of its
alternatives, and then processes the symbols in the alternative in sequence. For a
terminal symbol, the current input position is matched against the terminal, while for
a nonterminal, the corresponding function for the nonterminal is called. Recursive-
descent parsers are easy to write, understand and modify, and can be debugged using
the programming language’s development environment. Recursive-descent parsers also
provide easy error reporting and recovery facilities.

The main shortcoming of recursive-descent parsing is lack of support for left
recursion. Expressions in their natural form are often left-recursive. In fact, in order
to obtain left-associative operators we need left-recursive rules. Left recursion can be
automatically eliminated through the following grammar rewriting procedure [8]. Let
A be a left-recursive nonterminal of the form:

A ::= A↵1 | A↵2 | ... | A↵n | �1 | �2 | ... | �m

Where �’s do not start with A. We can eliminate left recursion, by introducing a new

1.3. Left Recursion in Recursive-descent Parsing 13

nonterminal A
0 and rewriting the grammar as follows:

A ::= �1A
0 | �2A

0 | ... | �mA
0

A
0 ::= ↵1A

0 | ↵2A
0 | ... | ↵nA

0 | ✏

As can be seen, this rewriting strategy replaces left recursion with right recursion
through the newly introduced nonterminal A

0. Indirect left recursion [33], where
A)B↵

⇤)A�↵, and hidden, direct or indirect, left recursion [33], where A
⇤)�Aµ and

�
⇤)✏, can also be automatically rewritten, albeit through a more complicated process.
The main problem with automatic left-recursion elimination is that the resulting

parse trees are loosely related to the ones of the original, natural grammar, i.e.,
the resulting trees no longer have the left-associative tree structure. In fact, many
grammars with large expression grammars do not opt for automatic left-recursion
removal. They are either parsed using bottom-up techniques that support left recursion,
or have embedded operator precedence parsers [23] for their expression part. For
example, the javac parser17 of OpenJDK 8, uses an operator precedence scheme for
parsing binary expressions as part of its recursive-descent parser.

1.3 Left Recursion in Recursive-descent Parsing

A straightforward implementation of a recursive-descent parser for a left-recursive
grammar leads to non-termination, while left-recursion elimination techniques disfigure
the grammar and lead to parse trees that are loosely related to the intended ones.
Therefore, it is desirable to natively support left recursion in recursive-descent parsing.

In this section we discuss how left recursion can be supported in recursive-descent
parsing, by explaining two working solutions, i.e., Generalized LL (GLL) and Johnson’s
CPS recognizers. For this discussion, we use a modified version of GLL parsing that
uses a more efficient GSS [3]. Moreover, we only consider the recognizer version
(without constructing parse trees) of these algorithms, and use the following left-
recursive grammar as the running example.

E ::= E + E

| a

1.3.1 GLL with Modified GSS

To overcome nontermination in face of left recursion, GLL replaces the programming
language call stack with a GSS, which is a directed graph that represents all the calls
during parsing. A GLL parser’s execution is described in terms of actions for each
grammar slot. A grammar slot is a position in the body of a rule, similar to an LR
item [8], and is denoted by a dot, e.g., A ::= ↵ · �.
17 https://hg.openjdk.java.net/jdk8/jdk8/langtools/file/c8a87a58eb3e/src/share/

classes/com/sun/tools/javac/parser/JavacParser.java

https://hg.openjdk.java.net/jdk8/jdk8/langtools/file/c8a87a58eb3e/src/share/classes/com/sun/tools/javac/parser/JavacParser.java
https://hg.openjdk.java.net/jdk8/jdk8/langtools/file/c8a87a58eb3e/src/share/classes/com/sun/tools/javac/parser/JavacParser.java

14 Chapter 1. Introduction

Instead of direct function calls for nonterminals, as it is in recursive-descent parsing,
GLL performs actions on the GSS. A GSS node represents a call, recording the name
of a nonterminal and the input index at which the call is made. GSS edges connect
nodes that represent consecutive calls. A GSS edge is labeled with a grammar slot
that corresponds to the return position from which parsing should be resumed, each
time the call to the current GSS node produced a successful result.

The unit of work in GLL parsing is a descriptor. A descriptor captures a parsing
state, i.e., the current grammar slot, the current input position, and the current GSS
node. In GLL, the control flow is implemented in a trampoline-style loop [28], as
opposed to direct function calls in recursive-descent parsing. In a trampoline-style
control flow, execution is serialized into discrete units of work which are processed
in a loop. In GLL, at each nondeterministic point during execution, a descriptor is
added to the set of descriptors. This set can be implemented as a combination of a
stack and a hash table. The stack implementation provides a recursive-descent like
execution order of descriptors. The hash table is used to store all descriptors created
during parsing, to avoid adding duplicate ones to the stack. At each iteration of the
main loop of GLL, a descriptor is selected and processed. Parsing terminates when all
descriptors are processed.

To explain how GLL deals with left recursion, we study the execution trace of
a GLL parser for the running example grammar and the input string a + a. The
execution trace is shown in Figures 1.7 and 1.8. Each step of the execution trace is
separated into two parts. The left part shows the current grammar slot and the action
that will be performed at this step. The result of this action is reflected on the GSS
(the current GSS node is highlighted), the input index and the set of descriptors. We
denote descriptors as tuples (L, u, i), where L is a grammar slot, u is a GSS node of
the form (A, j), and i is the input index. Between each two steps, the parser returns
to the main loop and removes a descriptor, which will be processed in the next step.
The descriptors that are already processed are shown in gray in the set of descriptors.

Parsing starts by a call to the start nonterminal E at input position 0. As no
GSS node corresponding to this call exists, a GSS node (E, 0) is created. Then, the
parser adds two descriptors (E ::= ·E + E, (E, 0), 0) and (E ::= ·a, (E, 0), 0), which
correspond to the alternatives of E.

The first descriptor is processed at step 2. As the parser is before a nonterminal,
i.e., E ::= ·E+E, a call to E at input position 0 is made. This step, which corresponds
to calling a nonterminal, is called create. The parser first tries to find an existing GSS
node with the given nonterminal name and input index, i.e., (E, 0). As this GSS node
exists, the parser does not add descriptors for its alternatives again. Instead, it just
adds an edge labeled E ::= E · +E from the current node to itself. As a result, at this
step, the left-recursive call is effectively terminated.

After terminating the left recursion, the parser processes the pending descriptor
(E ::= ·a, (E, 0), 0) at step 3. As the parser is before a terminal, it tries to match
the terminal against the input string at the current input position. As there is a
match, the parser moves to the grammar slot E ::= a·, and increments the input index.
Note that matching a terminal in GLL does not add any descriptors as the result of
matching a terminal is always deterministic.

1.3. Left Recursion in Recursive-descent Parsing 15

At step 4 the parser is at the end of the grammar rule E ::= a·, and performs a pop
action. Pop corresponds to returning from a function in recursive-descent parsing.
Pop first examines if the current input index is already in the result set of the GSS
node, shown as {} next to GSS nodes. If this is the case, pop simply returns to the
main loop. Otherwise, the input index is added to the result set, and for each outgoing
edge from the GSS node, a new descriptor is added using the grammar slot of the edge.
This effectively allows to continue parsing from the grammar slot of each outgoing
edge with the new input position.

As the result of step 4, 1 is added to the result set of (E, 0), and the descriptor
(E ::= E · +E, (E, 0), 1) is added. This produces the first result for the left recursive
call of E at input position 0. As can be seen, a left-recursive call is terminated on the
second call to a left-recursive nonterminal at the same input position. Then, if other
non-recursive alternatives of the nonterminal yield a result, parsing continues after
the left-recursive call.

Another left-recursive call happens at step 6, where the parser is at grammar slot
E ::= E + ·E and input position 2. This call creates the GSS node (E, 2) and adds
two descriptors (E ::= ·E + E, (E, 2), 2) and (E, E ::= ·a, (E, 2), 2). Processing the
first descriptor at step 7 adds a loop on the GSS node (E, 2), which terminates this
left-recursive call. Then, the pop action at step 9 adds 3 to the result set of (E, 2) and
adds two descriptors (E ::= E ·+E, (E, 2), 3) and (E ::= E +E·, (E, 0), 3). Processing
the first descriptor leads to a match action that fails. Processing the second descriptor
adds 3 to the result set of (E, 0). This is the first successful parse result, as the
call to E at input position 0 has yielded a result which is equal to the length of the
input. This pop action also adds the descriptor (E ::= E · +E, (E, 0), 3), which leads
to a failed match action. Parsing terminates at this point as all the descriptors are
processed.

Johnson’s CPS Recognizers

Johnson’s approach to deal with left recursion requires a formulation of recursive-
descent parsing in Continuation-Passing Style (CPS), instead of the more common
formulation in which a function returns a list of successes [96]. In CPS, a function does
not directly return its result, rather it calls a continuation with its result. Continuations
represent the rest of the computation and are passed as an extra argument to functions.

Similar to the execution trace of GLL, we use the grammar E ::= E + E | a and
the input a + a to explain the execution of Johnson’s CPS recognizers. The execution
trace is illustrated in Figure 1.9. In this execution trace, we use function names that
correspond to nonterminals, terminals and grammar slots. For example, fE and fa

denote parsers for nonterminal E and terminal a, respectively.
The recognition process starts at step 1 by making the call fE(0,). The continua-

tion , passed to the start call, prints success if the input index is equal to the length
of the input. In Johnson’s CPS recognizers, functions such as fE are memoized, i.e.,
fE = memo(fE+E|a), where memo is a higher-order function that takes a function
and returns its memoized version, and fE+E|a is the parser for the alternatives of E.

16 Chapter 1. Introduction

E,0E a + a

E ::= · E + E a + a

{1}

E ::= E · + E E ::= E · + E a + a

E ::= E + · E

{1}

E ::= E · + E

E,2E ::= E + E ·

a + a

E ::= · a E ::= E · + E

E ::= a · a + a

Current Slot Input GSS

E ::= · E + E a + a

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

(E ::= E · + E, (E, 0), 1)E ::= E · + E

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

(E ::= E · + E, (E, 0), 1)

(E ::= · E + E, (E, 2), 2)
(E ::= · a, (E, 2), 2)

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

(E ::= E · + E, (E, 0), 1)

(E ::= · E + E, (E, 2), 2)
(E ::= · a, (E, 2), 2)

Set of Descriptors

1

2

3

4

5

6

7

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

(E ::= E · + E, (E, 0), 1)

start

create

match

pop

match

create

create

Action

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

E ::= E · + E

a + a

{1}

{1}

E ::= E · + E

E ::= E + E ·

E ::= E · + E

E :: = · a

{1}

E ::= E · + E

E ::= E + E ·

E ::= E · + E a + a8

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

(E ::= E · + E, (E, 0), 1)

(E ::= · E + E, (E, 2), 2)
(E ::= · a, (E, 2), 2)

match

E,0

E,0

E,0

E,0

E,0

E,0 E,2

E,0 E,2

(success)

(success)

(success)

Figure 1.7: GLL execution trace for grammar E ::= E + E | a and input a+a (part 1).

1.3. Left Recursion in Recursive-descent Parsing 17

Current Slot Input GSS Set of Descriptors# Action

E :: = a ·

E ::= E + E · E ::= E · + E

E ::= E + E ·

E ::= E · + E

{3}

E ::= E · + E

a + a

a + a

9

11

12

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

(E ::= E · + E, (E, 0), 1)

(E ::= · E + E, (E, 2), 2)
(E ::= · a, (E, 2), 2)

(E ::= E + E ·, (E, 0), 3)
(E ::= E · + E, (E, 2), 3)

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

(E ::= E · + E, (E, 0), 1)

(E ::= · E + E, (E, 2), 2)
(E ::= · a, (E, 2), 2)

{1}

E ::= E · + E

E ::= E + E ·

E ::= E · + E

{1,3}

E ::= E · + E

E ::= E + E ·

E ::= E · + E

{3}

pop

pop

a + a

E ::= E · + E

{1}

E ::= E · + E

E ::= E + E ·

E ::= E · + E

{3}

a + a10

(E ::= E + E ·, (E, 0), 3)

(E ::= E · + E, (E, 2), 3)

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

(E ::= E · + E, (E, 0), 1)

(E ::= · E + E, (E, 2), 2)

(E ::= · a, (E, 2), 2)

match

(E ::= E + E ·, (E, 0), 3)
(E ::= E · + E, (E, 2), 3)

(E ::= · E + E, (E, 0), 0)
(E ::= · a, (E, 0), 0)

(E ::= E · + E, (E, 0), 1)

(E ::= · E + E, (E, 2), 2)
(E ::= · a, (E, 2), 2)

(E ::= E · + E, (E, 0), 3)match

{3}

(E ::= E + E ·, (E, 0), 3)
(E ::= E · + E, (E, 2), 3)

(E ::= E · + E, (E, 0), 3)

E,0 E,2

E,0 E,2

E,0 E,2

E,0 E,2

(fail)

(fail)

{1,3}

(parse success)

Figure 1.8: GLL execution trace for grammar E ::= E + E | a and input a+a (part 2).

18 Chapter 1. Introduction

As fE(0,) is the first call to fE at input position 0, a new memo entry, denoted by
(E, 0), is created, and then the function fE+E|a is called at input position 0 with the
continuation

0
E (step 2). Memo entries in Johnson’s CPS recognizers consist of two

sets: R for storing the results of the call, and K for storing the continuations that
were passed to this call. In the execution trace, we show the state of the memo entries
when they change. The continuation

0
E is responsible for storing the successful parse

results in the memo entry (E, 0), and running all the pending continuations of the
memo entry for the new results.

The call fE+E|a(0,
0
E) spawns two calls, each corresponding to an alternative of

E. The first call (at step 3), which corresponds to the alternative E ::= E + E, first
composes a chain of continuations, i.e.,

0
E·+E and

0
E+·E , for each symbol in the body

of the alternative (see the execution trace for the definitions of these continuations),
and then calls the parser for the first symbol, fE , with

0
E·+E . At step 4, as the

memo entry (E, 0) exists, the call fE(0,
0
E·+E) just adds the continuation

0
E·+E to

the memo entry’s list of continuations and returns. This effectively terminates the
left-recursive call.

At step 5, the second alternative of E is called at input position 0, i.e., fa(0, 0
E).

As the next character in the input is a, the match succeeds, and the call
0
E(1) is

made (at step 6). This call stores the first result of parsing E into the memo entry
(E, 0), and calls all the pending continuations, namely and

0
E·+E , at input position

1. As 1 is not the end of the input, the call (1) returns without printing success. The
other call,

0
E·+E(1) at step 8, continues parsing from the grammar slot E ::= E · +E.

Another left-recursive call, fE(2,
0
E), happens at step 11. As this is the first call

to E at input position 2, the memo entry (E, 2) is created, the continuation
0
E is

stored, and then the call fE+E|a(2, 2
E) is made. Similarly to step 3, the left-recursive

call is terminated (at step 14), and is continued when the first result from the non-left-
recursive call fa(2, 2

E) is produced at step 15. At step 16,
2
E(3) adds 3 to the memo

entry (E, 2), and then calls the continuations
0
E and

2
E·+E at input position 3. The

first call adds 3 to the results of memo entry (E, 0), and calls (3) which prints out
success. The other call fails, as there is no more + left in the input to be matched.

As can be seen, the mechanism for dealing with left recursion in Johnson’s CPS
recognizers is basically the same as in GLL. Calls to a left-recursive nonterminal
are terminated upon the second call at the same input position. Then, when any
non-left-recursive alternative yields a result, the pending continuations that were
passed to the left-recursive nonterminal are called with the new result. This effectively
allows to continue parsing from the grammar position that is after the terminated
left-recursive call. Although in Johnson’s CPS recognizers the control flow is encoded
in continuation-passing style, the basic mechanism to deal with left recursion is the
same as in GLL.

1.3. Left Recursion in Recursive-descent Parsing 19

fa(0,
0
E)

0
E·+E(1)

0
E+·E(2)

fE(2,
0
E)

fE+E|a(2,
2
E)

fa(2,
2
E)

fE+E|a(0,
0
E)

2
E·+E(3)

f+(3,
2
E+·E)

f+(1,
0
E+·E)

2
E(3)

0
E(3)

0
E·+E(3)

f+(3,
0
E+·E)

(E, 0) (E, 2)

0
E(1)

Call Stack

0
E·+E(i) = f+(i, 0

E+·E)fE(0,
0
E·+E)

0
E+·E(i) = fE(i, 0

E)

where

2
E·+E(i) = f+(i, 2

E+·E)

2
E+·E(i) = fE(i, 2

E)

fE(2,
2
E·+E) where

#

1

2

3

5
<latexit sha1_base64="DzVJpGrVn/9Lj/P+F0mQt5f1+d0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSUfRY9OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8d2s3n5CpXksH8wkQT+iQ8lDzqixVuOqX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJb/yMyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/kfP4AgK+MuQ==</latexit><latexit sha1_base64="DzVJpGrVn/9Lj/P+F0mQt5f1+d0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSUfRY9OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8d2s3n5CpXksH8wkQT+iQ8lDzqixVuOqX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJb/yMyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/kfP4AgK+MuQ==</latexit><latexit sha1_base64="DzVJpGrVn/9Lj/P+F0mQt5f1+d0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSUfRY9OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8d2s3n5CpXksH8wkQT+iQ8lDzqixVuOqX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJb/yMyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/kfP4AgK+MuQ==</latexit><latexit sha1_base64="DzVJpGrVn/9Lj/P+F0mQt5f1+d0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSUfRY9OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8d2s3n5CpXksH8wkQT+iQ8lDzqixVuOqX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJb/yMyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/kfP4AgK+MuQ==</latexit>

6
<latexit sha1_base64="VU9HqF+C4zBByitodJLJ95QOZyc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfVY9OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8d2s3n5CpXksH8wkQT+iQ8lDzqixVuOqX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJb/yMyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/kfP4AgjOMug==</latexit><latexit sha1_base64="VU9HqF+C4zBByitodJLJ95QOZyc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfVY9OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8d2s3n5CpXksH8wkQT+iQ8lDzqixVuOqX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJb/yMyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/kfP4AgjOMug==</latexit><latexit sha1_base64="VU9HqF+C4zBByitodJLJ95QOZyc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfVY9OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8d2s3n5CpXksH8wkQT+iQ8lDzqixVuOqX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJb/yMyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/kfP4AgjOMug==</latexit><latexit sha1_base64="VU9HqF+C4zBByitodJLJ95QOZyc=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfVY9OKxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8d2s3n5CpXksH8wkQT+iQ8lDzqixVuOqX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJb/yMyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/kfP4AgjOMug==</latexit>

7
<latexit sha1_base64="f9qL7debzQNGPXYBw/3DGKlulw0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWZtUK64VXchsg5eDhXI1RiUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFovOyIV1hiSMlX3SkIX7eyKjkdbTKLCdETVjvVqbm//VeqkJb/yMyyQ1KNnyozAVxMRkfjUZcoXMiKkFyhS3uxI2pooyY7Mp2RC81ZPXoX1V9Sw3ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8Ag7eMuw==</latexit><latexit sha1_base64="f9qL7debzQNGPXYBw/3DGKlulw0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWZtUK64VXchsg5eDhXI1RiUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFovOyIV1hiSMlX3SkIX7eyKjkdbTKLCdETVjvVqbm//VeqkJb/yMyyQ1KNnyozAVxMRkfjUZcoXMiKkFyhS3uxI2pooyY7Mp2RC81ZPXoX1V9Sw3ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8Ag7eMuw==</latexit><latexit sha1_base64="f9qL7debzQNGPXYBw/3DGKlulw0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWZtUK64VXchsg5eDhXI1RiUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFovOyIV1hiSMlX3SkIX7eyKjkdbTKLCdETVjvVqbm//VeqkJb/yMyyQ1KNnyozAVxMRkfjUZcoXMiKkFyhS3uxI2pooyY7Mp2RC81ZPXoX1V9Sw3ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8Ag7eMuw==</latexit><latexit sha1_base64="f9qL7debzQNGPXYBw/3DGKlulw0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWZtUK64VXchsg5eDhXI1RiUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFovOyIV1hiSMlX3SkIX7eyKjkdbTKLCdETVjvVqbm//VeqkJb/yMyyQ1KNnyozAVxMRkfjUZcoXMiKkFyhS3uxI2pooyY7Mp2RC81ZPXoX1V9Sw3ryv12zyOIpzBOVyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8Ag7eMuw==</latexit>

8
<latexit sha1_base64="mGBXkzZ5yft+yNPJubp5ucFeQFE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeyx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWZtUK64VXchsg5eDhXI1RiUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFovOyIV1hiSMlX3SkIX7eyKjkdbTKLCdETVjvVqbm//VeqkJa37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AhTuMvA==</latexit><latexit sha1_base64="mGBXkzZ5yft+yNPJubp5ucFeQFE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeyx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWZtUK64VXchsg5eDhXI1RiUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFovOyIV1hiSMlX3SkIX7eyKjkdbTKLCdETVjvVqbm//VeqkJa37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AhTuMvA==</latexit><latexit sha1_base64="mGBXkzZ5yft+yNPJubp5ucFeQFE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeyx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWZtUK64VXchsg5eDhXI1RiUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFovOyIV1hiSMlX3SkIX7eyKjkdbTKLCdETVjvVqbm//VeqkJa37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AhTuMvA==</latexit><latexit sha1_base64="mGBXkzZ5yft+yNPJubp5ucFeQFE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeyx6MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjrWZtUK64VXchsg5eDhXI1RiUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYsyhphNrPFovOyIV1hiSMlX3SkIX7eyKjkdbTKLCdETVjvVqbm//VeqkJa37GZZIalGz5UZgKYmIyv5oMuUJmxNQCZYrbXQkbU0WZsdmUbAje6snr0L6qepab15X6bR5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AhTuMvA==</latexit>

9
<latexit sha1_base64="210PBVOP0TguJ8dVbYSnweORULE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEdRb0YvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxnezevsJleaxfDCTBP2IDiUPOaPGWo2bfrniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvM4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDhr+MvQ==</latexit><latexit sha1_base64="210PBVOP0TguJ8dVbYSnweORULE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEdRb0YvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxnezevsJleaxfDCTBP2IDiUPOaPGWo2bfrniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvM4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDhr+MvQ==</latexit><latexit sha1_base64="210PBVOP0TguJ8dVbYSnweORULE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEdRb0YvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxnezevsJleaxfDCTBP2IDiUPOaPGWo2bfrniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvM4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDhr+MvQ==</latexit><latexit sha1_base64="210PBVOP0TguJ8dVbYSnweORULE=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEdRb0YvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxnezevsJleaxfDCTBP2IDiUPOaPGWo2bfrniVt25yCp4OVQgV71f/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i16KkEWo/my86JWfWGZAwVvZJQ+bu74mMRlpPosB2RtSM9HJtZv5X66YmvPYzLpPUoGSLj8JUEBOT2dVkwBUyIyYWKFPc7krYiCrKjM2mZEPwlk9ehdZF1bPcuKzUbvM4inACp3AOHlxBDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyR8/kDhr+MvQ==</latexit>

10

11

12

13

14

15

16

17

18

fE(0,)

K : {,
0
E·+E}

(3)

(1)

where print('success')

R : {1}
K : {,

0
E·+E}

K : {}
R : {}

R : {}

19

20

R : {}
K : {

0
E}

R : {}
K : {

0
E ,

2
E·+E}

R : {1, 3}
K : {,

0
E·+E}

(match failed)

(match failed)

(match successful)

(match successful)

(match successful)

(parse success)

R : {3}
K : {

0
E ,

2
E·+E}

(i) = if (i == 3)

Memo Entries:

fE+E(0,
0
E)

<latexit sha1_base64="1ubif7Usrr89nIgk2iAF+5PXYhc=">AAACAXicbZDLSsNAFIZP6q3WW9SN4GawCBVFEhF0WZCC4KaCvUBbw2Q6aYdOkmFmIpRQN76KGxeKuPUt3Pk2TtsstPWHgY//nMOZ8/uCM6Ud59vKLSwuLa/kVwtr6xubW/b2Tl3FiSS0RmIey6aPFeUsojXNNKdNISkOfU4b/uBqXG88UKlYHN3poaCdEPciFjCCtbE8ey/w0go6RpVRyTlB7QEWAnuVe+fIs4vOqTMRmgc3gyJkqnr2V7sbkySkkSYcK9VyHaE7KZaaEU5HhXaiqMBkgHu0ZTDCIVWddHLBCB0ap4uCWJoXaTRxf0+kOFRqGPqmM8S6r2ZrY/O/WivRwWUnZZFINI3IdFGQcKRjNI4DdZmkRPOhAUwkM39FpI8lJtqEVjAhuLMnz0P97NQ1fHteLN9kceRhHw6gBC5cQBmuoQo1IPAIz/AKb9aT9WK9Wx/T1pyVzezCH1mfPxPSlL4=</latexit><latexit sha1_base64="1ubif7Usrr89nIgk2iAF+5PXYhc=">AAACAXicbZDLSsNAFIZP6q3WW9SN4GawCBVFEhF0WZCC4KaCvUBbw2Q6aYdOkmFmIpRQN76KGxeKuPUt3Pk2TtsstPWHgY//nMOZ8/uCM6Ud59vKLSwuLa/kVwtr6xubW/b2Tl3FiSS0RmIey6aPFeUsojXNNKdNISkOfU4b/uBqXG88UKlYHN3poaCdEPciFjCCtbE8ey/w0go6RpVRyTlB7QEWAnuVe+fIs4vOqTMRmgc3gyJkqnr2V7sbkySkkSYcK9VyHaE7KZaaEU5HhXaiqMBkgHu0ZTDCIVWddHLBCB0ap4uCWJoXaTRxf0+kOFRqGPqmM8S6r2ZrY/O/WivRwWUnZZFINI3IdFGQcKRjNI4DdZmkRPOhAUwkM39FpI8lJtqEVjAhuLMnz0P97NQ1fHteLN9kceRhHw6gBC5cQBmuoQo1IPAIz/AKb9aT9WK9Wx/T1pyVzezCH1mfPxPSlL4=</latexit><latexit sha1_base64="1ubif7Usrr89nIgk2iAF+5PXYhc=">AAACAXicbZDLSsNAFIZP6q3WW9SN4GawCBVFEhF0WZCC4KaCvUBbw2Q6aYdOkmFmIpRQN76KGxeKuPUt3Pk2TtsstPWHgY//nMOZ8/uCM6Ud59vKLSwuLa/kVwtr6xubW/b2Tl3FiSS0RmIey6aPFeUsojXNNKdNISkOfU4b/uBqXG88UKlYHN3poaCdEPciFjCCtbE8ey/w0go6RpVRyTlB7QEWAnuVe+fIs4vOqTMRmgc3gyJkqnr2V7sbkySkkSYcK9VyHaE7KZaaEU5HhXaiqMBkgHu0ZTDCIVWddHLBCB0ap4uCWJoXaTRxf0+kOFRqGPqmM8S6r2ZrY/O/WivRwWUnZZFINI3IdFGQcKRjNI4DdZmkRPOhAUwkM39FpI8lJtqEVjAhuLMnz0P97NQ1fHteLN9kceRhHw6gBC5cQBmuoQo1IPAIz/AKb9aT9WK9Wx/T1pyVzezCH1mfPxPSlL4=</latexit><latexit sha1_base64="1ubif7Usrr89nIgk2iAF+5PXYhc=">AAACAXicbZDLSsNAFIZP6q3WW9SN4GawCBVFEhF0WZCC4KaCvUBbw2Q6aYdOkmFmIpRQN76KGxeKuPUt3Pk2TtsstPWHgY//nMOZ8/uCM6Ud59vKLSwuLa/kVwtr6xubW/b2Tl3FiSS0RmIey6aPFeUsojXNNKdNISkOfU4b/uBqXG88UKlYHN3poaCdEPciFjCCtbE8ey/w0go6RpVRyTlB7QEWAnuVe+fIs4vOqTMRmgc3gyJkqnr2V7sbkySkkSYcK9VyHaE7KZaaEU5HhXaiqMBkgHu0ZTDCIVWddHLBCB0ap4uCWJoXaTRxf0+kOFRqGPqmM8S6r2ZrY/O/WivRwWUnZZFINI3IdFGQcKRjNI4DdZmkRPOhAUwkM39FpI8lJtqEVjAhuLMnz0P97NQ1fHteLN9kceRhHw6gBC5cQBmuoQo1IPAIz/AKb9aT9WK9Wx/T1pyVzezCH1mfPxPSlL4=</latexit>

21<latexit sha1_base64="vTbiz6vUnL4eOY2TrS1GOINDh+g=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvgpYr9gDaUzXbSLt1swu5GKKH/wIsHRbz6j7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weRmXu88odI8lo9mmqAf0ZHkIWfUWOuh5g3KFbfqLkTWwcuhArmag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHsWJY1Q+9li0xm5sM6QhLGyTxqycH9PZDTSehoFtjOiZqxXa3Pzv1ovNeG1n3GZpAYlW34UpoKYmMzPJkOukBkxtUCZ4nZXwsZUUWZsOCUbgrd68jq0a1XP8v1VpXGXx1GEMziHS/CgDg24hSa0gEEIz/AKb87EeXHenY9la8HJZ07hj5zPH+4yjPo=</latexit><latexit sha1_base64="vTbiz6vUnL4eOY2TrS1GOINDh+g=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvgpYr9gDaUzXbSLt1swu5GKKH/wIsHRbz6j7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weRmXu88odI8lo9mmqAf0ZHkIWfUWOuh5g3KFbfqLkTWwcuhArmag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHsWJY1Q+9li0xm5sM6QhLGyTxqycH9PZDTSehoFtjOiZqxXa3Pzv1ovNeG1n3GZpAYlW34UpoKYmMzPJkOukBkxtUCZ4nZXwsZUUWZsOCUbgrd68jq0a1XP8v1VpXGXx1GEMziHS/CgDg24hSa0gEEIz/AKb87EeXHenY9la8HJZ07hj5zPH+4yjPo=</latexit><latexit sha1_base64="vTbiz6vUnL4eOY2TrS1GOINDh+g=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvgpYr9gDaUzXbSLt1swu5GKKH/wIsHRbz6j7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weRmXu88odI8lo9mmqAf0ZHkIWfUWOuh5g3KFbfqLkTWwcuhArmag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHsWJY1Q+9li0xm5sM6QhLGyTxqycH9PZDTSehoFtjOiZqxXa3Pzv1ovNeG1n3GZpAYlW34UpoKYmMzPJkOukBkxtUCZ4nZXwsZUUWZsOCUbgrd68jq0a1XP8v1VpXGXx1GEMziHS/CgDg24hSa0gEEIz/AKb87EeXHenY9la8HJZ07hj5zPH+4yjPo=</latexit><latexit sha1_base64="vTbiz6vUnL4eOY2TrS1GOINDh+g=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvgpYr9gDaUzXbSLt1swu5GKKH/wIsHRbz6j7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weRmXu88odI8lo9mmqAf0ZHkIWfUWOuh5g3KFbfqLkTWwcuhArmag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHsWJY1Q+9li0xm5sM6QhLGyTxqycH9PZDTSehoFtjOiZqxXa3Pzv1ovNeG1n3GZpAYlW34UpoKYmMzPJkOukBkxtUCZ4nZXwsZUUWZsOCUbgrd68jq0a1XP8v1VpXGXx1GEMziHS/CgDg24hSa0gEEIz/AKb87EeXHenY9la8HJZ07hj5zPH+4yjPo=</latexit>

4<latexit sha1_base64="c7sHMW6i9dTK3EW6woK+ahdAzMA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4EXw0oL9gDaUzXbSrt1swu5GKKG/wIsHRbz6k7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weR2Xu88odI8lg9mmqAf0ZHkIWfUWKtZG5QrbtVdiKyDl0MFcjUG5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9ixKGqH2s8WiM3JhnSEJY2WfNGTh/p7IaKT1NApsZ0TNWK/W5uZ/tV5qwhs/4zJJDUq2/ChMBTExmV9NhlwhM2JqgTLF7a6EjamizNhsSjYEb/XkdWhfVT3LzVqlfp/HUYQzOIdL8OAa6nAHDWgBA4RneIU359F5cd6dj2VrwclnTuGPnM8fgeCMwQ==</latexit><latexit sha1_base64="c7sHMW6i9dTK3EW6woK+ahdAzMA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4EXw0oL9gDaUzXbSrt1swu5GKKG/wIsHRbz6k7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weR2Xu88odI8lg9mmqAf0ZHkIWfUWKtZG5QrbtVdiKyDl0MFcjUG5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9ixKGqH2s8WiM3JhnSEJY2WfNGTh/p7IaKT1NApsZ0TNWK/W5uZ/tV5qwhs/4zJJDUq2/ChMBTExmV9NhlwhM2JqgTLF7a6EjamizNhsSjYEb/XkdWhfVT3LzVqlfp/HUYQzOIdL8OAa6nAHDWgBA4RneIU359F5cd6dj2VrwclnTuGPnM8fgeCMwQ==</latexit><latexit sha1_base64="c7sHMW6i9dTK3EW6woK+ahdAzMA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4EXw0oL9gDaUzXbSrt1swu5GKKG/wIsHRbz6k7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weR2Xu88odI8lg9mmqAf0ZHkIWfUWKtZG5QrbtVdiKyDl0MFcjUG5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9ixKGqH2s8WiM3JhnSEJY2WfNGTh/p7IaKT1NApsZ0TNWK/W5uZ/tV5qwhs/4zJJDUq2/ChMBTExmV9NhlwhM2JqgTLF7a6EjamizNhsSjYEb/XkdWhfVT3LzVqlfp/HUYQzOIdL8OAa6nAHDWgBA4RneIU359F5cd6dj2VrwclnTuGPnM8fgeCMwQ==</latexit><latexit sha1_base64="c7sHMW6i9dTK3EW6woK+ahdAzMA=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4EXw0oL9gDaUzXbSrt1swu5GKKG/wIsHRbz6k7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weR2Xu88odI8lg9mmqAf0ZHkIWfUWKtZG5QrbtVdiKyDl0MFcjUG5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9ixKGqH2s8WiM3JhnSEJY2WfNGTh/p7IaKT1NApsZ0TNWK/W5uZ/tV5qwhs/4zJJDUq2/ChMBTExmV9NhlwhM2JqgTLF7a6EjamizNhsSjYEb/XkdWhfVT3LzVqlfp/HUYQzOIdL8OAa6nAHDWgBA4RneIU359F5cd6dj2VrwclnTuGPnM8fgeCMwQ==</latexit>

fE+E(2,
2
E)

<latexit sha1_base64="p3d7C5G83SGtdDz3yVg2e18tF3E=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhIpSZoqgy4IUBDcV7AXaccikmTY0kwlJRihD3fgqblwo4ta3cOfbmLaz0NYfAh//OYeT8weCUaUd59vKLS2vrK7l1wsbm1vbO/buXlPFicSkgWMWy3aAFGGUk4ammpG2kARFASOtYHg1qbceiFQ05nd6JIgXoT6nIcVIG8u3D0I/rcFTWBuXKmewO0RCIL92Xznx7aJTdqaCi+BmUASZ6r791e3FOIkI15ghpTquI7SXIqkpZmRc6CaKCISHqE86BjmKiPLS6QVjeGycHgxjaR7XcOr+nkhRpNQoCkxnhPRAzdcm5n+1TqLDSy+lXCSacDxbFCYM6hhO4oA9KgnWbGQAYUnNXyEeIImwNqEVTAju/MmL0KyUXcO358XqTRZHHhyCI1ACLrgAVXAN6qABMHgEz+AVvFlP1ov1bn3MWnNWNrMP/sj6/AEZ/pTC</latexit><latexit sha1_base64="p3d7C5G83SGtdDz3yVg2e18tF3E=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhIpSZoqgy4IUBDcV7AXaccikmTY0kwlJRihD3fgqblwo4ta3cOfbmLaz0NYfAh//OYeT8weCUaUd59vKLS2vrK7l1wsbm1vbO/buXlPFicSkgWMWy3aAFGGUk4ammpG2kARFASOtYHg1qbceiFQ05nd6JIgXoT6nIcVIG8u3D0I/rcFTWBuXKmewO0RCIL92Xznx7aJTdqaCi+BmUASZ6r791e3FOIkI15ghpTquI7SXIqkpZmRc6CaKCISHqE86BjmKiPLS6QVjeGycHgxjaR7XcOr+nkhRpNQoCkxnhPRAzdcm5n+1TqLDSy+lXCSacDxbFCYM6hhO4oA9KgnWbGQAYUnNXyEeIImwNqEVTAju/MmL0KyUXcO358XqTRZHHhyCI1ACLrgAVXAN6qABMHgEz+AVvFlP1ov1bn3MWnNWNrMP/sj6/AEZ/pTC</latexit><latexit sha1_base64="p3d7C5G83SGtdDz3yVg2e18tF3E=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhIpSZoqgy4IUBDcV7AXaccikmTY0kwlJRihD3fgqblwo4ta3cOfbmLaz0NYfAh//OYeT8weCUaUd59vKLS2vrK7l1wsbm1vbO/buXlPFicSkgWMWy3aAFGGUk4ammpG2kARFASOtYHg1qbceiFQ05nd6JIgXoT6nIcVIG8u3D0I/rcFTWBuXKmewO0RCIL92Xznx7aJTdqaCi+BmUASZ6r791e3FOIkI15ghpTquI7SXIqkpZmRc6CaKCISHqE86BjmKiPLS6QVjeGycHgxjaR7XcOr+nkhRpNQoCkxnhPRAzdcm5n+1TqLDSy+lXCSacDxbFCYM6hhO4oA9KgnWbGQAYUnNXyEeIImwNqEVTAju/MmL0KyUXcO358XqTRZHHhyCI1ACLrgAVXAN6qABMHgEz+AVvFlP1ov1bn3MWnNWNrMP/sj6/AEZ/pTC</latexit><latexit sha1_base64="p3d7C5G83SGtdDz3yVg2e18tF3E=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhIpSZoqgy4IUBDcV7AXaccikmTY0kwlJRihD3fgqblwo4ta3cOfbmLaz0NYfAh//OYeT8weCUaUd59vKLS2vrK7l1wsbm1vbO/buXlPFicSkgWMWy3aAFGGUk4ammpG2kARFASOtYHg1qbceiFQ05nd6JIgXoT6nIcVIG8u3D0I/rcFTWBuXKmewO0RCIL92Xznx7aJTdqaCi+BmUASZ6r791e3FOIkI15ghpTquI7SXIqkpZmRc6CaKCISHqE86BjmKiPLS6QVjeGycHgxjaR7XcOr+nkhRpNQoCkxnhPRAzdcm5n+1TqLDSy+lXCSacDxbFCYM6hhO4oA9KgnWbGQAYUnNXyEeIImwNqEVTAju/MmL0KyUXcO358XqTRZHHhyCI1ACLrgAVXAN6qABMHgEz+AVvFlP1ov1bn3MWnNWNrMP/sj6/AEZ/pTC</latexit>

22<latexit sha1_base64="+BfLfsB0iGwqCVw5ovypAMIBhG0=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvgpYr9gDaUzXbSLt1swu5GKKH/wIsHRbz6j7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weRmXu88odI8lo9mmqAf0ZHkIWfUWOuhVhuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFpjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZmfTYZcITNiaoEyxe2uhI2poszYcEo2BG/15HVo16qe5furSuMuj6MIZ3AOl+BBHRpwC01oAYMQnuEV3pyJ8+K8Ox/L1oKTz5zCHzmfP++2jPs=</latexit><latexit sha1_base64="+BfLfsB0iGwqCVw5ovypAMIBhG0=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvgpYr9gDaUzXbSLt1swu5GKKH/wIsHRbz6j7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weRmXu88odI8lo9mmqAf0ZHkIWfUWOuhVhuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFpjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZmfTYZcITNiaoEyxe2uhI2poszYcEo2BG/15HVo16qe5furSuMuj6MIZ3AOl+BBHRpwC01oAYMQnuEV3pyJ8+K8Ox/L1oKTz5zCHzmfP++2jPs=</latexit><latexit sha1_base64="+BfLfsB0iGwqCVw5ovypAMIBhG0=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvgpYr9gDaUzXbSLt1swu5GKKH/wIsHRbz6j7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weRmXu88odI8lo9mmqAf0ZHkIWfUWOuhVhuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFpjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZmfTYZcITNiaoEyxe2uhI2poszYcEo2BG/15HVo16qe5furSuMuj6MIZ3AOl+BBHRpwC01oAYMQnuEV3pyJ8+K8Ox/L1oKTz5zCHzmfP++2jPs=</latexit><latexit sha1_base64="+BfLfsB0iGwqCVw5ovypAMIBhG0=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRjwYvgpYr9gDaUzXbSLt1swu5GKKH/wIsHRbz6j7z5b9y2OWjrCwsP78ywM2+QCK6N6347hY3Nre2d4m5pb//g8Kh8fNLWcaoYtlgsYtUNqEbBJbYMNwK7iUIaBQI7weRmXu88odI8lo9mmqAf0ZHkIWfUWOuhVhuUK27VXYisg5dDBXI1B+Wv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYsShqh9rPFpjNyYZ0hCWNlnzRk4f6eyGik9TQKbGdEzViv1ubmf7VeasJrP+MySQ1KtvwoTAUxMZmfTYZcITNiaoEyxe2uhI2poszYcEo2BG/15HVo16qe5furSuMuj6MIZ3AOl+BBHRpwC01oAYMQnuEV3pyJ8+K8Ox/L1oKTz5zCHzmfP++2jPs=</latexit>

Figure 1.9: Execution trace of Johnson’s CPS recognizers for the grammar E ::=
E + E | a, and the input string a+a.

20 Chapter 1. Introduction

1.4 A Generic Framework for Disambiguation

General parsing algorithms, such as GLL, allow the language engineer to use the full
class of context-free grammars to define the syntax. The freedom in syntax definition,
however, comes at the price of ambiguity. A sentence that can be derived in multiple
ways is called ambiguous. In programming languages, as opposed to natural language
processing, almost always one parse tree is desired. Disambiguation is the process of
selecting the desired parse tree among the set of parse trees.

In the context of general parsing, there are three common ways that can be used
to deal with ambiguity:

• Manually rewrite the grammar to an unambiguous one that accepts the same
language.

• Let the parser to produce all parse trees in the form of a parse forest, and then
discard the undesired ones, for example, by matching against illegal parse tree
patterns.

• Modify the underlying parsing technique to apply the disambiguation rules at
runtime, by terminating parsing paths that lead to illegal parse trees.

Rewriting a grammar to remove ambiguity can be difficult, especially for grammars
with complicated operator precedence rules. Post-parse filtering of a parse forest is a
general, brute-force approach that in theory always works. However, producing all
parse trees, especially when there are large number of ambiguities, can be very slow.
Moreover, pattern matching on the parse forest to remove undesired parse trees can
be complicated and costly.

In general parsing techniques it is common to use explicit, declarative runtime
disambiguation, where the language engineer augments the context-free rules with a set
of disambiguation constructs [34, 49, 90, 95]. These constructs define which parse trees
are illegal. At runtime, the parser applies the disambiguation rules and terminates the
parsing paths that will lead to illegal parse trees as soon as possible. In declarative
disambiguation, only the specified ambiguities are resolved. This is in contrast to
implicit disambiguation techniques that are commonly used in many non-general (often
deterministic) parsing techniques. Tools such as Yacc and ANTLR 4 [70], have explicit
declarative disambiguation constructs for operator precedence, but implicitly resolve
all the remaining ambiguities to be able to produce a single parse tree. It should be
noted that Yacc generates warnings when automatically resolving the conflicts, which
should be inspected by the user to avoid unexpected behavior.

Compared to grammar rewriting, declarative disambiguation makes the task of
writing grammars faster and easier. The resulting grammars are also usually smaller
and more readable. Compared to post-parse filtering, declarative disambiguation can
lead to improvement in the performance, especially when there is a significant number
of ambiguities. Compared to implicit runtime disambiguation, explicit and declarative
disambiguation is more predictable.

Implementing disambiguation constructs at parser runtime requires extensive
knowledge of the inner workings of the underlying parsing algorithm. As a result,

1.4. A Generic Framework for Disambiguation 21

Data-dependent Grammars

Modified GLL

Lexical Filters Operator Precedence Indentation Rules Conditional Directives

Figure 1.10: Our framework for implementing disambiguation constructs based on
data-dependent grammars.

correct and efficient implementation of disambiguation constructs is not trivial. For
each disambiguation construct and parsing algorithm there is a custom implementation
based on the underlying parsing algorithm. For example, the same disambiguation
construct can be implemented in GLR by modifying parse tables, and in GLL by
modifying GSS nodes to carry additional information. This makes implementation of
different disambiguation constructs difficult and time-consuming.

In this thesis we propose a framework for implementing different disambiguation
constructs in a parser-independent way. To be able to deal with a wide range
of ambiguities, including ambiguities in context-sensitive languages, e.g., Haskell
and Python (indentation-sensitivity), and the typedef ambiguity in C, we base our
framework on data-dependent grammars [41]. Data-dependent grammars extend
context-free grammars with features such as arbitrary expressions, variable binding,
parameters, and constraints. These features, which are well-known in general-purpose
programming languages, bring more expressive power to context-free grammars, and
make it possible to express many different disambiguation constructs without the need
to modify the underlying parsing machinery.

Figure 1.10 shows a high-level view of our framework for implementing disambigua-
tion constructs. At the top layer, we have common disambiguation constructs such
as lexical filters, operator precedence, indentation rules and conditional directives.
Users of our framework can modify the existing disambiguation constructs or define
new ones. Instead of directly implementing these constructs in the context of a
specific parsing algorithm, we desugar them to data-dependent grammars. In this
view, data-dependent grammars act as an intermediate language for implementing
various disambiguation constructs. Data-dependent grammars can be implemented
on top of various parsing algorithms. In Chapter 3 we show an implementation of

22 Chapter 1. Introduction

data-dependent grammars on top of GLL parsing.
A significant part of this thesis is dedicated to the semantics and implementation

of disambiguation rules for operator precedence. Disambiguation rules for operator
precedence are among the most important disambiguation constructs, and perhaps
the most difficult to get right. For example, the declarative syntax definition tool
SDF2 [95], which is based on the Scannerless GLR parsing algorithm [71,94], fails to
disambiguate unconventional operator precedence rules in functional programming
languages such as OCaml.

Ambiguities related to operator precedence have a special property that we call
safety. A disambiguation mechanism is safe if it does not remove sentences from the
language. In other words, if there is no ambiguity, a safe disambiguation mechanism
does not apply. In Chapters 4 and 5, we introduce the notion of safe operator
precedence disambiguation and provide a semantics for operator precedence that is
safe and can deal with operator precedence cases that occur in programming languages
such as OCaml. We provide an efficient implementation of the safe operator precedence
semantics using data-dependent grammars in Chapter 5.

Our disambiguation framework can also deal with context-sensitive ambiguities, e.g.,
indentation rules in Python and Haskell. Parsers for indentation-sensitive languages
often require custom modifications in the lexer (and the parser). Using data-dependent
grammars we can provide a solution to parsing indentation-sensitive languages, without
requiring a custom lexer implementation. As data-dependent grammars allow passing
arbitrary values during parsing, indentation information can be carried and enforced in
nested blocks. We provide high-level declarative constructs that define the indentation
rules at the grammar level, which are then desugared to data-dependent grammars.
This provides a concise and readable declarative syntax specification for indentation-
sensitive languages. We discuss indentation-sensitivity and our solution in detail in
Chapter 3.

1.5 Direct Embedding of Context-free Grammars

In traditional compiler construction tools, such as Yacc, grammars are defined using
an external syntax, which is then transformed to an executable form, e.g., parse tables.
Context-free grammars can also be directly embedded in a programming language as
a set of combinators. This approach is popular in functional programming languages
such as Haskell. In this approach, it is common to define parsers as functions, and
then compose them using higher-order functions (combinators) such as sequence
and alternation. Such embedding of context-free grammars is referred to as shallow
embedding.

Combinator-style parsing is popular because parsers are first-class citizens of the
programming language. This provides great flexibility, for example, it is a common
practice in combinator-style parsing to pass values through the chain of functions to
deal with context-sensitive constructs found in network protocols and indentation-
sensitive languages.

1.5. Direct Embedding of Context-free Grammars 23

1 trait Symbol {
2 def ⇠(other: Symbol) = Seq(this, other)
3 def |(other: Symbol) = Alt(this, other)
4 }
5
6 case class Seq(first: Symbol, second: Symbol) extends Symbol
7
8 case class Alt(first: Symbol, second: Symbol) extends Symbol
9
10 case class Nonterminal(name: String) extends Symbol {
11 def ::=(alts: Alt) = Rule(this, alts)
12 }
13
14 case class Terminal(name: String) extends Symbol
15
16 case class Rule(head: Nonterminal, body: Alt)
17
18 implicit def s2t(s: String): Terminal = Terminal(s)

Figure 1.11: A deep embedding of context-free grammars in Scala.

It is also common to embed context-free grammars in a programming language as a
data type. Such an embedding is called a deep embedding. Compared to a shallow
embedding, a deep embedding can be more efficient as it is possible to preprocess the
data type and apply various optimizations.

Scala [68] is a modern functional programming language that has a flexible syntax.
This makes Scala particularly suitable for writing grammar embeddings. As an
example, consider the grammar:

S ::= aSbS | aS | s

which can be directly encoded in Scala as:

S ::= "a" ⇠ S ⇠ "b" ⇠ S | "a" ⇠ S | "s"

As can be seen, this encoding very closely resembles the context-free grammar it
represents. Scala provides various features that facilitate the development of embedded
DSLs. For example, parentheses and dot can be omitted for method calls when there
is only one argument, and special characters, such as ⇠ and ::=, can be used as method
names. In addition, Scala supports implicit compile-time type conversions.

Figure 1.11 shows a data type definition for deep embedding of context-free
grammars. The trait18 Symbol defines two methods ⇠ and | for sequence and alternation,
respectively. The Seq, Alt, Nonterminal and Terminal case classes19 define concrete
symbols. The Rule case class defines a grammar rule, with a nonterminal head and
its body. The method ::= on the nonterminal type gets an alternative and creates a
18 A trait in Scala is similar to a type constructor in Haskell or an interface in Java.
19 A case class in Scala is similar to a value constructor in Haskell or a concrete, final class in Java.

24 Chapter 1. Introduction

1 type Result[T] = Option[T]
2
3 trait Parser extends ((String, Int) => Result[Int]) {
4
5 def ⇠(p: => Parser): Parser =
6 (input, i) => this(input, i).flatMap(j => p(input, j))
7
8 def |(p: => Parser): Parser =
9 (input, i) => this(input, i).orElse(p(input, i))
10 }
11
12 implicit def s2t(s: String): Parser =
13 (input, i) => if (matches(input, i, s)) Some(i + s.length) else None
14
15 // Matches the input string from position j against the given string s
16 private def matches(input: String, j: Int, s: String): Boolean

Figure 1.12: A shallow embedding of context-free grammars in Scala.

rule with the current nonterminal as head. Finally, the implicit method s2t converts
strings to terminals.

Given the definitions of Figure 1.11, the grammar above, with implicit conversions
made explicit, and parentheses and dots for method calls put in place, is equivalent to:

val S = Nonterminal("S")
S.::=(s2t("a").⇠(S).⇠(s2t("b")).⇠(S)).|(s2t("a").⇠(S)).|(s2t("s"))

The result of executing this expression is the following instance of Rule:

Rule(Nonterminal("S"),
Alt(Alt(Seq(Seq(Seq(Terminal("a"),

Nonterminal("S")),
Terminal("b")),

Nonterminal("S")),
Seq(Terminal("a"),

Nonterminal("S"))),
Terminal("s")
)

)

Figure 1.12 defines a shallow embedding of context-free grammars in Scala. Using
these definitions, the grammar above can be written as:

val S : Parser = "a" ⇠ S ⇠ "b" ⇠ S | "a" ⇠ S | "s"

Although the result looks almost the same as the one for deep embedding, the
underlying mechanism is different. In this version, S is a function, and thus is directly
executable. For example, S("aasbs", 0) is a function call with the input string "aasbs"

and input position 0, which returns Some(5).

1.6. Research Questions and Overview of Chapters 25

In Figure 1.12, line 1 defines the type Result[T] which is an alias to Scala’s Option[T]

type. Option in Scala represents an optional value, similar to Maybe in Haskell or Option

in ML. We use this type to represent the result of parsing, i.e., Some(i) when the parser
succeeds with new input position i or None when the parser fails. The parser type is
defined as a function from the input string and input position to parse result:

(String, Int) => Result[Int]

Scala, compared to other functional programming languages such as Haskell, does not
support infix notation for function calls with two arguments. To simulate the infix
notation, we define the trait Parser as a subtype of the (String, Int) => Result[Int]

type, and define the sequence (⇠) and alternation (|) combinators as methods on the
Parser trait (lines 5–9). The implementation of these methods are based on the flatMap

and orElse methods available on Scala’s Option type.
The sequence combinator returns a parser that, given an input string (input) and

an input position (i), calls the first parser (this) at i, and if it succeeds, calls the
second parser (p) with the result of the first parser. If the first parser fails, no call to
the second parser is made, and the entire sequence fails. The alternation combinator
returns a parser that, given an input string (input) and an input position (i), calls the
first parser (this) at i, and only if it fails, calls the second parser (p) with the same
input position. This effectively implements a simple backtracking scheme.

The implicit conversion at line 12 converts a string to a terminal parser that
matches the given string against the input. It is easy to extend the terminal parser to
use regular expressions. This flexibility of parser combinators allows the user to easily
develop custom parsers using the features of the host programming language.

A straightforward shallow embedding of context-free grammars, as shown in
Figure 1.12, fails on grammars with left recursion. Lack of support for left recursion
has been a major limitation of traditional parser combinators [36,37,57]. An important
requirement for building parser combinators as a shallow embedding is that the
underlying parsing machinery has to be composable using the sequence and alternation
operators. Unfortunately, the machinery of general parsing algorithms, such as GLR
and Earley, is not composable using sequence and alternation, and hence, they cannot
be used to build parser combinators as a shallow embedding. In Chapter 7 we show
how to extend the definitions of Figure 1.12 to support left recursion and produce a
binarized SPPF in cubic time and space. Our general parser combinators are based
on Johnson’s CPS recognizers [43] and are implemented in Scala.

1.6 Research Questions and Overview of Chapters

In this section we discuss the research questions, and give an overview of the remaining
chapters.

26 Chapter 1. Introduction

1.6.1 Research Questions

Research Question 1. GLL is a relatively new general parsing algorithm that has
not been yet widely used in practice. Can we make GLL faster, and build efficient
general parsers based on GLL?

The answer to this question is presented in Chapters 2 and 6. In Chapter 2 we present
a modification to the Graph Structured Stack (GSS), an important internal data
structure of GLL, that leads to significant performance improvement. The results of
our extensive performance evaluation in Chapter 6 show that GLL parsers can be
practical for parsing real programming languages.

Research Question 2. Using general parsing algorithms for parsing programming
languages goes hand in hand with (declarative) disambiguation. To build practical
general parsers, it is essential to support disambiguation. Disambiguation constructs
are typically implemented in the context of a specific parsing algorithm. Is it possible to
implement various disambiguation constructs without the knowledge of the underlying
parsing technique?

The answer to this question is presented in Chapter 3. We use data-dependent
grammars as an intermediate language for implementing various disambiguation
constructs. We extend GLL to support data-dependent grammars, and show how to
define high-level disambiguation constructs that desugar to data-dependent grammars.
We discuss the application of our technique to resolve various ambiguities such as
ambiguities in indentation-sensitive languages, e.g., Haskell and Python, conditional
directives in C#, typedef ambiguity in C, and operator precedence.

Research Question 3. How can we deal with intricate cases of operator precedence
ambiguity that are present in functional programming languages such as OCaml?

The answer to this question is presented in Chapter 4. We introduce a derivation-
based semantics for operator precedence disambiguation that is independent of the
underlying parsing technique, and is safe, i.e., does not remove sentences from the
language when there is no ambiguity, and can deal with operator precedence cases
that occur in functional programming languages such as OCaml.

Our safe specification of operator precedence rules is implemented by an automatic
grammar rewriting process that preserves the shape of the parse trees, conforming to
the original ambiguous grammar. This rewriting, however, could lead to very large
grammars, which affects the runtime of the parser.

Research Question 4. How can we implement our safe operator precedence technique
in a way that does not require a grammar transformation that increases the size of
the grammar, and is independent of the underlying parsing algorithm?

The answer to this question is presented in Chapter 5. We provide an implementation
of the safe operator precedence semantics based on data-dependent grammars. This im-
plementation has the advantage that it does not depend on a grammar transformation
that increases the size of the grammar, and is efficient.

1.6. Research Questions and Overview of Chapters 27

Chapter 1: Introduction

Chapter 2: Faster, Practical
GLL Parsing

Chapter 3: Data-dependent
GLL Parsing

Chapter 6: Iguana: a Practical
Data-dependent Parsing

Framework

Chapter 4: Safe Specification
of Operator Precedence Rules

Chapter 5: Operator
Precedence for Data-dependent

Grammars

Chapter 7: Practical, General
Parser Combinators

Chapter 8: Conclusions

Figure 1.13: The relationship between chapters.

Research Question 5. How can we implement general parser combinators that
provide the expressiveness and worst-case cubic runtime of traditional general parsers,
and the flexibility of parser combinators?

The answer to this question is presented in Chapter 7. We start with Johnson’s
Continuation-Passing Style (CPS) recognizers and apply a modification to the memo-
ization strategy that achieves worst-case cubic runtime. Then, we show how to extend
the cubic CPS recognizers to fully general parsers that produce binarized SPPFs in
cubic time and space. We present a parser combinator library in Scala, called Meerkat,
that is based on our cubic CPS parsers.

1.6.2 Overview and Origin of Chapters

Each chapter of this thesis is published separately in the proceedings of a peer-reviewed
conference. There are some repetition in the introduction of the individual chapters,
mostly related to the discussion of general parsing and declarative syntax definition,
but we decided to keep the chapters as close as possible to the published version, so
that they are self-contained and standalone.

28 Chapter 1. Introduction

The chapters follow three inter-related topics: (1) improvements to GLL parsing and
extension to support data-dependent grammars, (2) operator precedence disambigua-
tion, and (3) general parser combinators. Figure 1.13 shows the chapters and how they
are related to each other. Chapters 2 and 7 are not directly dependent on each other,
and the reader does not need to read one before the other, but ideas presented in
these two chapters are complementary and give a full view of how a general top-down
parsing algorithm can be formulated. In the following, we give a brief overview of the
chapters including the venue where they were originally published.

We also explicitly describe the contributions of each of the two authors to each
chapter. One unique aspect of this thesis is that it fuses the ideas from classical
parsing with ideas from functional programming. This fusion is the result of the
author’s different background: Afroozeh has a background in classical parsing and
gradually moved to functional programming, while Izmaylova has a background in
functional programming and gradually moved to classical parsing. In the rest of this
section, based on the alphabetical order, we refer to Afroozeh and Izmaylova as the
first and second author, respectively.

Chapter 2: Faster, Practical GLL Parsing presents a number of improvements
to GLL parsing. First, it presents a new GSS structure that leads to considerable
performance gain on both highly ambiguous grammars and grammars of real pro-
gramming languages. Second, it discusses a number of optimizations to GLL parsing,
by relaxing some expensive and redundant checks. Third, it discusses an efficient
implementation of lookup tables in an object-oriented implementation of GLL. Finally,
it discusses the implementation of lexical disambiguation filters in GLL. The improved
GLL parsers are evaluated against source code of real programming languages, such
as Java, C# and OCaml, and report considerable performance improvement.

This chapter was originally published as:

A. Afroozeh and A. Izmaylova. Faster, Practical GLL Parsing. In Proceedings of
the 24th International Conference on Compiler Construction, Held as Part of the
European Joint Conferences on Theory and Practice of Software (ETAPS), CC ’15,
pages 89–108. Springer, 2015.

Both authors contributed equally to the design and implementation of new GSS. For
the rest of this work, the first author contributed more to the implementation of
optimizations and disambiguation filters, while the second author contributed more to
reasoning about correctness of the new GSS and other optimizations.

Chapter 3: Data-dependent GLL Parsing presents a parsing framework based
on data-dependent grammars and an implementation based on GLL parsing. This
chapter first presents data-dependent grammars as an intermediate parser-independent
layer for implementing various disambiguation constructs. As data-dependent gram-
mars are rather low-level, we give examples of high-level disambiguation constructs
for lexical disambiguation filters, operator precedence, indentation-sensitive languages

1.6. Research Questions and Overview of Chapters 29

and conditional directives, and mappings from these high-level constructs to data-
dependent grammars.

This chapter was originally published as:

A. Afroozeh and A. Izmaylova. One Parser to Rule Them All. In Proceedings of the
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!), Onward! ’15, pages 151–170. ACM, 2015.

Both authors contributed equally to the design of data dependency in GLL and map-
pings from high-level disambiguation constructs. The first author was responsible for
implementing the interpretive version of GLL and conducting evaluation experiments.
The second author was responsible for the extension of GLL with data dependency and
implementation of mappings from high-level constructs to data-dependent grammars.

Chapter 4: Safe Specification of Operator Precedence Rules presents a
declarative approach to operator precedence that is safe, i.e., does not remove sentences
from the language when there is no ambiguity, and can deal with intricate cases of
operator precedence in functional programming languages such as OCaml. The safe
operator precedence semantics is implemented as a grammar transformation. The
parse trees resulting from the transformed grammar conform to the ones of the original,
ambiguous grammar.

This chapter was originally published as:

A. Afroozeh, M. van den Brand, A. Johnstone, E. Scott, and J. J. Vinju. Safe
Specification of Operator Precedence Rules. In Proceedings of the 6th International
Conference on Software Language Engineering, SLE ’13, pages 137–156. Springer,
2013.

The first author was the main author of this work, and carried out most of the design
and implementation efforts. The other authors helped in formalization of ideas and
presentation of the work.

Chapter 5: Operator Precedence for Data-dependent Grammars presents
an implementation of the safe operator precedence semantics based on data-dependent
grammars. This implementation does not have the problems of the rewriting approach
presented in the previous chapter, and is efficient. This chapter also presents an
extensive discussion of operator precedence techniques.

This chapter was originally published as:

A. Afroozeh and A. Izmaylova. Operator Precedence for Data-dependent Grammars.
In Proceedings of the ACM SIGPLAN Symposium/Workshop on Partial Evaluation
and Program Manipulation, PEPM ’16, pages 13–24. ACM, 2016.

30 Chapter 1. Introduction

The first author worked on the related work study and conducted the evaluation
experiments. The second author designed and implemented the operator precedence
approach in data-dependent grammars.

Chapter 6: Iguana: A Practical Data-dependent Parsing Framework
presents Iguana, our data-dependent parsing framework. This chapter discusses
the high-level architecture of Iguana, its textual syntax, and the format of parse trees
produced by Iguana. The main contribution of this chapter is an extensive performance
evaluation, in which we compare the performance of Iguana with ANTLR [69, 70].
The results show that Iguana is practical for parsing real programming languages such
as Java.

This chapter was originally published as:

A. Afroozeh and A. Izmaylova. Iguana: A Practical Data-Dependent Parsing Frame-
work. In Proceedings of the 25th International Conference on Compiler Construction,
CC ’16, pages 267–268, Springer, 2016.

For this thesis, we extended the published paper to include the performance compari-
son between Iguana and ANTLR. Both authors contributed equally to the design and
implementation of Iguana. The first author was more responsible for the implementa-
tion of the parts related to GLL, and the second author for the implementation of
data-dependent grammars, mappings from high-level disambiguation constructs, and
the IntelliJ IDEA plugin.

Chapter 7: Practical, General Parser Combinators presents general parser
combinators that can deal with all context-free grammars and produce a binarized
SPPF in cubic time and space. The presented parser combinators have the flexibility
and expressiveness of traditional parser combinators, and the performance guarantee
of general parsing algorithms. Our general parser combinators are based on Johnson’s
work on memoized Continuation-Passing Style (CPS) recognizers. First, we extend
this work to achieve recognition in cubic time. Second, we extend the resulting cubic
CPS recognizers to parsers that construct a binarized Shared Packed Parse Forest
(SPPF). We used the approach presented in this work as the basis for Meerkat, a
general parser combinator library in Scala.

This chapter was originally published as:

A. Izmaylova, A. Afroozeh, and T. v. d. Storm. Practical, General Parser Combinators.
In Proceedings of the ACM SIGPLAN Symposium/Workshop on Partial Evaluation
and Program Manipulation, PEPM ’16, pages 1–12. ACM, 2016.

Izmaylova is the main author of this work. Izmaylova proposed the extension to the
memoization strategy of the original CPS recognizers, worked on the formal proofs and
carried out most of the implementation. Afroozeh implemented the binarized SPPFs
and conducted the related work study. The other author participated in discussions
and helped in presentation of the work.

1.7. Performance Evaluation 31

1.7 Performance Evaluation

In most chapters of this thesis we provide a performance evaluation section, in which
we mainly answer the following two questions:

1. How does the presented modification/extension in the chapter improve the pars-
ing performance? For this type of evaluation, we compare the modified/extended
version with the original one. For example, in Chapter 2 we propose a modifi-
cation to the Graph Structured Stack (GSS) in GLL parsing that considerably
improves the performance on both highly ambiguous and real programming
languages. For evaluation, we compare the performance of GLL parsers with
the new GSS with GLL parsers with the original GSS.

2. Is the presented modification/extension in the chapter practical? In many places
we call a general parser practical if it can run nearly linearly on grammars of real
programming languages. For example, in Chapter 3 we extend GLL parsing to
support data-dependent grammars and show that the runtime is still near-linear
on grammars of real programming languages such as Java and C#.

In these chapters, we did not provide performance comparison with other existing
parsing tools. Comparing the performance of different parsing algorithms, implemented
as part of existing tools, is very difficult, and, in fact, there are only very few research
papers that do such comparison. There are a number of reasons why such fair
performance comparison is difficult:

1. To have a fair performance comparison between different parsing techniques, we
need to use the exact same grammar. For performance evaluation in the following
chapters, we use the most natural version of the grammar from the language
specification. Most parsers used in the actual compilers of the languages do not
use such natural grammars. Instead, they use deterministic grammars that are
tuned to perform well for a specific parsing technology. Based on our experience,
making grammars more deterministic, or tuning the grammar, considerably
improves the performance of parsing.

2. Almost all parsers used in front-ends of real programming languages use a
separate tokenizer, which in combination with a deterministic parser makes
the whole parsing process much faster. With context-aware scanning [91] we
could get a considerable speedup compared to the character-level grammars (see
Chapter 3). However, because of the non-deterministic nature of our parser, it
explores many more paths than a deterministic parser with a separate tokenizer.

3. Compilers for many programming languages are not written in Java, and since
Iguana is only currently implemented in Java, a direct comparison would be
hard. We should also note that measuring performance on the JVM platform
is in general difficult, mostly because of the Garbage Collection (GC) and
Just-In-Time (JIT) compilation effects.

32 Chapter 1. Introduction

One of the most common questions we received during these years was about the
performance of Iguana compared to ANTLR [69, 70]. ANTLR is the most popular
parsing tool out there, and since version 4 supports left recursion (with the exception
of indirect left recursion) and declarative operator precedence disambiguation, allowing
a natural grammar specification. ANTLR, however, is not a general parsing algorithm,
as it cannot present all ambiguities in form of a parse forest, and returns at most one
parse tree. In addition, ANTLR uses a separate tokenization phase before parsing.
Nevertheless, from the end user’s point of view we think it is important to provide a
detailed performance comparison between Iguana and ANTLR.

In Chapter 6 we provide the results of our extensive performance comparison with
ANTLR. We use similar natural grammars of Java and parse 22319 Java source files.
The results show that Iguana is about 70% slower than ANTLR, considering the
median relative running time of each file excluding the outliers. The median running
time for Iguana and ANTLR for all files was 6.2ms and 3.85ms, respectively. These
results show that Iguana is practical for parsing real programming languages such as
Java.

1.8 Software Artifacts

In the context of this thesis we have developed two parsing frameworks, which are
available under the open source BSD 2-clause20 license.

Iguana Parsing Framework Iguana21 is a parsing framework based on data-
dependent grammars. Data-dependent grammars extend context-free grammars with
arbitrary computation, variable binding, and constraints. These powerful features
enable construction of parsers for context-sensitive languages. We also use data-
dependent grammars as a layer to implement different disambiguation constructs such
as operator precedence. The architecture of Iguana is described in Chapter 6.

Meerkat Parser Combinators Meerkat22 is a general parser combinator library
written in Scala, that combines the flexibility of traditional, monadic parser combina-
tors and the expressivity and worst-case performance guarantees of state-of-the-art
general parsing algorithms, such as GLL and GLR. Using the Meerkat library, it is
possible to directly encode any context-free grammar, including the ones with direct
and indirect left recursion, in Scala. Meerkat parsers support ambiguity, by producing
a parse forest in cubic time and space, and behave nearly linearly on grammars of
real programming languages.

20 https://opensource.org/licenses/BSD-2-Clause
21 http://iguana-parser.github.io
22 http://meerkat-parser.github.io

https://opensource.org/licenses/BSD-2-Clause
http://iguana-parser.github.io
http://meerkat-parser.github.io

Chapter 2

Faster, Practical GLL Parsing
1

Summary Generalized LL (GLL) parsing is an extension of recursive-descent (RD)
parsing that supports all context-free grammars in cubic time and space. GLL parsers
have the direct relationship with the grammar that RD parsers have, and therefore,
compared to GLR, are easier to understand, debug, and extend. This makes GLL
parsing attractive for parsing programming languages.

In this chapter we propose a more efficient Graph-Structured Stack (GSS) for
GLL parsing that leads to significant performance improvement. We also discuss a
number of optimizations that further improve the performance of GLL. Finally, for
practical scannerless parsing of programming languages, we show how common lexical
disambiguation filters can be integrated in GLL parsing.

Our new formulation of GLL parsing is implemented as part of the Iguana parsing
framework. We evaluate the effectiveness of our approach using a highly-ambiguous
grammar and grammars of real programming languages. Our results, compared to
the original GLL, show a speedup factor of 10 on the highly-ambiguous grammar,
and a speedup factor of 1.5, 1.7, and 5.2 on the grammars of Java, C#, and OCaml,
respectively.

1 This chapter was originally published as: A. Afroozeh and A. Izmaylova. Faster, Practical GLL
Parsing. In Proceedings of the 24th International Conference on Compiler Construction, Held as
Part of the European Joint Conferences on Theory and Practice of Software (ETAPS), CC ’15,
pages 89–108. Springer, 2015.

33

34 Chapter 2. Faster, Practical GLL Parsing

2.1 Introduction

Developing efficient parsers for programming languages is a difficult task that is usually
automated by a parser generator. Since Knuth’s seminal paper [54] on LR parsing,
and DeRemer’s work on practical LR parsing (LALR) [17], parsers of many major
programming languages have been constructed using LALR parser generators such as
Yacc [44].

Grammars of most real programming languages, when written in their most natural
form, are often ambiguous and do not fit deterministic classes of context-free grammars
such as LR(k). Therefore, such grammars need to be transformed to conform to these
deterministic classes. This process can be time consuming and error prone for new
users, and the resulting derivation trees may also be different from those of the original,
natural grammar. This is especially noticeable when encoding operator precedence
and associativity in deterministic parsing techniques that do not support left recursion,
as without left recursion, it is not possible to directly encode left-associative operators.

In addition, writing a deterministic grammar for a programming language requires
the grammar writer to think more in terms of the parsing technology, rather than the
intended semantics. Finally, maintaining a deterministic grammar can be problematic.
A real-world example is the grammar of Java. In the first version of the Java Language
Specification [31] the grammar was represented in an LALR(1) form. In the second
(and later) version of the Java Language Specification, the LALR(1) grammar is
replaced by a grammar that is not LALR(1), most likely due to the difficulties of
maintaining an LALR(1) grammar as the language evolved2.

Generalized LR (GLR) [85] is an extension of LR parsing that effectively handles
shift/reduce conflicts in separate stacks, merged as a Graph Structured Stack (GSS)
to trim exponentiality. As GLR parsers can deal with any context-free grammar,
there is no restriction on the grammar. Moreover, GLR can behave linearly on LR
grammars, and therefore, it is possible to build practical GLR parsers for programming
languages [61,89].

Although GLR parsers accept any context-free grammar, they have a complicated
execution model, inherited from LR parsing. LR parsers are hard to modify, and it is
hard to produce good error messages from an LR parser. Some major programming
languages have switched from LR-based parser generators, such as Yacc, to hand-
written recursive-descent parsers. For example, GNU’s GCC and Clang, two major
C++ front-ends, have switched from LR(k) parser generators to hand-written recursive-
descent parsers3.

Recursive-descent (RD) parsers are a procedural interpretation of a grammar,
directly encoded in a programming language. The straightforward execution model
of RD parsers makes them easy to understand and modify. However, RD parsers do
2 Even the first version of the Java Language Specification mentions that the presented LALR(1)

grammar “cannot be parsed left-to-right with one token of lookahead because of certain syntactic
peculiarities, some of them inherited from C and C++”, and explains how these problems are
resolved [31].

3 http://clang.llvm.org/features.html#unifiedparser
http://gcc.gnu.org/wiki/New_C_Parser

http://clang.llvm.org/features.html#unifiedparser
http://gcc.gnu.org/wiki/New_C_Parser

2.2. GLL Parsing 35

not support left-recursive rules and have worst-case exponential runtime. Generalized
LL (GLL) [78] is a generalization of RD parsing that can deal with any context-free
grammar, including the ones with left recursive rules, in cubic time and space. GLL
uses GSS to handle multiple function call stacks, which also solves the problem of left
recursion by allowing cycles in the GSS. GLL parsers maintain the direct relationship
with the grammar that RD parsers have, and therefore, provide an easy to understand
execution model. Finally, GLL parsers can be written by hand and can be debugged
in a programming language IDE. This makes GLL parsing attractive for parsing
programming languages.

Contributions. We first identify a problem with the GSS in GLL parsing that leads
to inefficient sharing of parsing results, and propose a new GSS that provides better
sharing. We show that the new GSS results in significant performance improvement,
while preserving the worst-case cubic complexity of GLL parsing. Second, we discuss
a number of other optimizations that further improve the performance of GLL parsing.
Third, we demonstrate how common lexical disambiguation filters, such as follow
restrictions and keyword exclusion, can be implemented in a GLL parser. These filters
are essential for scannerless parsing of real programming languages. The new GSS,
the optimizations, and the lexical disambiguation filters are implemented as part of
the Iguana parsing framework4.

Organization of the chapter. The rest of this chapter is organized as follows.
GLL parsing is introduced in Section 2.2. The problem with the original GSS in GLL
parsing is explained in Section 2.2.3, and the new, more efficient GSS is introduced in
Section 2.3. Section 2.4 gives a number of optimizations for implementing faster GLL
parsers. Section 2.5 discusses the implementation of common lexical disambiguation
mechanisms in GLL. Section 2.6 evaluates the performance of GLL parsers with the
new GSS, compared to the original GSS, using a highly ambiguous grammar and
grammars of real programming languages such as Java, C# and OCaml. Section 2.7
discusses related work on generalized parsing and disambiguation. Finally, Section 2.8
concludes this chapter and discusses future work.

2.2 GLL Parsing

2.2.1 Preliminaries

A context-free grammar is composed of a set of nonterminals N , a set of terminals T ,
a set of rules P , and a start symbol S which is a nonterminal. A rule is written as
A ::= ↵, where A (head) is a nonterminal and ↵ (body) is a string in (T [N)⇤. Rules
with the same head can be grouped as A ::= ↵1 | ↵2 | . . . | ↵p, where each ↵k is called
an alternative of A. A derivation step is written as ↵A�)↵��, where A ::= � is a
rule, and ↵ and � are strings in (T [N)⇤. A derivation is a possibly empty sequence
of derivation steps from ↵ to � and is written as ↵

⇤)�. A derivation is left-most if in
4 https://github.com/iguana-parser/

https://github.com/iguana-parser/

36 Chapter 2. Faster, Practical GLL Parsing

each step the left most nonterminal is replaced by its body. A sentential form is a
derivation from the start symbol. A sentence is a sentential form that only consists of
terminal symbols. A sentence is called ambiguous if it has more than one left-most
derivation.

2.2.2 The GLL parsing algorithm

The Generalized LL (GLL) parsing algorithm [78] is a fully general, worst-case cubic
extension of recursive-descent (RD) parsing that supports all context-free grammars.
In GLL parsing, the worst-case cubic runtime and space complexities are achieved by
using a Graph-Structured Stack (GSS) and constructing a binarized Shared Packed
Parse Forest (SPPF). GSS allows to efficiently handle multiple function call stacks,
while a binarized SPPF solves the problem of unbounded polynomial complexity of
Tomita-style SPPF construction [42]. GLL solves the problem of left recursion in RD
parsing by allowing cycles in the GSS.

GLL parsing can be viewed as a grammar traversal process guided by the input
string. At each point during execution, a GLL parser is at a grammar slot (grammar
position) L, and maintains three variables: cI for the current input position, cU for
the current GSS node, and cN for the the current SPPF node. A grammar slot is of
the form X ::= ↵ ·� and corresponds to a grammar position before or after any symbol
in the body of a grammar rule, similar to LR(0) items. A GSS node corresponds to a
function call in an RD parser, and is of the form (L, i), where L is a grammar slot of
the form X ::= ↵A · �, i.e., after a nonterminal, and i is the current input position
when the node is created. Note that the grammar slot of a GSS node effectively
records the return grammar position, needed to continue parsing after returning from
a nonterminal. A GSS edge is of the form (v, w, u), where v and u are the source and
target GSS nodes, respectively, and w is an SPPF node recorded on the edge.

GLL parsers produce a binarized SPPF. In an SPPF, nodes with the same subtrees
are shared, and different derivations of a node are attached via packed nodes. A
binarized SPPF introduces intermediate nodes, which effectively group the symbols of
an alternative in a left-associative manner. An example of a binarized SPPF, resulting
from parsing "abc" using the grammar S ::= aBc | Ac, A ::= ab, B ::= b is shown in
Figure 2.1.

A binarized SPPF has three types of nodes. Symbol nodes of the form (x, i, j),
where x is a terminal or nonterminal, and i and j are the left and right extents,
respectively, indicating the substring recognized by x. Intermediate nodes of the
form (A ::= ↵ · �, i, j), where |↵|, |�| > 0, and i and j are the left and right extents,
respectively. Terminal nodes are leaf nodes, while nonterminal and intermediate nodes
have packed nodes as children. A packed node (shown as circles in the SPPF above)
is of the form (A ::= ↵ · �, k), where k, the pivot, is the right extent of the left child.
A packed node has at most two children, both non-packed nodes. A packed node
represents a derivation, thus, a nonterminal or intermediate node having more than
one packed node is ambiguous.

As mentioned before, a GLL parser holds a pointer to the current SPPF node, cN ,
and at the beginning of each alternative, cN is set to the dummy node, $. As the parser

2.2. GLL Parsing 37

a, 0, 1

b, 1, 2

A, 0, 2A ::= aB · c, 0, 2

S, 0, 3

c, 2, 3

B, 1, 2

Figure 2.1: Binarized SPPF for the input "abc" using the grammar S ::= aBc | Ac,
A ::= ab, B ::= b.

traverses an alternative, it creates terminal nodes by calls getNodeT(t, i, j), where t

is a terminal, and i and j are the left and right extents, respectively. Nonterminal
and intermediate nodes are created by calls getNodeP(A ::= ↵ · �, w, z), where w

and z are the left and right children, respectively. This function first searches for an
existing nonterminal node (A, i, j), if |�| = 0, or intermediate node (A ::= ↵ · �, i, j),
where i and j are the left extent of w and the right extent of z, respectively. If such a
node exists, it is retrieved, otherwise created. Then, w and z are attached to the node
via a packed node, if such a packed node does not exist.

In GLL parsing, when the parser reaches a non-deterministic point, e.g., a non-
terminal with multiple alternatives, it creates descriptors, which capture the parsing
states corresponding to each choice, and adds them to a set, so that they can be
processed later. A descriptor is of the form (L, u, i, w), where L is a grammar slot, u is
a GSS node, i is an input position, and w is an SPPF node. A GLL parser maintains
two sets of descriptors: R for pending descriptors, and U for storing all the descriptors
created during the parsing, to eliminate the duplicate descriptors. A descriptor is
added to R, via a call to function add, only if it does not exist in U . In addition, a set
P is maintained to store and reuse the results of parsing associated with GSS nodes,
i.e., the elements of the form (u, z), where z is an SPPF node. A GLL parser has a
main loop that in each iteration, removes a descriptor from R, sets cU , cI , and cN to
the respective values in the descriptor, and jumps to execute the code associated with
the grammar slot of the descriptor. An example of a GLL parser, for the grammar �0:
A ::= aAb | aAc | a, is given in Figure 2.2.

We describe the execution of a GLL parser by explaining the steps of the parser
at different grammar slots. Here, and in the rest of the chapter, we do not include
the check for first/follow sets in the discussion. We also assume that the input
string, of length n, is available as an array I. Parsing starts by calling the start
symbol at input position 0. At this moment, cU is initialized by the default GSS
node u0 = (L0, 0), where L0 does not correspond to any actual grammar position.

38 Chapter 2. Faster, Practical GLL Parsing

R := ?; P := ?; U := ?
cU := (L0, 0); cI := 0; cN := $

L0 :if(R 6= ?)
remove(L, u, i, w) from R
cU := u; cI := i; cN := w; goto L

else if (there exists a node (A, 0, n))
report success

else report failure

LA :add(A ::= .aAb, cU , cI , $)
add(A ::= .aAc, cU , cI , $)
add(A ::= .a, cU , cI , $)
goto L0

L·aAb :if(I[cI] = a)
cN := getNodeT(a, cI , cI + 1)

else goto L0

cI := cI + 1
cU := create(A ::= aA · b, cU , cI , cN)
goto LA

L·aAc :if(I[cI] = a)
cN := getNodeT(a, cI , cI + 1)

else goto L0

cI := cI + 1
cU := create(A ::= aA · c, cU , cI , cN)
goto LA

LaA·b :if(I[cI] = b)
cR := getNodeT(b, cI , cI + 1)

else goto L0

cI := cI + 1
cN := getNodeP(A ::= aAb·, cN , cR)
pop(cU , cI , cN)
goto L0

LaA·c :if(I[cI] = c)
cR := getNodeT(c, cI , cI + 1)

else goto L0

cI := cI + 1
cN := getNodeP(A ::= aAc·, cN , cR)
pop(cU , cI , cN)
goto L0

Figure 2.2: GLL parser for the grammar A ::= aBb | aAc | a

2.2. GLL Parsing 39

Let X be a nonterminal defined as X ::= ↵1 | ↵2 | . . . | ↵p. A GLL parser starts by
creating and adding descriptors, each corresponding to the beginning of an alternative:
(X ::= ·↵k, cU , cI , $). Then, the parser goes to L0.

Based on the current grammar slot, a GLL parser continues as follows. If the
grammar slot is of the form X ::= ↵ · t�, the parser is before a terminal. If I[cI] 6= t,
the parser jumps to L0, terminating this execution path, otherwise a terminal node is
created by getNodeT(t, cI , cI +1). If |↵| � 1, the terminal node is assigned to cR, and
an intermediate or nonterminal node is created by getNodeP(X ::= ↵t · �, cN , cR),
and assigned to cN . The parser proceeds with the next grammar slot.

If the grammar slot is of the form X ::= ↵ · A�, i.e., before a nonterminal, the
create function is called with four arguments: the grammar slot X ::= ↵A · �, cU , cI ,
and cN . First, create either retrieves a GSS node (X ::= ↵A · �, cI) if such a node
exists, or creates one. Let v be (X ::= ↵A · �, cI). Then, a GSS edge (v, cN , cU) is
added from v to cU , if such an edge does not exists. If v was retrieved, the currently
available results of parsing A at cI are reused to continue parsing: for each element
(v, z) in P, a descriptor (X ::= ↵A · �, cU , h, y) is added, where y is the SPPF node
returned by getNodeP(X ::= ↵A · �, cN , z), and h is the right extent of z. Finally,
the call to create returns v, which is assigned to cU . Then, the parser jumps to the
definition of A and adds a descriptor for each of its alternatives.

If the grammar slot is of the form A ::= ↵·, the parser is at the end of an alternative,
and therefore, should return from A to the calling rule and continue parsing. This
corresponds to the return from a function call in an RD parser. The pop function
is called with three arguments: cU , cI , cN . Let (L, j) be the label of cU . First, the
element (cU , cN) is added to set P . Then, for each outgoing edge (cU , z, v) from cU , a
descriptor of the form (L, v, cI , y) is created, where y is the SPPF node returned by
getNodeP(L, z, cN). Parsing terminates and reports success if all descriptors in R
are processed and an SPPF node labeled (S, 0, n), corresponding to the start symbol
and the whole input string, is found, otherwise reports failure.

2.2.3 Problems with the original GSS in GLL parsing

To illustrate the problems with the original GSS in GLL parsing, we consider the
grammar �0 (Section 2.2.2) and the input string "aac". Parsing this input string
results in the GSS shown in Figure 2.3 (a). The resulting GSS has two separate
GSS nodes for each input position, 1 and 2, and each GSS node corresponds to
an instance of A in one of the two alternatives: aAb or aAc. This implies that,
for example, the following two descriptors, corresponding to the beginning of the
first alternative of A, are created and added to R: (A ::= ·aAb, u1, 1, $), which is
added after creating u1, and (A ::= ·aAb, u2, 1, $), which is added after creating
u2. Although both descriptors correspond to the same grammar position and the
same input position, they are distinct as their parent GSS nodes, u1 and u2, are
different. The same holds for the following descriptors corresponding to the other
alternatives of A: (A ::= ·aAc, u1, 1, $), (A ::= ·aAc, u2, 1, $) and (A ::= ·a, u1, 1, $),
(A ::= ·a, u2, 1, $). This example demonstrates that, although the results of parsing
A only depend on the alternatives of A and the current input position, GLL creates

40 Chapter 2. Faster, Practical GLL Parsing

L0, 0

u1

A ::= aA · b, 1

A ::= aA · c, 1 A ::= aA · c, 2
u3

A ::= aA · b, 2

u2

u4

(a) Original GSS

A, 0 A, 1 A, 2

A ::= aA · b A ::= aA · b

A ::= aA · c A ::= aA · c

(b) New GSS

Figure 2.3: Original and new GSS for parsing "aac" using A ::= aAb | aAc | a.

separate descriptors for each instance of A, leading to multiple executions of the same
parsing actions.

However, the calls corresponding to different instances of A at the same input
position are not completely repeated. As can be seen, sharing happens one level
deeper in GSS. For example, processing (A ::= ·aAb, u1, 1, $) or (A ::= ·aAb, u2, 1, $)
matches a, increases input position to 2 and moves the grammar pointer before A,
leading to the call to the same instance of A at input position 2, which is handled
by the same GSS node u4 connected to u1 and u2. This sharing, however, happens
per nonterminal instance. For example, if we consider the input string "aaacc", a can
be matched at input position 2, and therefore, the same result but associated with
different instances of A will be stored in set P as (u3, (A, 2, 3)) and (u4, (A, 2, 3)). Both
nodes u3 and u4 will pop with the same result (A, 2, 3), and given that both u3 and
u4 are shared by u1 and u2, descriptors that, again, encode the same parsing actions,
but account for different parent GSS nodes, will be created: (A ::= aA · b, u1, 3, w1),
(A ::= aA · b, u2, 3, w1) and (A ::= aA · c, u1, 3, w2), (A ::= aA · c, u2, 3, w2), where
w1 = (A ::= aA · b, 0, 3) and w2 = (A ::= aA · c, 0, 3).

2.3. More Efficient GSS for GLL Parsing 41

2.3 More Efficient GSS for GLL Parsing

In this section, we propose a new GSS that, compared to the original GSS, provides a
more efficient sharing of parsing results in GLL parsing. We use the fact that all calls
corresponding to the same nonterminal and the same input position should produce
the same results, and therefore, can be shared, regardless of a specific grammar rule
in which the nonterminal occurs. The basic idea is that, instead of recording return
grammar positions in GSS nodes, i.e., grammar slots of the form X ::= ↵A · �, names
of nonterminals are recorded in GSS nodes, and return grammar positions are carried
on GSS edges. Figure 2.3 (b) illustrates the new GSS resulting from parsing "aac"

using �0.
First, we introduce new forms of GSS nodes and edges. Let X ::= ↵ · A� be the

current grammar slot, i be the current input position, u be the current GSS node,
and w be the current SPPF node. As in the original GLL, at this point, a GSS
node is either retrieved, if such a node exists, or created. However, in our setting,
such a GSS node is of the form (A, i), i.e., with the label that consists of the name
of a nonterminal, in contrast to X ::= ↵A · � in the original GSS, and the current
input position. Let v be a GSS node labeled as (A, i). As in the original GLL, a
new GSS edge is created from v to u. However, in our setting, a GSS edge is of the
form (v, L, w, u), where, in addition to w as in the original GSS, the return grammar
position L, i.e., X ::= ↵A · �, is recorded.

Second, we remove the default GSS node u0 = (L0, 0), which requires a special
label that does not correspond to any grammar position. In our setting, the initial
GSS node is of the form (S, 0) and corresponds to the call to the grammar start symbol
S at input position 0, e.g., (A, 0) in Figure 2.3 (b).

Finally, we re-define the create and pop functions of the original GLL to accom-
modate the changes to GSS. We keep the presentation of these functions similar to the
ones of the original GLL algorithm [78], so that the difference between the definitions
can be easily seen. The new definitions of the create and pop functions are given in
Figure 2.4, where L is of the form X ::= ↵A · �, |↵|, |�| � 0, u and v are GSS nodes,
and w, y, z are SPPF nodes.

The create function takes four arguments: a grammar slot L of the form X ::=
↵A · �, a GSS node u, an input position i, and an SPPF node w. If a GSS node (A, i)
exists (if-branch), the alternatives of A are not predicted at i again. Instead, after a
GSS edge (v, L, w, u) is added, if such an edge does not exist, the currently available
results of parsing A at i, stored in P , are reused. For each result (v, z) in P , an SPPF
node y is constructed, and a descriptor (L, u, h, y) is added to continue parsing with
the grammar slot X ::= ↵A · � and the next input position h, corresponding to the
right extent of y. If a GSS node (A, i) does not exist (else-branch), such a node is
first created, then, an edge (v, L, w, u) is added, and finally, a descriptor for each
alternative of A with the input position i and parent node v is created and added.

The pop function takes three arguments: a GSS node u, an input position i, and
an SPPF node z. If an entry (u, z) exists in P, the parser returns from the function.
Otherwise, (u, z) is added to P , and, for each outgoing GSS edge of u, a descriptor is
added to continue parsing with the grammar slot recorded on the edge, the current

42 Chapter 2. Faster, Practical GLL Parsing

create(L, u, i, w) {
if (there exists a GSS node labeled (A, i)) {

let v be the GSS node labeled (A, i)
if (there is no GSS edge from v to u labeled L, w) {

add a GSS edge from v to u labeled L, w

for ((v, z) 2 P) {
let y be the SPPF node returned by getNodeP(L, w, z)
add(L, u, h, y) where h is the right extent of y

}
}

} else {
create a new GSS node labeled (A, i)
let v be the newly-created GSS node
add a GSS edge from v to u labeled L, w

for (each alternative ↵k of A) { add(A ::= ·↵k, v, i, $) }
}
return v

}

pop(u, i, z) {
if ((u, z) is not in P) {

add (u, z) to P
for (all GSS edges (u, L,w, v)) {

let y be the SPPF node returned by getNodeP(L, w, z)
add(L, v, i, y)

}
}

}

Figure 2.4: The new definitions of the create and pop functions.

input position and the SPPF node constructed from w and z.
As the signatures of the create and pop functions stay the same as in the original

GLL, replacing the original GSS with the new GSS does not require any modification
to the code generated for each grammar slot in a GLL parser. Also note that the new
GSS resembles the memoization of function calls used in functional programming, as
a call to a nonterminal at an input position is represented only by the name of the
nonterminal and the input position.

2.3. More Efficient GSS for GLL Parsing 43

2.3.1 Equivalence

As illustrated in Sections 2.2 and 2.3, in the original GLL, sharing of parsing results
for nonterminals is done at the level of nonterminal instances. On the other hand, in
GLL with the new GSS, the sharing is done at the level of nonterminals themselves,
which is more efficient as, in general, it results in less descriptors being created and
processed. In Section 2.6 we present the performance results showing that significant
performance speedup can be expected in practice. In this section we discuss the
difference between GLL parsing with the original and new GSS for the general case,
and show that the two GLL versions are semantically equivalent.

The use of the new GSS, compared to the original one, prevents descriptors of
the form (L, u1, i, w) and (L, u2, i, w) to be created. These descriptors have the same
grammar slot, the same input position, the same SPPF node, but different parent
GSS nodes. In GLL with the original GSS, such descriptors may be added to R when,
in the course of parsing, calls to different instances of a nonterminal, say A, at the
same input position, say i, are made. Each such call corresponds to a parsing state
where the current grammar slot is of the form X ::= ⌧ · Aµ (i.e., before A), and the
current input position is i. To handle these calls, multiple GSS nodes of the form
(X ::= ⌧A · µ, i), where the grammar slot corresponds to a grammar position after
A, are created during parsing. We enumerate all such grammar slots with Lk, and
denote GSS nodes (Lk, i) as uk.

When a GSS node uk is created, descriptors of the form (A ::= ·�, uk, i, $) are
added. If a1a2 . . . an is the input string and A

⇤) ai+1 . . . aj , uk will pop at j, and
processing descriptors of the form (A ::= ·�, uk, i, $) will lead to creation of descriptors
of the form (A ::= ↵B · �, uk, l, w), i l j, i.e., in an alternative of A, and of
the form (A ::= �·, uk, j, (A, i, j)), i.e., at the end of an alternative of A. All these
descriptors encode the parsing actions that do not semantically depend on a specific uk.
Indeed, starting from the same grammar position in an alternative of A, say A ::= ↵ ·�,
regardless of a specific uk, the parsing continues with the next symbol in the alternative
and the current input position, and either produces an (intermediate) SPPF node,
which does not depend on uk, moving to the next symbol in the alternative, or fails.
Finally, when descriptors of the form (A ::= �·, uk, j, (A, i, j)) are processed, the same
SPPF node (A, i, j) will be recorded in set P for each uk.

In the original GLL, when uk is being popped, for each (uk, z) in set P, where
z is of the form (A, i, j), and each outgoing edge (uk, w, v), a descriptor (Lk, v, j, y),
where y is the SPPF node returned by getNodeP(Lk, w, z), is added to continue
parsing after A. Let v be a GSS node with index h, then h and j are the left and
right extents of y, respectively. In the following we show how using the new GSS,
descriptors equivalent to (Lk, v, j, y) are created, but at the same time, the problem
of repeating the same parsing actions is avoided.

In GLL with the new GSS, when calls to different instances of a nonterminal,
say A, at the same input position, say i, are made, a GSS node u = (A, i) is
retrieved or created. Similar to the original GLL, when u is created, descriptors of
the form (A ::= ·�, u, i, $) are added, and if A

⇤) ai+1 . . . aj , descriptors of the form
(A ::= ↵B · �, u, l, w), i l j, and of the form (A ::= �·, u, j, (A, i, j)) will also

44 Chapter 2. Faster, Practical GLL Parsing

be added. The essential difference with the original GLL is that the label of u is A,
and therefore, the descriptors corresponding to parsing A at i are independent of the
context in which A is used. Upon the first call to A at i, regardless of its current
context, such descriptors are created, and the results are reused for any such call in
a different context. Finally, when descriptors of the form (A ::= �·, u, j, (A, i, j)) are
processed, the SPPF node z = (A, i, j) is recorded as a single element (u, z) in set P.

In GLL parsing with the new GSS, whenever the parser reaches a state with a
grammar slot of the form X ::= ⌧ · Aµ, and the input position i, there will be an edge
(u, Lk, w, v) added to u, where Lk is of the form X ::= ⌧A · µ. Finally, for each (u, z)
in set P and each edge (u, Lk, w, v), the descriptor (Lk, v, j, y) will be added, where y

is the SPPF node returned by getNodeP(Lk, w, z).

2.3.2 Complexity

In this section we show that replacing the original GSS with the new GSS does
not affect the worst-case cubic runtime and space complexities of GLL parsing. To
introduce the new GSS into GLL parsing, we changed the forms of GSS nodes and
edges. We also re-defined the create and pop functions to accommodate these
changes. However, all these modifications had no effect on the SPPF construction,
the getNode functions, and the code of GLL parsers that uses create and pop to
interact with GSS. Specifically, this implies that when the main loop of a GLL parser
executes, and the next descriptor is removed from R, the execution proceeds in the
same way as in the original GLL parsing until the call to either create or pop is
made.

First, we show that the space required for the new GSS is also at most O(n3). In
the new GSS, all GSS nodes have unique labels of the form (A, i), where 0 i n.
Therefore, the new GSS has at most O(n) nodes. In the new GSS, all GSS edges have
unique labels of the form (u, L,w, v), where L is of the form X ::= ↵A · �, the source
GSS node u is of the form (A, i), and the target GSS node v is of the form (X, j).
The label of an edge in the new GSS consists of L and w, where w has j and i as the
left and right extents, which are also the indices of v and u, respectively. Given that
0 j i n, the number of outgoing edges for any source GSS node u is at most
O(n), and the new GSS has at most O(n2) edges. Thus the new GSS requires at most
O(n) nodes and at most O(n2) edges.

The worst-case O(n3) runtime complexity of the original GLL follows from the fact
that there are at most O(n2) descriptors, and processing a descriptor may take at most
O(n) time, by calling pop or create. Now, we show that the worst-case complexity
of both create and pop is still O(n), and the total number of descriptors that can be
added to R is still at most O(n2). All elements in set P are of the form (v, z), where
v is of the form (A, i), and z has i and j as the left and right extents, respectively,
where 0 i j n. Therefore, the number of elements in P, corresponding to the
same GSS node, is at most O(n). Since a GSS node has at most O(n) outgoing edges,
P has at most O(n) elements corresponding to a GSS node, and the new GSS and
P can be implemented using arrays to allow constant time lookup, both create and
pop have the worst-case complexity O(n).

2.4. Optimizations for GLL Implementation 45

Finally, a descriptor is of the form (L, u, i, w), where w is either $ or has j and i as
the left and right extents, respectively, and j is also the index of u. Thus the total
number of descriptors that can be added to R is at most O(n2).

2.4 Optimizations for GLL Implementation

The GLL parsing algorithm [78] is described using a set view, e.g., U and P, which
eases the reasoning about the worst-case complexity, but leaves open the challenges of
an efficient implementation. The worst-case O(n3) complexity of GLL parsing requires
constant time lookup, e.g., to check if a descriptor has already been added. Constant
time lookup can be achieved using multi-dimensional arrays of size O(n2), however,
such an implementation requires O(n2) initialization time, which makes it impractical
for near-linear parsing of real programming languages, whose grammars are nearly
deterministic.

For near-linear parsing of real programming languages we need data structures that
provide amortized constant time lookup, without excessive overhead for initialization.
One way to achieve this is to use a combination of arrays and linked lists as described
in [45]. In this approach the user needs to specify, based on the properties of the
grammar, which dimensions should be implemented as arrays or linked lists.

In this section we propose an efficient hash table-based implementation of GLL
parsers. We show how the two most important lookup structures, U and P, can be
implemented using local hash tables in GSS nodes. The idea is based on the fact that
the elements stored in these data structures have a GSS node as a property. Instead of
having a global hash table, we factor out the GSS node and use hash tables that are
local to a GSS node. In an object-oriented language, we can model a GSS node as an
object that has pointers to its local hash tables. In the following, we discuss different
implementations of U and P. We consider GLL parsing with new GSS, and assume
that n is the length of the input, and |N | and |L| are the number of nonterminals and
grammar slots, respectively.

Descriptor elimination set (U): set U is used to keep all the descriptors created
during parsing for duplicate elimination. A descriptor is of the form (L, u, i, w), where
L is of the form A ::= ↵ · �, u is of the form (A, j), and w is either a dummy node,
or a symbol node of the form (x, j, i), when ↵ = x, or an intermediate node of the
form (L, j, i). As can be seen, in a descriptor, the input index of the GSS node is the
same as the left extent of the SPPF node, and the input index of the descriptor is the
same as the right extent of the SPPF node. Also note that the label of the GSS and
SPPF node is already encoded in L. Thus we can effectively consider a descriptor as
(L, i, j). We consider three implementations of U :

• Global Array : U can be implemented as an array of size |L| ⇥ n ⇥ n, which
requires O(n2) initialization time.

• Global hash table: U can be implemented as a single global hash table holding
elements of the form (L, i, j).

46 Chapter 2. Faster, Practical GLL Parsing

• Local hash table in a GSS node: U can be implemented as a local hash table in
a GSS node. This way, we only need to consider a descriptor as (L, i).

Popped elements (P): The set of popped elements, P , is defined as a set of (u, w),
where u is a GSS node of the form (A, i), and w is an SPPF node of the form (A, i, j).
For eliminating duplicates, P can effectively be considered as a set of (A, i, j). We
consider three implementations of P:

• Global Array : P can be implemented as an array of size |N | ⇥ n ⇥ n, which
requires O(n2) initialization time.

• Global hash table: P can be implemented as a global hash table holding elements
of the form (A, i, j).

• Local hash table in a GSS node: P can be implemented as a local hash table in
a GSS node. This way we can eliminate duplicate SPPF nodes using a single
integer, the right extent of the SPPF node (j).

Hash tables do not have the problem of multi-dimensional arrays, as the initialization
cost is constant. However, using a global hash table is problematic for parsing large
input files as the number of elements is in order of millions, leading to many hash
collisions and resizing. For example, for a C# source file of 2000 lines of code, about
1,500,000 descriptors are created and processed.

Using local hash tables in GSS nodes instead of a single global hash table provides
considerable speedup when parsing large inputs with large grammars. First, by
distributing hash tables over GSS nodes, we effectively reduce the number of properties
needed for hash code calculation. Second, local hash tables will contain fewer entries,
resulting in fewer hash collisions and requiring fewer resizing. In the Iguana parsing
framework we use the standard java.util.HashSet as the implementation of hash tables.
Our preliminary results show that, for example, by using a local hash table for
implementing U instead of a global one, we can expect speedup of factor two. Detailed
evaluation of the optimizations presented in this section, and their effect on memory
usage, is future work.

There are two algorithmic optimizations possible that further improve the perfor-
mance of GLL parsers. These optimizations remove certain runtime checks that can
be shown to be redundant based on the following properties:

1) There is at most one call to the create function with the same argu-
ments. Thus no check for duplicate GSS edges is needed.

The properties of a GSS edge (v, L, w, u) are uniquely identified by the arguments to
create: L, u, i, w, where L is of the form X ::= ↵A · �, and v = (A, i). Therefore, if
it can be shown that there is at most one call to create with the same arguments,
the check for duplicate GSS edges can be safely removed.

Let us consider a call create(X ::= ↵A · �, u, i, w). This call can only happen if
a descriptor of one of the following forms has been processed, where ⌧ is a possibly

2.5. Disambiguation Filters for Scannerless GLL Parsing 47

empty sequence of terminals and j i: (1) (X ::= ·↵A�, u, j, $) when ↵ = ⌧ ; or
(2) (X ::= �B · ⌧A�, u, j, z) when ↵ = �B⌧ , |�| � 0. Therefore, for the call to happen
more than once, the same descriptor has to be processed again. However, this can
never happen as all the duplicate descriptors are eliminated.

2) There is at most one call to the getNodeP function with the same ar-
guments. Thus no check for duplicate packed nodes is needed.

Let us consider a call getNodeP(A ::= ↵ ·�, w, z), where w is either $ or a non-packed
node having i and k as the left and right extents, and z is a non-packed node having
k and j as the left and right extents. This call may create and add a packed node
(A ::= ↵ · �, k) under the parent node, which is either (A, i, j) when |� |= 0, or
(A ::= ↵ · �, i, j) otherwise. Clearly, the same call to getNodeP will try to add the
same packed node under the existing parent node.

Now suppose that the same call to getNodeP happens for the second time. Given
that a GSS node is ensured to pop with the same result at most once (set P and
pop), the second call can only happen if a descriptor of one of the following forms
has been processed for the second time, where u = (A, i) and ⌧ is a possibly empty
sequence of terminals: (1) (A ::= ·↵�, u, i, $) when either ↵ = ⌧ or ↵ = ⌧X; or
(2) (A ::= �B · ��, u, l, y), i l k, when ↵ = �B�, |�| � 0, and either � = ⌧ or
� = ⌧X. This can never happen as all the duplicate descriptors are eliminated.

Note that the second optimization is only applicable for GLL parsers with the
new GSS. In the original GLL, u can be of the form (X ::= µA · ⌫, i), and therefore,
multiple descriptors with the same grammar slot, the same input position, the same
SPPF node, but different parent nodes, corresponding to multiple instances of A, can
be added, resulting in multiple calls to getNodeP with the same arguments.

2.5 Disambiguation Filters for Scannerless GLL Parsing

Parsing programming languages is often done using a separate scanning phase before
parsing, in which a scanner (lexer) first transforms a stream of characters to a stream
of tokens. Besides performance gain, another important reason for a separate scanning
phase is that deterministic character-level grammars are virtually nonexistent. The
main drawback of performing scanning before parsing is that, in some cases, it is
not possible to uniquely identify the type of tokens without the parsing context
(grammar rule in which they appear). An example is nested generic types in Java, e.g.,
List<List<T>>. Without the parsing context, the scanner cannot unambiguously detect
the type of >> as it can be either a right-shift operator or two closing angle brackets.

Scannerless parsing [73,94] eliminates the need for a separate scanning phase by
treating the lexical and context-free definitions the same. A scannerless parser solves
the problems of identifying the type of tokens by parsing each character in its parsing
context, and provides the user with a unified formalism for both syntactical and lexical
definitions. This facilitates modular grammar development at the lexical level, which
is essential for language extension and embedding [13].

48 Chapter 2. Faster, Practical GLL Parsing

A separate scanning phase usually resolves the character-level ambiguities in favor of
the longest matched token and excludes keywords from identifiers. In absence of a
separate scanner, such ambiguities should be resolved during parsing. In the rest of
this section we show how most common character-level disambiguation filters [90] can
be implemented in a GLL parser.

To illustrate character-level ambiguities, we use the grammar below, which is
adapted from [90]. This grammar defines a Term as either a sequence of two terms, an
identifier, a number, or the keyword "int". Id is defined as one or more repetition of a
single character, and WS defines a possibly empty blank.

Term ::= Term WS Term | Id | Num | "int"
Id ::= Chars
Chars ::= Chars Char | Char
Char ::= 'a' | .. | 'z'
Num ::= '1' | .. |'9'
WS ::= ' ' | ✏

This grammar is ambiguous. For example, the input string "hi" can be parsed as
either Term(Id("hi")), or Term(Term(Id("h")),Term(Id("i"))). Following the longest match
rule, the first derivation is the intended one, as in the second one "h" is recognized
as an identifier, while it is followed by "i". We can use a follow restriction (/��)
to disallow an identifier to be followed by another character: Id ::= Chars -/- Char.
Another ambiguity occurs in the input string "intx" which can be parsed as either
Term(Id("intx")) or Term(Term("int"), Term(Id("x"))). We can solve this problem by
adding a precede restriction (\��) as follows: Id ::= Char -\- Chars, specifying that Id

cannot be preceded by a character. Finally, we should exclude the recognition of "int"
as Id. For this, we use an exclusion rule: Id ::= Chars \ "int".

Below we formally define each of these restrictions and show how they can be
integrated in GLL parsing. For follow and precede restrictions we only consider the
case where the restriction is a single character, denoted by c. This can be trivially
extended to other restrictions such as character ranges or arbitrary regular expressions.
We assume that I represents the input string as an array of characters and i holds the
current input position.

Follow restriction. For a grammar rule A ::= ↵x�, a follow restriction for the
symbol x is written as A ::= ↵x /�� c�, meaning that derivations of the form
�A�)�↵x��

⇤)�↵xc⌧ are disallowed. For implementing follow restrictions, we con-
sider the grammar position A ::= ↵x · �. If x is a terminal, the implementation is
straightforward: if i < |I| and I[i] = c, the control flow returns to the main loop,
effectively terminating this parsing path. If x is a nonterminal, we consider the
situation where a GLL parser is about to create a descriptor for A ::= ↵x · �. This
happens when pop is executed for a GSS node (x, j) at i. While iterating over the
GSS edges, if a GSS edge labeled A ::= ↵x · � is reached, the condition of the follow
restriction associated with this grammar position will be checked. If I[i] = c, no
descriptor for this label will be added.

2.6. Performance Evaluation 49

Precede Restriction. For a grammar rule A ::= ↵x�, a precede restriction for
the symbol x is written as A ::= ↵c \�� x�, meaning that derivations of the form
�A�)�↵x��

⇤)⌧cx�� are disallowed. The implementation of precede restrictions is
as follows. When a GLL parser is at the grammar slot A ::= ↵ · x�, if i > 0 and
I[i � 1] = c, the control flow returns to the main loop, effectively terminating this
parsing path.

Exclusion. For a grammar rule A ::= ↵X�, the exclusion of string s from the
nonterminal X is written as A ::= ↵X\s�, meaning that the language accepted by
the nonterminal X should not contain the string s, i.e., L(X\s) = L(X)� {s}, where
L defines the language accepted by a nonterminal. Similar to the implementation of
follow restrictions for a nonterminal, when a GSS node (X, j) is popped at i, and the
parser iterates over the outgoing GSS edges, if an edge A ::= ↵X · � is found, the
condition of the exclusion is checked. If the substring of the input from j to i matches
s, no descriptor for the grammar position A ::= ↵X · � is added, which effectively
terminates this parsing path.

2.6 Performance Evaluation

To evaluate the efficiency of the new GSS for GLL parsing, we use a highly ambiguous
grammar and grammars of three real programming languages: Java, C# and OCaml.
We ran the Iguana GLL parsers in two different modes: new and original, corresponding
to the new and original GSS, respectively. Iguana is our Java-based GLL parsing
framework that can be configured to run with the new or original GSS, while keeping
all other aspects of the algorithm, such as SPPF creation, the same. The optimizations
given in Section 2.4, with the exception of removing checks for packed nodes, which is
only applicable to GLL with the new GSS, are applied to both modes.

We ran the experiments on a machine with a quad-core Intel Core i7 2.6 GHz
CPU and 16 GB of memory running Mac OS X 10.9.4. We executed the parsers on a
64-Bit Oracle HotSpotTM JVM version 1.7.0_55 with the -server flag. To allow for
JIT optimizations, the JVM was first warmed up, by executing a large sample data,
and then each test is executed 10 times. The median running time (CPU user time)
is reported.

2.6.1 Highly Ambiguous Grammar

To measure the effect of the new GSS for GLL parsing on highly ambiguous grammars,
we use the grammar S ::= SSS | SS | b. The results of running a GLL parser with the
new and original GSS for this grammar on strings of b’s is shown in Figure 2.5. As
can be seen, the performance gain is significant. The median and maximum speedup
factors for the highly ambiguous grammar, as shown in Figure 2.6, are 10 and 14,
respectively. To explain the observed speedup, we summarize the results of parsing the
strings of b’s in Table 2.1. Note that the number of nodes and edges for the original
GSS are slightly more than the numbers reported in [78], as we do not include the

50 Chapter 2. Faster, Practical GLL Parsing

0 100 200 300 400

0
20

00
0

40
00

0

Number of b's

C
P

U
 u

se
r

ti
m

e
(m

ill
is

ec
on

ds
)

Original GSS
New GSS

Figure 2.5: Running the GLL parsers for grammar S ::= SSS | SS | b

Table 2.1: The result of running highly ambiguous grammar on strings of b’s.

size
time (ms) # GSS nodes # GSS edges

new original new original new original

50 6 35 51 251 3877 18935
100 45 336 101 501 15252 75360
150 151 1361 151 751 34127 169285
200 386 4080 201 1001 60502 300710
250 791 9824 251 1251 94377 469635
300 1403 18457 301 1501 135752 676060
350 2367 32790 351 1751 184627 919985
400 3639 50648 401 2001 241002 1201410

check for first and follow sets. As can be seen, GLL with the new GSS has n + 1 GSS
nodes for inputs of length n, one for each call to S at input positions 0 to n. For GLL
with the original GSS, there are 5 grammar slots that can be called: S ::= S · SS,
S ::= SS · S, S ::= SSS·, S ::= S · S, and S ::= SS·, which lead to 5n + 1 GSS nodes.
In such a highly ambiguous grammar, most GSS nodes are connected, therefore, the
iteration operations over edges in the create and pop functions will take much more
time, as explained in Section 2.3.1.

2.6. Performance Evaluation 51

●● ●● ●● ●● ●● ●● ●●● ●● ●●●●●● ●●●● ●● ●●● ●●● ● ●●●●●●●●● ● ●● ● ●● ●●● ●●● ●●● ● ●● ●● ● ●● ●●● ●●●●●●●●● ●● ●●●●●● ●●●●

● ●●● ●●● ●● ●● ●● ●●●● ●●●● ●●●● ●●● ●●●● ●● ●●● ●●●●● ● ● ●● ●● ●●●●● ●● ●● ●●●●●●● ● ●● ●● ●●● ●●● ●●● ● ●●● ●●●●●●●● ●●●●●

●●●● ●●●●●●

A
m

b
O

C
am

l
C

#
Ja

va

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2.6: Comparing the speedup factor of the new and original GSS.

2.6.2 Grammars of Programming Languages

To measure the effect of the new GSS on the grammars of real programming languages,
we have chosen the grammars of three programming languages from their language
reference manual.

Java: We used the grammar of Java 7 from the Java Language Specification [32]
(JLS). The grammar contains 329 nonterminals, 728 rules, and 2410 grammar slots.
We have parsed 7449 Java files from the source code of JDK 1.7.0_60-b19. As shown
in Figure 2.6, the median and maximum speedup factors for Java are 1.5 and 2.3,
respectively.

C#: We used the grammar of C# 5 from the C# Language Specification [63]. The
grammar contains 534 nonterminals, 1275 rules, and 4195 grammar slots. The main
challenge in parsing C# files was dealing with C# directives, such as #if and #region.
C# front ends, in contrast to C++, do not have a separate preprocessing phase for
directives. Most C# directives can be ignored as comment, with the exception of
the conditional ones, as ignoring them may lead to parse error. As the purpose of
this evaluation was to measure the performance of GLL parsers on C# files, and not
configuration-preserving parsing, we ran the GNU C preprocessor on the test files
to preprocess the conditional directives. The rest of the directives were treated as
comments. We have parsed 2764 C# files from the build-preview release of the Roslyn
Compiler. As shown in Figure 2.6, the median and maximum speedup factors for C#
are 1.7 and 3, respectively.

OCaml: We used the grammar of OCaml 4.0.1 from the OCaml reference manual [58].
The grammar of OCaml is different from Java and C# in two aspects. First, OCaml
is an expression-based language, as opposed to Java and C#. This provides us

52 Chapter 2. Faster, Practical GLL Parsing

with a grammar with different characteristics for testing the effectiveness of the
new GSS. Second, the reference grammar of OCaml is highly ambiguous, having
numerous operators with different associativity and priority levels. We used the
grammar rewriting technique presented in [6] to obtain an unambiguous grammar.
The rewritten grammar contains 685 nonterminals, 5728 rules, and 27294 grammar
slots. We have parsed 871 files from the OCaml 4.0.1 source release. As shown in
Figure 2.6, the median and maximum speedup factors for OCaml are 5.2 and 13,
respectively. The rewriting technique [6] to encode operator precedence rules leads to
more rules. This can be one reason for the more significant speedup for the OCaml
case, compared to Java and C#. The other possible reason is the nature of OCaml
programs that have many nested expressions, requiring high non-determinism. The
case of OCaml shows that the new GSS is very effective for parsing languages with
large and complex expression grammars, such as OCaml.

2.7 Related Work

For many years deterministic parsing techniques were the only viable option for
parsing programming languages. As machines became more powerful, and the need for
developing parsers in other areas such as reverse-engineering and source code analysis
increased, generalized parsing techniques were considered for parsing programming
languages. In this section we discuss several related work on applying generalized
parsing to parsing programming languages.

Generalized parsing. Generalized parsing algorithms have the attractive property
that they can behave linearly on deterministic grammars. Therefore, for the grammars
that are nearly deterministic, which is the case for most programming languages, using
generalized parsing is feasible [46]. For example, the ASF+SDF Meta-Environment [89]
uses a variation of GLR parsing for source code analysis and reverse engineering.

The original GLR parsing algorithm by Tomita [85] fails to terminate for some
grammars with ✏ rules. Farshi [67] provides a fix for ✏ rules, but his fix requires
exhaustive GSS search after some reductions. Scott and Johnstone [76] provide an
alternative to Farshi’s fix, called Right Nulled GLR (RNGLR), which is more elegant
and more efficient. GLR parsers have the worst-case O(nk+1) complexity, where k is
the length of the longest rule in the grammar [42]. BRNGLR is a variation of RNGLR
that uses binarized SPPFs to enable GLR parsing in cubic time. Elkhound [61] is
a GLR parser, based on Farshi’s version, that switches to the machinery of an LR
parser on deterministic parts of the grammar, leading to significant performance
improvement. Another faster variant of GLR parsing is presented by Aycock and
Horspool [10], which uses a larger LR automata, trading space for time.

Disambiguation. Disambiguation techniques that are used in different parsing
technologies can be categorized in two groups: implicit or explicit disambiguation.
Implicit disambiguation is mostly used in parsing techniques that return at most one
derivation tree. Perhaps the name nondeterminism-reducer is a more correct term,

2.8. Conclusions 53

as these techniques essentially reduce non-determinism during parsing, regardless if
it leads to ambiguity or not. Yacc [44], PEGs [25] and ANTLR [70] are examples
of parsing techniques that use implicit disambiguation rules. For example, in Yacc,
shift/reduce conflicts are resolved in favor of shift, and PEGs and ANTLR use the
order of the alternatives. Some parser generators that use implicit disambiguation give
warning (at generation time) when the parser resolves the ambiguity. For example,
Yacc generates warnings for resolved conflicts. Ignoring these warnings may lead
to surprises at runtime, as the returned parse tree may not be the expected one.
The generated warnings are usually highly tied to the inner workings of the parsing
technique and often require expert knowledge for diagnosis.

Explicit disambiguation is usually done using declarative disambiguation rules.
In this approach, the grammar formalism allows the user to explicitly define the
disambiguation rules, which can be applied either during parsing, by pruning parsing
paths that violate the rules, or be applied after the parsing is done, as a parse forest
processing step. Post-parse filtering is only possible when using a generalized parser
that can return all the derivations in form of a parse forest. Aho et. al show how
to modify LR(1) parsing tables to resolve shift/reduce conflicts based on the the
priority and associativity of operators [7]. In Scannerless GLR (SGLR) which is used
in SDF2 [95], operator precedence and character-level restrictions such as keyword
exclusion are implemented as parse table modifications, but some other disambiguation
filters such as prefer and avoid as post-parse filters [90]. Economopoulos et al. [19]
investigate the implementation of SDF disambiguation filters in the RNGLR parsing
algorithm and report considerable performance improvement.

2.8 Conclusions

In this chapter we presented an essential optimization to GLL parsing, by proposing
a new GSS, which provides a more efficient sharing of parsing results. We showed
that GLL parsers with the new GSS are worst-case cubic in time and space, and are
significantly faster on both highly ambiguous and near-deterministic grammars. As
future work, we plan to measure the effect of the new GSS and the optimizations
presented in Section 2.4 on memory, and to compare the performance of our GLL
implementation with other parsing techniques.

Chapter 3

Data-dependent GLL Parsing
1

Summary. Despite the long history of research in parsing, constructing parsers
for real programming languages remains a difficult and painful task. In the last
decades, different parser generators emerged to allow the construction of parsers from
a BNF-like specification. However, still today, many parsers are handwritten, or are
only partly generated, and include various hacks to deal with different peculiarities
in programming languages. The main problem is that current declarative syntax
definition techniques are based on pure context-free grammars, while many constructs
found in programming languages require context information.

In this chapter we propose a parsing framework that embraces context information
in its core. Our framework is based on data-dependent grammars, which extend
context-free grammars with arbitrary computation, variable binding and constraints.
We present an implementation of our framework on top of the Generalized LL (GLL)
parsing algorithm, and show how common idioms in syntax of programming languages
such as (1) lexical disambiguation filters, (2) operator precedence, (3) indentation-
sensitive rules, and (4) conditional preprocessor directives can be mapped to data-
dependent grammars. We demonstrate the initial experience with our framework, by
parsing more than 20 000 Java, C#, Haskell, and OCaml source files.

1 This chapter was originally published as: A. Afroozeh and A. Izmaylova. One Parser to Rule
Them All. In Proceedings of the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward!), Onward! ’15, pages 151–170. ACM,
2015.

55

56 Chapter 3. Data-dependent GLL Parsing

3.1 Introduction

Parsing is a well-researched topic in computer science, and it is common to hear
from fellow researchers in the field of programming languages that parsing is a solved
problem. This statement mostly originates from the success of Yacc [44] and its
underlying theory that has been developed in the 70s. Since Knuth’s seminal paper
on LR parsing [54], and DeRemer’s work on practical LR parsing (LALR) [17], there
is a linear parsing technique that covers most syntactic constructs in programming
languages. Yacc, and its various ports to other languages, enabled the generation of
efficient parsers from a BNF specification. Still, research papers and tools on parsing
in the last four decades show an ongoing effort to develop new parsing techniques.

A central goal in research in parsing has been to enable language engineers
(i.e., language designers and tool builders) to declaratively build a parser for a real
programming language from an (E)BNF-like specification. Nevertheless, still today,
many parsers are hand-written or are only partially generated and include many hacks
to deal with peculiarities in programming languages. The reason is that grammars of
programming languages in their simple and readable form are often not deterministic
and also often ambiguous. Moreover, many constructs found in programming languages
are not context-free, e.g., indentation rules in Haskell. Parser generators based on
pure context-free grammars cannot natively deal with such constructs, and require
ad-hoc extensions or hacks in the lexer. Therefore, additional means are necessary
outside of the power of context-free grammars to address these issues.

General parsing algorithms [18,78,85] support all context-free grammars, therefore
the language engineer is not limited by a specific deterministic class, and there are
known declarative disambiguation constructs to address the problem of ambiguity
in general parsing [34,90,95]. However, implementing disambiguation constructs is
notoriously hard and requires thorough knowledge of the underlying parsing technology.
This means that it is costly to declaratively build a parser for a given programming
language in the wild if the required disambiguation constructs are not already sup-
ported. Perhaps surprisingly, examples of such languages are not only the legacy
languages, but also modern languages such as Haskell, Python, OCaml and C#.

In this chapter we propose a parsing framework that is able to deal with many
challenges in parsing existing and new programming languages. We embrace the
need for context information at runtime, and base our framework on data-dependent
grammars [41]. Data-dependent grammars are an extension of context-free grammars
that allow arbitrary computation, variable binding and constraints. These features
allow us to simulate hand-written parsers and to implement disambiguation constructs.

To demonstrate the concept of data-dependent grammars we use the IMAP
protocol [62]. In network protocol messages it is common to send the length of data
before the actual data. In IMAP, these messages are called literals, and are described
by the following (simplified) context-free rule:

L8 ::= '⇠{' Number '}' Octets

Here Octets recognizes a list of octet (any 8-bit) values. An example of L8 is ~{6}aaaaaa.
As can be seen, there is no data dependency in this context-free grammar, but the

3.1. Introduction 57

IMAP specification says that the number of Octets is determined by the value parsed
by Number. Using data-dependent grammars, we can specify such a data-dependency
as:

L8 ::= '⇠{' nm:Number {n=toInt(nm.yield)} '}' Octets(n)

Octets(n) ::= [n > 0] Octets(n - 1) Octet
| [n == 0] ✏

In the data-dependent version, nm provides access to the value parsed by Number. We
retrieve the substring of the input parsed by Number via nm.yield which is converted to
integer using toInt. This integer value is bound to variable n, and is passed to Octets.
Octets takes an argument that specifies the number of iterations. Conditions [n > 0]

and [n == 0] specify which alternative is selected at each iteration.
It is possible to parse IMAP using a general parser, and then remove the derivations

that violate data dependencies post parse. However, such an approach would be slow.
Without enforcing the dependency on the length of Octets during parsing, given the
nondeterministic nature of general parsing, all possible lengths of Octets will be tried.

There are many common grammar and disambiguation idioms that can be desug-
ared into data-dependent grammars. Examples of these idioms are operator precedence,
longest match, and the offside rule. Expecting the language engineer to write low-level
data-dependent grammars for such cases would be wasteful. Instead, we describe a
number of such idioms, provide high-level notation for them and their desugaring to
data-dependent grammars. For example, using our high-level notation the indentation
rules in Haskell can be expressed as follows:

Decls ::= align (offside Decl)*
| ignore('{' Decl (';' Decl)* '}')

This definition clearly and concisely specifies that either all declarations in the list are
aligned, and each Decl is offsided with regard to its first token (first alternative), or
indentation is ignored inside curly braces (second alternative).

Our vision is a parsing framework that provides the right level of abstraction for
both the language engineer, who designs new languages, and the tool builder, who needs
a parsing technology as part of her toolset. From the language engineer’s perspective,
our parsing framework provides an out of the box set of high-level constructs for most
common idioms in syntax of programming languages. The language engineer can
also always express her needs directly using data-dependent grammars. From the
tool builder’s perspective, our framework provides open, extensible means to define
higher-level syntactic notation, without requiring knowledge of the internal workings
of a parsing technology.

The contributions of this chapter are:

• We provide a unified perspective on many important challenges in parsing real
programming languages.

• We present several high-level syntactical constructs, and their mappings to
data-dependent grammars.

58 Chapter 3. Data-dependent GLL Parsing

• We provide an implementation of data-dependent grammars on top of the
Generalized LL (GLL) parsing algorithm [78] that runs over ATN grammars [100].
The implementation is part of the Iguana parsing framework2.

• We demonstrate the initial results of our parsing framework, by parsing 20363
real source files of Java, C#, Haskell (91% success rate), and excerpts from
OCaml.

The rest of this chapter is organized as follows. In Section 3.2 we describe the
landscape of parsing programming languages. In Section 3.3 we present data-dependent
grammars, our high-level syntactic notation, and the mapping to data-dependent
grammars. Section 3.4 discusses the extension of GLL parsing with data-dependency.
In Section 3.5 we demonstrate the initial results of our parsing framework using
grammars of real programming languages. We discuss related work in Section 3.6. A
conclusion and discussion of future work is given in Section 3.7.

3.2 The Landscape of Parsing Programming Languages

In this section we discuss well-known features of programming languages that make
them hard to parse. These features motivate our design decisions.

3.2.1 General Parsing for Programming Languages

Grammars of programming languages in their natural form are not deterministic, and
are often ambiguous. A well-known example is the if-then-else construct found in
many programming languages. This construct, when written in its natural form, is
ambiguous (the dangling-else ambiguity), and therefore cannot be deterministic. Some
nondeterministic (and ambiguous) syntactic constructs, such as if-then-else, can be
rewritten to be deterministic and unambiguous. However, such grammar rewriting in
general is not trivial, the resulting grammar is hard to read, maintain and evolve, and
the resulting parse trees are different from the original ones the grammar writer had
in mind.

Instead of rewriting a grammar, it is common to use an ambiguous grammar,
and rely on some implicit behavior of a parsing technology for disambiguation. For
example, the dangling-else ambiguity is often resolved using a longest match scheme
provided by the underlying parsing technology. Relying on implicit behavior of a
parsing technology to achieve determinism can make it quite difficult to reason about
the accepted language. Seemingly correct sentences may be rejected by the parser
because at a nondeterministic point, a wrong path was chosen. For example, Yacc is
an LALR parser generator, but can accept any context-free grammar by automatically
resolving all shift/reduce and reduce/reduce conflicts. Using Yacc, the language
engineer should manually check the resolved conflicts in case of unexpected behavior.

A common theme in research in parsing has been to increase the recognition power
of deterministic parsing techniques such as LL(k) or LR(k). One of the widely used
2 https://github.com/iguana-parser

https://github.com/iguana-parser

3.2. The Landscape of Parsing Programming Languages 59

general parsing techniques for programming languages is the Generalized LR (GLR)
algorithm [85]. GLR parsers support all context-free grammars and can produce a
parse forest containing all derivation trees in form of a Shared Packed Parse Forest
(SPPF) in cubic time and space [80]. Note that the cubic bound is for the worst-case,
highly ambiguous grammars. As GLR is a generalization of LR, a GLR parser runs
linearly on LR parts of the grammar, and as the grammars of real programming
languages are in most parts near deterministic, one can expect near-linear performance
using GLR for parsing programming languages. GLR parsing has successfully been
used in source code analysis and developing domain-specific languages [34].

General parsing enables the language engineer to use the most natural version
of a grammar, but leaves open the problem of ambiguity. In declarative syntax
definition [34, 49], it is common to use declarative disambiguation constructs, e.g.,
for operator precedence or the longest match. As a general parser is able to return
all ambiguities in form of a parse forest, it is possible to apply the disambiguation
rules post-parse, removing the undesired derivations from the parse forest. However,
such post-parse disambiguation is not practical in cases where the grammar is highly
ambiguous. For example, parsing expression grammars without applying operator
precedence during parsing is only limited to small inputs. Therefore, it is required to
resolve ambiguity while parsing to achieve near-linear performance.

Implementing disambiguation mechanisms that are executed during parsing is
difficult. This is because the implementation of such disambiguation mechanisms
requires knowledge of the internal workings of a parsing technology. Therefore, the
choice of the general parsing technology becomes very important when considering
parsing programming languages. For example, GLR parsers operate on LR automata,
and have a rather complicated execution model, as a parsing state corresponds to
multiple grammar positions.

The Generalized LL (GLL) parsing algorithm [78] is a new generalization of
recursive-descent parsing that supports all context-free grammars, including left
recursive ones. GLL parsers produce a parse forest in cubic time and space in the
worst case, and are linear on LL parts of the grammar. GLL parsers are attractive
because they have the close relationship with the grammar that recursive-descent
parsers have. From the end user’s perspective, GLL parsers can produce better error
messages, and can be debugged in a programming language IDE.

To deal with left recursive rules and to keep the cubic bound, a GLL parser uses a
GSS to handle multiple call stacks. While the execution model of a GLL parser is close
to recursive-descent parsing, the underlying machinery is much more complicated,
and still an in-depth knowledge of GLL is required to implement disambiguation
constructs. In this chapter, we propose a parser-independent framework for parsing
programming languages based on data-dependent grammars. We use GLL parsing
as the basis for our data-dependent parsing framework, as it allows an intuitive
way to implement components of data-dependent grammars, such as environment
threading, and enables an implementation that is very close to the stack-evaluation
based semantics of data-dependent grammars [41].

60 Chapter 3. Data-dependent GLL Parsing

3.2.2 On the Interaction between Lexer and Parser

Conventional parsing techniques use a separate lexing phase before parsing to transform
a stream of characters to a stream of tokens. In particular, whitespace and comments
are discarded by the lexer to reduce the number of lookahead in the parsing phase,
and enable deterministic parsing.

The main problem with a separate lexing phase is that without having access to the
parsing context, i.e., the applicable grammar rules, the lexer cannot unambiguously
determine the type of some tokens. An example is >> that can either be parsed as a right
shift operator, or two closing angle brackets of a generic type, e.g., List<List<String>>
in Java. Some handwritten parsers deal with this issue by rewriting the token stream.
For example, when the javac parser reads a >> token and is in a parsing state that
expects only one >, e.g., when matching the closing angle bracket of a generic type, it
only consumes the first > and puts the second one back to prevent a parse error when
matching the next angle bracket.

To resolve the problems of a separate lexing phase, we need to expose the parsing
context to the lexer. To achieve this, the separate lexing phase is abandoned, and
the lexing phase is effectively integrated into the parsing phase. We call this model
single-phase parsing. There are two options to achieve single-phase parsing. The
first option is called scannerless parsing [73,95] where lexical definitions are treated
as context-free rules. In scannerless parsing, grammars are defined to the level of
characters. The second option is context-aware scanning [91], where the parser calls
the lexer on demand. At each parsing state, the lexer is called with the expected set
of terminals at that state.

In almost all modern programming languages longest match (maximal munch)
is applied, and keywords are excluded from being recognized as identifiers. These
disambiguation rules are conventionally embedded in the lexer. In single-phase parsing—
scannerless or context-aware—longest match and keyword exclusion have to be applied
during parsing, by using lexical disambiguation filters such as follow restrictions [73,90].
These disambiguation filters have parser-specific implementations [90,95]. In Chapter 2
we showed how lexical disambiguation filters can be implemented in the context of GLL
parsing. In Section 3.3 we show how these filters can be mapped to data-dependent
grammars. Also note that although a context-aware scanner employs longest match,
for example by implementing the Kleene star (*) as a greedy operator, in some cases
we still need to use explicit disambiguation filters, see Section 3.3.2.

3.2.3 Operator Precedence

Expressions are an integral part of virtually every programming language. In reference
manuals of programming languages it is common to specify the semantics of expressions
using the priority and associativity of operators. However, the implementation of
expression grammars can considerably deviate from such precedence specification.

It is possible to encode operator precedence by rewriting the grammar: a new
nonterminal is created for each precedence level. The rewriting is not trivial for real
programming languages, and the resulting grammar becomes large. This rewriting

3.2. The Landscape of Parsing Programming Languages 61

E ::= '-' E
| E '*' E
| E '+' E
| 'a'

E ::= E '+' T
| T

T ::= T '*' F
| F

F ::= '-' F
| 'a'

E ::= T E1
E1 ::= '+' T E1 | ✏
T ::= F T1
T1 ::= '*' F | ✏
F ::= '-' F

| 'a'

Figure 3.1: Three grammars that accept the same language: the natural, ambiguous
grammar (left), the grammar with precedence encoding (middle), and the grammar
after left-recursion removal (right).

is particularly problematic in parsing techniques that do not support left recursion.
The left-recursion removal transformation disfigures the grammar and adds extra
complexity in transforming the trees to the intended ones. Figure 3.1 shows three
versions of the same expression grammar.

In the 70s, Aho et al. [7] presented a technique in which a parser is constructed from
an ambiguous expression grammar accompanied with a set of precedence rules. This
work can be seen as the starting point for declarative disambiguation using operator
precedence rules. Aho et al. ’s approach is implemented by modifying LALR parse
tables to resolve shift/reduce conflicts based on the operator precedence. However, the
semantics of operator precedence in this approach is bound to the internal workings
of LR parsing. There have been other solutions to build parsers from declarative
operator precedence which we discuss in Section 3.6. In Section 3.3.4 we provide a
mapping from operator precedence rules to data-dependent grammars.

3.2.4 Offside Rule

In most programming languages, indentation of code blocks does not play a role in the
syntactic structure. Rather, explicit delimiters, such as begin and end or { and } are
used to specify blocks of statements. Landin introduced the offside rule [55], which
serves as a basis for indentation-sensitive languages. The offside rule says that all the
tokens of an expression should be indented to the right of the first token. Haskell and
Python are two examples of popular programming languages that use a variation of
the offside rule.

Figure 3.2 shows two examples of the offside rule in Haskell. The keywords do, let,
of, and where signal the start of a block where the starting tokens of the statements
should be aligned, and each statement should be offsided with regard to its first
token. In Figure 3.2 (left), case has two alternatives which are aligned, and the second
alternative that spans several lines is offsided with regard to its first token, i.e., _.
Figure 3.2 (right) shows two examples that look the same, but the indentation of the
last part, + 4, is different. In the top declaration + 4 belongs to the last alternative,
but in the bottom declaration, + 4 belongs to the expression on the right hand side of
=.

62 Chapter 3. Data-dependent GLL Parsing

f x = case x of
0 -> 1
_ -> do

let y = 2
y + z

where z = 3

g x = case x of
0 -> 1
_ -> x + 2

+ 4

g x = case x of
0 -> 1
_ -> x + 2
+ 4

Figure 3.2: Examples of indentation rules in Haskell.

Indentation sensitivity in programming languages cannot be expressed by pure context-
free grammars, and has often been implemented by hacks in the lexer. For example,
in Haskell and Python, indentation is dealt with in the lexing phase, and the context-
free part is written as if no indentation-sensitivity exists. Both GHC and CPython,
the popular implementations of Haskell and Python, use LALR parser generators.
In Python, the lexer maintains a stack and emits INDENT and DEDENT tokens when
indentation changes. In Haskell, the lexer translates indentation information into
curly braces and semicolons based on the rules specified by the L function [60].

In Section 3.3.5 we show how data-dependent grammars can be used for single-
phase parsing of indentation-sensitive programming languages in a declarative way. As
data-dependent grammars are rather low-level for such solutions, we introduce three
high-level constructs: align, offside, and ignore which are desugared to data-dependent
grammars.

3.2.5 Conditional Directives

Many programming languages allow compiler pragmas that specify how the compiler
(or the interpreter) processes parts of the input. The C family of programming
languages, i.e., C, C++ and C#, allow preprocessor directives such as #if and #define.
GHC also allows various compiler pragmas [60, §12.3]. For example, it is possible to
enable C preprocessor directives in Haskell using {-# LANGUAGE CPP #-}.

Preprocessor directives pose considerable difficulty in parsing programming lan-
guages. The main reason is that they are not part of the grammar of a language, but
can appear anywhere in the source code. In this regard, preprocessor directives are
similar to whitespace and comment. However, conditional directives may affect the
syntactic structure of a program, and cannot be simply ignored as a special kind of
whitespace. This is especially important if we consider single-phase parsing where
no lexing/preprocessing is available. We need a mechanism to allow the parser to
switch between the preprocessor mode and main grammar, and to evaluate conditional
directives to select the right branch.

Figure 3.3 (left) shows a C# example where ignoring the conditional directive
will lead to a parse error, as the closing bracket of the test method is in the con-
ditional directive, and one of the branches should be included in the input. The

3.2. The Landscape of Parsing Programming Languages 63

void test()
{
#if Debug

System.Console.WriteLine("Debug")
}
#else
}
#endif

#if X
/*
#else
/* */ class Q { }
#endif

Figure 3.3: Problematic cases of using C# directives [63].

static void Main() {
System.Console.WriteLine(@"hello,

#if Debug
world

#else
Nebraska

#endif
");

}

Figure 3.4: C# multi-line string containing directives [63].

example in Figure 3.3 (right) shows another aspect of directives in C#. If X is true,
"/* #else /* */ class Q {}" will be considered as part of the source code. If X is false,
only the else-part will be considered: "/* */ class Q {}". Note that when X is false,
the if-part does not have to be syntactically correct, in this case an unclosed multi-line
comment.

Among the family of C languages we selected C#, as parsing C# is more manage-
able. The problematic part of parsing C with directives is textual macros. Without
a preprocessor to expand macros before parsing, we need to deal with macros at
runtime. Parsing C without a preprocessor is future work. In C#, #define does not
define a macro, rather it only sets a boolean variable. It should also be noted that C#
supports multi-line strings, where directives should not be processed. Figure 3.4 shows
a C# example that uses conditional directives in a multi-line string. In single-phase
parsing, however, multi-line strings are not a problem, as we effectively parse each
terminal in the context where it appears.

3.2.6 Miscellaneous Features

There are many other peculiarities in programming languages and data formats that
cannot be expressed by context-free grammars. There has been considerable effort
to build declarative parsers for data formats, e.g. PADS [22], and one of the main
motivations for data-dependent grammars [41] is indeed to enable parsing data formats.

Examples of languages that require data-dependent parsing are data protocols,
such as IMAP and HTTP, and tag-based languages such as XML. In programming
languages, data-dependent grammars can be used to implement some language-specific

64 Chapter 3. Data-dependent GLL Parsing

disambiguation mechanisms. For example, to maintain a table of type definitions in C
to allow resolving the infamous typedef ambiguity, e.g., in x * y which can be either
interpreted as a variable of pointer type x or as a multiplication, depending on the
type of x. We give an example of parsing XML and resolving the typedef ambiguity
in C in Section 3.3.7.

3.3 Parsing Programming Languages with Data-dependent

Grammars

In this section we describe data-dependent grammars [41], discuss our single-phase
parsing strategy, and demonstrate how various high-level, declarative syntax definition
constructs can be desugared into data-dependent grammars.

3.3.1 Data-dependent Grammars

Data-dependent grammars are defined as an extension of context-free grammars
(CFGs), where a CFG is, as usual, a tuple (N, T, P, S) where

• N is a finite set of nonterminals;

• T is a finite set of terminals;

• P is a finite set of rules. A rule (production) is written as A ::= ↵, where A

(head) is a nonterminal, and ↵ (body) is a string in (N [T)⇤;

• S 2 N is the start symbol of the grammar.

We use A, B, C to range over nonterminals, and a, b, c to range over terminals. We use
↵, �, � for a possibly empty sequence of terminals and nonterminals, and ✏ represents
the empty sequence. It is common to group rules with the same head and write them
as A ::= ↵1 | ↵2 | . . . | ↵n. In this representation, each ↵i is an alternative of A.

Data-dependent grammars introduce parametrized nonterminals, arbitrary com-
putation via an expression language, constraints, and variable binding. Here, we
assume that the expression language e is a simple functional programming language
with immutable values and no side-effects. In a data-dependent grammar a rule is
of the from A(p) ::= ↵, where p is a formal parameter of A. Here, for simplicity of
presentation and without loss of generality, we assume that a nonterminal can have at
most one parameter. The body of a rule, ↵, can now contain the following additional
symbols:

• x= l :A(e) is a labeled call to A with argument e, label l, and variable x bound
to the value returned by A(e);

• l :a is a labeled terminal a with label l;

• [e] is a constraint;

• {x = e} is a variable binding;

3.3. Parsing Programming Languages with Data-dependent Grammars 65

• {e} is a return expression (only as the last symbol in ↵);

• e ? ↵ : � is a conditional selection.

The symbols above are presented in their general forms. For example, labels, variables
to hold return values, and return expressions are optional.

Our data-dependent grammars are very similar to the ones introduced in [41] with
four additions. First, terminals and nonterminals can be labeled, and labels refer to
properties associated with the result of parsing a terminal or nonterminal. These
properties are the start input index (or left extent), the end input index (or right
extent), and the parsed substring. Properties can be accessed using dot-notation,
e.g., for labeled nonterminal b :B, b.l gives the left extent, b.r the right extent, and
b.yield the substring.

Second, nonterminals can return arbitrary values (return expressions) which can
be bound to variables. In several cases, we found this feature very practical as we
could express data dependency without changing the shape of the original specification
grammar. Specifically, cases where a global table needs to be maintained along a parse
(C# conditional directives discussed in Section 3.3.6 and C typedef declarations in
Section 3.3.7), or where semantic information needs to be propagated upwards from a
complicated syntactic structure (Declarator of the C grammar in Section 3.3.7). In
some cases a data-dependent grammar that uses return values can be rewritten to
one without return values. However, in general, whether return values enlarge the
class of languages expressible with the original data-dependent grammars is an open
question for future work.

Third, we support regular expression operators (EBNF constructs): ⇤, +, and ?, by
desugaring them to data dependent rules as follows: A⇤ ::= A+ | ✏ ; A+ ::= A+ A | A ;
and A? ::= A | ✏. In the data-dependent setting, this translation must also account for
variable binding. For example, if symbol ([e] A)⇤ appears in a rule, and x is a free
variable in e, captured from the scope of the rule, our translation lifts this variable,
introducing a parameter x to the new nonterminal. In addition, EBNF constructs
introduce new scopes: variables declared inside an EBNF construct, e.g., (l :A [e])⇤,
are not visible outside, e.g., in the rule that uses it.

Finally, we also introduce a conditional selection symbol e ? ↵ :�, which selects ↵ if
e is evaluated to true, otherwise �, i.e., introduces deterministic choice. Similar to
EBNF constructs, we implement conditional selection by desugaring it into a data-
dependent grammar. For example, A ::= ↵ e ? X : Y � is translated to A ::= ↵ C(e) �,
where C(b) ::= [b] X | [!b] Y . We illustrate use of the conditional selection when
discussing C# directives in Section 3.3.6.

3.3.2 Single-phase Parsing Strategy

We implement our data-dependent grammars on top of the generalized LL (GLL)
parsing algorithm [78]. As general parsers can deal with any context-free grammar,
lexical definitions can be specified to the level of characters. For example, comment
in the C# specification [63] is defined as shown in Figure 3.5. Such character-level
grammars, however, lead to very large parse forests. These parse forests reflect the

66 Chapter 3. Data-dependent GLL Parsing

Comment ::= SingleLineComment
| DelimitedComment

SingleLineComment ::= "//" InputCharacter*

InputCharacter ::= ![\r \n]

DelimitedComment ::= "/*" DelimitedCommentSect* [*]+ "/"

DelimitedCommentSect ::= "/" [*]* NotSlashOrAsterisk

NotSlashOrAsterisk ::= ![/ *]

Figure 3.5: Comment definition in C#.

full structure of lexical definitions, which are not needed in most cases. We provide
the option to use an on-demand context-aware scanner, where terminals are defined
using regular expression. For example, Comment in C# can be compiled to a regular
expression. In cases where the structure is needed, or it is not possible to use a
regular expression, e.g., recursive definitions of nested comments, the user can use
character-level grammars.

Our support for context-aware scanning borrows many ideas from the original
work by Van Wyk and Schwerdfeger [91], but because of the top-down nature of GLL
parsing, there are some differences. The original context-aware scanning approach [91]
is based on LR parsing, and as each LR state corresponds to multiple grammar rules,
there may be several terminals that are valid at a state. The set of valid terminals
in a parsing state is called valid lookahead set [91]. In GLL parsing, in contrast, the
parser is at a single grammar position at each time, i.e., either before a nonterminal
or before a terminal in a single grammar rule. Therefore, in GLL parsing, the valid
lookahead set of a terminal grammar position contains only one element, which allows
us to directly call the matcher of the regular expression of that terminal.

We use our simple context-aware scanning model for better performance, see
Section 3.5.1. The implementation of the context-aware scanner in [91] is more
sophisticated. The scanner is composed of all terminal definitions, as a composite
DFA. This enables a longest match scheme across terminals in the same context,
for example in programming languages where one terminal is a prefix of another,
e.g., 'fun' and 'function' in OCaml. To enforce longest match across terminals
we use follow/precede restrictions, in this case a follow restriction on 'fun' or a
precede restriction on identifiers. Moreover, keyword reservation in [91] is done by
giving priority to keywords at matching states of the composite DFA. In our model,
keyword exclusion should be explicitly applied in the grammar rules using an exclude
disambiguation filter. We explain follow/precede restrictions and keyword reservation
in Section 3.3.3.

In single-phase parsing layout (whitespace and comments) are treated the same
way as other lexical definitions. Because layout is almost always needed in parsing

3.3. Parsing Programming Languages with Data-dependent Grammars 67

A ::= ↵ B !>> c �
A ::= ↵ c !<< B �
A ::= ↵ B \ s �

A ::= ↵ b:B [input.at(b.r) != c] �
A ::= ↵ b:B [input.at(b.l-1) != c] �
A ::= ↵ b:B [input.sub(b.l,b.r)!= s] �

Figure 3.6: Mapping of lexical disambiguation filters.

programming languages, we support automatic layout insertion into the rules. There
are two approaches to deal with layout insertion: a layout nonterminal can be inserted
exactly before or after each terminal node [47, 91]. Another way is to insert layout
between the symbols in a rule, like in SDF [34]. We use SDF-style layout insertion: if
X ::= x1x2 . . . xn is a rule, and L is a nonterminal defining layout, after the layout
insertion, the rule becomes X ::= x1L x2 L . . . L xn. A benefit of SDF-style layout
insertion is that no symbol definition accidentally ends or starts with layout, provided
that the layout is defined greedily (see Section 3.3.3). This is helpful when defining
the offside rule (see Section 3.3.5).

3.3.3 Lexical Disambiguation Filters

Common lexical disambiguation filters [90], such as follow restrictions, precede restric-
tions and keyword exclusion, can be mapped to data-dependent grammars without
further extensions to the parser generator or parsing algorithm. These disambiguation
filters are common in scannerless parsing [73] and have been implemented for various
generalized parsers [90,95].

A follow restriction (!>>) specifies which characters cannot immediately appear
after a symbol in a rule. This restriction is used to locally define longest match (as
opposed to a global longest match in the lexer). For example, to enforce longest match
on identifiers we write Id ::= [A-Za-z]+ !>> [A-Za-z]. A precede restriction (!<<) is
similar to a follow restriction, but specifies the characters that cannot immediately
precede a symbol in a rule. Precede restrictions can be used to implement longest
match on keywords. For example, [A-Za-z] !<< Id disallows an identifier to start
immediately after a character. This disallows, for example, to recognize intx as the
keyword 'int' followed by the identifier x. Finally, exclusion (\) is usually used to
implement keyword reservation. For example, Id \'int' excludes the keyword int from
beging recognized as Id.

Figure 3.6 shows the mapping from character-level disambiguation filters to data-
dependent grammars. The mapping is straightforward: each restriction is translated
into a condition that operates on the input. A note should be made regarding
the condition implementing precede restrictions. This condition only depends on
the left extent, b.l, that permits its application before parsing B. We consider this
optimization in the implementation of our parsing framework, permitting application
of such conditions before parsing labeled nonterminals or terminals.

The restrictions of Figure 3.6 are just examples and can be extended in many ways.
For example, instead of defining the restriction using a single character, we can use

68 Chapter 3. Data-dependent GLL Parsing

E ::= '-' E
| E '*' E
| E '+' E
| 'if' E 'then' E 'else' E
| a

E ::= '-' E
> E '*' E left
> E '+' E left
> 'if' E 'then' E 'else' E
| a

Figure 3.7: An ambiguous expression grammar (left), and the same grammar disam-
biguated with > and left (right).

regular expressions or character classes. One can also define similar restrictions for
related disambiguation purposes. For example, consider the cast expression in C#:

cast-exp ::= '(' type ')' unary-exp

An expression such as (x)-y is ambiguous, and can be interpreted as either a type cast
of -y to the type x, or a subtraction of y from (x). In the C# language specification,
it is stated that this ambiguity is resolved during parsing based on the character that
comes after the closing parentheses: if the character following the closing parentheses
is �, '!', '(', an identifier, a literal or keywords, the expression should be interpreted
as a cast. We can implement this rule as follows:

cast-exp ::= '(' type ')' >>> [⇠!(A-Za-z0-9] unary-exp

The >>> notation specifies that the next character after the closing parentheses should
be an element of the specified character class. The implementation of >>> is similar
to that of >> with an additional aspect: it adds the condition on the automatically
inserted layout nonterminal after ')' instead.

These examples show how more syntactic sugar can be added to the existing
framework for various common lexical disambiguation tasks in programming languages
without changes to the underlying parsing technology.

3.3.4 Operator Precedence and Associativity

Expression grammars in their natural form are often ambiguous. Consider the
expression grammar in Figure 3.7 (left). For this grammar, the input string a+a*a

is ambiguous with two derivation trees that correspond to the following groupings:
(a+(a*a)) and ((a+a)*a). Given that * normally has higher precedence than +, the first
derivation tree is desirable. We use >, left, and right to define priority and left- and
right-associativity, respectively. Figure 3.7 (right) shows the disambiguated version of
this grammar by specifying > and left, where - has the highest precedence, and * and
+ are left-associative.

Ambiguity in expression grammars is caused by derivations from the left- or right-
recursive ends in a rule, i.e., E ::= ↵E and E ::= E�. We use >, left, and right to
specify which derivations from the left- and right-recursive ends are not valid with
respect to operator precedence. For example, E ::= '-' E > E '*' E specifies that E

3.3. Parsing Programming Languages with Data-dependent Grammars 69

E ::= E '*' E left
> E '+' E left
| '(' E ')'
| a

E(p) ::= [2 >= p] E(2) * E(3) //2
| [1 >= p] E(0) + E(2) //1
| '(' E(0) ')'
| a

Figure 3.8: An expression grammar with > and left (left), and its translation to
data-dependent grammars (right).

in the '-'-rule (parent) should not derive the '*'-rule (child). The > construct only
restricts the right-recursive end of a parent rule when the child rule is left-recursive, and
vice versa. For example, in Figure 3.7 (right) the right E in the '+'-rule is not restricted
because the 'if'- rule is not left-recursive. This is to avoid parse error on inputs that
are not ambiguous, e.g., a + if a then a else a. Note that 'if' E 'then' E 'else' in
the 'if'-rule acts as a unary operator. In addition, the > operator is transitive for
all the alternatives of an expression nonterminal. Finally, left and right only affect
binary recursive rules and only at the left- and right-recursive ends.

Although > is defined as a relationship between a parent rule and a child rule, its
application may need to be arbitrary deep in a derivation tree. For example, consider
the input string a * if a then a else a + a for the grammar in Figure 3.7 (right). This
sentence is ambiguous with two derivation trees that correspond to the following
groupings:

(a * (if a then a else a)) + a
a * (if a then a else (a + a))

The first grouping is not valid as 'if' binds stronger than '+', but we defined '+' to
have higher priority than 'if'. This example shows that restricting derivations only
at one level cannot disambiguate such cases. A correct implementation of > thus also
restricts the derivation of the 'if'-rule from the right-recursive end of the '*'-rule if
the '*'-rule is derived from the left-recursive end of the '+'-rule.

We now show how to implement an operator precedence disambiguation scheme
using data-dependent grammars. We first demonstrate the basic translation scheme
using binary operators only, and then discuss the translation of the example in
Figure 3.7. Figure 3.8 (left) shows a simple example of an expression grammar that
defines two left-associative binary operators * and +, where * is of higher precedence
than +. Figure 3.8 (right) shows the result of the translation into the data-dependent
counterpart. The basic idea behind the translation is to assign a number, a precedence
level, to each left- and/ or right recursive rule of nonterminal E, to parameterize E

with a precedence level, and based on the precedence level passed to E, to exclude
alternatives that will lead to derivation trees that violate the operator precedence.

In Figure 3.8 (right) each left- and right-recursive rule in the grammar gets a
precedence level (shown in comments), which is the reverse of the alternative number
in the definition of E. The precedence counter starts from 1 and increments for each
encountered > in the definition. The number 0 is reserved for the unrestricted use of E,

70 Chapter 3. Data-dependent GLL Parsing

E(l,r) ::= [4 >= l] '-' E(l,4) //4
| [3 >= r, 3 >= l] E(3,3) '*' E(l,4) //3
| [2 >= r, 2 >= l] E(2,2) '+' E(l,3) //2
| [1 >= l] 'if' E(0,0) 'then' E(0,0) 'else' E(0,0) //1
| a

Figure 3.9: Operator precedence with data-dependent grammars (binary and unary
operators).

illustrated using the round bracket rule. Nonterminal E gets parameter p to pass the
precedence level, and for each left- and right-recursive rule, a predicate is added at
the beginning of the rule to exclude rules by comparing the precedence level of the
rule with the precedence level passed to the parent E. Finally, for each use of E in a
rule, an argument is passed.

In the '*'-rule, its precedence level (2) is passed to the left E, and its precedence
level plus one (3) is passed to the right E. This allows to exclude the rules of lower
precedence from the left E, and to exclude the rules of lower precedence and the '*'-rule
itself from the right E. Excluding the '*'-rule itself allows only the left-associative
derivations, e.g., (a*a)*a, as specified by left. In the '+'-rule, its precedence level
plus one (2) is passed to the right E, excluding the '+'-rule. The value 0 is passed to
the left E, permitting any rule. Note that passing 0 instead of 1 to the left E of the
'+'-rule achieves the same effect but enables better sharing of calls to E, as the sharing
of calls (using GSS) is done based on the name of the nonterminal and the list of
arguments. In the round bracket rule, 0 is passed to E as the use of E is neither left-
nor right-recursive, hence, the precedence does not apply.

Now we discuss the translation of the example shown in Figure 3.7 that contains
both binary and unary operators. For this we need to distinguish between the rules
that should be excluded from the left and from the right E. This is achieved as
follows. First, E gets two parameters, l and r (Figure 3.9), to distinguish between the
precedence level passed from left and right, respectively. Second, a separate condition
on l is added to a rule when the rule can be excluded from the right E (i.e., rules for
binary operators and unary postfix operators). A separate condition on r is added to
a rule when the rule can be excluded from the left E (i.e., rules for binary operators
and unary prefix operators). Third, l- and r-arguments are determined for the left
and right E’s as follows. An l-argument to the left E and r-argument to the right E are
determined as in the example of Figure 3.8. For example, E(3,_) '*' E(_,4), where 3 is
the precedence level of the '*'-rule, and 4 is the precedence level plus one. Note that
r=4 does not exclude the unary operators of E. Now, an l-argument to the right E’s is
propagated from the parent E. This effectively excludes a unary prefix rule from the
right E’s when the parent E is the left E of a rule of higher precedence than the unary
operator. Finally, given that there are no unary postfix operators, an r-argument to
the left E’s is not propagated from the parent E and can be the same as the respective
l-argument.

3.3. Parsing Programming Languages with Data-dependent Grammars 71

Decls ::= align (offside Decl)*
| ignore('{' Decl (';' Decl)* '}')

Decl ::= FunLHS RHS

RHS ::= '=' Exp 'where' Decls

Figure 3.10: Simplified version of Haskell’s Decls.

We have also extended this approach for grammars that allow rules of the same
precedence and/or associativity groups. For example, binary + and - operators have
the same precedence, but are left-associative with respect to each other.

Our translation of operator precedence to data-dependent grammars resembles
the precedence climbing technique [14,70]. In contrast to precedence climbing that
requires a non-left recursive grammar, our approach works in presence of both left-
and right-recursive rules.

3.3.5 Indentation-sensitive Constructs

In this section we show how the offside rule can be translated into data-dependent
grammars. We use Haskell as the running example, but our approach is also applicable
for other programming languages that implement the offside rule.

In Haskell, one can write a where clause consisting of a block of declarations, where
the structure of the block is defined by using either explicit delimiters or indentation
(column number). For example, the structure of the following blocks, one written with
explicit delimiters, such as curly braces and semicolons (left), and the other written
using indentation (right), is the same:

{ x = 1 * 2 + 3; y = x + 4 } x = 1 * 2
+ 3

y = x + 4

Figure 3.10 shows a simplified excerpt of the Haskell grammar, defined using our
parsing framework. The first alternative explicitly enforces indentation constraints on
a declaration block. First, it requires that all declarations of a block are aligned (align)
with respect to each other, i.e., each declaration starts with the same indentation.
Second, it requires that the offside rule applies to each declaration, i.e., all non-
whitespace tokens of a declaration are strictly indented to the right of its first non-
whitespace token. In contrast, the second alternative of Decls enforces the use of curly
braces and semicolons, and explicitly ignores (ignore) indentation constraints even
when imposed by an outer scope.

In our meta-notation, align only affects regular definitions (EBNF constructs) such
as lists and sequences, offside affects nonterminals, and ignore applies to a sequence of
symbols. The translation of these high-level constructs into data-dependent grammars
is illustrated in Figures 3.11 and 3.12.

72 Chapter 3. Data-dependent GLL Parsing

Decls ::= a0:Star1(a0.l)
| ignore('{' Decl Star2 '}')

Decl ::= FunLHS RHS

RHS ::= '=' Exp 'where' Decls

Star1(v) ::= Plus1(v) | ✏

Plus1(v) ::= offside a1:Decl [col(a1.l) == col(v)]
| Plus1(v) offside a1:Decl [col(a1.l) == col(v)]

Star2 ::= Plus2 | ✏

Plus2 ::= Plus2 Seq2 | Seq2

Seq2 ::= ';' Decl

Figure 3.11: Desugaring of align.

Decls(i,fst) ::= a0:Star1(a0.l,i,fst)
| '{' Decl(-1,0) Star2 '}'

Decl(i,fst) ::= FunLHS(i,fst) RHS(i,0)

RHS(i,fst) ::= o0:'=' [f(i,fst,o0.l)] Exp(i,0) o1:'where' [f(i,0,o1.l)] Decls(i,0)

Star1(v,i,fst) ::= Plus1(v,i,fst) | ✏

Plus1(v,i,fst) ::= Plus1(v,i,fst) a1:Decl(a1.l,1) [col(a1.l) == col(v), f(i,0,a1.l)]
| a1:Decl(a1.l,1) [col(a1.l) == col(v), f(i,fst,a1.l)]

Star2 ::= Plus2 | ✏

Plus2 ::= Plus2 Seq2 | Seq2

Seq2 ::= ';' Decl(-1,0)

f(i,fst,l) = i == -1 || fst == 1 || col(l) > col(i);

Figure 3.12: Desugaring of offside and ignore.

The basic idea of translating align is to use the start index of a declaration list,
and constrain the start index of each declaration in the list by an equality check on
indentation at the respective indices. Figure 3.11 shows the result after first desugaring
align and then translating EBNF constructs (Section 3.3.1). Desugaring align alone
results in:

Decls ::= a0:(offside a1:Decl [col(a1.l) == col(a0.l)])*

3.3. Parsing Programming Languages with Data-dependent Grammars 73

Labels a0 and a1 are introduced to refer to the start index of a declaration list, a0.l, and
to the start index of each declaration in the list, a1.l, respectively, and the constraint
checks whether the respective column numbers (given tabs of 8 characters) are equal.
As in case of precede restrictions in Section 3.3.3, this constraint only depends on the
start indices and can be applied before parsing Decl. The EBNF translation introduces
nonterminals for each EBNF construct, where Star1 and Plus1 also get parameter v as
the use of a0 has to be lifted during the translation.

Figure 3.12 shows the result of desugaring offside and ignore from Figure 3.11.
The basic idea is to pass down Decl’s start index and constrain the indentation of
any non-whitespace terminal that can appear under the Decl-node, except for the
leftmost one, to be greater than the indentation of Decl’s start index. Two parameters,
i and fst, are introduced to Decl and to all nonterminals reachable from it. The first
parameter is used to pass Decl’s start index, calculated at the offside application site
(a1.l), to any nonterminal reachable from Decl, and to constrain terminals reachable
from Decl.

The second parameter, fst, which is either 0 or 1, is used to identify and skip
the leftmost terminal that should not be constrained. The value 1 is passed at the
application site of offside and propagated down to the first nonterminal of each
reachable rule if the rule starts with a nonterminal. The value 0 is passed to any other
nonterminal of a reachable rule when the first symbol of the rule is not nullable. Our
translation also accounts for nullable nonterminals (not shown here), and in such cases
the value of fst also depends on a dynamic check whether the left and right extents of
the node corresponding to a nullable nonterminal are equal.

Finally, each terminal reachable from Decl gets a label (labels starting with o),
to refer to its start index, and a constraint, encoded as a call to boolean function
f. Note that in the definition of f, condition i == -1 corresponds to the case when
Decl appears in the context where the offside rule does not apply or is ignored, and
condition fst == 1 to the case of the leftmost terminal.

The offside, align and ignore constructs are examples of reasonably complex
desugarings to data-dependent grammars. Their existence and their aptness to
describe the syntax of Haskell is a witness of the power of data-dependent grammars
and the parsing architecture we propose.

3.3.6 Conditional Directives

In this section we present our solution for parsing conditional directives in C#.
As discussed in Section 3.2.5, most directives can be regarded as comment, but
conditional directives have to be evaluated during parsing, as they may affect the
syntactic structure of a program.

Conditional directives can appear anywhere in a program. Therefore, it is natural
to define them as part of the layout nonterminal. Figure 3.13 shows relevant parts of
the layout definition (Layout)3 we used to parse C# (follow restrictions enforce longest
3 For readability reasons, we omit uses of Whitespace? (optional whitespace) before and after

terminal '#', and uses of Whitespace after terminals 'define', 'undef', 'if', 'elif'.

74 Chapter 3. Data-dependent GLL Parsing

global defs = {}

Layout ::= (Whitespace | Comment | Decl | If | Gbg)* !>> [\ \t\n\r\f] !>> '/*'
!>> '//' !>> '#'

Decl ::= '#' 'define' id:Id {defs=put(defs,id.yield,true)} PpNL
| '#' 'undef' id:Id {defs=put(defs,id.yield,false)} PpNL

If ::= '#' 'if' v=Exp(defs) [v] ? Layout : (Skipped (Elif|Else|PpEndif))
Elif ::= '#' 'elif' v=Exp(defs) [v] ? Layout : (Skipped (Elif|Else|PpEndif))
Else ::= '#' 'else' Layout

Gbg ::= GbgElif* GbgElse? '#' 'endif'
GbgElif ::= '#' 'elif' Skipped
GbgElse ::= '#' 'else' Skipped

Skipped ::= Part+
Part ::= PpCond | PpLine | ... // etc.
PpCond ::= PpIf PpElif* PpElse? PpEndif
PpIf ::= '#' 'if' PpExp PpNL Skipped?
PpElif ::= '#' 'elif' PpExp PpNL Skipped?
PpElse ::= '#' 'else' PpNL Skipped?
PpEndif ::= '#' 'endif' PpNL

Figure 3.13: The grammar of conditional directives in C#.

match). In addition to whitespace characters (Whitespace) and comments (starting
with '/*' or '//'), the layout consists of declaration directives (Decl) and conditional
directives (If).

According to the C# language specification, the scope of symbols introduced by
declaration directives #define and #undef is the file they appear in. Therefore, we need
to maintain a global symbol table defs to declare (see Decl) and access (see If and
Elif) symbol definitions while parsing. In C# one can define/undefine a symbol, but
a value cannot be assigned to a symbol. Thus, the symbol table needs to associate a
boolean value with a symbol.

To enable global definitions, our parsing framework supports global variables that
can be declared using the global keyword. e.g., defs in Figure 3.13. In our parsing
framework, a global variable is implemented by using parameters and return values to
thread a value through a parse. In this case, each nonterminal that directly or indirectly
accesses a global variable should get an extra parameter, and each nonterminal that
can directly or indirectly update a global variable should return the new value of the
variable if the variable is used after an occurrence of the nonterminal in a rule. Note
that, assuming immutable values, such implementation of global variables properly
accounts for the nondeterministic nature of generalized parsing. This way updates to a
variable made along one parse do not interfere with updates made along an alternative
parse.

The basic idea of single-phase parsing of C# in presence of conditional directives

3.3. Parsing Programming Languages with Data-dependent Grammars 75

is as follows. Recall that in our parsing strategy (Section 3.3.2) layout is inserted
between symbols in a grammar rule. Conditional directives are evaluated as part of
the layout nonterminal, and based on the result of the evaluation, the next lines of
source code are either treated as the actual source code (true case), or as a sequence of
valid C# tokens (false case), also consuming directives that should not be evaluated.
To achieve this, the grammar of Figure 3.13 uses two different definitions for #if, #elif
and #else. The bottom definition (PpIf, PpElif and PpElse), which is found in the C#
specification, simply defines directives as part of valid C# tokens (Skipped), while
the top definition (If, Elif and Else) uses data dependency. Note that conditional
directives can be nested. This is expressed by using Layout in If, Elif and Else, and
Skipped in PpIf, PpElif and PpElse.

Whenever an #if-directive and its expression are parsed as part of If, the expression
is evaluated using the symbol table (defs). Exp (not shown in Figure 3.13) defines a
simple boolean expression. To enable evaluation of expressions while parsing, Exp uses
data dependency and extends the PpExp rules, found in the C# specification, with
return values and boolean computation. If the expression evaluates to true (note the
use of conditional selection), the parser first continues consuming layout, including
the nested directives, and then, after no layout can be consumed, the parser returns
to the next symbol in the alternative.

If the expression evaluates to false, the parser consumes part of the input as a
list of valid C# tokens (Skipped) until it finds the corresponding #elif-, #else- or
#endif-part. Note that Skipped also consumes nested #if-directives (PpCond), if any, but
in this case, conditions are not evaluated. The definition of Skipped also allows to
consume invalid C# structure (only valid token-wise) when the condition is false,
see Figure 3.3 (right). Finally, when all #if, #elif and #else directives are present,
there will be dangling #elif, #else, and #endif parts remaining if one of the conditions
evaluates to true. These dangling parts should be also consumed by the layout. The
Gbg (garbage) nonterminal, defined as part of layout, does exactly this.

3.3.7 Miscellaneous Features

In this section we discuss the use of data-dependent grammars for parsing XML and
resolving the infamous typedef ambiguity in C. XML has a relatively straightforward
syntax. Figure 3.14 (top) shows the context-free definition of Element in XML, where
Content allows a list of nested elements. The problem with this definition is that it
can recognize inputs with unbalanced start and end tags, for example:

<note>
<to>Bob</from>
<from>Alice</to>

</note>

Using data-dependent grammars, the solution to match start and end tags is very
intuitive. Figure 3.14 (bottom) shows a data-dependent grammar for XML elements.
As can be seen, inside a starting tag, STag, the result of parsing Name is bound to n,
and the respective substring, n.yield, is returned from the rule. The returned value is

76 Chapter 3. Data-dependent GLL Parsing

Element ::= STag Content ETag
STag ::= '<' Name Attribute* '>'
ETag ::= '</' Name '>'

Element ::= s=STag Content ETag(s)
STag ::= '<' n:Name Attribute* '>' { n.yield }
ETag(s) ::= '</' n:Name [n.yield == s] '>'

Figure 3.14: Context-free grammar of XML elements (top) and the data-dependent
version (bottom).

assigned to s in the Element rule, and is passed to the end tag, ETag. Finally, in the
ETag, the name of the end tag is checked against the name of the starting tag. If the
name of the starting tag is not equal to the name of the end tag, i.e., n.yield == s

does not hold, the parsing pass dies.
Now, we consider the problem of typedef ambiguity in C. For example, expression

(T)+1 can have two meanings, depending on the meaning of T in the context: a cast to
type T with +1 being a subexpression, or addition with two operands (T) and 1. If T is
a type, declared using typedef, the first parse is valid, otherwise the second one.

To resolve the typedef ambiguity, type names should be distinguished from other
identifiers, such as variables and function names, during parsing. In addition, the
scoping rules of C should be taken into account. For example, consider the following
C program:

typedef int T;
main() {

int T = 0, n = (T)+1;
}

In this example, T is first declared as a type alias to int and then redeclared as a
variable of type int in the inner scope introduced by the main function.

Figure 3.15 shows a simplified excerpt of our data-dependent C grammar. The
excerpt shows the declaration and expression parts of the C grammar. As can be seen,
a C declaration consists of a list of specifiers followed by a list of declarators. Each
declarator declares one identifier. Keyword typedef can appear in the list of specifiers,
for example, along with the declared type. A declarator can be either a simple identifier
or a more complicated syntactic structure, e.g., array and function declarators, nesting
the identifier. It is important to note that an identifier should enter the current scope
when its declarator is complete. The expression part of Figure 3.15 shows the cast
expression rule (the second rule from top), and the primary expression rule (the last
one). Note that to resolve the typedef ambiguity, illustrated in our running example,
an identifier should be accepted as an expression if it is not declared as a type name.

To distinguish between type names and other identifiers, we record names, encoun-
tered as part of declarators, and associate a boolean value with each name: true for
type names and false otherwise. To maintain this information during parsing, we

3.3. Parsing Programming Languages with Data-dependent Grammars 77

global defs = [{}]

Declaration ::= x=Specifiers Declarators(x)

Specifiers ::= x=Specifier y=Specifiers {x || y}
| x=Specifier {x}

Specifier ::= "typedef" {true}
| ...

Declarators(x) ::= s=Declarator {h=put(head(defs),s,x); defs=list(h,tail(defs))}
("," Declarators(x))*

Declarator ::= id:Identifier {id.yield}
| x=Declarator "(" ParameterTypeList ")" {x}
| ...

Expr ::= Expr "-" Expr
| "(" n:TypeName [isType(defs,n.yield)] ")" Expr
| "(" Expr ")"
| ...
| Identifier [!isType(defs,n.yield)]

Figure 3.15: Resolving typedef ambiguity in C.

introduce global variable defs, holding a list of maps to properly account for scoping.
At the beginning of parsing, defs is a list containing a single, empty map. At the
beginning of a new scope, i.e., when "{" is encountered, an empty map is prepended
to the current list resulting in a new list which is assigned to defs (not shown in the
figure). At the end of the current scope, i.e., when "}" is encountered, the head of the
current list is dropped by taking the tail of the list and assigning it to defs.

To communicate the presence of typedef in a list of specifiers, we extend each
rule of Specifier to return a boolean value: "typedef"-rule returns true, and the other
rules return false. Specifiers computes disjunction of the values associated with the
specifiers in the resulting list. This information is passed via variable x to Declarators.
We also extend the rules of Declarator to return the declared name, id.yield. After a
declarator is parsed, the declared name can be stored in defs: pair (s,x) is added to
the map taken from the head of the current list, and a new list, with the resulting
map as its head, is created and assigned to defs.

Finally, isType function is used to check whether the current identifier is a type
name in the current scope or not: isType iterates over elements in defs, starting from
the first element, to look up the given name. If the name is not found in the current
map, isType continues the search with the next element, representing the outer scope.
If the name is found, isType returns the boolean value associated with the name. If
none of the maps contains the name, isType returns false.

In our running example, after parsing the second declaration of T, appeared in
the scope of the main function, pair ("T",false) will be added to the map in the head

78 Chapter 3. Data-dependent GLL Parsing

of defs, effectively shadowing the previous typedef declaration of T, and causing the
condition in the cast expression rule to fail.

3.4 Implementation

In this section we present our extension of the GLL parsing algorithm [78] to support
data-dependent grammars. GLL parsing is a generalization of recursive-descent parsing
that supports all context-free grammars, and produces a binarized Shared Packed
Parse Forest (SPPF) in cubic time and space. GLL uses a Graph-Structured Stack
(GSS) [85] to handle multiple function calls in recursive-descent parsing. The problem
of left recursion is solved by allowing cycles in GSS. We discuss SPPF and GSS in
GLL parsing in more detail in Sections 3.4.1 and 3.4.2, respectively. As GLL parsers
are recursive-descent like, the handling of parameters and environment is intuitive,
and the implementation remains very close to the stack-based semantics, which eases
the reasoning about the runtime behavior of the parser.

We use a variation of GLL that uses a more efficient GSS [3]. GLL parsing can
be seen as a grammar traversal process that is guided by the input. At each point
during parsing, a GLL parser is at a grammar slot (grammar position before or after
a symbol in a rule) and executes the code corresponding to this slot. Because of the
nondeterministic nature of general parsing, a GLL parser needs to record all possible
paths and process them later, and at the same time eliminate duplicate jobs. The unit
of work in GLL parsing is a descriptor which captures a parsing state. Descriptors
allow a serialized, discrete view of tasks performed during parsing. GLL parsing has a
main loop, in a trampolined style, that executes the descriptors one at a time until no
more descriptors left.

The standard way of implementing a GLL parser is to generate code for each
grammar slot [78]. Such implementation relies on dynamic gotos to allow arbitrary
jumps to the main loop or other grammar slots. In our GLL implementation, a
grammar is modeled as a connected graph of grammar slots. This model of context-free
grammars resembles Woods’ Recursive Augmented Transition Networks (ATN) [100]
grammars. As such, our implementation of GLL over ATN grammars provides an
interpreter version of GLL parsing. We present our interpretive formulation of GLL
parsing in Section 3.4.4.

3.4.1 SPPF

It is known that any parsing algorithm that constructs Tomita-style SPPF is of
unbounded polynomial complexity [42]. To achieve parsing in cubic time and space,
GLL uses a binarized SPPF [78] format, which has additional intermediate nodes.
Intermediate nodes allow grouping of the symbols of a rule in a left-associative manner,
thus allowing the parser to always carry a single node at each time, instead of a list of
nodes. This is the key in preserving the cubic bound. The use of intermediate nodes
effectively achieves the same as restricting a grammar to have rules of length at most
two, but without requiring rewriting the original grammar, and transforming back the
resulting derivation trees to the ones of the original grammar.

3.4. Implementation 79

Definition 1 A binarized SPPF is a compact representation of a parse forest that
has the following types of nodes.

• nonterminal nodes of the form (A, i, j) where A is a nonterminal, and i and j

are the left and right extents;

• terminal nodes of the form (t, i, j) where t is a terminal, and i and j are the left
and right extents;

• packed nodes of the form (L, k) where L is a grammar slot and k is the pivot of
the node; and

• intermediate nodes of the form (L, i, j) where L is the grammar slot, and i and
j are the left and right extends.

The left and right extents of a node represent the substring in the input, associated
with the node. As GLL parsing is context-free, nodes with the same label, the same
left and the same right extents can be shared. Nonterminal and intermediate nodes
have packed nodes as their children. Packed nodes represent a derivation, and can
have at most two children, which are non-packed nodes. If a non-packed node is
ambiguous, it will have more than one packed node. The pivot of a packed node is the
right extent of its left child, and is used to distinguish between packed nodes under a
non-packed node.

The binarized SPPF resulting from parsing the input string -a+a with the grammar
E ::= �E | E + E | a is shown in Figure 3.16 (top), where packed nodes are depicted
with small circles. For a better visualization, we have omitted the labels of packed
nodes. The input is ambiguous and has the following two derivations: (-(a+a)) or
((-a)+a). This can be observed by the presence of two packed nodes under the root
node. The left and right packed nodes under the root node correspond to the first
and second alternatives, respectively.

SPPF construction is delegated to two functions nodeT and nodeP. The
nodeT(t, i, j) function takes terminal t, and two integer values i and j (left and
right extents) and returns an existing terminal node with these properties, otherwise a
new node. nodeP(L, w, z) takes a grammar slot L, and two non-packed nodes w and
z. nodeP returns an existing non-packed node labeled L with two children w and z.
If no such node exists, then a non-packed node labeled L will be created, and w and z

are connected to the newly created non-packed node via a packed node. The details
of GLL parse tree construction is discussed in [78], and implementation techniques for
efficient sharing of nodes are presented in [3, 45].

3.4.2 GSS

At the core of GLL parsing is the Graph-Structured Stack (GSS) data structure. We
use a variation of GLL that uses a more efficient GSS [3].

Definition 2 GSS in GLL parsing is a directed graph where

80 Chapter 3. Data-dependent GLL Parsing

E, 0

E, 1

E, 0, 4

E, 1, 4

E, 3, 4

E, 1, 2

'-', 0, 1 'a', 1, 2 '+', 2, 3 'a', 3, 4

E ::= E · + E, 0, 3

E ::= E + · E, 1, 3E, 0, 2

E ::= E · + E

E ::= E · + E

E ::= E · + E

E ::= - E ·

E ::= E + E ·

E ::= E + E ·
E, 3

Figure 3.16: SPPF (top) and GSS (bottom) for the input -a+a.

3.4. Implementation 81

E E

E-

a

+

E

Figure 3.17: ATN Grammar for E ::= E + E | � E | a.

• nodes are of the form (A, i), where A is a nonterminal and i is an input position;
and

• edges are of the form (u, L,w, v), where u and v are GSS nodes, L is a grammar
slot, and w is an SPPF node recorded on the edge.

GSS was originally developed by Tomita [85] for GLR parsing to merge different LR
stacks. Although GLL parsing uses the same term, there are two main differences
between GSS in GLL parsing and GLR. First, in GLL parsing GSS represents function
calls in recursive-descent parsing, similar to memoization of functions in functional
programming, and therefore has the input position at which the nonterminal is called.
Second, in GLL parsing GSS allows cycles in the graph that solve the problem of
left-recursion in recursive-descent parsing.

The GSS resulting from parsing -a+a using the grammar E ::= �E | E + E | a is
shown in Figure 3.16 (bottom). As can be seen there is a cycle on all nodes, as they
represent the left recursive calls to E at different input positions. In case of indirect
left recursion, there will be a cycle in the GSS involving multiple nodes.

3.4.3 ATN Grammars

ATN grammars are an automaton formalism developed in the 70s to parse natural
languages, and are similar to nondeterministic finite automata.

Definition 3 An ATN grammar is a tuple (Q, F,!) where

• Q is a finite set of states representing grammar slots;

• F ⇢ Q is a finite set of states representing final grammar slots; and

• ! is a transition relation of the form A�! (nonterminal), t�! (terminal), or ✏�!
(epsilon).

For example, the ATN grammar for E ::= E + E | � E | a is shown in Figure 3.17. In
an ATN, there is a one-to-many relation, S ⇢ String⇥Q, from a nonterminal name
to a set of start states, each representing the initial state of an alternative.

82 Chapter 3. Data-dependent GLL Parsing

(R, U , G, P)) (R0
, U 0

, G0
, P 0)

Eps

p
✏�! q

n = nodeP(q, w,nodeT(✏, i, i))

({(p, i, u, w)}[R, U , G, P)) (R[{(q, i, u, n)}, U , G, P)

Term-1

p
t�! q I[i] = t

n = nodeP(q, w,nodeT(t, i, i+1))

({(p, i, u, w)}[R, U , G, P)) (R[{(q, i+1, u, n)}, U , G, P)

Term-2
p

t�! q I[i] 6= t

({(p, i, u, w)}[R, U , G, P)) (R, U , G, P)

Call-1

p
A�! q v=(A, i) 2 N (G)

D = {d | (v, y) 2 P, d=(q, rext(y), u,nodeP(q, w, y)),
d 62 U}

({(p, i, u, w)}[R, U , G, P)) (R[D, U[D,

G[{(v, q, w, u)}, P)

Call-2

p
A�! q v=(A, i) 62 N (G)

D = {(s, i, v, $) | s 2 S(A)}
({(p, i, u, w)}[R, U , G, P)) (R[D, U , G[{(v, q, w, u)}, P)

Ret

p 2 F

D = {d | (u, q, y, v) 2 G, d=(q, i, v,nodeP(q, y, w)), d 62 U}
({(p, i, u, w)}[R, U , G, P)) (R[D, U[D, G, P[{(u, n)})

Figure 3.18: GLL parsing over ATN grammars.

Constructing an ATN grammar from a CFG is straightforward. For each nonterminal
in the grammar, and for each alternative of the nonterminal, a pair consisting of
the nonterminal’s name and a state representing the start state of the alternative is
added to S. Finally, for each symbol in the alternative, a next state is created, and
a transition, labeled with the symbol, from the previous state to this state is added.
The last state of the alternative is marked as a final grammar slot.

3.4.4 Interpretive Formulation of GLL Parsing

In this section, we define GLL parsing over ATN grammars as a transition relation.
In contrast to the imperative style used in [3, 78], we use the declarative rules of

3.4. Implementation 83

Figure 3.18. Such GLL formulation is concise and easy to extend to support data-
dependent grammars. The rules in Figure 3.18 use notation similar to one in [3, 78].

The unit of work of a GLL parser is a descriptor. A descriptor is of the form
(p, i, u, w), where p is an ATN state representing a grammar slot, u is a GSS node, i is
an input position, and w is an SPPF (non-packed) node. A GLL parser maintains a
set U that holds descriptors created during parsing and is used to eliminate duplicate
descriptors. In addition to U , a set R is used to hold pending descriptors that are
to be processed. Note that GLL parsing does not impose any order in which the
descriptors in R are processed. Figure 3.18 defines the semantics of GLL parsing
over ATN grammars as a transition relation on configuration (R, U , G, P), where G
represents GSS (a set of GSS edges), such that N (G) gives a set of GSS nodes, and P
is a set of parsing results that are associated with GSS nodes, i.e., a set of elements of
the form (u, w).

During parsing a descriptor is selected and removed from R, represented as
{(p, i, u, w)} [R, and given the rules, a deterministic choice is made based on the
next transition in the ATN. The first three rules of Figure 3.18 are straightforward.
An ✏ transition creates an ✏-node (via call to nodeT) and intermediate node4 (via
call to nodeP), and adds a descriptor for the next grammar slot. The terminal rules
(Term-1 and Term-2) try to match terminal t at the current input position, where I is
an array representing the input string. If there is a match (Term-1), a terminal node
(via nodeT) and intermediate node (via nodeP) are created, and a descriptor for the
next grammar slot is added. If there is no match (Term-2), no descriptor is added.

Call-1 and Call-2 correspond to nonterminal transitions A�!. Similar to calling a
memoized function, a GLL parser first checks if a GSS node (A, i) exists. If such a node
exists (Call-1), the parsing results associated with this GSS node are reused. These
results are retrieved from P , and for each result, nonterminal node y, a descriptor d is
created (rext returns the right extent of y), and if the same descriptor has not been
processed before (d 62U), it is added to R. If the GSS node does not exist (Call-2), the
call to the nonterminal is made, i.e., for each start state of the nonterminal (s2S(A)),
a descriptor is added. Both Call-1 and Call-2 add a new GSS edge to G.

Finally, Ret corresponds to a final grammar slot (final states in ATNs) in which
the parser returns from the current nonterminal call. First, the tuple with the current
SPPF node and the current GSS node is added to P . Second, for each outgoing GSS
edge of the current GSS node, a descriptor is created and, if the same descriptor has
not been processed before (d 62U), it is added to R.

3.4.5 Data-dependent ATN Grammars

To support data-dependent grammars, we extend ATN grammars with the following
forms of transitions:

• x=l:A(e)������! (parameterized, labeled nonterminals)
4 In fact, when the next state is an end state, nodeP creates a nonterminal node, instead of an

intermediate node. However, in the current discussion, this is not essential, therefore, we always
refer to the result of nodeP as an intermediate node.

84 Chapter 3. Data-dependent GLL Parsing

E(2, 2) E(l, 3)

E(0, 0)-

a

+

E(l, r)

[2 >= l, 2 >= r]

[1 >= l]

Figure 3.19: Data-dependent ATN grammar for E ::= E+E > �E | a after desugaring
operator precedence.

• l:t�! (labeled terminals)

• x=e��! (variable binding),

• [e]�! (constraint)

• e�! (return expression).

Two additional mappings are maintained: L, X : Q! String that map a state, rep-
resenting a grammar slot after a labeled nonterminal, to the nonterminal’s label (l)
and to the nonterminal’s variable (x), respectively. Here, as in Section 3.3.1, for
simplicity of presentation and without loss of generality, we assume that nonterminals
can have at most one parameter. We also only consider cases of labeled terminals
and nonterminals, and when a return expression is present. Finally, we assume that
expression language e is a simple functional programming language with immutable
values and no side-effects, that labels and variables are scoped to the rules they are
introduced in, and that labels and variables introduced by desugaring have unique
names in their scopes.

An example of a data-dependent ATN is shown in Figure 3.19. This ATN grammar
is the disambiguated version of the grammar shown in Figure 3.17 after desugaring
operator precedence.

3.4.6 Data Dependency in GLL Parsing

In the following, p, q, s represent ATN states in Q, i is an input index, u, u
0 represent

GSS nodes, and w, n, y represent SPPF nodes. To support data-dependent grammars,
we introduce an environment, E, into GLL parsing. Here, we assume that E is
an immutable map of variable names to values. In the data-dependent setting, a
descriptor, the unit of work in GLL parsing, is of the form (p, i, E, u, w). Now, a
descriptor contains an environment E that has to be stored and later used whenever
the parser selects the descriptor to continue from this point. GSS is also extended to
store additional data. A GSS node and a GSS edge are now of the forms (A, i, v) and
(u, p, w, E, u

0), respectively. That is, in addition to the current input index i, a GSS
node stores an argument v, passed to a nonterminal A, to fully identify the call. A

3.4. Implementation 85

GSS edge additionally stores an environment E, to capture the state of the parser
before a call to a nonterminal is made.

Finally, a GLL parser constructs a binarized SPPF (Section 3.4.1), creating
terminal nodes (nodeT), and nonterminal and intermediate nodes (nodeP). In GLL
parsing intermediate nodes are essential. In particular, they allow the parser to carry
a single node at each time by grouping the symbols of a rule in a left-associative
manner. Nonterminal and intermediate nodes can be ambiguous. To properly handle
ambiguities under nonterminal and intermediate nodes, we include environment and
return values into the SPPF construction. Specifically, arguments to nonterminals and
return values are part of nonterminal nodes, and environment is part of intermediate
nodes.

Figure 3.20 presents the semantics of GLL parsing over ATN, defining it as a
transition relation on configuration (R, U , G, P) where the elements are four main
structures maintained by a GLL parser:

• R is a set of pending descriptors to be processed

• U is a set of descriptors created during parsing. This set is maintained to
eliminate duplicate descriptors

• G is a GSS, represented by a set of GSS edges

• P is a set of parsing results (SPPF nodes created for nonterminals) associated
with GSS nodes, i.e., a set of elements of the form (u, w)

During parsing, a descriptor is selected and removed from R, represented as
{(p, i, E, u, w)} [R, and given the rules, a deterministic choice is made based on the
next transition in the ATN. The simplest rules are Eps, Cond-1, Cond-2 and Bind. Eps
creates the ✏-node (via call to nodeT) and an intermediate node (via call to nodeP),
and adds a descriptor for the next grammar slot. Cond-1 and Cond-2 depend on the
evaluation of expression e in a constraint. If the expression evaluates to true, a new
descriptor is added to continue with the next symbol in the rule (Cond-1), otherwise
no descriptor is added (Cond-2). Bind evaluates the expression in an assignment and
creates a new environment containing the respective binding. This environment is
used to create the new descriptor added to R.

Term-1 and Term-2 deal with labeled terminals. If terminal t matches (Term-1)
the input string (represented by an array I) starting from input position i, a terminal
node is created (assuming t is of length 1). Then, the properties, i.e., the left and
right extents, and the respective substring, are computed from the resulting node
(props(y)). Finally, a new environment, containing binding [l=props(y)], is created
and used to construct an intermediate node and a new descriptor. If the terminal
does not match (Term-2), no descriptor is added.

Call-1 and Call-2 deal with labeled calls to nonterminals. First, argument e is
evaluated, where E1 allows the use of the left extent in e (lprop constructs properties
with only left extent). If a GSS node, representing this call, already exists (Call-1),
the parsing results associated with this GSS node are reused, and a possibly empty

86 Chapter 3. Data-dependent GLL Parsing

(R, U , G, P)) (R0
, U 0

, G0
, P 0)

Eps

p
✏�! q

n=nodeP(q, w,nodeT(✏, i, i), E) d=(q, i, E, u, n)

({(p, i, E, u, w)}[R, U , G, P)) (R[{d}, U , G, P)

Term-1

p
l:t�! q I[i] = t

y=nodeT(t, i, i+1) E1 =E[l=props(y)]
n=nodeP(q, w, y, E1) d=(q, i+1, E1, u, n)

({(p, i, E, u, w)}[R, U , G, P)) (R[{d}, U , G, P)

Term-2
p

l:t�! q I[i] 6= t

({(p, i, E, u, w)}[R, U , G, P)) (R, U , G, P)

Call-1

p
x=l:A(e)������! q

E1 =E[l= lprop(i)] [[e]]E1 = v u
0 =(A, i, v) 2 N (G)

D={d | (u0
, y)2P, E2 =E[l=props(y), x=val(y)],

d=(q, rext(y), E2, u,nodeP(q, w, y, E2)), d 62 U}
({(p, i, E, u, w)}[R, U , G, P)) (R[D, U[D,

G[{(u0
, q, w, E, u)}, P)

Call-2

p
x=l:A(e)������! q

E1 =E[l= lprop(i)] [[e]]E1 = v u
0 =(A, i, v) 62 N (G)

D = {(s, i, [p0 =v], u0
, $) | s 2 S(A)}

({(p, i, E, u, w)}[R, U , G, P)) (R[D, U ,

G[{(u0
, q, w, E, u)}, P)

Ret

p
e�! q q 2 F

[[e]]E = v n = nodeP(q, w, arg(u), v)
D={d | (u, s, y, E1, u

0)2G, E2 =E1[L(s)=props(n), X(s)=v],
d=(s, i, E2, u

0
,nodeP(s, y, n, E2)), d 62 U}

({(p, i, E, u, w)}[R, U , G, P)) (R[D, U[D, G, P[{(u, n)})

Cond-1

p
[e]�! q [[e]]E = true
d = (q, i, E, u, w)

({(p, i, E, u, w)}[R, U , G, P)) (R[{d}, U , G, P)

Cond-2
p

[e]�! q [[e]]E = false
({(p, i, E, u, w)}[R, U , G, P)) (R, U , G, P)

Bind

p
x=e��! q [[e]]E = v

d = (q, i, E[x=v], u, w)

({(p, i, E, u, w)}[R, U , G, P)) (R[{d}, U , G, P)

Figure 3.20: GLL for data-dependent ATN grammars.

3.5. Evaluation 87

set of new descriptors (D) is created. Each descriptor in the set corresponds to a
result, nonterminal node y, retrieved from P, so that the index of the descriptor
is the right extent of y (rext), its environment contains bindings [l =props(y)] and
[x=val(y)] (val retrieves the value from y), and its SPPF node is a new intermediate
node. Note that d 62U ensures that no duplicate descriptors are added at this point.
If the corresponding GSS node does not exist, Call-2 creates one descriptor for each
start state of the nonterminal (s2S(A)). Each descriptor gets a new environment
with binding [p0 =v], where p0 is the nonterminal’s parameter that we assume to have
a unique name in the scope of a rule. Both Call-1 and Call-2 add a new GSS edge
capturing the previous environment to G.

Finally, in Ret-rule, the return expression is evaluated, and the nonterminal node
is created which stores both the argument of the current GSS node (arg(u)) and the
return value. This node is recorded in P as a result associated with the GSS node.
For each GSS edge directly reachable from the current GSS node, a new descriptor is
created. Note that labels and variables at call sites, represented by the current GSS
node, are retrieved via mappings L and X, respectively.

3.5 Evaluation

Our data-dependent parsing framework is implemented as an extension of our modified
GLL parsing algorithm (see Chapter 2). The addition of data-dependency is at the
moment a prototype and most of the effort was put into correctness, rather than
performance optimization. As a frontend to write data-dependent grammars, we
extended the syntax definition of Rascal [51], a programming language for meta-
programming and source code analysis, and provided a mapping to Iguana’s internal
representation of data-dependent grammars.

In Section 3.2 we enumerated a number of challenges in parsing programming
languages, and in Section 3.3, we provided solutions based on data-dependent grammars
(directly or via desugaring) that address these challenges. For each challenge we selected
a programming language that exhibits it, and wrote a data-dependent grammar5,
derived from the specification grammar of the language. For evaluation, we parsed
real source files from the source distribution of the language and some popular open
source libraries, see Table 3.1. Table 3.2 summarizes the evaluation results. In the
following we discuss these results in detail, and provide an analysis of the expected
performance in practice.

Java To evaluate the correctness of our declarative operator precedence solution
using data-dependent grammars, we used the grammar of Java 7 from the main
part of the Java language specification [32]. This grammar contains an unambiguous
left-recursive expression grammar, in a similar style to the expression grammar in
Figure 3.1 (middle).

We replaced the expression part (consisting of about 30 nonterminals) of the Java
specification grammar with a single Expression nonterminal that declaratively expresses
5 https://github.com/iguana-parser/grammars

https://github.com/iguana-parser/grammars

88 Chapter 3. Data-dependent GLL Parsing

Table 3.1: Summary of the projects used in the evaluation.

Language Projects Version Description

Java JDK 1.7.0_60-b19 Java Development Kit
JUnit 4.12 Unit testing framework
SLF4J 1.7.12 A Java logging framework

C# Roslyn build-preview .NET Compiler Platform
MVC 6.0.0-beta5 ASP.NET MVC Framework
EntityFramew. 7.0.0-beta5 Data access for .NET

Haskell GHC 7.8 Glasgow Haskell Compiler
Cabal 1.22.4.0 Build System for Haskell
Git-annex 5.20150710 File manager based on Git
Fay 0.23.1.6 Haskell to JavaScript compiler

operator precedence using >, left and right. The resulting grammar, which we refer
to as the natural grammar, is much more concise and readable, see Table 3.2. The
resulting parser parsed all 8067 files successfully and without ambiguity.

The natural grammar of Java produces different parse trees compared to the
original specification grammar, and therefore it is not possible to directly compare the
parse trees. To test the correctness of parsers resulting from the desugaring of >, left,
and right to data-dependent grammars, we tested their resulting parse trees against
a GLL parser for the same natural grammar of Java, using our rewriting technique
for operator precedence rules (see Chapter 4). Both parsers, using desugaring to
data-dependent grammars and rewriting operator precedence rules, produced the
same parse trees for all Java files, providing an evidence that our desugaring of
operator precedence to data-dependent grammars implements the same semantics as
the rewriting in Chapter 4.

Despite its prototype status, the data-dependent parser is at the moment on
average only 25% slower than the rewritten one. The main reason for performance
difference is that in the rewriting technique in Chapter 4, the precedence information
is statically encoded in the grammar, and therefore there is no runtime overhead,
while in the data-dependent version passing arguments and handling environment
is done at runtime. The problem with the rewriting technique is that the rewriting
process itself is rather slow and the resulting grammar is very large.

C# To evaluate our data-dependent framework on parsing conditional directives, we
used the grammar of C# 5 from the C# language specification [63]. As mentioned in
Section 3.2.5, existing C# compilers resolve preprocessor directives in the lexing phase,
and the parser is not aware of directives. However, the C# language specification
has context-free rules that describe the syntax of directives. Our solution to parsing
conditional directives (Section 3.3.6) leverages layout that is automatically inserted

3.5. Evaluation 89

Ta
bl

e
3.

2:
Su

m
m

ar
y

of
th

e
re

su
lt

s
of

pa
rs

in
g

w
it

h
ch

ar
ac

te
r-

le
ve

ld
at

a-
de

pe
nd

en
t

gr
am

m
ar

s
of

pr
og

ra
m

m
in

g
la

ng
ua

ge
s.

La
ng

.
C

ha
lle

ng
e

So
lu

ti
on

Sp
ec

.
G

ra
m

.
D

at
a-

de
p.

G
ra

m
.

#
Fi

le
s

%
Su

cc
es

s

#
N

on
t.

#
R

ul
es

#
N

on
t.

#
R

ul
es

Ja
va

O
pe

ra
to

r
pr

ec
ed

en
ce

>,
le

ft
an

d
ri

gh
t

20
0

48
5

16
9

43
5

80
67

10
0%

(8
06

7)

C
#

C
on

di
ti

on
al

di
re

ct
iv

es
gl

ob
al

va
ria

bl
es

an
d

dy
na

m
ic

la
yo

ut
38

7
10

00
39

5
10

13
58

39
99

%
(5

83
8)

H
as

ke
ll

In
de

nt
at

io
n

se
ns

it
iv

ity
al

ig
n,

of
fs

id
e

an
d

ig
no

re
14

3
43

1
15

2
45

2
64

57
72

%
(4

65
7)

90 Chapter 3. Data-dependent GLL Parsing

between symbols in grammar rules. We used the context-free syntax of directives in
C# as the starting point. We extended the layout definition to include directives.
Then, the conditional directive rules were modified to allow parse-time evaluation of
conditions and selection of the corresponding path.

The resulting data-dependent grammar is only different from the specification
grammar in the layout definition, and the difference is minimal. As can be seen in
Table 3.2 there are only 8 additional nonterminals and 13 additional rules (about 1.3%
of the whole grammar). Using the character-level grammar of C# we could parse 5838
files out of 5839. The parser timed out after 30 seconds on a very large source file
from the Roslyn framework. The file, which appears to be automatically generated,
contains 156033 lines of code and is of size 4.8 MB.

Although the grammar of C# is near deterministic, the reason for time out is that
character-level grammars generate very large parse trees, a node for each character.
Nevertheless, this file could be parsed using a context-aware parser of C#. We discuss
the performance gain of using a context-aware scanner in Section 3.5.1.

Haskell To evaluate our parsing framework for indentation sensitive programming
languages, we used the grammar of Haskell [60]. The specification grammar of Haskell
is written using explicit blocks, as if no indentation sensitivity exists, and the lexer
translates indentation to physical block delimiters. We took the Haskell grammar as
written in the specification as the starting point and added extra rules that specify
layout sensitivity using align, offside and ignore constructs. As shown in Table 3.2,
the data-dependent version has only 21 additional rules (about 4% of the whole
grammar). From the total number of 6457 Haskell files, we could successfully parse
4657 files (72%). The reason for the parse error in other files is that they contained
some syntactic constructs from GHC extensions that we do not support yet.

Besides numerous undocumented GHC extensions we found in the source files,
many Haskell files contained CPP directives which were resolved by running the C
preprocessor, cpp, before parsing. In the future, we plan to deal with C directives
during parsing, the same way we did for C#. One last issue about parsing Haskell is
that indentation rules alone are not sufficient to unambiguously parse Haskell, and
there is a need for a syntactic longest match that uses indentation information. For
example, the following input string is ambiguous, where both derivations are correct
regarding the indentation rules:

f x = do print x
+ 1

In the first derivation, the right hand side is an infix plus-expression, consisting of a
do-expression and 1. The second derivation consists of only a do-expression that has
print x + 1 as its subexpression. According to the Haskell language specification the
second interpretation is valid, as in do expressions longest match should be applied.
We resolved this issue by defining a special kind of follow restriction, similar to
Section 3.3.3, that bypasses the layout and checks for the indentation level of the next
non-whitespace token when the token is not a keyword or a delimiter.

3.5. Evaluation 91

OCaml We used excerpts of OCaml source files to test our operator precedence
translation against deep and problematic operator precedence cases. OCaml, in
contrast to other three programming languages we used for the evaluation, uses
a natural, ambiguous expression grammar in its language specification. The data-
dependent grammar of OCaml is basically the same as the reference manual, where
the alternative operator in the expression part is replaced with > and additional
left and right operators added. We are not yet able to unambiguously parse full
OCaml programs, as they contain operator precedence ambiguities across indirect
nonterminals. An example is pattern-matching which can derive expr on its right-most
end:

expr ::= expr '+' expr
| 'function' pattern-matching

pattern-matching ::= pattern '->' expr

For example, the input string function x -> x + 1 is ambiguous with the following
derivations: (function x -> x) + 1 or function x -> (x + 1). As the function alternative
has pattern-matching and not expr on its right-most end, the operator precedence
rules do not apply in our current scheme. The translation of operator precedence in
presence of indirect nonterminals to data-dependent grammars seems possible with an
additional analysis of indirect nonterminals, but is left as future work.

3.5.1 Running Time and Performance

Data-dependent grammars [41] provide a pay-as-you-go model. If a pure context-free
grammar is specified, the worst-case complexity of the underlying parsing technology
is retained. However, in the general case no guarantees can be made. Our data-
dependent parsers, implemented on top of GLL parsing, are worst-case O(n3) on
pure context-free grammars [78]. The more practical question, however, is how data
dependency affects the runtime performance of parsing real programming languages.

In this section, we provide empirical results showing that parsers for data-dependent
grammars can behave nearly linearly on grammars of real programming languages.
We ran the experiments on a machine with a quad-core Intel Core i7 2.6 GHz CPU
and 16 GB of physical memory running Mac OS X 10.10.4. We used a 64-Bit Oracle
HotSpot™ JVM version 1.8.0_25. Each file was executed 10 times and the mean
running time (CPU user time) was reported. The three first runs of each file were
skipped to allow for JIT optimizations.

Figure 3.21 shows the log-log plots (log base 10) of running time (ms) against file
size (number of characters) for all the files we parsed (see Tables 3.1 and 3.2). For
showing the linear behavior we used the character-level grammars, as they exhibit
the relationship between the running time and the number of characters better than
the context-aware version. The red line in the plots is the linear regression fit. The
goodness of each fit is indicated by the adjusted R

2 value in each plot. The equation
in each plot describes a power relation with original data, and as all the coefficients

92 Chapter 3. Data-dependent GLL Parsing

Java

2 3 4 5

−
1

0
1

2
3 y = 1.212 x − 3.181

R2 = 0.9395

Regression line

C#

2 3 4 5 6

0
1

2
3

C
P

U
 t

im
e

(m
ill

is
ec

on
ds

)
in

 lo
g1

0

y = 1.098 x − 3
R2 = 0.9821

Regression line

Haskell

0 1 2 3 4 5

−
1

0
1

2
3

4

size (#characters) in log10

y = 0.95 x − 1.616
R2 = 0.95

Regression line

Figure 3.21: Running time of the character-level parsers for Java, C#, and Haskell.

3.6. Related Work 93

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Haskell

C#

Java

Speedup

Figure 3.22: The relative speedup using context-aware scanning instead of character
level grammars.

(1.212, 1.098, 0.950) are close to 1, we can conclude that the running time is near-linear
on these grammars.

To compare the performance difference between character-level and context-aware
parsing, we ran both context-aware and character-level parsers on all the source files.
Figure 3.22 shows the relative performance gain (speedup) using a context-aware
parser compared to a character-level parser for each file. For a better visualization
we omitted the outliers from the box plots. The median and maximum speedup for
Java is (2.45, 15.1), for C# (2.45, 4) and for Haskell (1.9, 3). The precise impact of
context-aware scanning for general parsing and data-dependent grammars is future
work, but our preliminary investigation revealed that using character-level grammars
for parsing layout is very expensive, as it is a very common operation, see Section 3.3.2.

3.6 Related Work

Parsing is a well-researched topic, and many features of our parsing framework are
related in one or another way to other existing systems. Throughout this chapter we
have discussed some related work, which we do not repeat here. In this section we
discuss direct related work and our inspirations.

Data dependency implementation Data-dependent grammars have many simi-
larities with attribute grammars [59] and attribute directed parsing [99]. A detailed
discussion of related systems is provided by Jim et al. [41]. From the implementation
perspective, Jim et al. present the Yakker parser generator [41], which is based on
Earley’s algorithm [18], but we have a GLL-based interpretation of data-dependent
grammars. We also extend the SPPF creation functionality of GLL parsing (taking
environments into account), while SPPF creation is not discussed in Jim et al. ’s
approach. Another difference between our implementation and Yakker is that Yakker

94 Chapter 3. Data-dependent GLL Parsing

directly supports regular operators, by applying longest match. We, however, believe
that all ambiguities should be returned by the parser, and avoid such implicit heuristics.
Therefore, we desugar regular operators to data-dependent BNF rules.

We use an interpretative model of parsing based on Woods’ ATN grammars [100].
Woods used an explicit stack to run ATN grammars, similar to a pushdown automata.
However, as with any top-down parser, such execution of ATN grammars does not
terminate in presence of left recursion. Jim et al. ’s data-dependent framework operates
on a data-dependent automata [39], which is a variation of ATN grammars interpreted
with Earley’s algorithm.

Indentation-sensitive parsing Besides modification to the lexer which has been
used in GHC and CPython, there are a number of other systems that provide a solution
for indentation-sensitive parsing. Parser combinators [36] are higher-order functions
that are used to define grammars in terms of constructs such as alternation and
sequence. This approach has been used in parsing indentation-sensitive languages [37].
Traditional parser combinators do not support left-recursion and can have exponential
runtime. Another main difference between parser combinators and our approach is
that we do not give the end user access to the internal workings of the parser. Since
parser combinators are normal functions, the user can modify them. Our approach
provides an external DSL for defining parsers, while parser combinators provide an
internal DSL. Therefore, our approach compared to parser combinators provides more
control over the syntax definition.

Erdweg et al. present an extension of SDF to define layout constraints on grammar
rules [20]. These constraint-based approach is implemented by modifying the underly-
ing SGLR [95] parser. Most constraints can be solved during parsing. Constraints that
are not resolved will lead to ambiguity which can be removed by post-parse filtering.
Adams presents the notion of indentation-sensitive grammars [2], where symbols in a
rule are annotated by the relative position to the immediate parents. This technique
is implemented for LR(k) parsing.

We do not offer a customized solution for indentation-sensitivity for a specific
parsing technology, rather we use the general data-dependent grammars framework,
and map indentation rules to them. In addition, we define high-level constructs such as
align, offside, and ignore which are desugared to lower-level data-dependent grammars.
This enables a syntax definition model that is closer to what the user has in mind. We
think the use of high-level constructs leads to cleaner, more maintainable grammars.

Operator precedence SDF2 uses a parser-independent semantics of operator
precedence which is based on parent-child relationship on derivation trees [95]. This
semantics is implemented in SGLR parsing [95] by modifying parse tables. Although
the SDF2 semantics for operator precedence works for most cases, in some cases it is
too strong, i.e., rejecting valid sentences, and in some cases it cannot disambiguate
the expression grammar.

In Chapter 4 we discussed the precedence ambiguity, and proposed a grammar
rewriting that takes an ambiguous grammar with a set of precedence rules and produces

3.7. Conclusions 95

a grammar that does not allow precedence-invalid derivations. Our current solution
has the same semantics: it does not remove sentences when there is no precedence
ambiguity, and can deal with corner cases found in programming languages such as
OCaml. In addition, our operator precedence solution is desugared to data-dependent
grammars, thus it is independent of the underlying parsing technology.

Conditional directives Recent work in parsing conditional directives target all
variations [29,48]. Gazzillo and Grimm [29] give an extensive overview of related work
in this area. However, to the best of our knowledge, none of the existing systems
employ a single-phase parsing scheme, rather they use a separate scanner and annotate
the tokens based on the conditional directives they appear in. Our approach in using
data-dependent grammars to evaluate the conditional directives is new. The treatment
of other features of preprocessors, such as macros, is future work.

3.7 Conclusions

We have presented our vision of a parsing framework that is able to address many
challenges of declarative parsing of real programming languages. We have built an
implementation of data-dependent grammars based on the GLL parsing algorithm.
We also have shown how to map common idioms in syntax of programming languages,
such as lexical disambiguation filters, operator precedence, indentation-sensitivity,
and conditional directives to data-dependent grammars. These mappings provide the
language engineer with a set of out of the box constructs, while at the same time, new
high-level constructs can be added. The preliminary experiments with our parsing
framework show that it can be efficient and practical. To fully realize our vision we
will explore more syntactic features, and further optimize the implementation of our
framework.

Chapter 4

Safe Specification of Operator

Precedence Rules
1

Summary. In this chapter we present an approach to specifying operator precedence
based on declarative disambiguation constructs and an implementation mechanism
based on grammar rewriting. We identify a problem with existing generalized context-
free parsing and disambiguation technology: generating a correct parser for a language
such as OCaml using declarative precedence specification is not possible without
resorting to some manual grammar transformation. Our approach provides a fully
declarative solution to operator precedence specification for context-free grammars,
is independent of any parsing technology, and is safe in that it guarantees that the
language of the resulting grammar will be the same as the language of the specification
grammar. We evaluate our new approach by specifying the precedence rules from
the OCaml reference manual against the highly ambiguous reference grammar and
validate the output of our generated parser.

1 This chapter was originally published as: A. Afroozeh, M. van den Brand, A. Johnstone, E. Scott,
and J. J. Vinju. Safe Specification of Operator Precedence Rules. In Proceedings of the 6th
International Conference on Software Language Engineering, SLE ’13, pages 137–156. Springer,
2013.

97

98 Chapter 4. Safe Specification of Operator Precedence Rules

4.1 Introduction

There is an increasing demand for front-ends for programming and domain-specific
languages. We are interested in parser generation technology that can cover a wide
range of programming languages, their dialects and embeddings. These front-ends are
used for example to implement reverse engineering tools, to build quality assessment
tools, to execute research in mining software repositories, or to build (embedded)
domain specific languages. In these contexts the creation of the parser is a necessary
and important step, but it is also an overhead cost that would preferably be mitigated.
In such language engineering applications, as opposed to compiler construction, we
may expect frequent updates and maintenance to deal with changes in the grammar.

Expression grammars are an important part of virtually every programming lan-
guage. The natural specification of expressions is usually ambiguous. In programming
languages books and reference manuals, the semantic definition of expressions usually
includes a table of binary and unary operators accompanied with their priority and
associativity relationships. This approach feels very natural, probably because this is
the way we learn basic arithmetic expressions at school. Virtually all disambiguation
techniques for expression grammars are driven by such precedence rules. However,
the implementation of such rules varies considerably.

The implementation of operator precedence in grammars may considerably deviate
from the initial design the language engineer had in mind. In manual rewriting
approaches, grammars are factored to remove ambiguities. These approaches are not
attractive for us because the resulting grammars are usually large, and hard to read
and understand. For example, programming languages such as OCaml, C# and Java
have many operators with a considerable number of priority levels and associativity
relations. Manually transforming such expression grammars, to encode precedence
rules, is time consuming, and can be error-prone for new users, especially when we
consider the evolution of grammars [50]. Therefore, we consider declarative approaches
in which the parser is generated from the set of precedence rules.

Generalized context-free parsing algorithms provide the opportunity to write any
context-free grammar, and allow for language compositions, which helps in modeling
embeddings and dialects. This makes generalized context-free parsing a good starting
point for our purpose: satisfying the demand for powerful and maintainable front-
ends. This is particularly important in the fields of domain-specific languages and
reverse engineering, where grammars should be easy to understand, evolvable, and
maintainable. Therefore, the focus of this chapter is mainly on providing a declarative
framework for specification of precedence rules in generalized context-free parsing
algorithms, such as Earley [18], GLR [11,61,71,85] and GLL [78].

4.1.1 From Yacc to SDF

In this section, we discuss two disambiguation techniques that influenced our work the
most, and are related to generating parsers from ambiguous grammars using a set of
precedence rules. Aho, Johnson, and Ullman [7] (AJU) present an approach in which
the LR(1) [8] parsing tables are modified to eliminate shift/reduce conflicts based on

4.1. Introduction 99

the precedence of operator tokens, as specified by the user. The AJU method is not
only a disambiguation mechanism, it is also a nondeterminism reducer, meaning that
it has to resolve all shift/reduce and reduce/reduce conflicts, even when there is no
ambiguity, to make the parser deterministic. This implies that the approach cannot
predictably deal with expression grammars that are not inherently LR(1), unless the
language engineer understands how additional shift/reduce and reduce/reduce actions,
used for making the parser deterministic, affect the language. More importantly, the
AJU precedence semantics is defined in terms of the deterministic LR parsers: to
understand the semantics of the precedence rules, one must understand what an LR(1)
conflict is and why it happens. Finally, this method is not directly applicable to
non-LR parsers.

The AJU approach is implemented in Yacc2 and is very popular. For example, the
OCaml parser uses ocamlyacc3, which is a variant of Yacc. However, the Yacc grammar
of OCaml is considerably larger than the natural reference one, and contains more
nonterminals and rules.

Although the AJU method is fast and effective when used in the context of
arithmetic expressions, because it is bound to LR(1) parsing, it does not fit into our
definition of declarative operator precedence techniques. We require that a mechanism
for declarative specification of operator precedence rules (1) be independent of the
underlying parsing technology, so that we can reason about the precedence semantics
or use the mechanism in other parsing technologies, (2) be safe, meaning that the
disambiguation mechanism derived from precedence rules should not change the
underlying sentences of the language, and (3) be complete, i.e., be able to resolve all
the ambiguities resulting from different precedence of operators.

There has been a number of efforts to formalize a parser-independent semantics
for operator precedence, and to provide a declarative disambiguation mechanism. The
most notable one is SDF4 in which the semantics of operator precedence is defined
as a filter on derivation trees. SDF precedence filters are implemented by removing
transitions corresponding to filtered productions from adapted SLR(1) tables [94].
Although we believe that SDF was in the right direction in defining a declarative
precedence mechanism, its filters lack the safety and completeness requirements.
For example, precedence rules in SDF fail to disambiguate a left-associative binary
operator having higher priority than a unary prefix operator. The limitations of SDF
are discussed in detail in Section 4.2.1.

4.1.2 Contributions and Roadmap

In this chapter we present a new semantics for the declarative specification of operator
precedence rules for context-free grammars. The key enablers of our technique are
the safety and support for resolving deeply nested precedence conflicts. We also
support indirect precedence conflicts when expression grammars are not expressed
using a single recursive nonterminal but rather more. We show that our approach is
2 http://dinosaur.compilertools.net/yacc/
3 http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html
4 http://www.syntax-definition.org

http://dinosaur.compilertools.net/yacc/
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html
http://www.syntax-definition.org

100 Chapter 4. Safe Specification of Operator Precedence Rules

powerful enough to allow declarative specification of operator precedence in OCaml.
More importantly, the semantics of our technique is implemented as a grammar
transformation, making it independent of the underlying parsing technology. We also
guarantee that the parsers we generate produce the exact same parse trees (as if the
original grammar was used). The completeness proof —whether our technique resolves
all precedence style ambiguities— and the soundness proof of the transformation
—whether the transformation exactly implements the semantics— are future work.

The rest of this chapter is organized as follows. After this introduction, we give
formal definitions which we need in the rest of this chapter. Then, we explain the
problems with SDF in detail in Section 4.2.1. After that, the formal semantics of
precedence rules and its implementation as a grammar transformation are presented
in sections 4.3 and 4.4. We present the results of parsing the OCaml test suite in
Section 4.5. Finally, a discussion of related work and a conclusion of this work are
given in sections 4.6 and 4.7, respectively.

4.2 Motivation

A grammar is a 4-tuple (N, T, P, S) where N is a set of nonterminals, T a set of
terminals, P a set of production rules of the form A ::= ↵ where A, the head of the
production rule, is a nonterminal and ↵, the body of the production rule, is a string
in (T [N)⇤. We shall assume that there are no repeated rules, so we can identify
a production rule by writing its head and body. S 2 N is the start symbol of the
grammar. By convention, in this chapter, nonterminals and terminals start with
uppercase and lowercase letters, respectively. In addition, symbols, such as + or ⇤ are
terminals. We use lowercase letters u, v, w to denote non-empty sequences of terminal
symbols. A group of production rules that have the same head can be grouped as
A ::= ↵1|↵2|...|↵n where each A ::= ↵i is a production. In this representation, each
↵i is called an alternative of A.

A derivation step is of the form ↵A�)↵�� where ↵, � 2 (T [N)⇤ and A ::= � is a
production rule. In a derivation step a nonterminal A is replaced with the body of its
production rule. A derivation of � from ⌧ is a possibly empty sequence of derivation
steps of the form ⌧)↵1)↵2)...)�, which is also written as ⌧

⇤)�. A derivation is
left-most if at each step its left most nonterminal is rewritten. A derivation from the
start symbol is called a sentential form which is a sequence of terminals or nonterminals.
A sentential form consisting only of terminal symbols is called a sentence.

A sentence is ambiguous if it has more than one left-most derivation. Disambigua-
tion is a process which eliminates derivations. A disambiguation is said to be safe if it
does not remove all derivations. Therefore, a safe disambiguation mechanism does not
change the underlying language generated by a grammar.

4.2. Motivation 101

4.2.1 Limitations of SDF

SDF features three meta notations >, left , and right , which specify the precedence,
left and right associativity of operators, respectively [53]. Having A ::= � > B ::= ↵

5

disallows the derivation steps of B ::= ↵ from all B’s in �. A ::= A↵ {left} means that
the A in A↵ should not derive A ::= A↵ itself. Right associativity is the same as the
left, but applied on the right-most A. There are three problems with the semantics of
SDF6 disambiguation filters:

• It is unsafe: A filter is applied even when there is no ambiguity. For example,
having (E ::= E

^
E > E ::= �E) rejects the string 1 ^ - 1, even though

this string is not ambiguous. This is because, based on the semantics of SDF, �E

cannot appear under any of the E’s in the body of the rule. SDF also allows the
user to specify under which nonterminal the filtering should be carried out. For
example, the user can specify that the filtering should only be carried out under
the first E in the body of the rule, written as (E ::= E

^
E <0> > E ::= �E) in

SDF. This solves the problem for these two operators, but this explicit selection
of the filtered nonterminal is transitively applied to all levels below, even where
it should not be applied, which can produce wrong results.

• It is incomplete: The precedence relationship in SDF is defined as a one-level
relationship. As a result, it cannot resolve ambiguities in some cases that
require deeper than one level searching in the derivation trees. For example,
a left-associative binary operator having higher priority than a prefix unary
operator remains ambiguous. The problem with one-level filtering is explained
in Section 4.2.2.

• It is limited to directly recursive rules. Although SDF has some extensions to
filter priority modulo chain rules, general indirect recursion is not supported.
Rules such as E ::= E A, where the right-most nonterminal, A, can eventually
produce an E at the right-most position cannot be filtered using SDF priorities.

These limitations are encountered in practice. For example, the if-then-else operator
in functional programming languages such as OCaml and Haskell acts as a unary
operator with lower priority than left-associative binary operators. Indirect recursion
also happens, for example, in the reference grammar of OCaml.

4.2.2 Problem with One-level Filtering

To illustrate the problem with one-level filtering, we consider the if-then-else con-
struct in OCaml, which has lower priority than +. For example, the expression
1 + if x then 2 else 3 + 4 is interpreted as 1 + (if x then 2 else (3 + 4)) rather than
5 SDF adheres to algebraic notations and writes A ::= � as � ! A. In this chapter we use the more

common ::= notation.
6 We describe here SDF version 2 [53] but we simply call it SDF.

102 Chapter 4. Safe Specification of Operator Precedence Rules

E

E E+

E E+

Eif

(a) (E + ((if E) + E))

E

E E+

E E+

Eif

(b) (E(E + (if E)) + E)

E

E E+

Eif

E E+

(c) (E + (if (E + E)))

Figure 4.1: Parse trees from parsing 1 + if 2 + 3.

(1 + (if x then 2 else 3)) + 4. For notational simplicity, the if...then..else part is
replaced with if .

E ::= E + E

| if E

|Num

Figure 4.1 shows the parse trees resulting from parsing the input 1 + if 2 + 3. For a
more compact presentation the terminals (1, 2 , 3) are removed.

In SDF, the precedence and associativity rules for disambiguating this case will be:

E ::= E + E {left} (Rule 1)
E ::= E + E > E ::= if E (Rule 2)

The disambiguation is not safe in this case: when Rule 2 is applied, E ::= if E is
removed under both E’s, which rejects a sentence such as 1 + if 2 + 3. We can make it
safe by changing Rule 2 into (E ::= E + E <0> > E ::= if E). Now if we examine
the effect of the definitions on the shown parse trees in Figure 4.1, we can observe
that the left-associativity removes the derivation in Figure 4.1a. However, none of
the definitions affect the remaining two parse trees, and thus the disambiguation fails.
The reason that SDF definitions fail to disambiguate this grammar is that patterns
of depth greater than two are required. The first E in the body of E ::= E + E can
first derive E ::= E + E and then the second E in the body of the newly derived rule
derives E ::= if E. In other words, the following derivation

E) E + E) E + E + E) E + if E + E

remains, which is not rejected by any of the defined patterns, but it is semantically
incorrect. The derivation in Figure 4.1c is correct and is the only one that should
remain after disambiguation.

For this grammar, a two level filtering can solve the problem, but in general, we
may need filters of arbitrary depth. For example, consider the following grammar

4.3. Syntax and Semantics for Operator-style Disambiguation 103

E

E E+

E E+

E E^

E

(a) (E(E + E(E ^ (if E))) + E)

E

E E+

E E+

E E^

E E^

E

(b) (E(E + E(E ^ (E ^ E(if E)))) + E)

Figure 4.2: Some expression grammars require filters of arbitrary depth.

which has an additional expression rule E ::= E
^

E , where ^ is right associative
and has the highest priority.

E ::= E
^

E

| E + E

| if E

|Num

To illustrate why filters of arbitrary depth may be needed, consider the following
derivation:

E) E + E) E + E + E) E + E
^

E + E
⇤) E + E

^
E

^
...

^
E + E

As can be seen, after deriving E + E, the second E may unboundedly produce E
^

E,
leading to derivation trees with wrong precedence levels. Figure 4.2 shows two of such
derivations. For disambiguating such cases, either an infinite number of filters or a
mechanism to define filters with variable length is needed. It is not trivial to implement
a variable length filter during parsing and it is very likely that the performance of
such an implementation will suffer.

We have now established the gap in resolving ambiguities in expression grammars.
In the following we propose a general solution that solves the aforementioned limitation,
and at the same time improves other quality aspects.

4.3 Syntax and Semantics for Operator-style Disambiguation

Expression-style grammar rules display a specific kind of ambiguity, which we call
operator-style ambiguity. We characterize and define two complementary and safe

104 Chapter 4. Safe Specification of Operator Precedence Rules

ambiguity removal schemes for exactly this kind of ambiguity: priority and associativity.
Note that this does not imply that our mechanisms completely disambiguate any
expression grammar. There may be other ambiguity hidden in the same rules with
different causes. This other ambiguity should be left untouched for safety.

4.3.1 Definitions

Operator-style ambiguity
An operator-style-ambiguity exists if for some grammar nonterminal E there exist two
leftmost derivations

xEµ) x�Eµ
⇤)

lm
xvEµ) xvE↵µ (1)

xEµ) xE↵µ) x�E↵µ
⇤)

lm
xvE↵µ (2)

which contain identical sub-derivations �
⇤)

lm
v.

The first derivation in the above definition effectively corresponds to the binding
x�(E↵)µ and the second derivation corresponds to binding x(�E)↵µ. Both derivations
correspond to the same sentential form, but between them the order of applying E↵

and �E has been inverted. Note that it may happen that ↵ = �, but only for binary
recursive rules, such as E ::= E�E.

The benefit of the above characterization of operator-style ambiguity is that we
use pairs of derivations that specifically allow an arbitrary distance (⇤)) between
application of E↵ and �E. This creates the potential for supporting deeper ambiguities,
and indirectly recursive expression grammars. In addition, we now have defined clearly
what it means for operator-style ambiguity removal to be safe: never both derivations
(1) and (2) may be disallowed at the same time, and therefore, no sentence may be
removed from the language.

Given a grammar which contains operator-style ambiguity, the language engineer
has to specify which derivation should be disallowed. We first describe priority-based
ambiguity removal.

Priority-based ambiguity removal via >

The user specifies a strict partial order > (irreflexive, antisymmetric and transitive)
between the alternatives of E. If �E > E↵, derivations of the form (1) are disallowed.
Vice versa, if E↵ > �E, we choose to disallow derivations of the form (2). Note that
we do not intend to apply the partial order on other cases of ambiguity, only for
derivations of the form (1) and (2), it serves to choose one over the other.

This definition correlates with the common use of operator priority to specify
disambiguation. For example choosing the first derivation gives the ↵ “operator”
priority over the � “operator”. Since all derivations �

⇤)v are available for both choices,
priority disambiguation does not put constraints on other disambiguation choices.

4.3. Syntax and Semantics for Operator-style Disambiguation 105

The fact that > is asserted to define a strict partial order is an important detail
for satisfying the safety requirement. If ↵ > � and � > ↵ hold at the same time,
both derivations above are disallowed, which removes sentences from the language
and violates the safety property. Similarly ↵ > ↵ is not allowed. The fact that > is
allowed to be partial implies that under-specified orderings may leave some operator
precedence ambiguity intact. This means that it is up to the language engineer to
fully declare what the relative precedence of operators is, and the priority relation can
be developed incrementally.

There are, however, common situations in which we do not want to use or cannot
enforce a strict partial order as required by >. In particular, if an expression-style
rule has an alternative with both immediate left and right recursion, E ::= E�E,
then it is not possible to specify priority with itself, since > must be irreflexive and
antisymmetric. More generally, there may be two alternatives E ::= E�E | E�E where
� and � are required to have a symmetric relation (such as + and � in arithmetic
expressions), which also contradicts a strict partial order.

Symmetric Operator-style Ambiguity
Instantiating ↵ and � from derivations (1) and (2) above as � = E� and ↵ = �E both
rules are now binary recursive. We can instantiate the derivations (1) and (2) above
as:

xEµ) xE�Eµ
⇤)

lm
xvEµ) xvE�Eµ (1’)

xEµ) xE�Eµ) xE�E�Eµ
⇤)

lm
xvE�Eµ (2’)

Also, taking � = E� and ↵ = �E we can write derivations (1) and (2) above as

xEµ) xE�Eµ
⇤)

lm
xvEµ) xvE�Eµ (1”)

xEµ) xE�Eµ) xE�E�Eµ
⇤)

lm
xvE�Eµ (2”)

Symmetric operator-style ambiguity is a special case of operator-style ambiguity in
which both rules are binary. Often we have � = �, although this is not necessary. To
see why we call the ambiguity symmetric, consider the example where � = + and
� = �, (10) and (20) both derive y � y + y and, (100) and (200) both derive y + y � y.
Then, (10) and (100) represent y � (y + y) and y + (y � y), respectively.

Associativity-based ambiguity removal via left and right

We define two binary relations left and right between binary alternatives, for which
holds that

(left \ right = ;) ^ (left \ 0
>

0= ;) ^ (right \ 0
>

0= ;)

In other words, >, left and right are mutually exclusive relations.

106 Chapter 4. Safe Specification of Operator Precedence Rules

When (↵, �) 2 left , associativity-based ambiguity removal disallows the derivations
of the form (10), which prefers the grouping x(w�E)�Eµ over w�(E�E)µ. Similarly,
when (↵, �) 2 right , associativity-based ambiguity removal disallows the derivations
of the form (20).

The restriction of >, left and right being mutually exclusive is a sufficient restriction
for guaranteeing safety since now only one relation is allowed to be active at the same
time and each of the relations is safe in itself.

Since >, left and right need to define an order between all alternatives of an
expression grammar, with potentially many rules, we cannot expect the language
engineer to specify each combination manually. This problem is dealt with in our
formalism, which is described later, by providing automatic transitive closure for >

and a computation akin to Cartesian product for left and right groups of rules.
In summary, the three relations >, left and right allow a language engineer to

remove all operator-style ambiguity of the form in Definition 1, either using an anti-
symmetric, irreflexive, transitive relation >, or using one of the possibly reflexive,
possibly symmetric and possibly non-transitive left and right relations as long as the
three relations exclude each other. Note that in theory all operator-style ambiguity
can be removed by simply asserting a full ordering among all recursive alternatives
using > or by putting all rules in a single left or right group, but this has no practical
value. Instead, complete disambiguation of the operator-style ambiguity in a language
definition needs to be considered language-by-language (see Section 4.5).

4.3.2 Pattern Notation for Illegal Derivations

As an intermediate step we now introduce a short notation for the derivations
(1), (2), (10) and (20), called patterns. Each pattern is specific for a given gram-
mar and combination of two alternative rules. In the next section, we demonstrate
how to compute a unified set of patterns from a context-free grammar augmented with
(>, left , right) relations, and how to use this set of patterns to compute a grammar
transformation that implements the above semantics.

Operator ambiguity removal pattern
An operator ambiguity removal pattern (pattern for short) is a 4-tuple of the form
(head , parent , i, child), where head is the nonterminal head of the expression grammar
for which the precedence rules are defined, parent is an alternative of head , i is the
index of a nonterminal in the body of parent , and child is the alternative that should
be filtered from the nonterminal at position i of parent . The nonterminal at position
i is called the filtered nonterminal.

In this chapter we write a pattern as (E, ↵ q�\�) where E is the head, and ↵ q� and
� are the parent and the child alternatives, respectively, and the filtered nonterminal
is identified by a dot before it.

The semantics of patterns are the same as derivations discussed above. For
example, the derivations (1) and (2) can be expressed as the patterns (E, � qE\E↵) and

4.3. Syntax and Semantics for Operator-style Disambiguation 107

Table 4.1: The semantics of the > operator in terms of patterns.

> E ::= E↵2E E ::= E↵2 E ::= ↵2E

E ::= E↵1E (E, qE↵1E\E↵2E) (E, E↵1 qE\E↵2) (E, qE↵1E\↵2E)

(E, E↵1 qE\E↵2E)

E ::= E↵1 (E, qE↵1\E↵2E) —– (E, qE↵1\E↵2)

E ::= ↵1E (E, ↵1 qE\E↵2E) (E, ↵1 qE\E↵2) —–

Table 4.2: The semantics of left associativity

left E ::= E↵1E E ::= E↵2E

E ::= E↵1E (E, E↵1 qE\E↵1E) (E, E↵1 qE\E↵2E)

E ::= E↵2E (E, E↵2 qE\E↵1E) (E, E↵2 qE\E↵2E)

(E, qE↵\�E), respectively. Note that patterns are not implementation mechanisms.
In Section 4.4 we show a grammar rewriting algorithm to implement patterns.

We now explain informally how to arrive at a set of patterns starting from a context-
free grammar augmented with (>, left , right). Table 4.1 documents the semantics of
priority in terms of patterns that are generated for each combination of left, right and
binary recursive expression rules. Note that for binary rules sometimes two patterns
are generated for the same combination of rules. The semantics of left in terms of the
patterns is expressed similarly in Table 4.2. We leave the table for right associativity
to the reader.

As can be seen, not all combinations of expression rules generate patterns. Exactly
when the combination of rules would not be ambiguous and filtering would be unsafe
no pattern is generated. This corresponds to the derivations (1), (2), (10), (20) using
specific combinations of left and right recursive rules. In Section 4.4 we implement
these tables.

4.3.3 Defining >, left and right in Practice

The following three features, which are taken from the design of SDF [94], are described
here for the sake of completeness. They are essential for having concise expression
grammars, as mentioned above.

Firstly, our formalism automatically transitively (but not reflexively) closes the
> relation precedence operator. As a result, when the language engineer defines
p1 > p2 and p2 > p3 we automatically derive p1 > p3. Furthermore, when they
accidentally define p1 > p1, or both p1 > p2 and p2 > p1, either directly, or indirectly

108 Chapter 4. Safe Specification of Operator Precedence Rules

E ::= E Arg+ // function application
|� E // unary minus
| E ⇤⇤E
| E + E

| E � E

| if E then E else E

|Id
Arg ::= E

| ⇠ label : E

Operator Assoc

function application –
unary minus –
** right
+, - left
if-then-else –

Figure 4.3: Excerpt from OCaml’s expression grammar with “challenging” operator
precedence.

via the closure, an error message must be produced. Now we can allow the short-hand
p1 > p2 > p3 to obtain elegant definitions. Note that the transitive closure step is
carried out before generating the actual patterns. The actual patterns are generated
from the calculated priority pairs only when is there is an operator-style ambiguity, as
defined in Section 4.3.2 and documented in Table 4.1.

Secondly, many programming languages have groups of binary operators that have
the same precedence level. For example, in E ::= E + E | E � E both operators have
the same precedence level but should be left associative with respect to each other.
We define a left associative group containing a set of rules (p1| . . . |pn)(left) to generate
a set of associativity declarations:

[

1i,jn

pi left pj ,when (pi, pj) /2 right ^ (pi, pj) /2 0
>

0 ^(pj , pi) /2 0
>

0

We do similarly for right associative groups. The groups simply compute the Cartesian
product, but do not add tuples that would contradict a relation defined elsewhere.
Finally, associativity groups may occur in the middle of a priority chain, as in
(p1| . . . |pn)(A) > (q1| . . . |qn)(B). In this case > will be extended by combining each
element of the two groups pairwise (and before closure). An additional safety feature
(which is novel) is to simply statically check for >, left and right to be non-overlapping,
as required.

Finally, some expression languages disallow certain direct nesting while indirect
nesting is allowed. For example 1 == 2 == 3 should not be allowed while true == (2 == 2)

is allowed. Normally we have to introduce a new expression nonterminal just to
disallow this direct nesting. So, in order to be able to write concise grammars we
add non�assoc declarations with the following semantics. If p1 non�assoc p2, then
(p1 left p2) ^ (p1 right p2). Notice that non�assoc declarations are not safe: they
intentionally and explicitly remove sentences from the language as generated by
the grammar. We extend the associativity group semantics with non�assoc as well.

4.4. Grammar Rewriting to Exclude Illegal Derivations 109

E ::= E Arg+ (non�assoc)
>� E

> E ⇤⇤E (right)

>(E + E | E � E) (left)

> if E then E else E

|Id
Arg ::= E

| ⇠ label : E

Figure 4.4: Example definition of challenging operator precedence rules.

Necessarily, any static safety checks on left and right need to be done before the tuples
from non�assoc have been added.

To illustrate the syntax of our approach we use the example grammar in Figure 4.3
and its priority and associativity properties, which both are taken from the OCaml
reference manual7. The grammar and the precedence rules can now be written as in
Figure 4.4. We use ::=, >, left , right and non�assoc meta notation to encode both
the syntax and the precedence table in one go.

4.4 Grammar Rewriting to Exclude Illegal Derivations

In this section we present an algorithm for transforming a grammar accompanied with
a set of priority and associativity rules to a grammar that prevents the generation of
illegal derivations (see figures 4.5 and 4.6).

1. We translate the definitions to a set of patterns (generatePatterns).

2. We apply these patterns to transform the grammar (rewriteGrammar)

The generation of patterns in Figure 4.5 follows exactly the semantics as defined earlier
in tables 4.1 and 4.2. extractDefinitions produces a set of binary tuples which
represent the associativity and priority declarations in a grammar. This set is an over-
approximation of the patterns that will be generated later, since they are not specific
for positions in the parents yet and may be ignored entirely if no ambiguity may arise.
For a specific nonterminal, rightRecursive and leftRecursive compute which
other nonterminals contribute to an eventual left/right recursion of that nonterminal.
The generatePattern function then filters the extracted definitions making sure to
introduce a pattern only where left recursion tangles with right recursion and vice
versa, i.e., simulating exactly the priority and associativity semantics of Section 4.3.
7 http://caml.inria.fr/pub/docs/manual-ocaml-4.00/expr.html

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/expr.html

110 Chapter 4. Safe Specification of Operator Precedence Rules

function extractDefinitions(G)
0
>

0 0
>

0 [{(pi, qj)|(p1 . . . pi)(A) > (q1 . . . qj)(B) 2 G} . expand the groups
P {(p1, p2) | p1 > p2 2 G}+ . note the transitive closure
L {(p, p) | p left p 2 G}, L

0 L

R {(p, p) | p right p 2 G}
L L [

S
0i,jn{(pi, pj) | (p1| . . . |pn)(left) 2 G, (pi, pj) /2 R}

R R [
S

0i,jn{(pi, pj) | (p1| . . . |pn)(right) 2 G, (pi, pj) /2 L
0}

return P [L [R

function rightRecursive(G, N) . leftRecursive is elided for brevity
R {N}
while R changes do R R [{X|X ::= ↵Y 2 G, Y 2 R}
return R

function plain(x) = x in which all Ni are replaced by N .

function rules(G, N) = {�|N ::= � 2 G}

function fresh(N) = Ni where the integer index i has not been used before.

function generatePatterns(G)
D extractDefinitions(G)
R {}
for all (A ::= X↵, A ::= �Y) 2 D do

if X 2 leftRecursive(G, A) ^ Y 2 rightRecursive(G, A) then
R R [{(A, •X↵, �Y)}

for all (A ::= ↵X, A ::= Y �) 2 D do
if X 2 rightRecursive(G, A) ^ Y 2 leftRecursive(G, A) then

R R [{(A, ↵ • X,Y �)}
return R

Figure 4.5: Translating priority and associativity definitions to safe patterns.

Given the set of patterns generated by generatePatterns, we can now transform
the grammar using the rewriteGrammar function as shown in Figure 4.6. It is
important to note that we use indexed nonterminals names, such that when building
parse trees, no new names for nonterminals are generated (indices can be removed
easily). As each rewrite action can only remove some alternatives, no new shapes
of rules are created by the algorithm (no additional chain rules). This preserves the
shape of the parse forest as the language engineer specified in the original grammar.

The algorithm first deterministically generates a set of nonterminals to implement
single-level filtering. Lines 2–10 reserve fresh nonterminal names. Lines 13–15 change
existing rules to use the new nonterminals at the right positions. Lines 18–22 generate

4.4. Grammar Rewriting to Exclude Illegal Derivations 111

1: function RewriteGrammar((G, P))
2: New ;
3: Slots[] ; . an empty map from indexed nonterminal names to slots

4: . Stage 1, reserve nonterminal names
5: for all patterns (Y, � · Y �, �) in P do
6: Yi fresh(Y)
7: Slots[Yi] � · Y �

8: add Yi to New
9: G1 G

10: . Stage 2, update use sites
11: for all patterns (Y, � · Y �, �) in P do
12: if Slots[Yi] = � · Y � then
13: replace Y ::= �Y � in G1 with Y ::= �Yi�

14: . Stage 3, add definitions for new nonterminals
15: for all Yi in New do
16: if Slots[Yi] = � · Y � then
17: for all Y ::= ↵ in G1 do
18: if 6 9 a pattern (Y, � · Y �, �) 2 P with plain(↵) = � then
19: add Yi ::= ↵ to G1

20: . Stage 4, look for nested ambiguity
21: (G00

, G
0) (G1, G)

22: while G
0 6= G

00 do
23: (G0

, New0) (G00
, New)

24: for all Yi 2 New0 do
25: if Slots[Yi] = ·Y � then
26: for all grammar rules Yi ::= µW 2 G

0 do
27: if plain(W) = Y ^ 9Z (plain(Z) = Y

28: ^ W 2 RightRecursive(G1, Z)) then
29: for all patterns (Y, ·Y �, �) do
30: (G00

, U) ApplyPattern(G00
, W, �, Yi ::= µW)

31: (Slots[U], New) (Slots[W], New [{U})

32: if Slots[Yi] = � · Y then
33: for all grammar rules Yi ::= Wµ in G

00 do
34: if plain(W) = Y ^ 9Z (plain(Z) = Y

35: ^ W 2 leftRecursive(G1, Z)) then
36: for all patterns (Y, � · Y, �) do
37: (G00

, U) applyPattern(G00
, W, �, Yi ::= Wµ)

38: (Slots[U], NT) (Slots[W], New [{U})

39: return G
00

Figure 4.6: Core algorithm that rewrites a grammar, applying patterns to remove
alternatives from indexed nonterminals.

112 Chapter 4. Safe Specification of Operator Precedence Rules

1: function ApplyPattern(G, W, �, V ::= µ
0
W

0
⌧

0))
2: Yalts = ;
3: for all ⇢ 2 rules(G, W) do
4: if plain(⇢) 6= plain(�) then add ⇢ to Yalts

5: if 9Z 2 G : (plain(Z) = plain(W)) _ (rules(G, Z) = Yalts) then
6: Y

0 Z

7: else
8: Y

0 fresh(W)
9: for all � 2 Yalts do add Y

0 ::= � to G

10: remove V ::= µ
0
W

0
⌧

0 from G

11: add V ::= µ
0
Y

0
⌧

0 to G

12: return (G, Y
0)

Figure 4.7: The ApplyPattern helper function.

definitions for the new nonterminals by cloning the original while leaving out the
filtered alternative. Then, in a fixed point computation (lines 24–42) we treat each
level of newly generated nonterminals to a procedure for eliminating deeply nested
cases. For left recursive positions (lines 29–35), we make sure that a nonterminal
is generated which cannot derive a given postfix operator at arbitrary depth at the
right-most position which has lower priority. For right recursive positions we do the
opposite (lines 36–42). The applyPattern helper function in Figure 4.7 does the
same as lines 13–42 for the first level, but it includes an explicit check for the existence
of generated nonterminals to reuse. This check is necessary for termination as well
as efficiency. The fixed point computation will terminate because a new nonterminal
is only created in ApplyPattern if a nonterminal which defines the same subset of
alternatives does not already exist. Since every step removes an alternative, eventually
—in a worst case scenario— all singleton sets will have been generated and the algorithm
terminates.

We illustrate the rewiring algorithm using the following example (grammar G):

E ::= E + E (left) > iE | a;

For this grammar, the > and left relations generate the following patterns (see
Figure 4.5):

(E, ·E + E, iE)
(E, E + ·E, E + E)

Now the RewriteGrammar function in Figure 4.6 can start. Lines 2–15 create the
following grammar rule in G1, applying the two patterns above and allocating two
fresh nonterminals:

E ::= E1 + E2 | iE | a

Then, at lines 18–22 we define the two new nonterminals and extend G1 with their

4.5. Validation Using the OCaml Case 113

definition:
E ::= E1 + E2 | iE | a

E1 ::= E1 + E2 | a

E2 ::= iE | a

Finally we search for nested cases in lines 25–42. The outer loop executes twice. The
first time, E1 results in a new nonterminal E3, and E2 does nothing. The second time
nothing changes and the algorithm terminates with the final grammar:

E ::= E1 + E2 | iE | a

E1 ::= E1 + E3 | a

E2 ::= iE | a

E3 ::= a

4.5 Validation Using the OCaml Case

We have conducted an extensive validating experiment. The goal is to show that
our approach is indeed more powerful than SDF, and to provide evidence that the
algorithm works for complicated, real-world examples.

4.5.1 Method

For this case study, we selected the OCaml (.ml) files in the test suite directory of
the source release of OCaml 4.00.1. OCaml features the kind of ambiguity that SDF
filtering semantics cannot solve and our method should be able to solve. The test suite
contains numerous examples of different sizes and complexity, testing the language
features. We believe the test suite is a good choice for testing our parser on safety
and completeness, as the suite rigorously tests the language itself. The suite contains
387 files of which 158 (in the tool-ocaml folder) contain only source code comments
that document expected output (assembler code) of the compiler. The other 229 files
are examples of OCaml code that exercise all features of the language in different
combinations to test the compiler.

For this case study, we used the Rascal meta-programming language [52] to
define the OCaml grammar. We applied the operator precedence rewriting technique
introduced in this chapter on the resulting grammar, and used the rewritten grammar
to parse the input files. We used our implementation of the GLL parsing algorithm [78]
for parsing the OCaml input files. The OCaml grammar written in Rascal is available
at the GitHub repository8 of this case study.

Our goal is to provide evidence of the equivalence between the original OCaml
parser and the parser generated from our approach. This means that no parse error
should be produced by our parser if no parse error was produced by the original OCaml
parser, and the generated parser should produce single parse trees (no ambiguities),
and that the structure of the abstract syntax trees should be exactly the same.
8 https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment/

http://www.rascal-mpl.org
https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment/

114 Chapter 4. Safe Specification of Operator Precedence Rules

Ptop_def
[

structure_item ([1,0+0]..[1,0+5]) ghost
Pstr_eval
expression ([1,0+0]..[1,0+5])

Pexp_apply
expression ([1,0+1]..[1,0+2])

Pexp_ident "+"
[

<label> ""
expression ([1,0+0]..[1,0+1])

Pexp_constant Const_int 1
<label> ""
expression ([1,0+2]..[1,0+5])

Pexp_apply
expression ([1,0+3]..[1,0+4])

Pexp_ident "*"
[

<label> ""
expression ([1,0+2]..[1,0+3])

Pexp_constant Const_int 2
<label> ""

expression ([1,0+4]..[1,0+5])
Pexp_constant Const_int 3

]]]

(
+
(

1

*
(

2
3

)
)

)

Figure 4.8: The original AST print from the OCaml parser (left) and the stripped
version containing only the structure and the labels (right).

To compare parse trees we adapted both the parser from the OCaml compiler and the
output of our parser to produce exactly the same bracketed forms. The resulting files
are then compared with diff, ignoring whitespace, to check for equivalence. It should
be noted that the ASTs from the OCaml compiler were normalized, for example flat
lists were converted to cons list. We performed the same transformation steps on our
ASTs.

OCaml programs are basically composed of groups of expressions. The AST pro-
duced by the OCaml parser is complex and contains many features. However, because
of the expression-like nature of the language, most of the unnecessary information can
be removed, resulting in a bracketed form. We modified OCaml’s default AST printer9
to produce the bracketed form. For example, the original AST and its bracketed form,
resulting from parsing the string 1+2*3 is shown in Fig. 4.8. The bracketed forms of
all the examples we examined are available on GitHub10.

For conducting the experiments we wrote a Rascal grammar definition using the
notations defined in this chapter. The grammar is obtained from the OCaml reference
9 The parsing/printast.ml file in the OCaml source release.
10 https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment

https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment

4.5. Validation Using the OCaml Case 115

manual11. We tried to be as faithful as possible to the grammar in the reference
manual, avoiding changes as much as possible.

4.5.2 Results

The priority and associativity properties, retrieved from the precedence tables in the
language manual, resulted in a grammar that uses > and left , right and non�assoc
declarations. These declarations result in 830 ambiguity removal patterns. The
rewriting was performed as explained in Section 4.4.

The rewritten grammar provided us with a very close over-approximation of what
the OCaml language designers had in mind. Only a handful of ambiguities, such as
the dangling-else ambiguity and identifier conflicts with keywords, remained, which
were resolved using other ambiguity resolution features of Rascal.

We have performed the parsing and comparison process for the given 229 number
of files in the case study. 215 files parse correctly and without ambiguity, of which,
182 files (84%) generate ASTs that are identical in both versions. This means that our
parser produces the same grouping as the original OCaml parser, providing evidence
for the correctness of our algorithms. For the rest (16%), our manual examination of
the diff files shows that the differences are minor and are caused by AST de-sugaring
and normalization steps in the OCaml compiler, and are not related to the operator
precedence.

4.5.3 Discussion and Threats to Validity

One of the difficulties in this case study was how to compare ASTs. The ASTs from
the OCaml parser, in some places, are significantly different from the grammar in the
OCaml language specification. The reason is that the ASTs have been normalized
for easier processing in later phases of the compiler. For example, flat argument
lists are converted to cons lists, presumably to simplify the currying and partial
function application features in OCaml. These changes are not documented in
the reference manual. We examined the ASTs produced by the OCaml parser to
deduce the normalization steps. We then mimicked these normalization steps as AST
transformations before outputting the final bracketed form.

Moreover, OCaml has some language extension and syntactical varieties that are
not documented in the language specification manual. The use of semicolon was
particularly confusing. Semicolon is used in OCaml to separate expressions, defined
by the rule E ::= E ; E which is right associative. However, in the inputs we parsed,
we observed several occasions in which semicolon ended an expression without being
followed by another expression. We resolved this issue by allowing optional semicolons
at the end of expressions.
11 http://caml.inria.fr/pub/docs/manual-ocaml-400/language.html

http://caml.inria.fr/pub/docs/manual-ocaml-400/language.html

116 Chapter 4. Safe Specification of Operator Precedence Rules

4.6 Related Work

Besides the AJU and SDF methods which have been discussed in previous sections,
there are a number of other work which present similar ideas. Aasa [1] proposes a
framework for the specification of operator precedence for implementing programming
languages. To the best of our knowledge, this is the only declarative approach to
operator precedence that supports deeper patterns. In this work, a parse tree is
considered precedence correct based on the weights given to operators in its sub-trees.
This work correctly recognizes that, for example, a unary operator can be placed under
the right most operand of a binary rule, regardless of their precedence. Our approach
in defining precedence semantics is different in that instead of focusing on parse trees,
we defined the semantics of precedence as derivations. The main shortcoming of
Aasa’s work is that operators must be unique, e.g., there cannot be a unary minus
and a binary minus operator at the same time. In addition, there is no discussion of
indirect recursion. Similar to our work, the disambiguation technique in Aasa’s work
is implemented as a grammar rewriting.

Thorup [83] presents an algorithm for transforming an ambiguous grammar with
a set of partial illegal parse trees to a grammar excluding those derivations. The
rewriting technique in this work expects a set of illegal parse trees, and in case the set is
unbounded, as in Section 4.2.2, a set of parse forests with cycles. Then, the algorithm
works bottom up, generating all production rules which do not result in any of those
illegal parse trees. The resulting grammar of this step should go through another
transformation to be simplified. The problem of how to find sufficient illegal parse
trees is addressed in another work by the same author [82]. The rewriting technique
presented by Thorup is not directly aiming at providing a declarative disambiguation
mechanism, rather it is more an implementation mechanism. It also covers a wider
range of ambiguities provided that enough illegal parse trees are given, but the overall
procedure is complicated. We are not aware of any practical parser generator that
uses this technique.

Visser [92] presents an approach for translating context-free grammars with pri-
orities to character class grammars. This work describes a grammar transformation
to give semantics to the SDF2 precedence relations. In this work, in a first step, a
grammar’s nonterminals are replaced by explicit sets of identities (integers) of its
alternatives. Then, elements are removed from these sets based on the precedence
relations. Since every rule is identified, the resulting parse trees do not show the
signs of grammar transformation. In contrast to our work, character class grammars
do not guarantee to preserve the language and do not support indirect recursion.
Although character class grammars are formalized quite differently from our approach
that directly manipulates grammars using indexed nonterminals, both methods use
grammar transformation to implement the precedence relations.

4.7. Conclusions 117

4.7 Conclusions

Constructing a parser that correctly implements operator precedence rules, for a
language such as OCaml, using its ambiguous reference manual and the set of operator
precedence rules is not possible without resorting to some manual grammar transfor-
mation. In this chapter, we defined a parser-independent semantics for operator-style
ambiguities that is safe and is able to deal with deeper level and indirect precedence
ambiguities. We evaluated our approach using an experiment by comparing the output
of the standard OCaml compiler front-end with the output of our own parser, gener-
ated from Rascal. The result is promising and shows that our approach is powerful
enough to parse OCaml.

For other functional programming languages, such as Haskell and F#, which
have similar expression grammars, our approach is expected to be equally beneficial.
Although the focus of this chapter is mainly on generalized parsing algorithms, we
should also emphasize that our approach can be used by any parser generator that
supports left recursion.

Chapter 5

Operator Precedence for

Data-dependent Grammars
1

Summary. Constructing parsers based on declarative specification of operator
precedence is a very old research topic, and there are various existing approaches.
However, these approaches are either tied to a particular parsing technique, or cannot
deal with all corner cases found in programming languages.

In this chapter we present an implementation of declarative specification of operator
precedence for general parsing that (1) is independent of the underlying parsing
algorithm, (2) does not require any grammar transformation that increases the size of
the grammar, (3) preserves the shape of parse trees of the original, natural grammar,
and (4) can deal with intricate cases of operator precedence found in functional
programming languages such as OCaml.

Our new approach to operator precedence is formulated using data-dependent
grammars, which extend context-free grammars with arbitrary computation, variable
binding and constraints. We implemented our approach using Iguana, a data-dependent
parsing framework, and evaluated it by parsing Java and OCaml source files. The
results show that our approach is practical for parsing programming languages with
complicated operator precedence rules.

1 This chapter was originally published as: A. Afroozeh and A. Izmaylova. Operator Precedence
for Data-dependent Grammars. In Proceedings of the ACM SIGPLAN Symposium/Workshop on
Partial Evaluation and Program Manipulation, PEPM ’16, pages 13–24. ACM, 2016.

119

120 Chapter 5. Operator Precedence for Data-dependent Grammars

expr ::= expr '.' field
| expr expr
| '-' expr
| expr '*' expr
| expr '+' expr
| expr '-' expr
| 'if' expr 'then' expr
| expr ';' expr
| '(' expr ')'

Operator Associativity

. –
function appl left
- (unary) –
* left
+ - left
if –
; right

Figure 5.1: A simplified excerpt of OCaml expression grammar (left), and its corre-
sponding table of operator precedence (right).

5.1 Introduction

Expressions are basic blocks of programming languages, and perhaps, one of the
most difficult parts when it comes to parsing. In reference manuals of programming
languages it is common to define expressions using a natural, ambiguous grammar,
and specify the precedence and associativity of operators in a table. For example,
consider an excerpt of OCaml expression grammar [58] in Figure 5.1 (left) and its
accompanying precedence table (right). Constructing parsers for such concise and
natural grammar specifications is challenging.

A common approach to unambiguously parse expression grammars is to encode
operator precedence rules by rewriting the grammar. This rewriting, which introduces
a new nonterminal for each precedence level, is not trivial for grammars of real
programming languages, and leads to large grammars. This rewriting is particularly
problematic in parsing techniques that do not support left recursion, as the resulting
parse trees are considerably different from the ones of the original grammar.

Instead of rewriting the grammar, it is more convenient to use an ambiguous gram-
mar and a set of declarative constructs to specify operator precedence. Constructing
parsers based on declarative specification of operator precedence is a very old research
topic, dating back to the work of Floyd [23] on operator precedence grammars in 1963.
Floyd’s operator precedence grammars are a limited subset of deterministic grammars,
and are mainly used in handwritten recursive-descent parsers for efficient parsing of
expressions.

One of the most well-known operator precedence techniques is presented by Aho et
al. [7]. This approach, which is based on LR parsing and implemented in Yacc [44],
maps operator precedence to shift/reduce conflicts. The Yacc-style operator precedence
is efficient and powerful. For example, the parser for OCaml, which has one of the
most complicated expression grammars, is written using ocamlyacc, an OCaml port of
Yacc.

When machine resources were scarce, only deterministic parsing techniques were
considered. The success of Yacc [44], and its underlying LR parsing theory [17,54],
that has been developed in the 70s, enabled generation of linear parsers from a BNF

5.1. Introduction 121

expr ::= expr '.' field
> expr expr left
> '-' expr
> expr '*' expr left
> (expr '+' expr | expr '-' expr) left
> 'if' expr 'then' expr
> expr ';' expr right
| '(' expr ')'

Figure 5.2: A simplified excerpt of OCaml expression grammar augmented with
declarative operator precedence constructs.

grammar specification. Deterministic parsing techniques are efficient, and guarantee
that there will be no ambiguity left in the grammar. However, deterministic parsing
techniques are not expressive enough to support the syntax of programming languages
out of the box. This means that the grammar writer needs to massage a grammar
into a deterministic form.

As machines became more powerful and the need for front-ends in areas other
than traditional compiler construction increased, more expressive parsing techniques
were considered. For example, in areas such as source code analysis and development
of domain-specific languages (DSLs), it is desirable to quickly construct (prototype)
a parser. General parsing algorithms [18, 78, 85] can deal with any context-free
grammar, and therefore, free the user from the restrictions of a particular deterministic
parsing technique. Moreover, general parsers can run nearly linearly on grammars
of real programming languages, while keeping the cubic bound on worst-case, highly
ambiguous grammars [78,80]. Of course, the machinery of a general parser imposes
some performance overhead [46], but the performance of general parsing is acceptable
for the particular applications they are intended for.

An important consequence of using general parsing techniques is that the language
engineer needs to explicitly deal with ambiguity, and it is not always easy to pinpoint
the cause of ambiguity and resolve it. It is possible to let the parser to produce all
parse trees in the form of a parse forest, and then discard the undesired ones. However,
in practice, it is desirable to apply disambiguation while parsing, to terminate parsing
paths that lead to ambiguity as early as possible.

In a declarative syntax definition formalism, such as SDF [49], disambiguation
constructs are declared by the user, rather than being implicitly imposed by the
underlying parsing technique. For example, in a declarative approach, operator
precedence information in Figure 5.1(right) can be expressed using >, left and right,
as shown in Figure 5.2. As can be seen, the precedence information is specified using
the > construct, where the first alternative has the highest precedence. Associativity
is described using left and right. In case of + and -, which have the same precedence,
but are left-associative with respect to each other, a left associativity group is used.

We distinguish between the notation, semantics, and implementation of an operator
precedence approach. For example, in Yacc, the precedence of operators is globally

122 Chapter 5. Operator Precedence for Data-dependent Grammars

specified based on tokens, as opposed to Figure 5.2, where precedence is locally
defined for the alternatives of an expression nonterminal. A token-based notation for
specifying operator precedence has two shortcomings. First, an extra mechanism is
needed to distinguish between tokens that have different meanings in different rules,
e.g., unary and binary minus. Second, there is no native way to specify the operator
precedence of an invisible operator. For example, the function application operator,
expr ::= expr expr, in Figure 5.1. The semantics of Yacc-style operator precedence
is described in terms of shift/reduce conflicts in LR parsing, which is exactly how
it is implemented. While Yacc is powerful and widely used, its operator precedence
semantics is bound to the internal workings of LR parsing, and cannot be ported to
non-LR parsing algorithms.

There have been a number of related work [1, 14, 53, 84, 95] to provide a parser-
independent semantics of operator precedence. We discuss these work in detail in
Section 7.7. Among them, SDF2 [95] is of particular importance as it provides an
intuitive tree-based semantics of operator precedence, and is implemented in context
of general parsing, Scannerless GLR (SGLR) [94]. The operator precedence semantics
of SDF2 works for most cases, but in some cases it is too strong, removing sentences
from the language when there is no ambiguity, and in some cases, it cannot deal with
corner cases of operator precedence in programming languages such as OCaml.

In Chapter 4, we proposed a semantics for operator precedence that overcomes
the aforementioned limitations of SDF2. Our semantics has the same effect as Yacc
semantics, but does not depend on a specific aspect of a parsing algorithm, e.g.,
shift/reduce conflicts in LALR parsing, and can be implemented in the context of
different parsing techniques. In Chapter 4, we proposed a grammar rewriting to
implement this semantics. This rewriting preserves the shape of derivation trees.
However, it leads to large grammars and introduces unnecessary nondeterminism to
the grammar.

Data-dependent grammars [41] extend traditional context-free grammars with
arbitrary computation, parametrized nonterminals, variable binding and constraints.
Jim et al. [41] present the semantics of data-dependent grammars that does not
depend on a particular general parsing algorithm. In Chapter 3, we showed that
data-dependent grammars can be used as an intermediate layer for parser-independent
implementation of various disambiguation strategies. We provided an implementation
of the operator precedence semantics of Chapter 4, as desugaring from high-level
operator precedence constructs (>, left ,and right) to data-dependent grammars.
Compared to the grammar rewriting in Chapter 4, the desugaring preserves the size
of the original grammar, while having comparable performance in practice.

In this chapter we extend and improve our translation of operator precedence
disambiguation constructs to data-dependent grammars. We extend the translation
scheme of Chapter 3 to support indirect operator precedence. We improve the
performance by using a new strategy for left-recursive nonterminals. Our translation
can deal with deep and indirect precedence cases in programming languages such as
OCaml. We evaluate our approach by parsing OCaml and Java source files.

The rest of this chapter is organized as follows. Section 5.2 describes the problem
of operator precedence in parsing. Section 5.3 introduces our solution to operator

5.2. The Problem of Operator Precedence 123

precedence using data-dependent grammars. Section 5.4 presents the evaluation of
our technique using grammars of Java and OCaml. Section 5.5 discusses related work,
and Section 5.6 concludes.

5.2 The Problem of Operator Precedence

In this section we discuss expression grammars and operator precedence in detail.
When explaining the examples, we use two different semantics of operator precedence,
namely, Aho et al. ’s approach [7] based on shift/reduce conflicts, which we refer
to as Yacc-style semantics, and the SDF2 semantics [95] based on tree patterns.
Understanding the difference between Yacc-style and SDF2-style semantics helps
to understand the problem, and motivates our approach to operator precedence in
Section 5.3.

5.2.1 Binary Operators

Consider a simple expression grammar with two binary operators '*' and '+'. Parsing
a+a*a with this grammar results in two derivation trees, corresponding to the groupings
a+(a*a) and (a+a)*a:

E ::= E '*' E
| E '+' E
| 'a'

E

E + E

E * E

E

E * E

E + E

(1) (2)

Based on operator precedence in arithmetics, the first grouping is correct. Both
Yacc-style and SDF2-style semantics of operator precedence can deal with this case.
We first consider Yacc. This grammar leads to shift/reduce conflicts in the following
LR states:

(1) E ::= E .'+' E (2) E ::= E .'*' E
E ::= E '+' E. E ::= E '*' E.
E ::= E .'*' E E ::= E .'+' E

In the first state, the shift/reduce conflict between E ::= E '+' E. and E ::= E .'*' E

corresponds to the precedence of '+' and '*'. If we give '*' higher precedence than '+',
Yacc resolves this conflict in favor of shifting '*'. The shift/reduce conflict between
E ::= E '+' E. and E ::= E .'+' E corresponds to the associativity of '+'. If we define
'+' left-associative, this conflict will be resolved in favor of reduce. The same holds
for the second LR state.

SDF2 [95] uses an operator precedence semantics based on patterns in derivation
trees. This parser-independent semantics allows the language engineer to think
in terms of tree patterns rather than shift/reduce conflicts. In SDF2, > defines a
precedence relationship between two alternatives of a nonterminal. For example,

124 Chapter 5. Operator Precedence for Data-dependent Grammars

E ::= E '*' E > E ::= E '+' E2 means that all E's in the body of the '*'-rule cannot
derive E ::= E '+' E. This effectively disallows derivation trees that correspond to the
grouping of '+' under '*'. Associativity in SDF2 is specified using left and right. For
example, E ::= E '*' E left means that the second E in the body of the '*'-rule cannot
derive itself. SDF2 semantics can be applied during parsing, by modifying parse tables
to remove violating derivation trees, or as a post-parse filtering step. In this chapter,
we are concerned with the semantics of SDF2, and not a particular implementation.

5.2.2 Unary and Binary Operators

Combining both unary and binary operators makes the implementation of operator
precedence more complicated. In this section we consider two common examples: one
from the basic arithmetic and one from functional programming languages.

Arithmetics We consider a combination of unary '-' and binary '+' operators.
Parsing -a+a with such a grammar results in two derivation trees, corresponding to
the groupings -(a+a) or (-a)+a:

E ::= '-' E
| E '+' E
| 'a'

E

- E

E + E

E

E + E

- E

(1) (2)

Based on operator precedence in arithmetics, where unary '-' has higher precedence
than binary '+', the second derivation tree is correct. Both Yacc-style and SDF2-style
semantics can disambiguate this case. The explanation is similar to the one we gave
for the binary-only example of the previous section.

Functional languages So far, we focused on expression grammars that have con-
ventional precedence rules as in basic arithmetics. However, in functional programming
languages, there are some combinations of precedence rules which are not found in
basic arithmetics. In this chapter, we focus on OCaml [58], a popular dialect of ML,
which allows imperative, object-oriented and functional styles of programming. The
syntax of OCaml can be seen as a large expression grammar, as almost each construct
is an expression. For example, consider the following conditional expression:

if b then x else x + 1

In OCaml, 'if-then-else' acts as a unary prefix operator that has lower prece-
dence than binary infix operators. Therefore, this expression should be grouped
as if b then x else (x + 1) and not as (if b then x else x) + 1.
2 SDF2 adheres to algebraic notation and writes A ::= ↵ as ↵ ! A. In this chapter, we use an

EBNF-like notation for writing grammar rules.

5.2. The Problem of Operator Precedence 125

To observe Yacc’s behavior on this grammar, we consider the following conflicting LR
states:

(1) E ::= 'if' E 'then' E 'else' E. (2) E ::= E .'+' E
E ::= E .'+' E E ::= E '+' E.

State (2) corresponds to the associativity of the '+' operator, which we discussed in
the previous section. State (1) corresponds to the precedence of 'if-then-else' and
'+'. As can be seen, in this state we can either reduce the 'if-then-else' rule or shift
'+'. Given that '+' in OCaml has higher precedence that 'if-then-else', the shift
action is performed, producing the correct derivation tree.

For this input, the SDF2 semantics can also produce the correct deriva-
tion tree. Recall that SDF2 uses > to define precedence, and, in this case,
E ::= E '+' E > E ::= 'if' E 'then' E 'else' E means that the E’s in the body of the
'+'-rule cannot derive 'if-then-else', preventing the wrong derivation. We now con-
sider a slightly different input:

1 + if b then x else x

where the 'if-then-else' expression is the right operand of '+'. This expression
is in fact unambiguous and can only have one grouping: 1 + (if b then x else x).
Yacc can successfully parse this expression, producing the expected derivation tree.
However, SDF2 gives a parse error for this example. As '+' has higher precedence than
'if-then-else', no E in the body of the '+' can derive 'if-then-else', and therefore,
this input is rejected. To observe this behavior of the SDF2 semantics, we need a
binary operator with higher precedence than a unary operator. In arithmetics, this
case only happens for the power operator ('^'), for example, for the input 1 ^ - 1.

The last example shows that in some cases SDF2 semantics is too strong and can
remove sentences from the language even if there is no ambiguity. Therefore, the SDF2
semantics for operator precedence is not safe. We call a disambiguation mechanism
safe iff it does not remove sentences from a language (see Chapter 4 for more details).
In other words, when there is no ambiguity, a safe disambiguation mechanism must
not apply. Although many disambiguation mechanisms are not safe, for example,
longest match, for the operator precedence ambiguity we can ensure safety.

In SDF2, one can fine-tune the behavior of > by specifying the exact nonterminal
under which filtering should happen. For example, to enforce that filtering should
only happen under the left E, we can write E ::= E '+' E <0> > 'if' E 'then' E 'else' E.
Here, <0> specifies that filtering should only happen under the nonterminal at position
zero. This way of specifying precedence is tedious as the <i> operator is not transitive
across alternatives, but even if we consider a transitive version, there is another
problem with this tree-based semantics of operator precedence: in some cases, this
semantic is too weak and cannot disambiguate an operator precedence ambiguity.
Consider the following example:

1 + if b then x else x + 1

126 Chapter 5. Operator Precedence for Data-dependent Grammars

According to the precedence and associativity rules in OCaml, this example should be
parsed as:

(a) 1 + (if b then x else (x + 1))

and not as two other alternative derivation trees:

(b) (1 + (if b then x else x)) + 1
(c) 1 + ((if b then x else x) + 1)

The last two interpretations are precedence-incorrect as they correspond to the cases
where 'if-then-else' binds stronger than '+', and '+' is right-associative.

Yacc can deal with this input and produces the expected derivation tree (a). In the
conflicting state (1), shown before, Yacc prefers to shift '+', which effectively prevents
'if-then-else' to bind stronger when it is followed by '+', as in the derivations (b)
and (c). In contrast, the SDF2 semantics cannot disambiguate this case, producing
the derivation trees (a) and (b). The derivation tree (c) is rejected based on left
associativity of '+'. To show the parent/child relationships in derivation trees, the
two remaining derivation trees are shown below:

E

E + E

+ EE

if else E

E

+ E

+ EE

if else E

E

(b)(a)

The SDF2 semantics for operator precedence is defined as a one-level relationship
between a parent and a child rule. Based on this relationship, a derivation step
from a nonterminal in the body of the parent rule is prohibited. If we examine the
derivation trees above, the nodes in both trees are precedence correct with respect to
their immediate children: E ::= E + E does not appear under the rightmost E in the
'+'-rule, and E ::= 'if' E 'then' E 'else' E does not appear under the leftmost E in
the '+'-rule.

The last example illustrates that in order to disambiguate this case, a semantics
of operator precedence should only restrict derivation of 'if-then-else' under the
rightmost E of the '+' rule when this E is derived from the leftmost E of the '+'-rule.
We call such cases of operator precedence deep. Deep cases commonly, but not only,
happen when a left-associative binary operator has higher precedence than a unary
prefix operator. This also holds for a right-associative binary operator with higher
precedence than a unary postfix operator. Such cases do not happen in arithmetics,
but are essential to allow natural writing (without parentheses) of expressions in
languages such as OCaml.

5.2. The Problem of Operator Precedence 127

expr

'function' pattern-matching

pattern '->' expr

expr '+' expr

expr

'function' pattern-matching

pattern '->'

expr

'+' expr

expr

Figure 5.3: Two parse trees for the input function x -> x + 1

.

In Chapter 4, we provided a semantics of operator precedence that can deal with
such deep cases, and also presented a grammar rewriting technique that implements
this semantics. There are mainly two problems with this rewriting technique. First,
the size of the generated grammar can be rather large. We have not done a formal
analysis, but it appears that the size of the generated grammar is quadratic with
respect to the original grammar. To preserve the shape of the original derivation trees,
many intermediate nonterminals are introduced. These intermediate nonterminals
may introduce nondeterminism into the grammar, and lead to inefficiency in parsing
(see Section 5.3.6).

5.2.3 Indirect Recursive Nonterminals

Dealing with deep cases alone is not enough to resolve all precedence ambiguities
in OCaml. For example, consider the following (simplified) rules from the OCaml
language specification:

expr ::= expr '+' expr
| 'match' expr 'with' pattern-matching
| 'function' pattern-matching
| 'try' expr 'with' pattern-matching

pattern-matching ::= pattern '->' expr

As can be seen, the common pattern matching syntax is factored out into a sepa-
rate pattern-matching nonterminal. As pattern-matching ends with expr, it can cause
precedence ambiguity. All these unary prefix operators, 'match', 'function', and try,
have lower precedence than binary operators in OCaml, thus, an input string such as
function x -> x + 1 should be parsed as function (x -> (x + 1)) (Figure 5.3) left), and
not as (function x -> x) + 1 (Figure 5.3 right).

In a declarative syntax formalism with support for operator precedence, we would
like the following definition to be able to return the correct derivation tree.

128 Chapter 5. Operator Precedence for Data-dependent Grammars

expr ::= expr '+' expr
> 'function' pattern-matching

In Chapter 4, we only conjectured on the implementation of such indirect cases, by
copying the full grammar part reachable from an indirect nonterminal and rewrit-
ing left or rightmost recursive ends. In this chapter, we show a dynamic, more
systematic way of dealing with indirect cases of operator precedence. It should be
noted that the Yacc-style semantics can deal with indirect cases, for example, in
this case, when the token '->' is given higher precedence than '+' (Yacc considers
the precedence of the last terminal of a rule as the precedence of the rule). The
reason why Yacc can deal with indirect cases directly corresponds to how an LR
automaton is constructed, more specifically closure on LR items. In our exam-
ple, the closure on the item pattern-matching ::= pattern '->' . expr imports the item
expr ::= . expr '+' expr, leading to the following LR state after a transition on expr:

pattern-matching ::= pattern '->' expr .
expr ::= expr .'+' expr

This state leads to a shift/reduce conflict that can be resolved based on the precedence
relationship between '+' and '->'.

5.2.4 Discussion

So far, we discussed the problem of operator precedence in parsing using Yacc and
SDF2 as two leading semantics. The Yacc-style semantics is safe, and can deal with
deep and indirect cases. However, this semantics is bound to the inner workings of LR
parsing, and cannot be ported to other non-LR parsing techniques. In fact, Yacc was
designed to work with LALR grammars, not arbitrary context-free grammars. As a
result, for example, the Yacc-style operator precedence cannot be used in a scannerless
GLR parser that inserts layout (whitespace and comment) between symbols.

Our goal is to provide a declarative semantics of operator precedence, so that the
grammar writer can think in terms of the grammar, rather than inner workings of
a parsing algorithm. In this chapter we use a semantics of operator precedence that
is defined in terms of derivation trees. Our semantics (Section 5.3.1) can be seen as
an extension of SDF2 semantics, that makes it safe, and allows for deep and indirect
operator precedence cases. The main contribution of this chapter is how to implement
this semantics using data-dependent grammars. Our implementation preserves the
size of the original grammar, does not depend on a particular parsing algorithm and
is efficient.

5.3 Operator Precedence for Data-Dependent Grammars

5.3.1 Notation and Semantics for Operator Precedence

We use > as a high-level construct for declarative specification of operator precedence.
In our semantics, > defines a partial order on alternatives of a nonterminal. For any
two grammar rules r1 and r2 with the same head E, r1 > r2 applies if one of the

5.3. Operator Precedence for Data-Dependent Grammars 129

E ::= E '.' Id
| E '.[' E ']'
> E '+' E
> 'if' E 'then' E
| '(' E ')'
| 'a'

E(p) ::= [3>=p] l=E(p) [l==0||l>=3] '.' Id {0} // 3
| [3>=p] l=E(p) [l==0||l>=3] '.[' E(0) ']' {0} // 3
| [2>=p] l=E(p) [l==0||l>=2] '+' r=E(2) {r==0 ? 2 : min(r,2)} // 2
| 'if' E(0) 'then' E(1) {1} // 1
| '(' E(0) ')' {0} // -
| 'a' {0} // -

Figure 5.4: Translation of precedence rules into data-dependent grammars.

rules is left-recursive (E ::= E�) and the other is right-recursive (E ::= ↵E). This
means that rules that are neither left- nor right-recursive, e.g., E ::= '(' E ')' are not
affected by >.

We define operator precedence as a relationship between alternatives of a non-
terminal, and not tokens. We consider three possible types of rules. Unary prefix
rules (E ::= ↵E) where ↵ is nonempty and does not start with E, unary postfix rules
(E ::= E�) where � is nonempty and does not end with E, and binary rules of the
form E ::= E�E, where � is a possibly empty sequence of symbols. In this setting, ↵,
� and � act as operators.

The reason why we only consider left- and right-recursive rules is that only left-
and right-recursive ends can participate in an operator precedence ambiguity. In an
operator precedence ambiguity involving two operators, the derivations differ in steps
corresponding to the order of application of the respective operator rules. For example,
for the binary operators in Section 5.2.1 we have the following leftmost derivations for
the input a+a*a:

(1) E)E + E)a + E)a + E ⇤ E

(2) E)E ⇤ E)E + E ⇤ E)a + E ⇤ E

The presence of two derivations for an operator ambiguity, and the fact that > only
removes one of them, is the basic reasoning behind the safety of our operator precedence
technique. More generally, for any two left- and right-recursive rules E ::= E� and
E ::= ↵E we have the following two leftmost derivations:

(1) µE)µ↵E
⇤)

lm
µ⌫E�)µ⌫E��

(2) E�)E��
⇤)

lm
µE��)µ↵E��

⇤)
lm

µ⌫E��

where both derivations have identical sub-derivations ↵
⇤)⌫. The parse trees corre-

sponding to these derivations have the shapes:

130 Chapter 5. Operator Precedence for Data-dependent Grammars

E

E

E

E

E

E

E

E

E

E

E

E(1) (2)

µ
<latexit sha1_base64="5TSUBz+TKb5qVyO+A5kiaPd+d9M=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFe0HtEvJptk2NMkuyaxQSn+CFw+KePUXefPfmLZ70NYXAg/vzJCZN0qlsOj7315hY3Nre6e4W9rbPzg8Kh+ftGySGcabLJGJ6UTUcik0b6JAyTup4VRFkrej8e283n7ixopEP+Ik5aGiQy1iwSg666Gnsn654lf9hcg6BDlUIFejX/7qDRKWKa6RSWptN/BTDKfUoGCSz0q9zPKUsjEd8q5DTRW34XSx6oxcOGdA4sS4p5Es3N8TU6qsnajIdSqKI7tam5v/1boZxjfhVOg0Q67Z8qM4kwQTMr+bDIThDOXEAWVGuF0JG1FDGbp0Si6EYPXkdWhdVQPH97VKvZbHUYQzOIdLCOAa6nAHDWgCgyE8wyu8edJ78d69j2VrwctnTuGPvM8fWSqNyA==</latexit><latexit sha1_base64="5TSUBz+TKb5qVyO+A5kiaPd+d9M=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFe0HtEvJptk2NMkuyaxQSn+CFw+KePUXefPfmLZ70NYXAg/vzJCZN0qlsOj7315hY3Nre6e4W9rbPzg8Kh+ftGySGcabLJGJ6UTUcik0b6JAyTup4VRFkrej8e283n7ixopEP+Ik5aGiQy1iwSg666Gnsn654lf9hcg6BDlUIFejX/7qDRKWKa6RSWptN/BTDKfUoGCSz0q9zPKUsjEd8q5DTRW34XSx6oxcOGdA4sS4p5Es3N8TU6qsnajIdSqKI7tam5v/1boZxjfhVOg0Q67Z8qM4kwQTMr+bDIThDOXEAWVGuF0JG1FDGbp0Si6EYPXkdWhdVQPH97VKvZbHUYQzOIdLCOAa6nAHDWgCgyE8wyu8edJ78d69j2VrwctnTuGPvM8fWSqNyA==</latexit><latexit sha1_base64="5TSUBz+TKb5qVyO+A5kiaPd+d9M=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFe0HtEvJptk2NMkuyaxQSn+CFw+KePUXefPfmLZ70NYXAg/vzJCZN0qlsOj7315hY3Nre6e4W9rbPzg8Kh+ftGySGcabLJGJ6UTUcik0b6JAyTup4VRFkrej8e283n7ixopEP+Ik5aGiQy1iwSg666Gnsn654lf9hcg6BDlUIFejX/7qDRKWKa6RSWptN/BTDKfUoGCSz0q9zPKUsjEd8q5DTRW34XSx6oxcOGdA4sS4p5Es3N8TU6qsnajIdSqKI7tam5v/1boZxjfhVOg0Q67Z8qM4kwQTMr+bDIThDOXEAWVGuF0JG1FDGbp0Si6EYPXkdWhdVQPH97VKvZbHUYQzOIdLCOAa6nAHDWgCgyE8wyu8edJ78d69j2VrwctnTuGPvM8fWSqNyA==</latexit><latexit sha1_base64="5TSUBz+TKb5qVyO+A5kiaPd+d9M=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFe0HtEvJptk2NMkuyaxQSn+CFw+KePUXefPfmLZ70NYXAg/vzJCZN0qlsOj7315hY3Nre6e4W9rbPzg8Kh+ftGySGcabLJGJ6UTUcik0b6JAyTup4VRFkrej8e283n7ixopEP+Ik5aGiQy1iwSg666Gnsn654lf9hcg6BDlUIFejX/7qDRKWKa6RSWptN/BTDKfUoGCSz0q9zPKUsjEd8q5DTRW34XSx6oxcOGdA4sS4p5Es3N8TU6qsnajIdSqKI7tam5v/1boZxjfhVOg0Q67Z8qM4kwQTMr+bDIThDOXEAWVGuF0JG1FDGbp0Si6EYPXkdWhdVQPH97VKvZbHUYQzOIdLCOAa6nAHDWgCgyE8wyu8edJ78d69j2VrwctnTuGPvM8fWSqNyA==</latexit>

µ
<latexit sha1_base64="5TSUBz+TKb5qVyO+A5kiaPd+d9M=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFe0HtEvJptk2NMkuyaxQSn+CFw+KePUXefPfmLZ70NYXAg/vzJCZN0qlsOj7315hY3Nre6e4W9rbPzg8Kh+ftGySGcabLJGJ6UTUcik0b6JAyTup4VRFkrej8e283n7ixopEP+Ik5aGiQy1iwSg666Gnsn654lf9hcg6BDlUIFejX/7qDRKWKa6RSWptN/BTDKfUoGCSz0q9zPKUsjEd8q5DTRW34XSx6oxcOGdA4sS4p5Es3N8TU6qsnajIdSqKI7tam5v/1boZxjfhVOg0Q67Z8qM4kwQTMr+bDIThDOXEAWVGuF0JG1FDGbp0Si6EYPXkdWhdVQPH97VKvZbHUYQzOIdLCOAa6nAHDWgCgyE8wyu8edJ78d69j2VrwctnTuGPvM8fWSqNyA==</latexit><latexit sha1_base64="5TSUBz+TKb5qVyO+A5kiaPd+d9M=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFe0HtEvJptk2NMkuyaxQSn+CFw+KePUXefPfmLZ70NYXAg/vzJCZN0qlsOj7315hY3Nre6e4W9rbPzg8Kh+ftGySGcabLJGJ6UTUcik0b6JAyTup4VRFkrej8e283n7ixopEP+Ik5aGiQy1iwSg666Gnsn654lf9hcg6BDlUIFejX/7qDRKWKa6RSWptN/BTDKfUoGCSz0q9zPKUsjEd8q5DTRW34XSx6oxcOGdA4sS4p5Es3N8TU6qsnajIdSqKI7tam5v/1boZxjfhVOg0Q67Z8qM4kwQTMr+bDIThDOXEAWVGuF0JG1FDGbp0Si6EYPXkdWhdVQPH97VKvZbHUYQzOIdLCOAa6nAHDWgCgyE8wyu8edJ78d69j2VrwctnTuGPvM8fWSqNyA==</latexit><latexit sha1_base64="5TSUBz+TKb5qVyO+A5kiaPd+d9M=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFe0HtEvJptk2NMkuyaxQSn+CFw+KePUXefPfmLZ70NYXAg/vzJCZN0qlsOj7315hY3Nre6e4W9rbPzg8Kh+ftGySGcabLJGJ6UTUcik0b6JAyTup4VRFkrej8e283n7ixopEP+Ik5aGiQy1iwSg666Gnsn654lf9hcg6BDlUIFejX/7qDRKWKa6RSWptN/BTDKfUoGCSz0q9zPKUsjEd8q5DTRW34XSx6oxcOGdA4sS4p5Es3N8TU6qsnajIdSqKI7tam5v/1boZxjfhVOg0Q67Z8qM4kwQTMr+bDIThDOXEAWVGuF0JG1FDGbp0Si6EYPXkdWhdVQPH97VKvZbHUYQzOIdLCOAa6nAHDWgCgyE8wyu8edJ78d69j2VrwctnTuGPvM8fWSqNyA==</latexit><latexit sha1_base64="5TSUBz+TKb5qVyO+A5kiaPd+d9M=">AAAB6nicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFe0HtEvJptk2NMkuyaxQSn+CFw+KePUXefPfmLZ70NYXAg/vzJCZN0qlsOj7315hY3Nre6e4W9rbPzg8Kh+ftGySGcabLJGJ6UTUcik0b6JAyTup4VRFkrej8e283n7ixopEP+Ik5aGiQy1iwSg666Gnsn654lf9hcg6BDlUIFejX/7qDRKWKa6RSWptN/BTDKfUoGCSz0q9zPKUsjEd8q5DTRW34XSx6oxcOGdA4sS4p5Es3N8TU6qsnajIdSqKI7tam5v/1boZxjfhVOg0Q67Z8qM4kwQTMr+bDIThDOXEAWVGuF0JG1FDGbp0Si6EYPXkdWhdVQPH97VKvZbHUYQzOIdLCOAa6nAHDWgCgyE8wyu8edJ78d69j2VrwctnTuGPvM8fWSqNyA==</latexit>

↵
<latexit sha1_base64="EygqU+1gFxCPpCG3FYkMxT28lkY=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFewHtEuZTbNtbDZZkqxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0oFN9b3v73CxubW9k5xt7S3f3B4VD4+aRmVacqaVAmlOxEaJrhkTcutYJ1UM0wiwdrR+HZebz8xbbiSD3aSsjDBoeQxp2id1eqhSEfYL1f8qr8QWYcghwrkavTLX72BolnCpKUCjekGfmrDKWrLqWCzUi8zLEU6xiHrOpSYMBNOF9vOyIVzBiRW2j1pycL9PTHFxJhJErnOBO3IrNbm5n+1bmbjm3DKZZpZJunyozgTxCoyP50MuGbUiokDpJq7XQkdoUZqXUAlF0KwevI6tK6qgeP7WqVey+MowhmcwyUEcA11uIMGNIHCIzzDK7x5ynvx3r2PZWvBy2dO4Y+8zx+HTY8K</latexit><latexit sha1_base64="EygqU+1gFxCPpCG3FYkMxT28lkY=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFewHtEuZTbNtbDZZkqxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0oFN9b3v73CxubW9k5xt7S3f3B4VD4+aRmVacqaVAmlOxEaJrhkTcutYJ1UM0wiwdrR+HZebz8xbbiSD3aSsjDBoeQxp2id1eqhSEfYL1f8qr8QWYcghwrkavTLX72BolnCpKUCjekGfmrDKWrLqWCzUi8zLEU6xiHrOpSYMBNOF9vOyIVzBiRW2j1pycL9PTHFxJhJErnOBO3IrNbm5n+1bmbjm3DKZZpZJunyozgTxCoyP50MuGbUiokDpJq7XQkdoUZqXUAlF0KwevI6tK6qgeP7WqVey+MowhmcwyUEcA11uIMGNIHCIzzDK7x5ynvx3r2PZWvBy2dO4Y+8zx+HTY8K</latexit><latexit sha1_base64="EygqU+1gFxCPpCG3FYkMxT28lkY=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFewHtEuZTbNtbDZZkqxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0oFN9b3v73CxubW9k5xt7S3f3B4VD4+aRmVacqaVAmlOxEaJrhkTcutYJ1UM0wiwdrR+HZebz8xbbiSD3aSsjDBoeQxp2id1eqhSEfYL1f8qr8QWYcghwrkavTLX72BolnCpKUCjekGfmrDKWrLqWCzUi8zLEU6xiHrOpSYMBNOF9vOyIVzBiRW2j1pycL9PTHFxJhJErnOBO3IrNbm5n+1bmbjm3DKZZpZJunyozgTxCoyP50MuGbUiokDpJq7XQkdoUZqXUAlF0KwevI6tK6qgeP7WqVey+MowhmcwyUEcA11uIMGNIHCIzzDK7x5ynvx3r2PZWvBy2dO4Y+8zx+HTY8K</latexit><latexit sha1_base64="EygqU+1gFxCPpCG3FYkMxT28lkY=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFewHtEuZTbNtbDZZkqxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0oFN9b3v73CxubW9k5xt7S3f3B4VD4+aRmVacqaVAmlOxEaJrhkTcutYJ1UM0wiwdrR+HZebz8xbbiSD3aSsjDBoeQxp2id1eqhSEfYL1f8qr8QWYcghwrkavTLX72BolnCpKUCjekGfmrDKWrLqWCzUi8zLEU6xiHrOpSYMBNOF9vOyIVzBiRW2j1pycL9PTHFxJhJErnOBO3IrNbm5n+1bmbjm3DKZZpZJunyozgTxCoyP50MuGbUiokDpJq7XQkdoUZqXUAlF0KwevI6tK6qgeP7WqVey+MowhmcwyUEcA11uIMGNIHCIzzDK7x5ynvx3r2PZWvBy2dO4Y+8zx+HTY8K</latexit>

↵
<latexit sha1_base64="EygqU+1gFxCPpCG3FYkMxT28lkY=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFewHtEuZTbNtbDZZkqxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0oFN9b3v73CxubW9k5xt7S3f3B4VD4+aRmVacqaVAmlOxEaJrhkTcutYJ1UM0wiwdrR+HZebz8xbbiSD3aSsjDBoeQxp2id1eqhSEfYL1f8qr8QWYcghwrkavTLX72BolnCpKUCjekGfmrDKWrLqWCzUi8zLEU6xiHrOpSYMBNOF9vOyIVzBiRW2j1pycL9PTHFxJhJErnOBO3IrNbm5n+1bmbjm3DKZZpZJunyozgTxCoyP50MuGbUiokDpJq7XQkdoUZqXUAlF0KwevI6tK6qgeP7WqVey+MowhmcwyUEcA11uIMGNIHCIzzDK7x5ynvx3r2PZWvBy2dO4Y+8zx+HTY8K</latexit><latexit sha1_base64="EygqU+1gFxCPpCG3FYkMxT28lkY=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFewHtEuZTbNtbDZZkqxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0oFN9b3v73CxubW9k5xt7S3f3B4VD4+aRmVacqaVAmlOxEaJrhkTcutYJ1UM0wiwdrR+HZebz8xbbiSD3aSsjDBoeQxp2id1eqhSEfYL1f8qr8QWYcghwrkavTLX72BolnCpKUCjekGfmrDKWrLqWCzUi8zLEU6xiHrOpSYMBNOF9vOyIVzBiRW2j1pycL9PTHFxJhJErnOBO3IrNbm5n+1bmbjm3DKZZpZJunyozgTxCoyP50MuGbUiokDpJq7XQkdoUZqXUAlF0KwevI6tK6qgeP7WqVey+MowhmcwyUEcA11uIMGNIHCIzzDK7x5ynvx3r2PZWvBy2dO4Y+8zx+HTY8K</latexit><latexit sha1_base64="EygqU+1gFxCPpCG3FYkMxT28lkY=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFewHtEuZTbNtbDZZkqxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0oFN9b3v73CxubW9k5xt7S3f3B4VD4+aRmVacqaVAmlOxEaJrhkTcutYJ1UM0wiwdrR+HZebz8xbbiSD3aSsjDBoeQxp2id1eqhSEfYL1f8qr8QWYcghwrkavTLX72BolnCpKUCjekGfmrDKWrLqWCzUi8zLEU6xiHrOpSYMBNOF9vOyIVzBiRW2j1pycL9PTHFxJhJErnOBO3IrNbm5n+1bmbjm3DKZZpZJunyozgTxCoyP50MuGbUiokDpJq7XQkdoUZqXUAlF0KwevI6tK6qgeP7WqVey+MowhmcwyUEcA11uIMGNIHCIzzDK7x5ynvx3r2PZWvBy2dO4Y+8zx+HTY8K</latexit><latexit sha1_base64="EygqU+1gFxCPpCG3FYkMxT28lkY=">AAAB7XicbZBNSwMxEIZn61etX1WPXoJF8FR2paDHghePFewHtEuZTbNtbDZZkqxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0oFN9b3v73CxubW9k5xt7S3f3B4VD4+aRmVacqaVAmlOxEaJrhkTcutYJ1UM0wiwdrR+HZebz8xbbiSD3aSsjDBoeQxp2id1eqhSEfYL1f8qr8QWYcghwrkavTLX72BolnCpKUCjekGfmrDKWrLqWCzUi8zLEU6xiHrOpSYMBNOF9vOyIVzBiRW2j1pycL9PTHFxJhJErnOBO3IrNbm5n+1bmbjm3DKZZpZJunyozgTxCoyP50MuGbUiokDpJq7XQkdoUZqXUAlF0KwevI6tK6qgeP7WqVey+MowhmcwyUEcA11uIMGNIHCIzzDK7x5ynvx3r2PZWvBy2dO4Y+8zx+HTY8K</latexit>�

<latexit sha1_base64="FrVu8mRJTb+Voi1fYgHIo0c3WBw=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfsBbSib7aRdu9mE3Y1QQv+DFw+KePX/ePPfuGlz0NYXFh7emWFn3iARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6W1e7z6h0jyWD2aWoB/RseQhZ9RYqzMI0NDKsFpz6+5CZB28AmpQqDWsfg1GMUsjlIYJqnXfcxPjZ1QZzgTOK4NUY0LZlI6xb1HSCLWfLbadkwvrjEgYK/ukIQv390RGI61nUWA7I2omerWWm//V+qkJb/yMyyQ1KNnyozAVxMQkP52MuEJmxMwCZYrbXQmbUEWZsQHlIXirJ69D56ruWb5v1JqNIo4ynME5XIIH19CEO2hBGxg8wjO8wpsTOy/Ou/OxbC05xcwp/JHz+QP1ro6q</latexit><latexit sha1_base64="FrVu8mRJTb+Voi1fYgHIo0c3WBw=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfsBbSib7aRdu9mE3Y1QQv+DFw+KePX/ePPfuGlz0NYXFh7emWFn3iARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6W1e7z6h0jyWD2aWoB/RseQhZ9RYqzMI0NDKsFpz6+5CZB28AmpQqDWsfg1GMUsjlIYJqnXfcxPjZ1QZzgTOK4NUY0LZlI6xb1HSCLWfLbadkwvrjEgYK/ukIQv390RGI61nUWA7I2omerWWm//V+qkJb/yMyyQ1KNnyozAVxMQkP52MuEJmxMwCZYrbXQmbUEWZsQHlIXirJ69D56ruWb5v1JqNIo4ynME5XIIH19CEO2hBGxg8wjO8wpsTOy/Ou/OxbC05xcwp/JHz+QP1ro6q</latexit><latexit sha1_base64="FrVu8mRJTb+Voi1fYgHIo0c3WBw=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfsBbSib7aRdu9mE3Y1QQv+DFw+KePX/ePPfuGlz0NYXFh7emWFn3iARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6W1e7z6h0jyWD2aWoB/RseQhZ9RYqzMI0NDKsFpz6+5CZB28AmpQqDWsfg1GMUsjlIYJqnXfcxPjZ1QZzgTOK4NUY0LZlI6xb1HSCLWfLbadkwvrjEgYK/ukIQv390RGI61nUWA7I2omerWWm//V+qkJb/yMyyQ1KNnyozAVxMQkP52MuEJmxMwCZYrbXQmbUEWZsQHlIXirJ69D56ruWb5v1JqNIo4ynME5XIIH19CEO2hBGxg8wjO8wpsTOy/Ou/OxbC05xcwp/JHz+QP1ro6q</latexit><latexit sha1_base64="FrVu8mRJTb+Voi1fYgHIo0c3WBw=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfsBbSib7aRdu9mE3Y1QQv+DFw+KePX/ePPfuGlz0NYXFh7emWFn3iARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6W1e7z6h0jyWD2aWoB/RseQhZ9RYqzMI0NDKsFpz6+5CZB28AmpQqDWsfg1GMUsjlIYJqnXfcxPjZ1QZzgTOK4NUY0LZlI6xb1HSCLWfLbadkwvrjEgYK/ukIQv390RGI61nUWA7I2omerWWm//V+qkJb/yMyyQ1KNnyozAVxMQkP52MuEJmxMwCZYrbXQmbUEWZsQHlIXirJ69D56ruWb5v1JqNIo4ynME5XIIH19CEO2hBGxg8wjO8wpsTOy/Ou/OxbC05xcwp/JHz+QP1ro6q</latexit>

�
<latexit sha1_base64="FrVu8mRJTb+Voi1fYgHIo0c3WBw=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfsBbSib7aRdu9mE3Y1QQv+DFw+KePX/ePPfuGlz0NYXFh7emWFn3iARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6W1e7z6h0jyWD2aWoB/RseQhZ9RYqzMI0NDKsFpz6+5CZB28AmpQqDWsfg1GMUsjlIYJqnXfcxPjZ1QZzgTOK4NUY0LZlI6xb1HSCLWfLbadkwvrjEgYK/ukIQv390RGI61nUWA7I2omerWWm//V+qkJb/yMyyQ1KNnyozAVxMQkP52MuEJmxMwCZYrbXQmbUEWZsQHlIXirJ69D56ruWb5v1JqNIo4ynME5XIIH19CEO2hBGxg8wjO8wpsTOy/Ou/OxbC05xcwp/JHz+QP1ro6q</latexit><latexit sha1_base64="FrVu8mRJTb+Voi1fYgHIo0c3WBw=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfsBbSib7aRdu9mE3Y1QQv+DFw+KePX/ePPfuGlz0NYXFh7emWFn3iARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6W1e7z6h0jyWD2aWoB/RseQhZ9RYqzMI0NDKsFpz6+5CZB28AmpQqDWsfg1GMUsjlIYJqnXfcxPjZ1QZzgTOK4NUY0LZlI6xb1HSCLWfLbadkwvrjEgYK/ukIQv390RGI61nUWA7I2omerWWm//V+qkJb/yMyyQ1KNnyozAVxMQkP52MuEJmxMwCZYrbXQmbUEWZsQHlIXirJ69D56ruWb5v1JqNIo4ynME5XIIH19CEO2hBGxg8wjO8wpsTOy/Ou/OxbC05xcwp/JHz+QP1ro6q</latexit><latexit sha1_base64="FrVu8mRJTb+Voi1fYgHIo0c3WBw=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfsBbSib7aRdu9mE3Y1QQv+DFw+KePX/ePPfuGlz0NYXFh7emWFn3iARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6W1e7z6h0jyWD2aWoB/RseQhZ9RYqzMI0NDKsFpz6+5CZB28AmpQqDWsfg1GMUsjlIYJqnXfcxPjZ1QZzgTOK4NUY0LZlI6xb1HSCLWfLbadkwvrjEgYK/ukIQv390RGI61nUWA7I2omerWWm//V+qkJb/yMyyQ1KNnyozAVxMQkP52MuEJmxMwCZYrbXQmbUEWZsQHlIXirJ69D56ruWb5v1JqNIo4ynME5XIIH19CEO2hBGxg8wjO8wpsTOy/Ou/OxbC05xcwp/JHz+QP1ro6q</latexit><latexit sha1_base64="FrVu8mRJTb+Voi1fYgHIo0c3WBw=">AAAB7XicbZBNS8NAEIYn9avWr6pHL4tF8FQSKeix4MVjBfsBbSib7aRdu9mE3Y1QQv+DFw+KePX/ePPfuGlz0NYXFh7emWFn3iARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6W1e7z6h0jyWD2aWoB/RseQhZ9RYqzMI0NDKsFpz6+5CZB28AmpQqDWsfg1GMUsjlIYJqnXfcxPjZ1QZzgTOK4NUY0LZlI6xb1HSCLWfLbadkwvrjEgYK/ukIQv390RGI61nUWA7I2omerWWm//V+qkJb/yMyyQ1KNnyozAVxMQkP52MuEJmxMwCZYrbXQmbUEWZsQHlIXirJ69D56ruWb5v1JqNIo4ynME5XIIH19CEO2hBGxg8wjO8wpsTOy/Ou/OxbC05xcwp/JHz+QP1ro6q</latexit>

�
<latexit sha1_base64="QKq9qrxUJjxKvPOqAPnpXAtvmyo=">AAAB7XicbZDLSgNBEEVr4ivGV9Slm8EguAozEtBlwI3LCOYByRBqOj1Jm34M3T1CCPkHNy4Ucev/uPNv7CSz0MQLDYdbVXTVjVPOjA2Cb6+wsbm1vVPcLe3tHxwelY9PWkZlmtAmUVzpToyGciZp0zLLaSfVFEXMaTse387r7SeqDVPywU5SGgkcSpYwgtZZrd4QhcB+uRJUg4X8dQhzqECuRr/81RsokgkqLeFoTDcMUhtNUVtGOJ2VepmhKZIxDmnXoURBTTRdbDvzL5wz8BOl3ZPWX7i/J6YojJmI2HUKtCOzWpub/9W6mU1uoimTaWapJMuPkoz7Vvnz0/0B05RYPnGARDO3q09GqJFYF1DJhRCunrwOratq6Pi+VqnX8jiKcAbncAkhXEMd7qABTSDwCM/wCm+e8l68d+9j2Vrw8plT+CPv8weCt48H</latexit><latexit sha1_base64="QKq9qrxUJjxKvPOqAPnpXAtvmyo=">AAAB7XicbZDLSgNBEEVr4ivGV9Slm8EguAozEtBlwI3LCOYByRBqOj1Jm34M3T1CCPkHNy4Ucev/uPNv7CSz0MQLDYdbVXTVjVPOjA2Cb6+wsbm1vVPcLe3tHxwelY9PWkZlmtAmUVzpToyGciZp0zLLaSfVFEXMaTse387r7SeqDVPywU5SGgkcSpYwgtZZrd4QhcB+uRJUg4X8dQhzqECuRr/81RsokgkqLeFoTDcMUhtNUVtGOJ2VepmhKZIxDmnXoURBTTRdbDvzL5wz8BOl3ZPWX7i/J6YojJmI2HUKtCOzWpub/9W6mU1uoimTaWapJMuPkoz7Vvnz0/0B05RYPnGARDO3q09GqJFYF1DJhRCunrwOratq6Pi+VqnX8jiKcAbncAkhXEMd7qABTSDwCM/wCm+e8l68d+9j2Vrw8plT+CPv8weCt48H</latexit><latexit sha1_base64="QKq9qrxUJjxKvPOqAPnpXAtvmyo=">AAAB7XicbZDLSgNBEEVr4ivGV9Slm8EguAozEtBlwI3LCOYByRBqOj1Jm34M3T1CCPkHNy4Ucev/uPNv7CSz0MQLDYdbVXTVjVPOjA2Cb6+wsbm1vVPcLe3tHxwelY9PWkZlmtAmUVzpToyGciZp0zLLaSfVFEXMaTse387r7SeqDVPywU5SGgkcSpYwgtZZrd4QhcB+uRJUg4X8dQhzqECuRr/81RsokgkqLeFoTDcMUhtNUVtGOJ2VepmhKZIxDmnXoURBTTRdbDvzL5wz8BOl3ZPWX7i/J6YojJmI2HUKtCOzWpub/9W6mU1uoimTaWapJMuPkoz7Vvnz0/0B05RYPnGARDO3q09GqJFYF1DJhRCunrwOratq6Pi+VqnX8jiKcAbncAkhXEMd7qABTSDwCM/wCm+e8l68d+9j2Vrw8plT+CPv8weCt48H</latexit><latexit sha1_base64="QKq9qrxUJjxKvPOqAPnpXAtvmyo=">AAAB7XicbZDLSgNBEEVr4ivGV9Slm8EguAozEtBlwI3LCOYByRBqOj1Jm34M3T1CCPkHNy4Ucev/uPNv7CSz0MQLDYdbVXTVjVPOjA2Cb6+wsbm1vVPcLe3tHxwelY9PWkZlmtAmUVzpToyGciZp0zLLaSfVFEXMaTse387r7SeqDVPywU5SGgkcSpYwgtZZrd4QhcB+uRJUg4X8dQhzqECuRr/81RsokgkqLeFoTDcMUhtNUVtGOJ2VepmhKZIxDmnXoURBTTRdbDvzL5wz8BOl3ZPWX7i/J6YojJmI2HUKtCOzWpub/9W6mU1uoimTaWapJMuPkoz7Vvnz0/0B05RYPnGARDO3q09GqJFYF1DJhRCunrwOratq6Pi+VqnX8jiKcAbncAkhXEMd7qABTSDwCM/wCm+e8l68d+9j2Vrw8plT+CPv8weCt48H</latexit>

�
<latexit sha1_base64="QKq9qrxUJjxKvPOqAPnpXAtvmyo=">AAAB7XicbZDLSgNBEEVr4ivGV9Slm8EguAozEtBlwI3LCOYByRBqOj1Jm34M3T1CCPkHNy4Ucev/uPNv7CSz0MQLDYdbVXTVjVPOjA2Cb6+wsbm1vVPcLe3tHxwelY9PWkZlmtAmUVzpToyGciZp0zLLaSfVFEXMaTse387r7SeqDVPywU5SGgkcSpYwgtZZrd4QhcB+uRJUg4X8dQhzqECuRr/81RsokgkqLeFoTDcMUhtNUVtGOJ2VepmhKZIxDmnXoURBTTRdbDvzL5wz8BOl3ZPWX7i/J6YojJmI2HUKtCOzWpub/9W6mU1uoimTaWapJMuPkoz7Vvnz0/0B05RYPnGARDO3q09GqJFYF1DJhRCunrwOratq6Pi+VqnX8jiKcAbncAkhXEMd7qABTSDwCM/wCm+e8l68d+9j2Vrw8plT+CPv8weCt48H</latexit><latexit sha1_base64="QKq9qrxUJjxKvPOqAPnpXAtvmyo=">AAAB7XicbZDLSgNBEEVr4ivGV9Slm8EguAozEtBlwI3LCOYByRBqOj1Jm34M3T1CCPkHNy4Ucev/uPNv7CSz0MQLDYdbVXTVjVPOjA2Cb6+wsbm1vVPcLe3tHxwelY9PWkZlmtAmUVzpToyGciZp0zLLaSfVFEXMaTse387r7SeqDVPywU5SGgkcSpYwgtZZrd4QhcB+uRJUg4X8dQhzqECuRr/81RsokgkqLeFoTDcMUhtNUVtGOJ2VepmhKZIxDmnXoURBTTRdbDvzL5wz8BOl3ZPWX7i/J6YojJmI2HUKtCOzWpub/9W6mU1uoimTaWapJMuPkoz7Vvnz0/0B05RYPnGARDO3q09GqJFYF1DJhRCunrwOratq6Pi+VqnX8jiKcAbncAkhXEMd7qABTSDwCM/wCm+e8l68d+9j2Vrw8plT+CPv8weCt48H</latexit><latexit sha1_base64="QKq9qrxUJjxKvPOqAPnpXAtvmyo=">AAAB7XicbZDLSgNBEEVr4ivGV9Slm8EguAozEtBlwI3LCOYByRBqOj1Jm34M3T1CCPkHNy4Ucev/uPNv7CSz0MQLDYdbVXTVjVPOjA2Cb6+wsbm1vVPcLe3tHxwelY9PWkZlmtAmUVzpToyGciZp0zLLaSfVFEXMaTse387r7SeqDVPywU5SGgkcSpYwgtZZrd4QhcB+uRJUg4X8dQhzqECuRr/81RsokgkqLeFoTDcMUhtNUVtGOJ2VepmhKZIxDmnXoURBTTRdbDvzL5wz8BOl3ZPWX7i/J6YojJmI2HUKtCOzWpub/9W6mU1uoimTaWapJMuPkoz7Vvnz0/0B05RYPnGARDO3q09GqJFYF1DJhRCunrwOratq6Pi+VqnX8jiKcAbncAkhXEMd7qABTSDwCM/wCm+e8l68d+9j2Vrw8plT+CPv8weCt48H</latexit><latexit sha1_base64="QKq9qrxUJjxKvPOqAPnpXAtvmyo=">AAAB7XicbZDLSgNBEEVr4ivGV9Slm8EguAozEtBlwI3LCOYByRBqOj1Jm34M3T1CCPkHNy4Ucev/uPNv7CSz0MQLDYdbVXTVjVPOjA2Cb6+wsbm1vVPcLe3tHxwelY9PWkZlmtAmUVzpToyGciZp0zLLaSfVFEXMaTse387r7SeqDVPywU5SGgkcSpYwgtZZrd4QhcB+uRJUg4X8dQhzqECuRr/81RsokgkqLeFoTDcMUhtNUVtGOJ2VepmhKZIxDmnXoURBTTRdbDvzL5wz8BOl3ZPWX7i/J6YojJmI2HUKtCOzWpub/9W6mU1uoimTaWapJMuPkoz7Vvnz0/0B05RYPnGARDO3q09GqJFYF1DJhRCunrwOratq6Pi+VqnX8jiKcAbncAkhXEMd7qABTSDwCM/wCm+e8l68d+9j2Vrw8plT+CPv8weCt48H</latexit>

In the first parse tree, � binds stronger than ↵, and vice versa for the second parse
tree. As can be seen, there can be an arbitrary distance (

⇤)) between the application
of E ::= ↵E and E ::= E�. This captures the deep cases of operator precedence.
If E ::= ↵E > E�, the first derivation tree should be removed and vice versa. We
discuss indirect cases in Section 5.3.5.

The semantics of associativity constructs, left and right, is similar to the one
of the precedence. However, in contrast to precedence, we define associativity to
affect only binary operators and apply only at one level and not arbitrary deep.
The latter decision is based on the fact that we could not find a practical example,
where deep application of associativity rules was useful, and where other precedence
mechanism could not be used instead. We also support the nonassoc notation for
defining non-associativity, e.g., for E ::= E '>' E, where no nesting of the same rule
is allowed. In contrast to left and right, nonassoc is not safe as it removes sentences
from the language.

5.3.2 Data-Dependent Grammars

Data-dependent grammars [41] are an extension of context-free grammars that support
arbitrary computation, parameters, variable binding, and constraints. In a context-
free grammar, a rule is defined as A ::= ↵, where A (head) is a nonterminal, and ↵

(body) is a possibly empty sequence of terminal and nonterminals. Data-dependent
grammars allow definition of parametrized nonterminals, e.g., A(p), similar to the way
a function is defined. In addition to terminal and nonterminals, the body of rules in
data-dependent grammars can have the following new types of symbols:

• Constraints of the form [c]. If c evaluates to false, the current parsing path
terminates.

• Bindings of the form x = A(a), where a is an argument to A, and x is a variable
holding the value returned by the call A(a).

• Arbitrary expressions of the form {e}.

Our data-dependent framework, presented in Chapter 3, also supports return values.
An expression {e} as the last symbol of a rule defines the return value.

5.3. Operator Precedence for Data-Dependent Grammars 131

Jim et al. [41] introduce the data-dependent automata to represent data-dependent
grammars and use these automata to provide a stack-evaluation-based, nondeter-
ministic operational semantics for data-dependent grammars. This semantics is very
intuitive. For example, consider the following definition of a fixed-length iteration of a
nonterminal A:

Iter(n) ::= [n > 0] Iter(n - 1) A
| [n == 0] ✏

Here, Iter gets an integer parameter n which is used to determine the choice of the
alternative. If n > 0, the first alternative is selected, otherwise, the second. Using
this definition, Iter(5) is much like a function call in a backtracking, recursive-descent
parser. Direct implementation of this semantics of data-dependent grammars can
result in exponential runtime and nontermination in presence of left-recursive rules.
Therefore, to implement data-dependent grammars, Jim et al. use a modified Earley
parsing algorithm, and we use our modified GLL parsing algorithm presented in
Chapter 2.

5.3.3 Precedence

In this section, we show how grammars that specify precedence rules using > are
translated into data-dependent counterparts. In our discussion we use the grammar
of Figure 5.4 (left) as a running example. The translation scheme consists of the
following steps:

Assign a precedence level to a rule A number pri, the precedence level of a rule,
is assigned to each left- and/or right-recursive alternative of a nonterminal, where i

indicates the i-th alternative. Numbering follows the reverse order of the alternatives
and uses the current value of a counter. The counter starts from 1 and increments
each time > is encountered.

In Figure 5.4 (left), nonterminal E has four left- and/or right-recursive alternatives.
The first two (from the top) act as postfix operators, the third as a binary operator,
and the fourth as a prefix operator. The number assigned to each alternative is shown
in the comment next to the alternative (Figure 5.4, right). There are two observations.
First, as precedence rules do not apply between two postfix or two prefix operators, |
is used instead of > between the first two alternatives, resulting in the same number
assigned to both of them. Second, the alternatives that are not left- or right-recursive
do not get a number.

Pass a precedence level The nonterminal gets a parameter p, so that the prece-
dence level of an alternative can be passed. The arguments to the left- and/or
right-recursive ends of the i-th alternative are defined as follows. Each right-recursive
alternative passes its precedence level to its right end: E(p) ::= ↵E(pri). Each
left-recursive alternative passes the precedence level of a parent alternative to its left
end: E(p) ::= E(p)↵. The argument 0 is passed to the nonterminal when it occurs at

132 Chapter 5. Operator Precedence for Data-dependent Grammars

a position other than the left or right recursive end, i.e., where the precedence rules
do not apply. In Figure 5.4 (right), p is passed to all the left ends, 2 to the right end
of binary '+', and 1 to the right end of prefix 'if'.

Return a precedence level In addition to passing the precedence level to its right
end, each right-recursive alternative also returns a value that depends on its precedence
level. We distinguish the following two cases for a right-recursive alternative:

1. If there is a prefix operator of lower precedence than the alternative, the return
expression is defined as follows:

E(p) ::= ↵ r=E(pri) {r=0 ? pri : min(r, pri)},

where variable r holds the value returned by the call to the right end. The
construct _?_ : _ defines a conditional expression such that if the value of r

is equal to 0, the alternative returns its precedence level, otherwise the value
is defined as min(r, pri). Intuitively, min will propagate the lowest precedence
level upwards, in the chain of the recursive calls corresponding to the rightmost
recursive ends.

2. If there is no such a prefix operator, the alternative simply returns its precedence
level: E(p) ::= ↵ E(pri) {pri}.

Finally, we also need to provide a default return value for alternatives that are not
right recursive, i.e., postfix operators or alternatives without recursive ends. We use 0
as the default value.

In Figure 5.4 (right), only the binary and prefix operators return a non-zero value:
prefix 'if' returns its precedence level, and binary '+' returns r==0 ? 2 : min(r,2) as
there is prefix 'if' which is of lower precedence than binary '+'.

Add constraints to a rule based on its precedence level Finally, each left-
recursive alternative gets two constraints:

E(p) ::= [pri � p] l=E(p) [l=0k l � pri] ↵,

where variable l holds the value returned by the call to the left end. The first constraint,
[pri � p], is a precondition to the alternative. This constraint effectively excludes
the current left-recursive alternative from the right end of a parent right-recursive
alternative if the current alternative is of lower precedence than the parent one. Passing
0 to E makes any precondition true, therefore we refer to E(0) as the unrestricted use
of E. The second constraint, [l=0k l � pri], is a postcondition to the first symbol of
the alternative. This constraint terminates the current left-recursive alternative if the
value produced by the left end corresponds to a child alternative of lower precedence
than the current alternative.

5.3. Operator Precedence for Data-Dependent Grammars 133

Discussion on Semantics and Implementation

We now discuss how our data-dependent encoding prevents undesired, precedence-
violating derivation trees by restricting the left and right end of an alternative. Similar
to Section 5.3.1, we consider a grammar with a left-recursive alternative E ::= E�

and a right-recursive alternative E ::= ↵E. In addition, we assume that the grammar
has other left- and right-recursive alternatives: E ::= E�i, 1 i m, and E ::= �jE,
1 j k. We use the following leftmost derivations:

(1) E)E�
⇤)

lm
µE�)µ↵E�

where ⇤) indicates zero or more intermediate steps deriving the right-recursive alterna-
tives E ::= �jE, such that �1

⇤)
lm

⌫1, . . . , �k
⇤)

lm
⌫k, and µ = ⌫1 . . . ⌫k is a possibly empty

sequence of terminals.

(2) E)↵E
⇤)

lm
⌫E

⇤)
lm

⌫E�)⌫E��

where ↵
⇤)

lm
⌫, and the second ⇤) indicates zero or more intermediate steps deriving

the left-recursive alternatives E ::= E�i, such that � = �m . . . �1 is a possibly empty
sequence of terminals and nonterminals.

First, we consider derivation (1) and the case of direct nesting, i.e., zero intermediate
steps. According to the precedence semantics of Section 5.3.1, the derivation step
E�)↵E� should only be valid if E ::= ↵E has the same or higher precedence than
E ::= E�. We now look at how our encoding to data-dependent grammars achieves
this. In our translation scheme, each left-recursive alternative E ::= E� is translated
into:

E(p) ::= [pr� � p] l=E(p) [l=0k l � pr�] �.

We consider an unrestricted call E(0) (restricted calls E(pr), pr > 0, are discussed
later in the context of derivation (2)). The precondition evaluates to true, and the
alternative can only succeed if the postcondition to the recursive call is also true. As
postfix operators and alternatives without recursive ends return 0, the postcondition
permits these forms of alternatives at the left end. The postcondition, however,
permits a right-recursive alternative E(p) ::= ↵E(pr↵) {pr↵} only if it is of the same
or higher precedence than the current alternative, thus enforcing pr↵ � pr� .

To enforce precedence rules at arbitrary depth (the case of multiple intermediate
steps in the derivation), our translation scheme introduces min to the return expression
of a right-recursive alternative. This propagates the lowest precedence level upwards,
in the chain of the recursive calls corresponding to the rightmost recursive ends, to
the left end of the current alternative. For example, consider the following chain of
such recursive calls, where each call (!) is shown in the context of the respective
right-recursive alternative and is made from its right end:

�1 r1=E(pr�1
)! · · ·! �k rk=E(pr�k

)! ↵ r=E(pr↵).

Here, rj , 1 j k, and r hold the value returned by the respective call. As our

134 Chapter 5. Operator Precedence for Data-dependent Grammars

translation adds return expression r = 0 ? pr�j
: min(r, pr�j

) to right-recursive rule
E ::= �jE, these calls, when return, produce the following bindings: rk = min(r, pr↵),
rj�1 =min(rj , pr�j

), 2 j k, and finally, l=min(r1, pr�1
). Thus, the postcondition

above also requires that all E ::= �jE and E ::= ↵E are of the same or higher
precedence than E ::= E�.

The observant reader will note, however, that the return expression of a right-
recursive alternative depends on whether there is a prefix operator of lower precedence.
Below we discuss the role of the precondition to a left-recursive alternative. After
that, it can be seen that it is sufficient to simply return the precedence level for a
right-recursive alternative (no min is needed) if there is no prefix operator of lower
precedence than the alternative.

Now, we consider derivation (2) and the case of zero intermediate steps in the
second ⇤). According to the precedence semantics of Section 5.3.1, the last derivation
step should only be valid if E ::= E� has the same or higher precedence than E ::= ↵E.
In our translation, each right-recursive alternative passes its precedence level to the
right end: E(p) ::= ↵E(pr↵) (for brevity, we omitted the return expression). Given
that only left-recursive alternatives are guarded with a precondition, call E(pr↵) will
try all prefix operators and alternatives without recursive ends. However, the call
will only try the left-recursive alternative E ::= E� if its precondition is true (see the
translation above), thus enforcing pr� � pr↵.

To enforce precedence rules at arbitrary depth (the case of multiple intermediate
steps in the second ⇤)), if the precondition to the left-recursive alternative is true, the
precedence level of the parent alternative is passed to the left end of the current
alternative. This way, the precedence level of the parent alternative, pr↵, also
restricts the chain of recursive calls corresponding to the leftmost recursive ends:
E(pr↵)�1 ! · · ·! E(pr↵)�m ! E(pr↵)�, where each consecutive call to E is made
from the left end of the respective left-recursive alternative. In our translation, each
of these calls is guarded by the precondition: pr�i

� p, 1 i m, and pr� � p, thus
enforcing all E ::= E�i and E ::= E� to be of the same or higher precedence than
E ::= ↵E.

5.3.4 Associativity

Using data dependency, associativity rules can be encoded in a similar way to prece-
dence. We consider left- and right-associative rules, declared using left and right,
and non-associative rules, declared using nonassoc. Our general scheme to handle both
precedence and associativity consists of the following steps:

Assign a unique number to a rule specifying associativity We use the same
counter as before. However, now, the counter also increments when an alternative
specifying associativity is encountered, but only if this alternative shares the same
precedence with the next or previous alternative. The current value of the counter
is then assigned to the alternative, thus giving it a unique number within the same
precedence group. All the alternatives within the same precedence group that do

5.3. Operator Precedence for Data-Dependent Grammars 135

not specify associativity are assigned the same number. Consider E ::= ↵4 >

↵3 | ↵2 left | ↵1 > ↵0, where | binds stronger than >, each E ::= ↵i is left- and/or
right-recursive, and E ::= ↵2 is binary. If the value of the counter when encountering
the first > (in the reverse order of the alternatives) is 1, the counter increments,
and the number assigned to E ::= ↵1 is 2. The next alternative, E ::= ↵2, specifies
associativity and has the same precedence as E ::= ↵1 and E ::= ↵3. Thus, the
counter increments again, and the number assigned to E ::= ↵2 is 3. E ::= ↵3 is
assigned 2, which is the same as for E ::= ↵1.

This way, alternatives of the same precedence are now described by a range
[pri, prj], pri prj , i j, where the i-th alternative is the first alternative after the
last occurrence of >, and the j-th alternative is the alternative with the largest number
before the next occurrence of >. We use prk2 [pri, prj] to refer to the number assigned
to the alternatives that do not specify associativity within the group.

Pass the rule’s unique number along with the precedence level The non-
terminal gets two parameters, the first one to pass a precedence level, and the second
one to pass its unique number. If a binary alternative is defined as left- or non-
associative, its unique number is passed to its right end along with its precedence
level: E(p, p

0) ::= ↵ E(prk, pri), where prk is used as the alternative’s precedence level.
Otherwise, 0 is passed as the second argument to the right end: E(p, p

0) ::= ↵ E(prk, 0).
All left-recursive rules of the nonterminal, i.e., binary and postfix operators, pass 0,
along with the precedence level of a parent alternative, to its left end: E(p, p

0) ::=
E(p, 0)↵. Passing 0 to the left end of an alternative prevents deep application of
associativity rules, in contrast to precedence.

Return the rule’s unique number along with the precedence level If a
binary alternative is defined as right- or non-associative, its unique number is returned
along with its precedence level. If there is no prefix operator of lower precedence than
the alternative:

E(p, p
0) ::= ↵ E(prk, 0) {(prk, pri)} (right-associative)

E(p, p
0) ::= ↵ E(prk, pri) {(prk, pri)} (non-associative)

where (prk, pri) is a tuple expression. If there is such a prefix operator, the return
expressions above are replaced with (r.1=0 ? prk : min(r.1, prk), pri), where variable
r (see Section 5.3.3) holds the value returned by the call to the right end, and r.1
accesses the first element of the tuple. For all the other alternatives of the nonterminal,
0 is used as the second element of the tuple.

Add constraints to the rule based on its unique number If a binary alterna-
tive is defined as left- or non-associative, precondition p

0 6=pri is also added to the
alternative, resulting in [prk�p, p

0 6=pri], where the comma inside the brackets defines
logical AND. If a binary alternative is defined as right- or non-associative, postcon-
dition l.2 6=pri is added to the alternative, resulting in [l.1=0 k l.1�prk, l.2 6=pri],

136 Chapter 5. Operator Precedence for Data-dependent Grammars

expr(p)
::= [7>=p] l=expr(p) [l==0||l>=7] '.' field {0}

| [6>=p] l=expr(p)[l==0||l>=6] r=expr(7) {(r==0)? 6 : min(r,6)}
| '-' r=expr(5) {(r==0)? 5 : min(r,5)}
| [4>=p] l=expr(p) [l==0||l>=4] '*' r=expr(5) {(r==0)? 4 : min(r,4)}
| [3>=p] l=expr(p) [l==0||l>=3] '-' r=expr(4) {(r==0)? 3 : min(r,3)}
| [3>=p] l=expr(p) [l==0||l>=3] '+' r=expr(4) {(r==0)? 3 : min(r,3)}
| 'if' expr(0) 'then' expr(2) {2}
| [1>=p] l=expr(p) [l==0||l>=2] ';' expr(1) {1}
| '(' expr(0) ')' {0}

Figure 5.5: The translation of the OCaml excerpt from Figure 5.2 into a data-dependent
grammar.

where variable l (see Section 5.3.3) holds the value returned by the call to the left end,
and l.1 and l.2 access the first and second elements of the tuple, respectively.

Associativity groups The general scheme above is also applicable for binary
alternatives forming an associativity group. For example, two binary operators, such
as + and - (Figure 5.2), can be specified to be left-associative with respect to each other.
In such cases, the left or/and right ends of a binary alternative in an associativity
group must exclude the other binary alternatives of the group including the alternative
itself. To encode this, all the binary alternatives of the associativity group are assigned
the same unique number, say prm. This way, associativity related constraints, p

0 6=prm

and l.2 6=prm, effectively exclude all the alternatives of an associativity group from
the left and/or right ends of the alternatives.

Optimization

Is it always necessary to operate with two arguments and tuples when both precedence
and associativity rules are used? The answer is no. The translation can use one
argument and return a single number when alternatives specifying associativity do
not share the same precedence with other alternatives, and, in case of an associativity
group, when alternatives inside the group do not share the same precedence with
alternatives outside the group. This corresponds to cases where pri = prj , i j,
and when our general scheme produces, for example, the following translation for a
left-associative alternative (here, we assume the case of no prefix operator of lower
precedence):

E(p, p
0) ::= [pri�p, p

0 6=pri] ↵ E(pri, pri) {(pri, 0)}

Instead, in such cases, we simplify the translation to:

E(p) ::= [pri�p] ↵ E(pri+1) {pri}

5.3. Operator Precedence for Data-Dependent Grammars 137

This translation uses only one argument and passes the precedence level plus one to
the right end, thus also excluding the alternative itself and disallowing right-associative
derivation trees. The call E(pri+1) will propagate its argument to the left end of
left-recursive alternatives. However, in this case, it cannot lead to deep application of
the associativity rule, as only left-recursive alternatives of (strictly) higher precedence
than E ::= ↵E can be tried, thus disallowing deep nesting of E ::= ↵E. Similarly, for
the left end of a right-associative alternative, the simplified translation is:

E(p) ::= [pri�p] l=E(p) [l=0k l � pri+1] ↵,

where pri+1, the lower bound on l, excludes from the left end alternatives of lower
precedence and the alternative itself, thus disallowing left-associative derivation trees.
The translation of the OCaml excerpt from Figure 5.2 into a data-dependent grammar
is shown in Figure 5.5. This translation requires only one parameter.

5.3.5 Support for Indirect Cases

To extend the derivations of Section 5.3.1 to indirect cases, we consider more general
forms of left- and right-recursive rules: E ::= Y � and E ::= ↵X, where Y

⇤)
lm

E� and

X
⇤)

lm
⌧E. Then, we have:

(1) µE)µ↵X
⇤)

lm
µ⌫⌧E

⇤)
lm

µ⌫⌧E�)µ⌫⌧Y ��
⇤)

lm
µ⌫⌧E���

(2) E�)Y ��
⇤)

lm
E���

⇤)
lm

µE���)µ↵X���
⇤)

lm
µ⌫⌧E���

In other words, nonterminals Y and X indirectly derive the left and right E-end,
respectively. In addition, sub-derivations corresponding to the second and the last ⇤)
in (1) and (2) permit multiple intermediate nonterminals. Thus, in general, the rules
containing the left and right E-end, such as Z ::= E✓1 and W ::= ✓2E, may have a
different head (Z and W) than Y and X.

In our translation, we rely on reachability analysis that computes indirectly
derivable left and right ends. The basic idea of our translation is to propagate
the precedence level to/from the nonterminal’s indirect left (Z ::= E✓1) and right
(W ::= ✓2E) ends via intermediate nonterminals by passing and returning values. Our
translation adds parameter pE to Y , X, Z and W . The argument passed to X or Y ,
and propagated via W or Z, depends on how X or Y is used in E. We distinguish
two cases: (a) X and Y represent the same nonterminal that occurs in E as both
the left and right end; and (b) X and Y represent distinct nonterminals, Y occurs in
E only as the left end, and X only as the right end. In case (a), pE is a tuple that
encodes the left and right uses of X as follows:

E(p) ::= X((p, $)) �, E(p) ::= ↵ X(($, pr↵))

where the first element of the tuple is undefined (we use $ for undefined values) when
X is the right end, and the second element of the tuple is undefined when X is the

138 Chapter 5. Operator Precedence for Data-dependent Grammars

left end. The other elements of the tuple are defined as if X was E. These arguments
are propagated to Z and W, via X, and are used as follows:

Z(pE) ::= E(pE .1=$? 0:pE .1) ✓1

W (pE) ::= ✓2 E(pE .2=$? 0:pE .2)

where pE .1 and pE .2 access the first and the second element of the tuple, respectively.
In other words, the left end of Z ::= E✓1 is only restricted if X is called as the left
end, and the right end of W ::= ✓2E is only restricted if X is called as the right end.

In case (b), it is possible to directly use p and pr↵ without the need to introduce a
tuple. In the following, we only focus on case (a) as a more general case. Also, we only
consider the case of one parameter to E as our discussion can be straightforwardly
generalized to the case of two parameters.

In addition to getting parameters and arguments, X, Z and W return values. This
way, the precedence level can be propagated upwards from the indirect left and right
ends, via Z or W, to the uses of X. In case (a), the return values are also tuples:

Z(pE) ::= l=E(pE .1=$? 0:pE .1) ✓1 {(l, $)}

W (pE) ::= ✓2 r=E(pE .2=$? 0:pE .2) {($, r)}

and are used in E as follows:

E(p) ::= x=X((p, $)) [x.1=$k(pr��p, x.1=0kx.1�pr�)] �

E(p) ::= ↵ x=X(($, pr↵)) {x.2=$? 0:(x.2=0 ? pr↵ :min(x.2, pr↵))}

where x.1 = $ and x.2 = $ check the presence of the indirect left and right end,
respectively. In the second case, the check affects the return value: 0 if the value of
x.2 corresponds to an alternative without the indirect right end for E, otherwise the
value computed as if X was E (here, we only show the return expression for the case
where there is a prefix operator of lower precedence than E ::= ↵X). In the first
case, the check affects pre- and postconditions. In the general case, the condition
pr� � p has to become a postcondition, except for the case when x.1 is never equal to
$, and none of pre- and postconditions is triggered if the value of x.1 corresponds to
an alternative without the indirect left end for E.

5.3.6 Comparison with our Previous Translation Scheme

Finally, we discuss the design decision in our translation scheme that relates to the
use of both parameters and return values. The use of return values is the main
difference between the translation scheme we propose in this chapter and the grammar
rewriting technique of Chapter 4. Specifically, to restrict the left and right ends of a
nonterminal, we pass an argument to a right end, and propagate the argument passed
by a parent alternative and use return values to restrict a left end. General parsing
algorithms are efficient in dealing with left-recursive rules. For example, in GLL,

5.4. Evaluation 139

left recursion is terminated after the first recursive call at the same input position,
allowing non-left-recursive rules to produce results. Then, the left-recursive rules are
re-tried, in a form of a loop, as long as new results can be produced.

Our experience with the grammar rewriting technique of Chapter 4 shows that
the introduction of new, indexed nonterminals for the left ends, which also involves
copying the rules to the new nonterminals, directly affects the efficiency in dealing
with left recursion. In particular, it increases the stack of leftmost calls, corresponding
to the new nonterminals, and does not allow sharing of parsing results corresponding
to the copied rules. Our previous translation scheme introduces the same inefficiency
problem as the rewriting technique. In that scheme, we do not use return values to
restrict left ends, and the use of parameters and arguments for left ends essentially
simulates introduction of indices to the left ends.

In contrast to the rewriting and our previous scheme, our current translation does
not increase the stack of leftmost calls, as the argument of a parent alternative is
passed to the left ends, thus allowing termination of left recursion as soon as possible.
When the left-recursive alternatives are further re-tried in a loop, there is just an
extra, precedence-related condition that needs to be checked. For right-recursive
rules, however, the context of the current alternative can be used to restrict its right
end, and therefore, our translation passes the precedence level to the right end of
the alternative. In practice, we observed that the median and maximum speedup of
parsers for Java using our new translation compared to the rewriting and previous
translation are (1.5, 2.5) and (1.7, 3), respectively.

5.4 Evaluation

In this section we evaluate the performance of our approach to operator precedence
disambiguation using our GLL-based implementation of data-dependent grammars [3].
For the evaluation we use the grammars of Java and OCaml3. The experiments were
carried out on a machine with a quad-core Intel Core i7 2.6 GHz CPU and 16 GB
of memory, running Mac OS X 10.10.5 and a 64-Bit Oracle HotSpot™ JVM version
1.8.0_51. Each file was parsed 10 times and the mean running time (CPU user
time) was reported. The three first runs of each file were skipped to allow for JIT
optimization.

5.4.1 Java

We have chosen the grammar of Java 7 from the main part of the Java language
specification [32]. This grammar has an unambiguous, left-recursive expression part
that encodes operator precedence by introducing new nonterminals for each precedence
level. We have replaced the expression part of the Java specification grammar with
a natural expression grammar, and specified operator precedence and associativity
using >, left and right. We parsed 7449 files from the source distribution of JDK
1.7.0_60-b19. All files parsed successfully and without ambiguity.
3 https://github.com/iguana-parser/grammars

https://github.com/iguana-parser/grammars

140 Chapter 5. Operator Precedence for Data-dependent Grammars

3 4 5

0
1

2
3

size (#characters) in log10

C
P

U
 t

im
e

(m
s)

 in
 lo

g1
0

y = 1.135 x − 3.19
R 2 = 0.9924

Regression line

Figure 5.6: Running time of Iguana on the natural grammar of Java.

0.95 1 1.05 1.1 1.15

Runtime

Figure 5.7: Runtime performance of Iguana using the natural grammar of Java vs.
the specification grammar of Java.

Figure 5.6 shows the results of parsing Java files in a log-log (base 10) plot. The
goodness of the fit is indicated by the R

2 value of 0.9924, and the equation of the
regression line (log-log scale) is written in the plot. As the regression is calculated
after a log transform of the original data, and the coefficient (1.135) is close to 1, we
can conclude that the parser runs nearly linearly (y ⇡ x

1.135) on the natural grammar
of Java.

To compare the speed of parsing with the natural grammar of Java that handles
operator precedence at runtime, and the specification grammar of Java, we ran Iguana
on the same set of 7449 Java source files. The relative runtime performance of the
parser for the natural grammar of Java vs. the parser for the specification grammar
of Java is shown in Figure 5.7. As can be seen, the median difference is 1.05, meaning
that our approach to operator precedence is only on average 5% slower than for the
specification grammar.

5.4. Evaluation 141

1 2 3 4 5

−
1

0
1

2
3

size (#characters) in log10

C
P

U
 t

im
e

(m
s)

 in
 lo

g1
0 y = 1.21 x − 3.33

R 2 = 0.9205

Regression line

Figure 5.8: Running time of Iguana on the grammar of OCaml.

5.4.2 OCaml

Compared to Java, the OCaml language specification takes a very different approach
to specifying its grammar. The expression grammar is ambiguous, and operator
precedence and associativity rules are specified in a table, similar to Figure 5.1. We
used the ambiguous expression grammar of OCaml and specified operator precedence
and associativity of its operators using >, left, and right. We have parsed 945 files
from the source distribution of the OCaml compiler version 4.02. From 945 files, 894
(94%) parse successfully and without operator precedence ambiguity. Figure 5.8 shows
the running time of parsing these files. The goodness of the fit is indicated by the R

2

value of 0.9205, and the equation of the linear regression (log-log scale) is written in
the plot. As can be seen, the running time shows a near-linear behavior (y ⇡ x

1.21),
as the coefficient value (1.21) is close to 1.

OCaml, compared to Java, is a much more difficult language to parse. First, the
syntax is ambiguously specified, and in many parts of the specification, the discussion
of the desired parse tree is not precise enough. More importantly, there are syntactic
extensions to OCaml which clash with the original syntax, and it is not clear if these
extensions should only be enabled via a special flag to the compiler. To support a wider
range of OCaml programs, we have incorporated some of the syntactic extensions into
the grammar, and in many places we had to consult the LALR grammar of OCaml
to determine how some parts should be disambiguated. For this evaluation, we also
used the ocamlyacc grammar of OCaml, used by the OCaml compiler, and camlp4, an
extensible syntax system for OCaml. However, even with these two parsers, we could
not parse all the 945 .ml files. It is most likely that we are not aware of a configuration
or flag while parsing those files.

Figure 5.9 (left) shows how many files from the source distribution of OCaml could

142 Chapter 5. Operator Precedence for Data-dependent Grammars

1 4 9

2 27
887

5

Iguana OCamlyacc

Camlp4

10

0.2 0.3 0.4 0.5 0.6 0.7

2 4 6 8 10

Iguana/Camlp4

Iguana/OCamlyacc

Relative Performance945 OCaml files

Figure 5.9: Distribution of the OCaml files parsed by each parser (left), and the
relative performance of Iguana compared to ocamlyacc and camlp4 (right).

be parsed by each parser. 10 files could not be parsed by any parser, but the majority
of files, 887 (93%), could be parsed by all the parsers. Both ocamlyacc and camlp4 use
a separate lexing phase before parsing. Therefore, a performance comparison with a
character-level grammar would not be fair. For performance comparison with camlp4

and ocamlyacc, we used the context-aware [91] version of our OCaml grammar. See
Chapter 3 for a discussion of context-aware scanning in Iguana.

The results of performance comparison are shown in Figure 5.9 (right). Each
box plot shows the relative runtime of Iguana compared to the runtime of camlp4 or
ocamlyacc, for all 887 files that all parsers can successfully parse. As can be seen, the
median running time of Iguana compared to camlp4 is 0.45, meaning that Iguana is on
average 2.2 times faster. The median running time of Iguana compared to ocamlyacc is
4.16, meaning that it is on average 4.16 times slower.

5.4.3 Other Ambiguities in OCaml

For parsing the expression part of OCaml unambiguously, only specifying operator
precedence is not enough. There are some other kinds of ambiguity in OCaml which
we discuss here.

Overlapping rules Consider the simplified excerpt of OCaml, augmented with
operator precedence constructs, in Figure 5.2. For this grammar, the input string a-a

is ambiguous with two derivation trees that correspond to the following groupings:
a(-a) (the function application of a on -a) and a-a (binary minus). Although this
ambiguity looks similar to operator precedence ambiguity, it cannot be disambiguated
by using left, right, and >. To resolve this ambiguity, we use an except construct,
which disallows the derivation of a certain rule at a certain grammar position. In this
case, we can write expr ::= expr expr !umins, where uminus refers to the unary minus

5.5. Related Work 143

rule. This definition effectively disallows unary minus to be derived at the right-most
expr of a function application.

Longest match ambiguities Another ambiguity that happens in the expression
part of OCaml is related to nested patterns. For example consider the following
OCaml pseudo-code:

let f = function
| 0 -> match ... with

| a -> ...
| b -> ...

Even with specifying all operator precedence rules, and applying them in a deep
and indirect setting, this sentence remains ambiguous. The reason is that the b-case
can belong either to function f or to the match of the 0-case. The OCaml language
specification states that a pattern matching construct extends as long as possible
(longest match). We resolved this issue by adding a custom follow restriction that
bypasses layout: ... pattern-matching !>>> '|'. These constructs are explained in more
detail in Chapter 3.

Dangling else ambiguity Finally, we discuss the infamous dangling else ambiguity,
which occurs between rules of the form:

Stmt ::= 'if' Expr 'then' Stmt
| 'if' Expr 'then' Stmt 'else' Stmt

As can be seen, both rules have right-recursive ends, and the first rule is a prefix
of the second rule. The dangling-else ambiguity, although looks very similar to
operator precedence ambiguity, does not fit our semantics of operator precedence
because both rules involved in the ambiguity have only right-recursive ends. Recall
that in our operator precedence semantics, > triggers when one of the two rules
is left- and the other one is right-recursive. In fact, the dangling-else ambiguity
is an instance of longest match ambiguity, for which we use a follow restriction:
Stmt ::= 'if' Expr 'then' Stmt !>>> 'else'.

5.5 Related Work

Throughout this chapter, we discussed the Yacc- and SDF-style operator precedence
semantics, which we do not repeat here. In this section we discuss a number of related
work that are directly related to our solution and inspired us the most.

5.5.1 Parsing OCaml

In Section 5.2 we motivated our new approach to operator precedence using examples
of OCaml. The first question that comes to mind is how OCaml is actually parsed in
practice.

144 Chapter 5. Operator Precedence for Data-dependent Grammars

OCamlyacc The parser for the OCaml compiler is written using ocamlyacc4, a port
of Yacc to OCaml. As we showed in Section 5.2, the Yacc-style resolution of operator
precedence ambiguity can deal with all difficult cases in OCaml, provided that the
grammar is LALR. This means that the grammar used for the OCaml compiler is not
the natural, highly ambiguous specification grammar, rather it is an LALR version.
Consider the following grammar rules, which are taken from the expression part of
the OCaml specification grammar. The alternatives of expr are ordered based on
precedence, with the highest precedence on top.

expr ::= expr '#' method-name
| expr argument+
| 'let' 'rec'? let-binding ('and' let-binding)* 'in' expr

argument ::= expr | '⇠' label-name ':' expr

The LALR counterpart of the rules above is as follows:

expr : simple_expr %prec below_SHARP
| simple_expr simple_labeled_expr_list
| let_bindings IN seq_expr;

let_bindings : let_binding
| let_bindings and_let_binding;

let_binding: LET rec_flag let_binding_body;

rec_flag: REC
| // empty;

simple_labeled_expr_list : labeled_simple_expr
| simple_labeled_expr_list labeled_simple_expr;

labeled_simple_expr : simple_expr %prec below_SHARP
| label_expr;

label_expr: LABEL simple_expr %prec below_SHARP;

As can be seen, the grammar is larger and contains many other nonterminals. Part of
this verbosity is due to lack of support for EBNF in Yacc, e.g. simple_labeled_expr_list
and rec_flag. Some of operator precedence information is encoded declaratively,
e.g., expr: simple_expr is lower than #, but some others are encoded by using new
nonterminals, e.g., simple_expr.

Moreover, the lexer used for the LALR grammar of OCaml is handwritten. This
allows to hide some peculiarities in the syntax of OCaml from the LALR parser
generator, e.g., how labeled arguments are parsed. OCaml also supports nested
comments, which are dealt with in the lexer. It appears that the frontend for the
OCaml compiler has been developed with considerable effort. The benefit of such
a parser is that it is very fast. In contrast, our approach to parsing OCaml is fully
4 http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html

5.5. Related Work 145

declarative. The user encodes the specification grammar of OCaml using a single
formalism for both lexical and context free parts, and resolves ambiguities using
declarative disambiguation constructs.

Camlp4 Camlp45 (and Camlp56), which stands for Caml Preprocessor and Pretty-
Printer, is a system for writing extensible syntax for programming languages. Camlp4
is mostly used to allow syntactic extensions to OCaml programs.

Camlp4 uses a top-down recursive-descent parsing technique that interprets an
in-memory representation of a grammar, and a handwritten lexer that conforms to the
lexical syntax of OCaml. Camlp4 also allows the user to write a natural expression
grammar, and to declaratively specify operator precedence and associativity. For
example, an expression grammar for floating point arithmetic expressions, containing
'+', '-' and '**', where '**' is right-associative and has higher precedence than
left-associative '+' and '-', can be encoded in Camlp4 as follows:

expr: ["minus" LEFTA
[x = SELF; "+"; y = SELF -> x +. y
| x = SELF; "-"; y = SELF -> x -. y]

| "power" RIGHTA
[x = SELF; "**"; y = SELF -> x ** y]

| "simple"
[x = INT -> float_of_int x]];

SELF in this example refers to the expr nonterminal itself. The operator precedence
scheme in Camlp4 works as follows. The parser tries alternatives in order, and each
alternative that can parse at least one token is matched. The grammar is internally
left-factorized to facilitate one token lookahead.

To deal with left-recursive calls, Camlp4 divides rules into two groups: start and
continue. If a rule is left-recursive, i.e., starting with the nonterminal head or SELF,
the rule is parsed using the continue parser, otherwise, using the start parser. In the
example above, the "simple" rule belongs to the start group, while the other rules
belong to the continue group. Parsing starts by calling the start function, and then a
continue parser, based on the precedence and associativity level, is called with the
value of the start function as argument. This approach to operator precedence can
parse OCaml, but it is tied to the way left-recursion is implemented in a deterministic
LL(1)-like parsing strategy.

5.5.2 General Parsers

In this section we discuss a number of operator precedence techniques that are
implemented in context of general parsing.

Dypgen Dypgen7 is a parser generator written in OCaml that allows definition of
extensible grammars. Dypgen is based on GLR parsing and can handle all context-free
5 https://github.com/ocaml/camlp4
6 http://camlp5.gforge.inria.fr/
7 http://dypgen.free.fr/

https://github.com/ocaml/camlp4
http://camlp5.gforge.inria.fr/
http://dypgen.free.fr/

146 Chapter 5. Operator Precedence for Data-dependent Grammars

grammars. A distinguishing feature of Dypgen is that it natively allows passing values
though parsing states. Dypgen allows definition of operator precedence via precedence
relations. For example, consider an expression grammar consisting of '*' and '+'

operators, where '*' has higher precedence, and both operators are left associative.
This grammar, along with precedence relations, can be encoded in Dypgen as:

expr: INT p1
| expr(<=p2) + expr(<p2) p2
| expr(<=p3) * expr(<p3) p3

The precedence relation for this grammar is defined as p1<p2<p3, where pi is the
precedence of the ith rule. The semantics of passing values in Dypgen is as follows.
When a rule is reduced, its precedence is returned. Consequently, a shift action can
only happen when the precedence returned from the previous reduce action matches
the condition in the body of rules, e.g., (<=p2).

Dypgen does not provide high-level notation for specifying operator precedence, and
the user has to manually encode operator precedence using relations and conditions in
the body of rules. In addition, the semantics of passing values in Dypgen is bound to
the underlying LR automaton. In contrast to Dypgen, we provide high-level notation
for specifying operator precedence, and desugar them into data-dependent grammars.
Jim and Mandelbaum [40] report that they could implement data-dependent grammars
on top of GLR parsing, by mapping to Dypgen’s native features. Therefore, Dypgen
can be used as a backend to realize our approach to operator precedence in GLR
parsing.

Elkhound Elkhound [61] is a fast GLR parser generator that switches to the
machinery of an LR parser on deterministic parts of the grammar. For dealing with
operator precedence, Elkhound essentially uses the same approach as Yacc: shift/reduce
conflicts are resolved by precedence and associativity of operators. However, because
Elkhound is based on GLR parsing, it does not need to resolve all shift/reduce conflicts
while parsing. Conflicts that do not correspond to precedence ambiguity are left intact
and are effectively explored in parallel by GLR. Moreover, Elkhound uses a separate
lexing phase, which discards layout. This allows correct resolution of precedence
ambiguity in conflicting states.

Is it possible to use Elkhound’s way of dealing with operator precedence in a
scannerless setting where layout is part of the grammar? The answer is yes, but we
need to put layout nonterminals after each terminal, as in [73] or [47]. The SDF-style
layout insertion, i.e., between each two symbols in body of rules, does not work with
shift/reduce way of resolving precedence ambiguity. In a conflicting state, the parser
needs to decide to shift based on the next operator, but this operator is hidden behind
a layout nonterminal.

ANTLR ANTLR [70] is a popular recursive-descent parser generator. Starting
from version 4, ANTLR supports left-recursive rules and enables global backtracking
using the ALL(*) strategy [70]. ANTLR 4 supports all context-free grammars except

5.5. Related Work 147

the ones with indirect or hidden left recursion. ANTLR 4 does not natively deal with
left recursion, rather it uses a left-recursion transformation under-the-hood, and then
transforms the trees back to the ones of the original, natural grammar. ANTLR 4
is not a general parser in the sense that it cannot deliver all the derivation trees in
case of ambiguity, rather it uses an implicit ambiguity resolution scheme, in which
the ambiguities are resolved based on the order of alternatives. Note that as ANTLR
4 uses a global backtracking scheme, it does not have the quirks of PEG-style [25]
backtracking.

The support for left recursion and operator precedence in ANTLR are interwoven.
When ANTLR rewrites left-recursive rules, it always adds precedence and associativity
information to the rewritten rules: all rules are left-associative by default, and earlier
alternatives have higher precedence. For example, an expression grammar containing
'+' and '%' where both operators are left-associative and '%' has higher precedence
than '+' is transformed to the following grammar [70]:

E[pr] ::= id ({3 >= pr}? '\%' E[4] | {2 >= pr}? '+' E[3])*

This transformation scheme is known as precedence climbing which mimics Clarke’s
technique [14], and requires a non-left-recursive grammar. Left-associative derivation
trees, however, require left recursion. In ANTLR 4, a flat list, resulting from the
expansion of Kleene star, is interpreted as left-associative. Moreover this technique
does not allow associativity groups for operators that have the same precedence, but
are left- or right-associative with respect to each other. One way to get left-associative
groups in ANTLR 4 is to group operators: E ::= E ('+'|'-') E.

Our approach to translation of operator precedence resembles precedence climbing,
in the sense that precedence level is passed, and illegal derivations are excluded
using predicates. However, our approach works in present of left recursion, thus
being able to natively construct parse trees that conform to the original grammar.
In addition, we also support associativity groups. Finally, our approach is fully
declarative, and no default precedence or associativity is applied: if the user writes a
partially disambiguated grammar, by not specifying the precedence or associativity of
some operators, the parser returns all the ambiguities.

Dynamic operator precedence In programming languages such as Prolog it
is possible to redefine the precedence of operators at runtime. Such systems are
fundamentally different from other related work we discussed, in the sense that
the user does not directly work with the syntax of expressions. Prolog and similar
dynamic operator precedence approaches use operator precedence grammars [23]
to dynamically store precedence relationships in a table, and then interpret it. As
the user does not have access to grammar of expressions in such dynamic operator
precedence systems, the expressivity limitations of operator precedence grammars is
not a problem. Favero [21] presents a detailed, step-by-step analysis of how dynamic
operator precedence systems can be implemented.

Danielsson and Norell [16] present an approach for parsing mixfix operators for
a user-defined operator precedence setting. Mixfix operators are a generalization of

148 Chapter 5. Operator Precedence for Data-dependent Grammars

prefix and postfix operators. For example, if-then-else can be considered as a mixfix
operator: if [] then [] else [] which has three places for operands. This way of
specifying operators is beneficial for systems in which the precedence and associativity
of operators defined globally based on their token, not the rule in which they appear.
The operator precedence and associativity information in this approach is encoded
in a precedence graph. To deal with user-defined operator precedence, expressions
are treated as flat lists of tokens, and then parsed again when the precedence graph
is composed at runtime. The semantic of this approach is the same as in SDF2, by
applying one level relationship between parents and children. This means that, for
example, a unary prefix operator with lower precedence will be rejected on right of a
binary operator.

Other approaches So far, we discussed operator precedence techniques that are
used in parsing tools. However, there are many other approaches which have not
found their way in practice, or the tools that implemented them are not available any
more. Most notable approaches in this category are by Aasa [1], Thorup [84], and
Visser [93]. All these approaches use a grammar rewriting technique to implement
operator precedence.

Aasa [1] introduces an approach for declarative specification of operator precedence
by assigning weights to operators in a parse tree. These weights define parse trees that
are precedence correct. Aasa’s approach is safe, and correctly identifies deep cases of
operator precedence. A shortcoming of this approach is that operator precedence is
defined token-based and globally. Therefore, operators in this approach have to be
unique.

Thorup [84] presents a general grammar transformation technique that gets a
grammar and a set of illegal sub-parse trees as input, and produces a grammar
that does not yield derivation trees that are illegal. This approach can be used to
implement operator precedence, if ambiguities in operator precedence are specified as
tree patterns. As some precedence ambiguity patterns are arbitrary deep, it is not
clear how they can be specified in this approach.

Visser [93] introduces a transformation from context-free grammars to character-
class grammars, by applying the SDF2 semantics. Visser’s approach is similar to
the rewriting approach presented in Chapter 4, with the difference that instead of
using indexed nonterminals and operating on the grammar, it replaces nonterminals
with a set of integers and removes violating patterns. Because this approach has the
underlying SDF2 semantics, it may remove sentences from the language if there is no
ambiguity, and cannot deal with deep cases.

5.6 Conclusions

In this chapter we presented a technique for implementing a declarative specification
of operator precedence, by desugaring to data-dependent grammars. Our approach is
efficient and can deal with intricate cases of operator precedence found in functional
programming languages such as OCaml. We evaluated our approach using the Iguana

5.6. Conclusions 149

parsing framework, and the results show that our approach can be practical. Other
general parsing algorithms such as GLR or Earley can also be used as a backend for
data-dependent grammars, and adapt our operator precedence approach.

Chapter 6

Iguana: a Practical Data-dependent

Parsing Framework
1

Summary. Data-dependent grammars extend context-free grammars with arbitrary
computation, variable binding, and constraints. These features provide the user with
the freedom and power to express syntactic constructs outside the realm of context-free
grammars, e.g., indentation rules in Haskell and type definitions in C. Data-dependent
grammars have been recently presented by Jim et al. as a grammar formalism that
enables construction of parsers from a rich format specification. Although some
features of data-dependent grammars are available in current parsing tools, e.g.,
semantic predicates in ANTLR, data-dependent grammars have not yet fully found
their way into practice.

In this chapter we present Iguana, a data-dependent parsing framework, im-
plemented on top of the GLL parsing algorithm. In addition to basic features of
data-dependent grammars, Iguana also provides high-level syntactic constructs, e.g.,
for operator precedence and indentation rules, which are implemented as desugaring to
data-dependent grammars. These high-level constructs enable a concise and declara-
tive way to define the syntax of programming languages. Moreover, Iguana’s extensible
data-dependent grammar API allows the user to easily add new high-level constructs
or modify existing ones. We have used Iguana to parse various real programming
languages, such as Java, C#, Haskell, and a significant subset of OCaml. In this
chapter we describe the architecture and features of Iguana, and provide an extensive
performance evaluation of Iguana, by comparing it to ANTLR 4, on a large number
of Java source files.

1 This chapter is an extension of our tool paper that was originally published as: A. Afroozeh and
A. Izmaylova. Iguana: A Practical Data-Dependent Parsing Framework. In Proceedings of the
25th International Conference on Compiler Construction, CC ’16, pages 267–268, Springer, 2016.

151

152 Chapter 6. Iguana: a Practical Data-dependent Parsing Framework

6.1 Introduction

Parsing is the first step in many tasks, such as compiler construction and static analysis,
that deal with source code. When building a (domain-specific) programming language,
it is desirable to quickly build a parser and spend most of the effort in other phases
such as name resolution and type checking. Despite the long investment in theory
and practice of parsing, constructing parsers remains a difficult task, often left to the
experts. Syntax of most programming languages cannot be directly expressed using
current parsing tools that are based on pure (deterministic) context-free grammars,
and there is a need for (manual) grammar modification, and various hacks in the lexer
and parser.

We advocate a declarative approach [34,49] to syntax definition, where the user
defines the syntax of a language using context-free grammars, and specifies the
(un)desired parse trees using declarative disambiguation constructs. In Chapter 3
we described our parsing framework that can deal with many challenges of parsing
programming languages. We based our parsing framework on data-dependent gram-
mars [41], instead of pure context-free grammars. Data-dependent grammars extend
context-free grammars with arbitrary computation, variable binding and constraints.
In essence, these features allow the user to simulate handwritten parsers. Our data-
dependent parsing framework is implemented on top of our modified version of the
Generalized LL (GLL) parsing algorithm [3]. In particular, we extended GLL to
support environment manipulation and return values.

In Chapter 3 we proposed to use data-dependent grammars as an intermediate
layer for a parser-independent implementation of various disambiguation constructs.
As data-dependent grammars are rather low-level for expressing many disambiguation
constructs, we also demonstrated how several high-level syntactic constructs, e.g.,
operator precedence and indentation-sensitive constructs, can be desugared to data-
dependent grammars. This provides a uniform view on disambiguation, and allows
the user to add new syntactic constructs without the need to modify the machinery of
a parsing algorithm.

In this chapter we present the architecture and features of Iguana, our data-
dependent parsing framework. Iguana has been developed during the last years as
our research playground and has been used in evaluating the results of the previous
chapters. We present the architecture of Iguana, discuss its textual syntax, and also
present the results of our performance comparison with ANTLR 4, one of the most
popular parsing tools. The results show that Iguana is practical for parsing real
programming languages.

6.2 Architecture

We designed Iguana to be extensible and flexible. Iguana can be used as a standalone
library, where the language engineer uses its textual syntax to define a grammar.
Iguana can also be used as the underlying parsing library for language workbenches
and tools that have their own textual syntax for grammar definition. In this case,

6.2. Architecture 153

Core Data-dependent Grammars

Data-dependent ATNs

Data-dependent GLL Parsing

High-level Constructs

Runtime

Data-dependent Grammars

Textual Syntax 3rd Party SyntaxReference Syntax

Figure 6.1: The architecture of Iguana.

Iguana’s data-dependent API can be used to implement the textual syntax. In addition,
custom disambiguation constructs can be added by desugaring to data-dependent
grammars. Figure 6.1 shows the architecture of Iguana. In the following we discuss
the architecture of Iguana and its components in more detail.

6.2.1 Runtime

Iguana is implemented on top of our version of GLL parsing. In Chapter 2 we proposed
a modification to the Graph Structured Stack (GSS) of the original GLL algorithm,
and showed that the new GSS makes GLL parsers significantly faster. To implement
data-dependent features, we presented an extension of GLL that supports environment
manipulation and return values (see Chapter 3).

Figure 6.2 shows a high-level overview of the Iguana runtime. As can be seen,
the Iguana runtime has four high-level components: GSS, SPPF, Lookup Tables and
Grammar Graph. We have discussed GSS and SPPF extensively in previous chapters.
In the following we discuss Grammar Graph and Lookup Tables.

Iguana uses an interpretive version of GLL which operates on an in-memory
representation of a grammar. We refer to this grammar representation as Grammar
Graph, which is Iguana’s implementation of data-dependent ATNs presented in
Chapter 3. Interpreting the grammars at runtime eliminates the need for code
generation and compilation cycles after every change to the grammar. This makes
Iguana particularly suitable as a parsing framework for language workbenches, in
which the user constantly changes the grammar.

154 Chapter 6. Iguana: a Practical Data-dependent Parsing Framework

GSS

SPPF

Lookup Tables

Grammar Graph

Input

Grammar

Parse Tree

Figure 6.2: An overview of the Iguana Runtime.

For keeping the theoretical cubic complexity of GLL parsing, we need constant-time
lookups, for example, for finding an existing GSS node with a particular label and
input index. Implementing efficient lookup tables poses a significant engineering
challenge, as it is not a trivial task to find the best trade-off between speed and
memory usage. Our experience with various data structures showed that, for parsing
real programming languages, hash tables distributed over the Grammar Graph (see
Chapter 2) are the best implementation for Lookup Tables.

6.2.2 Data-dependent Grammars

This layer provides an API to construct an abstract representation of a data-dependent
grammar. A data-dependent grammar can be directly defined using this API and later
transformed to a data-dependent ATN to be interpreted. This layer also provides an
API for transformation of data-dependent grammars. Our data-dependent grammars
support all the features of the original data-dependent grammars [41], and some useful
extensions such as return values. We call these features the core features. In addition,
we provide a set of high-level syntactic constructs, e.g., for operator precedence and
indentation rules, and transformations that desugar them to the core data-dependent
grammars. Our parsing framework is extensible: the language engineer can add new
high-level constructs, by using our API and providing the necessary desugaring to
data-dependent grammars. Iguana’s data-dependent features are discussed in detail
in Chapter 3.

6.2. Architecture 155

default layout terminal Layout
: (WhiteSpace | Comment)*
;

terminal WhiteSpace
: [\t\r\n]
;

terminal Comment
: TraditionalComment
| EndOfLineComment
;

terminal CommentChar
: [/]
| [*]* ![/*]
;

terminal TraditionalComment
: '/*' CommentChar* [*]+ '/'
;

terminal EndOfLineComment
: '//' ![\r\n]* [\r\n]
;

Figure 6.3: Terminal and layout definitions in Iguana.

6.2.3 Textual Syntax

This layer provides a textual (concrete) syntax for defining grammars. Our textual
syntax is faithful to the original syntax of data-dependent grammars and provides a
grammar-centric, clean way of defining data-dependent grammars. Tool builders who
wish to design their own syntax for grammar definition can integrate Iguana into their
tool, as a parsing library for syntax definition, using our abstract representation of
data-dependent grammars. In this section we discuss the textual syntax of Iguana using
the grammar of Java 7, which is used for the performance evaluation in Section 6.3.

Iguana employs a single-phase parsing strategy [4], in which there is no separate
lexing phase. Single-phase parsing effectively presents the parsing context to the
lexing phase, and avoids the problems of a separate lexer in determining the type
of tokens that have different meanings in different contexts. In the Iguana textual
syntax, a terminal definition can be seen as a function that when called at a input
index, returns the length of the matched substring. Terminals do not capture the
structure and always return the longest possible match. We believe such semantics for
terminals is the best option for parsing real programming languages because almost
all lexical definitions in programming languages are greedy by default (longest match),
and their internal structure is not needed.

In the Iguana textual syntax, terminals can be defined as single characters, corre-

156 Chapter 6. Iguana: a Practical Data-dependent Parsing Framework

IfStatement
: 'if' '(' Expression ')' WSNoNL NL WSNoNL Statements 'fi'
;

layout terminal WSNoNL
: [\t]*
;

terminal NL
: [\r\n]
;

default layout terminal WS
: [\t\n\r]*
;

Figure 6.4: An example of explicit layout insertion in Iguana.

sponding to the character-level scannerless parsing [73,94], or using regular expressions,
corresponding to context-aware scanning [91]. Context-aware scanning brings the best
of the both worlds: it avoids the problems of a separate scanning phase, while at
the same time, brings considerable improvement in performance and memory usage
compared to character-level grammars.

Currently, regular expressions in Iguana are implemented using Deterministic
Finite Automata (DFA) [35], and therefore cannot be recursive. Moreover, advanced
features such as lookahead and lookbehind, commonly found in backtracking regular
expression engines, are not supported in Iguana.

Figure 6.3 shows some examples of terminal definitions in Iguana. The keyword
terminal is used to specify a terminal definition. As can be seen, terminals can be defined
in terms of other terminals, however, terminal definitions cannot be recursive. Another
current limitation is that follow, precede restrictions and keyword exclusion [90] are
only supported at a top-level terminal definition, i.e., a terminal definition which is
not used by any other terminal definition.

Layout (whitespace and comment) can usually appear between any two tokens in the
source code of programming languages. As Iguana uses a single-phase parsing strategy,
it treats layout (whitespace and comment) like any other terminal or nonterminal.
Since it is cumbersome to explicitly specify the layout in grammar rules, Iguana
automatically rewrites the grammar to insert the layout definitions between symbols.
In the Iguana textual syntax, a terminal or nonterminal can be marked as layout by
using the layout keyword. If a layout definition is marked as default, it is used as the
layout definition to be automatically inserted between symbols. In Figure 6.3 the
terminal definition Layout is the default layout definition.

Other non-default layout definitions can be manually inserted between two symbols,
overriding the default layout insertion. This is useful, for example, for cases where the
user wants to use whitespace as a significant token in the grammar. As an example,

6.2. Architecture 157

consider an imaginary language in which the if-statement requires one and only one
mandatory new line after its condition and before the statements. Figure 6.4 shows
how the grammar of such a language can be defined in Iguana. In this grammar the
layout definition WSNoNL defines whitespace characters excluding the new line characters.
The presence of the WSNoNL in the IfStatement definition overrides the default layout,
and allows the NL terminal to consume the only expected new line character.

Iguana also provides the special symbol _ which disallows the layout between
two symbols. One use case for _ is defining nested comments. As nested comments
are recursive, they cannot be defined as Iguana terminals, and should be defined
as context-free rules, but at the same time, no layout should be inserted in such
definitions.

Figure 6.5 (top) shows the ambiguous grammar of the expression part of the Java
7 grammar. In order to disambiguate this expression grammar, we use the following
explicit disambiguation constructs:

• Lexical disambiguation constructs, such as follow and precede restrictions, and
keyword exclusion.

• Operator precedence and associativity disambiguation constructs, such as >, left,
right, and nonassoc. We discuss these constructs in more detail in Chapter 5.

• The exclusion disambiguation construct ! for excluding a given alternative
of a nonterminal. This disambiguation construct can be seen as an on-the-
fly rewriting mechanism without explicitly introducing extra nonterminal into
the grammar. The exclusion construct in Iguana is implemented using data-
dependent grammars, by passing the excluded alternative as an argument and
adding constraints for alternatives.

Figure 6.5 (bottom) shows the disambiguated version of the expression grammar of
Java 7. The operator precedence ambiguities are resolved using the >, left, and right

constructs. Besides the operator precedence disambiguation constructs, we also need
the exclusion operator ! and follow restrictions to fully disambiguate this grammar.
An example of an ambiguous string that requires an exclusion operator is (A) + 1,
which can be parsed as:

(A) (+ 1) // Cast expression of a prefix expression
(A) + (1) // Infix expression

According to the Java language specification, the second derivation is correct, as in
the specification the cast rule is defined as:

'(' ReferenceType ')' UnaryExpressionNotPlusMinus

We can achieve the same behavior using an exclusion construct. To do this, we give a
label to the prefix rule, using %prefix, and exclude it using the ! operator as shown
in Figure 6.5 (bottom). Note that the exclusion disambiguation construct is not
safe [6] in general, i.e, it removes sentences from the language. In the case of the cast

158 Chapter 6. Iguana: a Practical Data-dependent Parsing Framework

Expression
: Expression '.' Selector
| MethodInvocation
| Expression '[' Expression ']'
| Expression ('++' | '--')
| ('+' | '-' | '++' | '--' | '!' | '⇠') Expression
| "new" (ClassInstanceCreation | ArrayCreation)
| '(' PrimitiveType ')' Expression
| '(' ReferenceType ')' Expression
| Expression ('*' | '/' | '%') Expression
| Expression ('+' | '-') Expression
| Expression ('<<'' | '>>' | '>>>') Expression
| Expression ('<' | '>' | '<=' | '>=') Expression
| Expression 'instanceof' Type
| Expression ('==' | '!=') Expression
| Expression '&' Expression
| Expression '^' Expression
| Expression '|' Expression
| Expression '&&' Expression
| Expression '||' Expression
| Expression '?' Expression ':' Expression
| Expression AssignmentOperator Expression
| Primary
;

Expression
: Expression !instanceOf '.' Selector
| MethodInvocation
| Expression '[' Expression ']'
| Expression ('++' | '--')
> ('+' | '-' | '++' | '--' | '!' | '⇠') Expression %prefix
| "new" (ClassInstanceCreation | ArrayCreation)
| '(' PrimitiveType ')' Expression
| '(' ReferenceType ')' Expression !prefix
> left Expression ('*' | '/' | '%') Expression
> left Expression ('+' !>> '+' | '-' !>> '-') Expression
> left Expression ('<<' | '>>' | '>>>') Expression
> left Expression ('<' | '>' | '<=' | '>=') Expression %comparison
> Expression 'instanceof' Type %instanceOf
> left Expression ('==' | '!=') Expression
> left Expression '&' Expression
> left Expression '^' Expression
> left Expression '|' Expression
> left Expression '&&' Expression
> left Expression '||' Expression
> right Expression '?' Expression ':' Expression
> right Expression !comparison AssignmentOperator Expression
| Primary
;

Figure 6.5: An excerpt of the Java 7 grammar written in the Iguana textual syntax,
containing the ambiguous Expression definition (top), and the disambiguated version
using the high-level disambiguation constructs in Iguana (bottom).

6.2. Architecture 159

expression in Java, since we always have another derivation, we can safely use the !

operator.
Another non-operator-precedence ambiguity in this grammar occurs in the sentence

1++ + 2, which can be parsed as ((1++) + 2) or (1+(+ (+ 2))). The second parse is illegal
and should be discarded, but since the cause of this ambiguity is the overlapping of
the lexical tokens + and ++, we need to explicitly specify a follow restriction for '+',
i.e., '+' !>> '+', as shown in Figure 6.5 (bottom). This example shows an important
property of our context-aware scanning: each terminal is considered in its context, and
there is no global longest match rule for lexical definitions. Having a global longest
match rule for lexical definitions would have the same problems as a separate lexer.
Therefore, such ambiguities should be explicitly resolved using follow restrictions.

6.2.4 SPPF and Parse Trees

Iguana takes a grammar and a string as input and produces a parse tree as output.
During the parsing GLL constructs a binarized SPPF [77], which contains all the
derivations. Binarized SPPF is essential for keeping the cubic worst-case complexity
of GLL parsing. After the parsing we convert the produced SPPF to a parse tree2. In
this section we discuss Iguana parse trees in detail using some examples.

Figure 6.6 (left) shows a simplified excerpt of the Java 7 grammar, containing
the method invocation syntax and a small subset of the expression grammar. Before
parsing, this grammar goes through two transformations. First, EBNF constructs, such
as ⇤ and ?, are rewritten and replaced with (left-recursive) BNF definitions. Second,
layout is inserted between symbols. We assume that the default layout definition
Layout is defined for this grammar, and the terminal definitions Identifier and Number

are available.
Figure 6.6 (right) shows the grammar after the EBNF to BNF and layout insertion

transformations are performed3. The auxiliary nonterminals Opt, Star and Plus are
introduced after the EBNF to BNF conversion. In addition, Layout is inserted between
each two symbols in the body of the grammar rules.

The SPPF resulting from parsing the input f(1, 2, 3) with the grammar in
Figure 6.6 (right) is shown in Figure 6.7 (top). In the visualizations in this section,
nonterminal nodes have double border lines and are labeled with the name of the
nonterminal. Terminal nodes have single border lines and are labeled with both
the name of the terminal and the matched substring. Intermediate nodes have gray
background, and are labeled with a grammar slot, which is a position (indicated by a
dot) in the body of a grammar rule. Note that in Iguana, compared to the original
GLL [78], we only add packed nodes when there is an ambiguity. Also, for a better
visualization, the left and right extent indices of nodes are not shown.
2 Our parse tree format is inspired by the parse tree formats used in the ATerm library [87] and

Rascal [51].
3 As can be seen, there is a Plus nonterminal in the rewritten grammar, but there is no + operator in

the original grammar. The + nonterminal is introduced during the EBNF to BNF transformation,
as we rewrite A⇤ to A⇤ ::= A+ | ✏ to make the layout translation more uniform.

160 Chapter 6. Iguana: a Practical Data-dependent Parsing Framework

MethodInvocation
: Identifier Arguments
;

Arguments
: '(' (Exp (',' Exp)*)? ')'
;

Exp
: Exp '*' Exp
| Exp '+' Exp
| Number
;

MethodInvocation
: Identifier Layout Arguments
;

Arguments
: '(' Layout Opt Layout ')'
;

// (Exp (',' Exp)*)?
Opt

: Exp Layout Star
| // epsilon
;

// (',' Exp)*
Star

: Plus
| // epsilon
;

// (',' Exp)+
Plus: Plus Layout ',' Layout Exp

| ',' Layout Exp
;

Exp
: Exp Layout '*' Layout Exp
| Exp Layout '+' Layout Exp
| Number
;

Figure 6.6: The simplified MethodInvocation definition from the Java 7 grammar (left),
and the same grammar after EBNF to BNF and layout insertion transformations
(right).

After parsing an input, Iguana transforms the resulting SPPF to a parse tree.
The parse tree corresponding to the SPPF in Figure 6.7 (top) is shown in Figure 6.7
(bottom). Iguana has an option to include or skip layout nodes in the produced parse
tress. The parse tree shown in Figure 6.7 (bottom) has the layout nodes. As can be
seen, in a parse tree, nonterminal and terminal nodes are the same as in the SPPF.
However, there are no intermediate nodes in a parse tree. Moreover, for each EBNF
construct, there is an explicit node in the parse tree, e.g., (',' Exp)*. In Figure 6.7
(bottom), EBNF nodes are shown as ovals.

In an SPPF, ambiguities are represented using packed nodes [78]. An example
of an ambiguous SPPF, corresponding to parsing the input 1 + 2 * 3 with the Exp

nonterminal of Figure 6.6, is shown in Figure 6.8 (top). Packed nodes are shown
as circles in Figure 6.8 (top). The first and second packed nodes correspond to the
grouping ((1 + 2) * 3) and (1 + (2 * 3)), respectively.

When transform an SPPF to a parse tree, packed nodes are transformed into

6.2. Architecture 161

MethodInvocation

Identifier Layout . Arguments Arguments

Layout: ''Identifier: 'f'

'(' Layout: ''

'(' Layout Opt Layout . ')'

'(' Layout Opt . Layout ')'

')'

'(' Layout . Opt Layout ')' Opt

Layout: ''

Exp Layout . Star

Exp Layout: ''

Star

Plus

Plus Layout ',' Layout . Exp

Plus Layout . ',' Layout Exp

Exp

Plus

','

',' Layout . Exp Exp

',' Layout: ' '

Number: '1'

Number: '2'

Number: '3'Layout: ' 'Plus Layout ',' . Layout Exp

Layout: ''

MethodInvocation

ArgumentsLayout: ''Identifier: 'f'

'(' Layout: '' ')'(Exp (',' Exp)*)?

Exp Layout: '' (',' Exp)*

Exp','Exp',' Layout: ' 'Number: '1'

Number: '2' Number: '3'

Layout: ''

Layout: ' 'Layout: ''

Figure 6.7: The SPPF (top) and parse tree (bottom) corresponding to parsing the
input f(1, 2, 3) with the grammar of Figure 6.6.

.

162 Chapter 6. Iguana: a Practical Data-dependent Parsing Framework

Exp

Exp Layout '+' Layout . Exp

Exp
Layout: ' 'Exp Layout '+' . Layout Exp

'+'Exp Layout . '+' Layout Exp

Layout: ' 'Exp

Exp Layout '*' Layout . Exp

Exp

Exp Layout '*' . Layout Exp

Layout: ' '
Exp Layout . '*' Layout Exp

'*'Layout: ' 'Exp
Number: '1'

Number: '2'

Number: '3'

Exp Layout '*' Layout . Exp

Exp Layout '*' . Layout Exp

Exp Layout . '*' Layout Exp

Exp

Exp

Exp

Layout: ' ''+'Layout: ' 'Exp

ExpLayout: ' ''*'Layout: ' 'ExpNumber: '1'

Number: '2' Number: '3'

Amb

Exp

Exp

Figure 6.8: The SPPF (top) and parse tree (bottom) corresponding to parsing the
input 1 + 2 * 3 with the Exp nonterminal of the grammar in Figure 6.6.

.

6.3. Performance Evaluation 163

Table 6.1: Summary of the projects used for evaluating the performance of Iguana
and ANTLR.

Project Version #Files #Chars SLOC Size (on disk)

OpenJDK 7 jdk7u6-b08 14,161 837,651 3,628,651 168 MB
Elastic Search 2.4.6 4,438 377,147 752,995 40 MB
Guava 18.0 1,691 127,588 402,651 17MB
RxJava 2.2.2 1,637 123,925 413,006 17 MB
JUnit 4.12 392 25,255 38,106 2MB

ambiguity nodes. The parse tree corresponding to the SPPF of Figure 6.8 (top) is
shown in Figure 6.8 (bottom). The ambiguity node in Figure 6.8 (bottom), which is
shown as a diamond, has two children, each corresponding to a derivation.

6.3 Performance Evaluation

Iguana has been our research platform for the last years, and is under active develop-
ment. Iguana is implemented in Java, and is available as an open source project4. In
this section we evaluate the performance of Iguana by comparing it to ANTLR [69,70],
one of the most popular parsing tools currently available. ANTLR is widely used both
as a library in various applications and also in language workbenches and tools such as
Xtext5. In the following we refer to ANTLR version 4, but we simply call it ANTLR.

In Chapter 1 we enumerated challenges of comparing the performance of different
parsing techniques. For this evaluation we tried to minimize the factors that make
the comparison hard. First, both Iguana and ANTLR6 are implemented in Java.
Second, we used very similar grammars of Java, which have a natural expression part.
However, we should note that ANTLR uses a separate lexing phase and also does
not return all parse trees in form of a parse forest. This already gives ANTLR a big
advantage in terms of performance. Nevertheless, we believe this section can provide
the end user with enough insight about Iguana’s performance when considering Iguana
for parsing real programming languages.

6.3.1 Java Grammar and Source Files

For this evaluation we used the grammar of Java 7. Java is one of the most popular
programming languages and is a good use case for evaluating parsing performance.
Java has a C-style syntax which is very common, its grammar is large, and has a
reasonably large and complex expression part.

For Iguana, we used a natural grammar of Java 7 from the Java Language Specifi-
cation [32] as the basis, and replaced its term-factor-style expression grammar with a
4 https://github.com/iguana-parser/
5 https://www.eclipse.org/Xtext/
6 ANTLR also has implementations in other languages such as C# and JavaScript.

https://github.com/iguana-parser/
https://www.eclipse.org/Xtext/

164 Chapter 6. Iguana: a Practical Data-dependent Parsing Framework

natural, left-recursive version that is disambiguated using our declarative operator
precedence constructs [5].

For ANTLR, we used a Java grammar from the ANTLR grammar repository on
GitHub. Among several Java grammars available in the ANTLR grammar repository,
we chose the one that was mentioned to have a better performance7. This grammar
has a left-recursive, natural expression grammar and is close to the Java grammar we
used for Iguana.

For the performance evaluation we used source code from several popular Java
open source projects. Table 6.1 summarizes the projects we used in this evaluation.

6.3.2 Correctness

In order to compare the performance of Iguana against ANTLR, we first need to
ascertain that both parsers can produce parse trees conforming to the syntax of Java.
Note that establishing such correctness is not a straightforward task for the following
two reasons. First, although the Iguana and ANTLR grammars of Java 7 that we use
for the performance evaluation are very close to each other, they are not the same, and
they are both different from the official Java specification grammar. Second, Iguana
and ANTLR use different parse tree formats for the output parse trees. To circumvent
these problems, we design the correctness analysis as follows:

• We select a well-known, widely-used Java library used for parsing Java source
files and constructing Java ASTs. We use the AST format of the library as the
canonical format, and the ASTs produced by the parser of the library as the
reference ASTs.

• We convert the parse trees produced by both Iguana and ANTLR to the canonical
AST format and compare them against the reference ASTs.

• We verify the correctness by running the comparison for a large corpus of Java
source files.

For the correctness analysis, we have chosen the Java AST format of the Eclipse Java
Development Tools (JDT)8 as the canonical AST format. We have also used the
Eclipse JDT parser, which is a hand-written recursive-descent parser, to construct the
reference parse trees. The Eclipse JDT project provides Java language services for
the Eclipse IDE, and it is also available as a standalone library (Eclipse JDT core) for
analyzing Java source code.

Both ANTLR and Iguana provide visitors (the Visitor pattern [27]) for traversing
the produced parse tree. We have written visitors to construct Eclipse JDT ASTs
from both ANTLR and Iguana parse trees. Since both grammars are natural and
close to the expected Java AST, the construction of Eclipse JDT ASTs was fairly
straightforward, and did not require any significant structural transformation of the
parse trees while traversing them. We note that constructing ASTs was slightly more
7 https://github.com/antlr/grammars-v4/tree/master/java
8 https://www.eclipse.org/jdt/overview.php

https://github.com/antlr/grammars-v4/tree/master/java
https://www.eclipse.org/jdt/overview.php

6.3. Performance Evaluation 165

convenient when using ANTLR as it generates typed visitors when generating the
parser for a grammar. Since Iguana is a grammar interpreter, the visitors are not
typed, and we needed to match based on the string name of nonterminals. The source
code for visitors can be found in our parser test suite project9.

We compared the resulting Eclipse JDT ASTs from both ANTLR and Iguana
against the ones produced by the Eclipse JDT parser. For comparing ASTs, we call the
ASTNode.subtreeMatch method on the resulting AST objects. The subtreeMatch method
recursively checks all the AST nodes. For comparing the ASTs we needed to consider
the following issues:

• Java parsers cannot distinguish between a FieldAccess and QualifiedName without
access to the type information. For example, a.A can either refer to the field A on
an object referenced by a, or the qualified name a.A that represents type A from
package a. Since this ambiguity cannot be resolved at parse time, most Java
parsers accept one representation at parse time and postpone the actual check to
a later phase when the necessary information is available. When comparing the
ASTs from Iguana and ANTLR against the ones produced by the Eclipse JDT
parser, we compare the string representation of QualifiedName and FieldAccess

nodes if they are being compared against each other.

• The Eclipse JDT parser treats nested InfixExpression nodes with the same
operator in a special way to prevent very deep expressions that may cause
stack overflow while traversing the AST. For example, 1 + 2 + 3 + 4 is parsed as
{ left: 1, right: 2, op: +, extendedOperands: [3, 4])}, instead of the expected
(((1 + 2) + 3) + 4). We convert “extended operands” of InfixExpression pro-
duced by the Eclipse JDT parser to the conventional nested expressions before
comparing InfixExpression nodes.

• The Eclipse JDT parser parses the string -2147483648 as a NumberLiteral, while
according to the grammar of Java it should be parsed as a PrefixExpression. The
reason why this number cannot be parsed as expected is that 2147483648 does not
fit an integer in Java. We have a special check when comparing PrefixExpression

and NumberLiteral nodes to cover this case.

The subtreeMatch method accepts an extra argument that allows customizing the
matching. We created a custom matcher that resolves the above-mentioned issues
while comparing ASTs. For all 22,319 Java files in the projects shown in Table 6.1,
the ASTs produced by ANTLR and Iguana were the same, and were equal to the ones
produced by the Eclipse JDT parser. Therefore, with high confidence we can say that
both ANTLR and Iguana produce the same, correct parse trees.
9 https://github.com/iguana-parser/test-suite

https://github.com/iguana-parser/test-suite

166 Chapter 6. Iguana: a Practical Data-dependent Parsing Framework

Ig
ua

na
A

N
T

LR

0 10 20 30 40

All Projects

0.72 5.69 26.45

0.15 3.54 17.32

Ig
ua

na
A

N
T

LR

0 10 20 30 40

OpenJDK 7

0.78 5.01 22.3

0.18 3.22 16.13

Ig
ua

na
A

N
T

LR

0 10 20 30 40

RxJava

0.77 8.15 39.75

0.25 4.84 25.64

Ig
ua

na
A

N
T

LR

0 10 20 30 40

Elastic Search

0.77 6.615 31.01

0.26 3.9 18.93

Ig
ua

na
A

N
T

LR

0 10 20 30 40

Guava

0.87 8.11 40.55

0.27 4.25 20.23

Ig
ua

na
A

N
T

LR

0 10 20 30 40

Junit 4

0.72 4.14 18.42

0.15 2.03 9.35

Figure 6.9: Running time of Iguana and ANTLR for the input files. The x axis shows
the running time in milliseconds.

6.3. Performance Evaluation 167

6.3.3 Performance

In this section we present the results of our performance comparison between ANTLR
and Iguana. For this evaluation we used the latest master build10 of Iguana, and
the binary distribution of ANTLR version 4.7.1. For measuring the running time of
parsers we use Java Measurement Harness (JMH)11. JMH is the state-of-the-art tool
to perform benchmarking on the JVM platform, and prevents many pitfalls of running
Java benchmarks.

The performance evaluation in this section was performed on a MacBook Pro with
a quad-core Intel Core i7 2.6 GHz CPU and 16 GB of memory, running macOS X
10.13.6 and a 64-Bit Oracle HotSpotTM JVM version 1.8.0_181. For running the
benchmarks we did not explicitly specify a max heap size for the JVM, and therefore,
the default 4GB for the max heap size was used. We discuss the memory usage in
detail in the following section.

We used the single shot mode of JMH, which measures a single running time of
the benchmark method. We ran the benchmarks for each input file 15 times, with 5
prior warmup iterations. The warmup iterations are essential for Just-In-Time (JIT)
optimizations to take place. JMH reports the final running time for each file as the
mean of 15 running iterations. We used two specific JVM arguments for running the
benchmarks. First, we used a larger stack size, using the -Xss4m flag, to avoid stack
overflow errors when producing deeply nested infix expressions that happen in few
input files. Second, we used the new G1 garbage collector12, using the -XX:+UseG1GC

flag, which we found performing better in our case.
Figure 6.9 shows the performance results for all the files (All Projects in Figure 6.9)

and each project separately. The reported time, for both Iguana and ANTLR, is the
time from the moment we pass the input string to the parser until the moment the
parse tree is constructed. We note that for ANTLR the reported time also includes
the lexing time. The Eclipse JDT AST creation phase was only used to verify the
correctness and is not included in the reported running time. Figure 6.9 excludes
the outliers from the boxplots for better visualization. If we compare Iguana and
ANTLR based on the median running time (5.69ms vs 3.54ms) and the maximum
running time (26.45 ms vs 17.32 ms) for all the files, we can observe that these values
are comparable.

Figure 6.10 shows the relative running time, the running time of Iguana divided
by the running time of ANLTR, for each input file. As can be seen, if we consider the
median running time for all the projects, Iguana is 69% slower than ANTLR. In some
cases ANTLR is faster than Iguana by a factor of 4, but there are also cases where
Iguana is faster than ANTLR.

We have inspected a number of the input files that showed extreme differences in
performance between Iguana and ATNLR. Our observation is that Iguana is faster
than ANTLR when a file contains many field access or method call chains. This
10 From the commit hash 74a254c9 of the master branch of the Iguana repository, located at

https://github.com/iguana-parser/iguana.
11 http://openjdk.java.net/projects/code-tools/jmh/
12 https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/g1_gc.html

https://github.com/iguana-parser/iguana
http://openjdk.java.net/projects/code-tools/jmh/
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/g1_gc.html

168 Chapter 6. Iguana: a Practical Data-dependent Parsing Framework

Ju
ni

t
4

E
la

st
ic

 S
ea

rc
h

G
ua

va
R

xJ
av

a
O

pe
nJ

D
K

 7
A

ll
P

ro
je

ct
s

0 1 2 3 4

0.73 2.33 4.16

0.28 1.99 4.2

0.33 1.895 3.84

0.29 1.76 3.77

0.15 1.59 3.16

0.15 1.69 3.53

Figure 6.10: The relative running time of Iguana vs. ANTLR for each input file.

shows that the handling of expressions and the operator precedence disambiguation
mechanism in Iguana are efficient. ANTLR is significantly faster than Iguana on files
that are small (about 200 lines of code), and contains many string literals. We suspect
that ANTLR’s separate lexing phase and possibly a more efficient lexer implementation
contributed to the big difference in these files.

The results of our performance evaluation in this section show that Iguana is
practical for parsing real programming languages. Specifically, Iguana’s performance
is comparable to ANTLR, a mature parsing library that has been under development
for many years. As expected, Iguana is slower than ANTLR because of using a single-
phase parsing strategy and a more complicated machinery to construct a shared parse
forest of possible ambiguities. However, if we consider the absolute running time values
in Figure 6.9, we can observe that the difference is small for most cases. Moreover, we
believe that the slight performance penalty for features such as single-phase parsing,

6.3. Performance Evaluation 169

explicit disambiguation and parse trees with ambiguity nodes is a reasonable trade-off.

6.3.4 Memory Usage

The Java Virtual Machine (JVM) provides automatic memory management via garbage
collection. All new objects are allocated in the JVM Heap space, and are garbage
collected when there are no more references pointing to them. The JVM Heap space
can be controlled via the -Xms and -Xmx arguments, corresponding to the minimum
and maximum heap size values13, respectively. The JVM starts with the specified
minimum heap size value and can grow dynamically to the maximum heap size value
as needed. The JVM throws OutOfMemoryError if the maximum heap size is reached
while allocating memory for a new object.

For comparing the memory usage of Iguana and ANTLR, we try to find the
smallest value for the -Xmx parameter (max heap size) with which an input file can
be successfully parsed. We parsed each input file, with both Iguana and ANTLR,
starting with 1 MB value for the -Xmx parameter, and incrementing this value by 1 MB
each time the parse failed due to OutOfMemoryError until we could successfully parse the
input file.

Table 6.11 summarizes the memory usage (the smallest value for the -Xmx parameter)
for all the input files for Iguana and ANTLR. For Iguana, 20,924 out of 22,319 files
(93.75%) are successfully parsed with 9MB of memory, and for ANTLR, 20,676 out
of 22,319 files (92.64%) are successfully parsed with 5MB of memory. Note that the
reported value for the memory usage also includes the memory for the produced parse
tree.

Our analysis shows that although larger files require more memory, there is no
observable correlation between the size of a file and its memory consumption. The
largest file in our input files, EUC_TW_OLD.java14 (2.2 MB on disk), required 65 MB and
35MB to parse with Iguana and ANTLR, respectively. This file contains very large
expressions for concatenating strings. The maximum amount of memory needed to
parse a file, however, was used for the file BigClass.java15 which contains huge array
initializers. The size of this file is only 647KB on disk, but required 233MB and
131 MB memory to parse with Iguana and ANTLR, respectively. We observed that in
general Iguana requires more memory to parse a file than ANTLR. This is expected
and can be explained as follows:

1. To deal with ambiguities Iguana needs to keep the SPPF in memory all the time.
As, in the general case, it is not possible to impose any ordering on processing
of descriptors in GLL, we need to keep all the SPPF nodes until all descriptors
are processed. Constructing the SPPF and its associated lookup tables requires
significant amount of memory. Moreover, GLL uses a binarized SPPF format

13 The default minimum and maximum heap sizes are system dependent.
14 https://github.com/openjdk-mirror/jdk7u-jdk/blob/jdk7u6-b08/test/sun/nio/cs/EUC_TW_

OLD.java
15 https://github.com/openjdk-mirror/jdk7u-jdk/blob/jdk7u6-b08/test/java/lang/

instrument/BigClass.java

https://github.com/openjdk-mirror/jdk7u-jdk/blob/jdk7u6-b08/test/sun/nio/cs/EUC_TW_OLD.java
https://github.com/openjdk-mirror/jdk7u-jdk/blob/jdk7u6-b08/test/sun/nio/cs/EUC_TW_OLD.java
https://github.com/openjdk-mirror/jdk7u-jdk/blob/jdk7u6-b08/test/java/lang/instrument/BigClass.java
https://github.com/openjdk-mirror/jdk7u-jdk/blob/jdk7u6-b08/test/java/lang/instrument/BigClass.java

170 Chapter 6. Iguana: a Practical Data-dependent Parsing Framework

Size (MB) Count Percentage

9 20924 93.750
10 52 0.233
11 665 2.980
12 17 0.076
13 251 1.125
14 12 0.054
15 149 0.668
16 8 0.036
17 75 0.336
18 5 0.022
19 41 0.184
20 3 0.013
21 25 0.112
22 1 0.004
23 24 0.108
24 2 0.009
25 17 0.076
26 1 0.004
27 9 0.040
29 10 0.045
31 3 0.013
33 6 0.027
34 1 0.004
35 7 0.031
36 1 0.004
39 2 0.009
47 1 0.004
49 1 0.004
53 1 0.004
57 1 0.004
65 1 0.004
75 1 0.004
87 1 0.004
233 1 0.004

Size (MB) Count Percentage

5 20676 92.639
6 12 0.054
7 1337 5.990
8 8 0.036
9 176 0.789
10 2 0.009
11 72 0.323
13 16 0.072
15 8 0.036
16 1 0.004
17 5 0.022
21 3 0.013
23 1 0.004
35 1 0.004
131 1 0.004

Figure 6.11: Summary of memory usage (maximum heap size value) of all the input
files for Iguana (left) and ANTLR (right).

6.4. Conclusions 171

with intermediate nodes, which also contributes to the extra memory usage
of Iguana. In contrast, ANTLR returns at most one parse tree and does not
maintain a shared parse forest while parsing, and therefore, has the memory
advantage.

2. Iguana uses a single-phase parsing strategy. This means that the layout infor-
mation (whitespace and comments) are also kept in the SPPF. Keeping the
layout information in the SPPF contributes to the larger memory footprint of
Iguana. In particular, in combination with our layout insertion strategy, these
layout nodes significantly increase the number of the intermediate nodes in the
resulting SPPF, see Figure 6.7 (top) as an example.

3. Iguana does not natively support EBNF, and converts EBNF definitions to BNF
before parsing. The EBNF to BNF conversion introduces more intermediate
nonterminals in the grammar, which leads to more SPPF nodes, see Figure 6.7
(top) as an example.

The results of this section show that the memory usage of Iguana is reasonable given
that Iguana can produce all the ambiguities in the form of a parse forest and does
not use a separate scanning phase before parsing. We expect to be able to reduce the
runtime memory footprint by using a smarter way of handling layout in the SPPF.
Scott and Johnstone have recently published an extended version of their GLL parsing
algorithm that natively supports EBNF [79]. In the future, we plan to investigate how
such native treatment of EBNF will interact with the data dependency support in
Iguana, and how it will affect the memory consumption.

6.4 Conclusions

In this chapter we presented Iguana, our data-dependent parsing framework. Iguana
has been our research platform in the last years, and has been used in evaluating
our research results in the previous chapters. In this chapter we discussed Iguana’s
architecture and presented the performance results of Iguana compared to ANTLR.
The results show that, compared to ANTLR, Iguana has slight performance and
memory overhead. This is expected because of Iguana’s more complicated machinery
to support ambiguities. The results of this evaluation show that Iguana is practical
for parsing real programming languages.

We discussed the textual syntax of Iguana using the Java 7 grammar as an example.
In addition to the lexical and operator precedence disambiguation constructs, Iguana
also supports other features that are based on data-dependent grammars. These
features are useful in dealing with type definitions in C, and indentation-sensitive
programming languages such as Haskell and Python [4].

We developed an IntelliJ plugin to facilitate the development of Iguana grammars.
The plugin provides common features such as syntax highlighting, navigation, outline
views, basic refactoring and some static grammar validation. As future work, we plan
to integrate Iguana into the Rascal meta-programming language [51] as the default
parsing library, and also work on the stability of features in Iguana.

Chapter 7

Practical, General Parser

Combinators
1

Summary. Parser combinators are a popular approach to parsing where context-
free grammars are represented as executable code. However, conventional parser
combinators do not support left recursion, and can have worst-case exponential
runtime. These limitations hinder the expressivity and performance predictability of
parser combinators when constructing parsers for programming languages.

In this chapter we present general parser combinators that support all context-free
grammars and construct a parse forest in cubic time and space in the worst case, while
behaving nearly linearly on grammars of real programming languages. Our general
parser combinators are based on earlier work on memoized Continuation-Passing Style
(CPS) recognizers. First, we extend this work to achieve recognition in cubic time.
Second, we extend the resulting cubic CPS recognizers to parsers that construct a
binarized Shared Packed Parse Forest (SPPF).

Our general parser combinators bring the best of both worlds: the flexibility and
extensibility of conventional parser combinators, and the expressivity and performance
guarantees of general parsing algorithms. We used the approach presented in this
chapter as the basis for Meerkat, a general parser combinator library for Scala.

1 This chapter was originally published as: A. Izmaylova, A. Afroozeh, and T. v. d. Storm. Practical,
General Parser Combinators. In Proceedings of the ACM SIGPLAN Symposium/Workshop on
Partial Evaluation and Program Manipulation, PEPM ’16, pages 1–12. ACM, 2016

173

174 Chapter 7. Practical, General Parser Combinators

7.1 Introduction

Parsing is a well-researched topic in computer science. However, there is no “one size
fits all” solution for all parsing problems. In particular, all solutions have to find a
balance among trade-offs such as expressivity, performance, ease of use, and flexibility.
Syntax of programming languages has traditionally been specified using context-free
grammars. In parser generators, a grammar is written in a (E)BNF-like notation,
which is transformed to parse tables or code. In parser combinators [36,37], on the
other hand, a grammar is encoded using higher-order functions in a programming
language, and thus is directly executable.

Parser combinators are higher-order functions used to define grammars in terms of
constructs such as sequence and alternation. The seamless integration with the host
programming language makes parser combinators flexible and extensible, compared
to parser generators that use a fixed notation for syntax definition. The language
developer can define custom combinators using the features of the host programming
language. It is also possible to perform data-dependent tasks, such as parsing network
protocols and indentation-sensitive languages, by allowing composition of functions
that produce parsers based on the result of the previous parse. Monadic parser
combinators [36,37] are often used for this.

Conventional parser combinators are recursive-descent like, and thus have an
intuitive execution model, which makes them easy to debug. However, recursive-
descent parsers fail to terminate in face of left recursion, and can have worst-case
exponential runtime if implemented naively. The lack of support for left recursion is a
major problem in expressing natural syntax of programming languages. Most notably,
expression grammars, when written in their natural form, are left-recursive.

Grammars of most programming languages do not fit deterministic classes of
context-free grammars, such as LR(k) or LL(k), and transforming a grammar to such
forms is a tedious process. In addition, maintenance and evolution of deterministic
grammars is difficult. There has been extensive research in general parsing algo-
rithms [18, 78, 85], which accept the full class of context-free grammars and deliver all
derivation trees in form of a parse forest. There exist worst-case cubic general parsers
which are near linear on near-deterministic grammars. Therefore, it is practical to
build parsers for programming languages using general parsing, especially in areas
where more expressivity is needed, e.g., for developing domain-specific languages
(DSLs) and source code analysis.

For decades, general parsing algorithms, more specifically Generalized LR (GLR),
have been used in parser generators. Besides standalone GLR parser generators, such
as SGLR (used in ASF+SDF Meta-Environment [89]) and Elkhound [61], the popular
GNU Bison has also a GLR mode. However, general parsing has not become popular
in the world of parser combinators. The main reason is the technical difficulty in
realizing general parsers in a combinator style. The underlying machinery of traditional
parsing algorithms such as GLR is not composable using the sequence and alternation
operators: GLR parsers operate on LR automaton, and each LR state corresponds to
multiple positions in grammar rules, and therefore, parsers cannot be directly defined
using sequence and alternation.

7.1. Introduction 175

Earley [18] and Generalized LL (GLL) parsing [78] are different from GLR in the
sense that the parser directly operates on grammar rules, rather than an automaton.
In particular, GLL parsing has a close relationship with the grammar, similar to
recursive-descent parsing. Using Earley’s algorithm or GLL, it is possible to define
a grammar in a combinator style, and then interpret such a grammar. For example,
parser combinators based on Earley parsing are presented in [72]. In Chapter 3, we
provided an interpretive formulation of GLL parsing. Such formulations of context-free
grammars provide a deep embedding, as the grammar is represented by an algebraic
data type.

Deep embedding can benefit from under-the-hood transformations and optimiza-
tions. For example, it is possible to calculate first/follow sets and use this information
for pruning the search space. However, such parser combinators still have the flavor of a
parser generator. Moreover, an extension to such parser combinators may also require
modification to the underlying parsing algorithm, for example, the modified Earley
sets [41] and the modified GLL algorithm [4] to support data dependency. In contrast,
parser combinators defined as shallow embedding enable directly executable parsers,
as grammars are represented directly as functions. Although certain optimizations are
difficult and require access to meta-syntax of the host language, shallow embedding is
attractive, since it eases extension and modification through seamless integration with
the host programming language.

In this chapter we present general parser combinators that combine the expressivity
and performance guarantees of state-of-the-art general parsing algorithms with the
flexibility and ease of use of conventional parser combinators. Our general parser
combinators support the full class of context-free grammars and produce a parse
forest in O(n3) time and space. One key distinction of our approach, compared to
interpreter-based general parsing solutions, is that in our approach, like in conventional
parser combinators, parsers are directly executable. We believe such a model is a
more natural generalization of conventional parser combinators.

In this chapter we present general parser combinators defined as a direct embedding
in a programming language. We base our general parser combinators on earlier work
on memoized Continuation-Passing Style (CPS) recognizers by Johnson [43]. Johnson’s
approach is a functional formulation of recursive-descent parsing which also provides
an elegant solution to the problem of left recursion.

More specifically, our contributions are:

• We modify Johnson’s CPS recognizers [43] to obtain the worst-case cubic com-
plexity (Section 7.2). We show that Johnson’s original formulation may require
unbounded polynomial time (Section 7.4).

• We extend cubic CPS recognizers to fully general parsers by constructing bina-
rized SPPFs [78, 80] (Section 7.3). These parsers are cubic in time and space,
which we prove in Section 7.5.

• We evaluate the performance of the resulting parsers using a highly ambiguous
grammar and the grammar of Java 7 [32]. The results show worst-case cubic

176 Chapter 7. Practical, General Parser Combinators

val E = syn (right (E ⇠ "^" ⇠ E) & { case x⇠y => Pow(x,y) }
|> "-" ⇠ E & { Neg(_) }
|> left (E ⇠ "*" ⇠ E & { case x⇠y => Mul(x,y) }
| E ⇠ "/" ⇠ E & { case x⇠y => Div(x,y) })
|> left (E ⇠ "+" ⇠ E & { case x⇠y => Add(x,y) }
| E ⇠ "-" ⇠ E & { case x⇠y => Sub(x,y) })
| "(" ⇠ E ⇠ ")"
| "[0-9]".r ^ { s => Num(toInt(s)) }
)

Figure 7.1: A natural expression grammar directly encoded in Scala using the Meerkat
library.

runtime performance on the highly-ambiguous grammar and near linear runtime
performance on the grammar of Java (Section 7.6).

Our general parser combinators are implemented as part of the Meerkat parser combi-
nator library2. The Meerkat library provides combinators for lexical disambiguation,
layout (whitespace and comment) insertion, EBNF, operator precedence, and execu-
tion of semantic actions. Figure 7.1 shows how an expression grammar can be written
in a natural form using the Meerkat library. The grammar is disambiguated using
declarative disambiguation combinators for operator precedence, such as |>, left, and
right. In addition, semantic actions for AST generation are defined using the & and ^

combinators. More information on how to use Meerkat can be found in the GitHub
repository. In this chapter, we only focus on the underlying parsing technique.

The rest of this chapter is organized as follows. Section 7.2 introduces the original
Johnson’s CPS recognizers, and our extension to the memoization strategy that makes
them cubic. In Section 7.3 we extend the cubic CPS recognizers to parsers that
construct binarized SPPFs in cubic time and space. We illustrate the unbounded
polynomial behavior of the original Johnson’s CPS recognizers in Section 7.4, and
give the proof for the cubic bound for our CPS parsers in Section 7.5. In Section 7.6
we present the performance results of our CPS parsers using a highly ambiguous
grammar and the grammar of Java. Section 7.7 discusses related work, and Section 7.8
concludes.

7.2 General Cubic CPS Recognizers

7.2.1 Basic Recursive-Descent Recognizers

In this section we introduce basic recursive-descent recognizers that use a simple
backtracking strategy: the alternatives of a nonterminal are tried in order, and
the next alternative is tried only if the current one fails. Figure 7.2 shows such a
2 https://github.com/meerkat-parser

https://github.com/meerkat-parser

7.2. General Cubic CPS Recognizers 177

type Recognizer = Int => Result[Int]

def terminal(t: String): Recognizer =
i => if (input.startsWith(t, i)) success(i + t.length) else failure

def epsilon: Recognizer = i => success(i)

def seq(rs: Recognizer*): Recognizer =
rs.reduceLeft((cur, r) => (i => cur(i).flatMap(r)))

def rule(nt: String, alts: Recognizer*): Recognizer =
alts.reduce((cur, alt) => (i => cur(i).orElse(alt(i)))

Figure 7.2: Combinator-style recognizers.

formulation3. We use basic Scala to explain the semantics of parser combinators as it
is expressive enough to enable a concise, executable specification.

A basic recognizer is a function of type Recognizer, which is defined as a type alias
to function type Int => Result[Int] (using the type keyword) with Int as a parameter
type and Result[Int] as a return type. Result[T] is a generic type instantiated with
Int to represent the result of a recognizer. In essence, a basic recognizer is a partial
function: it takes an input position and either succeeds, returning the next input
position, or fails. Partiality of the basic recognizers can be implemented using Scala’s
monadic Option[T]:

type Result[T] = Option[T]
def success[T](t: T): Result[T] = Some(t)
def failure[T](): Result[T] = None

Result[T] is defined as a type alias to Option[T], and two functions, parameterized with
type parameter T, can be used to compute success and failure. This way, success with
the next position i is represented by the value constructor Some, which takes a value
of type T and creates a value of type Option[T], e.g., Some(i), and failure by the value
constructor None.

Basic recognizers can be composed with four combinators (higher-order functions):
terminal, epsilon, seq and rule (Figure 7.2). The first two combinators construct basic
recognizers for terminals and ✏, respectively. For example, terminal returns a closure
(defined using the => notation) that takes an input position i and reports success with
the next input position i + t.length if terminal t matches a substring of the input
string starting from i, otherwise reports failure. For the sake of presentation, we
assume that input is globally visible instead of being passed as an argument.

The combinator seq is used to encode sequential composition of multiple recognizers.
The resulting recognizer chains the given recognizers as long as each of them produces
a result, and if any of them fails, the entire sequence also fails. The asterisk (*) next
3 The code snippets used in this chapter are available at: https://github.com/meerkat-parser/

cps-parsers

https://github.com/meerkat-parser/cps-parsers
https://github.com/meerkat-parser/cps-parsers

178 Chapter 7. Practical, General Parser Combinators

to the Recognizer type permits a variable number of arguments, and therefore, rs refers
to a sequence of recognizers. seq invokes the method reduceLeft on the sequence rs to
reduce this sequence to a new recognizer. At each step, reduceLeft applies a binary
operator, passed to reduceLeft as a closure, to the recognizers in the sequence. For
example, reduceLeft called on a sequence of three elements a1, a2, a3 with some binary
operator f is semantically equivalent to f(f(a1, a2), a3). The binary operator in the
definition of seq takes two recognizers, cur and r, and returns a new recognizer. This
recognizer takes an input position i and first calls cur at i. Then, if cur succeeds at
i, e.g., by returning a value Some(j) with the next input position j, the recognizer
calls r at j returning the result, otherwise the recognizer fails returning None. The
flatMap method defined in type Option[T] enables such composition of basic recognizers,
systematically accounting for partiality.

The combinator rule is used to define a nonterminal with head nt and alternatives
alts. To recognize a nonterminal at an input position using basic recognizers, the
alternatives of the nonterminal are tried at the input position until one of them
succeeds. rule invokes the method reduce on a sequence of recognizers, alts, to reduce
alternatives to a new recognizer by applying an associative binary operator at each
step. The binary operator takes two recognizers, cur and alt, and returns a recognizer
that given an input position i, first calls cur at i, and if it succeeds, returns its result,
otherwise, calls alt at i. This semantics of handling failure is provided by the orElse

method defined in type Option[T]. The orElse method uses the call-by-name evaluation
strategy in its argument so that if cur succeeds at i, the expression alt(i) is not
evaluated.

Given the combinators of Figure 7.2, a recognizer for A ::= a can be directly
defined as follows:

val A = rule("A", terminal("a")) // A ::= a

where A is a variable to which the resulting recognizer is assigned. This formulation,
however, can be problematic when recursive definitions are required. For example,
consider the grammar S ::= aSb | aS | s defined as follows:

val S = rule("S",
seq(terminal("a"), S, terminal("b")), // S ::= a S b
seq(terminal("a"), S), // | a S
terminal("s")) // | s

In a programming language with strict evaluation, this recursive definition is
not well-defined: when the defining expression on the right-hand side of the as-
signment, which recursively uses variable S, is evaluated, S is unbound. One
way to solve this problem is to use a fix-point combinator fix, defined as:

def fix[A,B](f: (A=>B)=>(A=>B)): A=>B = {
lazy val p: A=>B = f(t => p(t))
p

}

Here we use the definition of fix that can be used in languages with strict evaluation.

7.2. General Cubic CPS Recognizers 179

This is also reflected in the type signature. Using fix, the recognizer for S can be
defined as:

val p = fix(S => rule("S",
seq(terminal("a"), S, terminal("b")), // S ::= a S b
seq(terminal("a"), S), // | a S
terminal("s"))) // | s

The resulting recognizer is the fix point of the function passed to fix as a closure.
This way, the recursive structure of S is encoded as an anonymous recursive function
that is assigned to variable p. The use of S in the body of the closure replaces the
recursive uses of the recognizer in the previous definition.

As illustrated, recognizers are directly constructed using combinators, resembling
the grammar. In the next section, we generalize this framework to allow results other
than Option[Int]. In particular, we reuse the definitions of Figure 7.2 as is to obtain
continuation-passing style recognizers, and later parsers.

7.2.2 Full Backtracking Using Continuation-Passing Style

The first problem with basic recursive-descent recognizers is that backtracking is local
to a nonterminal. As a result, the order of alternatives may influence the recognition of
a sentence. For example, a recognizer for the grammar A ::= a | ab reports failure when
recognizing the input string "ab", although it is apparent that the second alternative
matches "ab". The reason for failure is that the first alternative reports success,
and the second alternative is never tried, while there is an unmatched b left. The
second problem is that basic recognizers only return a single derivation of the input
string, which depends on the order of alternatives. The grammar S ::= aSb | aS | s,
for example, can derive "aasb" in two different ways, corresponding to the following
leftmost derivations:

1. S) aSb) aaSb) aasb

2. S) aS) aaSb) aasb

However, basic recognizers can only deliver one. To support the full class of context-
free grammars, basic recursive-descent recognizers require exhaustive search, and
therefore, need full backtracking. In such a setting, a recognizer can potentially
succeed multiple times at the same input position. To introduce full backtracking into
basic recursive-descent recognizers, the recognition functions have to be adapted to
produce multiple values.

One way to approach this is to use Continuation-Passing Style (CPS). In fact,
to transform basic recognizers into CPS recognizers, it is sufficient to only redefine
Result[T] and accompanying functions success and failure. Indeed, the combinators of
Figure 7.2 can be used with any Result[T] that defines how to compose two functions
via flatMap and how to combine two results via orElse, so that the details specific
to Result[T], such as partiality of basic recognizers, are systematically managed by
flatMap and orElse.

180 Chapter 7. Practical, General Parser Combinators

type Result[T] <: MonadPlus[T, Result]
def success[T](t: T): Result[T]
def failure[T]: Result[T]

trait MonadPlus[T, M[_] <: MonadPlus[_, M]] {
def map[U](f: T => U): M[U]
def flatMap[U](f: T => M[U]): M[U]
def orElse(r: => M[T]): M[T]

}

Figure 7.3: Monadic Result[T].

The MonadPlus trait in Figure 7.3 specifies a monadic interface: map, flatMap and orElse.
The type constraint, expressed using <:, requires Result[T] to define the methods
of the interface. Note that =>, used before the parameter type in orElse, indicates
call-by-name evaluation in its argument. This can also be achieved by explicitly
constructing a closure. In addition, success defines how to lift a value to the one of
type Result[T] (basic computation) while failure defines zero (computation with no
value).

A CPS recognizer is a function of the same type as in Figure 7.2, but with Result[T]

as in Figure 7.4, i.e., defined as the continuation monad [97]. In Figure 7.4, K[T]

represents a continuation type defined as a type alias to T => Unit4. Now, Result[T]

is a function type, a subtype of K[T] => Unit, which also defines the methods of the
MonadPlus interface (we discuss them later).

The helper method result (on the bottom of Figure 7.4) is used to define values
of type Result[T] using ordinary functions of type K[T] => Unit. In Scala, a type can
extend a function type, and a function is an object that has an apply method, e.g., if
f is of type Int => Int, f(0) is equivalent to f.apply(0). Given a function f of type
K[T] => Unit, the result method creates an instance of Result[T], say g, such that the
result of g(k) is equal to the result of f(k).

A CPS recognizer takes an input position and returns a function of type Result[Int].
The returned function takes a continuation of type K[Int] and returns Unit. A con-
tinuation is a function, now additionally passed to recognizers, that represents the
“rest” of the recognition process. Instead of directly returning a value, a recognizer
“returns” success by calling its continuation with the next input position, as in success,
and fails by not calling its continuation, as in failure. For example, given a CPS
recognizer for a terminal val f: Recognizer = terminal("a") and an initial continuation
val k0: K[Int] = i => println("success: " + i), the result of evaluating f(0)(k0) is either
"success: 1", printed to the console if the input string starts with "a", where 1 is the
next input position, or nothing otherwise.

Similar to basic recognizers, CPS recognizers can be composed using the combina-
tors of Figure 7.2, but now defined in terms of flatMap and orElse of Figure 7.4. In the
definition of seq, given two CPS recognizers, cur and r, the result of their composition
4 Unit is equivalent to type void in other programming languages, e.g., Java.

7.2. General Cubic CPS Recognizers 181

type K[T] = T => Unit // Continuation type

trait Result[T] extends (K[T] => Unit) with MonadPlus[T, Result] {

def map[U](f: T => U): Result[U] =
result(k => this(t => k(f(t))))

def flatMap[U](f: T => Result[U]): Result[U] =
result(k => this(t => f(t)(k)))

def orElse(r: => Result[T]): Result[T] = {
lazy val v = r
return result(k => { this(k); v(k) })

}
}

def success[T](t: T): Result[T] = result(k => k(t))

def failure[T](): Result[T] = result(k => {/*do nothing*/})

def result[T](f: K[T] => Unit): Result[T] =
new Result[T] {

def apply(k: K[T]) = f(k)
}

Figure 7.4: Result[T] for CPS recognizers.

using flatMap is a CPS recognizer that given an input position i, first calls cur at
i, as before, but now returns a function of type Result[Int]. This function, given
a continuation k, first creates a new continuation t => r(t)(k) and then passes this
continuation to the result of cur(i), so that the second recognizer, r, is called via this
continuation when the recognizer cur succeeds at i with a new input position. In other
words, seq now constructs a continuation-passing chain of function calls, one for each
given recognizer.

In the definition of rule, given two CPS recognizers, cur and alt, a new CPS
recognizer, returned by the binary operator, sequentially calls cur and alt at an input
position i and combines the results of cur(i) and alt(i) using orElse, so that when
the new CPS recognizer is called at i with a continuation, say k, k is passed to both
results, i.e., cur(i)(k) and alt(i)(k). This way, rule tries all the alternatives. Note
that in the definition of orElse, the use of variable v with keyword lazy ensures that
the argument to orElse is (lazily) evaluated only once.

CPS recognizers support full backtracking as the rule combinator always tries all
of its arguments. The runtime behavior of such recognizers is exponential in the worst
case. Furthermore, these recognizers will fail to terminate in face of left-recursive
rules. Since Norvig’s work on memoization in top-down parsing [66], it is known
that memoizing recognizers brings down the exponential runtime performance to
polynomial. However, this type of memoization does not solve the problem of left

182 Chapter 7. Practical, General Parser Combinators

1 def memo[T](f: Int => Result[T]): Int => Result[T] = {
2 val table: Map[Int, Result[T]] = HashMap.empty
3 return i => table.getOrElseUpdate(i, memo_result(f(i)))
4 }
5
6 def memo_result[T](res: => Result[T]): Result[T] = {
7 val Rs: MutableList[T] = MutableList.empty
8 val Ks: MutableList[K[T]] = MutableList.empty
9 return result(k =>
10 if (Ks.isEmpty) { // Called for the first time
11 Ks += k
12 val k_i: K[T] = t => if (!Rs.contains(t)) {
13 Rs += t
14 for (kt <- Ks) kt(t)
15 }
16 res(k_i)
17 } else { // Has been called before
18 Ks += k
19 for (t <- Rs) k(t)
20 })
21 }

Figure 7.5: Memo functions for CPS recognizers.

recursion. In the next section we introduce Johnson’s memoized CPS recognizers [43]
that solve the problem of left recursion.

7.2.3 Support for Left Recursion

Neither the basic recognizers of Section 7.2.1, nor the CPS recognizers of Section 7.2.2
support left-recursive rules. Consider the following left-recursive recognizer:

val A = fix(A => rule("A",
seq(A, terminal("a")), terminal("a"))) // A ::= A a | a

The call to A at input position 0 leads to unbounded number of recursive calls at the
same input position, as the recursive calls do not change the function’s state and never
reach a base case.

The memo functions of Figure 7.5 turn an arbitrary CPS recognizer into a memoized
CPS recognizer. The memo function, when applied to a recognizer, returns a new
recognizer that consults the memo table each time it is called at an input position
i. If the memoized recognizer has not been yet called at i, the result of calling the
original, unmemoized recognizer, f, at i is memoized, memo_result(f(i)), and returned
after updating the memo table. Due to the call-by-name nature of memo_result (note
=> before the parameter type), f(i) is not evaluated at this moment. This ensures
that f is called at i at most once. If the memoized recognizer has been called at i

before, its result is taken from the table. Note that the getOrElseUpdate method uses

7.2. General Cubic CPS Recognizers 183

def rule(nt: String, alts: Recognizer*): Recognizer =
memo(alts.reduce((cur, alt) => i => cur(i).orElse(alt(i))))

Figure 7.6: Memoizing CPS recognizers.

the call-by-name evaluation strategy in its second argument, so that it is not evaluated
if the key is found.

A memoized result, returned when memo_result is applied to the result of calling
an unmemoized recognizer f at an input position i, has access to two lists: Rs and Ks

(lines 7–8). The result list Rs stores all input positions produced by the unmemoized
recognizer when it succeeds at i, and the continuation list Ks stores all continuations
passed to the memoized recognizer when it is called at i. If the memoized result is
called for the first time (Ks.isEmpty in line 10), the current continuation k is added to
Ks, and the original, unmemoized result, res, is called with a new continuation k_i

(defined in lines 12–15). Note that f(i) is evaluated at this moment (line 16), and
therefore, f can be called at i at most once. Also, k_i is created only upon the first call
to the memoized recognizer at i. Each time the unmemoized recognizer succeeds at i

with an input position, k_i checks whether this input position has been seen before
and if not (!Rs.contains(t)), first records it in Rs, and then, runs all the continuations
recorded so far in Ks at this input position (for-loop, line 14). On the other hand,
if the memoized result has been called before (else-branch, lines 17–20), the current
continuation k is added to Ks and is called for each input position recorded in Rs.

To add memoization to CPS recognizers, the rule combinator needs to be re-defined
as in Figure 7.6. Now, when a memoized left-recursive CPS recognizer is called at an
input position i, its termination is guaranteed as the respective unmemoized recognizer
(f in the body of memo) will never be called at i more than once. At the same time,
the part of the execution path, which led to a left-recursive call and can produce
new input positions for the left-recursive recognizer at i, is effectively recorded as
continuations. A continuation is recorded for the left-recursive call, and, in case of
indirect left recursion, for each call to a memoized recognizer at i that indirectly led
to the left-recursive call. Each continuation captures the next step in the alternative
after the current call returns, and a continuation defined in lines 12–15 is called at
the end of each alternative. These continuations will be run (re-trying the terminated
paths) for any input position produced by the left-recursive recognizer at i, and as
long as new input positions are produced.

Intuitively, memoizing CPS recognizers does not reduce the number of execution
paths as all the continuations passed to a memoized CPS recognizer at an input position
will be recorded in the continuation list, and each of the recorded continuations will
be run for each result produced by the recognizer at this input position. This follows
from the definition of memo_result. In the if-branch, all recorded continuations are
invoked on a newly produced result. In the else-branch, all existing results are input
to a new continuation.

184 Chapter 7. Practical, General Parser Combinators

def memo_k[T](k: T => Unit): T => Unit = {
val s: Set[T] = HashSet.empty
return t => if(!s.contains(t)) { s += t; k(t) }

}

Figure 7.7: Memoization on continuations.

7.2.4 Memoization on Continuations

In Section 7.4 we show that the execution of memoized CPS recognizers of Fig-
ures 7.2, 7.4 and 7.6 can require O(nm+1) operations, where m is the length of the
longest rule in the grammar. The reason for such unbounded polynomial behavior is
that the same continuation can be called multiple times at the same input position. As
illustrated in Section 7.4.3, this happens when the same continuation, say , is added
to continuation lists that are associated with calls made to the same recognizer at
different input positions, say i1, . . . , in. If those calls produce the same input position,
say j, will be called multiple times at j. These duplicate calls further result in
adding the same continuations to the same continuation lists multiple times.

To reduce the worst-case complexity to cubic, the duplicate calls to continuations
need to be eliminated. To achieve this, we extend the memoization strategy by adding
memoization on continuations, as in Figure 7.7, and by re-defining Result[T] as in
Figure 7.8. A memoized continuation consults the set of already passed arguments
(Figure 7.7), input positions in case of recognizers, and runs the unmemoized continu-
ation, k, only when it has not been called before with the current input position. The
memoization on continuations prevents the same execution path to be explored more
than once, where an execution path is identified by a grammar position, the input
position of the parent nonterminal and the current input position. Note that continu-
ations k_i in Figure 7.5, lines 12–15, have been already defined with the memoization
semantics.

In Section 7.3 we explain how CPS recognizers can be extended to parsers that
construct binarized SPPFs. In Section 7.5 we show that memoization on continuations
is also sufficient to keep the cubic bound for such CPS parsers.

7.2.5 Trampoline

In our parser combinators, when one continuation calls another continuation, the
number of calls in the call stack may exceed the default size of the stack. To avoid stack
overflow, we can turn the calls into a trampoline-style loop. Using a trampoline, calls
are handled in a loop over a custom stack data structure, ensuring that the stack does
not grow too large. To implement a trampoline, we create and pass around an object
of type Trampoline. This object maintains a custom stack of values that represent calls
and runs a loop over this stack. In the definition of orElse and memo_result, instead
of calling a continuation or a function of type Result[T], a value representing the call
is pushed on top of the stack in the trampoline object. When the main loop runs, a

7.3. SPPF Construction for Cubic CPS Parsers 185

trait Result[T] extends (K[T] => Unit) with MonadPlus[T, Result] {

def map[U](f: T => U) =
result(k => this(memo_k(t => k(f(t)))))

def flatMap[U](f: T => Result[U]) =
result(k => this(memo_k(t => f(t)(k))))

def orElse(r: => Result[T]) = {
lazy val v = r
return result(k => { this(k); v(k) })

}
}

Figure 7.8: Result[T] extended with memoization on continuations.

value is popped from the stack, and the actual call represented by this value is made.
Parsing terminates when there are no elements left in the stack.

7.3 SPPF Construction for Cubic CPS Parsers

7.3.1 Binarized SPPF

General parsing algorithms explore all derivations of a sentence. To deal with po-
tentially exponential number of parse trees, common subtrees are shared to form a
Shared Packed Parse Forest (SPPF), introduced by Tomita [85]. For example, the two
parse trees, resulting from parsing "aasb" using the grammar S ::= aSb | aS | s, and
their corresponding SPPF are shown in Figure 7.9.

In an SPPF, there are two types of nodes: symbol nodes and packed nodes. Symbol
nodes are of the form (x, i, j), where x is the name of a nonterminal, terminal or
epsilon, and i and j are the left and right extents, indicating the start and end
positions in the input string recognized by x. Packed nodes, shown by small circles in
Figure 7.9, represent a derivation. When there is ambiguity, e.g., under the root node
in Figure 7.9 (c), multiple packed nodes are present, each identifying a derivation5.

Johnson [42] showed that any parsing algorithm that produces a Tomita-style
SPPF has O(nm+1) worst-case runtime, where m is the length of the longest rule in
the grammar. Therefore, in order to guarantee O(n3) worst-case runtime for general
parsing, which is common in general recognizers, rules need to be of length at most
two. Although a grammar can be transformed to a grammar with rules of length at
most two, this transformation leads to a large grammar, with many extra nonterminals.
This affects the maintainability of the grammar and the parsing performance [80].

To enable general parsing in O(n3) without transforming the grammar, Scott and
Johnstone [80] introduced binarized SPPFs, which have additional intermediate nodes.
5 In Figure 7.9, we do not show packed nodes when there is no ambiguity.

186 Chapter 7. Practical, General Parser Combinators

S, 0, 4

a, 0, 1 S, 1, 3 b, 3, 4

a, 1, 2 S, 2, 3

s, 2, 3

(a) Parse tree 1

S, 1, 4

S, 0, 4

a, 0, 1

S, 2, 3

s, 2, 3

a, 1, 2 b, 3, 4

(b) Parse tree 2

S, 0, 4

a, 0, 1 S, 1, 3

b, 3, 4a, 1, 2 S, 2, 3

s, 2, 3

S, 1, 4

(c) SPPF

S, 0, 4

a, 0, 1 S, 1, 3 b, 3, 4

a, 1, 2 S, 2, 3

s, 2, 3

S, 1, 4S ::= a S . b, 0, 3

S ::= a S . b, 1, 3

(S ::= aSb., 3) (S ::= aS., 1)

(d) Binarized SPPF

Figure 7.9: Two parse trees (a) and (b), the corresponding SPPF (c), and the binarized
SPPF version (d).

Intermediate nodes are of the form (L, i, j), where L is a grammar position, and i

and j are the left and right extents. Grammar positions for intermediate nodes are of
the form A ::= ↵ · � where |↵| � 2. The binarized version of the SPPF is shown in
Figure 7.9 (d). Similar to nonterminal nodes, intermediate nodes can be ambiguous.
In this case, they have more than one packed node as children.

Packed nodes in a binarized SPPF are of the form (L, k), where L is a grammar
position, and k, pivot, is an input position, which is equal to the left extent of the
packed node’s right child. For packed nodes under a nonterminal A, L is of the
form A ::= ↵·, where ↵ is an alternative of A. For example, in the binarized SPPF
of Figure 7.9 (d), the left and right packed nodes under the root node have labels
(S ::= aSb·, 3) and (S ::= aS·, 1), respectively. For packed nodes under an intermediate
nodes, L is the same as the grammar position of the intermediate node. Packed nodes
can have at most two children, which are non-packed nodes.

7.3. SPPF Construction for Cubic CPS Parsers 187

type Parser = Int => Result[NonPackedNode]

def terminal(t: String): Parser =
i => if (input.startsWith(t, i))

success(sppf.getTerminalNode(t, i, i + t.length))
else

failure

def epsilon: Parser = i => success(sppf.getEpsilonNode(i))

def seq(ps: Parser*): Parser = ps.reduceLeft(seq2)

def rule(nt: String, alts: Parser*): Parser =
memo(alts.map(rule1(nt, _)).reduce((cur, p) => (i => cur(i).orElse(p(i)))))

private def seq2(p1: Parser, p2: Parser): Parser =
fix(q => (i => p1(i).flatMap(

t1 => p2(t1.rExtent).map(
t2 => sppf.getIntermediateNode(q, t1, t2)))))

private def rule1(nt: String, p: Parser): Parser =
fix(q => (i => p(i).map(t => sppf.getNonterminalNode(nt, q, t))))

Figure 7.10: Extension of CPS recognizers to parsers that construct binarized SPPF.

7.3.2 SPPF Construction

To extend CPS recognizers to parsers that produce binarized SPPFs, we redefine
terminal, epsilon, seq, and rule as in Figure 7.10. Now, these combinators build
parsers of type Parser, which is a function that takes an input position and returns a
non-packed node, a symbol or intermediate node, as Result[NonPackedNode].

The SPPF creation is delegated to an instance of SPPFLookup (sppf), which we
assume is globally visible. The SPPFLookup interface provides methods that ensure
sharing SPPF nodes. Each method of SPPFLookup first searches for an existing SPPF
node with the given arguments and either returns an existing node, or creates a new
one. The getNonterminalNode and getIntermediateNode methods take two non-packed
nodes as arguments, which will be attached to the returned node via a packed node.

Each combinator returns a parser that is responsible for creation of a specific type
of an SPPF node. A terminal node is created via getTerminalNode which takes the
name of the terminal, the input position at which the function is called, and the next
input position corresponding to the end of the matched terminal. Epsilon (epsilon)
nodes have the same left and right extents, both being equal to the input position at
which the parser is called.

The seq2 combinator constructs a parser that creates an intermediate node based
on the results of its two operands, p1 and p2. An intermediate node is created via the
getIntermediateNode method, which takes a label and two non-packed nodes, t1 and
t2, returned by the parsers p1 and p2, respectively. Note that seq2 uses its resulting

188 Chapter 7. Practical, General Parser Combinators

parser, q, as the label of the intermediate node, and, as this definition is recursive, the
fix point combinator is used.

Finally, the rule combinator first iterates over a sequence of parsers (by calling map

on alts) to create parsers (by applying rule1 to each parser of the sequence) that are
responsible for creating nonterminal nodes. Then, rule reduces the resulting sequence
of parsers. At the end of each alternative, a nonterminal node labeled nt is created.
This is done by calling getNonterminalNode with the name of the nonterminal, the label
of its packed node, and the non-packed node produced by p at i. Note that rule1 uses
its resulting parser, q, as the label of the packed node, and since this definition is
recursive, the fix point combinator is used.

Sharing non-packed nodes relies on identifying non-packed nodes by their label and
left and right extents. The label of a nonterminal or terminal node is a string, while
the label of an intermediate node corresponds to a grammar position. In a parser
generator setting, the labels of intermediate nodes can be determined by processing
the grammar. In a parser combinator setting, on the other hand, no such preprocessing
step exists, and labels corresponding to grammar positions should be dynamically
determined. We use the identity of the parser object resulting from seq2 as the label
of the corresponding intermediate node (variable q) to effectively encode a grammar
position. For example, for S := aSb | aS | s, which is defined as

val S = fix(S => rule("S", seq(terminal("a"), S, terminal("b")),
seq(terminal("a"), S),
terminal("s")))

the parsers resulting from applying seq2 to the first two symbols, terminal("a") and S,
in the first and second alternatives represent the unique grammar positions S ::= aS · b
and S ::= aS·, respectively.

7.3.3 Semantic Actions and Generation of ASTs

Binarized SPPFs are part of the internal machinery of a general parser, and are not
intended for the end user. To provide a user-friendly format for processing parsing
results, the Meerkat library supports conversion of binarized SPPFs to terms that
reflect the underlying grammar. This approach is popular in tools that allow algebraic
specification and term rewriting, for example in ASF+SDF [89]. Figure 7.11 shows a
visualization of the terms corresponding to the binarized SPPF in Figure 7.9 (d).

The traversal of binarized SPPFs and generation of terms is straightforward. As
shown in Section 7.3.1, packed nodes under nonterminal nodes have labels which
correspond to grammar positions of the form A ::= ↵·. The type of a term is computed
as the result of sequencing parsers (seq and rule1) and is stored in the packed nodes
of a nonterminal. We traverse the binarized SPPF bottom-up, and for each SPPF
node type, perform a specific action.

For terminal nodes, a terminal term is created that stores the name of the terminal
and its associated matched string. For nonterminal or intermediate nodes that are
ambiguous, i.e., have more than one packed node, an ambiguity term is created.
An ambiguity term gets a list of terms as its children. For nonterminal nodes, a

7.4. Complexity of Johnson’s CPS Recognizers 189

Amb

S ::= aSb, 0, 4 S ::= aS, 0, 4

a, 0, 1 S ::= aS, 1, 3

a, 1, 2 S ::= s, 2, 3

s, 2, 3

b, 3, 4

S ::= aSb, 1, 4

Figure 7.11: Terms for the binarized SPPF of Figure 7.9 (d).

nonterminal term is created. We bypass intermediate nodes, as they do not correspond
to any constructs in the grammar and should not appear in final terms. This effectively
flattens the intermediate nodes.

Besides creation of terms from a binarized SPPF, we support execution of semantic
actions. Due to the inherent nondeterminism in general parsing, many parsing paths
will eventually die. Therefore, it is desirable to postpone the execution of semantic
actions until parsing is done. In the Meerkat library, semantic actions are stored in
the packed nodes of an SPPF and executed post-parse by traversing the resulting
binarized SPPF. An example of using semantic actions in the Meerkat library is shown
in Figure 7.1.

The traversal mechanism for semantic actions is basically the same as for building
terms, with the difference that we throw an exception when an ambiguous node is
encountered. In parsing programming languages, almost always, a single parse tree
should be returned. In case of an ambiguity, the user should first resolve the ambiguity,
e.g., by investigating the terms corresponding to the ambiguous parse, and then run
the semantic actions.

7.4 Complexity of Johnson’s CPS Recognizers

In this section we start by introducing notation to support reasoning about the
execution and complexity of the original Johnson’s CPS recognizers. We show that
the execution of such recognizers can require O(nm+1) operations, where m is the
length of the longest rule in the grammar.

7.4.1 Notation

We denote the resulting recognizers of the terminal, epsilon, seq and rule combinators
of Figures 7.2, 7.4 and 7.6 as follows:

190 Chapter 7. Practical, General Parser Combinators

• fa = terminal(“a”) denotes a recognizer for terminal a.

• f✏ = epsilon() denotes a recognizer for ✏.

• fA = rule(f↵1 , f↵2 , . . . , f↵k) denotes a recognizer for nonterminal A ::=
↵1 | ↵2 | . . . | ↵k, where ↵i = x1x2 . . . xm is an alternative consisting of a se-
quence of symbols.

• f↵i is either a recognizer for a symbol, f↵i = fx1 , m = 1, or a sequence of
symbols, f↵i = seq(fx1 , fx2 , . . . , fxm), m � 2.

• f↵1|↵2|...|↵k
denotes the result of applying reduce in the body of the rule combi-

nator, i.e., an unmemoized recognizer for A.

We also use the following notation:

• (fA, i,) denotes a call to fA at an input position i with a continuation passed
to the result of calling fA at i.

• (R(A,i)
, K

(A,i)) denotes the memo entry created upon the first call to fA at an
input position i, where R

(A,i) is the result list, and K
(A,i) is the continuation

list.

For any call (fA, i,), such that fA is called at the input position i for the first time,
continuations of the following forms are created:

•
i
A denotes the continuation (Figure 7.5, lines 12–15) that maintains the results

produced by fA at i: it records new input positions in R
(A,i) and runs all the

continuations pending for this call in K
(A,i).

•
i
A::=↵·x� denotes the continuation that corresponds to a grammar position

A ::= ↵ · x� in an alternative of A, |↵| � 1, and is uniquely identified by
A ::= ↵ · x� and i. When fA is called at the input position i for the first
time, resulting in the unmemoized recognizer for A to be called at i with

i
A

(Figure 7.5, line 16), continuations of this form are recursively created as follows,
where function application binds stronger than !:

i
A::=↵·x� = j ! fx(j)(i

A::=↵x·�),

where fx is the recognizer for the next symbol x in the alternative, and
i
A::=↵x·�

corresponds to the next grammar position A ::= ↵x · �. This follows from the
definition of seq, namely, the left reduce semantics, and composition via flatMap.
Note that in case of recognizers,

i
A::=↵x�· refers to the same continuation as

i
A.

7.4. Complexity of Johnson’s CPS Recognizers 191

7.4.2 Execution

In Figure 7.5 we use data structures, such as hash maps and mutable lists, that are
sufficient to explain the underlying semantics but require amortized constant or linear
time for their operations. The complexity analysis of the next sections, however,
assumes that certain operations execute in constant time during the execution of
memoized CPS recognizers. Therefore, we need to discuss how to provide such
constant-time operations.

We assume that the following operations execute in constant time: copying ar-
guments into the stack when the function call is executed, assigning the value of a
variable to another variable, and creating closures. Scala is a JVM-based language that
handles primitive types by value and reference types by reference value. Reference
values are fixed-size values representing addresses in memory. Therefore, passing
arguments of reference types to a function, or assigning one variable to another,
results in copying the reference values, which executes in constant time. To implement
closures, Scala uses closure conversion, such that captured variables are turned into
fields of anonymous classes, representing closures, and these fields are initialized by
passing extra arguments to the constructors. Therefore, we assume that operations
such as success, failure, map, flatMap and orElse in Figure 7.4 execute in constant time.

Now, we consider the execution of memoized CPS recognizers that performs one
of the following calls at each step:

• (f✏, i,), a call to the recognizer for ✏. The execution continues with the call
(, i), and the recognizer call returns after the continuation call returns.

• (fa, i,), a call to the recognizer for a terminal a. If the terminal matches a
substring in the input string starting from i (a constant-time operation), the
execution continues with the call (, j), where j is the next input position after
the match, otherwise no continuation is called, and the recognizer call returns.

• (fA, i,), a call to the recognizer for a nonterminal A. This call requires memo-
table lookup of the result of calling fA at i. If the result is not found, i.e., this
is the first call to fA at input position i, a new function is created with two
variables in its scope: the result list R

(A,i) and continuation list K
(A,i). As the

memo table can be implemented as an array of length n + 1, n is the length of
the input, the lookup operation can execute in constant time. In addition, as
the continuation list can be implemented as a linked list, and the result list as
an array of size n + 1, addition of a new element into the lists (+=) and element
lookup into the result list (contains) can execute in constant time.
The execution of (fA, i,) continues with addition of to K

(A,i) (if- and else-
branch of memo_result). Depending on the check whether K

(A,i) is empty (a
constant-time operation), the execution continues with either the call to the un-
memoized recognizer for A, (f↵1|↵2|...|↵k

, i,
i
A), or iteration over R

(A,i) (a linear
operation) calling for each recorded input position. The call (f↵1|↵2|...|↵k

, i,
i
A)

will perform a constant number of steps to combine the results of calling f↵i at i

192 Chapter 7. Practical, General Parser Combinators

(via orElse), and will eventually lead to a constant number of calls (f↵1 , i,
i
A), . . . ,

(f↵k , i,
i
A), corresponding to the alternatives of A.

• (f↵, i,
i
A), a call to the recognizer for an alternative of A. If |↵| > 1, this

call results in a constant number of composition steps (via flatMap). Then, the
continuations corresponding to the grammar positions in ↵ are created, and the
call (fx, i,

i
A::=x·�), assuming ↵ = x�, to the recognizer for the first symbol in

↵ is made.

• (i
A::=↵·x� , j) or (i

A, j), a call to a continuation. The former call directly results
in (fx, j,

i
A::=↵x·�), a call to the recognizer for x with the next continuation

i
A::=↵x·� . The latter call leads to the check (constant-time) whether j exists in

the result list, and if not, j is added (constant-time, as discussed above) to the
result list. Finally, iteration over the continuation list K

(A,i) (a linear operation)
runs each continuation with the new input position j.

Consider calls of the forms (fx, i,), where x is any symbol, and (i
A, j). The execution

of memoized CPS recognizers continues linearly until either a call (fA, i,) or (i
A, j)

is executed: both calls may result in iteration over a list, the size of which depends
on n, calling a continuation in each iteration step. When a call (fA, i,) is the first
call to fA at the input position i, it does not lead to iteration but requires an O(n)
operation to create an array of size n + 1 for the result list.

7.4.3 Complexity

In this section we show that the execution of the original Johnson’s CPS recognizers
can require O(nm+1) operations, where m is the length of the longest rule in the
grammar. This unbounded polynomial behavior can be observed by the family of
highly ambiguous grammars [42]:

S ::= S
m | SS | b | ✏,

where m � 3, and S
m denotes a sequence of S’s of length m, e.g., SSS for m = 3.

Because of the last three alternatives, any, possibly empty, sequence of b’s can be
recognized by S.

We consider parsing string b
n. The memoization technique of Section 7.2.3 ensures

that for any input position i, there will be at most one call (fSm , i,
i
S), corresponding

to the first alternative of S, made upon the first call to fS at i. In the following we
show that the total number of calls that will be made to all

i
S , 0 i n, is O(nm+1).

Let us consider calls (fSm , i,
i
S), 0 i n. Each of these calls will first create

continuations corresponding to the input position i and each of the grammar positions
in the sequence S

m, and then, will make the call (fS , i,
i
S::=S·SSm�2) to the recognizer

for the first symbol in the alternative S
m. First, we consider the call:

(fS , 0,
0
S::=S·SSm�2),

7.5. Complexity of CPS Parsers 193

corresponding to input position 0. This call will result in addition of the continuation

0
S::=S·SSm�2 to K

(S,0), and therefore, for each i1 in R
(S,0) a call (0

S::=S·SSm�2 , i1)
will be made. In turn, each of these calls will result in the call to the recognizer for
the second S in S

m:
(fS , i1,

0
S::=SS·Sm�2),

and addition of the continuation
0
S::=SS·Sm�2 to K

(S,i1). Again, for each i2 in R
(S,i1),

such that i1 i2, a call (0
S::=SS·Sm�2 , i2) will be made.

Given that 0 i1 i2 n, the total number of calls that will be made to

0
S::=SS·Sm�2 is equal to

�n+2
2

�
. Some of these calls, however, are duplicate. Indeed,

for each i2, there will be multiple i1, 0 i1 i2, such that
0
S::=SS·Sm�2 2 K

(S,i1) and
i2 2 R

(S,i1). Note that each duplicate call (0
S::=SS·Sm�2 , i2) will result in addition

of the continuation
0
S::=SSS·Sm�3 to K

(S,i2), thus leading to the same continuation
being added to the same continuation list multiple times. Finally, the total number of
calls that will be made to

0
S::=SSS·Sm�3 is equal to

�n+3
3

�
.

Now, if we continue further, it can be seen that the total number of calls that will
be made to

0
S , corresponding to the end of the alternative S

m, is equal to the number
of all the combinations with repetition for the respective indices 0 i1 i2 . . .
im�1 im n, which is

�n+m
m

�
.

Finally, if we consider all the calls (fS , i,
i
S::=S·SSm�2), i.e., for all i where 0 i n,

the total number of calls made to the continuations
i
S , resulting from the first

alternative, is
�n+m+1

m+1

�
, which is a polynomial in n of order m + 1.

7.5 Complexity of CPS Parsers

In Section 7.4 we showed that the execution of the original Johnson’s CPS recognizers
can require O(nm+1) operations, where m is the length of the longest rule in the
grammar. To obtain cubic CPS recognizers, we extended the memoization strategy
of the original Johnson’s CPS recognizers by adding memoization on continuations
(Section 7.2.4). Finally, in Section 7.3 we extended the resulting cubic CPS recognizers
to CPS parsers that produce binarized SPPFs in cubic time and space. In this section
we give a formal proof that the complexity of our CPS parsers is indeed O(n3), where
n is the length of the input. Note that we do not give a separate proof for the CPS
recognizers as this proof is similar to the one for the CPS parsers.

We start by adapting the notation of Section 7.4.1 to the parser version. First,
functions fa, f✏, fA now denote the respective parsers instead of recognizers. Second,
result list R

(A,i) stores nonterminal nodes (A, i, j), instead of input positions. Finally,
for any call (fA, i,), such that the parser fA is called at the input position i for the
first time, continuations of the following forms can be created:

•
i
A denotes the continuation that maintains the results produced by fA at i,

now, recording new nonterminal nodes (A, i, j) in R
(A,i).

In addition,
i
A::=↵· now denotes the continuation that corresponds to a grammar

position A ::= ↵· and is created as:

194 Chapter 7. Practical, General Parser Combinators

i
A::=↵· = t!

i
A(hi

A::=↵(t)),

where h
i
A::=↵ is a function (passed to map in rule1 of Figure 7.10) which is uniquely

identified by i and A ::= ↵. h
i
A::=↵ takes a non-packed node t and creates a

nonterminal node (A, i, j). If |↵| > 1, t is an intermediate node of the form
(A ::= ↵·, i, j), otherwise a symbol node of the form (x, i, j) corresponding to x,
the only symbol in ↵.

•
i
A::=↵·x� denotes the continuation that corresponds to a grammar position

A ::= ↵ · x� in an alternative of A, |↵| � 1, and is uniquely identified by
A ::= ↵ · x� and i. Upon the first call to fA at i, continuations of this form are
recursively created as:

i
A::=↵·x� = t! g

i
A::=↵·x�(t)(i

A::=↵x·�),

where t is either an intermediate node of the form (A ::= ↵ · x�, i, j) when
|↵| > 1, or a symbol node of the form (y, i, j) when |↵ |= 1. g

i
A::=↵·x� is a

function (passed to flatMap in seq2 of Figure 7.10), which is uniquely identified
by i and A ::= ↵ · x�. This function calls the parser for the next symbol fx

at the right extent of t, say j. Then, it creates the following continuation and
passes this continuation to the result of fx(j):

i,j
A::=↵x·� = t!

i
A::=↵x·�(hi,j

A::=↵x·�(t)),

where t is a symbol node of the form (x, j, k). h
i,j
A::=↵x·� is the function (passed

to map in seq2 of Figure 7.10) created by g
i
A::=↵·x� to construct an intermediate

node (A ::= ↵x · �, i, k) given (x, j, k). Finally,
i,j
A::=↵x·� calls

i
A::=↵x·� with

the resulting intermediate node.

Lemma 1 For any parser fB and any input position j, where 0 j n, the number
of continuations in the continuation list K

(B,j) is O(n).

Proof 1 For any nonterminal A such that A ::= ↵B� is an alternative of A, we have
only the following calls that add a continuation to K

(B,j):

1. (fB , j,
i
A::=B·�) when |↵ |= 0 and i = j. This call can only result from

(fA::=B� , j,
i
A::=B�·).

2. (fB , j,
i,j
A::=↵B·�) when |↵| � 1 and 0 i j. This call can only result from

(i
A::=↵·B� , t), where t is an intermediate node (A ::= ↵·B�, i, j), |↵| > 1, or a

symbol node (y, i, j), |↵ |= 1.

7.5. Complexity of CPS Parsers 195

In the first case, given that CPS parsers for nonterminals are memoized, there will
be at most one call to the parser for an alternative at each input position, such as
(fA::=B� , j,

i
A::=B�·), and therefore, at most one call to the parser for the first symbol

in the alternative, such as (fB , j,
i
A::=B·�). Thus the continuation

i
A::=B·� can be

added to K
(B,j) at most once. In the second case, given that continuations of the

form
i
A::=↵·B� are memoized, for any i, 0 i j, there will be at most one call

(i
A::=↵·B� , t) resulting in creation of

i,j
A::=↵B·� and the call (fB , j,

i,j
A::=↵B·�). Thus

the continuation
i,j
A::=↵B·� is uniquely identified by i, j and A ::= ↵B · � and can be

added to K
(B,j) at most once. Finally, given that 0 i n, the total number of

continuations in K
(B,j) is at most O(n). ⇤

Lemma 2 For any parser fA and any input position i, where 0 i n, the number
of elements in R

(A,i) is O(n).

Proof 2 Given that continuations of the form
i
A:=↵· and

i
A are memoized, for any

non-packed node t with left extent i and right extent j, i j n, there will be at
most one call (i

A:=↵·, t) resulting in (i
A, (A, i, j)), and there will be at most one call

(i
A, (A, i, j)) adding (A, i, j) to R

(A,i). Thus the number of elements in R
(A,i) is at

most O(n). ⇤

Theorem 1 The complexity of CPS parsers that construct a binarized SPPF is
O(n3).

Proof 3 We consider calls of the forms:

1. (fx, j,
i
A::=x·�) and (fx, j,

i,j
A::=↵x·�), |↵| � 1

2. (i
A::=↵·x� , t)

3. (i
A, (A, i, j))

where 0 i j n, and t is a non-packed node with left extent i and right extent j.
The execution of CPS parsers continues linearly until either a call to the parser for a
nonterminal, of the form (fB , j,

i
A::=B·�) and (fB , j,

i,j
A::=↵B·�), or a call of form 2

or 3 is executed. In the parser version, a call of form 2 may require an O(n) operation
to create a continuation

i,j
A::=↵x·�

6. We show that there will be at most O(n2) calls
of form 1. Also, there will be at most O(n2) calls of form 2, each of which creates a
continuation

i,j
A::=↵x·� , and at most O(n2) calls of form 3, each of which results in

iteration over a continuation list.
Similar to the proof of Lemma 1, there are only two forms of calls that may lead

to a call of form 1. Given that CPS parsers for nonterminals are memoized, there will
6 Although in the complexity analysis we assume that all continuations are memoized, it can be

shown that memoizing continuations of this form is not needed. We use this as an optimization in
the Meerkat library.

196 Chapter 7. Practical, General Parser Combinators

be at most O(n) calls of the form (fA::=x� , j,
i
A::=x�·) resulting in (fx, j,

i
A::=x·�),

where 0 i = j n. Also, given that continuations of the form
i
A::=↵·x� are

memoized, there will be at most O(n2) calls of form 2 creating
i,j
A::=↵x·� and resulting

in (fx, j,
i,j
A::=↵x·�), where 0 i j n. Thus there will be at most O(n2) calls of

form 1. Given that continuations of the form
i
A are memoized, there will be also at

most O(n2) calls of form 3, 0 i j n, resulting in iteration.
Each call of the form (fB , j,

i
A::=B·�) or (fB , j,

i,j
A::=↵B·�), when it is the first call

to fB at the input position j, or each call of form 2 may result in a constant number
of O(n) operations to create arrays of size n + 1 (to initialize a result list and/or to
create memoized continuations) followed by a constant number of other calls of form 1
(already subsumed by the O(n2) calls above). Each call of the form (fB , j,

i
A::=B·�)

or (fB , j,
i,j
A::=↵B·�), when it is not the first call to fB at the input position j, or

each call of form 3 may result in iteration over a list leading to at most O(n) other
continuation calls (by Lemma 1 and 2). Each of the O(n) other continuation calls
is either a duplicate call eliminated by the memoization, or a call to a continuation
of the form

i
A::=↵·x� (already subsumed by the O(n2) continuation calls above), or

of the forms
i,j
A::=↵x·� and

i
A=↵· directly resulting in a call already subsumed by

the O(n2) calls above. Thus the complexity of CPS parsers that construct binarized
SPPFs is at most O(n3). ⇤

7.6 Evaluation

In this section we evaluate the performance of CPS parsers, as implemented in the
Meerkat library. We use the highly ambiguous grammar �3, S ::= SSS | SS | b,
and the grammar of Java. The results show that Meerkat parsers are cubic on the
highly ambiguous grammar, and behave nearly linearly on the Java grammar. The
experiments were carried out on a machine running Mac OS X 10.9.4 on a quad-core
Intel Core i7 2.6 GHz CPU with 16 GB of memory. The Meerkat library was compiled
with Scala 2.11.2 and ran on a 64-Bit Oracle HotSpotTM JVM version 1.7.0_55. The
reported time is the mean running time (CPU user time) of 10 runs for each parse.
To allow for JIT optimizations, the first three runs for each file were skipped.

7.6.1 Parsing �3

To evaluate the runtime performance of CPS parsers in the worst case, we ran the
Meerkat parser for �3 on sequences of b’s, varying from 10 to 500. �3 triggers the
worst-case behavior for CPS parsers. Standard GLR parsers, except for BRNGLR
that produces binarized SPPFs, are O(n4) on �3. The results are shown in Figure 7.12.
As can be seen, the resulting curve is cubic with high confidence, as indicated by the
R

2 value of 0.9998.

7.6. Evaluation 197

0 100 200 300 400 500

0
20

00
60

00
10

00
0

Size (#characters)

C
P

U
 t

im
e

(m
s)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●y = 0.000064 x3 + 0.0137 x2 − 2.8824 x 91.2971
R 2 = 0.9998

Regression line

Figure 7.12: Runtime of parsing string of b’s using �3.

3 4 5

0
1

2
3

Size (#characters) in log10

C
P

U
 t

im
e

(m
s)

 in
 lo

g1
0

y = 1.138201 x − 8.696786
R 2 = 0.9828

Regression line

Figure 7.13: Runtime of parsing Java files.

7.6.2 Parsing Java

To evaluate the performance of CPS parsers on grammars of real programming
languages, we have chosen the grammar of Java 7 from the main part of the Java
Language Specification [32]. This grammar has a left-recursive unambiguous expression
grammar that encodes operator precedence by introducing new nonterminals. We

198 Chapter 7. Practical, General Parser Combinators

ran the parser for the character-level Java grammar7 for 7449 Java files in the source
release of JDK 1.7.0_60-b19. All files were parsed successfully and without ambiguity.
Figure 7.13 shows the running time corresponding to the execution of the parser for
the character-level Java grammar for increasing input sizes. We use a log-log (base 10)
plot. The goodness of the fit is indicated by the R

2 value of 0.9828. The regression
line equation (log-log scale) is written in the plot. As the regression is calculated after
a log transformation of the original data, and the coefficient is close to one (1.138201),
we can conclude that the running time for Java is near linear (y ⇡ x

1.138201).

7.7 Related Work

Conventional parser combinators are recursive-descent like. Therefore, a natural
choice for generalizing parser combinators to support all context-free grammars is to
generalize recursive-descent parsing. The main challenge is support for left recursion.
In this section we discuss a number of parsing techniques that generalize recursive-
descent parsing, with a focus on how support for left recursion is provided. We discuss
each work based on the following aspects:

1. The mechanism used to support direct left recursion.

2. Support for indirect/hidden left recursion: not supported, requires extra mecha-
nism, or uniformly works with the mechanism for direct left recursion.

3. The worst-case runtime complexity of the recognizer and parser.

4. The output of a parser (single parse tree or a parse forest).

Table 7.1 gives an overview of related work based on these aspects. Note that there
are other parser combinator tools, e.g., Parsec [57] and the Scala parser combinator
library [64], which are essentially basic recursive-descent recognizers (see Section 7.2),
and we do not discuss them in this section.

7.7.1 Left-Recursion Curtailment Using the Input Length

Frost et al. [26] present an approach for supporting direct left recursion based on the
length of the input. In this approach, the number of calls to recognizers at each input
position is maintained. For non-left-recursive recognizers, the count will be at most
one. For left-recursive ones, the count increases by each recursive call at the same
input position. When the count exceeds the number of remaining tokens in the input
string plus one, the call is curtailed, as no successful parse is possible at this point.

In this approach, each left-recursive recognizer can be called at each input position
at most n times, where n is the length of the input. This brings the worst-case
complexity of this approach to O(n4), compared to the expected O(n3) complexity.
In addition, this approach requires extra machinery to accommodate indirect left
7 https://github.com/meerkat-parser/grammars

https://github.com/meerkat-parser/grammars

7.7. Related Work 199

Ta
bl

e
7.

1:
O

ve
rv

ie
w

of
re

la
te

d
w

or
k

th
at

ex
te

nd
re

cu
rs

iv
e-

de
sc

en
t

pa
rs

in
g

to
w

ar
ds

a
ge

ne
ra

lp
ar

si
ng

so
lu

ti
on

.

A
pp

ro
ac

h
M

ec
ha

ni
sm

In
di

re
ct

/H
id

de
n

W
or

st
-c

as
e

C
om

pl
ex

ity
O

ut
pu

t

R
ec

og
ni

ze
r

Pa
rs

er

Le
ft

-r
ec

ur
si

on
cu

rt
ai

lm
en

t
In

pu
t-

le
ng

th
he

ur
is

ti
cs

ex
tr

a
O

(n
4
)

un
bo

un
de

d
po

ly
no

m
ia

l
To

m
it

a-
st

yl
e

SP
P

F

Le
ft

re
cu

rs
io

n
in

P
E

G
s

M
em

oi
za

ti
on

an
d

gr
ow

in
g

th
e

se
ed

ex
tr

a
O

(n
2
)

O
(n

2
)

Si
ng

le
pa

rs
e

tr
ee

C
an

ce
lla

ti
on

pa
rs

in
g

Pa
ss

in
g

ca
nc

el
la

tio
n

se
ts

ex
tr

a
ex

po
ne

nt
ia

l
ex

po
ne

nt
ia

l
Si

ng
le

pa
rs

e
tr

ee

A
N

T
LR

4
Le

ft
-r

ec
ur

si
on

el
im

in
at

io
n

by
re

w
ri

ti
ng

no
O

(n
4
)

O
(n

4
)

Si
ng

le
pa

rs
e

tr
ee

G
LL

C
yc

le
s

in
th

e
G

SS
un

ifo
rm

O
(n

3
)

O
(n

3
)

B
in

ar
iz

ed
SP

P
F

C
P

S
pa

rs
er

s
M

em
oi

za
ti

on
in

C
P

S
un

ifo
rm

O
(n

3
)

O
(n

3
)

B
in

ar
iz

ed
SP

P
F

200 Chapter 7. Practical, General Parser Combinators

recursion. Since the parser version of Frost et al. ’s approach creates a Tomita-style
SPPF, it is of unbounded polynomial complexity.

One essential difference between Frost et al. ’s approach and CPS parsers is the
moment when a chain of left-recursive calls is terminated. In CPS parsers, this happens
when the second call to a recognizer at the same input position is made. Then, the
results for left-recursive recognizers are effectively computed in a loop: as long as
a new result is produced, the terminated parsing paths, recorded as continuations,
are restarted at the new input position. As a result, handling left-recursive rules is
more efficient in CPS parsers. Finally, it should be noted that Frost et al. ’s approach
cannot be used in cases where the length of the input is not known, for example, when
reading from a network socket.

7.7.2 Left Recursion in PEGs

Parsing Expression Grammars (PEGs) [25] are an alternative to context-free grammars,
where the unordered alternation operator is replaced with a prioritized choice operator.
PEGs are commonly implemented as recursive-descent parsers with local backtracking:
the alternatives of a nonterminal are tried in order, and the next alternative is tried
only if the current one fails. As a result, PEGs produce at most one parse tree and
cannot be ambiguous. PEGs suffer from the quirk that if an alternative is a prefix of
another one, the second alternative is never tried. This, for example, leads to parse
error on "ab" for the grammar A ::= a|ab, although it is apparent that the second
alternative can correctly parse this input.

Packrat parsing [24] uses memoization to implement PEGs in linear time. However,
Packrat parsers, like other recursive-descent parsers, do not support left recursion.
Warth et al. [98] propose a mechanism to support left recursion by modifying the
memoization in Packrat parsing. In this approach, a special fail value is put into the
memo table before calling a parser at an input position for the first time, so that
left-recursive calls fail. This ensures termination of the parser for a left-recursive
nonterminal. Then, if any of the non-left-recursive alternatives can produce a result,
the parser is restarted to re-try the left-recursive ones. As long as a new result is
produced, the new result replaces the previous one in the memo table, and the parser
is called again at this input position, reusing the last result from the memo table for
the left-recursive calls. This process is called growing the seed.

For indirect left recursion, this approach uses an extra data structure, called
rule invocation stack, to maintain the recursive calls between mutually left-recursive
nonterminals. Warth et al. ’s approach breaks the linear runtime guarantee of Packrat
parsing, as for some left-recursive grammars, the runtime complexity of this approach
is O(n2) [98]. Tratt [86] identifies a problem with Warth et al. ’s approach for rules
that are both left and right recursive, e.g., E ::= E + E. For such rules, this approach
is biased towards producing a right-associative derivation, which does not conform to
the semantics of PEGs.

7.7. Related Work 201

7.7.3 Cancellation Parsing

Cancellation parsing [65] is a technique to support left recursion for Definite Clause
Grammars (DCGs) in Prolog. The basic idea behind this technique is that each
call to a nonterminal takes a set of already called nonterminals, the cancellation
set. If the nonterminal is already in the set, the parser backtracks and tries the
next alternative, otherwise the nonterminal is added to the cancellation set. This
guarantees termination in presence of left recursion. To construct the parse trees
corresponding to the terminated paths, for each left-recursive nonterminal A, a special
token A is put before the rest of the token stream, using untoken, and a rule A ::= A

is added to the grammar. After inserting A, nonterminal A is called again with the
current cancellation set.
A(c) ::= [A /2 c] A(A [c) 'a' untoken(A) A(c)

| 'a' untoken(A) A(c)

| A // Added rule for the inserted tokens

This approach works for direct and indirect left recursion, but does not work for hidden
left recursion, i.e., when a left-recursive call is hidden behind a nullable nonterminal,
e.g., A ::= BAa and B

⇤)✏. To support hidden left recursion, this approach requires
grammar analysis to identify nullable nonterminals, and pass a boolean flag to each
call. The need for grammar analysis for hidden left recursion and customization of
left-recursive definitions (untoken and rules for A) makes this approach fundamentally
different from ours. Finally, this parsing technique is designed to have no side
effects [65], and does not memoize previous results, thus is of worst-case exponential
complexity.

7.7.4 ANTLR 4

ANTLR 4 [70] supports direct left-recursive rules by rewriting them to non-left-
recursive ones. During this rewriting process, ANTLR inserts semantic predicates to
resolve ambiguities based on the order of alternatives. The resulting parsers mimic the
operator precedence technique by Clarke [14]: the rules that come earlier have higher
precedence, and all rules are left-associative by default, unless explicitly marked as
right-associative. ANTLR 4 does not support indirect left recursion because rewriting
grammars to eliminate indirect left-recursion results in large grammars that have no
obvious relationship with the original ones.

ANTLR 4 uses the Adaptive LL(*), ALL(*), strategy, in which a sub-parse is
invoked for each alternative of a nonterminal and intermediate results are cached.
ALL(*) effectively uses global backtracking to avoid the problems with PEG-style
backtracking of previous versions of ANTLR. ALL(*) parsers have worst-case complex-
ity of O(n4) and produce at most one derivation, since ambiguities are resolved during
parsing. The ambiguity resolution mechanism is based on the order of alternatives, in
which the sub-parse with the lowest alternative number (appearing earlier) is preferred.
Because of complex grammar transformations performed by ANTLR 4 before parsing,
and its lack of direct support for left recursion, this parsing strategy is not suitable
for parser combinators.

202 Chapter 7. Practical, General Parser Combinators

7.7.5 GLL Parsing

Generalized LL (GLL) [78] is a fully general, worst-case cubic parsing algorithm. GLL
uses a Graph Structured Stack (GSS) that handles multiple function call stacks, and
produces binarized SPPFs. The problem of left recursion (direct/indirect/hidden) is
uniformly solved by allowing cycles in the GSS. GLL parsers are recursive-descent
like, and have a close relationship with the grammar.

Among all the related work we discussed so far, GLL parsing is the closest to our
work, especially if we consider a version of GLL which uses a more efficient GSS (see
Chapter 2). In fact, CPS parsers have the same performance characteristics as GLL
parsers with the new GSS. Although CPS parsers and GLL use very different terms
to describe their inner workings, presumably because of different communities they
have been developed in, there are many similarities in these two approaches. Most
notably, left recursion is handled in both approaches essentially in the same way.

In a GLL parser (with new GSS) when the parser is before a nonterminal, a GSS
node corresponding to the nonterminal and the current input position is searched. If
the GSS node exists, the GSS edge is added, recording the current grammar position,
and the previous parsing results associated with this GSS node are reused. When a
new result is added to the results associated with a GSS node, the parser will explore
the paths recorded on outgoing GSS edges with the new result. Similarly, in CPS
parsers, if a memoized parser has been already called at the current input position, a
continuation is added, recording the current position in the sequence, and the parsing
results associated with the parser are reused. When a new result is added to the
results of a parser, the recorded continuations will be called with the new result.

The main difference between a GLL parser and CPS parser is how the control flow
is designed. GLL uses a GSS, which is a global data structure that encodes all parsing
paths, while in a CPS parser, the control flow is encoded in continuation-passing
style. It is in principle possible to realize a direct embedding of context-free grammars
based on GLL parsing, although such an implementation may not be trivial. The
GLL parsing algorithm [78] was designed for a code generation setting, in which a
grammar processing phase generates the required labels for grammar positions. In
parser combinators based on GLL, these labels should be dynamically represented.
For example, Spiewak [81] shows how to build parser combinators based on GLL
by encoding GSS nodes and edges as closures. This encoding resembles a form of
continuation-passing style. Moreover, parser combinators based on GLL may benefit
from a different GSS structure such as the one we presented in Chapter 2, as it is more
similar to function memoization. We believe that our general parser combinators,
compared to a functional formulation of GLL, are a more natural and elegant choice for
realizing general parser combinators, as they offer a more straightforward generalization
of traditional parser combinators.

7.8 Conclusions

In this chapter we presented a foundation for general parser combinators based on
an extension of Johnson’s CPS recognizers. Johnson stated that for constructing

7.8. Conclusions 203

a parse forest from his approach “a straightforward implementation attempt would
probably be very complicated” [43]. To the best of our knowledge no parser version of
Johnson’s CPS recognizers existed before our work. One of our core contributions is
the extension of CPS recognizers to parsers that construct binarized SPPFs [78,80].
We showed that binarized SPPFs are a perfect fit for CPS recognizers. In particular,
intermediate nodes provide a natural way to build a node from a binary sequence
combinator. The results of parsing Java show that CPS parsers are practical for
large, real-world grammars, even in a dynamic parser combinator setting where static
grammar analysis is not an option. As future work, we plan to experiment with more
programming languages and explore optimization opportunities in the Meerkat library.

Chapter 8

Conclusions

In this thesis we have presented the design and implementation of practical general
top-down parsers. Top-down parsing, usually in the form of recursive-descent parsing,
is efficient, easy to understand and is widely used to manually write parsers for real
programming languages. However, due to the difficulty of dealing with left recursion,
top-down parsers always suffered from expressiveness problems compared to their
bottom-up counterparts.

In many applications of parsing, such as designing domain-specific languages,
where factors such as expressiveness and ease of use are more important than mere
performance, parsing tools based on general parsing algorithms are considered. General
parsing algorithms support all context-free grammars, including the ones with left
recursion, and can present all the ambiguities in a compact parse forest format.
Most of the research on developing general parsers has been devoted to bottom-up
parsers, most notably on extending and improving the Generalized LR (GLR) parsing
algorithm.

The Generalized LL (GLL) parsing algorithm, which has been developed by
Scott and Johnstone in 2010, provided a viable alternative to GLR. GLL parsers are
recursive-descent like and are relatively easy to understand. They can even be written
by hand, and debugged using a programming language IDE. GLL parsers support all
context-free grammars and have worst case cubic runtime complexity, but can run
nearly linearly on grammars of real programming languages.

The other very important, and less widely known work, on generalizing recursive-
descent parsing is Mark Johnson’s work on Continuation-Passing Style (CPS) recogniz-
ers. While exploring an implementation of parser combinators based on GLL parsing,
we stumbled upon Johnson’s work by chance. Although Johnson’s combinators are
formulated very differently compared to GLL, they are so similar in dealing with
left recursion that they can be considered the same algorithm. In fact, Johnson’s

205

206 Chapter 8. Conclusions

recognizers can be considered as a functional implementation of GLL parsing.
Our work in this thesis has been inspired by both GLL and Johnson’s CPS

recognizers. Working with Johnson’s recognizers led us to propose a more efficient
GSS for GLL, which resembles traditional function memoization, and also shaped our
work on data-dependent grammars. Our experience with GLL also gave us insight
into how to make Johnson’s CPS recognizers cubic and generate SPPF from them. In
fact, part of our work can be seen as merging and unifying the GLL and Johnson’s
CPS recognizers.

Our main research focus in this thesis has been to realize general top-down
parsers that are practical for parsing real programming languages. Since a general
parser without disambiguation is not useful for parsing real programming languages,
which almost always should be unambiguous, we have spent considerable time on
disambiguation, especially operator precedence disambiguation. To achieve our goal
we worked on the following topics:

• Algorithmic and implementation optimizations of the GLL parsing algorithm.

• Extension of GLL to support data-dependent grammars, to deal with languages
that are not context-free and to provide a generic framework for implementing
disambiguation constructs.

• Semantics and an efficient implementation for operator precedence disambigua-
tion.

• General parser combinators, providing a viable alternative for users who would
like to have a general parser directly embedded in a programming language such
as Scala.

We have developed Iguana, a data-dependent parsing framework based on GLL,
to evaluate our research results. The results of our performance evaluation show
that Iguana is practical for parsing real programming languages, and in terms of
performance, is comparable to a mature parsing tool such as ANTLR. We have also
developed Meerkat [38], a general parser combinator library in Scala. We showed the
practicality of Meerkat by encoding the full grammar of Java as a set of combinators
and parsing large number of Java source files. In the remaining of this chapter we
revisit the research questions, and discuss the future work that could be built on top
of our work.

8.1 Revisiting the Research Questions

Research Question 1. GLL is a relatively new general parsing algorithm that has
not been yet widely used in practice. Can we make GLL faster, and build efficient
general parsers based on GLL?

The answer to this question is presented in Chapters 2 and 6. In Chapter 2 we
presented a modification to the Graph Structured Stack (GSS), an important internal

8.1. Revisiting the Research Questions 207

data structure of GLL, that leads to significant performance improvement. Our change
was inspired by Johnson’s CPS recognizers, and makes GSS more similar to the call
stack of programming languages. This modification to GSS significantly reduces the
number of descriptors, the unit of work in GLL parsing, and thus leads to considerable
performance improvement. We believe this change not only makes GLL parsing faster,
but also makes it easier to understand. This change also laid out the basis for our
work on the extension of GLL to support data-dependent grammars. In Chapter 6
we presented the results of our performance comparison of Iguana and ANTLR. The
results show that Iguana is practical for parsing real programming languages and has
comparable performance to ANTLR.

Research Question 2. Using general parsing algorithms for parsing programming
languages goes hand in hand with (declarative) disambiguation. To build practical
general parsers, it is essential to support disambiguation. Disambiguation constructs
are typically implemented in the context of a specific parsing algorithm. Is it possible to
implement various disambiguation constructs without the knowledge of the underlying
parsing technique?

The answer to this question is presented in Chapter 3. We found data-dependent
grammars to be an excellent abstract intermediate language for defining various
disambiguation constructs, and showed how to extend GLL to support data-dependent
grammars. As data-dependent grammars are rather low-level, we have also provided
high-level disambiguation constructs, e.g., for operator precedence and indentation-
sensitivity, that desugar to data-dependent grammars. We discussed the application of
our technique to resolve various ambiguities, for example, the ones found in indentation-
sensitive languages such as Haskell and Python, conditional directives in C#, typedef
ambiguity in C, and intricate cases of operator precedence in OCaml.

Research Question 3. How can we deal with intricate cases of operator precedence
ambiguity that are present in functional programming languages such as OCaml?

The answer to this question is presented in Chapter 4. We introduced a derivation-
based semantics for operator precedence disambiguation that is independent of the
underlying parsing technique, and is safe, i.e., does not remove sentences from the
language when there is no ambiguity. In addition, our operator precedence semantics
can deal with so-called deep operator precedence cases that often occur in functional
programming languages such as OCaml. In contrast to SDF-style operator prece-
dence disambiguation, our operator precedence semantics considers arbitrary distance
between subtrees that form an illegal combination and can resolve the ambiguity.

Our safe specification of operator precedence rules is implemented by an automatic
grammar rewriting process that preserves the shape of the parse trees, conforming to
the original ambiguous grammar. This rewriting, however, could lead to very large
grammars, which affects the runtime of the parser.

Research Question 4. How can we implement our safe operator precedence technique
in a way that does not require a grammar transformation that increases the size of
the grammar, and is independent of the underlying parsing algorithm?

208 Chapter 8. Conclusions

The answer to this question is presented in Chapter 5. We provide an implementation
of the safe operator precedence semantics based on data-dependent grammars. This im-
plementation has the advantage that it does not depend on a grammar transformation
that increases the size of the grammar, and is efficient.

Research Question 5. How can we implement general parser combinators that
provide both the expressiveness and worst-case cubic runtime of traditional general
parsers, and the flexibility of parser combinators?

The answer to this question is presented in Chapter 7. We started with Johnson’s
Continuation-Passing Style (CPS) recognizers and applied a modification to the
memoization strategy that guarantees worst-case cubic runtime. Then, we showed how
to extend the cubic CPS recognizers to fully general parsers that produce binarized
SPPFs in cubic time and space. We presented a parser combinator library in Scala,
called Meerkat, that is based on our cubic CPS parsers.

We have demonstrated the practicality of Meerkat parsers by encoding the grammar
of Java as a set of combinators using the Meerkat library, and parsed a large number
of Java files. In comparison to Iguana, Meerkat parsers are more flexible: there is
no need for a separate textual syntax and the language engineer can directly modify
existing combinators or define new ones in Scala.

Since we have worked on both Iguana and Meerkat, one might ask when to choose
one over the other. The answer to this question highly depends on the specific use
case. Moreover, this discussion is not only restricted to Iguana vs. Meerkat, rather to
the wider subject of deep vs. shallow embedding [30]. Iguana is a grammar interpreter
(deep embedding), and can potentially have better performance. In Iguana, we have
more fine-grained control over the grammar representation and the interpreter. In
case of Meerkat (shallow embedding), the grammar representation is highly tied to
the host programming language (in our case Scala), and we have no control over the
interpreter, as it is the host programming language runtime itself. On the other hand,
shallow embeddings like Meerkat are more flexible and extensible.

8.2 Future Work

In the following we outline some directions that could be explored in the future.

Error recovery
One of the important topics that we did not discuss in this thesis is error recovery.
Top-down parsers have a good reputation for error reporting and error recovery, and
we suspect it should be easier to provide good error recovery features for GLL, say
compared to GLR. Currently, Iguana reports the parse error location, but does not
provide any error recovery features. Providing error recovery should be the highest
priority feature, especially for using Iguana in language workbenches and development
tools.

8.3. Concluding Remarks 209

Grammar debugger
Iguana can be configured to print extensive logging information. We found these
execution traces very useful when trying to determine the cause of a parse error or an
ambiguity. We can envision a tool that visualizes these traces in a user-friendly manner,
to help the user debug the grammar. We can also build a grammar debugger for
Iguana, to provide a familiar IDE-like debugging experience. Since the GLL runtime
has a one-to-one relationship with the grammar, i.e., the parser is at one grammar
position at each time during parsing, building such a debugger is much simpler for
GLL than for bottom-up general parsers such as GLR.

Parsing the C family of programming languages
Parsing the C family of programming languages (C, C++, and Objective C) is
considered a hard task. In Chapter 3 we discussed two difficult aspects of parsing the
C family of programming languages, namely the typedef ambiguity and preprocessors
(in the context of C#). In the future, we plan to investigate how Iguana can be used
to parse the C family of programming languages, and provide an extensive evaluation
by parsing a large corpus of input files, such as the source code of the Linux kernel.

Tooling for Iguana
We have already developed an IntelliJ IDEA plugin for defining grammars using the
Iguana syntax. The plugin provides common IDE features such as syntax highlighting,
auto completion, and outline view. We plan to improve this plugin by providing more
features, and integrate Iguana into the Rascal meta-programming language as the
default parsing library.

8.3 Concluding Remarks

In the course of our work that led to this thesis, we studied many different parsing
algorithms. In this concluding remarks section we share some of the things we learned.

Similarity of parsing algorithms
Perhaps the most important observation, as best described by Grune and Jacobs,
was that “the more parsing algorithms one studies the more they seem similar, and
there seems to be great opportunity for unification. Basically almost all parsing is
done by top-down search with left-recursion protection; this is true even for traditional
bottom-up techniques like LR(1), where the top-down search is built into the LR(1)
parse tables.” [33]. Although theoretically, there is a great chance for unification, we
believe that the differences on how the top-down search and the guard on left recursion
are implemented will have a great impact on how a parsing algorithm can be used in
practice.

The approaches to deal with left recursion, from a high-level point of view, are
basically all the same. The left recursion call should be terminated as soon as possible,
and only be continued if a non-left-recursive alternative yields a result. This is even
true for the classic grammar rewriting technique to eliminate left-recursion where the

210 Chapter 8. Conclusions

left recursion is replaced with right recursion, guarded by non-left-recursive alternatives.
The LR automata also simulates such a process by allowing left-recursive nonterminal
transitions only when other non-left-recursive alternatives reduce on top of the stack.

Our biggest surprise was the discovery of the relationship between GLL and
Johnson’s CPS recognizers, which turned out to be basically the same algorithm when
dealing with left recursion. The handling of left-recursion in GLL and Johnson’s CPS
recognizers is dynamic and happens at the parser runtime, and the parser runs over
the same original grammar. This makes GLL and Johnson’s CPS recognizers runtime
easier to understand compared to the runtime of a parser based on LR automata.
We believe the more intuitive runtime model and flexibility of GLL and Johnson’s
recognizers makes them the general parsing algorithm of choice.

General parsing in practice
In Chapter 1 we discussed the spectrum of parsing algorithms based on their usage.
Most compiler front-ends have hand-written recursive-descent parsers or LALR parsers
generated by Yacc. General parsing algorithms have been mainly used in language
engineering tools such as ASF+SDF, Rascal and Spoofax, where expressiveness and
ease of use are important.

We suspect two factors have been in play that general parsing algorithms have
not become mainstream. First, they are mostly intended to be used as part of a
language workbench (ASF+SDF, Rascal and Spoofax), and many of their features
are not available as a standalone library. Moreover, general parsers have gained a
bad reputation for being slow. We believe Iguana addresses both of these issues. It is
available as a standalone library, and as we have shown in Chapter 6, Iguana has good
performance and memory footprint. There is still a long way to go to make Iguana
mature to be used in practice, but we can predict that it can become a viable general
parsing tool and compete with mature tools such as ANTLR 4.

The future of parsing
When discussing the future of parsing we should distinguish between the theoretical
and practical aspects. From the theoretical perspective, in the last two decades we
observed various variants and improvements to the GLR parsing algorithm, which also
led to the development of GLL. We expect the same pace of theoretical contribution,
in the form of extensions or improvements to the current parsing algorithms. From
a practical perspective, we expect that most parsers for the front-end of compilers
continue to be written by hand in the form of recursive-descent parsers, as it always
pays off in terms of performance and producing good error messages to do the initial
investment of writing the parser by hand.

For other applications of parsing such as designing domain-specific languages
and reverse engineering, tools based on general parsing algorithms can become more
popular. Besides improving performance, making disambiguation easier for the end
user can increase the adaptation of such tools. Ambiguity is a difficult topic, and
any effort in reporting ambiguities in a more understandable manner to the user and
providing suggestions for disambiguation can be a good step towards this goal.

Bibliography

[1] A. Aasa. Precedences in Specifications and Implementations of Programming
Languages. In Selected Papers of the Symposium on Programming Language
Implementation and Logic Programming, PLILP ’91, pages 3–26. Elsevier, 1995.
(cited on pages 116, 122, and 148)

[2] M. D. Adams. Principled Parsing for Indentation-sensitive Languages: Revisiting
Landin’s Offside Rule. In Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13, pages
511–522. ACM, 2013. (cited on page 94)

[3] A. Afroozeh and A. Izmaylova. Faster, Practical GLL Parsing. In Proceedings
of the 24th International Conference on Compiler Construction, Held as Part of
the European Joint Conferences on Theory and Practice of Software (ETAPS),
CC ’15, pages 89–108. Springer, 2015. (cited on pages 13, 78, 79, 82, 83, 139,
and 152)

[4] A. Afroozeh and A. Izmaylova. One Parser to Rule Them All. In Proceedings
of the ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward!), Onward! ’15, pages 151–
170. ACM, 2015. (cited on pages 155, 171, and 175)

[5] A. Afroozeh and A. Izmaylova. Operator Precedence for Data-dependent Gram-
mars. In Proceedings of the ACM SIGPLAN Symposium/Workshop on Partial
Evaluation and Program Manipulation, PEPM ’16, pages 13–24. ACM, 2016.
(cited on page 164)

[6] A. Afroozeh, M. van den Brand, A. Johnstone, E. Scott, and J. J. Vinju.
Safe Specification of Operator Precedence Rules. In Proceedings of the 6th
International Conference on Software Language Engineering, SLE ’13, pages
137–156. Springer, 2013. (cited on pages 52 and 157)

[7] A. V. Aho, S. C. Johnson, and J. D. Ullman. Deterministic Parsing of Ambigu-
ous Grammars. In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN

211

212 Bibliography

Symposium on Principles of Programming Languages, POPL ’73, pages 1–21.
ACM, 1973. (cited on pages 53, 61, 98, 120, and 123)

[8] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co.,
Inc., 2006. (cited on pages 1, 10, 12, 13, and 98)

[9] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and Compiling.
Prentice-Hall, Inc., 1972. (cited on pages 5 and 10)

[10] J. Aycock and N. Horspool. Faster Generalized LR Parsing. In Proceedings of
the 8th International Conference on Compiler Construction, Held as Part of the
European Joint Conferences on the Theory and Practice of Software (ETAPS),
CC’99, pages 32–46. Springer, 1999. (cited on pages 9 and 52)

[11] I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS®: Program Transformations for
Practical Scalable Software Evolution. In Proceedings of the 26th International
Conference on Software Engineering, ICSE ’04, pages 625–634. IEEE Computer
Society, 2004. (cited on pages 6 and 98)

[12] S. Billot and B. Lang. The Structure of Shared Forests in Ambiguous Parsing.
In Proceedings of the 27th Annual Meeting on Association for Computational
Linguistics, ACL ’89, pages 143–151. Association for Computational Linguistics,
1989. (cited on page 7)

[13] M. Bravenboer, E. Tanter, and E. Visser. Declarative, Formal, and Extensible
Syntax Definition for aspectJ. In Proceedings of the 21st Annual ACM SIG-
PLAN Conference on Object-oriented Programming Systems, Languages, and
Applications, OOPSLA ’06, pages 209–228. ACM, 2006. (cited on page 47)

[14] K. Clarke. The Top-down Parsing of Expressions. Technical report, Dept. of
Computer Science and Statistics, Queen Mary College, 1986. (cited on pages 71,
122, 147, and 201)

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. (cited on page 9)

[16] N. A. Danielsson and U. Norell. Parsing Mixfix Operators. In Proceedings of the
20th International Conference on Implementation and Application of Functional
Languages, IFL’08, pages 80–99. Springer, 2011. (cited on page 147)

[17] F. L. DeRemer. Practical Translators for LR(k) Languages. PhD thesis, Mas-
sachusetts Institute of Technology, 1969. (cited on pages 34, 56, and 120)

[18] J. Earley. An Efficient Context-free Parsing Algorithm. Commun. ACM,
13(2):94–102, Feb. 1970. (cited on pages 3, 7, 56, 93, 98, 121, 174, and 175)

Bibliography 213

[19] G. Economopoulos, P. Klint, and J. Vinju. Faster Scannerless GLR Parsing.
In Proceedings of the 18th International Conference on Compiler Construction,
Held As Part of the Joint European Conferences on Theory and Practice of
Software (ETAPS), CC ’09, pages 126–141. Springer, 2009. (cited on page 53)

[20] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. Layout-Sensitive Gener-
alized Parsing. In Proceedings of the 5th International Conference on Software
Language Engineering, SLE ’12, pages 244–263. Springer, 2012. (cited on page 94)

[21] E. L. Favero. The Simple and Powerful yfx Operator Precedence Parser. Softw.
Pract. Exper., 37(14):1451–1474, Nov. 2007. (cited on page 147)

[22] K. Fisher and R. Gruber. PADS: A Domain-specific Language for Processing Ad
Hoc Data. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, pages 295–304. ACM, 2005.
(cited on page 63)

[23] R. W. Floyd. Syntactic Analysis and Operator Precedence. J. ACM, 10(3):316–
333, July 1963. (cited on pages 13, 120, and 147)

[24] B. Ford. Packrat Parsing:: Simple, Powerful, Lazy, Linear Time (Functional
Pearl). In Proceedings of the 7th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’02, pages 36–47. ACM, 2002. (cited on
page 200)

[25] B. Ford. Parsing Expression Grammars: A Recognition-based Syntactic Foun-
dation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’04, pages 111–122. ACM, 2004.
(cited on pages 5, 53, 147, and 200)

[26] R. A. Frost, R. Hafiz, and P. Callaghan. Parser Combinators for Ambiguous
Left-recursive Grammars. In Proceedings of the 10th International Conference on
Practical Aspects of Declarative Languages, PADL’08, pages 167–181. Springer,
2008. (cited on page 198)

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., 1995. (cited on page 164)

[28] S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined Style. In Proceedings of
the 4th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’99, pages 18–27. ACM, 1999. (cited on page 14)

[29] P. Gazzillo and R. Grimm. SuperC: Parsing All of C by Taming the Preproces-
sor. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, pages 323–334. ACM, 2012.
(cited on page 95)

214 Bibliography

[30] J. Gibbons and N. Wu. Folding Domain-specific Languages: Deep and Shallow
Embeddings (Functional Pearl). In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’14, pages 339–347.
ACM, 2014. (cited on page 208)

[31] J. Gosling, B. Joy, and G. L. Steele. The Java Language Specification. Addison-
Wesley Longman Publishing Co., Inc., 1st edition, 1996. (cited on page 34)

[32] J. Gosling, B. Joy, G. L. Steele, Jr., G. Bracha, and A. Buckley. The Java
Language Specification, Java SE 7 Edition. Addison-Wesley Professional, 1st
edition, 2013. (cited on pages 51, 87, 139, 163, 175, and 197)

[33] D. Grune and C. J. Jacobs. Parsing Techniques: A Practical Guide. Springer
Publishing Company, Incorporated, 2nd edition, 2010. (cited on pages 7, 10, 13,
and 209)

[34] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The Syntax Definition
Formalism SDF–Reference Manual–. SIGPLAN Not., 24(11):43–75, Nov. 1989.
(cited on pages 3, 4, 20, 56, 59, 67, and 152)

[35] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman
Publishing Co., Inc., 2006. (cited on page 156)

[36] G. Hutton. Higher-order Functions for Parsing. Journal of Functional Program-
ming, 2(3):323–343, July 1992. (cited on pages 25, 94, and 174)

[37] G. Hutton and E. Meijer. Monadic Parsing in Haskell. J. Funct. Program.,
8(4):437–444, July 1998. (cited on pages 25, 94, and 174)

[38] A. Izmaylova, A. Afroozeh, and T. v. d. Storm. Practical, General Parser
Combinators. In Proceedings of the ACM SIGPLAN Symposium/Workshop on
Partial Evaluation and Program Manipulation, PEPM ’16, pages 1–12. ACM,
2016. (cited on page 206)

[39] T. Jim and Y. Mandelbaum. Efficient Earley Parsing with Regular Right-hand
Sides. 253(7):135 – 148, 2010. LDTA’09. (cited on page 94)

[40] T. Jim and Y. Mandelbaum. A New Method for Dependent Parsing. In
Proceedings of the 20th European Conference on Programming Languages and
Systems: Part of the Joint European Conferences on Theory and Practice of
Software (ETAPS), ESOP ’11, pages 378–397. Springer, 2011. (cited on page 146)

[41] T. Jim, Y. Mandelbaum, and D. Walker. Semantics and algorithms for data-
dependent grammars. In Proceedings of the 37th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’10, pages
417–430. ACM, 2010. (cited on pages 6, 21, 56, 59, 63, 64, 65, 91, 93, 122, 130,
131, 152, 154, and 175)

Bibliography 215

[42] M. Johnson. The Computational Complexity of GLR Parsing. In Generalized
LR Parsing, pages 35–42. Springer US, 1991. (cited on pages 7, 36, 52, 78, 185,
and 192)

[43] M. Johnson. Memoization in Top-down Parsing. Comput. Linguist., 21(3):405–
417, Sept. 1995. (cited on pages 6, 10, 25, 175, 182, and 203)

[44] S. C. Johnson. Yacc: Yet Another Compiler-Compiler. AT&T Bell Laboratories,
http://dinosaur.compilertools.net/yacc/. (cited on pages 1, 34, 53, 56, and 120)

[45] A. Johnstone and E. Scott. Modelling GLL Parser Implementations. In Pro-
ceedings of the 3rd International Conference on Software Language Engineering,
SLE’10, pages 42–61. Springer, 2011. (cited on pages 45 and 79)

[46] A. Johnstone, E. Scott, and G. Economopoulos. Generalised parsing: Some costs.
In Proceedings of the 13th International Conference on Compiler Construction,
Held as Part of the Joint European Conferences on Theory and Practice of
Software (ETAPS), CC ’04, pages 89–103. Springer, 2004. (cited on pages 52
and 121)

[47] A. Johnstone, E. Scott, and M. van den Brand. Modular Grammar Specification.
Sci. Comput. Prog., 87:23–43, 2014. (cited on pages 67 and 146)

[48] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger.
Variability-aware Parsing in the Presence of Lexical Macros and Conditional
Compilation. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’11, pages
805–824. ACM, 2011. (cited on page 95)

[49] L. C. Kats, E. Visser, and G. Wachsmuth. Pure and Declarative Syntax Defi-
nition: Paradise Lost and Regained. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applica-
tions, OOPSLA ’10, pages 918–932. ACM, 2010. (cited on pages 4, 20, 59, 121,
and 152)

[50] P. Klint, R. Lämmel, and C. Verhoef. Toward an engineering discipline for
grammarware. ACM Trans. Softw. Eng. Methodol., 14(3):331–380, July 2005.
(cited on pages 3 and 98)

[51] P. Klint, T. v. d. Storm, and J. Vinju. RASCAL: A Domain Specific Language
for Source Code Analysis and Manipulation. In Proceedings of the 9th IEEE
International Working Conference on Source Code Analysis and Manipulation,
SCAM ’09, pages 168–177. IEEE Computer Society, 2009. (cited on pages 87,
159, and 171)

[52] P. Klint, T. van der Storm, and J. J. Vinju. EASY Meta-Programming
with Rascal. Leveraging the Extract-Analyze-SYnthesize Paradigm for Meta-
Programming. In Proceedings of the 3rd International Summer School on

http://dinosaur.compilertools.net/yacc/
http://www.rascal-mpl.org

216 Bibliography

Generative and Transformational Techniques in Software Engineering, GTTSE
’09. Springer, 2010. (cited on page 113)

[53] P. Klint and E. Visser. Using Filters for the Disambiguation of Context-free
Grammars. In Proceedings of the ASMICS Workshop on Parsing Theory, pages
1–20. Tech. Rep. 126–1994, Dipartimento di Scienze dell’Informazione, Università
di Milano, 1994. (cited on pages 101 and 122)

[54] D. E. Knuth. On the Translation of Languages from Left to Right. Information
and control, 8(6):607–639, 1965. (cited on pages 1, 7, 34, 56, and 120)

[55] P. J. Landin. The Next 700 Programming Languages. Commun. ACM, 9(3):157–
166, Mar. 1966. (cited on page 61)

[56] B. Lang. Deterministic Techniques for Efficient Non-Deterministic Parsers. In
Proceedings of the 2nd Colloquium on Automata, Languages and Programming,
pages 255–269. Springer, 1974. (cited on page 7)

[57] D. Leijen. Parsec, A Fast Combinator Parser. Technical Report 35, Department
of Computer Science, University of Utrecht (RUU), 2001. (cited on pages 25
and 198)

[58] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The
OCaml system release 4.02. Technical report, Inria, 2014. (cited on pages 4, 51,
120, and 124)

[59] P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Attributed Translations. J.
Comput. Syst. Sci., 9(3):279–307, 1974. (cited on page 93)

[60] S. Marlow. Haskell 2010 language report, 2010. (cited on pages 62 and 90)

[61] S. McPeak and G. C. Necula. Elkhound: A Fast, Practical GLR Parser Generator.
In Proceedings of the 13th International Conference on Compiler Construction,
Held as Part of the Joint European Conferences on Theory and Practice of
Software (ETAPS), CC ’04, pages 73–88. Springer, 2004. (cited on pages 6, 34,
52, 98, 146, and 174)

[62] A. Melnikov. Collected Extensions to IMAP4 ABNF, April 2006. http://tools.

ietf.org/html/rfc4466. (cited on page 56)

[63] Microsoft Corporation. C# Language Specification Version 5.0, June 2013.
http://www.microsoft.com/en-us/download/details.aspx?id=7029. (cited on pages 51,
63, 65, and 88)

[64] A. Moors, F. Piessens, and M. Odersky. Parser Combinators in Scala. Technical
report, Katholieke Universiteit Leuven, 2008. (cited on page 198)

http://tools.ietf.org/html/rfc4466
http://tools.ietf.org/html/rfc4466
http://www.microsoft.com/en-us/download/details.aspx?id=7029

Bibliography 217

[65] M.-J. Nederhof. A New Top-down Parsing Algorithm for Left-recursive DCGs.
In Proceedings of the 5th International Symposium on Programming Language
Implementation and Logic Programming, PLILP’93, pages 108–122. Springer,
1993. (cited on page 201)

[66] P. Norvig. Techniques for Automatic Memoization with Applications to Context-
free Parsing. Computational Linguistics, 17(1):91–98, 1991. (cited on pages 9
and 181)

[67] R. Nozohoor-Farshi. GLR Parsing for ✏-Grammers. In M. Tomita, editor,
Generalized LR Parsing, pages 61–75. Springer US, 1991. (cited on pages 7
and 52)

[68] M. Odersky. The Scala Language Specification, version 2.9. Program-
ming Methods Laboratory, EPFL, 2014. http://www.scala-lang.org/docu/files/

ScalaReference.pdf. (cited on page 23)

[69] T. Parr and K. Fisher. LL(*): The Foundation of the ANTLR Parser Genera-
tor. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 425–436. ACM, 2011.
(cited on pages 30, 32, and 163)

[70] T. Parr, S. Harwell, and K. Fisher. Adaptive LL(*) Parsing: The Power of
Dynamic Analysis. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA ’14,
pages 579–598. ACM, 2014. (cited on pages 9, 20, 30, 32, 53, 71, 146, 147, 163,
and 201)

[71] J. Rekers. Parser Generation for Interactive Environments. PhD thesis, Univer-
sity of Amsterdam, 1992. (cited on pages 7, 22, and 98)

[72] T. Ridge. Simple, Efficient, Sound and Complete Combinator Parsing for All
Context-Free Grammars, Using an Oracle. In Proceedings of the 7th International
Conference on Software Language Engineering, SLE ’14, pages 261–281. Springer,
2014. (cited on page 175)

[73] D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) Parsing of Programming
Languages. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’89, pages 170–178. ACM, 1989.
(cited on pages 47, 60, 67, 146, and 156)

[74] A. C. Schwerdfeger and E. R. Van Wyk. Verifiable Composition of Deterministic
Grammars. In Proceedings of the 30th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’09, pages 199–210. ACM,
2009. (cited on page 3)

[75] E. Scott and A. Johnstone. Generalized Bottom Up Parsers With Reduced
Stack Activity. Comput. J., 48(5):565–587, Sept. 2005. (cited on page 9)

http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf

218 Bibliography

[76] E. Scott and A. Johnstone. Right Nulled GLR Parsers. ACM Trans. Program.
Lang. Syst., 28(4):577–618, July 2006. (cited on pages 7 and 52)

[77] E. Scott and A. Johnstone. Recognition is not Parsing - SPPF-style Parsing from
Cubic Recognisers. Sci. Comput. Program., 75(1-2):55–70, Jan. 2010. (cited on
page 159)

[78] E. Scott and A. Johnstone. GLL Parse-tree Generation. Science of Computer
Programming, 78(10):1828–1844, 2013. (cited on pages 3, 4, 6, 9, 35, 36, 41,
45, 49, 56, 58, 59, 65, 78, 79, 82, 83, 91, 98, 113, 121, 159, 160, 174, 175, 202,
and 203)

[79] E. Scott and A. Johnstone. GLL syntax analysers for EBNF grammars. Science
of Computer Programming, 166:120–145, 6 2018. (cited on page 171)

[80] E. Scott, A. Johnstone, and R. Economopoulos. BRNGLR: A Cubic Tomita-
style GLR Parsing Algorithm. Acta informatica, 44(6):427–461, 2007. (cited on
pages 9, 59, 121, 175, 185, and 203)

[81] D. Spiewak. Generalized Parser Combinators. http://www.cs.uwm.edu/~dspiewak/

papers/generalized-parser-combinators.pdf, March 2010. (cited on page 202)

[82] M. Thorup. Controlled grammatic ambiguity. ACM Trans. Program. Lang.
Syst., 16(3):1024–1050, May 1994. (cited on page 116)

[83] M. Thorup. Disambiguating grammars by exclusion of sub-parse trees. Acta
Informatica, 33(5):511–522, 1996. (cited on page 116)

[84] M. Thorup. Disambiguating Grammars by Exclusion of Sub-Parse Trees. Acta
Inf., 33(6):511–522, 1996. (cited on pages 122 and 148)

[85] M. Tomita. Efficient Parsing for Natural Language. Kluwer Academic Publishers,
1985. (cited on pages 3, 4, 7, 34, 52, 56, 59, 78, 81, 98, 121, 174, and 185)

[86] L. Tratt. Direct Left-recursive Parsing Expression Grammars. Technical Report
EIS-10-01, School of Engineering and Information Sciences, Middlesex University,
Oct. 2010. (cited on page 200)

[87] M. van den Brand, H. A. de Jong, P. Klint, and P. A. Olivier. Efficient annotated
terms. Softw., Pract. Exper., 30(3):259–291, 2000. (cited on page 159)

[88] M. van den Brand, A. van Deursen, J. Heering, H. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju,
E. Visser, and J. Visser. The ASF+SDF Meta-Environment: a Component-
Based Language Development Environment. Electr. Notes Theor. Comput. Sci.,
44(2):3–8, 2001. (cited on page 6)

[89] M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling
Language Definitions: The ASF+SDF Compiler. ACM Trans. Program. Lang.
Syst., 24(4):334–368, July 2002. (cited on pages 7, 34, 52, 174, and 188)

http://www.cs.uwm.edu/~dspiewak/papers/generalized-parser-combinators.pdf
http://www.cs.uwm.edu/~dspiewak/papers/generalized-parser-combinators.pdf

Bibliography 219

[90] M. G. J. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disambiguation
Filters for Scannerless Generalized LR Parsers. In Proceedings of the 11th
International Conference on Compiler Construction, Held as Part of the Joint
European Conferences on Theory and Practice of Software (ETAPS), CC ’02,
pages 143–158. Springer, 2002. (cited on pages 4, 20, 48, 53, 56, 60, 67, and 156)

[91] E. R. Van Wyk and A. C. Schwerdfeger. Context-aware Scanning for Parsing
Extensible Languages. In Proceedings of the 6th International Conference on
Generative Programming and Component Engineering, GPCE ’07, pages 63–72.
ACM, 2007. (cited on pages 31, 60, 66, 67, 142, and 156)

[92] E. Visser. From context-free grammars with priorities to character class gram-
mars. In A. van Deursen, M. Brune, and J. Heering, editors, Dat Is Dus Heel
Interessant, Liber Amicorum dedicated to Paul Klint, pages 217–230. CWI, 1997.
(cited on page 116)

[93] E. Visser. From Context-Free Grammars With Priorities to Character Class
Grammars. Technical report, University of Amsterdam, 1997. (cited on page 148)

[94] E. Visser. Scannerless Generalized-LR Parsing. Technical report, University of
Amsterdam, 1997. (cited on pages 22, 47, 99, 107, 122, and 156)

[95] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University
of Amsterdam, 1997. (cited on pages 20, 22, 53, 56, 60, 67, 94, 122, and 123)

[96] P. Wadler. How to Replace Failure by a List of Successes: A method for exception
handling, backtracking, and pattern matching in lazy functional languages.
In Proceedings of a Conference on Functional Programming Languages and
Computer Architecture, FPCA ’85, pages 113–128, 1985. (cited on page 15)

[97] P. Wadler. Comprehending Monads. In Proceedings of the ACM Conference on
LISP and Functional Programming, LFP ’90, pages 61–78. ACM, 1990. (cited
on page 180)

[98] A. Warth, J. R. Douglass, and T. Millstein. Packrat Parsers Can Support
Left Recursion. In Proceedings of the ACM SIGPLAN Symposium/Workshop
on Partial Evaluation and Semantics-based Program Manipulation, PEPM ’08,
pages 103–110. ACM, 2008. (cited on page 200)

[99] D. A. Watt. Rule splitting and attribute-directed parsing. In Semantics-Directed
Compiler Generation, pages 363–392, 1980. (cited on page 93)

[100] W. A. Woods. Transition Network Grammars for Natural Language Analysis.
Commun. ACM, 13(10):591–606, 1970. (cited on pages 58, 78, and 94)

Summary

This thesis presents the design and implementation of practical general top-down
parsers. Top-down parsing, usually in the form of recursive-descent parsing, is efficient,
easy to understand and is widely used to manually write parsers for real programming
languages. However, due to the difficulty of dealing with left recursion, top-down
parsers always suffered from expressiveness problems compared to their bottom-up
counterparts.

In many applications of parsing, such as designing domain-specific languages, where
factors such as expressiveness and ease of use are important, general parsing algorithms
are considered. General parsing algorithms support all context-free grammars and
can present all the ambiguities in a compact parse forest format. Most of the research
on developing general parsers has been devoted to bottom-up parsers, most notably
on the Generalized LR (GLR) parsing algorithm. GLR is a mature parsing algorithm,
however, due to its bottom-up nature, it is hard to understand and modify. There
have been a number of efforts to increase the expressive power of recursive-descent
parsing by using various backtracking techniques, but a solution to the problem of left
recursion proved to be difficult.

The Generalized LL (GLL) parsing algorithm, which has been developed by Scott
and Johnstone in 2010, provided a viable alternative to GLR. GLL parsers support
all context-free grammars (including left-recursive ones), are recursive-descent like,
and their runtime has a one-to-one relationship with the grammar. This makes GLL
attractive for parsing programming languages. The other very important, and less
widely known work, on generalizing recursive-descent parsing is Mark Johnson’s work
on Continuation-Passing Style (CPS) recognizers. Our work in this thesis has been
inspired by both GLL and Johnson’s CPS recognizers, and as we discovered, these two
algorithms are so similar in the way they handle left recursion that we can consider
them basically the same algorithm.

GLL is a relatively new general parsing algorithm that has not been yet widely
used in practice. Working with Johnson’s recognizers led us to propose a more
efficient Graph Structured Stack (GSS) for GLL, which resembles traditional function
memoization. Our modified version of GLL parsing is not only faster, but also easier

221

222 Summary

to understand, and laid out the foundation for our work on data-dependent grammars.
We found data-dependent grammars to be an excellent abstract intermediate

language for implementing various disambiguation constructs without knowledge of
a specific parsing technology. As data-dependent grammars are rather low-level, we
have also provided high-level disambiguation constructs, e.g., for operator precedence
and indentation-sensitivity, that desugar to data-dependent grammars. We discuss the
application of our technique to resolve various ambiguities, for example, the ones found
in indentation-sensitive languages such as Haskell and Python, conditional directives
in C#, typedef ambiguity in C, and intricate cases of operator precedence in OCaml.

A significant part of this thesis is dedicated to the semantics and implementation
of disambiguation rules for operator precedence. Disambiguation rules for operator
precedence are among the most important disambiguation constructs, and are perhaps
the most difficult to get right. We introduce a derivation-based semantics for operator
precedence disambiguation that is independent of the underlying parsing technique,
and is safe, i.e., does not remove sentences from the language when there is no
ambiguity. In addition, our operator precedence semantics can deal with so-called
deep operator precedence cases that often occur in functional programming languages
such as OCaml. Our safe specification of operator precedence rules is implemented by
an automatic grammar rewriting process that preserves the shape of the parse trees,
conforming to the original ambiguous grammar. This rewriting, however, could lead
to very large grammars, which motivated us to propose an alternative implementation
that is based on data-dependent grammars and resolves the operator precedence
ambiguities at runtime.

Our last contribution is general parser combinators that can deal with all context-
free grammars and produce a binarized Shared Packed Parse Forest (SPPF) in cubic
time and space. Our general parser combinators have the flexibility and expressiveness
of traditional parser combinators, and the performance guarantee of general parsing
algorithms. Our general parser combinators are based on Johnson’s CPS recognizers.
We extend Johnson’s CPS recognizers to achieve recognition in cubic time, and extend
the resulting cubic CPS recognizers to parsers that construct a binarized SPPF. We
used our cubic CPS parsers as the basis for Meerkat, a general parser combinator
library in Scala.

In the course of this thesis, we have developed Iguana, our GLL-based data-
dependent parsing framework. Iguana’s extensible data-dependent grammar API
allows the user to easily add new disambiguation constructs or modify existing ones.
We have used Iguana to parse various real programming languages, such as Java, C#,
Haskell, and a significant subset of OCaml. The results of our performance evaluation
show that Iguana is practical for parsing real programming languages, and in terms of
performance, is comparable to a mature parsing tool such as ANTLR.

Samenvatting

Dit proefschrift presenteert het ontwerp en de implementatie van praktische, algemene
top-down parsers. Top-down parsers, meestal in de vorm van recursive-descent parsers,
zijn efficiënt, gemakkelijk te begrijpen en worden veel gebruikt om handmatig parsers
voor echte programmeertalen te schrijven. Vanwege de moeilijkheid om links-recursie te
behandelen, leiden top-down parsers altijd aan expressiviteitsproblemen in vergelijking
met hun bottom-up tegenhangers.

In veel toepassingen van parseren, zoals het ontwerpen van domeinspecifieke talen,
waarbij factoren zoals expressiviteit en gebruiksgemak belangrijk zijn, worden algemene
parseringsalgoritmen gebruikt. Algemene parseringsalgoritmen ondersteunen alle
context-vrije grammatica’s en kunnen alle ambiguïteiten presenteren in de vorm van
een compact bos van bomen. Het meeste onderzoek naar het ontwikkelen van algemene
parsers is gericht op bottom-up parsers, in het bijzonder op het gegeneraliseerde LR-
algoritme (GLR). GLR is een volwassen parseringsalgoritme, maar vanwege zijn
bottom-up karakter, is het moeilijk te begrijpen en te modificeren. Er zijn in het
verleden een aantal pogingen ondernomen om de expressieve kracht van recursive-
descent parseren te vergroten door verschillende backtrackingtechnieken te gebruiken,
maar een oplossing voor het probleem van links-recursie blijkt moeilijk te zijn.

Het gegeneraliseerde LL-algoritme (GLL), dat in 2010 door Scott en Johnstone is
ontwikkeld, biedt een levensvatbaar alternatief voor GLR. GLL parsers ondersteunen
alle context-vrije grammatica’s (inclusief links-recursieve), ze lijken op recursive descent
en hun runtime heeft een één-op-één relatie met de grammatica. Dit maakt GLL
aantrekkelijk voor het parseren van programmeertalen. Ander, zeer belangrijk maar
minder bekend werk, over het generaliseren van recursive-descent parsers, is het werk
van Mark Johnson over CPS-herkenners gebaseerd op continuaties (Continuation
Passing Style). Ons werk in dit proefschrift is geïnspireerd door zowel GLL als de
CPS-herkenners van Johnson, en, zoals we hebben ontdekt, zijn deze twee algoritmen
zo vergelijkbaar in de manier waarop ze links-recursie verwerken dat we ze in principe
als hetzelfde algoritme kunnen beschouwen.

GLL is een relatief nieuw algemeen parseringsalgoritme dat in de praktijk nog niet
veel is gebruikt. Het werken met de herkenners van Johnson heeft ons ertoe gebracht

223

224 Samenvatting

om een efficiëntere Graph Structured Stack (GSS) voor GLL voor te stellen, die lijkt
op het traditionele memoriseren van functieresultaten. Onze gewijzigde versie van
GLL parseren is niet alleen sneller, maar ook gemakkelijker te begrijpen, en heeft de
basis gelegd voor ons werk op het gebied van data-afhankelijk grammatica’s.

We hebben ontdekt dat data-afhankelijk grammatica’s een uitstekende abstracte
tussentaal vormen voor het implementeren van verschillende disambigueringsconstruc-
ties zonder kennis van een specifieke parseringstechnologie. Omdat data-afhankelijke
grammatica’s van een nogal laag-niveau zijn, stellen we ook hoog-niveau disam-
bigueringsconstructies voor, bijvoorbeeld voor prioriteitsregels van operatoren en
indentatiegevoeligheid, die naar data-afhankelijke grammatica’s kunnen worden ver-
taald. We bespreken de toepassing van onze techniek om verschillende ambiguiteiten
op te lossen, bijvoorbeeld die gevonden in indentatiegevoelige talen zoals Haskell
en Python, conditionele directieven in C#, de bekende typedef ambiguiteit in C, en
ingewikkelde gevallen van operatorprioriteiten in OCaml.

Een belangrijk deel van dit proefschrift is gewijd aan de semantiek en implementatie
van disambigueringsconstructies voor prioriteiten van operatoren. Disambigueringscon-
structies voor operatorprioriteiten behoren tot de belangrijkste disambigueringscon-
structies en zijn misschien het moeilijkste om correct te krijgen. We introduceren een
afleidinggebaseerde semantiek voor operatorprioriteiten die onafhankelijk is van de
onderliggende parseringstechniek, en veilig is, d.w.z. geen zinnen uit de taal verwijdert
als er geen ambiguïteit is. Bovendien kan de semantiek voor operatorprioriteiten
omgaan met zogenaamde diepe gevallen van operatorprioriteit die vaak voorkomen in
functionele programmeertalen zoals OCaml. Onze veilige specificatie van regels voor
operatorprioriteiten wordt geïmplementeerd door een automatisch grammaticaher-
schrijfproces dat de vorm van de afleidingsbomen behoudt, conform de oorspronkelijke
ambigue grammatica. Deze herschrijving kan echter leiden tot zeer grote grammatica’s,
wat ons motiveerde om een alternatieve implementatie te ontwikkelen die is gebaseerd
op data-afhankelijke grammatica’s en die ambigue operatorprioriteiten kan oplossen
tijdens runtime.

Onze laatste bijdrage bestaat uit algemene parsercombinators die alle context-vrije
grammatica’s kunnen verwerken en een binair Shared Packed Parse Forest (SPPF)
in kubische tijd en ruimte kunnen produceren. Onze algemene parsercombinators
hebben de flexibiliteit en expressiviteit van traditionele parsercombinators en de
runtimegarantie van algemene parseringsalgoritmen. Onze algemene parsercombinators
zijn gebaseerd op de CPS-herkenners van Johnson. We breiden Johnson’s CPS-
herkenners uit om herkenning in kubische tijd te bereiken en breiden de resulterende
kubische CPS-herkenners uit naar parsers die een binair SPPF construeren. We
hebben onze kubische CPS-parsers gebruikt als basis voor Meerkat, een algemene
parsercombinatorbibliotheek voor Scala.

In de loop van dit proefschrift hebben we, tenslotte, Iguana ontwikkeld, een op
GLL gebaseerde data-afhankelijk parseringsraamwerk. Met Iguana’s API (Application
Programmers Interface) voor uitbreidbare data-afhankelijke grammatica’s kan de
gebruiker gemakkelijk nieuwe disambigueringsconstructies toevoegen of bestaande
constructies wijzigen. We hebben Iguana gebruikt om verschillende echte program-
meertalen te parseren, zoals Java, C#, Haskell en een groot deel van OCaml. Onze

225

prestatieanalyses tonen aan dat Iguana praktisch bruikbaar is voor het parseren
van echte programmeertalen en qua prestaties kan concurreren met een volwassen
parseringstool zoals ANTLR.

Titles in the IPA Dissertation Series since 2016

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Faculty
of Mathematics and Natural Sciences,
UL. 2016-01

S.J.C. Joosten. Verification of Inter-
connects. Faculty of Mathematics and
Computer Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty
of Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis
and Verification of Embedded Systems
for Healthcare. Faculty of Mathematics
and Computer Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2016-05

Y. Luo. From Conceptual Models
to Safety Assurance – Applying Model-
Based Techniques to Support Safety As-
surance. Faculty of Mathematics and
Computer Science, TU/e. 2016-06

B. Ege. Physical Security Analysis
of Embedded Devices. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2016-07

A.I. van Goethem. Algorithms for
Curved Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core De-
cision Diagrams. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2016-09

I. David. Run-time resource manage-
ment for component-based systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-10

A.C. van Hulst. Control Synthesis us-
ing Modal Logic and Partial Bisimilar-
ity – A Treatise Supported by Computer
Verified Proofs. Faculty of Mechanical
Engineering, TU/e. 2016-11

A. Zawedde. Modeling the Dynamics of
Requirements Process Improvement. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-12

F.M.J. van den Broek. Mobile Com-
munication Security. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2016-13

J.N. van Rijn. Massively Collaborative
Machine Learning. Faculty of Mathemat-
ics and Natural Sciences, UL. 2016-14

M.J. Steindorfer. Efficient Im-
mutable Collections. Faculty of Science,
UvA. 2017-01

W. Ahmad. Green Computing: Effi-
cient Energy Management of Multipro-
cessor Streaming Applications via Model
Checking. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-02

D. Guck. Reliable Systems – Fault tree
analysis via Markov reward automata.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2017-03

H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Radio
Applications Scheduled on Heterogeneous
Multiprocessors. Faculty of Mathematics
and Computer Science, TU/e. 2017-04

A. Krasnova. Smart invaders of private
matters: Privacy of communication on
the Internet and in the Internet of Things
(IoT). Faculty of Science, Mathematics
and Computer Science, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty
of Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of Lim-
itations and Opportunities. Faculty of
Science, UvA. 2017-07

W. Lueks. Security and Privacy via
Cryptography – Having your cake and eat-
ing it too. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2017-08

A.M. Şutîi. Modularity and Reuse
of Domain-Specific Languages: an ex-
ploration with MetaMod. Faculty of
Mathematics and Computer Science,
TU/e. 2017-09

U. Tikhonova. Engineering the Dy-
namic Semantics of Domain Specific Lan-
guages. Faculty of Mathematics and
Computer Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty
of Mathematics and Computer Science,
TU/e. 2017-11

A. Amighi. Specification and Verifica-
tion of Synchronisation Classes in Java:
A Practical Approach. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2018-01

S. Darabi. Verification of Program Par-
allelization. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2018-02

J.R. Salamanca Tellez. Coequations
and Eilenberg-type Correspondences. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2018-03
P. Fiterău-Broştean. Active Model
Learning for the Analysis of Network Pro-
tocols. Faculty of Science, Mathematics
and Computer Science, RU. 2018-04
D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java
Code. Faculty of Mathematics and Com-
puter Science, TU/e. 2018-05
H. Basold. Mixed Inductive-
Coinductive Reasoning Types, Programs
and Logic. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2018-06
A. Lele. Response Modeling: Model Re-
finements for Timing Analysis of Run-
time Scheduling in Real-time Streaming
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2018-07
N. Bezirgiannis. Abstract Behavioral
Specification: unifying modeling and pro-
gramming. Faculty of Mathematics and
Natural Sciences, UL. 2018-08
M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer
Science, TU/e. 2018-09
E.J.J. Ruijters. Zen and the art of
railway maintenance: Analysis and opti-
mization of maintenance via fault trees
and statistical model checking. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2018-10
F. Yang. A Theory of Executability:
with a Focus on the Expressivity of Pro-
cess Calculi. Faculty of Mathematics and
Computer Science, TU/e. 2018-11
L. Swartjes. Model-based design of bag-
gage handling systems. Faculty of Me-
chanical Engineering, TU/e. 2018-12

T.A.E. Ophelders. Continuous Simi-
larity Measures for Curves and Surfaces.
Faculty of Mathematics and Computer
Science, TU/e. 2018-13

M. Talebi. Scalable Performance Anal-
ysis of Wireless Sensor Network. Faculty
of Mathematics and Computer Science,
TU/e. 2018-14

R. Kumar. Truth or Dare: Quantita-
tive security analysis using attack trees.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2018-15

M.M. Beller. An Empirical Evalua-
tion of Feedback-Driven Software Devel-
opment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2018-16

M. Mehr. Faster Algorithms for
Geometric Clustering and Competitive
Facility-Location Problems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-17

M. Alizadeh. Auditing of User Be-
havior: Identification, Analysis and Un-
derstanding of Deviations. Faculty of
Mathematics and Computer Science,
TU/e. 2018-18

P.A. Inostroza Valdera. Structuring
Languages as Object-Oriented Libraries.
Faculty of Science, UvA. 2018-19

M. Gerhold. Choice and Chance -
Model-Based Testing of Stochastic Be-
haviour. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-20

A. Serrano Mena. Type Error
Customization for Embedded Domain-
Specific Languages. Faculty of Science,
UU. 2018-21

S.M.J. de Putter. Verification of
Concurrent Systems in a Model-Driven
Engineering Workflow. Faculty of
Mathematics and Computer Science,
TU/e. 2019-01

S.M. Thaler. Automation for Infor-
mation Security using Machine Learning.
Faculty of Mathematics and Computer
Science, TU/e. 2019-02

Ö. Babur. Model Analytics and Man-
agement. Faculty of Mathematics and
Computer Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova.
Practical General Top-down Parsers.
Faculty of Science, UvA. 2019-04

LR Parsing
knuth '65

Faster GLR Parsing
aycock and horspool '99

GLR Parsing
tomita '85

Recursive-descent Parsing (LL)

Memoization
in CFG

norvig '91

Memoization
 in CPS

johnson '95

Right Nulled GLR
(RNGLR) Parsing

scott and johnstone '06RIGLR Parsing
scott and johnstone '05

GLL Recognizers
scott and johnstone '10

GLL Parsing with More Efficient GSS
afroozeh and izmaylova '15

General Parser Combinators
izmaylova, afroozeh, et al '16

BRNGLR
scott and johnstone '07

GLR Parsing for
 ε-Grammers

farshi '91

Framework for
Non-deterministic Parsing

lang '74

Shared Forest in
Ambiguous Parsing

billot and lang '89

Compact SPPF
rekers '92

Recursive-descent
Parsing with

Limited Backtracking
aho and Ullman '72

PEGs
ford '04

Practical LL(k)
parr '93

ANTLR 3, LL(*)
parr et al '11

ANTLR 4
Adaptive LL(*)
parr et al '14

GLL Parsing
scott and johnstone '13

	Contents
	Acknowledgments
	Prologue
	Introduction
	Evolution of the GLL Parsing Algorithm
	Context-free Grammars and Recursive-descent Parsing
	Left Recursion in Recursive-descent Parsing
	A Generic Framework for Disambiguation
	Direct Embedding of Context-free Grammars
	Research Questions and Overview of Chapters
	Performance Evaluation
	Software Artifacts

	Faster, Practical GLL Parsing
	Introduction
	GLL Parsing
	More Efficient GSS for GLL Parsing
	Optimizations for GLL Implementation
	Disambiguation Filters for Scannerless GLL Parsing
	Performance Evaluation
	Related Work
	Conclusions

	Data-dependent GLL Parsing
	Introduction
	The Landscape of Parsing Programming Languages
	Parsing Programming Languages with Data-dependent Grammars
	Implementation
	Evaluation
	Related Work
	Conclusions

	Safe Specification of Operator Precedence Rules
	Introduction
	Motivation
	Syntax and Semantics for Operator-style Disambiguation
	Grammar Rewriting to Exclude Illegal Derivations
	Validation Using the OCaml Case
	Related Work
	Conclusions

	Operator Precedence for Data-dependent Grammars
	Introduction
	The Problem of Operator Precedence
	Operator Precedence for Data-Dependent Grammars
	Evaluation
	Related Work
	Conclusions

	Iguana: a Practical Data-dependent Parsing Framework
	Introduction
	Architecture
	Performance Evaluation
	Conclusions

	Practical, General Parser Combinators
	Introduction
	General Cubic CPS Recognizers
	SPPF Construction for Cubic CPS Parsers
	Complexity of Johnson's CPS Recognizers
	Complexity of CPS Parsers
	Evaluation
	Related Work
	Conclusions

	Conclusions
	Revisiting the Research Questions
	Future Work
	Concluding Remarks

	Bibliography
	Summary
	Samenvatting

