
Reverse Engineering Source Code:
Empirical Studies of Limitations and Opportunities





Reverse Engineering Source Code:
Empirical Studies of Limitations and Opportunities

ACADEMISCH PROEFSCHRIFT

ter verkrĳging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K. I. J. Maex
ten overstaan van een door het College voor Promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op donderdag 5 oktober 2017, te 10.00 uur

door

Davy Landman

geboren te Sittard



Promotiecommissie:

Promotores: prof. dr. P. Klint Universiteit van Amsterdam
prof. dr. J. J. Vinju Technische Universiteit Eindhoven

Overige leden: prof. dr. J. A. Bergstra Universiteit van Amsterdam
dr. C.U. Grelck Universiteit van Amsterdam
prof. dr. T.M. van Engers Universiteit van Amsterdam
prof. dr. T. Vos Open Universiteit
prof. dr. S. Demeyer Universiteit van Antwerpen
prof. dr. M.W. Godfrey University of Waterloo

Faculteit: Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The work in this thesis has been carried out at CentrumWiskunde & Informatica (cwi) under
the auspices of the research school Institute for Programming research and Algorithmics (ipa)
and has been supported by the nwo topgo grant #612.001.011 “Domain-Specific Languages:
A Big Future for Small Programs”.
Thesis cover contains art licensed by iStock.com/Grace Levitte.







CONTENTS

Contents vii

Acknowledgments ix

List of abbreviations xiii

1 Introduction 3

1.1 Reverse engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Exploring the Limits of Domain Model Recovery 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Project Planning Reference Model . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Application selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Obtaining the User Model . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Obtaining models from source code . . . . . . . . . . . . . . . . . . . . 32
2.7 Mapping models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Comparing the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Exploring the Relationship between SLOC and CC 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Background theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Exploring the Limits of Static Analysis and Reflection 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 The Java Reflection API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Static Analysis of Reflection in the Literature . . . . . . . . . . . . . . . 97
4.4 How often is the Reflection API used? . . . . . . . . . . . . . . . . . . . 103

vii



4.5 The Impact of Assumptions and Limitations . . . . . . . . . . . . . . . 106
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Conclusions and Perspectives 117

5.1 rq1: Exploring the limits of domain model recovery . . . . . . . . . . . 117
5.2 rq2: Exploring the relationship between cc and sloc . . . . . . . . . 118
5.3 rq3: Exploring the limits of static analysis and reflection . . . . . . . . 119
5.4 Advancing reverse engineering . . . . . . . . . . . . . . . . . . . . . . . 121

References 123

Summary 143

Samenvatting 145

viii contents



ACKNOWLEDGMENTS

The main goal of my time as a PhD candidate was learning as much as possible. That
is the main reason I accepted a position with Paul and Jurgen. They have taught me
many things, of which a few ended up in this thesis.

Paul, thank you for inspiring the main theme in this thesis: “is dat nou wel zo?”.
We often talked about research and software engineering in a general sense, while
leaving me the freedom to explore topics you were sometimes skeptical about. In
the end I think we have spent more hours discussing (Rascal) software engineering
challenges than we have on research challenges. Thanks for being this beacon of
engineering; after too many days of paper-writing, there was always a nice challenge
waiting. I will always remember the nice extra curriculum things we undertook:
the lego Turing machine, session at nemo, hosting several high school classes, and
programming a dancing robot together with a class of 40 young girls.

Jurgen, thank you for supporting my stubbornness and recognizing the stories we
wanted to tell. Many of the tackled subjects were as much a learning curve for you as
they were for me, I really appreciated your honesty in this. Helping me ignore most
of the publication-pressure has been the greatest gift a PhD candidate could wish
for. You have shown me how to combine gut feeling and rational thinking into our
successful collection of publications. We have had (long) discussions about almost
any imaginable subject, and I hope we will continue to do so.

After 6 years I still feel there is much to learn from Paul and Jurgen, so I am very
glad we will continue our collaboration in the form of our recently founded company:
swat.engineering. In this new journey we will undoubtedly learn a lot from each
other, while improving the state of software engineering project after project.

Thank you Alexander and Eric for embarking on the journey of publishing a paper
together. Alexander, thank you for being more critical than myself, and guiding me
through the wilderness of statistical methods. Eric, thank you for showing me how
sig handles the hard questions surrounding metrics.

In my 6 years being part of the swat group I have had the fortune of working along
side of many colleagues. Properly acknowledging you all in this chapter would run
into HUGE printing costs and increase the risk of forgetting something. I therefore
take the easy way out and will thank you all for the many discussions and nice
outings: Aiko, Alexander, Ali, Anastasia, Angelos, Anya, Arnold, Ashim, Atze, Bas,
Bert, Floor, Gauthier, Hans, Jan, Jeroen, Jouke, Kai, Lina, Magiel, Mark, Mauricio,
Michael, Mike, Mircea, Oscar, Pablo, Riemer, Robert, Rodin, Sunil, Thomas, Tĳs, Tim,
Vadim, Yanja, and many master students. Thank you for all the pair programming,
teaching me humility, showing me the multi-cultural world we live in, out-geeking
me, and leaving me flabbergasted about subjects I know nothing about.

ix



I have asked Jeroen and Wietse to be my paranymphs. One of the reasons is
that they most frequently asked me why I was doing a PhD. Whereafter they stayed
around for the discussion on where to next. Jeroen, thank you for making sure I
was never the biggest nerd at cwi, all the burgers, and joining most engineering
quests I proposed. Wietse, thank you for expanding my horizons outside software
engineering, providing a much needed mirror to my assumptions, and teaching me
how to stop worrying and make a choice.

The research community has been very friendly in accepting me and my strange
questions. I want to thank the committee for reviewing and accepting my thesis.

My parents have always accepted my strange or skeptical questions. Thank you
for letting me simmer in them, so that at a later point in life I could finally use them.
Laura, thank you for teaching me much about how to have discussions. Youri, thank
you for the many distractions we managed to squeeze in. I will always remember
the beers we shared, the people we met, and our strange journeys back home. I
have missed birthdays and dinners due to conferences and deadlines, thank you:
Mam, Pap, Anke, Jeffrey, Laura, Linda, Rina, Taco, Theo, and Youri for being very
accommodating.

Lastly, my own family. Petra, you have been my rock, it seems your parents
were very foreseeing. For every chapter in this thesis, there was a point where our
discussion solved a deadlock that neither my supervisors or my coauthors could
break. In helping me finish this thesis, you have taken over more of our household
chores than I would like to admit. Thank you for this. I will make sure to repay this
with great cooking and a Davy-biased chore distribution. The greatest gift has been a
new purpose in my life.∗ You and Tom have shown me how there is more in life than
software engineering and have given me a new challenge that will last for the rest of
my life, AWESOME!

∗Sorry, some cliches are just too true.

x acknowledgments



Short English summary: 20 years ago I already liked inventing
stuff and aspired to become a computer expert.

xi





LIST OF ABBREVIATIONS

api Application Programming Interface

ast Abstract Syntax Tree

cc Cyclomatic Complexity

dsl Domain-Specific Language

ide Integrated Development Environment

ir Information Retrieval

jdt Java Development Tools

lloc Logical Lines of Code

loc Lines of Code

mvc Model View Controller

nlp Natural Language Parsing

oo Object Oriented

orm Object-Relational Mapping

pmbok Project Management Body of Knowledge

pmi Project Management Institute

rmr Repeated Median Regression

sat Software Analysis Toolkit

scm Source Code Management

sloc Source Lines of Code

slr Systematic Literature Review

sps Software Projects Sampling

ui User Interface

uml Unified Modeling Language

wmc Weighted Methods per Class

xiii









INTRODUCTION 1
The goal of software renovation is to modernize existing software [CC90; vDKV99].
Modern software tools can be used to refresh aging software to better match its
technical and business environment. The overarching motivation for this thesis is
providing better methods and tools to software maintenance teams for renovating
their software.

There are two general approaches to software renovation [vDKV99]. The first
approach is to transform the software system to a new version without raising the
level of abstraction. The second approach is to first reverse engineer [CC90] higher
level abstractions from the existing system, and transform these to a new improved
system. This approach is called re-engineering.

We focus on using reverse engineering to support re-engineering by extracting a
higher level of abstraction than the current level. We explore the feasibility to recover
domain models from source code, explore the relationship between two very common
source code metrics, and explore one of the limits of static analysis. This chapter
introduces the concepts, research questions, research methods, contributions, and the
global structure of this thesis.

1.1 reverse engineering

Reverse engineering is a broad term. Chikofsky and Cross formulated the following
most commonly used definition of reverse engineering: “Reverse engineering is the
process of analyzing a subject system to: identify the system’s components and their
interrelationship, and create representations of the system in another form or at a
higher level of abstraction” [CC90]. More recently, Tonella et al. broadened this to:
“every method aimed at recovering knowledge about an existing software system in
support to the execution of a software engineering task” [TTB+07].

Chikofsky and Cross [CC90] identified the following key objectives:
Cope with complexity: automate evolution of software [Leh80] to deal with the

growing volume and complexity of a system.
Generate alternate views: automatically create graphical and non-graphical models

of the system.
Recover lost information: rediscover knowledge lost in the evolution of a long-lived

system.
Detect side effects: automatically detect anomalies and problems.
Synthesize higher abstractions: construct alternate views (or models) that describe

the system at a higher level, opens up opportunities for generating code.
Facilitate reuse: detect reusable software components in existing systems.
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Reverse engineering research has introduced methods to achieve one or more of these
objectives. A method is a description of how to use certain information to support
a software engineering task. Tonella et al. [TTB+07] published a non-exhaustive
overview of reverse engineering methods. The following list shows examples of
popular methods that can be applied to support reverse engineering:

Code visualisation: illustrate the actual source code by adding graphical marks or
converting it to a more graphical format [Mye90]. The information illustrated
comes from a different method.

Design recovery: recreate design abstractions by combining informal information,
existing documentation, and source code [Big89].

Traceability: linking (sections of) source code to other artifacts such as requirements,
documentation, models, and visualizations [ACC+02].

Impact analysis: assessing the effect of a change to one or more elements in the
system [TM94].

Slicing: extract the part of a program that affect values computed at some point of
interest [Tip95; Wei79].

Concept assignment: discover concepts (programming or human) or other concerns
and relate them to source code [BMW93]. Feature location [DRG+13] is a popular
instance of the second half of the concept assignment problem: where is a given
feature located?

There are a whole range of reverse engineering methods, and most are (partially)
automated. Automating reverse engineering is necessary to scale to larger software
systems. This automation often comes at the cost of over- or underapproximation. The
research questions of the following section explore the limits of these approximations.

1.2 research questions

The research published in this thesis shares a common thread: reverse engineering
knowledge from the source code of software systems. The first question explores the
limits of domain model recovery (an instance of concept assignment) by manually
recovering models. In trying to automate this recovery, we identified challenges
that hold for a wider range of reverse engineering methods than just domain model
recovery. The second and third questions explore these challenges in the broader
context of reverse engineering.

Here we will introduce our three research questions, relevant background knowl-
edge, used the research methods and the obtained results. To answer these research
questions we use the same empirical research method, which will be discussed in
Section 1.3.
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Listing 1.1: This constructed example of a button click handler shows how challenging it can be
to recover domain models from source code. There are only 3 lines () which might document
a new domain concept or relation. The other lines are related to database access and user
interface logic.

1 public void handleSaveButtonClick() {
2 try (Transaction trans = transactions.acquire()) {
3 int iterationId = iterationSelection.getIndex();
4 if (iterationId < -1) {
5 throw new SelectIterationException();
6 }
7 Iteration it = database.iterationById(iterationId);
8 User newUser = database.userById(userSelection.getIndex());
9 if (newUser.project == iteration.project) { 
10 if (it.assigned != null) {
11 it.unassign(it.assigned); 
12 }
13 it.assign(newUser); 
14 }
15 labelSuccess.text = newUser.getName() + " was assigned";
16 }
17 catch (Exception e) {
18 trans.revert();
19 labelError.text = "Failure: " + e;
20 }
21 }

1.2.1 rq1: Exploring the limits of domain model recovery

Throughout the lifetime of a software system, domain models (defined below) are
needed to support the software maintenance team in its work. When domain models
are missing or outdated, they might be recoverable from source code. Listing 1.1
contains an example of which parts of the source code contain recoverable domain
knowledge. The first research question (defined below) explores how much we can
learn about the domain of a software system by analyzing its source code.

Background

DomainModel Software is constructed to automate an activity or support an interest
of its stakeholders. The area that the software covers is its domain. Example domains
are project planning, human resource management, order management, online
booking, accounting, application life cycle management, etc. Software development
teams translate their understanding (or knowledge) of this domain into source code,
that after compilation, a computer executes. A domain model is defined by Evans as

1.2 research questions 5



“a rigorously organized and selective abstraction of that knowledge” [Eva03]. These
domain models are the explicit representations of domain knowledge.

For every domain, there may be multiple models. Models are a way to solidify
knowledge from a specific angle. Sometimes, for a new information requirement,
new and different models have to be constructed. For example: a Unified Modeling
Language (uml) Class Diagram [RJB99] or an Entity Relation Diagram [Che76]
can be used to describe the entities and their interrelations. Likewise, a uml State
Machine [RJB99] can be used to model a process.

Recovery During the maintenance of a software system, knowledge of the domain
is often required to add new features or fix bugs. Maintenance teams lose domain
knowledge, either by the passing of time or staff turnover. Outdated models could be
available, or the knowledge was never crystallized into models to begin with. Before
performing most maintenance tasks, the maintainer needs to understand a subset of
the domain to use as a frame of reference. When this subset is unfamiliar, it will have
to be recovered somehow.

Domain models can be recovered by conducting interviews (with stakeholders or
original developers), reading documentation, or reading the source code. Interviews
are often necessary during the recovery of domain models. However, since they
involve humans, they are sensitive to inaccuracy, incompleteness, and subjectivity.
Other information will be needed to triangulate more objective knowledge. Exist-
ing documentation can be a useful source, however, this documentation is often
outdated [LSF03]. Source code is yet another suitable source of information.

Recovering knowledge from source code has potential benefits. Since it is the
source code of the currently running system, it is more objective and complete.
Reading all source code is infeasible, but large parts of the source code can be
processed automatically at relatively low costs. However, in the translation from the
developer’s knowledge to source code, both the intent and the context can get lost.
This (possible) loss of domain knowledge in the translation to source code motivates
the first research question.

Research question

We know that recovering design information – such as domain models – can be hard
since source code lacks relevant information [Big89]. It may be easier to recover
the information by other means; especially for legacy applications written in low
level languages that lack the opportunity for design clues. However, how about
the software written today that soon turns into legacy applications? Tomorrow this
software will also require reverse engineering [vDKV99]. The first research question
tries to find the upper limit of reverse engineering domain models from software
written today.
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Research Question 1 (rq1)

How much of a domain model can be recovered from source code under ideal
circumstances?

The upper limit is important, as it both frames and motivates the future work in
automating domain model recovery.

Method

The ideal circumstance for recovering domain models is inspired by the Object
Oriented (oo) methodology. A common practice in oo is to model concepts of
the world using objects (made even more popular by Evans in Domain Driven
Design [Eva03]). Certain popular libraries and patterns – such as Object-Relational
Mapping (orm) libraries and the Model View Controller (mvc) pattern – promote
the construction of a domain model inside the source code even more. We therefore
selected software systems (from the project planning domain) implemented in an oo
language, and further selected those that either used the mvc pattern or used an orm
library. These systems at the very least have some kind of model in their source code.
Hereby creating the highest chance of recovering their full domain model.

To measure the quality of the recovered domain models, we need an oracle. An
oracle classifies relations or concepts in a domain model as either correct or incorrect.
Actually, we need two oracles. The first oracle measures how much of a domain can
be learned by reading the source code of the program in that domain. This oracle has
to be constructed outside the context of any software. The second oracle is used to
measure how much of a domain the program actually covers. To approximate the
domain of the program, this oracle has to be constructed from the users perspective.
Other views on the program are too closely related to source code.

These oracles have to be manually constructed, otherwise they would reflect the
quality – or inaccuracy – of the tools that constructed them. The first oracle is based on
the Project Management Body of Knowledge (pmbok) book [Ins08] by methodically
translating key sentences to a domainmodel of project planning. For the second oracle
all screens of the application’s user interface were manually traversed and translated
to a domain model. Chapter 2 answers rq1 by manually recovering domain models
from the source code of two software systems and comparing them to the manually
constructed reference models (oracles) to measure the precision and recall. Precision
and recall are two appropriate relevancy measures in case of binary classification.

1.2 research questions 7



Result

For the two systems used in the study, most information can be recovered. Reading
source code of an application can teach us about its domain, with comparable quality
as traversing the user interface of the application.

As alreadymentioned,manual reverse engineeringdoes not scale to larger software
systems. Most reverse engineering methods automatically gather information from
source code (or other inputs) and present that to the user for further improvements.
What are the challenges for automating this recovery?

1.2.2 rq2: Exploring the relationship between Cyclomatic Complexity and Lines of Code

While trying to automate the manual recovery of Chapter 2 (rq1) we observed that
complex code tended to explain more about the relationship and interpretation of
concepts than less complex code fragments. This suggested that code complexity
metrics could be used to identify code fragments of interest. Software metrics [FB14]
are used in a wide variety of reverse-engineering methods to filter methods or
files of interest [DDL99; PSR+05]. Two common complexity metrics are Source
Lines of Code (sloc) and Cyclomatic Complexity (cc) (defined in the following
background subsection). Listing 1.2 contains an example method annotated with
these twometrics. sloc and cc appear in every available commercial and open-source
source code metrics tool, for example: http://sonarqube.org, http://ndepend.com, and
http://grammatech.com/codesonar. They are commonly used next to each other in
software assessment [HKV07] and fault/error prediction [FO00].

On the other hand, the general conclusion of experimental studies [BP84; FF79;
JMF14; SCM+79] on the relationship between cc and sloc is that they have a strong
linear correlation. This linear correlation is often interpreted as the reason to discard
cc for the simpler to calculate sloc [SCM+79], or to normalize cc for sloc [EBG+01].
The relevance of our second research question is much wider than recovering domain
models. For this study we specifically analyze the linear correlation between sloc
and cc. Given that we are still using them both next to each other, is this correlation
present?

Background

The term software metrics can be used for multiple software measurement activi-
ties [FB14]. Examples are: effort, quality, security, and complexity measurement. In
general, software metrics measure an attribute of interest. What are software metrics
and how can they be used?

8 chapter 1 introduction
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Listing 1.2: Example of a Java method that approximates the square root. Out of the 10 lines
in this listing, the sloc measure counts 7 of them (/). The cc of this method is 2 (0), in the
control flow graph there is a path including the while body, and one that does not.

1 public static double sqrt(double num, double epsilon) { / 0
2 double result = num / 2.0; /
3
4 // repeat newton step until precision is achieved
5 while (abs(result - (num / result)) > (epsilon * result)) { / 0
6 result = 0.5 * (result + (num / result)); /
7 } /
8
9 return result; /
10 } /

Fenton and Bieman use measurement theory to explain what measurements are:

Formally, we define measurement as the mapping from the empirical world
to the formal, relational world. Consequently, a measure is the number or
symbol assigned to an entity by this mapping in order to characterize an
attribute. [FB14, p. 30]

For example in software measurement, observable properties of software, such as the
size of source code are mapped to the number of lines measure. However, the relation
between the attribute of interest, for example maintainability, and the observable
property is not always agreed upon. This is especially the case when the attribute
reflects a personal preference.

Measurement theory further describes relations between different measurements
of the same property, for example that if A is larger than B, and B is larger than C,
is C also larger than A? Further details of measurement theory are outside of the
scope of this introduction and we refer to the Software Metrics book by Fenton and
Bieman [FB14].

We primarily use software metrics (or just metrics) as a way to measure the same
attribute in different ways. The common attribute is complexity, and we look at how
the values of sloc related to the values of cc.

Lines of Code Larger methods or files are harder to understand due to the amount
of context the reader has to keep in mind while reading them. One of the most
commonmeasures of size is the Lines of Code (loc) software metric. While in essence
a simple software metric, the interpretation of what should count as a line varies.

In general, there are two categories of loc [Par92]. The physical loc measure
describes the physical length of the code for people to read it. The logical loc (lloc)

1.2 research questions 9



measure ignores physical layout and counts instructions. The sei technical report by
Park [Par92] discusses the many factors that influence both kinds of loc measures.
For example how comments, generated code, cloned code, blank lines, and non
executable code should be counted.

The lloc measure ignores formatting of code and counts only certain categories
of tokens in the source code. The common argument is to remove the noise caused
by different coding styles of developers. It is however harder to compare to other
languages, and to other tools that measure lloc in a slightly different way.

For physical loc there exist a few common approaches. They differ primarily
in how to handle comments, white space, and single curly braces. In general, loc
counts all newlines. After loc the most popular physical measure is sloc. The sloc
measure ignores comment and blank lines. The definition of sloc is as follows:

A line of code is any line of program text that is not a comment or blank
line, regardless of the number of statements or fragments of statements on
the line. This specifically includes all lines containing program headers,
declarations, and executable and non-executable statements [CDS86, p. 35].

Cyclomatic Complexity Control flow is another aspect of complexity. A commonly
used measure of control flow is Cyclomatic Complexity (cc) [McC76]. cc counts the
independent paths in a control flow graph, and while initially introduced to estimate
the amount of test cases needed, it has been widely applied for different measurement
goals. McCabe defined cc as follows:

The cyclomatic complexity of a program∗ is the maximum number of
linearly independent circuits in the control flow graph of said program,
where each exit point is connected with an additional edge to the entry
point [McC76].

The definition is based on the control flow graph of a program, which is more
complicated to calculate than merely parsing the source code. McCabe therefore also
suggested counting the statements that cause forks in the control flow graph. This
simpler approach is the more popular way to calculate cc.

Simply counting certain statements introduces discussion on which statements
to count. This discussion is primarily on how to handle short circuiting boolean
operators that cause forks in the control flow graph. This has even caused the proposal
of an extended cc measure which explicitly mentions the short circuiting boolean
operators [Mye77]. However, the original definition was sufficiently general, any
statement that creates a new path in the control flow graph increments the value of
cc. The work of Abran [Abr10] contains an in-depth discussion on cc’s semantics.

∗In this context a “program” means a subroutine of code like a procedure in Pascal, function in C,
method in Java, sub-routine in Fortran, program in COBOL.
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Research question

The duality between the popularity and the reported redundancy between sloc and
cc – as already mentioned above – motivated the second research question. Before
we try to use these metrics for recovering domain models or in any other reverse
engineering method, we first have to understand how they are related to each other:

Research Question 2 (rq2)

Is there a strong linear (Pearson) correlation between cc and sloc metrics?

How to answer this question in the context of all the related work that does report a
linear correlation?

Method

First a Systematic Literature Review (slr) is performed to collect all related work that
contributes data to this discussion. Using the slr new hypotheses are formulated on
why this correlation is reported and which other factors might explain it. The cc and
sloc are then measured on two large corpora of Java and C software (which had to
be constructed), and statistically analyzed for the different hypothesis.

Result

Contrary to all related work, we only found a moderate correlation in Chapter 3, and
identified several statistical problems with the claimed relation. After identifying
possible – statistically incorrect – transformations of the data that could explain the
observations in related work, the reported high correlations could be reproduced. We
concluded that we did not find evidence of cc being redundant to sloc, and that
they can continue to be used next to each other.

1.2.3 rq3: Exploring the limits of static analysis and reflection

The sloc and cc metrics can be calculated on just syntactical information of the source
code. More complicated reverse engineering queries on the source code require more
than purely syntactic information, these queries require an abstraction of the source
code’s semantics. Static analysis enables these more complicated queries that reason
about the code’s semantics. The accuracy of a static analysis can be decreased by
dynamic behavior; Java’s Reflection Application Programming Interface (api) offers
this dynamic behavior. Listing 1.3 contains an example Java method that showcases
how dynamic reflective methods can get. How much does reflection affect static
analysis methods?

1.2 research questions 11



Listing 1.3: Constructed example of a Java method that uses reflection in a way that complicates
static analysis. If a static analysis wants to understand which methods can be invoked on line
9, it has to model the effects of the control flow and related parts of the Reflection api. The
complicating statements are annotated with the � symbol.

1 public String applyFilter(Class<?> klass, String prefix, String[] toFilter) {
2 Method[] candidates = klass.getMethods(); �
3 for (Method m: candidates) {
4 if (m.getName().startsWith(prefix)) { �
5 Parameter[] params = m.getParameters(); �
6 if (params.length > 0
7 && params[0].getType().isAssignableFrom(String.class)) { �
8 try {
9 return (String) m.invoke(null, toFilter[0], toFilter);
10 }
11 catch (ReflectiveOperationException e) {
12 // try next candidate �
13 }
14 }
15 }
16 }
17 return toFilter[0];
18 }

Background

There are two flavors of analyzing semantics: dynamic and static analysis. They can be
used separately or combined. However, they do differ and have their own weaknesses.

A dynamic analysis executes the source code (or the binary in case of a compiled
language) in one or more runs, and gathers information of the behavior of interest
during its execution. Dynamic analysis has high precision, all reported facts are
correct, since they are based on observations of the actual running program. However,
the recall of dynamic analysis is influenced by the offered input to execution of the
source code, certain parts of the source code can be completely missed. Increasing
this coverage automatically remains challenging.

Static analysis tries to reason about the effect of source code without actually
executing it. There are a whole range of static analysis methods and a wide variety of
users of static analysis methods. Name binding for example connects identifiers to
points on the heap and stack with either data or code. A compiler uses this name
binding to generate the application that manipulates data and executes code. Static
analysis has multiple trade-offs, an important trade-off is between soundness and
performance. A static analysis is sound when all the behaviors that can occur in the
runtime are contained in its result, or in other words, no false negatives. However,
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to achieve this, static analysis tools make over-approximations, which cause false
positives. These over-approximations are often costly in the performance of both the
tool (memory and cpu usage) and the user of the tool (many false positives to ignore).

Research question

Static analysis is used in a wide range of research challenges, for example: security
analysis [BBC+06; CM04], refactoring [MT04], and finding bugs [AHM+08]. However,
even for statically typed languages – which should be easy to analyze – there are
limitations. Dynamic language features – such as the Reflection api in Java – represent
one of these limitations. When just one instance of them is present in the source code
of a system, it can hurt the global recall and precision of a static analysis tool.

Only in the last 10 years research has suggested heuristics to handle Java’s dynamic
language features in a pragmatic, unsound, way [LWL05]. Howmuch of current – real
world – Java source code can be handled? And which challenges remain? Therefore,
the third and final research question is:

Research Question 3 (rq3)

What are the limits of state-of-the-art static analysis tools supporting the
Reflection api and how do these limits relate to real world Java code?

Method

First we constructed an overview of how the interesting parts of the Reflection api are
used. Similar to the research method of rq2 we used a slr to collect all the related
work. This slr identifies common limitations, which are then translated into patterns
that match violations of the limitations. After constructing a new representative
corpus of Java software, we use the meta-programming language Rascal [KvdSV09]
to scan for occurrences of the patterns in this corpus.

Result

The dynamic part of the Reflection api is used in 80% of all projects in the corpus.
Certain limitations of static analysis are relatively often breached by normal Java
systems. We propose patterns for software engineers to simplify their source code,
and propose new assumptions and heuristics for static analysis tools to handle these
limitations.
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1.3 research method

For all of our three research questions, we have applied empirical research methods.
What is empirical research? And how do we mitigate threats to the validity of our
conclusions?

1.3.1 Background

For software engineering research Basili [Bas93] and Glass [Gla94] summarized four
research methods:
Scientific observe the world, model it, measure it, analyze it, and validate hypotheses.
Engineering observe existing solutions, propose improvements, develop them, mea-

sure and analyze the effect, and evaluate the improvement.
Empirical propose a model, evaluate it using empirical studies.
Analytical propose a formal theory, develop a theory, derive results, and compare

with empirical observations.
Depending on the kind of research questions posed, one or more of these methods

are suited. The empirical method – popular in social science and psychology – can be
a better fit for questions on how software is engineered. While the analytical method is
better suited for questions on how to engineer software. For example, the analytical
method is suited for exploring the best implementation of an orm framework, but it
is less suited for exploring how developers actually implement it.

Software engineering, in the end, is human-intensive, based on the intelligence
and creativity of people [WRH+12]. Developing a theory on how humans think is
infeasible, therefore, it would be hard to apply the analytical method to understand
how developers implement something. We know that given a programming language
and a set of requirements, there are multiple possibilities to implement them (even
using the same set of libraries). Using the empirical method we can investigate which
possibilities occur “in the wild”.

While an empirical study can take many forms, the validity of the conclusions
of these studies depends on design choices of the research method. For empirical
research, the common classification of threats to this validity are [WRH+12]:
Conclusion validity the statistical method applied to the data is correct.
Internal validity the observed effect is not caused by unknown or uncontrolled

variables; there are no unknown biases.
Construct validity the observed effect can be explained by theory; all inferences are

made on valid measurements or observations.
External validity the results can be generalized to other settings.
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1.3.2 Mitigating threats to validity

In Chapter 2 (rq1) we performed the task of domain model recovery for two software
systems. To control for bias (internal validity) we performed the study by hand and
traced every step of the modeling to its origin. To minimize the threats to construct
and external validitywe explicitly framed our results as a exploration of the limitations
of the ideal case, and base all conclusions on directly observable data.

In Chapter 3 (rq2) we performed a large study on the relationship between sloc
and cc. To improve the representatives of the results (external validity), we used
two large corpora. To reduce the threats to conclusion validity, we explored multiple
statistical analyses, and discussed statistical assumptions explicitly. Since our large
corpora could introduce new threats to internal validity by containing unknown
biases, we mitigated this by performing a sensitivity analysis on random subsets of
the corpora. Due to the setup of our study and to avoid threats to construct validity,
our conclusion is subtle: “We do not conclude that cc is redundant to sloc”.

In Chapter 4 (rq3) we performed a large study on the presence of reflection in
Java software systems. To avoid the internal validity threats caused by large corpora
while keeping the advantages of large corpora to reduce external validity threats, we
constructed a new compact yet diverse corpus of Java systems. Again, we mitigate
threats to construct validity by linking the conclusions and corresponding hypotheses
to included observations and results.

Moreover, the following mitigations for threats to validity were shared for at least
two of the chapters:
Take random samples of data in case of large datasets it is hard to avoid unknown

biases (internal validity). Random sampling can unearth certain common yet
unknown biases. This is especially important in case of unexpected observations.

Clean data with care even after selecting a data source such as Sourcerer [LBN+09],
follow a structured process to remove artifacts that could introduce bias (internal
validity). This bias is often the result of using data that was meant for a different
purpose, for example, projects that contain the source code of their dependencies
to simplify the compilation.

Publish all data such that other researchers can use this data to test for new suspected
threats to internal or construct validity. A positive side effect of this is that other
empirical research can reuse this data.

Automate the analysis and publish it again, other researchers can repeat our analy-
sis, on the same data set to check for internal validity, or on a new set of data, to
test external validity.
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1.4 contributions

This section lists and summarizes the peer-reviewed contributions, and explains how
they are translated to the chapters in this thesis. I was the primary author of these
four publications.

1.4.1 Chapter 2 Exploring the limits of Domain Model Recovery

P. Klint, D. Landman, and J. J. Vinju. “Exploring the Limits ofDomainModel
Recovery”. In: 2013 IEEE International Conference on Software Maintenance,

Eindhoven, The Netherlands, September 22-28, 2013. IEEE Computer Society,
Sept. 2013, pp. 120–129. doi: 10.1109/ICSM.2013.23

Chapter 2 answers rq1 by manually recovering domain models from source code
and comparing them to manually recovered reference domain models. We observe
that for modern software, most concepts of the domain can be recovered, while the
relationships between concepts remain hard to recover.

1.4.2 Chapter 3 Exploring the relationship between sloc and cc

D. Landman, A. Serebrenik, and J. J. Vinju. “Empirical Analysis of the
Relationship between CC and SLOC in a Large Corpus of Java Methods”.
In: 30th IEEE International Conference on Software Maintenance and Evolution,

Victoria, BC, Canada, September 29 - October 3, 2014. IEEE Computer Society,
2014, pp. 221–230. doi: 10.1109/ICSME.2014.44
D. Landman, A. Serebrenik, E. Bouwers, and J. J. Vinju. “Empirical analysis
of the relationship between CC and SLOC in a large corpus of Java methods
and C functions”. In: Journal of Software: Evolution and Process 28.7 (2016),
pp. 589–618. doi: 10.1002/smr.1760

Chapter 3 answers rq2 by creating an overview of all related work on the
relationship, identifying differences, constructing two large corpora, and analyzing
the relationship between sloc and cc in these corpora. Contrary to related work,
we did not conclude that cc is redundant with sloc, except after questionable data
transformations.

In our initial publication [LSV14] we only analyzed the relationship for Java
software systems, and performed only a simple literature study. After we have
presented this work at icsme2014, new questions from peer researchers emerged.
We therefore extended our study of this relationship [LSB+16] with a more extensive
literature study, a new large corpus of C software, analysis of the relationship between
sloc and cc for C, new hypotheses for the higher correlation in related work, and
an analysis of the effect of corpus size. In Chapter 3 these two publications are
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merged since the second is an extension of the first, and we want to avoid unnecessary
duplication.

1.4.3 Chapter 4 Exploring the limits of static analysis and reflection

D. Landman, A. Serebrenik, and J. J. Vinju. “Challenges for static analysis of
Java reflection: literature review and empirical study”. In: Proceedings of the
39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,

Argentina, May 20-28, 2017. Ed. by S. Uchitel, A. Orso, and M.P. Robillard.
IEEE, 2017, pp. 507–518. doi: 10.1109/ICSE.2017.53
This paper was awarded the Distinguished Paper Award of the Technical
Research Papers track.

Chapter 4 answers rq3 by creating an overview of all related research on reflection
and static analysis, analyzing common assumptions and limitations, building a
representative corpus of Java software, analyzing how reflection is used, and analyzing
how often common assumptions or limitations are violated. We found that in Java,
reflection is used in almost 80% of the projects, and that certain common limitations
occur often. We formulated advise for software engineers on how to avoid these
scenarios, and new assumptions for static analysis tools to handle them.

1.4.4 Datasets

Every research question required and generated new data. The following data has
been made available:

• A reference domain model of project planning and two sets of domain models
manually extracted from two project planning applications (Chapter 2)
D. Landman. cwi-swat/project-planning-domain. Apr. 2013. doi: 10.5281/zenodo.
208212

• A curated version of the Sourcerer corpus [LBN+09] with 13 K projects and
362 MSLOC Java (Chapter 3)
D. Landman. A Curated Corpus of Java Source Code based on Sourcerer (2015). Feb.
2015. doi: 10.5281/zenodo.208213.

• A corpus of C packages based on the Gentoo distribution with 9.8 K packages
and 186 MSLOC C (Chapter 3)
D. Landman. A Large Corpus of C Source Code based on Gentoo packages. Feb. 2015.
doi: 10.5281/zenodo.208215.

• A representative corpus of Java projects representing the Ohloh universe, 461
projects with 79.4 MSLOC Java (Chapter 4)
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D. Landman. A corpus of Java projects representing the 2012 Ohloh universe. Mar.
2016. doi: 10.5281/zenodo.162926

As discussed in Section 1.3.2 we mitigated the threat to internal validity by also
publishing the source code of our automated analysis. The following source code has
been published online:

Chapter 2: D. Landman. cwi-swat/project-planning-domain. Apr. 2013. doi:
10.5281/zenodo.208212

Chapter 3: D. Landman. cwi-swat/jsep-sloc-versus-cc. Feb. 2015. doi:
10.5281/zenodo.293795

Chapter 4: D. Landman. cwi-swat/static-analysis-reflection. Oct. 2016. doi:
10.5281/zenodo.163326

These datasets and the scripts that analyzed them have been published on cern’s
research data repository Zenodo. They can easily be downloaded and used in other
research. The publication that introduced the dataset contains a detailed discussion
on its construction.

1.5 thesis structure

As introduced in this chapter, the following three chapters each answer one main re-
search question related to reverse engineering. Chapter 5 summarizes the conclusions
of these chapters and discusses future work.
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EXPLORING THE LIMITS OF DOMAIN MODEL RECOVERY 2
Abstract

We are interested in re-engineering families of legacy applications towards
usingDomain-Specific Languages (dsls). Is it worth to invest in harvesting domain
knowledge from the source code of legacy applications?

Reverse engineering domain knowledge from source code is sometimes consid-
ered very hard or even impossible. Is it also difficult for “modern legacy systems”?
In this chapter we select two open-source applications and answer the following
research questions: which parts of the domain are implemented by the application,
and how much can we manually recover from the source code? To explore these
questions, we compare manually recovered domain models to a reference model
extracted from domain literature, and measured precision and recall.

The recoveredmodels are accurate: they cover a significant part of the reference
model and they do not contain much junk. We conclude that domain knowledge
is recoverable from “modern legacy” code and therefore domain model recovery
can be a valuable component of a domain re-engineering process.

2.1 introduction

There is ample anecdotal evidence [MHS05] that the use of dsls can significantly
increase the productivity of software development, especially the maintenance part.
dsls model expected variations in both time (versions) and space (product families)
such that some types of maintenance can be done on a higher level of abstraction
and with higher levels of reuse. However, the initial investment in designing a dsl
can be prohibitively high because a complete understanding of a domain is required.
Moreover, when unexpected changes need to be made that were not catered for in the
design of the dsl the maintenance costs can be relatively high. Both issues indicate
how both the quality of domain knowledge and the efficiency of acquiring it are
pivotal for the success of a dsl based software maintenance strategy.

In this chapter we investigate the source code of existing applications as valuable
sources of domain knowledge. dsls are practically never developed in green field
situations. We know from experience that rather the opposite is the case: several
comparable applications by the same or different authors are often developed before

This chapter was previously published as: P. Klint, D. Landman, and J. J. Vinju. “Exploring the
Limits of Domain Model Recovery”. In: 2013 IEEE International Conference on Software Maintenance,

Eindhoven, The Netherlands, September 22-28, 2013. IEEE Computer Society, Sept. 2013, pp. 120–129. doi:
10.1109/ICSM.2013.23
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we start considering a dsl. So, when re-engineering a family of systems towards a dsl,
there is opportunity to reuse knowledge directly frompeople, from the documentation,
from the User Interface (ui) and from the source code. For the current chapter we
assume the people are no longer available, the documentation is possibly wrong
or incomplete and the ui may hide important aspects, so we scope the question to
recovering domain knowledge from source code. Is valuable domain knowledge
present that can be included in the domain engineering process?

From the field of reverse engineering we know that recovering this kind of design
information can be hard [Big89]. Especially for legacy applications written in low
level languages, where code is not self-documenting, it may be easier to recover
the information by other means. However, if a legacy application was written in
a younger object-oriented language, should we not expect to be able to retrieve
valuable information about a domain? This sounds good, but we would like to
observe precisely how well domain model recovery from source code could work in
reality. Note that both the quality of the recovered information and the position of
the observed applications in the domain are important factors.

2.1.1 Positioning domain model recovery

One of the main goals of reverse engineering is design recovery [Big89] which aims
to recover design abstractions from any available information source. A part of the
recovered design is the domain model.

Design recovery is a very broad area, therefore, most research has focused on sub-
areas. The concept assignment problem [BMW93] tries to both discover human-oriented
concepts and connect them to the location in the source code. Often this is further
split into concept recovery

∗ [CG07; KDG07; LRB+07], and concept location [RW02].
Concept location, and to a lesser extent concept recovery, has been a very active field
of research in the reverse engineering community.

However, the notion of a concept is still very broad and features are an example of
narrowed-down concepts and one can identify the sub-areas of feature location [EKS03]
and feature recovery. Domain model recovery as we will use in this chapter is a closely
related sub-area. We are interested in a pure domain model, without the additional
artifacts introduced by software design and implementation. The location of these
artifacts is not interesting either. For the purpose of this chapter, a domain model (or
model for short) consists of entities and relations between these entities.

Abebe et al.’s [AT10; AT11] domain concept extraction is similar to our sub-area. As
is Ratiu et al.’s [RFJ08] domain ontology recovery. In Section 2.9 we will further discuss
these relations.

∗Also known as concept mining, topic identification, or concept discovery.
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Figure 2.1: Domain model recovery for one application.

2.1.2 Research questions

To learn about the possibilities of domain model recovery we pose this question:
how much of a domain model can be recovered under ideal circumstances? By ideal
we mean that the applications under investigation should have well-structured and
self-documenting object-oriented source code.

This leads to the following research sub-questions:
sq1. Which parts of the domain are implemented by the application?
sq2. Can we manually recover those implemented parts from the object-oriented

source code of an application?
Note that we avoid automated recovery here because any inaccuracies introduced

by tool support could affect the validity or accuracy of our results.
Figure 2.1 illustrates the various domains that are involved: The Reference Model

(ref) represents all the knowledge about a specific domain and acts as oracle and
upper limit for the domain knowledge that can be recovered from any application
in that domain. The Recovered Model (rec) is the domain knowledge obtained by
inspecting the source code of the application. The Observed Model (obs) represents
the part of the reference domain that an application covers, i.e. all the knowledge
about a specific application in the domain that a user may obtain by observing its
external behavior and its documentation but not its internal structure.

Ideally, both domain models should completely overlap, however, there could be
entities in obs not present in rec and vice versa. Therefore, figure 2.2 illustrates the
final mapping we have to make, between src and usr. The Intra-Application Model

(int) represents the knowledge recovered from the source code, also present in the
user view, without limiting it to the knowledge found in ref.

In Section 2.2 we describe our research method, explaining how we will analyze
the mappings between usr and ref (obs), src and ref (rec), and src and usr
(int) in order to answer sq1 and sq2. The results of each step are described in
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Figure 2.2: int is the model in the shared vocabolary of the application, unrelated to any
reference model. It represents the concepts found in both the usr and src model.

detail in Sections 2.3 to 2.8. Related work is discussed in Section 2.9 and Section 2.10
(Conclusions) completes the chapter.

2.2 research method

In order to investigate the limits of domainmodel recoverywe studymanually extracted
domain models. The following questions guide this investigation:

1. Which domain is suitable for this study?
2. What is the upper limit of domain knowledge, or what is our reference model

(ref)
3. How to select two representative applications?
4. How do we recover domain knowledge that can be observed by the user of the

application (sq1 & obs)?
5. How do we recover domain knowledge from the source code (sq2 & rec)?
6. How do we compare models that use different vocabularies (terms) for the same

concepts? (sq1, sq2)?
7. How do we compare the various domain models to measure the success of

domain model recovery? (sq1,sq2)?
We will now answer the above questions in turn. Although we are exploring manual
domain model recovery, we want to make this manual process as traceable as possible
since this enables independent review of our results. Where possible we automate
the analysis (calculation of metrics, precision and recall), and further processing
(visualization, table generation) of manually extracted information. Both data and
automation scripts are available online [Lan13].

2.2.1 Selecting a target domain

We have selected the domain of project planning for this study since it is a well-
known, well-described, domain of manageable size for which many open source
software applications exist. We use the Project Management Body of Knowledge
(pmbok) [Ins08] published by Project Management Institute (pmi) for standard
terminology in the project management domain. Note that as such the pmbok covers
a lot more than just project planning.
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2.2.2 Obtaining the Reference Model (ref)

Validating the results of a reverse engineering process is difficult and requires an
oracle, i.e., an actionable domain model suitable for comparison and measurement. We
have transformed the descriptive knowledge in pmbok into such a reference model
using the following, traceable, process:

1. Read the pmbok book.
2. Extract project planning facts.
3. Assign a number to each fact and store its source page.
4. Construct a domain model, where each entity, attribute, and relation are linked

to one or more of the facts.
5. Assess the resulting model and repeat the previous steps when necessary.

The resulting domain model will act as our Reference Model. and Section 2.3 gives
the details.

2.2.3 Application selection

In order to avoid bias towards a single application, we need at least two project
planning applications to extract domain models from. Section 2.4 describes the
selection criteria and the selected applications.

2.2.4 Observing the application

A user can observe an application in several ways, ranging from its ui, command-line
interface, configurationfiles, documentation, scripting facilities and other functionality
or information exposed to the user of the application. In this study we use the ui and
documentation as proxies for what the user can observe. We have followed these
steps to obtain the User Model (usr) of the application:

1. Read the documentation.
2. Determine use cases.
3. Run the application.
4. Traverse the ui depth-first for all the use cases.
5. Collect information about the model exposed in the ui.
6. Construct a domain model, where each entity and relation are linked to a ui

element of the application.
7. Assess the resulting model and repeat the previous steps when necessary.

We report about the outcome in Section 2.5.
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2.2.5 Inspecting the source code

We have designed the following traceable process to extract a domain model from
each application’s source code, the Source Model (src):

1. Read the source code as if it is plain text.
2. Extract project planning facts.
3. Store its filename, and line number (source location).
4. Construct a model, where each entity, attribute, and relation is linked to a source

location in the application’s source code.
5. Assess the model and repeat the previous steps when necessary.

The results appear in Section 2.6.

2.2.6 Mapping models

After performing the above steps we have obtained five domain models for the same
domain, derived from different sources:

• The Reference Model (ref) derived from pmbok.
• For each of the two applications:

– User Model (usr).
– Source Model (src).

While all these model are in the project planning domain, they all use different
vocabularies. Therefore, we have to manually map the models to the same vocabulary.
Mapping the usr and src models onto the ref model, gives the Observed (obs) and
Recovered Model (rec).

The final mapping we have to make, is between the src and usr models. We want
to understand howmuch of the UserModel (usr) is present in the SourceModel (src).
Therefore, we also map the src onto the usr model, giving the Intra-Application
Model (int). The results of all these mappings are given in Section 2.7.

2.2.7 Comparing models

To be able to answer q1 and q2, we will compare the 11 produced models. Following
other research in the field of concept assignment, we use themost common Information
Retrieval (ir) approach, recall and precision, for measuring quality of the recovered
data. Recall measures howmuch of the expected model is present in the found model,
and precision measures how much of the found model is part of the expected.

To answer q1, the recall between ref and usr (obs) explains how much of the
domain is covered by the application. Note that the result is subjective with respect to
the size of ref: a bigger domain may require looking at more different applications
that play a role in it. By answering q2 first, analyzing the recall between usr and
src (int), we will find out whether source code could provide the same recall as ref
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and usr (obs). The relation between ref and src (rec) will confirm this conclusion.
Our hypothesis is that since the selected applications are small, we can only recover a
small part of the domain knowledge, i.e. a low recall.

The precision of the above mappings is an indication of the quality of the result in
terms of how much extra (unnecessary) details we accidentally would recover. This is
important for answering q2. If the recovered information would be overshadowed by
junk information†, the recovery would have failed to produce the domain knowledge
as well. We hypothesize that due to the high-level object-oriented designs of the
applications we will get a high precision.

Some more validating comparisons, their detailed motivation and the results of
all model comparisons are described in Section 2.8.

2.3 project planning reference model

Since there is no known domain model or ontology for project planning that we are
aware of, we need to construct one ourselves. The aforementioned pmbok [Ins08] is
our point of departure. pmbok avoids project management style specific terminology,
making it well-suited for our information needs.

2.3.1 Gathering facts

We have analyzed the whole pmbok book. This analysis has been focused on the
concept of a project and everything related to project planning therefore we exclude
other concepts and processes in the project management domain.

After analyzing 467 pages we have extracted 151 distinct facts related to project
planning. A fact is either an explicitly defined concept, an implicitly defined concept
based on a summarized paragraph, or a relations between concepts. These facts were
located on 67 different pages. This illustrates that project planning is a subdomain
and that project management as a whole covers many topics that fall outside the
scope of the current chapter. Each fact was assigned a unique number and the source
page number where it was found in pmbok. Two example facts are: “A milestone is
a significant point or event in the project.”(id: 108, page: 136) and “A milestone
may be mandatory or optional.” (id: 109, page: 136).

2.3.2 Creating the Reference Model ref

In order to turn these extracted facts into a model for project planning, we have
translated the facts to entities, attributes of entities, and relations between entities.
The two example facts (108 and 109), are translated into a relation between the classes
Project and Milestone, and the mandatory attribute for the Milestone class. The

†Implementation details or concepts from other domains.
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Table 2.1: Number of entities and relations in the created models, and the amount of locations
in the pmbok book, source code, or ui screens used to construct the model.

Source Model entities
relations unique

observationsassociations specializations total

pmbok ref 74 75 32 107 83

Endeavour usr 23 30 8 38 19
src 26 51 8 59 80

OpenPM usr 22 24 3 27 13
src 28 44 6 50 68

meta-model of our domain model is a class diagram. We use a textual representation
in the meta-programming language Rascal [KvdSV09] which is also used to perform
calculations on these models (precision, recall).

Table 2.1 characterizes the size of the project planning reference domain model
ref by number of entities, relations and attributes; it contains of 74 entities and
107 relations. There is also a set of 49 attributes, but this seems incomplete, because
in general we expect any entity to have more then one property. The lack of details in
pmbok could be an explanation for this. Therefore, we did not use the attributes of
the reference model to calculate similarity.

The model is too large to include in this thesis, however for demonstration
purposes, a small subset is shown in Figure 2.3.

Not all the facts extracted from pmbok are used in the Reference Model. Some
facts carry only explanations. For example “costs are the monetary resources needed
to complete the project”. Some facts explain dynamic relations that are not relevant
for an entity/relationship model. These two categories explain 55 of the 68 unused
facts. The remaining 13 facts were not clear enough to be used or categorized. In total
83 of the 151 observed facts are represented in the Reference Model.

2.3.3 Discussion

We have created a Reference Model that can be used as oracle for domain model
recovery and other related reverse engineering tasks in the project planning domain.
The model was created by hand by the second author, and care was taken to make the
whole process traceable. We believe this model can be used for other purposes in this
domain as well, such as application comparison and checking feature completeness.
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Figure 2.3: Fragment of reference model ref visualized as class diagram. Boxes represent
entities, arrows relations, and dashed lines link entities to relations.

Threats to validity

We use pmbok as main source of information for project planning. There are different
approaches to project planning and a potential threat is that some are not covered in
this book. Since pmbok is an industry standard (ansi and ieee), we consider this to
be a low-risk threat and have not mitigated it.

Another threat is that model recovery by another person could lead to a different
model. The traceable extraction of the referencemodelmakes it possible to understand
the decisions onwhich the differences are based. Due to the availability of our analysis
scripts, the impact of differences can be easily computed.

2.4 application selection

We are interested in finding “ideal” project planning systems to manually read and
extract domain models from. The following requirements have guided our search:

• Source code is available: to enable analysis at all.
• No more than 30 KLOC: to keep manual analysis feasible.
• Uses an explicit data model, for example Model View Controller (mvc), or

an Object-Relational Mapping (orm): to ensure that domain elements can be
identified in the source code.
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Table 2.2: Endeavour: structure and size.

Package # files loc description
model 29 4474 mvc model.
view 108 10480 mvc view (ui).
controller 49 3404 mvc controller.
Total 186 18358

Table 2.3: OpenPM: structure and size.

Package # files loc description
model 29 5591 mvc model.
view 21 1546 mvc controller.
servlets 33 3482 mvc view (ui).
test 75 7137 ui & integration tests.
Total 158 17756

We have made a shortlist of 10 open source project planning systems‡. The list
contains applications implemented in different languages (Java, Ruby, and C++) and
sizes ranging from 18 KLOC to 473 KLOC.

From this Endeavour and OpenPM satisfy the aforementioned requirements.
Endeavour is a Java application that uses a custom mvc design with ThinWire as front-
end framework, and Hibernate as orm. OpenPM uses Java servlets in combination
with custom JavaScript. It also uses Hibernate as orm. Table 2.2 and 2.3 describe
the structure and size of the two applications§. Note that OpenPM’s view package
contained mvc controller logic, and the servlets the mvc views.

Both systems aim at supporting the process of planning by storing the process
state but they hardly support process enforcement, except recording dependence
between activities.

2.4.1 Discussion

A threat to external validity is that both systems are implemented in Java. Looking at
systems in multiple modern languages is considered future work.

‡ ChilliProject, Endeavour, GanttProject, LibrePlan, OpenPM, OpenProj, PLANdora, Project.net,
Taskjuggler, Xplanner+.

§Number of files and Lines of Code (loc) are calculated using the cloc tool [Dan13].
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2.5 obtaining the user model

We have used the ui and documentation of the applications to construct the User
Model (usr). Use cases were extracted from the documentation when possible.¶
Following these use cases, a depth-first exploration of the ui is performed. For every
entity and relation we have recorded in which ui screen we first observed it. Table 2.1
describes the User Models for both Endeavour and OpenPM.

For example the Task entity in Endeavour’s usr Model was based on the sub-
window “Task Details“ of the “Home” window.

2.5.1 Discussion

We have tried to understand the domain knowledge represented by the applications
by manually inspecting it from the user’s perspective. Both applications used Ajax to
provide an interactive experience.

Endeavour uses the Single Page Application style, with a windowing system
similar to MS Windows®. The ui is easy to understand, and different concepts are
consistently linked across the application. OpenPM uses a more modern interface.
However, we experienced more confusion on how to use it. It assumes a specific
project management style (scrum), and requires more manual work by the user.

We have observed that creating a User Model is simple. For systems of our size, a
single person can construct a User Model in one day. This is considerably less than
creating a Source Model and suggests that the ui is an effective source for recovering
domain models.

Threats to validity

We use the User Model as a proxy for the real domain knowledge exposed by the
application. The limit of this knowledge is hard to define, but we believe our approach
is an accurate approximation.

We can not be sure about our coverage of the User Model. It could be possible
there are other interfaces to the application we are unaware of. Moreover, there could
be conditions, triggers, or business rules only observable in very specific scenarios.
Some of these issues will be observed in the various model comparisons. We are not
aware of other approaches to further increase confidence in our coverage.

¶Unfortunately, OpenPM does not provide documentation at the time of writing.
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2.6 obtaining models from source code

2.6.1 Domain model recovery

We have chosen the Eclipse Integrated Development Environment (ide) to read the
source code of the selected applications. Our goal was to maximize the amount of
information we could recover. Therefore, we have first read the source code and
then used Rascal to analyze relations in the source code. Rascal uses Eclipse’s Java
Development Tools (jdt) to analyze Java code, and provides a visualization library
that can be used to quickly verify hypothesis formed during the first read-through.

For the actual creation of the model, we have designed and followed these rules:

• Read only the source code, not the database scheme/data.
• Do not run the application.
• Use the terms of the applications, do not translate them to terms used in the

Reference Model.
• Include the whole model as seen by the application, do not filter out obvious

implementation entities.
• Do read comments and string literals.

We have used the same meta-model as used for describing the Reference Model.
We replaced the fact’s identifiers with source locations (filename and character range),
which are a native construct in Rascal. To support the process of collecting facts from
the source code we added a menu-item to the context-menu of the Java editor to write
the cursor’s source location to the clipboard.

The domain model for each application was created in a similar fashion as we did
when creating the reference model. All the elements in the domain model are based
on one or more specific observations in the source code (see table 2.1).

For example the relation between Task and Dependency in Endeavour’s src
model is based on the List<Dependency> dependencies field found on line 35 in file
Endeavour-Mgmt/model/org/endeavour/mgmt/model/Task.java.

2.6.2 Results

Table 2.1 shows the sizes of the extracted models for both applications expressed in
number of entities, relations and attributes and the number of unique source code
locations where they were found.

Endeavour In Endeavour 26 files contributed to the domain model. 22 of those
files were in the model package, the other 4 were from the controller package. The
controller classes each contributed one fact. 155 of the source locations were from the
model package.

32 chapter 2 exploring the limits of domain model recovery



OpenPM In OpenPM 22 files contributed to the domain model. These files were all
located in the model package.

2.6.3 Discussion

We have performed domain model recovery on two open source software applications
for project planning.

Both applications use the same orm system, but a different version of the Appli-
cation Programming Interface (api). Endeavour also contains a separate view model,
which is used in the mvc user interface. However, it has been implemented as a
pass-through layer for the real model.

Threats to validity

A first threat (to internal validity) is that manual analysis is always subject to bias from
the performer and that this was performed by the same author who created the other
models. We have mitigated this by maximizing the traceability of our analysis: we
have followed a fixed analysis process and have performed multiple analysis passes
over the source code and published the data.

A second threat (to external validity) is the limited size of the analyzed applications,
both contain less than 20 KLOC Java. Larger applications wouldmake our conclusions
more interesting and general, but they would also make the manual analysis less
feasible.

2.7 mapping models

We now have five domain models of project planning: one reference model (ref) to
be used as oracle, and four domain models (src, usr) obtained from the two selected
project planning applications. These models use different vocabulary, we have to map
them onto the same vocabulary to be able to compare them.

2.7.1 Lightweight domain model mapping

We manually map the entities between different comparable models. The question is
how to decide whether to entities are the same. Strict string equality is too limited
and should be relaxed to some extent.

Table 2.4 and 2.5 show the mapping categories we have identified for the
(un)successful mapping of model entities.
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Table 2.4: Categories for successfully mapped entities

Mapping name Description
Equal Name Entity has the same name as an entity in the other

model. Note that this is the only category which
can also be a failure when the same name is used
for semantically different entities

Synonym Entity is a direct synonym for an entity in the other
model, and is it not a homonym.

Extension Entity captures a wider concept than the same en-
tity in the other model.

Specialization Entity is a specific or concrete instance of the same
entity in the other model.

Implementation
specialization

Comparable to specialization but the specialization
is related to an implementation choice.

Table 2.5: Categories for unsuccessfully mapped entities

Mapping name Description
Missing The domain entity is missing in the other model,

i.e. a false positive. This is the default mapping
failure when an entity cannot be mapped via any
of the other categories.

Implementation The entity is an implementation detail and is not a
real domain model entity.

Too detailed An entity is a domain entity but is too detailed in
comparison with the other model.

Domain detail The entity is a detail of a sub domain, this category
is a subclass of “too detailed”.

2.7.2 Mapping results

We have manually mapped all the entities in the User Model (usr) and the Source
Model (src) to the Reference Model (ref), and src to usr. For each mapping we
have explicitly documented the reason for choosing this mapping. For example, in
Endeavour’s src model the entity Iteration is mapped toMilestone in the Reference
Model using specialization, with documented reason: “Iterations split the project into
chunks of work, Milestones do the same but are not necessarily iterative.”
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Table 2.6: Endeavour: Entities in the mapped models, per mapping category

Category usr ref src ref src usr
Equal Name 7 7 7 7 21 21
Synonym 2 3 2 3 3 2
Extension 0 0 0 0 0 0
Specialization 5 3 5 3 0 0
Implementation
specialization

1 1 1 1 0 0

Total 15 14 15 14 24 23
Equal Name† 1 - 1 - 0 -
Missing 1 - 2 - 0 -
Implementation 1 - 2 - 2 -
Domain Detail 5 - 6 - 0 -
Too Detailed 0 - 0 - 0 -
Total 8 - 11 - 2 -

† A false positive, in Endeavour the term Document means something different then the term
Documentation in the Reference Model.

Table 2.6 and 2.7 contain the number of mapping categories used for both
applications, per mapping. For some mapping categories, it is possible for one entity
to map to multiple, or multiple entities to one. For example the Task and WorkProduct

entities in Endeavour’s src model are mapped on the Activity entity in the Reference
Model. Therefore, we report the numbers of the entities in both the models, the
source and the target.

The relatively large number of identically named entities (7/15) betweenEndeavour
and the reference model is due to the presence of a similar structure of five entities,
describing all the possible activity dependencies.

An example of a failed mapping is the ObjectVersion entity in the Source Model
of OpenPM. This entity is an implementation detail. It is a variant of the Temporal
Object pattern‖ where every change of an entity is stored to explicitly model the
history of all the objects in the application.

Table 2.8 contains all the entities per domain model, and highlights the mapped
entities.

‖See http://martinfowler.com/eaaDev/TemporalObject.html.
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Table 2.7: OpenPM: Entities in mapped models, per mapping category

Category usr ref src ref src usr
Equal Name 1 1 1 1 18 18
Synonym 3 3 4 4 4 4
Extension 1 1 1 1 0 0
Specialization 0 0 0 0 0 0
Implementation
specialization

1 1 1 1 0 0

Total 6 6 7 7 22 22
Missing 2 - 2 - 1 -
Implementation 12 - 17 - 5 -
Domain Detail 0 - 0 - 0 -
Too Detailed 2 - 2 - 0 -
Total 16 - 21 - 6 -

2.7.3 Discussion

We have used a lightweight approach for mapping domain models. Our mapping
categories may be relevant for other projects and can be further extended and
evaluated.

For future work, we can investigate if whether more automated natural language
processing can help, however, remember our motivations for excluding automatic
approaches in our current research method.

At most half of the domain models recovered from the applications could be
mapped to the reference model. The other half of the extracted models regarded
details of the domain or the implementation.

Threats to validity

A threat to external validity is that we have used an informal approach to map the
domainmodels of the two applications to the referencemodel. Themapping categories
presented above, turned out to be sufficient for these two applications, however we
have no guarantees for other application of these categories. The categories have
evolved during the process and each time a category was added or modified all
previous classifications have been reconsidered.
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Table 2.8: Entities found in the various domain models.

Source Model Entities†

pmbok ref Action, Activity, Activity Attribute, Activity Dependency, Activity duration,
Activity list, Activity resource, Activity sequence, Activity template, Approver,
Budget, Change Control Board, Change request, Closing, Communications
plan, Composite resource calendar, Composite resource calendar availability,
Constrain, Corrective action, Defect, Defect repair, Deliverable,
Documentation, Environment, Equipment, External, FinishFinish,
FinishStart, Human Resource Plan, Information, Internal, Life cycle, Main,
Material,Milestone, Objective, Organisation, Organizing, People, Person,
Phase, Planned work, Portfolio, Preparing, Preventive action, Process, Product,
Project, Project management, Project plan, Project schedule, Project schedule
network diagram, Quality, Requirement, Resource, Resource calendar,
Resource calendar availability, Result, Risk, Risk management plan, Schedule,
Schedule Dates, Schedule baseline, Schedule data, Scope, Service, Stakeholder,
StartFinish, StartStart, Supplies, TeamMember, Work Breakdown Structure,
Work Breakdown Structure Component, Work Package

Endeavour usr Actor, Attachment, Change Request, Comment, Defect, Document, Event,
FinishFinish, FinishStart, Glossary, Iteration, Project,
ProjectMember/Stakeholder, Security Group, StartFinish, StartStart, Task,
Task Dependency, Test Case, Test Folder, Test Plan, Use Case, X

Endeavour src Actor, Attachment, ChangeRequest, Comment, Defect, Dependency,
Document, Event, FinishFinish, FinishStart, GlossaryTerm, Iteration,
Privilege, Project, ProjectMember, SecurityGroup, StartFinish, StartStart,
Task, TestCase, TestFolder, TestPlan, TestRun, UseCase, Version,WorkProduct

OpenPM usr Access Right, Attachment, Button, Comment, Create, Delete, Effort, Email
Notification, FieldHistory, HistoryEvent, Iteration, Label, Link, ObjectHistory,
Product, Splitter, State, Tab, Task, Type, Update, User

OpenPM src Access, Add, Attachment, Comment, Create, Delete, Effort,
EmailSubscription, EmailSubscriptionType, Event, FieldType, FieldVersion,
Label, Link, Milestone, ObjectType, ObjectVersion, Product, Remove, Splitter,
Sprint, Tab, Task, TaskButton, TaskState, TaskType, Update, User

† Bold entity in Reference Model is used in application models. Bold entity in application model could be
mapped to entity in Reference Model.
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Table 2.9: Recall and precision explained per model combination.

Retrieved Expected Recall Precision
usr ref Which part of the domain is

covered by an application.
This is subjective to the size
of ref.

How many of the concepts
in usr are actually domain
concepts, e.g., how much
implementation details are
in the application?

src ref How much of ref can be
recovered from src. If
high then this should con-
firm high recall for both
usr � ref and src � usr.

How much of src are actu-
ally domain concepts, e.g.,
how much implementation
junk is accidentally recov-
ered from source?

src usr How much of usr can be
recovered by analyzing the
source code (src). This
gives no measure of the
amount of actual domain
concepts found.

How many details are in
src, but not in usr? If
usr were a perfect repre-
sentation of the application
knowledge, this category
would only contain dead-
code and unexposed do-
main knowledge.

2.8 comparing the models

We now have five manually constructed and six derived domain models for project
planning:

• One reference model (ref) to be used as oracle.
• Four domain models (src, usr) obtained from each of the two selected project

planning applications.
• Six derived domain models (obs, rec, int) resulting from the mapping of the

previous four (src, usr).
How can we compare these models in a meaningful way?

2.8.1 Recall and Precision

The most common measures to compare the results of an ir technique are recall and
precision. Often it is not possible to get the 100% in both, and we have to discuss which
measure is more important in the case of our model comparisons.

We have more than two datasets, and depending on the combination of datasets,
recall or precision is more important. Table 2.9 explains in detail how recall and
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Table 2.10: Endeavour: Recall and precision.

Comparison
Recall Precision

entities relations entities relations

usr � ref 19% 6% 64% 15%
src � ref 19% 6% 56% 13%
src � usr 100% 92% 92% 74%

Table 2.11: OpenPM: Recall and precision.

Comparison
Recall Precision

entities relations entities relations

usr � ref 7% 3% 23% 16%
src � ref 9% 6% 25% 18%
src � usr 100% 80% 79% 44%

Table 2.12: Combined: Recall and precision.

Comparison
Recall Precision

entities relations entities relations

usr � ref 22% 7% 40% 14%
src � ref 23% 9% 36% 13%

precision will be used and explains for the relevant model combinations which
measure is useful and what will be measured.

Given two models M1 and M2, we use the following notation. The comparison
of two models is denoted by M1 �M2 and results in recall and precision for the two
models. If needed, M1 is first mapped to M2 as described in Tables 2.6 and 2.7.

2.8.2 Results

Tables 2.10 and 2.11 shows the results for, respectively, Endeavour and OpenPM.
Which measures are calculated is based on the analysis in Table 2.9.

2.8.3 Relation Similarity

Since recall and precision for sets of entities provides no insight into similarity of
the relations between entities, we need an additional measure. Our domain models
contain entities and their relations. Entities represent the concepts of the domain, and
relations their structure. If we consider the relations as a set of edges, we can directly
calculate recall and precision in a similar fashion as described above.
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We also considered some more fine grained metrics for structural similarity.
Our domain model is equivalent to a subset of Unified Modeling Language (uml)
class diagrams and several approaches exist for calculating the minimal difference
between such diagrams [KWN05; OWK03]. Such “edit distance”methods give precise
indications of how big the difference is. Similarly wemight use general graph distance
metrics [BS98]. We tried this latter method and found that the results, however more
sophisticated, were harder to interpret. For example, usr and ref were 11% similar
for Endeavor. This seems to be in line with the recall numbers, 6% for relations and
19% for entities, but the interesting precision results (64% and 15%) are lost in this
metric. So we decided not to report these results and stay with the standard accuracy
analysis.

2.8.4 Discussion

Low precision and recall for relations

On the whole the results for the precision and recall of the relation part of the models
are lower than the quality of the entity mappings. We investigated this by taking
a number of samples. The reason is that the Reference model is more detailed,
introducing intermediate entities with associated relations. For every intermediate
entity, two or more relations are introduced which can not be found in the recovered
models.

These results indicate that the recall and precision metrics for sets of relations
underestimate the structural similarity of the models.

Precision of obs: usr � ref

We found the precision of obs to be 64% (Endeavour) and 23% (OpenPM), indicating
that both applications contain a significant amount of entities that are unrelated to
project planning as delimited by the Reference Model. For Endeavour, out of the 8
unmappable entities (see Table 2.6 in section 2.7), only 2 were actual implementation
details. The other 6 are sub-domain details not globally shared within the domain. If
we recalculate to correct for this, Endeavour’s Observed Model even has a precision
of 91%. For OpenPM there are only 2 out of the 16 for which this correction can be
applied, leaving the precision at 36%. For the best scenario, in this case represented
by Endeavour, 90% of the User Model (usr) is part of the Reference Model (ref).

OpenPM’s relatively low precision (36%) can be explained by table 2.7, which
show the usr model has a lot of implementation detail (related to version control
operations).
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Recall of obs: usr � ref The recall for the Observed Model (obs) is for Endeavour
19% and for OpenPM 7%. Which means both applications cover less then 20% of the
project planning domain.

Precision of rec: src � ref The precision of the Recovered Model (rec) is for
Endeavour 56% (corrected 88%), and for OpenPM 25% (corrected 39%). This shows
that for the best scenario, represented again by Endeavour, the Source Model only
contains 12% implementation details.

Recall of rec: src �ref The recall for the Recovered Model (rec) is for Endeavour
19% and for OpenPM 9%. The higher recall for OpenPM, compared to obs, for
both entities and relations is an example where the Source Model contained more
information then the User Model, which we will discuss in the next paragraph.

Precision and recall for int: src � usr How much of the User Model can be
recovered by analyzing only the Source Model? For both Endeavour and OpenPM,
recall is 100%. This means that every entity in the usr model was found in the source
code. Endeavour’s precision was 92% and OpenPM’s 79%. OpenPM contains an
example where information in the Source Model is not observable in the User Model:
comments in the source code explain the Milestones and their relation to Iterations.

The 100% recall and high precision mean that these applications were indeed
amenable for reverse engineering (as we hypothesized when selecting these applica-
tions). We could extract most of the information from the source code.

For this comparison, even the relations score quite high. This indicates that User
Model and Source Model are structurally similar. Manual inspection of the models
confirms this.

Recall for Endeavour and OpenPM combined Endeavour’s and OpenPM’s recall
of usr � ref and src � ref measure the coverage of the domain a re-engineer can
achieve. How much will the recall improve if we combine the recovered models of
the two systems?

We only have two small systems, however, Table 2.12 contains the recall and
precision for Endeavour and OpenPM combined. A small increase in recall, from 19%
to 23%, indicates that there is a possibility for increasing the recall by observing more
systems. However, as expected, at the cost of precision.

Interpretation Since our models are relatively small, our results cannot be statis-
tically significant but are only indicative. Therefore we should not report exact
percentages, but characterizing our recall and precision as high seems valid. Further
research based on more applications is needed to confirm our results.
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2.9 related work

There are many connections between ontologies and domain models. The model
mappings that we need are more specific than the ones provided by general ontology
mapping [CSH06].

Abebe and Tonella [AT10] introduced a Natural Language Parsing (nlp) method
for extracting an ontology from source code. They came to the same conclusion as
we do: this extracted ontology contains a lot of implementation details. Therefore,
they introduced an ir filtering method [AT11] but it was not as effective as the
authors expected. Manual filtering of the ir keyword database was shown to improve
effectiveness. Their work is in the same line as ours, but we have a larger reference
domain model, and we focus on finding the limits of domain model recovery, not
on an automatic approach. It would be interesting to apply their ir filtering to our
extracted models.

Ratiu et al. [RFJ08] proposed an approach for domain ontology extraction. Using a
set of translation rules they extract domain knowledge from the api of a set of related
software libraries. Again, our focus is on finding the limits of model recovery, not on
automating the extraction.

Hsi et al. [HPM03] introduced ontology excavation. Their methodology consists
of a manual depth-first modeling of all ui interactions, and then manually creating an
ontology, filtering out non-domain concepts. They use five graph metrics to identify
interesting concepts and clusters in this domain ontology. We are interested in finding
the domain model inside the user-interface model, Hsi et al. perform this filtering
manually, and then look at the remaining model. Automatic feature extraction of user
interfaces is described in [BP12].

Carey andGannod [CG07] introduced amethod for concept identification. Classes
are considered the lowest level of information of an object-oriented system and
Machine Learning is used in combination with a set of class metrics. This determines
interesting classes, which should relate to domain concepts. Our work is similar, but
we focus on all the information in the source code, and are interested in the maximum
that can be recovered from the source. It could be interesting to use our reference
model to measure how accurately their approach removes implementation concerns.

uml class diagram recovery [SM05; WS07] is also related to our work but has a
different focus. Research focuses on the precision of the recovered class diagrams,
for example the difference between a composition and aggregation relation. We are
interested in less precise uml class diagrams.

Work on recovering the concepts, or topics, of a software system [KDG07; LRB+07]
has a similar goal as ours. ir techniques are used to analyze all the terms in the source
code of a software system, and find relations or clusters. Kuhn et al. [KDG07] use
identifiers in source code to extract semantic meaning and report on the difficulty of
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evaluating their results. Our work focuses less on structure and grouping of concepts
and we evaluate our results using a constructed reference model.

Reverse engineering the relation between concepts or features [EKS03; SLB+11],
assumes that there is a set of known features or concepts and tries to recover the
relations between them. These approaches are related to our work since the second
half of our problem is similar: after we have recovered domain entities, we need to
understand their relations.

DeBaud et al. [DMR94] report on a domain model recovery case study on a cobol
program. By manual inspection of the source code, a developer reconstructed the
data constructs of the program. They also report that implementation details make
extraction difficult, and remark that systems often implement multiple domains, and
that the implementation language plays an important role in the discovery of meaning
in source code.

We do not further discuss other related work on knowledge recovery that aims at
extracting facts about architecture or implementation. One general observation in all
the cited work is that it is hard to separate domain knowledge from implementation
knowledge.

2.10 conclusions

We have explored the limits of domain model recovery via a case study in the project
planning domain. Here are our results and conclusions.

2.10.1 Reference model

Starting with pmbok as authoritative domain reference we havemanually constructed
an actionable domain model for project planning. This model is openly available and
may be used for other reverse engineering research projects.

2.10.2 Lightweight model mapping

Before we can understand the differences between models, we have to make them
comparable by mapping them to a common model. We have created a manual
mapping method that determines for each entity if and how it maps onto the target
model. The mapping categories evolved while creating the mappings. We have used
this approach to describe six useful mappings, four to the Reference Model and two
to the User Model.
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2.10.3 What are the limits of domain model recovery?

We have formulated two research questions to get insight in the limits of domain
model recovery. Here are the answers we have found (also see Table 2.9 and remember
our earlier comments on the interpretation of the percentages given below).

sq1: Which parts of the domain are implemented by the application? Using the user
view (usr) as a representation of the part of the domain that is implemented by an
application, we have created two domain models for each of the two selected appli-
cations. These domain models represent the domain as exposed by the application.
Using our Reference Model (ref) we were able to determine which part of usr was
related to project planning. For our two cases 91% and 36% of the User Model (usr)
can be mapped to the Reference Model (ref). This means 9% and 64% of the ui is
about topics not related to the domain. From the user perspective we could determine
that the applications implement 19% and 7% of the domain.

The tight relation between the usr and the src model (100% recall) shows us that
this information is indeed explicit and recoverable from the source code. Interestingly,
some domain concepts were found in the source code that were hidden by the ui and
the documentation, since for OpenPM the recall between usr and ref was 7% where
it was 9% between src and ref.

So, the answer for sq1 is: the recovered models from source code are useful, and
only a small part of the domain is implemented by these tools (only 7-19%).

sq2: Can we recover those implemented parts from the source of the application? Yes, see
the answer to sq1. The high recall between usr and src shows that the source code
of these two applications explicitly models parts of the domain. The high precisions
(92% and 79%) also show that it was feasible to filter implementation junk manually
from these applications from the domain model.

2.10.4 Perspective

For this research we manually recovered domain models from source code to under-
stand how much valuable domain knowledge is present in source code. We have
identified several follow-up questions:

• How does the quality of extracted models grow with the size and number of
applications studied? (Table 2.12)

• How can differences and commonalities between applications in the same
domain be mined to understand the domain better?

• How does the quality of extracted models differ between different domains,
different architecture/designs, different domain engineers?

• How can the extraction of a User Model help domain model recovery in general.
Althoughwe have not formallymeasured the effort formodel extraction, we have
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noticed that extracting a User Model requires much less effort than extracting a
Source Model.

• How do our manually extracted models compare with automatically inferred
models?

• What tool support is possible for (semi-)automatic model extraction?
• How can domain models guide the design of a DSL?

Our results of manually extracting domain models are encouraging. They suggest
that when re-engineering a family of object-oriented applications to a dsl their source
code is a valuable and trustworthy source of domain knowledge, even if they only
implement a small part of the domain.
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EXPLORING THE RELATIONSHIP BETWEEN SLOC AND CC 3
Abstract

Measuring the internal quality of source code is one of the traditional goals
of making software development into an engineering discipline. Cyclomatic
Complexity (cc) is an often used source code quality metric, next to Source Lines
of Code (sloc). However, the use of the cc metric is challenged by the repeated
claim that cc is redundant with respect to sloc due to strong linear correlation.

We conducted an extensive literature study of the cc/sloc correlation results.
Next, we tested correlation on large Java (17.6 M methods) and C (6.3 M functions)
corpora. Our results show that linear correlation between sloc and cc is only
moderate as caused by increasingly high variance. We further observe that
aggregating cc and sloc as well as performing a power transform improves the
correlation.

Our conclusion is that the observed linear correlation between cc and sloc of
Java methods or C functions is not strong enough to conclude that cc is redundant
with sloc. This conclusion contradicts earlier claims from literature, but concurs
with the widely accepted practice of measuring of cc next to sloc.

3.1 introduction

In previous work [VG12] one of the authors analyzed the potential problems of using
the cc metric to indicate or even measure source code complexity per Java method.
Still, since understanding code is known to be a major factor in providing effective and
efficient software maintenance [vMV95], measuring the complexity aspect of internal
source code quality remains an elusive goal of the software engineering community.
In practice the cc metric is used on a daily basis for this purpose precisely, next to
another metric, namely sloc [BCS+12; HKV07].

There exists a large body of literature on the relation between the cc metric
and sloc. The general conclusion from experimental studies [BP84; FF79; JMF14;
SCM+79] is that there exists a strong linear correlation between these two metrics

This chapter was first published at the icsme2014 conference, and later extended to a jsep journal
publication. This chapter is the result of merging these two publications: D. Landman, A. Serebrenik,
and J. J. Vinju. “Empirical Analysis of the Relationship between CC and SLOC in a Large Corpus of Java
Methods”. In: 30th IEEE International Conference on Software Maintenance and Evolution, Victoria, BC, Canada,

September 29 - October 3, 2014. IEEE Computer Society, 2014, pp. 221–230. doi: 10.1109/ICSME.2014.44
and D. Landman, A. Serebrenik, E. Bouwers, and J. J. Vinju. “Empirical analysis of the relationship between
CC and SLOC in a large corpus of Java methods and C functions”. In: Journal of Software: Evolution and

Process 28.7 (2016), pp. 589–618. doi: 10.1002/smr.1760
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for arbitrary software systems. The results are often interpreted as an incentive to
discard the cc metric for any purpose that sloc could be used for as well, or as an
incentive to normalize the cc metric for sloc.

At the same time, the cc metric appears in every available commercial and open-
source source codemetrics tool, for example http://www.sonarqube.org/, and is used in
the daily practice of software assessment [HKV07] and fault/effort prediction [FO00].
This avid use of themetric directly contradicts the evidence of strong linear correlation.
Why go through the trouble of measuring cc?

Based on the related work on the correlation between cc and sloc we have the
following working hypothesis:

Hypothesis 1 There is strong linear (Pearson) correlation between the cc and sloc metrics

for Java methods and C functions.

We studied a C language corpus since it is most representative of the languages
analyzed in literature and we could construct a large corpus based on open-source
code. Java is an interesting case next to C as it represents a popular modern object-
oriented language, for which we could also construct a large corpus. A modern
language with a comparable but significantly more complex programming paradigm
than C, such as Java, is expected to provide a different perspective on the correlation
between sloc and cc.

Both for Java and C, our results of investigating the strong correlation between cc
and sloc are negative, challenging the external validity of the experimental results in
literature as well as their interpretation. The results of analyzing a linear correlation
are not the same for our (much larger) corpora of modern Java code that we derived
from Sourcerer [LBN+09] and C code derived from the packages of Gentoo Linux.
Similarly we observe that higher correlations can only be observed after aggregation
to the file level or when we arbitrarily remove the larger elements from the corpus.
Based on analyzing these new results we will conclude that cc cannot be discarded
based on experimental evidence of a linear correlation. We therefore support the
continued use of cc in industry next to sloc to gain insight in the internal quality of
software systems for both the C and the Java language.

The interpretation of experimental results of the past is hampered by confusing
differences in definitions of the concepts and metrics. In the following, Section 3.2,
we therefore focus on definitions and discuss the interpretation in related work of the
evidence of correlation between sloc and cc. We also identify six more hypotheses.
In Section 3.3 we explain our experimental setup. After this, in Section 3.4, we report
our results and in Section 3.5 we interpret them before concluding in Section 3.6.
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3.2 background theory

In this section we carefully describe how we interpret the cc and sloc metrics, we
identify related work, and introduce the hypotheses based on differences observed in
related work.

3.2.1 Defining sloc and cc

Although defining the actual metrics for lines of code and cyclomatic complexity used
in this chapter can be easily done, it is hard to define the concepts that they actually
measure. This lack of precisely defined dimensions is an often lamented, classical
problem in software metrics [CC94; She88]. The current chapter does not solve this
problem, but we do need to discuss it in order to position our contributions in the
context of related work.

First we define the two metrics used in this chapter.

Definition 1 (Source Lines of Code (sloc)) A line of code is any line of program text

that is not a comment or blank line, regardless of the number of statements or fragments

of statements on the line. This specifically includes all lines containing program headers,

declarations, and executable and non-executable statements [CDS86, p. 35].

Definition 2 (Cyclomatic Complexity (cc)) The cyclomatic complexity of a program
∗
is

the maximum number of linearly independent circuits in the control flow graph of said program,

where each exit point is connected with an additional edge to the entry point [McC76].

As explained by McCabe [McC76], the cc number can be computed by counting
forks in a control flow graph and adding 1, or equivalently counting the number of
language constructs used in the Abstract Syntax Tree (ast) which generate forks (“if”,
“while”, etc.) and adding 1.

This last method is the easiest and therefore preferred method of computing
cc. Unfortunately, which ast nodes generate decision points in control flow for a
specific programming language is not so clear since this depends on the intrinsic
details of programming language semantics. The unclarity leads to metric tools
generating different values for the cc metric, because they count different kinds of
ast nodes [LLL08]. Also, derived definitions of the metric exist, such as “extended
cyclomatic complexity” [Mye77] to account for a differentway of computing cyclomatic
complexity. Still, the original definition by McCabe is sufficiently general. If we
interpret it based on a control flow graph it is applicable to any programming language

∗In this context a “program” means a subroutine of code like a procedure in Pascal, function in C,
method in Java, sub-routine in Fortran, program in COBOL. From here on we use the term “subroutine” to
denote either a Java method or a C function.
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which has subroutines to encapsulate a list of imperative control flow statements.
Section 3.3 describes how we compute cc for C and Java.

Note that we include the Boolean && and || operators as conditional forks because
they have short-circuit semantics in both Java and C, rendering the execution of
their right-hand sides conditional. Still, this is not the case for all related work. For
completeness sake we therefore put the following hypothesis up for testing as well:

Hypothesis 2 The strength of linear correlation between cc and sloc of neither Java

methods nor C functions is significantly influenced by including or excluding the Boolean

operators && and ||.

Weexpect that exclusion of && and ||does notmeaningfully affect correlations between
cc and sloc, because we expect Boolean operators not to be used often enough and
not in enough quantities within a single subroutine to make a difference.

3.2.2 Literature on the correlation between cc and sloc

We have searched methodically for related work that experimentally investigates a
correlation between cc and sloc. This results, to the best of our knowledge, in the
most complete overview of published correlation figures between cc and sloc to date.
To increase our coverage we have combined a restricted form of snowballing [Woh14]
with a Systematic Literature Review (slr). We used snowballing to get an initial set
of papers to compare the strength of the slr. Using Google Scholar, we identified 15
relevant papers from both the 600 papers that cite Shepperd’s paper from 1988 [She88]
and the 200 most relevant results of the search query “empirical” for papers citing
McCabe’s original paper [McC76].

After this rough exploration of related work, we use an slr to correct for the
limitations of this approach and increase our coverage of the literature. We formulated
the pico criteria inspired by the slr guidelines of Kitchenham and Charters [KC07]:
Population Software
Intervention cc or Cyclomatic or McCabe
Comparison sloc or loc or Lines of Code
Outcomes Correlation or Regression or Linear or R2

Ideally, following the Kitchenham and Charters’ guidelines [KC07] we should have
constructed a query using the pico criteria: “Software and (cc or Cyclomatic or
McCabe) and (sloc or loc or Lines of Code) and (Correlation or Regression or
Linear or R2)”. Unfortunately, Google Scholar does not supported nested conditional
expressions. Therefore, we have used the pico criteria to create 1 × 3 × 3 × 4 � 36
different queries producing 24 K results. Since Google scholar sorts the results on
relevancy, we chose to read only the first two pages of every query, leaving 720 results.
After noise filtering and duplication removal 326 papers remained, containing 11 of the
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15 papers identified in the previous limited exploration. Together, we systematically
scanned the full-text of these papers, using the following inclusion criteria:

1. Is the publication peer-reviewed?
2. Is sloc or Lines of Code (loc) measured?
3. Is ccmeasured (possibly asweight inWeightedMethodsperClass (wmc) [CK94])?
4. Is Pearson correlation or any other statistical relation between sloc and cc

reported?
5. Are the measurements performed on method, function, class, module, or file

level (higher levels are ignored)?
Using this process we identified 18 new papers. The resulting 33 papers are summa-
rized in Table 3.1.

The slr guidelines require the inclusion and the search queries to be based on the
title, abstract and keywords. We deviated from this because for the current study we
are interested in a reported relation between sloc and cc, whether the paper focuses
on this relation or not. This required us to scan the full text of each paper which the
Kitchenham and Charter process does not cater for. Note that Google Scholar does
index the body of papers.

The result of the above process is summarized by the multi-page Table 3.1. All
levels and corpus descriptions in the table are as reported in the original papers: the
interpretation of these might have subtle differences, e.g. Module and Program in
Fortran could mean the same. Since the original data is no longer available, it is
not possible to clarify these differences. The variables mentioned in the Correlation
column are normalized as follows. If all lines in a unit (file, module, function, or
method) were counted, loc was reported. If comments and blank lines were ignored,
sloc was reported. If the line count was normalized on statements, we reported
Logical Lines of Code (lloc). We normalized R to R2 by squaring it whenever R was
originally reported.

Figure 3.1 visualizes the R2 from the related work in Table 3.1 grouped by language
and aggregation level. Most related work reports R2 higher than 0.5, and there is not
a clear upwards or downwards trend over the years. The only observable trends are
that newer work (after 2000) predominantly performed aggregation on a file level
(with the notable exception of four papers [CF07; HGH08; JMF14; MS11]) and that
while the early studies have been mostly conducted on Fortran, the most common
languages analyzed after 2000 are Java and C.

In the rest of this section we will formulate hypotheses based on observations
in the related work: different aggregation methods (Section 3.2.3), data transfor-
mations (Section 3.2.4), and the influence of outliers and other biases in the used
corpora (Section 3.2.5).
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Figure 3.1: Visualization of the R2 reported in related work (Table 3.1). The colors denote the
most common languages, and the shape the kind of aggregation; aggregation “None” means
that the correlation has been reported on the level of a subroutine. Note that for languages
such as cobol the lowest level of measurement of cc and sloc is the File level. Therefore,
these are reported as an aggregation of “None” (similar to the * indication in Table 3.1) .

3.2.3 Aggregating cc over larger units of code

cc applies to control flow graphs. As such cc is defined when applied to code
units which have a control flow graph. This has not stopped researchers and tool
vendors to sum the metric over larger units, such as classes, programs, files and even
whole systems. We think that the underlying assumption is that indicated “effort of
understanding” per subroutine would add up to indicate total effort. However, we do
not clearly understand what such sums mean when interpreted back as an attribute
of control flow graphs, since the compositions of control flow graphs that these sums
should reflect do not actually exist.

Perhaps not surprisingly, in 2013 Yu et al. [YM13] found a Pearson correlation
of nearly 1 between whole system sloc and the sum of all cc. They conclude the
evolution of either metric can represent the other. One should keep in mind, however,
that choosing the appropriate level of aggregation is vital for validity of an empirical
study: failure to do so can lead to an ecological fallacy [PFD11] (interpreting statistical
relations found in aggregated data on individual data). Similarly, the choice of an
aggregation technique can greatly affect the correlation results [MAL+13; VSvdB11a;
VSvdB11b].

Curtis and Carleton [CC94] and Shepherd [She88] were the first to state that
without a clear definition of what source code complexity is, it is to be expected that
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metrics of complexity are bound to measure (aspects of) code size. Any metric that
counts arbitrary elements of source code sentences, actually measures the code’s size
or a part of it. Both Curtis and Carleton, and Shepherd conclude that this should be
the reason for the strong correlation between sloc and cc. However, even though
cc is a size metric; it still measures a different part of the code. sloc measures all the
source code, while cc measures only a part of the statements which govern control
flow. Even if the same dimension is measured by two metrics that fact alone does
not fully explain a strong correlation between them. We recommend the work of
Abran [Abr10], for an in-depth discussion of the semantics of cc.

Table 3.1 lists which studies use which level of aggregation. Note that the method
of aggregation is sum in all but one of the papers reviewed. A possible explanation
for strong correlations could be the higher levels of aggregation. This brings us to our
third hypothesis:

Hypothesis 3 The correlation between aggregated cc for all subroutines and the total sloc

of a file is higher than the correlation between cc and sloc of individual subroutines.

If this hypothesis is true it would explain the high correlation coefficients found
in literature when aggregated over files: it would be computing the sum over
subroutines that causes it rather than the metric itself. Hypothesis 3 is nontrivial
because it depends, per file, on the size of the bodies compared to their number
what the influence of aggregation may be. This influence needs to be observed
experimentally.

A confounding factorwhen trying to investigateHypothesis 3 is the size of the code
outside of the subroutines; such as import statements and class and field declarations
in Java, and macro definitions and function headers, typedefs and structs in C. For
the sake of brevity we refer to this part of source code files as the “header”, even
though this code may be spread over the file. A large variance in header size would
negatively influence correlation on the file aggregation level which may hide the
effect of summing up the cc of the subroutines. We do not know exactly how the
size of the header is distributed in C or Java files and how this size relates to the size
of subroutines. To be able to isolate the two identified factors on correlation after
aggregation we also introduce the following hypothesis:

Hypothesis 4 The more subroutines we add up the cc for – the more this aggregated sum

correlates with aggregated sloc of these subroutines.

This hypothesis isolates the positive effect of merely summing up over the subroutines
from the negative effect of having headers of various sizes. Hypothesis 4 is nontrivial
for the same reasons as Hypothesis 3 is nontrivial.
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3.2.4 Data Transformations

Hypothesis 1 is motivated by the earlier results from the literature in Table 3.1. Some
newer results of strong correlation are only acquired after a log transform on both
variables [FF79; HGR07; HH10; JHS+09]: indeed, log transform can help to normalize
distributions that have a positive skew [She07] (which is the case both for sloc and
for cc) and it also compensates for the “distorting” effects of the few but enormous
elements in the long tail. A strong correlation which is acquired after log transform
does not directly warrant dismissal of one of the metrics, since any minor inaccuracy
of the linear regression is amplified by the reverse log transform back to the original
data. Nevertheless, the following hypothesis is here to confirm or deny results from
literature:

Hypothesis 5 After a log transform on both the sloc and cc metrics, the Pearson correlation

is higher than the Pearson correlation on the untransformed data.

We note that the literature suggests that the R2 values for transformed and untrans-
formed data are not comparable [Kvå85; Loe90]. However, we do not attempt to find
the best model for the relation between cc and sloc, rather to understand the impact
of log transformation as used by previous work on the reported R2 values.

3.2.5 Corpus Bias

The aforementioned log transform is motivated in literature after observing skewed
long tail distributions of sloc and cc [HGR07; HH10; JHS+09; TT95]. On the one
hand, this puts all related work on smaller data sets which do not interpret the
shape of the distributions in a different light. How to interpret these older results?
Such distributions make relatively “uninteresting” smaller subroutines dominate any
further statistical observations. On the other hand, our current work is based on two
large corpora (see Section 3.3). Although this is motivated from the perspective of
being as representative as possible for real world code, the size of the corpus itself
does emphasize the effects of really big elements in the long tail (the more we look,
the more we find) as well as strengthens the skew of the distribution towards the
smaller elements (we will find disproportionate amounts of new smallest elements).
Therefore we should investigate the effect of different parts of the corpus, ignoring
either elements in the tail or ignoring data near the head:

Hypothesis 6 The strength of the linear correlation between sloc and cc is improved by

ignoring the smallest subroutines (as measured by sloc).

Hypothesis 7 The strength of the linear correlation between sloc and cc is improved by

ignoring the largest subroutines (as measured by sloc).
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Hypothesis 6 was also inspired by Herraiz and Hassan’s observation of an increasing
correlation for the higher ranges of sloc [HH10]. One could argue that the smallest
of subroutines are relatively uninteresting, and a correlation which only holds for the
more nontrivial subroutines would be satisfactory as well.

Hypothesis 7 investigates the effect of focusing on the smaller elements of the data,
ignoring (parts of) the tail. Inspired by related work [HS90; HGR07; vdMR07] that
assumes that these larger subroutines can be interpreted as “outliers”. It is important
for the human interpretation of Hypothesis 1 to find out what their influence is.
Although there are not that many tail elements, a linear model which ignores them
could still have value.

3.3 experimental setup

In this section we discuss how the study has been set up. To perform empirical evalua-
tion of the relation between sloc and cc for subroutines we needed a large corpus of
such subroutines. To construct such a corpus we have processed Sourcerer [LBN+09] ,
a collection of 19 K open source Java projects (Section 3.3.1) and Gentoo†, a full Linux
distribution containing 9.6 K C packages (Section 3.3.2). Then sloc and cc have
been computed for each method or function (subroutine) in the corpus (Sections 3.3.3
and 3.3.4). Finally, we performed statistical analysis of the data (Section 3.3.5).

3.3.1 Preparing the Java Corpus

Sourcerer [LBN+09] is a large corpus of open source Java software. It was constructed
by fully downloading the source code of 19 K projects, of which 6 K turned out to be
empty. The following process was used to construct our Java corpus based on these
projects.
Remove non-Java files While Sourcerer contains a full copy of each project’s Source

CodeManagement (scm), because of our focus on Java, we excluded all non-Java
files.

Remove scm branches When Sourcerer was compiled the whole scm history was
cloned. In particular, this means that multiple versions of the same system
are present. However, inclusion of multiple similar versions of the same
method would bias statistical analysis. Therefore, we removed all directories
named /tags/, /branches/, and /nightly/ which are commonly used to indicate
snapshot copies of source trees or temporarily forked development.

Remove duplicate projects Sourcerer projects have been collected from multiple
sources including Apache, Java.net, Google Code and SourceForge. Based
on Sourcerer’s meta-data we detected 172 projects which were extracted from

†https://www.gentoo.org/
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multiple sources – e.g., from both SourceForge and Google Code. Similarly to
removal of scm branches we have kept only one version of each project, in this
case we chose the largest version in bytes.

Manually reviewed duplicate files We calculated the md5 hash per file. The 278
projects containing more than 300 duplicate files (equal hash) were manually
reviewed and fixed in case the duplication could be explained. Common reasons
were non-standard scm structure (different labels for tags and branches) and
the code of third-party libraries.

Remove out-of-scope code Finally, we have decided to remove code which is either
external to the studied project, or is test code. It is a priori not clear whether
test code exhibits the same relation between sloc and cc as non-test code.
We removed all directories matching the following case-insensitive regular
expression: /[/\-]tests?\/|\/examples?\/|(third|3rd)[\-\_]?party/.

Performing these stepswe have reduced the 390 GB corpus to 14.30 GB containing 13 K
projects over 2 M files. The resulting corpus has beenmade publicly available [Lan15a].

3.3.2 Preparing the C Corpus

We are not aware of a C corpus of size, age, and spread of domains comparable to
Sourcerer. Therefore we have constructed a new corpus based on Gentoo’s Portage
packages‡. We have chosen Gentoo because its packages cover a wide range of
domains. Compared to other Linux distributions, Gentoo distributes the source code
instead of pre-compiled binaries, enabling our analysis.

On October 14, 2014 the repository contained 65 K packages. The extensions of
40 K packages indicated an archive (for example tar.gz). The following process was
used to construct our C corpus based on these packages.
Remove non-code packages We filtered debug-symbols, patch-collections, transla-

tions, binary-installers, data-packages, binary packages, auxiliary files, and
texlive modules.

Remove multiple versions The Portage repository of Gentoo contains multiple ver-
sions of packages. We kept only the newest version of every package. Note
that Portage does come with meta-data – “ebuild” – to collect the latest Gentoo
packages, selecting a sub-set of the entire repository. We refrained from using
this meta-data, because it is based on design decisions which would introduce a
selection bias (like hardening for security and library compatibility).

Extract packages The remaining 20 K packages were unpacked, resulting in 8 M files.
Detect C code C and C++ code share file extensions. Both .c and .h can contain C or

C++ code.
‡https://packages.gentoo.org/
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Using heuristics inspired by GitHub’s linguist [Pee+15], we developed a tool to
detect if a file contained either C or C++ code. The heuristics uses syntactical
differences to detect C++ and differences between the often included standard
library header files for C and C++.
Of the 1.35 M files with C extensions, 1.02 M contained C code, and 0.33 M
contained C++. We removed all the files with C++ code.

Remove out-of-scope code Similarly to the preparation of our Java corpus, we have
chosen to remove code which is not part of the application or library studied.
We have used the exact same filter, removing the folders: tests, examples, and
third-party.

Detect duplicates Similarly to the preparation of our Java corpus, we calculated
the md5 hash of all the files. The 223 packages containing more than 300
duplicate files were manually reviewed and fixed in case the duplication could
be explained. Common reasons were failures in detecting multiple versions (90
packages), forks, and included third-party libraries.

Keep only related files For the packages still containing C files, we also kept all files
related to the possible compilation of the library. All other files were removed.

Performing these steps resulted in a corpus of 19 GB containing 9.8 K packages
with 13 GB of C code in 798 K files. The corpus is publicly available [Lan15b].

3.3.3 Measuring Java’s sloc and cc

While numerous tools are available tomeasure sloc and cc on a file level§, to perform
our study we require to calculate sloc and cc per method and to precisely control
the definition of both metrics. We use the M3 framework [BHK+15], which is based
on the Eclipse Java Development Tools (jdt)¶, to parse the full Java source code and
identify the methods in the corpus. This also generates full asts for each method for
further analysis. Listing 3.1 depicts the source code of computing the cc from the
ast of a method. The code recursively traverses the ast and matches the enumerated
nodes, adding 1 for each node that would generate a fork in the Java control flow
graph.

For sloc we decided not to depend on the information in the Eclipse asts (asts
are not designed for precisely recording the lexical syntax of source code). Instead we
use the asts only to locate the source code of each separate method. To compute its
sloc we defined a grammar in Rascal [KvdSV09] to tokenize Java input into newlines,
whitespace, comments and other words. The parser produces a list of these tokens
which we filter to find the lines of code that contain anything else but whitespace or

§e.g., http://cloc.sourceforge.net/, http://www.sonarqube.org/
¶http://www.eclipse.org/jdt
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Listing 3.1: Rascal source code to calculate the cc of a given method. The visit statement is a
combination of a regular switch and the visitor pattern. The cases pattern match on elements
of the ast.

1 int calcCC(Statement impl) {
2 int result = 1;
3 visit (impl) {
4 case \if(_,_) : result += 1;
5 case \if(_,_,_) : result += 1;
6 case \case(_) : result += 1;
7 case \do(_,_) : result += 1;
8 case \while(_,_) : result += 1;
9 case \for(_,_,_) : result += 1;
10 case \for(_,_,_,_) : result += 1;
11 case foreach(_,_,_) : result += 1;
12 case \catch(_,_): result += 1;
13 case \conditional(_,_,_): result += 1;
14 case infix(_,"&&",_) : result += 1;
15 case infix(_,"||",_) : result += 1;
16 }
17 return result;
18 }

comments. We tested and compared our sloc metric with other tools measuring full
Java files to validate its correctness.

To be able to compare sloc of only the subroutines compared to sloc of the entire
file we store the sloc of each Java method body separately (see Hypothesis 4). For
Java, files without method bodies, such as interface definitions, were ignored. Out of
the 2 M files, 306 K were ignored since they did not contain any method bodies.

3.3.4 Measuring C’s sloc and cc

To perform our analysis on the C code we use the Software Analysis Toolkit (sat)
of the Software Improvement Group‖ (sig). This proprietary toolkit uses a robust
analysis approach, processes over a billion sloc per year and forms the basis of the
consultancy services of sig. As part of these services the measurements performed
by the toolkit are continuously validated, both by the internal development team as
well as externally by the development teams of clients and third-party suppliers.

Themeasurementprocess of the sat consists roughlyof fourphases: preprocessing,
tokenization, scope creation, and measurements. In the first phase, preprocessor
directives are removed from the source-code. This step is required to solve issues
such as illustrated in Listing 3.2 where only one unit-declaration ends up in the final
binary depending on whether debug is defined. When both parts are kept two unit

‖http://www.sig.eu
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Listing 3.2: C code example with conditional pre-processor directives.
1 #ifdef debug
2 void get_string(char prefix) {
3 #else
4 void get_string() {
5 #endif
6 }

headers, but only a single close-bracket would be used as input to the next phase. To
prevent problems in the scope creation phase, i.e. not being able to find the correct
units, only the first code blocks of conditional preprocessor directives are kept. I.e, in
the code in Listing 3.2 only the second and sixth line is passed on to the next phase.

This pragmatic approach is used because running the preprocessor is prone to
errors and labour intensive due to projects relaying on specific tools and versions.
Moreover, choosing a representative set of system constants is often not possible and
adds unnecessary complexity to the assessment process. Processing all sources in
the same way reduces overhead and makes the measurement step more objective.
In our experience, choosing the first preprocessor block captures most of the code
and provides reliable results in assessments where the results are validated with the
development teams. Since this validation step is not possible in this experiment all
files which after processing contain unbalanced curly braces are removed from the
corpus.

In the second phase the code is tokenized using an internally developed tokenizer.
The resulting list of tokens is used in the scope creation phase to extract a scope tree
containing subroutines, modules, and packages (depending on the language). For C,
the token list is inspected for patterns representing the headers of subroutines (for
example the second line in the code above) and the body blocks (the brackets on line
two and six). These scope blocks are then put into an internal graph structure.

To perform the actual measurements all nodes representing subroutines are
processed by a visitor which works on the list of tokens associated with the node.
Similar to the approach for Java, sloc is measured by identifying all lines within a
function which contain anything else than comments or whitespace. To calculate the
cc all tokens representing the keywords case, if, for and while and the operators
||, && and ? are counted. Note that since we match on tokens instead of ast nodes
the while token also captures any do...while statements, making this implementation
equal to the one defined for Java – Listing 3.1.

C code is split over .c and .h files. Herraiz and Hassan [HH10] ignored all headers
files (.h), but we did include them. The reason is that for C, although it is a less
common idiom, putting functions in a header file is possible. Our C corpus contains
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333 K header files. We chose to ignore all .c and .h files without any function bodies
(similar to Java interfaces). This results in removing 310 K .h and 23 K .c files.

3.3.5 Visualization & Statistics Methods

Beforediscussing the results (Section 3.4), wewill first discuss the chosenvisualizations
and statistical methods.

Distributions

Before comparing sloc and cc, we describe the distributions in our data using
histograms and descriptive statistics (median, mean, min and max). The shape of
distributions does have an impact on the correlation measures used, as explained
above. All results (Section 3.4) should be interpreted with these distributions in mind.

Hexagonal Scatter plots

Scatter plots with sloc on the x-axis and cc on the y-axis represent the data in a raw
form. Due to the long tail distributions of both cc and sloc, the data is concentrated
in the lower left quadrant of the plots and many of the dots are placed on top of
each other. Therefore, we also use log-log scatter plots. We use hexagonal scatter
plots [CLN+87] to address overplotting and Type I errors (false positives). The latter
method divides the two-dimensional plane of the plot area in 50 times 50 hexagons.
It then counts how many of the data points fall into each individual hexagon and
uses a logarithmic 255-step gray scale gradient to color it. Compared to vanilla scatter
plots the hexagonal plots are a lot less confusing; the main problem is that a limited
resolution on paper can create artifacts such as big black blobs of ink where in fact
the raw data does not feature maximum density at all (i.e. overplotting causing Type I
errors). Nevertheless, it should be noted that the gradient as well as human perception
have a limited resolution and as such hexagonal plots can still hide the full impact of
the skewness of the distributions and the variance in the data.

Correlation

Most related work, if reported, uses Pearson product-moment correlation coeffi-
cient [Pea95] (hereafter Pearson correlation), measuring the degree of linear relation-
ship between two variables. The square of Pearson correlation is called the coefficient
of determination (R2). R2 estimates the variance in the power of one variable to
predict the other using a simple linear regression. Hereafter we report the R2 to
describe a correlation.

Many researchers have observed that the distributions of sloc (and cc) are
right-skewed. While opinions differ on robustness of the Pearson correlation against
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normality violations [EN84; She07], a number of earlier studies attempt to compensate
for the skewness of the distribution by applying a log transform and then compute
the Pearson correlation [FF79; HGR07; JHS+09]. The important matter of interpreting
the results after a log transform back to the original data is discussed in Section 3.5.

Other researchers have transformed the data using more advanced methods in
order to improve the chances for linear correlation. For example, using Box-Cox
transformation [HH10] or performing the RepeatedMedian Regression (rmr) method
on a random sample [JHS+09]. Box-Cox is a power transform similar to the basic log
transform. We have chosen to stick with the simpler method, following the rest of the
related work which we are trying to reproduce (Hypothesis 5).

The next method, rmr, may be useful to find some linear model, but it entails a
lossy transformation. The median regression method reduces the effect of random
measurement errors in the data by computing a running median. We do not have
random errors in the cc or sloc measurements, so a running median would hide
interesting data. Therefore, rmr is outside the scope of this chapter.

If no linear correlation is to be expected, or is found using Pearson’smethod, we use
Spearman’s rank-order correlation coefficient [Spe04] (hereafter Spearman correlation
or ρ). Similarly to the Pearson correlation, Spearman’s correlation is a bivariate
measure of correlation/association between two variables. However, opposed to
the Pearson correlation, Spearman’s correlation is employed with rank-order data,
measuring the degree of monotone relationship between two variables. We apply
this method only for completeness sake, since it does not generate a predictive model
which we could use to discard one of the metrics.

Regression

The square of Pearson’s correlation coefficient is the same as the R2 in simple linear
regression. Hence, if we would find a strong correlation coefficient we would be able
to construct a good predictive linear model between the two variables, and one of the
metrics would be obsolete. It is therefore important to experimentally validate the
reported high correlation coefficients in literature (see Table 3.1). In general for other
correlation measures (such as Spearman’s method) this relation between regression
and correlation is not immediate. In particular, a strong Pearson correlation coefficient
after a log transform does not give rise to an accurate linear regression model of the
original data. We discuss this in more detail later when interpreting the results in
Section 3.5.

3.4 results

In this section we report the results of our experiments and the statistics we applied
to it. We postpone discussion of these results until Section 3.5.
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Figure 3.2: Distribution of the non-empty projects/packages over their total sloc. sloc is on a
log10 scale, bin width is 0.05.

Table 3.2: Statistics of the total sloc per project in the corpus.

Corpus Min. 25% Median Mean 75% Max.

Java 0 1009 3219 15 270 10 250 2 207 000
C 1 671 3036 21 200 12 430 3 333 000

3.4.1 Distributions for Java and C

Figure 3.2 shows the histogram of sloc per project and Table 3.2 describes this
distribution. The Java corpus contains 17.6 M methods spread out over 1.7 M files and
the C corpus has 5.8 M functions spread over 760 K files. The C corpus seems to have
a disproportional number of packages with a low sloc, even on the logarithmic scale.
After randomly inspecting a number of packages in the range between 1 and 20 files
we concluded that next to naturally small packages these are C files which are part
of larger packages written in other languages such as Java, Python or Perl. Lacking
any argument to dismiss these files, we assume them to be just as representative of
arbitrary C code as the rest.

Figure 3.3 shows the distribution of sloc per Java method and C function.
Table 3.3 describes their distributions. We observe skewed distributions with a long
tail. To measure the degree of skewness we calculate the moment coefficient of
skewness [JG98], i.e. the third standardized moment of the probability distribution.
A positive value indicates that the right-hand tail is longer or fatter than the left-hand
one. A negative value indicates the reverse. A value close to zero suggest a symmetric

68 chapter 3 exploring the relationship between sloc and cc



Table 3.3: Descriptive statistics of the sloc and cc per Java method and C function.

Corpus Variable Min. 25% Median Mean 75% Max.

Java sloc 1 3 3 9.38 9 33 850
cc 1 1 1 2.33 2 4377

C sloc 1 6 12 26.49 27 44 880
cc 1 1 3 5.97 6 18 320
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Figure 3.3: Histogram of the sloc per subroutine in both corpora, in log-log space (bin width is
0.1). Here we see that for both Java and C, small methods and functions are the most common.
The bar around 1000 for Java and 3000 for C are two cases where a project contained multiple
files of generated code that slightly differed per file. See Figure 3.5 to compare the distribution.
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Figure 3.4: Histogram of the cc per subroutine in both corpora, in log-log space (bin width is
0.1). Here we see that for both Java and C, methods and functions with little control flow are
the most common. See Figure 3.5 to compare the distribution.
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Figure 3.5: Relative frequency polygons for both corpora and both variables. The variables are
displayed on a logarithmic scale. Relative frequency polygons are histograms normalized by
the amount of data points, the area under the curve is 1. They visualize the relative difference
between distributions.

distribution. For our corpora the moment coefficient of skewness equals 234.75 for
sloc in Java and 107.28 for sloc in C. After the log transform it equals 1.05 for Java
and 0.40 for C.

This means that themean values are not at all representative for the untransformed
corpora, and that the smallest subroutines dominate the data. For Java, 8.8 M of
the methods have 3 sloc or fewer. This is 50% of all data points. There are 1.2 M
methods with 1 or 2 sloc, these are the methods with an empty body, in two different
formatting styles or (generated) methods without newlines. The other 7.6 M methods
of 3 SLOC contain the basic getters, setters, and throwers pattern frequently seen in
Java methods – often called one-liners. For C, this is less extreme, only 12% of the
functions have a sloc of 3 or less. The corpora differ in the strength of the skewness
here: the C corpus has proportionally fewer of the smallest subroutines than the Java
corpus has. Nevertheless both plots have their mode at 3 sloc.

Figure 3.4 shows the distribution of cc per Java method and C function. For the
Java corpus, 15.2 M methods have a cc of 3 or less. This is 86% of all data points.
There are 11.6 M methods without any forks in the control flow (1 CC), i.e. 65%. This
observation is comparable with the 64% reported by Grechanik et al. for 2 K randomly
chosen Java projects from SourceForge [GMD+10]. We observe that the lion’s share
of Java methods are below the common cc thresholds of 10 (97.00%) [McC76] or 15
(98.60%) [MK93]. The C corpus shows a comparable picture, but again with a more
even distribution which puts less emphasis on the smallest subroutines. For C the
median is at 3 while for Java it was 1. Still 33% of the C subroutines have a cc of 1
(straight line code). We do see that both corpora have their mode of cc at 1. For C
85.60% functions are below the common cc threshold of 10 and 91.70% below 15.
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Comparing the shape of Java’s andC’s distributions is complicated by the difference
in corpus size. To visualize the difference in the distribution, we have used relative
frequency polygons (Figure 3.5). These relative frequency polygons are normalized by
the size of the corpus and thus the area under the curve is 1. This more clearly shows
the difference in distribution between Java and C; for Java there are relatively more
methods with a small sloc and cc than C functions. The shape of the distributions
is a controversial matter which we consider outside the scope of this article.

3.4.2 Scatter plots

Figure 3.6 shows two zoomed in (CC ≤ 500 and SLOC ≤ 1800) hexagonal scatter-plots
of the subroutines in our corpus. Due to the skewed-data, this figure still shows 99.98%
of all data points. Figure 3.7 shows the same hexagonal scatter-plots in a log-log
space, allowing to showmore data. The two black lines in both figures show the linear
regressions before and after the log transform which will be discussed in Section 3.4.3.
The logarithmic grayscale gradient of the points in the scatter-plot visualizes how
many subroutines have that combination of cc and sloc: the darker, the more data
points. Figure 3.8 shows an even more zoomed in range of the scatter-plots, in these
box plots we can more clearly see the variance of cc increasing as sloc increases.
Moreover the median is increasing, but so is the inter-quartile range. We have not
created these plots for the full range of the data since these plots do not scale.

Figures 3.6 and 3.7 show a widely scattered and noisy field, with a high concentra-
tion of points in the left corner. The outline of these concentrations might hint at a
positive (linear) monotone relation. However, the same outline is bounded by the
minimum cc number (1) and the expected maximum cc number (cc is usually not
higher than sloc given a source code layout of one conditional statement on a single
line).

We do find some points above the expected maximum cc, which we found out to
be generated code and code with dozens of Boolean operators on one single line.

3.4.3 Pearson correlation

In Table 3.4, the first row shows the Pearson correlation over the whole corpus. The
R2 of sloc and cc is 0.40 for Java and 0.43 for C. Figures 3.6(a) and 3.6(b) respectively
depicts these linear fits, cc � 0.92+ 0.15 · sloc and cc � 1.73+ 0.16 · sloc, as a solid
black line. These R2 are much lower than the related work in Table 3.1, even if we
focus on the related work at the subroutine/function/method level.

The Pearson correlation after a log transform showed higher numbers, which
are more in line with related work that also applies a log transform [FF79; HGR07;
HH10; JHS+09]. The fit for Java, the dashed line in Figures 3.6(a) and 3.7(a), is
log10(cc) � −0.28 + 0.65 · log10(sloc) ⇔ cc � 10−0.28 · sloc0.65. The fit for C
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Figure 3.6: Scatter plots of sloc vs cc zoomed in on the bottom left quadrant. The solid and
dashed lines are the linear regression before and after the log transform. The grayscale gradient
of the hexagons is logarithmic.
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Figure 3.7: Scatter plots of sloc vs cc on a log-log scale. The solid and dashed lines are the
linear regression before and after the log transform. The grayscale gradient of the hexagons is
logarithmic.
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Figure 3.8: Box plots of cc per sloc on the lower range, illustrating the wide spread of Fig-
ure 3.7(a) and Figure 3.7(b). Themedian is the black line in the box, bottom and top of the box are
the first and third quartile, the hinges are at the traditional 1.57 ∗ inter-quartile range [CWT83].

(Figures 3.6(b) and 3.7(b)) is cc � 10−0.41 · sloc0.79. More on the interpretation of this
transform and the results is discussed in Section 3.5.

As discussed earlier, the data is skewed towards small subroutines and simple
control flow graphs. Since 50% of Java’s method and 12% of C’s functions have a
sloc between 1 and 3, these points have a high influence on the correlation. We could
argue that the relation – between sloc and cc – for these smaller subroutines are
less interesting. Therefore, to test Hypothesis 6, Table 3.4 also shows the Pearson
correlations for parts of the tail of the sloc variable∗∗. Each row shows a different
percentage of the tail of the data, and the minimum sloc for that part.

∗∗Normal quantiles do not make sense for this data since the first few buckets would hold most of the
data points for only a few of the cc and sloc values (e.g. 1–4)

74 chapter 3 exploring the relationship between sloc and cc



Table 3.4: Correlations for part of the tail of the independent variable sloc. All correlations
have a high significance level (p ≤ 1 × 10−16).

(a) Java methods

Min. sloc Coverage R2 log R2 ρ Methods

1 100% 0.40 0.68 0.80 17 633 256
3 50% 0.37 0.58 0.74 8 816 628
5 40% 0.36 0.50 0.67 7 053 303
9 25% 0.34 0.38 0.60 4 408 314

11 20% 0.33 0.33 0.57 3 526 652
20 10% 0.30 0.20 0.50 1 763 326
77 1% 0.21 0.03 0.33 176 333

230 0.100% 0.14 0.00 0.21 17 634
688 0.010% 0.08 0.00 0.17 1764

(b) C functions

Min. sloc Coverage R2 log R2 ρ Functions

1 100% 0.43 0.70 0.83 5 810 834
12 50% 0.41 0.52 0.70 2 905 417
16 40% 0.40 0.47 0.68 2 324 334
27 25% 0.38 0.37 0.63 1 452 709
33 20% 0.38 0.33 0.61 1 162 167
56 10% 0.35 0.22 0.55 581 084

220 1% 0.28 0.05 0.38 58 109
714 0.100% 0.20 0.01 0.28 5811

2695 0.010% 0.13 0.00 0.04 582

Perhaps surprisingly the higher the minimum sloc – Table 3.4 – the worse the
correlation. This directly contradicts results from Herraiz and Hassan [HH10], who
reported improving correlations for higher regions of sloc. However, Jbara et al.
[JMF14] also reported decreasing correlations, except that they looked at higher cc
instead of sloc.

In three paperswe cited earlier [HS90; HGR07; vdMR07] the largest subroutines are
removed from the data before calculating correlation strength, as opposed to removing
the smallest subroutines (see above). To be able to compare we report in Table 3.5
the effect of removing different percentages of the tail (related to Hypothesis 7). We
mention the maximum sloc which is still included in each sub-set.

We further explore removing both the smallest and the largest subroutines. We
observed that for a fixed maximum sloc, increasing the minimum sloc results in
lower R2 (similarly to Table 3.4). We further observe that for a fixed minimum sloc,
increasing the maximum sloc results in the increase of R2 followed by the decrease
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Table 3.5: Correlations for part tail of the independent variable sloc removed. All correlations
have a high significance level (p ≤ 1 × 10−16).

(a) Java methods

Max. sloc Coverage R2 log R2 ρ Methods

33 851 100% 0.40 0.68 0.80 17 633 256
934 99.995% 0.53 0.68 0.80 17 632 374
688 99.990% 0.54 0.68 0.80 17 631 492
230 99.900% 0.59 0.68 0.80 17 615 622
77 99% 0.59 0.67 0.79 17 456 923
20 90% 0.51 0.55 0.74 15 869 930
11 80% 0.43 0.41 0.66 14 106 604
9 75% 0.37 0.32 0.60 13 224 942
5 60% 0.07 0.04 0.28 10 579 953
3 50% 0.00 0.00 0.02 8 816 628

(b) C functions

Max. sloc Coverage R2 log R2 ρ Functions

44 881 100% 0.43 0.70 0.83 5 810 834
3825 99.995% 0.62 0.70 0.83 5 810 543
2693 99.990% 0.62 0.70 0.83 5 810 252
714 99.900% 0.66 0.70 0.83 5 805 023
220 99% 0.66 0.69 0.83 5 752 725
56 90% 0.56 0.61 0.79 5 229 750
33 80% 0.47 0.53 0.75 4 648 667
27 75% 0.43 0.49 0.73 4 358 125
16 60% 0.33 0.37 0.65 3 486 500
12 50% 0.26 0.28 0.58 2 905 417

(similarly to Table 3.5). Finally we observe that the optimal R2 values are obtained
when no small subroutines are eliminated and the maximum sloc is 130 for Java
(R2 � 0.60) and 430 for C (R2 � 0.67). While the optimal R2 values seem to be quite
close, the maximum sloc for C exceeds the maximum sloc for Java by more than
three times. This factor is reminiscent of the apparent ratios between 1st quartile,
median, mean, and 3rd quartile of the Java and C corpora in Table 3.3.

As we will discuss in Section 3.5, the increasing variance in both dimensions
causes the largest subroutines have a large effect on linear correlation strength. To
dig further we did read the code of a number of elements in these long tails (selected
using a random number generator). For Java we read ten methods out of 1762 with
sloc > 688 and for C we also read ten functions out of the 582 with sloc > 2695. We
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Figure 3.9: Residual plot of the linear regressions after the log transform, both axis are on a log
scale. The grayscale gradient of the hexagons is logarithmic.

observed that five out of these ten methods in Java were clearly generated code and
four out of the ten sampled C functions as well.

We further analyze the strength of the linear correlation after log transform
(Hypothesis 5). Figure 3.9 shows the residual plot of the dashed line shown in the
scatter-plots. A residual plot displays the difference between the prediction and
the actual data. For a good model, the error should contain no pattern, and have a
random distribution around the zero-line. Here we clearly see the variance in cc
increasing as sloc increases. This further supports results from Table 3.4, where the
prediction error for cc grows with higher sloc.

This increasing variance we observed is a form of heteroscedasticity. Heteroscedas-
ticity refers to the non-constant variance of the relation between two variables. The
Breusch-Pagan test [BP79] confirmed (p < 2.20 × 10−16) that the relation between
cc and sloc is indeed heteroscedastic for both Java and C. Heteroscedasticity may
bias estimated standard errors for the regression parameters [BP79] making the
interpretation of the linear regression potentially error-prone.

3.4.4 Alternative explanations

This subsection will explorer alternative explanations to further understand the
impact of different choices made by related work (Section 3.2.2).

cc variant

As discussed in Section 3.2.1, there is confusion onwhich ast nodes should be counted
for cc. To understand the effect of this confusion on the correlation, we have also
calculated the cc without counting the && and || Boolean operators. The cc changed
for 1.3 M of the 17.6 M Java methods, of with the cc of 74.2 K methods changed by
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more than 50%. For C, 1.5 M of the 5.8 M functions had a different cc, of which the cc
of 73.3 K functions changed by more than 50%. However, this change has negligible
effect on correlation. For Java, the R2 changed from 0.40 to 0.41 and for C it stayed at
0.43. Similarly small effects were observed for other ranges of Table 3.4 and 3.5.

Aggregation

To investigate Hypothesis 3 we have also aggregated cc and sloc on file level. This
A/B experiment isolates the factor of aggregation. In Table 3.6 the “None” rows
repeat the R2 before aggregation for Java and C (cf. the first rows in Tables 3.5). The
“File” rows show the R2 for the aggregated cc and sloc before and after the log
transform.

Figure 3.10 shows the hexagonal scatter plots for the aggregation on file level. The
two black lines show the linear regression before and after the log transform. The
dashed line is the regression after log transform. It can be observed that for larger
files these regressions do not seem to fit the data, i.e. smaller files dominate the fitting
of the regression line.

Since the previous experiment includes the confounding factor of header size,
we now report on another A/B test to investigate Hypothesis 4. We aggregate the
subroutine values of cc and sloc on file level. The “∑Method” and “∑ Function”
rows in Table 3.6 indicate the increase of R2 both for Java and C.

In Section 3.4.3 we showed how the non-constant variance (heteroscedasticity)
causes the largest subroutines to have a large impact on the correlations. To investigate
the difference between file level (Hypothesis 3) and subroutine level (Hypothesis 4)
aggregation we also report the effect of removing the largest files on the correlations.
Removing the 5%�� largest files from Java (848 files) and C (231 files) – similarly to
Section 3.4.3 – improves R2 to 0.83 (from 0.64) for Java and 0.64 for C (from 0.39).

Digging further to see what kind of code could have such an large impact, we used
a random number generator to sample ten large files for both corpora (sloc > 3601
for Java and sloc > 19934 for C). We then manually inspected the source code in
these files. Five out of ten files were clearly generated code in the Java selection and
nine out of ten in the C selection. Two of these generated C files, were the result of a
process called “amalgamation” where the developer includes all hand-written code of
a library project into a single file to help C compiler optimization or ease deployment.

3.4.5 Spearman correlation

Although our main hypothesis is about linear Pearson correlation, we can compute
Spearman’s correlation to find out if there is a monotone relation. The results are also
in Table 3.4 and Table 3.5, showing reasonably high ρ values, but decreasing rapidly
when we move out of the lower ranges that the distribution skews towards.
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Table 3.6: Correlations (before and after a log transform) between the aggregated sloc and cc
metrics on a file level (Hypothesis 3) and after summing only the bodies of the subroutines
(Hypothesis 4). The first row per language are a copy of the first rows in Tables 3.5.

Language Aggregation R2 log R2

Java
None 0.40 0.68
File 0.64 0.87∑Method 0.73 0.90

C
None 0.44 0.71
File 0.39 0.84∑ Function 0.70 0.90
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Figure 3.10: Scatter plots of sloc vs cc for Java and C files. The solid and dashed lines are the
linear regression before and after the log transform. The grayscale gradient of the hexagons is
logarithmic.

This indicates that for the bulk of the data it is indeed true that a new conditional
leads to a new line of code; an unsurprising and much less profound observation
than the acceptance or rejection of Hypothesis 1. However, it is still interesting to
observe the decline of the Spearman correlation for higher sloc which reflects the
fact that many different combinations of sloc and cc are being exercised in the larger
methods of the corpus.

3.5 discussion

Here we interpret the results from Section 3.4. Note that we only have results
for Java and C and we sometimes compare these informally to results on different
programming languages summarized in Table 3.1.
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3.5.1 Hypothesis 1 – Strong Pearson correlation

Compared to R2 between 0.51 and 0.96 [CSM79; FF79; GBB90; JMF14; KS97; LH89;
LV89; ONe93; WHH79] summarized in Table 3.1, our R2 of 0.40 and 0.43 are relatively
low. This is reason enough to reject the hypothesis: for Java methods and C functions
there is no evidence of a strong linear correlation between sloc and cc in these
large corpora, suggesting that – at least for Java and C – cc measures a different
aspect of source code than sloc, or that other confounding factors are generating
enough noise to miss the relation. Here we focus on related work with the same
aggregation level and without log transforms. We conclude that these results, for
different programming languages and smaller corpora, do not generalize to our
corpora. For higher aggregation levels see our discussion of Hypothesis 3 below.

The cause of the low R2 in our data seems to be the high variance of cc over the
whole range of sloc. We observe especially that the variance seems to increase when
sloc increases: the density of control flow statements for larger subroutines is not a
constant. This heteroscedasticity is confirmed by the Breusch-Pagan test. Of course
the shape of the distribution influences the results as well, which we investigate while
answering Hypothesis 5.

Hypothesis 1: There is no evidence for strong linear correlation between cc and
sloc. Lower R2 values can be attributed to high variance of cc for the whole
range of sloc.

3.5.2 Hypothesis 2 – No effect of Boolean operators

The results show that the corpora did not contain significant use of the short-circuit
Boolean operators. At least there is not enough support to change the conclusion of
Hypothesis 1. We can therefore not reject Hypothesis 2.

Nevertheless, the cc of 8% Java methods and 23% C functions that do use Boolean
operators are influenced. It is interesting to note that these subroutines sometimes
had very long lines. These subroutines would be missed when counting only sloc or
when ignoring the operators for cc.

What we conclude is that the difference between related work and our results
cannot be explained by a different version of cc, since changing it does not affect the
correlation. Our recommendation is that for Java and C, the cc computation should
include the && and || Boolean operators, since they do measure a part of the control
flow graph as discussed in Section 3.2.

Hypothesis 2: Lack of correlation can not be explained by including or excluding
boolean operators in the calculation of cc.
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3.5.3 Hypothesis 3 and 4 – Effect of aggregation (sum)

Related work [BP84; BKS+09; EBG+01; FO00; GK91; GKM+00; HS90; HGR07; HH10;
JHS+09; KP87; LC87; MHL+10; MS11; MPY+05; Pai80; Sch06; SCM+79; SBV01; STU+81;
TAA14; vdMR07] reported high correlations between cc and sloc on a larger than
methods/functions/subroutines level. For Java we found similar high correlation
after aggregating cc and sloc on a file level, however not for C. After removing the
largest 5%�� files for C, we also do not find better correlations. Hypothesis 3 can
therefore not be rejected for Java, but it is rejected for the C corpus. Hence, for the
Java corpus we may conclude that a high R2 is indeed caused by summing up cc. For
the C corpus we investigated if another influencing factor such as the variance in the
header code (see Sections 3.2.3 and 3.4.4) could explain the rejection of Hypothesis 3.

Hypothesis 4 was introduced, therefore, to investigate the impact of the header
code (in files) on the correlation values as opposed to summation of the values at the
subroutine level. The only difference between Hypotheses 3 and 4 is the inclusion or
exclusion of sloc outside the subroutine bodies for the entire corpus. For Java and
C we both found high correlations after aggregating cc and sloc on a subroutine
level, i.e. taking the sum of the cc and sloc for all subroutines in a file. These
observations support Hypothesis 4 (now also for the C corpus) and indicate that the
variance of sloc in the header was indeed a confounding factor for the previous
experiment. High correlation between the number of methods and the number of
fields reported by Grechanik et al. [GMD+10] might explain why header size did not
have confounding effect for Java. We conclude that Hypothesis 4 is not rejected for
both Java and C.

Previously we rejected Hypothesis 1 – a strong Pearson correlation for non-
aggregated data. So, we have a strong indication that the related work reporting a
high correlation based on a file level aggregation is likely caused by the aggregation
itself rather than a linear relation between sloc and cc. Since we cannot literally
reproduce the data of the related work, this conclusion must remain a conjecture, but
the above experiments do isolate a strong effect of aggregation on our corpora.

In conclusion, the number of subroutines is a factor of system size and aggregation
influences the correlationpositively. Similar observation has beenmade for the relation
between sloc and the number of defects [VSvdB11a]. Therefore, we deem aggregated
cc more unnecessary as level of aggregation grows larger (classes, packages, systems).
If cc should be aggregated for another (external) reason, more advanced aggregation
techniques such as econometric inequality indexes [MAL+13; VSvdB11a; VSvdB11b]
should be used rather than sum.

Hypothesis 3 and 4: Summing cc and sloc on a file level could have caused
high correlations reported in related work.
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3.5.4 Hypothesis 5 – Positive effect of the log transform

As reported in related work [FF79; HGR07; HH10; JHS+09], a log transform indeed
increases the R2 values (from 0.40 to 0.68 for Java and from 0.43 to 0.70 for C). Because
of this we do not reject Hypothesis 5. This finding agrees with the earlier observation
on the impact of the log transform on R2 [Loe90].

However, what does a high Pearson correlation after log transform suggest for the
relation between sloc and cc? Does it have predictive power? Recall that the Pearson
correlation estimates a linear model like this: CC � α + β · SLOC. Hence, if the model
after the log transform is log10(CC) � α + β · log10(SLOC), then CC � 10α · SLOCβ
which implies the non-linear and monotonic model. Note that the R2 of 0.68 and 0.70
do not have a natural interpretation in this non-linear model. Indeed, as recognised
in the literature [FWL+13; Man98] the log scale results must be retransformed to the
original scale leading to “a very real danger that the log scale results may provide a
very misleading, incomplete, and biased estimate of the impact of covariates on the
untransformed scale, which is usually the scale of ultimate interest” [Man98]. The
experiment resulting in a Spearman ρ at 0.80 and 0.83 do confirm the monotonicity
as well as the correlation, but this does not help interpreting these results.

Comparing this R2 after the log transform to the R2 before transformation is
a complex matter; indeed the literature suggests that the R2 values are not com-
parable [Kvå85; Loe90]. In the lower range of sloc and cc, the effect of the log
transform is small, however as sloc increases, so does the impact of the transform.
Furthermore, the variance of the model after the transform increases a lot with higher
sloc as well (see Figure 3.9). We conclude that the observations of a R2 being higher
after transform reinforce the conclusion of Hypothesis 1 (there is no strong Pearson
correlation), but do not immediately suggest that there exists an exponential relation
between sloc and cc. The variance is too high and not predictable enough.

In combination with aggregation (sum) log transform has lead to the highest R2

values observed (cf. Table 3.6). However, the regression lines do not fit the data for
larger files (cf. Figure 3.10). This is caused by the heavy skew of the distributions
towards the smaller values.

What we conclude is that the relatively high correlation coefficients after a log
transform in literature are reinforced by our own results. These results provide no
evidence of cc being redundant to sloc because the non-linear model cannot easily
be interpreted with accuracy.

Hypothesis 5: A log transform increases the R2 values between cc and sloc,
however, interpreting the model in terms of the untransformed variables is
complex.
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3.5.5 Hypothesis 6 and 7 – Positive effect of zooming

The final try was to find linear correlation on parts of the data, in order to compensate
for the shape of distributions. Our results show that zooming in on tails reduced
the correlation, while zooming in on the heads improved it for the 80%–100% range.
Intuitively, if we remove all elements from the tail of the distributions then we may
achieve the highest R2 (0.59 for Java and 0.67 for C).

Based on the data we reject Hypothesis 6 (hypothesizing an effect of the smallest
elements) and we do not reject Hypothesis 7 (hypothesizing an effect of a long tail).
These results are corroborated in Table 3.4 and Table 3.5, showing log transforms only
improving correlations for the whole range.

We interpret the large effect of tail elements to the increasing variance with high
sloc (heteroscedasticity), rather than label them as “outliers”. There is no reason to
assume the code is strange, erroneous or false more than the elements in the prefix of
the data can be considered strange. The benefit of having the two big corpora is that
there are enough elements in the tail to reason about their effect with confidence.

Our analysis, however, does motivate that (depending on the goals of measuring
source code) tool vendorsmay choose to exclude elements from the tailwhendesigning
their predictive or qualitative models. Note however that even the head of the data
suffers from heteroscedasticity so the same tool vendors should still not assume a
linear model between sloc and cc.

The results for Hypothesis 6 and Hypothesis 7 support our original interpretation
for the main Hypothesis 1: cc is not redundant for Java methods or C functions.
Nevertheless, the data also shows enormous skew towards the smallest subroutines
(2 or 3 lines), for which clearly cc offers no additional insight over sloc. If a Java
system consists largely of very small methods, then its inherent complexity is probably
represented elsewhere which can be observed using oo specific metrics such as the
Chidamber and Kemerer suite [CK94].

For the larger subroutines, and even the medium sized subroutines, correlation
decreases rapidly. This means that for all but the smallest subroutines cc is not
redundant. For example, looking at the scatter-plot in Figure 3.6 and the box plots in
Figure 3.8, we see that given a Java method of 100 SLOC, cc has a range between 1
and 40, excluding the rare exceptions. In our Java corpus, there are still 104 K methods
larger than or equal to 100 SLOC. For such larger Java methods, cc can be a useful
metric to further discriminate between relatively simple and more complex larger
methods. We refer to our previous work [VG12] and the work of Abran [Abr10] for a
discussion on the interpretation of the cc metric on large subroutines.

Hypothesis 6 and 7: Large subroutines have a negative influence on the correla-
tions. They are not always generated code, therefore, labeling them as outliers
should be done with care.
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3.5.6 Comparing Java and C

Java and C are different languages. While Java’s syntax is strongly influenced by C
(and C++), the languages represent different programming paradigms (respectively
object-oriented programming and procedural programming). While one could write
procedural code in Java (the most common model for C), oo style is encouraged and
expected.

In our corpora C functions are larger and havemore control flow than Javamethods
(Figures 3.5 and 3.6). Future work could investigate whether this difference is caused
by the difference in programming paradigm and coding idioms or this is caused by
another factor such as application domain.

Note that the mode of both sloc and cc are the same for Java and C. We also
observe similar shapes in the scatter plots (Figures 3.6 and 3.7): both corpora feature
increasingly high variance. Wemust conclude that although the corpora quantitatively
have a different relation between cc and sloc, qualitatively we come to the same
conclusions of a relatively weak linear correlation.

On the one hand, for the C language we observed that after aggregation to the
file level the correlation strength went down. We attributed the cause to the sloc
of C header code (the code outside the function bodies) having high variance. This
obscures the relation between sloc and cc for the C language on the file level, which
was confirmed by testing for an increased correlation strength after measuring only
the sloc sum of functions per file. On the other hand, for Java it appears the header
code is not a confounding factor. Again, this is not the point of the current chapter,
but we conjecture that the stronger encapsulation primitives which Java offers bring
upon a stronger relation (cohesion) between header code and subroutine bodies.

The differences between C and Java code do not offer additional insight for the
relation between sloc and cc in open source code, other than an increased
external validity of the analysis of Hypothesis 1. Our conclusions hold for both
languages.

3.5.7 Threats to Validity

Next to the threats to validity we have identified in the experimental setup (Section 3.3)
and the previous discussion, we further discuss a few other important threats to
validity here.

Construct validity

Construct validity pertains to our ability to model the abstract hypothesis using the
variables we have measured [PPV00]. We do not believe our study to be subject to
construct validity threats since the abstract hypothesis we have tested (Hypothesis 1)
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has already been formulated in terms of measurable variables (sloc, cc and R2) as
opposed to more abstract constructs (e.g., maintainability or development effort).

As to the use of Pearson’s coefficient, this was motivated by its common use in
related work which we tried to replicate. Our negative conclusions, meaning we deem
the observed R2 values significantly lower, are subject to the critical examination of
the reader.

Internal validity

We have tested the tools we developed for our experiments and compared the output
to manually expected results and other free and open-source metric tools. Moreover,
to mitigate any unknown issues and to allow for full reproducibility, we have also
published both our data and scripts online [Lan15c].

Tohandle thepreprocessor statements inCwehaveused aheuristic (see Section 3.3).
This heuristic filtered away 7% of the code in the corpus. We also filtered all C files
with unbalanced braces which may have been introduced by the aforementioned
pre-processor heuristics – not a } for every {. This removed 4 K files (0.50%) from the
corpus. There is no reason to expect these filters have introduced a bias for either the
sloc or the cc variables, but without these filters the corpus would have contained
invalid data.

Different from related work [HH10], we chose not to exclude all .h files (see
Section 3.3.4). If we do ignore all .h files the R2 for the subroutine level changes from
0.4301 to 0.4346, i.e. both 0.43 when rounded to two significant digits.

External validity

Both our corpora were constructed from open source software projects containing
either Java or C code. Therefore, our results should not be immediately generalized to
proprietary software or software written in other programming languages. We should
observe that although both languages and their respective corpora are significantly
different, we do arrive at similar conclusions regarding our hypotheses. We therefore
conjecture that given a comparably large corpus for C-like programming languages
(e.g., C++, Pascal, C#) the results should be comparable. A recent study of rank-based
correlation between cc and sloc in Scala GitHub repositories [CJ14] suggests that our
results might be valid for Scala as well. While cc adaptations have also been proposed
for such languages as Miranda [van95] and Prolog [Moo98], those adaptations are
quite remote from McCabe’s [McC76] original notion of cc and therefore the relation
between cc and sloc for these languages might be very different.

Moreover, we are aware that the size of the corpus may be a confounding factor
and therefore should be investigated [RPH+13] and that our study might have been
biased by presence of certain accidental data-points in our corpora. Therefore, we
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Figure 3.11: Boxplots of the R2, for the different transformations, for 1000 randomly sampled
subcorpora of half the size. The ∗ denotes the R2 for the full corpus.

performed an additional sensitivity analysis [STC00] for which the results are reported
below. To assess whether the size of the corpus has an important influence on the
result, we test whether the strength of the linear correlation between sloc and cc
is similar for randomly selected sub-corpora of half the size. Figure 3.11 shows the
distribution of R2 values for 1000 random sub-corpora.

The medians of the R2 values are very close – up to two significant digits – to the
R2 of the full corpora. However, there is a visible spread for the non-transformed
variables, before and after aggregation on file level. The log transform has a clearly
stabilizing effect due to compression of the tail. Because of the latter observation,
we argue once more that the observed effects can be explained by the increasing
variance in the tail of the data (cf. Table 3.5). Randomly selected sub-sets filter a
number of elements from the tail, explaining the spread between the 1000 experiments.
Moreover, the R2 in these experiments are not contradicting our previous discussion
of the hypotheses.

The above experiment mitigates the risk of the size factor confounding our
observations and conclusions: it can be expected that for random sub-corpora of half
the size the correlation strength is the same as for the full corpora. In contrast we
believe that the large size of the corpora has made it possible to observe the relation
between cc and sloc on arbitrary real-world code with no other known biases.

3.6 conclusion

The main question of this chapter was if cc correlates linearly with sloc and if that
would mean that cc is redundant. In summary, as opposed to the majority of the
previous studies we did not observe a strong linear correlation between cc and sloc
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of Java methods and C functions. Therefore, we do not conclude that cc is redundant
with sloc.

Factually, on our large corpora of Java methods and C functions we observed (Sec-
tion 3.4):

• cc has no strong linear correlation with sloc on the subroutine level.
• The variance of cc over sloc increases with higher sloc.
• Ignoring && and || has no influence on the correlation.
• Aggregating cc and sloc over files improves the strength of the correlation.
• A log transform improves the strength of the correlation.
• The correlation is lower for larger (sloc) methods and functions.
• Excluding the largest methods and functions improves the strength of the

correlation.
• The largest methods and functions are not just generated code, and therefore,

should not be ignored when studying the relation between sloc and cc.
From our interpretation of this data (Section 3.5) we concluded that:
• cc summed over larger code units measures an aspect of system size rather than

internal complexity of subroutines. This largely explains the often reported
strong correlation between cc and sloc in literature.

• Higher variance of cc over sloc observed in our study as opposed to the
related work can be attributed to our choice for much larger corpora, enabling
one to observe many more elements.

• The higher correlation after a log transform, supporting results from literature,
should not be interpreted as a reason for discarding cc.

• All the linear models suffered from heteroscedasticity, i.e. non-constant variance,
further complicating their interpretation.

Our work follows the ongoing trend of empirically re-evaluating (or even repli-
cating [SCV+08]) earlier software engineering claims (cf. [KAD+14; RPF+14]). In
particular we believe that studying big corpora allows to observe features of source
code that would otherwise be missed [SSA15].
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EXPLORING THE LIMITS OF STATIC ANALYSIS AND
REFLECTION 4

Abstract

The behavior of software that uses the Java Reflection Application Program-
ming Interface (api) is fundamentally hard to predict by analyzing code. Only
recent static analysis approaches can resolve reflection under unsound yet prag-
matic assumptions. We survey what approaches exist and what their limitations
are. We then analyze how real-world Java code uses the Reflection api, and how
many Java projects contain code challenging state-of-the-art static analysis.

Using a systematic literature review we collected and categorized all known
methods of statically approximating reflective Java code. Next to this we con-
structed a representative corpus of Java systems and collected descriptive statistics
of the usage of the Reflection api. We then applied an analysis on the abstract
syntax trees of all source code to count code idiomswhich go beyond the limitation
boundaries of static analysis approaches. The resulting data answers the research
questions. The corpus, the tool and the results are openly available.

We conclude that the need for unsound assumptions to resolve reflection is
widely supported. In our corpus, reflection can not be ignored for 78% of the
projects. Common challenges for analysis tools such as non-exceptional exceptions,
programmatic filteringmeta objects, semantics of collections, and dynamic proxies,
widely occur in the corpus. For Java software engineers prioritizing on robustness,
we list tactics to obtain more easy to analyze reflection code, and for static analysis
tool builders we provide a list of opportunities to have significant impact on real
Java code.

4.1 introduction

Static analysis techniques are applied to support the efficiency and quality of software
engineering tasks. Be it for understanding, validating, or refactoring source code,
pragmatic static analysis tools exist to reduce error-pronemanual labor and to increase
the comprehension of complex software artefacts.

Static analysis of object-oriented code is an exciting, ongoing and challenging
research area, made especially challenging by dynamic language features (a.k.a.

This chapter was previously published as: D. Landman, A. Serebrenik, and J. J. Vinju. “Challenges
for static analysis of Java reflection: literature review and empirical study”. In: Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. Ed. by
S. Uchitel, A. Orso, and M.P. Robillard. IEEE, 2017, pp. 507–518. doi: 10.1109/ICSE.2017.53, and was
awarded the Distinguished Paper Award of the Technical Research Papers track.
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reflection). The Java Reflection api allows programmers to dynamically inspect and
interact with otherwise static language concepts such as classes, fields and methods,
e.g. to dynamically instantiate objects, set fields and invoke methods. These dynamic
language features are useful, but their usage also wreaks havoc on the accuracy of
static analysis results. This is due to the undecidability of resolving dynamic names
and dynamic types.

Until 2005, the analysis of code which uses the Reflection api was considered to
be out of bounds for static analysis, and handled via user annotations or dynamic
analysis; handling reflection would inherently be either unsound (due to unverified
assumptions) or highly inaccurate (due to over-approximation) and render the
contemporary static analysis tools impractical. Then, in 2005 Livshits et al. [LWL05]
published an analysis of how reflection was used in six large Java projects, proposing
three unsound, yet well-motivated assumptions and using these to (partially) statically
resolve the targets of dynamic method calls. Since then more tools were based on
similar assumptions.

Very recently, in 2015, Livshits and several other authors of static analysis tools
published the soundiness manifesto [LSS+15]. It argues for “soundy” static analysis
approaches that are mostly sound, but pragmatically unsound around specific
problematic language features. Java’s Reflection api is one of the examples that can
be handled more effectively after certain unsound assumptions are made. For future
work they identified the need for empirical evidence on how these language features
are used, such that tool builders can motivate the required unsound assumptions. We
provide more unbiased empirical evidence on the use of reflection by focussing on
the following Main Research Question: What are limits of state-of-the-art static analysis

tools when confronted with the Reflection API and how do these limits relate to real Java code?

Hence, we investigate the following sub-questions:
sq1. How do static analysis approaches handle reflection; which limitations exist

and which assumptions are made? (Section 4.3)
sq2. How often are different parts (see Section 4.2) of the Reflection api used in real

Java code? (Section 4.4)
sq3. How often does real Java code challenge the limitations and assumptions

identified by sq1? (Section 4.5)
Together with answers to these questions, this chapter contributes a representative
corpus of open-source Java projects [Lan16a], and a comprehensive literature overview
on the relation between static analysis and Java reflection. The main question is
answered with a list of challenges and suggested tactics for static analysis researchers,
ordered by expected impact.
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4.2 the java reflection api

We first describe the Java Reflection api; how its features can be categorized. The
resulting frame of reference is used for the interpretation of the findings in Sections
4.3–4.5, because the different api features interact differently with static analysis.

The Java Reflection api consists of objects modeling the Java type system. These
meta objects are split over 8 classes – java.lang.{Class,ClassLoader} and java.lang.re-

flection.{Array, Constructor, Field, Member, Method, Proxy} – totaling 181 public
methods. Themeta objects mostly provide an immutable view of the running system’s
types.

Figure 4.1 summarizes the api as a context-free grammar that defines construction
of references to meta objects. We use a context-free grammar as a more concise
alternative to class diagrams or interface definitions. Each production in Figure 4.1
defines a number of alternatives to produce an object of the defined non-terminal.
The grammar naturally groups on return type to emphasize the construction of
(immutable) meta objects and compresses methods of similar intent using regular
expressions. With this, we completely mapped the 181 public methods of the entire
api onto 58 productions, which are further grouped into 17 categories in Table 4.1.

Next to the api listed in the java.lang.reflectionpackage, there is: the Object.get-
Class()method and the literal Object.class language construct for class literals. There
is also relevant Java expression syntax related to reflection, casts and instanceof. Class
literals, such as MyClass.class, produce a meta object instance of the (static) type
Class<MyClass>. They are a static alternative to Object.getClass. Cast and instanceof

expressions also use literal types which interact with Java’s execution semantics (e.g.
throwing ClassCastException).

From the perspective of static analysis, the reflection api introduces dynamic
language features for an otherwise statically resolved language. From this perspective,
the api can be split in two parts. The first part ( in Table 4.1) are the Dynamic Lan-

guage Features that simulate statically resolved counterparts: e.g. the <Method>.invoke

api is the dynamic equivalent of the statically resolved method invocation in Java
(obj.method()). The second part ( ) includes supporting methods for the dynamic
language features (e.g. getting a Method meta object), and miscellaneous methods for
accessing other elements of the Java runtime.

Even when infrequently used, a single occurrence of using a dynamic language
feature does complicate static analysis of the entire program. For example, a single
dynamic method invocation could in principle call anymethod in the currently loaded
system, resulting in a highly inaccurate call graph for the entire system. For the rest
of this chapter, we are primarily interested in how static analyses approximate the
effect of these dynamic language features.

Modeling the supporting methods is often necessary to approximate the semantics
of the dynamic language features. For example, invoking a method requires a Method
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<MetaObject> ::= <Class> | <Method> | <Constructor> | <Field>
<Member> ::= <Method> | <Constructor> | <Field>

<ClassLoader> ::=
TM <Class>.getClassLoader()
LM | ClassLoader.getSystemClassLoader()
LM | new ClassLoader(<ClassLoader>)
LM | <ClassLoader>.getParent()

<Class> ::=
LC Class.forName(<String>)
LC | Class.forName(<String>, <Boolean>, <ClassLoader>)
LC | <ClassLoader>.loadClass(<String>)
LM | <Type>.class
LM | <Object>.getClass()
TM | <Class>.get*Interfaces()
TM | <Class>.asSubclass(<Class>)
TM | <MetaObject>.get*Class{es}?()
TM | <MetaObject>.get*Type*()
P | Proxy.getProxyClass(<Class*>)

<Method> ::=
TM <Class>.get{Declared}?Methods()
TM | <Class>.get{Declared}?Method(<String>, <Class*>)
TM | <Class>.getEnclosingMethod()

<Constructor> ::=
TM <Class>.get{Declared}?Constructors()
TM | <Class>.get{Declared}?Constructor(<Class*>)
TM | <Class>.getEnclosingConstructor()

<Field> ::=
TM <Class>.get{Declared}?Fields()
TM | <Class>.get{Declared}?Field(<String>)

<Void> ::=
M <Field>.set*(<Object>, <Object>)
AR | Array.set*(<Object>, <int>, <Object>)
MM | <Member>.setAccessible(<Boolean>)
AS | <ClassLoader>.{set}?{clear}?*AssertionStatus(<Boolean*>)
AS | <ClassLoader>.set*AssertionStatus(<String>, <Boolean>)

Figure 4.1: Grammar of the Java Reflection api. A ‘*’ inside a terminal indicates zero or more
other characters, and inside a nonterminal it indicates zero or more of this nonterminal. {X}?
indicates an optional part of a terminal. MethodUtil.getMethod* was elided into the – non
deprecated – replacement method.
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<Object> ::=
C <Constructor>.newInstance(<Object*>)
C | <Class>.newInstance()
AR | Array.newInstance*(<Class>, <int*>)
P | Proxy.newProxyInstance(<ClassLoader>, <Class*>, <Object>)
I | <Method>.invoke(<Object>, <Object*>)
A | <Field>.get*(<Object>)
AR | Array.get*(<Object>, <int>)
DC | <Class>.cast(<Object>)
AN | <Method>.getDefaultValue()
TM | <Class>.getEnumConstants()
P | Proxy.getInvocationHandler(<Object>)
AN | <MetaObject>.getAnnotation(<Class*>)
AN | <MetaObject>.get*Annotations()
S | <Class>.getSigners()

<ProtectionDomain> ::= S <Class>.getProtectionDomain()

<Boolean> ::=
SG <Class>.isAssignableFrom(<Class>)
SG | <Class>.isInstance(<Class>)
SG | Proxy.isProxyClass(<Class>)
SG | <MetaObject>.is*(<Class>) // other signature checks
SG | <MetaObject>.equals(<Object>)
SG | <MetaObject> == <MetaObject>
SG | <MetaObject> != <MetaObject>
SG | <Member>.isAccessible(<Class>)
AS | <Class>.desiredAssertionStatus()
AN | <MetaObject>.isAnnotationPresent(<Class>)

<String> ::=
ST <MetaObject>.get*Name()
ST | <MetaObject>.to*String()
ST | <Class>.getPackage() // returns a wrapper for strings

<int> ::= SG <MetaObject>.getModifiers()

<Resource> ::= <URL> | <InputStream>
RS | <Class>.getResource*(<String>)
RS | <ClassLoader>.get*Resource*(<String>)

Figure 4.1: continued
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Table 4.1: Categories for reflection productions.

Category Description
LC Load Class Entry to the Reflection api, returns references to

meta objects from a String. Considered harmful
since it can execute static initializers.

LM Lookup Meta Object Non harmful entries to the Reflection api, returns
references to meta objects.

TM Traverse Meta Object Get references to other meta objects related to the
current meta object in the type system of Java.

C Construct Object Create a new instance of an object, equivalent to the
new <ClassName>() Java construct.

P Proxy Proxies are fake implementations of interfaces,
where every invoke is translated to a single call-
back method. Very harmful for static analysis, since
there is no static equivalent for this feature.

A Access Object Read the value of an Object’s field. Equivalent to the
obj.field Java construct.

M Manipulate Object Change the value of a field. Equivalent Java con-
struct: obj.field = newValue

MM Manipulate Meta Object The only mutable part of the api: changing access
modifiers.

I Invoke Method Invoke an method. Equivalent Java construct:
recv.method(args).

AR Array Create, access, and manipulate arrays.
SG Signature Test the signature of a Meta Object, for example if it

is a public field.
AS Assertions Access and manipulate the assertion flag per class.
AN Annotations Access and iterate annotations.
RS Resources Read resources using the ClassLoader.
ST String representations Get the name of the meta object’s elements.
S Security Security related calls
DC Casts Cast to a dynamically Class meta object. Equivalent

Java construct: (Class)obj

The categories represent core Dynamic Language Features which simulate statically
resolved counterparts.
The categories represent supporting apis comparable to normal Java library code.
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meta object. Finding meta objects (with the exception of the LC productions) does not
complicate static analysis on its own. It is merely an inspection of the type system.
These methods can be either simulated by static analysis tools, or directly executed.

The pinnacle of dynamic behavior are Proxy classes P . The dynamic proxy
feature allows one to instantiate objects – statically implementing a specific interface –
that will dynamically forward all calls to a generic invoke method of another object
(implementing the InvocationHandler interface). The proxy feature hides dynamic
method invocation under a normal statically checked virtual method interface,
rendering all virtual method invocations possibly dynamic.

4.3 static analysis of reflection in the literature

To answer how reflection is handled by static analysis approaches (sq1) we conduct
a literature review. The result of the review is a list of techniques and associated
properties of hard to analyse code which identify limitations and assumptions of
static analysis tools. Note that the results of this review can not serve as a feature
comparison between static analysis tools, because of different goals of those tools and
because of our focus on the Reflection api, rather than the entire Java language.

4.3.1 Finding and selecting relevant work

Two commonly used literature review techniques are snowballing [WW02; Woh14]
and Systematic Literature Review (slr) [KC07]. Snowballing consists in iteratively
following the citations of a small collection of serendipitously identified papers.
However, several core papers have hundreds of citations, e.g. the work of Felt
et al. [FCH+11] has been cited 940 times and the work of Christensen et al. [CMS03]
412 times, rendering snowballing too labor intensive. Hence, we conduct an slr.

Initial queries

As recommended by Kitchenham and Charters [KC07] we started by considering IEEE
Xplore, ACM DL, and ScienceDirect. The search results, however, contained multiple
inconsistencies. In IEEE Xplore, e.g. adding an OR to our query reduced the number of
results. ACMDL and ScienceDirect search missed papers when limited to the abstract
field, even though those abstracts contained the search terms. Hence, we decided
that these sources were not well-suited for slr. Instead, we opt for Google Scholar as
it provides a wide coverage of different electronic sources as recommended [KC07]
and its search engine did not exhibit these peculiarities.

Following the pico criteria [KMT06] we define our population as Java projects with
reflection, intervention as static analysis and outcomes as approach, limitations and
assumptions. We do not explicitly state the comparison element of pico since our goal
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Table 4.2: Inclusion criteria used to select relevant documents for manual review.

1) Papers with reflection in introduction (head)

and conclusion (tail). Moreover, at least one
term related to accuracy should be used. To
correct for Google’s stemming of JavaScript to
Java, we exclude papers that mention
JavaScript too often:
P ≤ 80 ∧ Rh > 0 ∧ (Rt > 0 ∨ Rt′ > 0) ∧ A >
0 ∧ S ≤ 5.
2) Thesis. A thesis discussing reflection,
containing reflection code samples, and
mentioning accuracy:
P > 50 ∧ Th > 0 ∧ R > 1 ∧ A > 0 ∧ J > 0.
3) Proceedings with frequent mentions of reflection:
P > 20 ∧ Th � 0 ∧ Ch > 0 ∧ R > 5.

4) Short papers frequently mentioning reflection.
Smaller documents might have non standard
layout, or be sensitive to the 10% cutoff points
for the head and tail. These documents
mentioning reflection at least 10 times are also
included:
P ≤ 40 ∧ R ≥ 10 ∧ A > 0 ∧ S ≤ 5.
5) Proceedings with reflection code samples.
Similarly to 3) but with reflection code
samples:
P > 20 ∧ Th � 0 ∧ Ch > 0 ∧ R > 0 ∧ J > 0.
6) Large non-thesis, non-proceedings papers with

frequent reflection:
P > 80 ∧ Th � 0 ∧ Ch � 0 ∧ R > 5.

The?h denotes head section,?t tail section ,?t′ tail section without bibliography, and P amount
of pages in a pdf. A represents terms related to “accuracy”, “precision” and “soundness”, C
for “proceedings” and “conference”, J for “lang.reflect”, R for “reflection”, S for “javascript”,
and T for “thesis” and “dissertation”.

consists in comparing different ways reflection is handled by static analysis techniques
with each other as opposed to comparing them with a predefined control treatment.
Based on the population, intervention and outcome we formulate the following query:
java "static analysis" +reflection∗. We do not explicitly include the outcome in
the query since approaches, limitations and assumptions can be phrased in numerous
ways. In October 2015 the query returned 4 K references.

Automatic selection criteria

Since manual analysis of 4 K documents is infeasible, we design six criteria to reduce
the number of potentially relevant documents. To be included in the study the
document should meet at least one of those criteria. Those criteria, presented in
Table 4.2, are based on frequency of keywords in the full text, the first 10% of the text
(head), the last 10% (tail), and the last 10% without the references/bibliography (tail
without references). We validated all thresholds of these criteria by sampling beyond
the thresholds and manually scanning the additional papers for false negatives. We
picked liberal thresholds to optimize on recall (e.g. P ≤ 80 for deciding a document is
a single paper rather than a collection).

∗Google has implicit AND and the + disables stemming

98 chapter 4 exploring the limits of static analysis and reflection



Manually Improving Accuracy

478 documents (11% of the original set) were matched by at least one of the six criteria
in Table 4.2. Including the 36 documents that pdf2text failed to analyse we had 514
documents to read. We reviewed all documents applying the practical screen [Fin10]
to exclude those meeting the following exclusion criteria: not about Java, not about
static analysis, reflection is only recognized as a limitation, reflection is handled with
an external tool, reflection is wrapped to guard against its effects, reflection is used to
solve a problem, or a homonym of “reflection” was the cause of the match. We have
logged the exclusion decisions in a shared online spreadsheet and reviewed each others
decisions. This process produced 50 documents. Nextwe removed non-peer-reviewed
publications: locating and substituting conference papers for equivalent technical
reports, masters theses or PhD theses; locating and substituting extended journal
versions for conference papers; removing non-peer-reviewed publications such as
technical reports and masters thesis’ without corresponding publications at the time;
and finally as recommended by Kitchenham and Charters [KC07] merging duplicate
documents produced by noise in Google Scholar. This results in 39 documents.

All 39 documentswere then read by one author and scanned by another, producing
4 new relevant documents from the citations (all missing from the original Google
Scholar results). The 4 new papers introduced Soot [VCG+99], Spark [LH03] (a plugin
for Soot), wala [FD+15], and jsa [CMS03]. Only jsa and wala handle reflection
specifically, while Soot requires plugins (such as TamiFlex [BSS+11] or Spark), and
Spark requires user annotations.

While reading the documentswe applied themethodological quality screen [Fin10]
and identified another 10 documents to be excluded, due to the following reasons:
taint analysis pushing taints through the reflection api [HDM14; YXA+15], using
existing techniques for handling reflection [AL12; AL13; AFJ+09; AFJ+10; GKP+15;
SR11; TPF+09], and handling reflection in generated bytecode rather than in source
code [ARL+14].

4.3.2 Documenting Properties of Static Analysis Tools

To answer sq1, we read the 33 (39+4−10) documents to list approaches or techniques
which are involved in resolving dynamic language features of Java reflection. The
end result is summarized in Table 4.3. When we could not find enough information
to extract information about the properties of a tool from the respective paper, we
analysed the latest version of the tool’s source code and documentation (if available).
As recommended by Brereton et al. one author extracted the data, and another one
checked it [BKB+07].

We classified the techniques in three kinds of analysis, by the kind of information
which is used to resolve reflection: static uses code analysis to resolve reflection (listed
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in Table 4.3), dynamic uses information acquired at run-time for resolving reflection
rather than code ([BSS+11; DRS07; HvDD+07; IC14; TB12; VCG+99; ZAG+15]) and
annotations groups techniques based on are human-provided meta data rather than
code or dynamic analysis ([BGC15; LH03; SAP+11; TLS+99; TSL+02]). Note that
papers solely about dynamic analysis were excluded in an earlier stage.

Next we record the goal of the static analysis as mentioned in the paper (e.g. call
graph construction), the name of the tool, and possible dependency on other related
tools. We also distinguish between intra- and inter-procedural algorithms.

Diving further into the explanations of techniques of each static analysis tool
revealed a diverse collection of mostly incomparable algorithms and heuristics in
terms of functionality and quality attributes. Based on this reading we documented
the authors’ descriptions of properties of the analysis tools in terms of sensitivity.
Sensitivity defines the smallest level of distinction made by the abstract (symbolic)
representations of run-time values and run-time effects that static analysis tools
use. Finer-grade distinctions mean more different abstract values and result in more
accurate but slower analyses, while coarser-grade distinctions lead to less different
abstract values and less accurate but faster analyses.
Flow sensitivity entails distinctions between subsequent assignments
Field sensitivity entails distinction between different fields in the same object
Object sensitivity entails the distinctions between individual objects, via groups of

objects, to general class types, at increasing levels of indirection
Context sensitivity entails the distinction of method executions between different

calling contexts of a given depth
We also record whether the analysis requires a fixed-point computation. Finally

we identified and documented the use of three specialized measures taken by static
analysis tools:
String analysis approximates run-time values of strings as accurately as possible.

These results can then be used to approximate class and method names which
flow into the LC , TM reflection api, after which the semantics of invoke and
newInstance may be resolvable.

Casts provide information about run-time types under the assumption that no
ClassCastException occurs. Some analyses also reason back from the correct-
casts assumption.

Meta Objects signifies the full simulation (or execution) of the LC , LM , and TM reflection
api to find out which meta objects may flow into the dynamic language features.

By inspecting Table 4.3 we observe that flow sensitivity is very common (often as
a side-effect of the ssa transform), field sensitivity is used for half of the approaches
(more common in Doop and Soot), and, most analyses are inter-procedural and track
at least string literals. Tracing Doop through the years, we see more modeling of
Strings, Casts and Meta Objects.
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Table 4.4: Reported open and resolved limitations of static analysis tools, using literature from
Table 4.3.

Name Description

CorrectCasts [LWL05] Assumption that casts never throw
ClassCastException

WellBehavedClassload-
ers [LWL05]

Assumption that all ClassLoaders implemen-
tations follow a specific contract, i.e. if a class
with the (fully qualified) name X is requested
from the LC api then a reference to a class
named X is produced

ClosedWorld [LWL05] Assumption that the classpath configured
for static analysis equals that of the analysed
program

IgnoringExceptions [BS09] Not modeling the control effect of exceptions,
which is relevant around common exceptions
of theReflection api (e.g. ClassCastException)

InaccurateIndexed-
Collections [BS09]

Not modeling index positions in arrays and
lists, which is relevant when meta objects end
up in such collections

InaccurateSetsAndMaps [SR09] Not modeling hashCode and equals semantics
in concert with hash collections, which is
relevant when meta objects end up in such
collections

NoMultipleMetaObjects [LTS+14] Ignoring usage of TM api methods which re-
turn multiple meta objects in an array

IgnoringEnvironment [SR07] Not modeling the content of configuration
strings which come from System.getEnv for
tracing LC , LM or TM methods

UndecidableFiltering [FCH+11] Conditional control flow and arbitrary predi-
cates are hard in general, while for codewhich
filters meta objects even an approximate an-
swer would greatly help

NoProxy [LTS+14] Assumption that Proxy objects are never used.
Proxy objects may invoke dynamically linked
code opaquely behind any (dynamic) inter-
face, undermining otherwise trivial assump-
tions of static analysis of method calls
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4.3.3 Self-reported limitations and assumptions

The self-reported assumptions about actual code and limitations of the tools are sum-
marized in Table 4.4. All tools discussed in the 33 studies assume well-behavedness
of ClassLoader implementations and absence of Proxy classes. The other reported
limitations are either resolved and fixed by a given paper, or mentioned as a known
limitation of the currently described approach. We do not provide a feature compari-
son per tool, but rather report “common” assumptions made by static analysis tools.
We choose not to extend Table 4.4 with howmany tools use each assumption, to avoid
it being interpreted as a (crude) comparison between incomparable tools.

sq1: State-of-the-art static analysis tools use inter-procedural, flow and field
sensitive analysis. Some explicitly model Strings, Casts and Meta Objects. All
tools assume well-behavedness of ClassLoader implementations and absence of
Proxy classes. The techniques and their limitations are summarized in Tables 4.3
and 4.4.

4.4 how often is the reflection api used?

Regardless of the conceptual relation between reflection and static analysis, we need
support for the relevance of this relation in real Java code to answer sq2 and motivate
further investigation.

Table 4.5 summarizes the related work found during the review (Section 4.3)
reporting empirical observations of reflection usage. From these reports we hypothesize
that also in arbitrary Java code the usage of reflection is widespread. This is likely true, but
it may not be deduced from the reported numbers in Table 4.5, since these studies
have been done on corpora selected and filtered for answering different questions.

In particular focusing only on large corpora of Android apps would not be
acceptable for our current study since they are an identifiable subgroup of all Java
applications. Also the much smaller SPECjvm† or DaCapo [BGH+06] benchmarks
have been compiled to reflect typical performance characteristics of (concurrent) Java
programs rather than be representative of the usage of reflection.

4.4.1 Corpus Construction

To test the above hypothesis and answer sq2 we construct a corpus of the source code
of 461 open-source software projects. Hunston has observed that in corpus linguistics
themain issues related to corpus design pertain to its size, contents, representativeness
and permanence [Hun02]. Tempero et al. have argued that the same concerns pertain
to software corpora [TAD+10].

†https://www.spec.org/benchmarks.html#java
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Table 4.5: Empirical observations of reflection in the literature of Table 4.3.

Year Ref. Corpus Report

2005 [LWL05] 6 applications
(643 KLOC)

The accompanying technical report discusses
reflection use cases, which are used to formu-
late the three now very popular assumptions.

2011 [FCH+11] 900 Android apps 61% use invoke. Reflection is also used for se-
rialization, hidden apis, and backwards com-
patibility.

2013 [HYG+13] 1.3 K Android apps 73% use invoke. Primarily for api calls, how-
ever, this reflects only 0.07% of all api calls.

2014 [WKO+14] 1.7 K Android apps 73% use reflection. invoke is most common
2014 [WKO+14] 150 Android apps Analyzing the string argument for forName and

getMethod, 17.3% use only constant strings,
25.3% use a single variable, and 38.7% use
more than one variable.

2014 [LTS+14] 14 Java programs
(DaCaPo benchmark
and 3 other
applications)

Identified 609 invocations of reflection with
Soot, reports popularity of the harmful api,
the kind of string operations performed on
arguments, and how often the apis return
meta object arrays were used.

2015 [ZAG+15] 29 K Android apps 81.1% used either invoke or newInstance
2015 [BJM+15] 35 Android apps 142 calls to invoke, classifying 81% for back-

wards compatibility, 6% accessing hidden
apis, and 13% as unknown.

Contents of the corpus is determined by the research questions we answer using
it, i.e. sq2 and sq3. Hence, our corpus contains Java programs. Permanence, i.e.
regular corpus updates, are considered as future work. Next we discuss how size and
representativeness are balanced in our corpus.

Selecting projects

To balance the corpus size with representativeness, we construct a corpus small
enough to analyze while still covering a wide range of open source Java projects.
We use the Software Projects Sampling (sps) tool [NZB13] by Nagappan et al. Given
a universe of projects on Ohloh/OpenHub‡, sps measures representativeness of a
smaller corpus with respect to the universe in terms of diversity dimensions and

‡Since the access to the live OpenHub project collection is rate-limited, we used the May 2012 database
snapshot when it was still called Ohloh [NZB13].

104 chapter 4 exploring the limits of static analysis and reflection



101 102 103 104 105 106 107

10

20

30
Pr
oj
ec
ts

(a) Source Lines of Code (sloc)

101 102 103 104 105

(b) Methods

Figure 4.2: Histograms of projects size (bin width 0.15 on the log X-axis)

constructs amaximally representative corpus by iteratively adding projects that would
increase the representativeness most. Diversity dimensions considered include total
lines of code, project age (Young, Normal, Old, Very Old), activity (Decreasing, Stable,
Increasing), and of the last 12 months, number of contributors, total code churn, and
number of commits.

The entire collection contains 20 K projects, of which around 3 K have Java recorded
as the main language. From this universe the sps tool identified a sample of 468
projects, maximizing the spread of all diversity dimensions.

We tried to download the source code of the 468 projects. For 33 projects the
source code was no longer available. We reran sps to extend 435 � 468 − 33 projects
and maximize the diversity. sps suggested 27 additional projects. The source code of
two of these was not available. Repeating the procedure, sps suggested one additional
project. The resulting 461 � 468− 33+ 27− 2+ 1 projects cover 99.47% of the universe.

After downloading the projects we cleaned the corpus by removing arbitrary
copies of the code of projects that originate from folder-based version management.
Using md5 hashes to identify full file clones, we manually reviewed and cleaned
all projects. We made the cleaned and annotated corpus openly available [Lan16a],
totaling 79.4MSLOC of Java code, to be used to reproduce the analysis results, or to
benchmark static analysis research tools on systems of documented representativeness.
Figure 4.2 summarizes the corpus in terms of size.

Annotated Abstract Syntax Trees

We need a precise count of actual calls into the reflection api, rendering fast grepping
or other efficient partial parsing methods out of scope due to their inherent inac-
curacy [KLN14; Moo01]. To unambiguously identify the calls to the Reflection api
methods we first parsed the source code, resolved names and types, then serialized
the Abstract Syntax Trees (asts), using the Eclipse Java Development Tools (jdt) and
Rascal [BHK+15]. We deleted the 4 projects the jdt crashed on (labeled #294, #399,
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#420, #455). We opt not to replace these projects as we consider the corpus as a
separate contribution independent from the subsequent research.

4.4.2 Descriptive Statistics

To describe how the Reflection api is used by the corpus projects we make use of the
context-free grammar in Figure 4.1 and categories of Table 4.1. Per category we count
the percentage of projects that make use of at least one production belonging to the
category. We aggregate to project level since one instance is enough to complicate
static analysis and projects are a common unit for static analysis applications.

Inspecting Figure 4.3 we observe that reflection is used in almost all the projects
(only 4% did not use any reflection). However, there are more use cases for reflection
than just dynamic language features. The <Type>.class and <Object>.getClass() are,
for example, often used as a log message prefix. The reported distributions of api
method invocations over projects, should be interpreted by tool builders with the
api definition itself as a frame of reference, because the api enforces certain data
dependencies between different invocations into the api, e.g. <Method>.invoke can
not be called without first retrieving an instance of an Method meta object, which in
turn can only come from a Class meta object (see Figure 4.1).

We aggregated all dynamic language features api calls. Of all projects, 78%
contain at least one form of these harder to analyze methods of the api. For these
projects, a static analysis needs some form of reflection support. Note we only count
in the Java source code of a project, reflection usage in its libraries it depends on can
only increase the amount of projects impacted by the dynamic language features of
reflection.

sq2: Hard to analyse parts of Reflection api are very common: 78% of all
projects contain at least one usage of those.

4.5 the impact of assumptions and limitations

In this section we answer sq3: how often the assumptions and limitations in Table 4.4
of state-of-the-art static analysis tools are challenged by real Java code. For each
identified assumption or limitation of Table 4.4 we devise one or more ast patterns
and manually validate their precision in detecting occurrences of challenging code.
Then we automatically identify all matches of each pattern in the corpus described in
Section 4.4.1. We reuse the corpus since we look for similar representativeness and
need similarly accurate unambiguously resolved classes and methods.
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Figure 4.3: Reflection api usages, grouped per category (Table 4.1), aggregated on project level,
17 projects (3.72%) contained no reflection. 356 projects (77.90%) contained at least one of the
dynamic language features ( categories).

4.5.1 Detecting Patterns

To implement pattern detectors we used the builtin ast pattern matching and
traversal facilities of Rascal [KvdSV09], which have been used in many other
projects [Hil15a; HKV13; LSB+16]. The pattern code is around 150 SLOC and is
openly available [Lan16b].

The patterns we devised are described and motivated in Table 4.6. We strive for
high precision for each pattern (a low number of false positives). Each ast pattern
will capture “typical” code instances for which a clear rationale exists to relate it to
the assumptions and limitations of Table 4.4.

Note that assuming each pattern is 100% exact, counting their matches will
generate a lower-bound on the number of code instances which challenge static
analysis tools. As a tight lower-bound more accurately answers sq3 than a loose
upper-bound would, we will not sacrifice precision for recall by generalizing patterns.
Some patterns have non-empty intersections, i.e. two patterns may match on the same
piece of code. This effect must be considered when interpreting the results below,
next to that they are not all 100% exact.

Because the main threat to validity of this research method is the precision of
the patterns, we manually estimated their precision by reading random samples of
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matched code in the corpus. For each pattern which is not exact by definition, we
report the precision after sampling 10 instances and record the intent of the code
examples as we interpreted it to confirm or deny the rationales of Table 4.6.

The patterns performedwell; at least 8 out of the 10 sampledmethods did challenge
the limitation or assumption. In the sampled methods we observed that most of the
challenging cases involve highly dynamic reflection, where the code uses complex
data-dependent predicates to decide which methods to invoke or fields to modify.
These predicates operated both on strings and meta objects. We also observed that
exceptions were often ignored to continue with a next possible candidate.

4.5.2 Results for Corpus Impact Analysis

The Impact column of Table 4.7 answers sq3, detailing for each pattern its impact
in the corpus in terms of projects covered by at least a single match. Note that
between the patterns the percentages are not comparable due to possible overlap.
Each percentage implies a minimal amount of problematic code instances for the
related assumption or limitation, so we find a lower-bound on the impact of a static
analysis tool which would be able to resolve these hard cases.

Here we interpret the reported impact percentage for each limitation qualitatively:
(a) the impact of CorrectCasts seems low, so we do not find evidence in this corpus that
this is a bad assumption; (b) we can conclude that detailed modeling of exceptions can
not be avoided; (c) we see that the combination of collections and reflection (arrays,
lists, and tables) is relevant for about half of the corpus, so this is an important area of
attention; (d) we find complex computations around the filtering of meta objects in
almost half of the projects, which signals new opportunities for soundy assumptions
for computing with meta objects; finally, (e) a significant part of the corpus is tainted
directly by the use of dynamic proxies, for which no clear solution seems to be on the
horizon.

sq3: Real Java code frequently challenges limitations of the existing static
analysis tools, in particular, in relation to modeling of exceptions, collections,
filtering of meta objects and dynamic proxies. The impact of CorrectCasts seems
low.

The summary answer to the Main Research Question is that apart from Correct-
Casts, the limitations and assumptions of static analysis tools for which we have an
ast pattern are challenged in significant numbers in this corpus.

4.5 the impact of assumptions and limitations 109



Table 4.7: Impact of limitation patterns (Table 4.6) in the corpus.

Pattern Impact Precision Code intent
CorrectCasts 4% 8/10 Supplying a fallback or looping through can-

didates and swallowing the exception
Ignoring-
Exceptions1

23% 10/10 Falling back to a less specific Meta Object, or
switching to a different ClassLoader

Ignoring-
Exceptions2

38% 9/10 Iterating through candidates and either break-
ing when one does not throw an exception,
or continuing to the next candidates

Inaccurate-
Indexed-
Collections

55% exact Iterating througha signature of anmeta object

InaccurateSets-
AndMaps

38% exact Meta objects as function pointers in a table,
mapping to objects, caching around Reflec-
tion api

NoMultiple-
MetaObjects

54% exact Looking through candidates, performing
mass updates of fields, checking signatures

Ignoring-
Environment

2% 10/10 Only 9 instances found, they were all depen-
dency injection

Undecidable-
Filtering

48% 8/10 Trying different names of meta objects, filter-
ing method and fields based on signature

NoProxy 21% exact Wrapping objects for caching or transactions,
automatically converting between compara-
ble interfaces

4.6 discussion

4.6.1 Threats to validity

A different categorization of “dynamic language features” in Section 4.2 might influ-
ence the answers to our research questions. To mitigate issues with the categorization
we explicitly included a grammar fully covering the reflection api.

The slr in Section 4.3 was conducted in 2015. To the best of our knowledge all
material appeared since has been included in Section 4.3. The reading and annotating
of the literature itself was a human task for which we implemented mitigating cross
checks and validation steps.

Although the corpus in Section 4.4 has been constructed using state-of-the-art
methods for maximum variation of meta data, the choice of meta data variables
and the universe the projects are sampled from can be discussed. To the best of our
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knowledge there exists no better means for sampling an unbiased and representative
corpus of open-source projects.

In Section 4.5, we used ast patterns to assess the occurrence of challenging code.
To mitigate the arbitrariness of the patterns, we maintained a direct trace between the
patterns and literature study in Section 4.3 in Table 4.4. However, any undocumented
assumptions or implicit limitations have naturally not been mapped. The patterns
themselves could be inaccurate, which was discussed and mitigated in Section 4.5.

The answer to the main question, claiming a high impact of known limitations of
static analysis tools, must be interpreted in context of the aforementioned threats to
validity.

4.6.2 The Dual Question of sq3

The question of howwell static analysis tools actually do on codewhich uses reflection,
rather than their limitations is relevant. The review in Section 4.3 and the corpus in
Section 4.4 provide a starting point for answering it. However, a set of full comparative
studies would be necessary, grouped by the goal of comparable analyses, by running
the actual tools (where available) on the corpus. The respective coverage of the corpus
for selecting the first 50, 100 or 200 projects are 56%, 72% and 88%. The first projects
in the corpus are the most representative, so initial studies could be performed on one
of these prefixes of the corpus. The configuration and execution of each tool for each
project in the corpus, and the interpretation of detailed results per analysis group in
this proposed study is at the scale of a community effort.

4.6.3 Related work

Next to the focused literature review of Section 4.3 we position this chapter in a
wider field of empirical analysis of source code. Reflection and related forms of
dynamic behavior are supported by many programming languages. Not surprisingly,
reflection usage has been studied, e.g. for such languages as Smalltalk [CRT+13],
JavaScript [RHB+11; RLB+10], PHP [Hil15b; HKV13] and Python [ÅST+14; HH09].
Despite the differences between programming languages studied as well as the
methodologies used by the authors, all those papers agree with each other and with
our observations made in Section 4.4: reflection mechanisms are used frequently, and
they often cannot be completely resolved statically.

Even if the current observations are in line with previous work, they are un-
expected. The current study is on the statically typed language Java rather than
the aforementioned dynamically typed languages; for Java the use of reflection is
expected to be the exception rather than commonplace. The Java language is designed
to provide both clear feedback to the programmer and a built-in notion of code
security, based on its static semantics. We find it surprising that reflection – the
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back door to dynamic language features – is used so often and in such a way that it
does undermine these design goals. Selecting Java as a platform for robust and safe
software engineering provides fewer guarantees than perhaps thought.

A related topic is language feature adoption. Parnin et al. have studied adop-
tion of Java generics [PBM13], Pinto et al. studied concurrent programming con-
structs [PTF+15], andDyer et al. studied features prior to their official release [DRN+14].
Similar studies have also been conducted, e.g. for C# [CKS15] and PHP [Hil15a].

Since we have conducted our slr in October 2015 additional papers have been pub-
lished on static analysis of Java programs using reflection, witnessing the continuing
attention to this topic from the research community. Harvester [RAM+16] combines
static and dynamic analyses to combat malware obfuscation. Resolution of reflective
calls is done by the dynamic analysis. HornDroid [CGM16] implements a simple
string analysis and, similarly to DroidSafe [GKP+15], replaces reflective calls with
the direct ones whenever the string analysis renders it possible. DroidRA [LBO+16]
models the use of reflection with COAL [OLD+15] and reduces the resolution of
reflective calls to a composite constant propagation problem.

Beyond related work for Java, without going into details, all research in and appli-
cations of static analysis techniques to dynamically typed programming languages is
relevant, e.g. [AM14; SDC+12]. Our empirical observations (Section 4.5) suggest that
application of the existing soundy techniques for analyzing dynamic languages to
Java could have an impact.

4.6.4 Implications for Java Software Engineers

The data shows that reflection is not only used often, but it is also used in a way
challenging to static analysis. If robustness is of high priority, then the following
tactics are expected to have a positive effect: (a) do not factor out reusable reflective
code in type-polymorphic methods, since the CorrectCasts assumption is highly
useful, keeping casts to concrete types close to the use of dynamic language features
will keep code analyzable; (b) avoid the use of dynamic proxies at any cost (c) use
local variables or fields to store references to meta objects rather than collections; (d)
avoid loops over bounded collections of meta objects; and (e) test for preconditions
rather than to wait for exceptions such as ClassCastException.

Given the observations in Section 4.5, applying these tactics should lower the
impact of the assumptions and limitations of static analysis tools and hence will make
Java code more robust. All tactics trade more lines of code for better analyzability.

4.6.5 Implications for Static Analysis Researchers

For all reported challenges for static analysis tools for which we have an ast pattern,
save the CorrectCasts assumption, the evidence suggests investigating opportunities
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for more soundy assumptions in static analysis tools. It can also motivate Java
language or API extensions which cover the current uses of the reflection API with
safer counterparts. The literature survey suggests looking into combinations with
dynamic analysis and user annotations. Note that the highly advanced analysis tools
already solve a number of these challenges (such as exception handling), but further
improvement to get similar accuracy for higher efficiency is warranted since these
tools would run faster on a part of the corpus [SBK+15].

The negative impact of the CorrectCasts assumption seems low, so even more
aggressive use of said assumption to reason back from a cast and infer more concrete
details about possible semantics is warranted.

A novel soundy assumption on the semantics of dynamic proxies would have a
significant impact, since currently all static analysis techniques ignore their existence
completely (which is definitely unsound). For example, we observed that a useful
soundy assumption might be that client code can remain “oblivious” to any proxy
handlers that wrap arbitrary objects (that implement the same interface) to introduce
ignorable aspects such as caching, offline serialization or transactional behavior.

We observed that exceptions are used as gotos, especially in the context of reflection.
Hence, a special treatment of the code which catches these exceptions is warranted.
Treating common idioms of such “error handling” should have a significant effect
in the corpus, without having to use or introduce a general solution for exception
handling per sé.

We see how relevant collections of meta objects (arrays, lists, and tables) are for
analyzing the corpus. Since most collections of meta objects are bounded – they
are acquired via bounded Reflection API methods – it should be possible to make
more aggressive soundy assumptions around their usage. For instance, one can
aggressively unroll iterators over meta object collections, or to soundily assume order
independence.

Finally, considering the impact of UndecidableFiltering in the corpus in combi-
nation with MultiMetaObjects and the collection usage we see opportunities for the
application of analysis techniques designed for dynamic languages (e.g. Javascript).
Such dynamic Java code is akin to Javascript or PHP code. For example a form of
determinancy analysis [AM14; SSD+13] might be ported for the Java reflection case.

4.7 conclusions

Contemporary Java static analysis tools use pragmatic soundy techniques for dealing
with the fundamental challenges around analyzing the Reflection api. Earlier
work identified the need for empirical studies, relating these techniques to the way
programmers actually use the Reflection api in real code.

With this chapter we contributed (a) a comprehensive survey of the literature on
the features and limitations of static analysis tools targeting reflective Java projects,
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(b) a representative corpus of 461 open-source Java projects, (c) an overview of the
usage of the Reflection api by real Java code and (d) an ast-based analysis of how
often the assumptions and limitations of the surveyed static analyses are challenged
by real Java code.

The highlights among the empirical observations are that of all projects, in 78%
dynamic language features are used. Moreover, 21% use dynamic proxies, 38%
use exceptions for non-exceptional flow around reflection, 48% filter meta objects
dynamically, and 55% store meta objects in generic collections. All those features are
known to be problematic for static analysis tools. We could identify violations of the
correct casts assumption in only 4% of the projects.

We conclude that (a) Java software engineers could make their code more ana-
lyzable by avoiding challenging code idioms around reflection, (b) introducing new
soundy assumptions for novel static analysis techniques around the Reflection api is
bound to have a significant impact in real Java code.
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CONCLUSIONS AND PERSPECTIVES 5
This chapter summarizes the conclusions of Chapters 2–4 and places the results into
a larger perspective.

5.1 rq1: exploring the limits of domain model recovery
To understand the upper limit of reverse engineering domain models from source
code, we have used an empirical study of two applications to answer the first main
research research:

Research Question 1 (rq1)

How much of a domain model can be recovered from source code under ideal
circumstances?

This question was decomposed into two research sub-questions, for the first sub-
question we wanted to understand which parts of the domain are even implemented
by the application, leading to the second sub-question: can we recover those parts
from the source code of that application?

5.1.1 Result

The first sub-question was answered by traversing the User Interface (ui) of the
applications and building a domain model on the same level of abstraction as the
user would interact with the application. Comparing this domain model to the
reference domain model extracted from a project management reference book, we
could calculate which parts of the reference domain model are implemented by the
applications. We observed that the applications only implemented a small – less than
20% – part of the domain. The domain models extracted from the ui were then used
as a frame of reference for the recovery of domain models from source code.

For the second sub-question, we manually constructed the domain models by
reading all 36.1 KSLOC of source code. We compared these to the ui domain models
and found that we could recover all concepts. Moreover, for one of the applications, we
recovered more domain concepts than present in the ui. The high precision – between
79% and 92% – of the domain model recovery from source code compared to those
recovered from the ui, showed that it was feasible to manually filter implementation
details.
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Conclusion rq1

Domain models are recoverable from the source code of modern applications,
making domain model recovery a valuable component during re-engineering.

5.1.2 Perspective

The results of this study is to serve as a baseline of what is possible for future work in
automated domain model recovery approaches. The manually extracted models –
made available online ([Lan13]) – can be used as an oracle for reverse engineering
tools, enabling qualitative validation of an new approach next to the more common
quantitative validation.

5.2 rq2: exploring the relationship between cc and sloc

To understand why the duality between the popularity and the reported redundancy
between Source Lines of Code (sloc) and Cyclomatic Complexity (cc) existed, we
have used an empirical study of two large corpora of open source software to answer
the second research question:

Research Question 2 (rq2)

Is there a strong linear (Pearson) correlation between cc and sloc metrics?

This question was translated into multiple hypotheses that might explain why almost
all of the related work reported a strong linear correlation between cc and sloc,
while we could not confirm the same. Using appropriate statistical methods we then
tried to reject all the hypotheses.

5.2.1 Results

While we tried very hard to reproduce results reported in related work, we did not
find evidence for a strong linear correlation between cc and sloc in our two corpora
of Java and C software. The primary cause could be attributed to the high variance of
cc over the whole range of sloc. This lack of correlation could not be explained by
an alternative interpretation of cc. However, summing cc and sloc on a per file
level – instead of a method level – could have caused the high correlation reported by
releated work. It could also have been caused by the – more recently popular – log
transform of the data. This log transform complicates the interpretation of what this
correlation indicates for relationship between cc and sloc.

We observed increasing variance in cc as sloc increased, even after a log
transform. This non-constant variance further complicates the interpretation of the
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linear regressions as an argument for sloc to predict cc. Moreover, for the larger
methods in our corpora, we observed weak correlation at best. Looking in the tail of
the data, we observed the correlation decreasing and even more so for the correlations
after a log transform. Therefore, we argue that cc should remain to be used next to
sloc. Especially for the larger – arguably more interesting – methods, cc can be a
useful metric to further discriminate between methods of the same sloc.

Conclusion rq2

Contrary to the majority of the previous studies, we do not conclude that cc is
redundant to sloc.

5.2.2 Perspective

Software metrics are popular in both research and industry. Our study analyzed
a common critique that cc is redundant to sloc. We have found that the main
argument for this critique does not hold for the analyzed large corpora of software.

Another related critique is based on the research by El Emam et.al. [EBG+01] on
the confounding impact of class size on object oriented metrics. The results of our
work could motivate similar future work on how this holds for large corpora, and
especially if it still holds for object oriented metrics which do not sum on a class level.
As a follow-up of our study by Zhang et.al. [ZHM+16] who analyzed and reported on
the strong effect summation can have on defect prediction models.

5.3 rq3: exploring the limits of static analysis and reflection

To understand how Java’s Reflection Application Programming Interface (api) is
supported by static analysis tools and how this translates to real world use of this api,
we have used an empirical study on a corpus of open source Java software to answer
the third research question:

Research Question 3 (rq3)

What are the limits of state-of-the-art static analysis tools supporting the
Reflection api and how do these limits relate to real world Java code?

We decomposed this question into three sub-questions, the first was to understand
how state-of-the-art static analysis tools support reflection and what they do not
support. The second sub-question was how often sections of the Reflection api are
actually used. The last sub-question was to understand how often the limitations of
the static analysis tools are challenged in real Java source code.
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5.3.1 Results

After an extensive Systematic Literature Review (slr), we identified 20 static analysis
tools that introduced specific heuristics to handle the effects of the Reflection api.
We observed that more recent tools have been adding deeper modeling of Java’s
semantics, and even more specifically around Strings and Reflection’s Meta Objects.
We identified 10 common assumptions and limitations, these are translated into 9
Abstract Syntax Tree (ast) patterns.

We constructed a new compact and diverse corpus of Java open source software,
and in these 461 projects we found that 78% projects used the dynamic language
features of the Reflection api at least once. For these projects, a static analysis tool
without support for reflection would return incorrect results.

We found that certain common assumptions and limitations of static analysis
tools were violated quite often. Dynamic proxies were used in 21% of the projects,
exceptions as non-exceptional control flow in 38%, dynamically filtering meta objects
in 48%, and storing meta objects in generic collections in 55% of all projects. We then
randomly sampled cases of each violation, and proposed new heuristics for static
analysis tools on how to handle these cases.

Conclusion rq3

In our corpus, heuristics for the Reflection api are needed for 78% of the
projects. Common assumptions and limitations are often violated. We propose
new assumptions that could significantly improvement the soundness of static
analysis tools.

5.3.2 Perspective

A wide variety of re-engineering tasks depends on the accuracy of static analysis
tools. Until 2005, static analysis tools did not specifically model reflection. In 2005,
Livshits [LWL05] introduced new (unsound) assumptions and heuristics, which allow
static analysis tools to support more Java software. The recent manifesto defending
this “soundiness” [LSS+15] identified the question that we have answered in our
research: which parts of Java software can we already handle, and what challenge
should we tackle next?

Our results can be used for future static analysis research to prioritize which
assumptions and limitations to focus on first. Like the first publication proposing
assumptions [LWL05], wehave alsoproposednewassumptions for themost commonly
found violations of limitations.
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5.4 advancing reverse engineering

Based on the result of the research presented in this thesis, we identify the following
directions for future research:

• Automate the recovery of domain models from source code and possibly the
ui [BP12; HPM03], re-using the published models for measuring the quality of
the results, comparing to related work [AT10; RFJ08].

• Validate the domain models with domain experts and the original developers
of the applications they were extracted from. In this way we can understand if
our manual extraction was correct and why this view might differ from what
the developers intended.

• Develop new measures for comparing domain models, especially taking into
consideration the – sometimes transitive – relationship between concepts. For
our work in Chapter 2 we could not find a suitable measure of how different
the relations between two models are. This was further complicated by the
difficulty of the common case of different levels of abstraction in the models.

• Analyze the effect of using more fine grained metrics for defect (or effort)
prediction. It is common to predict buggy files or directories, even though some
of the metrics in the model are on a method or function level, our results in
Chapter 3 suggest the inevitable aggregation might hide interesting relations.

• Develop new static analysis tools with more – unsound – support for reflection
features such as dynamic proxies. Such that more real world programs can be
supported with a higher precision.

• Develop a new small benchmark for static analysis tools of complicated Java
patterns, and construct the expected result – for example call graphs – manually.
In this way, we can go beyond the more common quantitative – graph size –
comparison of static analysis tools.

• Extend ides with warnings about code that uses reflection in a hard to analyze
way. Such that software engineers can choose to write simpler reflective code.
This can improve the guarantees of a later run static analysis tasks such as
refactoring.

For many questions in software engineering more data helps. Analyzing large
corpora of software is time consuming and error prone. Yet large corpora provide
the opportunity to observe a wider spectrum of instances than possible with more
controlled experiments. The primary contribution of this thesis is applying empirical
studies on large corpora to answer open questions in software engineering research.

5.4 advancing reverse engineering 121





REFERENCES

[AT10] S. L. Abebe and P. Tonella. “Natural Language Parsing of Program Element Names for
Concept Extraction”. In: The 18th IEEE International Conference on Program Comprehension,

ICPC 2010, Braga, Minho, Portugal, June 30-July 2, 2010. IEEE Computer Society, 2010,
pp. 156–159. doi: 10.1109/ICPC.2010.29 (cit. on pp. 22, 42, 121).

[AT11] S. L. Abebe and P. Tonella. “Towards the Extraction of Domain Concepts from the
Identifiers”. In: 18th Working Conference on Reverse Engineering, WCRE 2011, Limerick,

Ireland, October 17-20, 2011. Ed. by M. Pinzger, D. Poshyvanyk, and J. Buckley. IEEE
Computer Society, 2011, pp. 77–86. doi: 10.1109/WCRE.2011.19 (cit. on pp. 22, 42).

[Abr10] A. Abran. “Cyclomatic Complexity Number: Analysis of its Design”. In: Software Metrics

and Software Metrology. Wiley-IEEE Computer Society Pr, 2010. Chap. 6, pp. 131–143.
isbn: 9780470597200 (cit. on pp. 10, 59, 83).

[ÅST+14] B. Åkerblom, J. Stendahl, M. Tumlin, and T. Wrigstad. “Tracing dynamic features in
python programs”. In: 11th Working Conference on Mining Software Repositories, MSR 2014,

Proceedings, May 31 - June 1, 2014, Hyderabad, India. Ed. by P. T. Devanbu, S. Kim, and
M. Pinzger. ACM, 2014, pp. 292–295. doi: 10.1145/2597073.2597103 (cit. on p. 111).

[AL12] K. Ali and O. Lhoták. “Application-Only Call Graph Construction”. In: ECOOP 2012 -

Object-Oriented Programming - 26th European Conference, Beĳing, China, June 11-16, 2012.

Proceedings. Ed. by J. Noble. Vol. 7313. Lecture Notes in Computer Science. Springer, 2012,
pp. 688–712. doi: 10.1007/978-3-642-31057-7_30 (cit. on p. 99).

[AL13] K. Ali and O. Lhoták. “Averroes: Whole-Program Analysis without the Whole Program”.
In: ECOOP 2013 - Object-Oriented Programming - 27th European Conference, Montpellier,

France, July 1-5, 2013. Proceedings. Ed. byG. Castagna. Vol. 7920. LectureNotes in Computer
Science. Springer, 2013, pp. 378–400. doi: 10.1007/978-3-642-39038-8_16 (cit. on pp. 99,
101).

[ARL+14] K. Ali, M. Rapoport, O. Lhoták, J. Dolby, and F. Tip. “Constructing Call Graphs of Scala
Programs”. In: ECOOP 2014 - Object-Oriented Programming - 28th European Conference,

Uppsala, Sweden, July 28 - August 1, 2014. Proceedings. Ed. by R. Jones. Vol. 8586. Lecture
Notes in Computer Science. Springer, 2014, pp. 54–79. doi: 10.1007/978-3-662-44202-9_3
(cit. on p. 99).

[AFJ+09] M. Alpuente, M.A. Feliú, C. Joubert, and A. Villanueva. “Defining Datalog in Rewriting
Logic”. In: Logic-Based Program Synthesis and Transformation, 19th International Symposium,

LOPSTR 2009, Coimbra, Portugal, September 2009, Revised Selected Papers. Ed. by D.D.
Schreye. Vol. 6037. Lecture Notes in Computer Science. Springer, 2009, pp. 188–204. doi:
10.1007/978-3-642-12592-8_14 (cit. on p. 99).

[AFJ+10] M.Alpuente,M.A. Feliú, C. Joubert, andA. Villanueva. “Datalog-Based ProgramAnalysis
with BES and RWL”. In:Datalog Reloaded - First International Workshop, Datalog 2010, Oxford,

UK, March 16-19, 2010. Revised Selected Papers. Ed. by O. de Moor, G. Gottlob, T. Furche,
and A. J. Sellers. Vol. 6702. Lecture Notes in Computer Science. Springer, 2010, pp. 1–20.
doi: 10.1007/978-3-642-24206-9_1 (cit. on p. 99).

[AM14] E. Andreasen and A. Møller. “Determinacy in static analysis for jQuery”. In: Proceedings of
the 2014 ACM International Conference on Object Oriented Programming Systems Languages &

Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014.
Ed. by A. P. Black and T.D.Millstein. ACM, 2014, pp. 17–31. doi: 10.1145/2660193.2660214
(cit. on pp. 112, 113).

123

https://doi.org/10.1109/ICPC.2010.29
https://doi.org/10.1109/WCRE.2011.19
https://doi.org/10.1145/2597073.2597103
https://doi.org/10.1007/978-3-642-31057-7_30
https://doi.org/10.1007/978-3-642-39038-8_16
https://doi.org/10.1007/978-3-662-44202-9_3
https://doi.org/10.1007/978-3-642-12592-8_14
https://doi.org/10.1007/978-3-642-24206-9_1
https://doi.org/10.1145/2660193.2660214


[ACC+02] G. Antoniol, G. Canfora, G. Casazza, A.D. Lucia, and E. Merlo. “Recovering Traceability
Links between Code and Documentation”. In: IEEE Transactions on Software Engineering

28.10 (2002), pp. 970–983. doi: 10.1109/TSE.2002.1041053 (cit. on p. 4).

[AHM+08] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh. “Using Static
Analysis to Find Bugs”. In: IEEE Software 25.5 (Sept. 2008), pp. 22–29. doi: 10.1109/ms.
2008.130 (cit. on p. 13).

[BP12] M. Bacíková and J. Porubän. “Analyzing stereotypes of creating graphical user interfaces”.
In: Central Europe Journal Computer Science 2.3 (2012), pp. 300–315 (cit. on pp. 42, 121).

[BCS+12] R. Baggen, J. P. Correia, K. Schill, and J. Visser. “Standardized code quality benchmarking
for improving software maintainability”. In: Software Quality Journal 20.2 (2012), pp. 287–
307. issn: 0963-9314. doi: 10.1007/s11219-011-9144-9 (cit. on p. 49).

[BBC+06] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek,
S. K. Rajamani, and A. Ustuner. “Thorough Static Analysis of Device Drivers”. In:
Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems

2006. EuroSys ’06. Leuven, Belgium: ACM, 2006, pp. 73–85. isbn: 1-59593-322-0. doi:
10.1145/1217935.1217943 (cit. on p. 13).

[BJM+15] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. d’Amorim, and M.D. Ernst. “Static
Analysis of Implicit Control Flow: Resolving Java Reflection and Android Intents (T)”.
In: 30th IEEE/ACM International Conference on Automated Software Engineering, ASE 2015,

Lincoln, NE, USA, November 9-13, 2015. Ed. by M. B. Cohen, L. Grunske, and M. Whalen.
IEEE Computer Society, 2015, pp. 669–679. doi: 10.1109/ASE.2015.69 (cit. on pp. 101,
104).

[Bas93] V. R. Basili. “The Experimental Paradigm in Software Engineering”. In: Proceedings of the
International Workshop on Experimental Software Engineering Issues: Critical Assessment and

Future Directions. London, UK, UK: Springer-Verlag, 1993, pp. 3–12. isbn: 3-540-57092-6
(cit. on p. 14).

[BP84] V. R. Basili and B. T. Perricone. “Software Errors and Complexity: An Empirical Investi-
gation”. In: Communications of the ACM 27.1 (1984), pp. 42–52. doi: 10.1145/69605.2085
(cit. on pp. 8, 49, 54, 81).

[BHK+15] B. Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M. J. Steindorfer, and J. J. Vinju.
“M3: A general model for code analytics in rascal”. In: 1st IEEE International Workshop on

Software Analytics, SWAN 2015, Montreal, QC, Canada, March 2, 2015. Ed. by O. Baysal and
L. Guerrouj. IEEE Computer Society, 2015, pp. 25–28. doi: 10.1109/SWAN.2015.7070485
(cit. on pp. 63, 105).

[BKS+09] M. Bianco, D. Kaneider, A. Sillitti, and G. Succi. “Fault-Proneness Estimation and Java
Migration: A Preliminary Case Study”. In: Proceedings of International Conference on

SOFTWARE, SERVICES & SEMANTIC TECHNOLOGIES. Demetra EOOD, 2009, pp. 124–
131. isbn: 978-954-9526-62-2 (cit. on pp. 57, 81).

[Big89] T. J. Biggerstaff. “Design Recovery for Maintenance and Reuse”. In: IEEE Computer 22.7
(July 1989). Ed. by R. S. Arnold, pp. 36–49. doi: 10.1109/2.30731 (cit. on pp. 4, 6, 22).

[BMW93] T. J. Biggerstaff, B.G. Mitbander, and D. E. Webster. “The Concept Assignment Problem
in Program Understanding”. In: Proceedings of the 15th International Conference on Software

Engineering, Baltimore, Maryland, USA, May 17-21, 1993. Ed. by V. R. Basili, R.A. DeMillo,
and T. Katayama. IEEE Computer Society / ACM Press, 1993, pp. 482–498 (cit. on pp. 4,
22).

124 references

https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1109/ms.2008.130
https://doi.org/10.1109/ms.2008.130
https://doi.org/10.1007/s11219-011-9144-9
https://doi.org/10.1145/1217935.1217943
https://doi.org/10.1109/ASE.2015.69
https://doi.org/10.1145/69605.2085
https://doi.org/10.1109/SWAN.2015.7070485
https://doi.org/10.1109/2.30731


[BGH+06] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khan, K. S. McKinley, R. Bentzur, A.
Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. L. Hosking, M. Jump,
H. B. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. “The DaCapo benchmarks: java benchmarking development and
analysis”. In: Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006,

Portland, Oregon, USA. Ed. by P. L. Tarr and W.R. Cook. ACM, 2006, pp. 169–190. doi:
10.1145/1167473.1167488 (cit. on p. 103).

[BGC15] S. Blackshear, A. Gendreau, and B. E. Chang. “Droidel: a general approach to Android
framework modeling”. In: Proceedings of the 4th ACM SIGPLAN International Workshop

on State Of the Art in Program Analysis, SOAP@PLDI 2015, Portland, OR, USA, June 15 - 17,

2015. Ed. by A. Møller and M. Naik. ACM, 2015, pp. 19–25. doi: 10.1145/2771284.2771288
(cit. on p. 100).

[BSS+11] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini. “Taming reflection: Aiding
static analysis in the presence of reflection and custom class loaders”. In: Proceedings of
the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI,

USA, May 21-28, 2011. Ed. by R.N. Taylor, H.C. Gall, and N. Medvidovic. ACM, 2011,
pp. 241–250. doi: 10.1145/1985793.1985827 (cit. on pp. 99, 100).

[BS09] M. Bravenboer and Y. Smaragdakis. “Strictly declarative specification of sophisticated
points-to analyses”. In: Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009, October 25-29,

2009, Orlando, Florida, USA. Ed. by S. Arora and G. T. Leavens. ACM, 2009, pp. 243–262.
doi: 10.1145/1640089.1640108 (cit. on pp. 101, 102).

[BKB+07] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, and M. Khalil. “Lessons from
applying the systematic literature review process within the software engineering
domain”. In: Journal of Systems and Software 80.4 (2007), pp. 571–583. doi: 10.1016/j.jss.
2006.07.009 (cit. on p. 99).

[BP79] T. Breusch and A. Pagan. “A Simple Test for Heteroscedasticity and Random Coefficient
Variation”. In: Econometrica 47.5 (Sept. 1979), pp. 1287–1294. issn: 00129682. doi:
10.2307/1911963 (cit. on p. 77).

[BS98] H. Bunke and K. Shearer. “A graph distance metric based on the maximal common
subgraph”. In: Pattern Recognition Letters 19.3-4 (1998), pp. 255–259 (cit. on p. 40).

[CRT+13] O. Callaú, R. Robbes, É. Tanter, and D. Röthlisberger. “How (and why) developers use
the dynamic features of programming languages: the case of smalltalk”. In: Empirical

Software Engineering 18.6 (2013), pp. 1156–1194. doi: 10.1007/s10664-012-9203-2 (cit. on
p. 111).

[CGM16] S. Calzavara, I. Grishchenko, and M. Maffei. “HornDroid: Practical and Sound Static
Analysis of Android Applications by SMT Solving”. In: IEEE European Symposium on

Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016. IEEE, 2016,
pp. 47–62. doi: 10.1109/EuroSP.2016.16 (cit. on p. 112).

[CFB+15] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and Y. Chen. “EdgeM-
iner: Automatically Detecting Implicit Control Flow Transitions through the Android
Framework”. In: 22nd Annual Network and Distributed System Security Symposium, NDSS

2015, San Diego, California, USA, February 8-11, 2015. The Internet Society, 2015 (cit. on
p. 101).

125

https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/2771284.2771288
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.2307/1911963
https://doi.org/10.1007/s10664-012-9203-2
https://doi.org/10.1109/EuroSP.2016.16


[CKS15] P. Capek, E. Kral, and R. Senkerik. “Towards an Empirical Analysis of .NET Framework
and C# Language Features’ Adoption”. In: 2015 International Conference on Computational

Science and Computational Intelligence (CSCI). IEEE, Dec. 2015, pp. 865–866. doi: 10.1109/
CSCI.2015.90 (cit. on p. 112).

[CF07] A. Capiluppi and J. Fernández-Ramil. “A model to predict anti-regressive effort in Open
Source Software”. In: 23rd IEEE International Conference on Software Maintenance (ICSM

2007), October 2-5, 2007, Paris, France. IEEE, 2007, pp. 194–203. doi: 10.1109/ICSM.2007.
4362632 (cit. on pp. 53, 56).

[CG07] M.M. Carey and G.C. Gannod. “Recovering Concepts from Source Code with Automated
Concept Identification”. In: 15th International Conference on Program Comprehension (ICPC

2007), June 26-29, 2007, Banff, Alberta, Canada. IEEE Computer Society, 2007, pp. 27–36.
doi: 10.1109/ICPC.2007.31 (cit. on pp. 22, 42).

[CLN+87] D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. “Scatterplot Matrix
Techniques for Large N”. In: Journal of the American Statistical Association 82.398 (1987),
pp. 424–436. issn: 01621459 (cit. on p. 66).

[CFP07] P. Centonze, R. J. Flynn, and M. Pistoia. “Combining Static and Dynamic Analysis for
Automatic Identification of Precise Access-Control Policies”. In: 23rd Annual Computer

Security Applications Conference (ACSAC 2007), December 10-14, 2007, Miami Beach, Florida,

USA. IEEE Computer Society, 2007, pp. 292–303. doi: 10.1109/ACSAC.2007.14 (cit. on
p. 101).

[CWT83] J.M. Chambers, B.K. William S. Cleveland, and P.A. Tukey. “Comparing Data Distri-
butions”. In: Graphical Methods for Data Analysis. New York: Chapman and Hall, 1983.
Chap. 2 (cit. on p. 74).

[Che76] P. P.-S. Chen. “The Entity-Relationship Model—Toward a Unified View of Data”. In:
ACM Transactions on Database Systems 1.1 (Mar. 1976), pp. 9–36. issn: 0362-5915. doi:
10.1145/320434.320440 (cit. on p. 6).

[CM04] B. Chess and G. McGraw. “Static Analysis for Security”. In: IEEE Security and Privacy 2.6
(Nov. 2004), pp. 76–79. issn: 1540-7993. doi: 10.1109/MSP.2004.111 (cit. on p. 13).

[CK94] S. R. Chidamber and C. F. Kemerer. “A metrics suite for object oriented design”. In: IEEE
Transactions on Software Engineering 20.6 (June 1994), pp. 476–493. issn: 0098-5589. doi:
10.1109/32.295895 (cit. on pp. 53, 83).

[CC90] E. J. Chikofsky and J.H. Cross. “Reverse Engineering and Design Recovery: A Taxonomy”.
In: IEEE Software 7.1 (1990), pp. 13–17 (cit. on p. 3).

[CSH06] N. Choi, I.-Y. Song, and H. Han. “A survey on ontology mapping”. In: SIGMOD Rec. 35.3
(Sept. 2006), pp. 34–41. issn: 0163-5808. doi: 10.1145/1168092.1168097 (cit. on p. 42).

[CMS03] A. S. Christensen, A. Møller, and M. I. Schwartzbach. “Precise Analysis of String Expres-
sions”. In: Static Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June

11-13, 2003, Proceedings. Ed. by R. Cousot. Vol. 2694. Lecture Notes in Computer Science.
Springer, 2003, pp. 1–18. doi: 10.1007/3-540-44898-5_1 (cit. on pp. 97, 99, 101).

[CJ14] R. Coleman andM.A. Johnson. “A Study of Scala Repositories onGithub”. In: International
Journal of Advanced Computer Science and Applications 5.7 (2014), pp. 141–148. doi: 10.
14569/IJACSA.2014.050721 (cit. on p. 85).

[CDS86] S.D. Conte, H. E. Dunsmore, and V.Y. Shen. Software Engineering Metrics and Models.
Redwood City, CA, USA: Benjamin-Cummings Publishing Co., Inc., 1986. isbn: 0-8053-
2162-4 (cit. on pp. 10, 51).

126 references

https://doi.org/10.1109/CSCI.2015.90
https://doi.org/10.1109/CSCI.2015.90
https://doi.org/10.1109/ICSM.2007.4362632
https://doi.org/10.1109/ICSM.2007.4362632
https://doi.org/10.1109/ICPC.2007.31
https://doi.org/10.1109/ACSAC.2007.14
https://doi.org/10.1145/320434.320440
https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1109/32.295895
https://doi.org/10.1145/1168092.1168097
https://doi.org/10.1007/3-540-44898-5_1
https://doi.org/10.14569/IJACSA.2014.050721
https://doi.org/10.14569/IJACSA.2014.050721


[CC94] B. Curtis and A.D. Carleton. “Seven±two software measurement conundrums”. In:
Proceedings of the 1994 IEEE 2nd International Software Metrics Symposium, October 24-26,

1994, London, England, UK. IEEE, 1994, pp. 96–105. doi: 10.1109/METRIC.1994.344224
(cit. on pp. 51, 58).

[CSM79] B. Curtis, S. B. Sheppard, and P. Milliman. “Third Time Charm: Stronger Prediction of
Programmer Performance by Software Complexity Metrics”. In: Proceedings of the 4th
International Conference on Software Engineering. ICSE ’79. Munich, Germany: IEEE Press,
1979, pp. 356–360 (cit. on pp. 54, 80).

[Dan13] A. Danial. Count Lines of Code Tool. 2013. url: http://cloc.sourceforge.net (visited on
02/01/2013) (cit. on p. 30).

[DMR94] J. DeBaud, B. Moopen, and S. Rugaber. “Domain Analysis and Reverse Engineering”.
In: Proceedings of the International Conference on Software Maintenance, ICSM 1994, Victoria,

BC, Canada, September 1994. Ed. by H.A. Müller and M. Georges. IEEE Computer Society,
1994, pp. 326–335. doi: 10.1109/ICSM.1994.336762 (cit. on p. 43).

[DDL99] S. Demeyer, S. Ducasse, andM. Lanza. “Ahybrid reverse engineering approach combining
metrics and program visualisation”. In: Sixth Working Conference on Reverse Engineering.
Institute of Electrical and Electronics Engineers (IEEE), Oct. 1999, pp. 175–186. doi:
10.1109/WCRE.1999.806958 (cit. on p. 8).

[DRG+13] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. “Feature location in source code: a
taxonomy and survey”. In: Journal of Software: Evolution and Process 25.1 (2013), pp. 53–95.
issn: 2047-7481. doi: 10.1002/smr.567 (cit. on p. 4).

[DRS07] B. Dufour, B. G. Ryder, andG. Sevitsky. “Blended analysis for performance understanding
of framework-based applications”. In: Proceedings of the ACM/SIGSOFT International

Symposium on Software Testing and Analysis, ISSTA 2007, London, UK, July 9-12, 2007. Ed. by
D. S. Rosenblumand S.G. Elbaum.ACM, 2007, pp. 118–128. doi: 10.1145/1273463.1273480
(cit. on p. 100).

[DRN+14] R. Dyer, H. Rajan, H.A. Nguyen, and T.N. Nguyen. “Mining billions of AST nodes
to study actual and potential usage of Java language features”. In: 36th International

Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014.
Ed. by P. Jalote, L. C. Briand, and A. van der Hoek. ACM, 2014, pp. 779–790. doi:
10.1145/2568225.2568295 (cit. on p. 112).

[EN84] S. E. Edgell and S.M. Noon. “Effect of violation of normality on the t test of the correlation
coefficient.” In: Psychological Bulletin 95.3 (1984), pp. 576–583 (cit. on p. 67).

[EKS03] T. Eisenbarth, R. Koschke, and D. Simon. “Locating Features in Source Code”. In: IEEE
Transactions on Software Engineering 29.3 (2003), pp. 210–224. doi: 10.1109/TSE.2003.
1183929 (cit. on pp. 22, 43).

[EBG+01] K. E. Emam, S. Benlarbi, N. Goel, and S.N. Rai. “The Confounding Effect of Class Size on
the Validity of Object-Oriented Metrics”. In: IEEE Transactions on Software Engineering

27.7 (2001), pp. 630–650. doi: 10.1109/32.935855 (cit. on pp. 8, 56, 81, 119).

[EJM+14] M.D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner, K. Koscher, P. Barros,
R. Bhoraskar, S. Han, P. Vines, and E. X. Wu. “Collaborative Verification of Information
Flow for a High-Assurance App Store”. In: Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014. Ed. by
G. Ahn, M. Yung, and N. Li. ACM, 2014, pp. 1092–1104. doi: 10.1145/2660267.2660343
(cit. on p. 101).

127

https://doi.org/10.1109/METRIC.1994.344224
http://cloc.sourceforge.net
https://doi.org/10.1109/ICSM.1994.336762
https://doi.org/10.1109/WCRE.1999.806958
https://doi.org/10.1002/smr.567
https://doi.org/10.1145/1273463.1273480
https://doi.org/10.1145/2568225.2568295
https://doi.org/10.1109/TSE.2003.1183929
https://doi.org/10.1109/TSE.2003.1183929
https://doi.org/10.1109/32.935855
https://doi.org/10.1145/2660267.2660343


[Eva03] E. Evans. Domain-Driven Design: Tacking Complexity In the Heart of Software. Boston, MA,
USA: Addison-Wesley Longman Publishing Corporation, Inc., 2003. isbn: 0321125215
(cit. on pp. 6, 7).

[FCH+11] A. P. Felt, E. Chin, S. Hanna, D. Song, and D.Wagner. “Android permissions demystified”.
In: Proceedings of the 18th ACM Conference on Computer and Communications Security,

CCS 2011, Chicago, Illinois, USA, October 17-21, 2011. Ed. by Y. Chen, G. Danezis, and
V. Shmatikov. ACM, 2011, pp. 627–638. doi: 10.1145/2046707.2046779 (cit. on pp. 97, 101,
102, 104).

[FWL+13] C. Feng,H.Wang,N. Lu, andX.M. Tu. “Log transformation: application and interpretation
in biomedical research”. In: Statistics in Medicine 32.2 (July 2013), pp. 230–239. issn:
1097-0258. doi: 10.1002/sim.5486 (cit. on p. 82).

[FO00] N. Fenton and N. Ohlsson. “Quantitative analysis of faults and failures in a complex
software system”. In: Software Engineering, IEEE Transactions on 26.8 (Aug. 2000), pp. 797–
814. issn: 0098-5589. doi: 10.1109/32.879815 (cit. on pp. 8, 50, 55, 81).

[FB14] N. E. Fenton and J. Bieman. Software Metrics – A Rigorous and Practical Approach (Third ed.)

CRC Press, 2014. isbn: 978-1-4398-3823-5 (cit. on pp. 8, 9).

[FF79] A. R. Feuer and E. B. Fowlkes. “Some Results from an Empirical Study of Computer
Software”. In: Proceedings of the 4th International Conference on Software Engineering. ICSE
’79. Munich, Germany: IEEE Press, 1979, pp. 351–355 (cit. on pp. 8, 49, 54, 60, 67, 71, 80,
82).

[Fin10] A. Fink.Conducting Research Literature Reviews: From the Internet to Paper. SAGEPublications,
2010. isbn: 9781412971898 (cit. on p. 99).

[FD+15] S. Fink, J. Dolby, et al. T.J. Watson Libraries for Analysis (WALA). 2015. url: http://wala.
sourceforge.net/wiki/index.php/Main_Page (visited on 12/10/2015) (cit. on pp. 99, 101).

[Gab13] M.A. F. Gabaldón. “Logic-based techniques for program analysis and specification
synthesis”. PhD thesis. Universitat Politècnica de València, Sept. 2013 (cit. on p. 101).

[GK91] G.K. Gill and C. F. Kemerer. “Cyclomatic Complexity Density and Software Maintenance
Productivity”. In: IEEE Transactions on Software Engineering 17.12 (Dec. 1991), pp. 1284–
1288. issn: 0098-5589. doi: 10.1109/32.106988 (cit. on pp. 55, 81).

[Gla94] R. L. Glass. “The Software-Research Crisis”. In: IEEE Software 11.6 (Nov. 1994), pp. 42–47.
issn: 0740-7459. doi: 10.1109/52.329400 (cit. on p. 14).

[GKP+15] M. I. Gordon, D. Kim, J.H. Perkins, L. Gilham, N. Nguyen, andM.C. Rinard. “Information
Flow Analysis of Android Applications in DroidSafe”. In: 22nd Annual Network and

Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, February

8-11, 2015. The Internet Society, 2015 (cit. on pp. 99, 112).

[GBB90] N. Gorla, A. Benander, and B.A. Benander. “Debugging Effort Estimation Using Software
Metrics”. In: IEEE Transactions on Software Engineering 16.2 (1990), pp. 223–231. issn:
0098-5589 (cit. on pp. 55, 80).

[GKM+00] T. Graves, A. Karr, J. Marron, and H. Siy. “Predicting fault incidence using software
change history”. In: IEEE Transactions on Software Engineering 26.7 (July 2000), pp. 653–661.
issn: 0098-5589. doi: 10.1109/32.859533 (cit. on pp. 55, 81).

[GMD+10] M. Grechanik, C.McMillan, L. DeFerrari, M. Comi, S. Crespi, D. Poshyvanyk, C. Fu, Q. Xie,
and C. Ghezzi. “An Empirical Investigation into a Large-scale Java Open Source Code
Repository”. In: Proceedings of the 2010 ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement. Bolzano-Bozen, Italy: ACM, 2010, 11:1–11:10. isbn:
978-1-4503-0039-1. doi: 10.1145/1852786.1852801 (cit. on pp. 70, 81).

128 references

https://doi.org/10.1145/2046707.2046779
https://doi.org/10.1002/sim.5486
https://doi.org/10.1109/32.879815
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://doi.org/10.1109/32.106988
https://doi.org/10.1109/52.329400
https://doi.org/10.1109/32.859533
https://doi.org/10.1145/1852786.1852801


[HYG+13] J. Han, Q. Yan, D. Gao, J. Zhou, and R.H. Deng. “Comparing Mobile Privacy Protection
through Cross-Platform Applications”. In: 20th Annual Network and Distributed System

Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013. The
Internet Society, 2013 (cit. on pp. 101, 104).

[HKV07] I. Heitlager, T. Kuipers, and J. Visser. “A Practical Model for Measuring Maintainability”.
In: Quality of Information and Communications Technology, 6th International Conference on

the Quality of Information and Communications Technology, QUATIC 2007, Lisbon, Portugal,

September 12-14, 2007, Proceedings. Ed. by R. J. Machado, F. B. e Abreu, and P. R. da Cunha.
IEEE Computer Society, 2007, pp. 30–39. doi: 10.1109/QUATIC.2007.8 (cit. on pp. 8, 49,
50).

[HS90] S.M. Henry and C. Selig. “Predicting Source-Code Complexity at the Design Stage”. In:
IEEE Software 7.2 (1990), pp. 36–44. doi: 10.1109/52.50772 (cit. on pp. 55, 61, 75, 81).

[HGR07] I. Herraiz, J.M. Gonzalez-Barahona, and G. Robles. “Towards a Theoretical Model for
Software Growth”. In: Proceedings of the Fourth International Workshop on Mining Software

Repositories. MSR ’07. Washington, DC, USA: IEEE Computer Society, 2007, 21:1–21:8.
isbn: 0-7695-2950-X. doi: 10.1109/MSR.2007.31 (cit. on pp. 56, 60, 61, 67, 71, 75, 81, 82).

[HH10] I. Herraiz and A. E. Hassan. “Beyond lines of code: Dowe needmore complexity metrics?”
In:Making Software What Really Works, andWhyWe Believe It. O’ReillyMedia, 2010. Chap. 8,
pp. 126–141 (cit. on pp. 57, 60, 61, 65, 67, 71, 75, 81, 82, 85).

[Hil15a] M. Hills. “Evolution of dynamic feature usage in PHP”. In: 22nd IEEE International

Conference on Software Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC,

Canada, March 2-6, 2015. Ed. by Y. Guéhéneuc, B. Adams, and A. Serebrenik. IEEE
Computer Society, 2015, pp. 525–529. doi: 10.1109/SANER.2015.7081870 (cit. on pp. 107,
112).

[Hil15b] M. Hills. “Variable Feature Usage Patterns in PHP”. In: 30th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13,

2015. Ed. by M.B. Cohen, L. Grunske, and M. Whalen. IEEE Computer Society, 2015,
pp. 563–573. doi: 10.1109/ASE.2015.72 (cit. on p. 111).

[HKV13] M. Hills, P. Klint, and J. J. Vinju. “An empirical study of PHP feature usage: a static
analysis perspective”. In: International Symposium on Software Testing and Analysis, ISSTA

’13, Lugano, Switzerland, July 15-20, 2013. Ed. by M. Pezzè and M. Harman. ACM, 2013,
pp. 325–335. doi: 10.1145/2483760.2483786 (cit. on pp. 107, 111).

[HGH08] A. Hindle, M.W. Godfrey, and R.C. Holt. “Reading Beside the Lines: Indentation as
a Proxy for Complexity Metric”. In: The 16th IEEE International Conference on Program

Comprehension, ICPC 2008, Amsterdam, The Netherlands, June 10-13, 2008. Ed. by R. L.
Krikhaar, R. Lämmel, and C. Verhoef. IEEE Computer Society, 2008, pp. 133–142. doi:
10.1109/ICPC.2008.13 (cit. on pp. 53, 56).

[HvDD+07] M. Hirzel, D. von Dincklage, A. Diwan, and M. Hind. “Fast online pointer analysis”. In:
ACMTransactions on Programming Languages and Systems 29.2 (Apr. 2007). issn: 0164-0925.
doi: 10.1145/1216374.1216379 (cit. on p. 100).

[HH09] A. Holkner and J. Harland. “Evaluating the dynamic behaviour of Python applications”.
In: Computer Science 2009, Thirty-Second Australasian Computer Science Conference (ACSC

2009), Wellington, New Zealand, January 19-23, 2009, Proceedings. Ed. by B. Mans. Vol. 91.
CRPIT. Australian Computer Society, 2009, pp. 17–25 (cit. on p. 111).

129

https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1109/52.50772
https://doi.org/10.1109/MSR.2007.31
https://doi.org/10.1109/SANER.2015.7081870
https://doi.org/10.1109/ASE.2015.72
https://doi.org/10.1145/2483760.2483786
https://doi.org/10.1109/ICPC.2008.13
https://doi.org/10.1145/1216374.1216379


[HPM03] I. Hsi, C. Potts, and M.M. Moore. “Ontological Excavation: Unearthing the core concepts
of the application”. In: 10th Working Conference on Reverse Engineering, WCRE 2003, Victoria,

Canada, November 13-16, 2003. Ed. by A. van Deursen, E. Stroulia, and M.D. Storey. IEEE
Computer Society, 2003, pp. 345–352. doi: 10.1109/WCRE.2003.1287265 (cit. on pp. 42,
121).

[HDM14] W. Huang, Y. Dong, and A. Milanova. “Type-Based Taint Analysis for Java Web Applica-
tions”. In: Fundamental Approaches to Software Engineering - 17th International Conference,

FASE 2014, Held as Part of the European Joint Conferences on Theory and Practice of Soft-

ware, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings. Ed. by S. Gnesi and
A. Rensink. Vol. 8411. Lecture Notes in Computer Science. Springer, 2014, pp. 140–154.
doi: 10.1007/978-3-642-54804-8_10 (cit. on p. 99).

[Hun02] S.Hunston.Corpora inApplied Linguistics. Cambridge applied linguistics series. Cambridge
University Press, 2002. isbn: 9783125340503 (cit. on p. 103).

[Ins08] P.M. Institute, ed. A Guide to the Project Management Body of Knowledge. 4th. Project
Management Institute, 2008. isbn: 9781933890517 (cit. on pp. 7, 24, 27).

[IC14] M. Islam and C. Csallner. “Generating Test Cases for Programs that Are Coded against
Interfaces and Annotations”. In:ACM Transactions on Software Engineering andMethodology

23.3 (2014), p. 21. doi: 10.1145/2544135 (cit. on p. 100).
[JHS+09] G. Jay, J. E. Hale, R. K. Smith, D. P. Hale, N.A. Kraft, and C.Ward. “Cyclomatic Complexity

and Lines of Code: Empirical Evidence of a Stable Linear Relationship”. In: Journal of
Software Engineering andApplications2.3 (2009), pp. 137–143. doi: 10.4236/jsea.2009.23020
(cit. on pp. 57, 60, 67, 71, 81, 82).

[JMF14] A. Jbara, A. Matan, and D.G. Feitelson. “High-MCC Functions in the Linux Kernel”.
In: Empirical Software Engineering 19.5 (2014), pp. 1261–1298. issn: 1382-3256. doi:
10.1007/s10664-013-9275-7 (cit. on pp. 8, 49, 53, 57, 75, 80).

[JG98] D.N. Joanes and C.A. Gill. “Comparing measures of sample skewness and kurtosis”. In:
Journal of the Royal Statistical Society: Series D (The Statistician) 47.1 (1998), pp. 183–189.
doi: 10.1111/1467-9884.00122 (cit. on p. 68).

[KWN05] U. Kelter, J. Wehren, and J. Niere. “A Generic Difference Algorithm for UMLModels”. In:
Software Engineering 2005. Ed. by P. Liggesmeyer, K. Pohl, and M. Goedicke. Vol. 64. LNI.
GI, 2005, pp. 105–116 (cit. on p. 40).

[KS97] C. F. Kemerer and S.A. Slaughter. “Determinants of Software Maintenance Profiles: An
Empirical Investigation”. In: Journal of Software Maintenance 9.4 (July 1997), pp. 235–251.
issn: 1040-550X (cit. on pp. 55, 80).

[KAD+14] F. Khomh, B. Adams, T. Dhaliwal, and Y. Zou. “Understanding the impact of rapid
releases on software quality”. In: Empirical Software Engineering 20.2 (2014), pp. 336–373.
issn: 1382-3256. doi: 10.1007/s10664-014-9308-x (cit. on p. 87).

[KYY+12] J. Kim, Y. Yoon, K. Yi, and J. Shin. “ScanDal: Static Analyzer for Detecting Privacy Leaks
in Android Applications”. In: MoST 2012: Mobile Security Technologies. Ed. by H. Chen,
L. Koved, and D. S. Wallach. Los Alamitos, CA, USA: IEEE, May 2012 (cit. on p. 101).

[KP87] B. Kitchenham and L. Pickard. “Towards a constructive quality model. Part 2: Statistical
techniques for modelling software quality in the ESPRIT REQUEST project”. In: Software
Engineering Journal 2.4 (July 1987), pp. 114–126. issn: 0268-6961. doi: 10.1049/sej.1987.
0015 (cit. on pp. 55, 81).

[KC07] B. Kitchenham and S. Charters. Guidelines for performing Systematic Literature Reviews in

Software Engineering. Tech. rep. EBSE 2007-001. Keele University and Durham University
Joint Report, 2007 (cit. on pp. 52, 97, 99).

130 references

https://doi.org/10.1109/WCRE.2003.1287265
https://doi.org/10.1007/978-3-642-54804-8_10
https://doi.org/10.1145/2544135
https://doi.org/10.4236/jsea.2009.23020
https://doi.org/10.1007/s10664-013-9275-7
https://doi.org/10.1111/1467-9884.00122
https://doi.org/10.1007/s10664-014-9308-x
https://doi.org/10.1049/sej.1987.0015
https://doi.org/10.1049/sej.1987.0015


[KMT06] B.Kitchenham, E.Mendes, andG.H. Travassos. “ASystematic ReviewofCross- vs.Within-
Company Cost Estimation Studies”. In: Proceedings of the 10th International Conference on
Evaluation and Assessment in Software Engineering. EASE’06. UK: British Computer Society,
2006, pp. 81–90 (cit. on p. 97).

[KLV13] P. Klint, D. Landman, and J. J. Vinju. “Exploring the Limits of Domain Model Recovery”.
In: 2013 IEEE International Conference on Software Maintenance, Eindhoven, The Netherlands,

September 22-28, 2013. IEEE Computer Society, Sept. 2013, pp. 120–129. doi: 10.1109/ICSM.
2013.23 (cit. on pp. 16, 21).

[KvdSV09] P. Klint, T. van der Storm, and J. J. Vinju. “RASCAL: A Domain Specific Language for
Source Code Analysis and Manipulation”. In: Ninth IEEE International Working Conference

on Source Code Analysis andManipulation, SCAM 2009, Edmonton, Alberta, Canada, September

20-21, 2009. IEEE Computer Society, 2009, pp. 168–177. doi: 10.1109/SCAM.2009.28 (cit. on
pp. 13, 28, 63, 107).

[KDG07] A. Kuhn, S. Ducasse, and T. Gîrba. “Semantic clustering: Identifying topics in source
code”. In: Information & Software Technology 49.3 (2007), pp. 230–243. doi: 10.1016/j.
infsof.2006.10.017 (cit. on pp. 22, 42).

[KLN14] J. Kurs, M. Lungu, and O. Nierstrasz. “Bounded Seas - - Island Parsing Without Ship-
wrecks”. In: Software Language Engineering - 7th International Conference, SLE 2014, Västerås,

Sweden, September 15-16, 2014. Proceedings. Ed. by B. Combemale, D. J. Pearce, O. Barais,
and J. J. Vinju. Vol. 8706. Lecture Notes in Computer Science. Springer, 2014, pp. 62–81.
doi: 10.1007/978-3-319-11245-9_4 (cit. on p. 105).

[Kvå85] T.O. Kvålseth. “Cautionary Note about R2”. In: The American Statistician 39.4 (1985),
pp. 279–285. issn: 00031305 (cit. on pp. 60, 82).

[Lan13] D. Landman. cwi-swat/project-planning-domain. Apr. 2013. doi: 10.5281/zenodo.208212
(cit. on pp. 17, 18, 24, 118).

[Lan15a] D. Landman. A Curated Corpus of Java Source Code based on Sourcerer (2015). Feb. 2015. doi:
10.5281/zenodo.208213 (cit. on pp. 17, 62).

[Lan15b] D. Landman. A Large Corpus of C Source Code based on Gentoo packages. Feb. 2015. doi:
10.5281/zenodo.208215 (cit. on pp. 17, 63).

[Lan15c] D. Landman. cwi-swat/jsep-sloc-versus-cc. Feb. 2015. doi: 10.5281/zenodo.293795 (cit. on
pp. 18, 85).

[Lan16a] D. Landman. A corpus of Java projects representing the 2012 Ohloh universe. Mar. 2016. doi:
10.5281/zenodo.162926 (cit. on pp. 18, 92, 105).

[Lan16b] D. Landman. cwi-swat/static-analysis-reflection. Oct. 2016. doi: 10.5281/zenodo.163326
(cit. on pp. 18, 107).

[LSB+16] D. Landman, A. Serebrenik, E. Bouwers, and J. J. Vinju. “Empirical analysis of the
relationship between CC and SLOC in a large corpus of Java methods and C functions”.
In: Journal of Software: Evolution and Process 28.7 (2016), pp. 589–618. doi: 10.1002/smr.1760
(cit. on pp. 16, 49, 107).

[LSV14] D. Landman, A. Serebrenik, and J. J. Vinju. “Empirical Analysis of the Relationship
between CC and SLOC in a Large Corpus of Java Methods”. In: 30th IEEE International

Conference on Software Maintenance and Evolution, Victoria, BC, Canada, September 29 -

October 3, 2014. IEEE Computer Society, 2014, pp. 221–230. doi: 10.1109/ICSME.2014.44
(cit. on pp. 16, 49).

131

https://doi.org/10.1109/ICSM.2013.23
https://doi.org/10.1109/ICSM.2013.23
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1016/j.infsof.2006.10.017
https://doi.org/10.1016/j.infsof.2006.10.017
https://doi.org/10.1007/978-3-319-11245-9_4
https://doi.org/10.5281/zenodo.208212
https://doi.org/10.5281/zenodo.208213
https://doi.org/10.5281/zenodo.208215
https://doi.org/10.5281/zenodo.293795
https://doi.org/10.5281/zenodo.162926
https://doi.org/10.5281/zenodo.163326
https://doi.org/10.1002/smr.1760
https://doi.org/10.1109/ICSME.2014.44


[LSV17] D. Landman, A. Serebrenik, and J. J. Vinju. “Challenges for static analysis of Java reflection:
literature review and empirical study”. In: Proceedings of the 39th International Conference on
Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. Ed. by S. Uchitel,
A. Orso, and M. P. Robillard. IEEE, 2017, pp. 507–518. doi: 10.1109/ICSE.2017.53 (cit. on
pp. 17, 91).

[Leh80] M. Lehman. “Programs, life cycles, and laws of software evolution”. In: Proceedings of the
IEEE 68.9 (1980), pp. 1060–1076. doi: 10.1109/proc.1980.11805 (cit. on p. 3).

[LSF03] T. . Lethbridge, J. Singer, and A. Forward. “How software engineers use documentation:
the state of the practice”. In: IEEE Software 20.6 (Nov. 2003), pp. 35–39. doi: 10.1109/ms.
2003.1241364 (cit. on p. 6).

[LH89] J. Lewis and S. Henry. “A methodology for integrating maintainability using software
metrics”. In: Proceedings of Conference on Software Maintenance-1989. IEEE, Oct. 1989,
pp. 32–39. doi: 10.1109/ICSM.1989.65191 (cit. on pp. 55, 80).

[LH03] O. Lhoták and L. J. Hendren. “Scaling Java Points-to Analysis Using SPARK”. In: Compiler

Construction, 12th International Conference, CC 2003, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003,

Proceedings. Ed. by G. Hedin. Vol. 2622. Lecture Notes in Computer Science. Springer,
2003, pp. 153–169. doi: 10.1007/3-540-36579-6_12 (cit. on pp. 99, 100).

[LH08] O. Lhoták and L. J. Hendren. “Evaluating the benefits of context-sensitive points-to
analysis using a BDD-based implementation”. In:ACMTransactions on Software Engineering

and Methodology 18.1 (2008). doi: 10.1145/1391984.1391987 (cit. on p. 101).

[LC87] H. Li and W. Cheung. “An Empirical Study of Software Metrics”. In: IEEE Transactions on

Software Engineering SE-13.6 (June 1987), pp. 697–708. issn: 0098-5589. doi: 10.1109/TSE.
1987.233475 (cit. on pp. 54, 81).

[LBO+16] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein. “DroidRA: taming reflection to support
whole-program analysis of Android apps”. In: Proceedings of the 25th International Sympo-

sium on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016. Ed.
byA. Zeller andA.Roychoudhury.ACM, 2016, pp. 318–329. doi: 10.1145/2931037.2931044
(cit. on p. 112).

[LTS+14] Y. Li, T. Tan, Y. Sui, and J. Xue. “Self-inferencing Reflection Resolution for Java”. In:
ECOOP 2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Sweden,

July 28 - August 1, 2014. Proceedings. Ed. by R. Jones. Vol. 8586. Lecture Notes in Computer
Science. Springer, 2014, pp. 27–53. doi: 10.1007/978-3-662-44202-9_2 (cit. on pp. 101,
102, 104).

[LTX15] Y. Li, T. Tan, and J. Xue. “Effective Soundness-Guided Reflection Analysis”. In: Static
Analysis - 22nd International Symposium, SAS 2015, Saint-Malo, France, September 9-11, 2015,

Proceedings. Ed. by S. Blazy and T. Jensen. Vol. 9291. Lecture Notes in Computer Science.
Springer, 2015, pp. 162–180. doi: 10.1007/978-3-662-48288-9_10 (cit. on p. 101).

[LLL08] R. Lincke, J. Lundberg, andW. Löwe. “Comparing SoftwareMetrics Tools”. In: Proceedings
of the 2008 International Symposium on Software Testing and Analysis. ISSTA ’08. Seattle, WA,
USA: ACM, 2008, pp. 131–142. isbn: 978-1-60558-050-0. doi: 10.1145/1390630.1390648
(cit. on p. 51).

[LV89] R.K. Lind and K. Vairavan. “An Experimental Investigation of Software Metrics and
Their Relationship to Software Development Effort”. In: IEEE Transactions on Software

Engineering 15.5 (May 1989), pp. 649–653. issn: 0098-5589. doi: 10.1109/32.24715 (cit. on
pp. 55, 80).

132 references

https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/proc.1980.11805
https://doi.org/10.1109/ms.2003.1241364
https://doi.org/10.1109/ms.2003.1241364
https://doi.org/10.1109/ICSM.1989.65191
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1109/TSE.1987.233475
https://doi.org/10.1109/TSE.1987.233475
https://doi.org/10.1145/2931037.2931044
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1007/978-3-662-48288-9_10
https://doi.org/10.1145/1390630.1390648
https://doi.org/10.1109/32.24715


[LBN+09] E. Linstead, S. K. Bajracharya, T. C. Ngo, P. Rigor, C.V. Lopes, and P. Baldi. “Sourcerer:
mining and searching internet-scale software repositories”. In:Data Mining and Knowledge

Discovery 18.2 (2009), pp. 300–336. doi: 10.1007/s10618-008-0118-x (cit. on pp. 15, 17, 50,
61).

[LRB+07] E. Linstead, P. Rigor, S. K. Bajracharya, C.V. Lopes, and P. Baldi. “Mining concepts from
code with probabilistic topic models”. In: 22nd IEEE/ACM International Conference on

Automated Software Engineering (ASE 2007), November 5-9, 2007, Atlanta, Georgia, USA.
Ed. by R. E.K. Stirewalt, A. Egyed, and B. Fischer. ACM, 2007, pp. 461–464. doi:
10.1145/1321631.1321709 (cit. on pp. 22, 42).

[LSS+15] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J.N. Amaral, B.-Y. E. Chang, S. Z.
Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis. “In Defense of Soundiness: A
Manifesto”. In: Communications of the ACM 58.2 (Jan. 2015), pp. 44–46. issn: 0001-0782.
doi: 10.1145/2644805 (cit. on pp. 92, 120).

[LWL05] V. B. Livshits, J. Whaley, and M. S. Lam. “Reflection Analysis for Java”. In: Programming

Languages and Systems, Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5,

2005, Proceedings. Ed. by K. Yi. Vol. 3780. Lecture Notes in Computer Science. Springer,
2005, pp. 139–160. doi: 10.1007/11575467_11 (cit. on pp. 13, 92, 101, 102, 104, 120).

[Loe90] C. Loehle. “Proper Statistical Treatment of Species-Area Data”. In: Oikos 57.1 (1990),
pp. 143–145. issn: 00301299 (cit. on pp. 60, 82).

[MHL+10] Y.-T. Ma, K.-Q. He, B. Li, J. Liu, and X.-Y. Zhou. “A Hybrid Set of Complexity Metrics
for Large-Scale Object-Oriented Software Systems”. In: Journal of Computer Science and

Technology 25.6 (2010), pp. 1184–1201. issn: 1000-9000. doi: 10.1007/s11390-010-9398-x
(cit. on pp. 57, 81).

[MS11] R. Malhotra and Y. Singh. “On the Applicability of Machine Learning Techniques for
Object Oriented Software Fault Prediction”. In: Software Engineering: An International

Journal 1 (1 2011), pp. 24–37 (cit. on pp. 53, 54, 57, 81).

[Man98] W.G. Manning. “The logged dependent variable, heteroscedasticity, and the retransfor-
mation problem”. In: Journal of Health Economics 17.3 (1998), pp. 283–295. issn: 0167-6296.
doi: 10.1016/S0167-6296(98)00025-3 (cit. on p. 82).

[MPY+05] C. L. Martín, J. L. Pasquier, C. Yáñez-Márquez, and A. Gutierrez-Tornes. “Software
Development Effort Estimation Using Fuzzy Logic: A Case Study”. In: Sixth Mexican

International Conference on Computer Science (ENC 2005), 26-30 September 2005, Puebla,

Mexico. IEEE Computer Society, 2005, pp. 113–120. doi: 10.1109/ENC.2005.47 (cit. on
pp. 56, 81).

[McC76] T. J. McCabe. “A Complexity Measure”. In: IEEE Transactions Software Engineering 2.4
(1976), pp. 308–320 (cit. on pp. 10, 51, 52, 70, 85).

[MT04] T. Mens and T. Tourwe. “A survey of software refactoring”. In: IEEE Transactions on

Software Engineering 30.2 (Feb. 2004), pp. 126–139. doi: 10.1109/tse.2004.1265817 (cit. on
p. 13).

[MHS05] M. Mernik, J. Heering, and A.M. Sloane. “When and how to develop domain-specific
languages”. In: ACM Computing Surveys 37.4 (2005), pp. 316–344. doi: 10.1145/1118890.
1118892 (cit. on p. 21).

[Moo01] L. Moonen. “Generating Robust Parsers Using Island Grammars”. In: Proceedings of the
Eighth Working Conference on Reverse Engineering, WCRE’01, Stuttgart, Germany, October 2-5,

2001. Ed. by E. Burd, P. Aiken, and R. Koschke. IEEE Computer Society, 2001, p. 13. doi:
10.1109/WCRE.2001.957806 (cit. on p. 105).

133

https://doi.org/10.1007/s10618-008-0118-x
https://doi.org/10.1145/1321631.1321709
https://doi.org/10.1145/2644805
https://doi.org/10.1007/11575467_11
https://doi.org/10.1007/s11390-010-9398-x
https://doi.org/10.1016/S0167-6296(98)00025-3
https://doi.org/10.1109/ENC.2005.47
https://doi.org/10.1109/tse.2004.1265817
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1109/WCRE.2001.957806


[Moo98] T. T. Moores. “Applying complexity measures to rule-based Prolog programs”. In: Journal
of Systems and Software 44.1 (1998), pp. 45–52. doi: 10.1016/S0164-1212(98)10042-0 (cit. on
p. 85).

[MAL+13] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and S. Ducasse. “Software
quality metrics aggregation in industry”. In: Journal of Software: Evolution and Process 25.10
(2013), pp. 1117–1135. doi: 10.1002/smr.1558 (cit. on pp. 58, 81).

[MK93] J. C. Munson and T.M. Kohshgoftaar. “Measurement of data structure complexity”. In:
Journal of Systems and Software 20.3 (1993), pp. 217–225. issn: 0164-1212. doi: 10.1016/0164-
1212(93)90065-6 (cit. on p. 70).

[Mye90] B.A.Myers. “Taxonomies of visual programmingandprogramvisualization”. In: Journal of
Visual Languages & Computing 1.1 (1990), pp. 97–123. doi: 10.1016/S1045-926X(05)80036-9
(cit. on p. 4).

[Mye77] G. J. Myers. “An Extension to the Cyclomatic Measure of Program Complexity”. In:
SIGPLAN Notices 12.10 (Oct. 1977), pp. 61–64. issn: 0362-1340. doi: 10.1145/954627.
954633 (cit. on pp. 10, 51).

[NZB13] M.Nagappan, T. Zimmermann, andC. Bird. “Diversity in Software EngineeringResearch”.
In: ESEC/FSE. Saint Petersburg, Russia: ACM, 2013, pp. 466–476. isbn: 978-1-4503-2237-9.
doi: 10.1145/2491411.2491415 (cit. on p. 104).

[OLD+15] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P.D. McDaniel. “Composite Constant
Propagation: Application to Android Inter-Component Communication Analysis”. In:
37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy,

May 16-24, 2015, Volume 1. Ed. by A. Bertolino, G. Canfora, and S.G. Elbaum. IEEE
Computer Society, 2015, pp. 77–88. doi: 10.1109/ICSE.2015.30 (cit. on p. 112).

[OWK03] D. Ohst, M. Welle, and U. Kelter. “Differences between versions of UML diagrams”. In:
SIGSOFT Software Engineering Notes 28.5 (Sept. 2003), pp. 227–236. issn: 0163-5948. doi:
10.1145/949952.940102 (cit. on p. 40).

[ONe93] M. B. O’Neal. “An Empirical Study of Three Common Software Complexity Measures”.
In: Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing: States of the

Art and Practice. SAC ’93. Indianapolis, Indiana, USA: ACM, 1993, pp. 203–207. isbn:
0-89791-567-4. doi: 10.1145/162754.162867 (cit. on pp. 55, 80).

[Pai80] M. Paige. “A metric for software test planning”. In: Conference Proceedings of COMPSAC

80. IEEE, Oct. 1980, pp. 499–504 (cit. on pp. 54, 81).

[Par92] R. E. Park. Software Size Measurement: A Framework for Counting Source Statements. Tech. rep.
CMU/SEI-92-TR-020. Software Engineering Institute, Sept. 1992 (cit. on pp. 9, 10).

[PBM13] C. Parnin,C. Bird, andE. R.Murphy-Hill. “Adoption anduse of Java generics”. In:Empirical

Software Engineering 18.6 (2013), pp. 1047–1089. doi: 10.1007/s10664-012-9236-6 (cit. on
p. 112).

[Pea95] K. Pearson. “Note on regression and inheritance in the case of two parents”. In: Proceedings
of the Royal Society of London 58 (1895), pp. 240–242 (cit. on p. 66).

[Pee+15] J. Peek et al. Linguist: Language Savant. 2015. url: https://github.com/github/linguist
(visited on 02/10/2015) (cit. on p. 63).

[PPV00] D. E. Perry, A.A. Porter, and L.G. Votta. “Empirical Studies of Software Engineering: A
Roadmap”. In: Proceedings of the Conference on The Future of Software Engineering. ICSE ’00.
Limerick, Ireland: ACM, 2000, pp. 345–355. isbn: 1-58113-253-0. doi: 10.1145/336512.
336586 (cit. on p. 84).

134 references

https://doi.org/10.1016/S0164-1212(98)10042-0
https://doi.org/10.1002/smr.1558
https://doi.org/10.1016/0164-1212(93)90065-6
https://doi.org/10.1016/0164-1212(93)90065-6
https://doi.org/10.1016/S1045-926X(05)80036-9
https://doi.org/10.1145/954627.954633
https://doi.org/10.1145/954627.954633
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1109/ICSE.2015.30
https://doi.org/10.1145/949952.940102
https://doi.org/10.1145/162754.162867
https://doi.org/10.1007/s10664-012-9236-6
https://github.com/github/linguist
https://doi.org/10.1145/336512.336586
https://doi.org/10.1145/336512.336586


[PSR+05] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann. “An approach for reverse
engineering of design patterns”. In: Software & Systems Modeling 4.1 (Feb. 2005), pp. 55–70.
doi: 10.1007/s10270-004-0059-9 (cit. on p. 8).

[PTF+15] G. Pinto, W. Torres, B. Fernandes, F. C. Filho, and R. S.M. de Barros. “A large-scale study
on the usage of Java’s concurrent programming constructs”. In: Journal of Systems and

Software 106 (2015), pp. 59–81. doi: 10.1016/j.jss.2015.04.064 (cit. on p. 112).

[PFD11] D. Posnett, V. Filkov, and P. T. Devanbu. “Ecological inference in empirical software
engineering”. In: 26th IEEE/ACM International Conference on Automated Software Engineering

(ASE 2011). Ed. by P. Alexander, C. S. Pasareanu, and J.G. Hosking. Lawrence, KS, USA:
IEEE Computer Society, Nov. 2011, pp. 362–371. doi: 10.1109/ASE.2011.6100074 (cit. on
p. 58).

[RPH+13] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu. “Sample Size vs. Bias in Defect
Prediction”. In:Proceedings of the 2013 9th JointMeeting onFoundations of Software Engineering.
ESEC/FSE 2013. Saint Petersburg, Russia: ACM, 2013, pp. 147–157. isbn: 978-1-4503-
2237-9. doi: 10.1145/2491411.2491418 (cit. on p. 85).

[RW02] V. Rajlich and N. Wilde. “The Role of Concepts in Program Comprehension”. In: 10th
International Workshop on Program Comprehension (IWPC 2002), 27-29 June 2002, Paris, France.
IEEE Computer Society, 2002, pp. 271–278. doi: 10.1109/WPC.2002.1021348 (cit. on p. 22).

[RAM+16] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden. “Harvesting Runtime Values in
Android Applications That Feature Anti-Analysis Techniques”. In: 23nd Annual Network

and Distributed System Security Symposium, NDSS 2016, San Diego, California, USA, February

21-24, 2016. The Internet Society, 2016 (cit. on p. 112).

[RFJ08] D. Ratiu, M. Feilkas, and J. Jürjens. “Extracting Domain Ontologies from Domain Specific
APIs”. In: 12th European Conference on Software Maintenance and Reengineering, CSMR

2008, April 1-4, 2008, Athens, Greece. IEEE Computer Society, 2008, pp. 203–212. doi:
10.1109/CSMR.2008.4493315 (cit. on pp. 22, 42, 121).

[RCT+14] T. Ravitch, E. R. Creswick, A. Tomb, A. Foltzer, T. Elliott, and L. Casburn. “Multi-App
Security Analysis with FUSE: Statically DetectingAndroidAppCollusion”. In: Proceedings
of the 4th Program Protection and Reverse Engineering Workshop, PPREW@ACSAC 2014, New

Orleans, LA, USA, December 9, 2014. Ed. by M.D. Preda and J. T. McDonald. ACM, 2014,
4:1–4:10. doi: 10.1145/2689702.2689705 (cit. on p. 101).

[RPF+14] B. Ray, D. Posnett, V. Filkov, and P. Devanbu. “A Large Scale Study of Programming
Languages and Code Quality in Github”. In: Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering. New York, NY, USA: ACM,
2014, pp. 155–165. isbn: 978-1-4503-3056-5. doi: 10.1145/2635868.2635922 (cit. on p. 87).

[RHB+11] G. Richards, C. Hammer, B. Burg, and J. Vitek. “The Eval That Men Do - A Large-Scale
Study of the Use of Eval in JavaScript Applications”. In: ECOOP 2011 - Object-Oriented

Programming - 25th European Conference, Lancaster, UK, July 25-29, 2011 Proceedings. Ed. by
M. Mezini. Vol. 6813. Lecture Notes in Computer Science. Springer, 2011, pp. 52–78. doi:
10.1007/978-3-642-22655-7_4 (cit. on p. 111).

[RLB+10] G. Richards, S. Lebresne, B. Burg, and J. Vitek. “An analysis of the dynamic behavior of
JavaScript programs”. In: Proceedings of the 2010 ACM SIGPLANConference on Programming

Language Design and Implementation, PLDI 2010. Ed. by B.G. Zorn and A. Aiken. Toronto,
Ontario, Canada: ACM, June 2010, pp. 1–12. doi: 10.1145/1806596.1806598 (cit. on p. 111).

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. “State Machine View”. In: The Unified Modeling

Language Reference Manual. Addison-Wesley Professional, 1999. Chap. 6, pp. 67–80. isbn:
020130998X (cit. on p. 6).

135

https://doi.org/10.1007/s10270-004-0059-9
https://doi.org/10.1016/j.jss.2015.04.064
https://doi.org/10.1109/ASE.2011.6100074
https://doi.org/10.1145/2491411.2491418
https://doi.org/10.1109/WPC.2002.1021348
https://doi.org/10.1109/CSMR.2008.4493315
https://doi.org/10.1145/2689702.2689705
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1007/978-3-642-22655-7_4
https://doi.org/10.1145/1806596.1806598


[STC00] A. Saltelli, S. Tarantola, and F. Campolongo. “Sensitivity analysis as an ingredient of
modeling”. In: Statistical Science 15.4 (2000), pp. 377–395 (cit. on p. 86).

[SR07] J. Sawin and A. Rountev. “Improved Static Resolution of Dynamic Class Loading in
Java”. In: Seventh IEEE International Workshop on Source Code Analysis and Manipulation

(SCAM 2007), September 30 - October 1, 2007, Paris, France. IEEE Computer Society, 2007,
pp. 143–154. doi: 10.1109/SCAM.2007.24 (cit. on pp. 101, 102).

[SR09] J. Sawin and A. Rountev. “Improving static resolution of dynamic class loading in Java
using dynamically gathered environment information”. In:Automated Software Engineering

16.2 (June 2009), pp. 357–381. doi: 10.1007/s10515-009-0049-9 (cit. on pp. 101, 102, 108).

[SR11] J. Sawin and A. Rountev. “Assumption Hierarchy for a CHA Call Graph Construction
Algorithm”. In: 11th IEEE Working Conference on Source Code Analysis and Manipulation,

SCAM 2011, Williamsburg, VA, USA, September 25-26, 2011. IEEE Computer Society, 2011,
pp. 35–44. doi: 10.1109/SCAM.2011.20 (cit. on p. 99).

[SSD+13] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. “Dynamic Determinacy Analysis”. In:
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and

Implementation. PLDI ’13. Seattle, Washington, USA: ACM, 2013, pp. 165–174. isbn:
978-1-4503-2014-6. doi: 10.1145/2491956.2462168 (cit. on p. 113).

[Sch06] N. Schneidewind. “Software reliability engineering process”. In: Innovations in Systems

and Software Engineering 2.3-4 (2006), pp. 179–190. issn: 1614-5046. doi: 10.1007/s11334-
006-0007-7 (cit. on pp. 56, 81).

[SLB+11] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. “Reverse engineering feature
models”. In: Proceedings of the 33rd International Conference on Software Engineering, ICSE

2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. Ed. by R.N. Taylor, H.C. Gall, and
N. Medvidovic. ACM, 2011, pp. 461–470. doi: 10.1145/1985793.1985856 (cit. on p. 43).

[SCM+79] S. B. Sheppard, B. Curtis, P. Milliman, M.A. Borst, and T. Love. “First-year results from
a research program on human factors in software engineering”. In: American Federation

of Information Processing Societies (AFIPS) Conference Proceedings. Vol. 48. New York, NY,
USA: AFIPS Press, June 1979, pp. 1021–1027. doi: 10.1109/AFIPS.1979.59 (cit. on pp. 8,
49, 54, 81).

[She88] M. Shepperd. “A Critique of Cyclomatic Complexity As a Software Metric”. In: Software
Engineering Journal 3.2 (Mar. 1988), pp. 30–36. doi: 10.1049/sej.1988.0003 (cit. on pp. 51,
52, 54, 58).

[She07] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. 4th ed.
Chapman & Hall/CRC, 2007. isbn: 9781584888147 (cit. on pp. 60, 67).

[SCV+08] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo. “The role of replications in Empirical
Software Engineering”. In: Empirical Software Engineering 13.2 (2008), pp. 211–218. issn:
1382-3256. doi: 10.1007/s10664-008-9060-1 (cit. on p. 87).

[SSA15] J. Siegmund, N. Siegmund, and S. Apel. “Views on Internal and External Validity in
Empirical Software Engineering”. In: 37th IEEE/ACM International Conference on Software

Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1. Ed. by A. Bertolino,
G. Canfora, and S.G. Elbaum. IEEE Computer Society, 2015, pp. 9–19. doi: 10.1109/ICSE.
2015.24 (cit. on p. 87).

[SB15] Y. Smaragdakis and G. Balatsouras. “Pointer Analysis”. In: Foundations and Trends in

Programming Languages 2.1 (2015), pp. 1–69. issn: 2325-1107. doi: 10.1561/2500000014
(cit. on p. 101).

136 references

https://doi.org/10.1109/SCAM.2007.24
https://doi.org/10.1007/s10515-009-0049-9
https://doi.org/10.1109/SCAM.2011.20
https://doi.org/10.1145/2491956.2462168
https://doi.org/10.1007/s11334-006-0007-7
https://doi.org/10.1007/s11334-006-0007-7
https://doi.org/10.1145/1985793.1985856
https://doi.org/10.1109/AFIPS.1979.59
https://doi.org/10.1049/sej.1988.0003
https://doi.org/10.1007/s10664-008-9060-1
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1561/2500000014


[SBK+15] Y. Smaragdakis, G. Balatsouras, G. Kastrinis, and M. Bravenboer. “More Sound Static
Handlingof JavaReflection”. In:ProgrammingLanguages andSystems - 13thAsianSymposium,

APLAS 2015, Pohang, South Korea, November 30 - December 2, 2015, Proceedings. Ed. by
X. Feng and S. Park. Vol. 9458. Lecture Notes in Computer Science. Springer, 2015,
pp. 485–503. doi: 10.1007/978-3-319-26529-2_26 (cit. on pp. 101, 113).

[Spe04] C. Spearman. “The Proof and Measurement of Association between Two Things”. In: The
American Journal of Psychology 15.1 (1904), pp. 72–101. issn: 00029556 (cit. on p. 67).

[SAP+11] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg. “F4F: taint analysis
of framework-based web applications”. In: Proceedings of the 26th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011. Ed. by C.V. Lopes and
K. Fisher. ACM, 2011, pp. 1053–1068. doi: 10.1145/2048066.2048145 (cit. on p. 100).

[SDC+12] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. “Correlation Tracking for
Points-To Analysis of JavaScript”. In: ECOOP 2012 - Object-Oriented Programming - 26th

European Conference, Beĳing, China, June 11-16, 2012. Proceedings. Ed. by J. Noble. Vol. 7313.
Lecture Notes in Computer Science. Springer, 2012, pp. 435–458. doi: 10.1007/978-3-
642-31057-7_20 (cit. on p. 112).

[SBV01] G. Succi, L. Benedicenti, and T. Vernazza. “Analysis of the effects of software reuse
on customer satisfaction in an RPG environment”. In: IEEE Transactions on Software

Engineering 27.5 (May 2001), pp. 473–479. issn: 0098-5589. doi: 10.1109/32.922717
(cit. on pp. 56, 81).

[STU+81] T. Sunohara, A. Takano, K. Uehara, and T. Ohkawa. “Program Complexity Measure for
Software Development Management”. In: Proceedings of the 5th International Conference on

Software Engineering, San Diego, California, USA, March 9-12, 1981. Ed. by S. Jeffrey and
L.G. Stucki. IEEE Computer Society, 1981, pp. 100–106 (cit. on pp. 54, 81).

[SM05] A. Sutton and J. I. Maletic. “Mappings for Accurately Reverse Engineering UML Class
Models from C++”. In: 12th Working Conference on Reverse Engineering, WCRE 2005,

Pittsburgh, PA, USA, November 7-11, 2005. IEEE Computer Society, 2005, pp. 175–184. doi:
10.1109/WCRE.2005.21 (cit. on p. 42).

[TAA14] Y. Tashtoush, M. Al-Maolegi, and B. Arkok. “The Correlation among Software Complexity
Metrics with Case Study”. In: International Journal of Advanced Computer Research 4.2 (15
2014), pp. 414–419 (cit. on pp. 57, 81).

[TAD+10] E.D. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and J. Noble.
“The Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies”. In: 17th
Asia Pacific Software Engineering Conference, APSEC 2010, Sydney, Australia, November 30 -

December 3, 2010. Ed. by J. Han and T.D. Thu. IEEE Computer Society, 2010, pp. 336–345.
doi: 10.1109/APSEC.2010.46 (cit. on p. 103).

[TB12] A. Thies and E. Bodden. “RefaFlex: safer refactorings for reflective Java programs”. In:
International Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis, MN,

USA, July 15-20, 2012. Ed. by M.P. E. Heimdahl and Z. Su. ACM, 2012, pp. 1–11. doi:
10.1145/2338965.2336754 (cit. on p. 100).

[Tip95] F. Tip. “A survey of program slicing techniques”. In: Journal of Programming Languages 3.3
(1995), pp. 121–189 (cit. on p. 4).

[TLS+99] F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter. “Practical Experience with an Application
Extractor for Java”. In: Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages & Applications (OOPSLA ’99), Denver, Colorado, USA,

November 1-5, 1999. Ed. by B. Hailpern, L.M. Northrop, and A.M. Berman. ACM, 1999,
pp. 292–305. doi: 10.1145/320384.320414 (cit. on p. 100).

137

https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.1145/2048066.2048145
https://doi.org/10.1007/978-3-642-31057-7_20
https://doi.org/10.1007/978-3-642-31057-7_20
https://doi.org/10.1109/32.922717
https://doi.org/10.1109/WCRE.2005.21
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1145/2338965.2336754
https://doi.org/10.1145/320384.320414


[TSL+02] F. Tip, P. F. Sweeney, C. Laffra, A. Eisma, and D. Streeter. “Practical extraction techniques
for Java”. In: ACM Transactions on Programming Languages and Systems 24.6 (2002), pp. 625–
666. doi: 10.1145/586088.586090 (cit. on p. 100).

[TTB+07] P. Tonella, M. Torchiano, B.D. Bois, and T. Systä. “Empirical studies in reverse engineering:
state of the art and future trends”. In: Empirical Software Engineering 12.5 (2007), pp. 551–
571. doi: 10.1007/s10664-007-9037-5 (cit. on pp. 3, 4).

[TPF+09] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O.Weisman. “TAJ: effective taint analysis
of web applications”. In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. Ed. by
M. Hind and A. Diwan. ACM, 2009, pp. 87–97. doi: 10.1145/1542476.1542486 (cit. on
p. 99).

[TT95] J. Troster and J. Tian. “Measurement and Defect Modeling for a Legacy Software System”.
In: Annals of Software Engineering 1 (1995), pp. 95–118. doi: 10.1007/BF02249047 (cit. on
p. 60).

[TM94] R. J. Turver andM.Munro. “An early impact analysis technique for softwaremaintenance”.
In: Journal of Software Maintenance 6.1 (1994), pp. 35–52. doi: 10.1002/smr.4360060104
(cit. on p. 4).

[VCG+99] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundaresan. “Soot - a
Java bytecode optimization framework”. In: Proceedings of the 1999 conference of the Centre
for Advanced Studies on Collaborative Research. Ed. by S.A. MacKay and J.H. Johnson.
Mississauga, Ontario, Canada: IBM, Nov. 1999, p. 13. doi: 10.1145/781995.782008 (cit. on
pp. 99, 100).

[van95] K.G. van den Berg. “Software Measurement and Functional Programming”. PhD thesis.
University of Twente, Enschede, the Netherlands, June 1995. isbn: 9090082514 (cit. on
p. 85).

[vdMR07] M. J. van der Meulen and M.A. Revilla. “Correlations Between Internal Software Metrics
and Software Dependability in a Large Population of Small C/C++ Programs”. In:
Proceedings of the The 18th IEEE International Symposium on Software Reliability. ISSRE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 203–208. isbn: 0-7695-3024-9.
doi: 10.1109/ISSRE.2007.6 (cit. on pp. 56, 61, 75, 81).

[vDKV99] A. van Deursen, P. Klint, and C. Verhoef. “Research Issues in the Renovation of Legacy
Systems”. In: Fundamental Approaches to Software Engineering, Second Internationsl Conference,

FASE’99, Held as Part of the European Joint Conferences on the Theory and Practice of Software,

ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999, Proceedings. Ed. by J. Finance.
Vol. 1577. Lecture Notes in Computer Science. Springer, 1999, pp. 1–21. doi: 10.1007/978-
3-540-49020-3_1 (cit. on pp. 3, 6).

[VSvdB11a] B. Vasilescu, A. Serebrenik, and M.G. J. van den Brand. “By No Means: A Study on
Aggregating Software Metrics”. In: 2nd International Workshop on Emerging Trends in

Software Metrics. WETSoM. ACM, 2011, pp. 23–26 (cit. on pp. 58, 81).

[VSvdB11b] B. Vasilescu, A. Serebrenik, and M.G. J. van den Brand. “You can’t control the unfamiliar:
A study on the relations between aggregation techniques for software metrics”. In: IEEE
27th International Conference on Software Maintenance, ICSM2011. Sept. 2011, pp. 313–322.
doi: 10.1109/ICSM.2011.6080798 (cit. on pp. 58, 81).

[VG12] J. J. Vinju and M.W. Godfrey. “What Does Control Flow Really Look Like? Eyeballing the
Cyclomatic Complexity Metric”. In: 12th IEEE International Working Conference on Source

Code Analysis and Manipulation, SCAM 2012. Riva del Garda, Italy: IEEE Computer Society,
Sept. 2012, pp. 154–163. doi: 10.1109/SCAM.2012.17 (cit. on pp. 49, 83).

138 references

https://doi.org/10.1145/586088.586090
https://doi.org/10.1007/s10664-007-9037-5
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1007/BF02249047
https://doi.org/10.1002/smr.4360060104
https://doi.org/10.1145/781995.782008
https://doi.org/10.1109/ISSRE.2007.6
https://doi.org/10.1007/978-3-540-49020-3_1
https://doi.org/10.1007/978-3-540-49020-3_1
https://doi.org/10.1109/ICSM.2011.6080798
https://doi.org/10.1109/SCAM.2012.17


[vMV95] A. von Mayrhauser and A.M. Vans. “Program Comprehension During Software Mainte-
nance and Evolution”. In: IEEE Computer 28.8 (1995), pp. 44–55. doi: 10.1109/2.402076
(cit. on p. 49).

[WS07] K. Wang and W. Shen. “Improving the Accuracy of UML Class Model Recovery”. In: 31st
Annual International Computer Software and Applications Conference (COMPSAC 2007). 2007,
pp. 387–390 (cit. on p. 42).

[WW02] J. Webster and R. T. Watson. “Analyzing the Past to Prepare for the Future: Writing a
Literature Review”. In: Management Information Systems (MIS) Quarterly 26.2 (June 2002),
pp. xiii–xxiii. issn: 0276-7783 (cit. on p. 97).

[Wei79] M. Weiser. “Program slices: formal, psychological, and practical investigations of an
automatic program abstraction method”. PhD thesis. University of Michigan, 1979 (cit. on
p. 4).

[WKO+14] E. R. Wognsen, H. S. Karlsen, M.C. Olesen, and R. R. Hansen. “Formalisation and analysis
of Dalvik bytecode”. In: Science of Computer Programming 92 (2014), pp. 25–55. doi:
10.1016/j.scico.2013.11.037 (cit. on pp. 101, 104).

[Woh14] C. Wohlin. “Guidelines for snowballing in systematic literature studies and a replication
in software engineering”. In: 18th International Conference on Evaluation and Assessment in

Software Engineering, EASE. ACM, 2014, 38:1–38:10. doi: 10.1145/2601248.2601268 (cit. on
pp. 52, 97).

[WRH+12] C.Wohlin, P. Runeson,M.Höst,M.C. Ohlsson, B. Regnell, andA.Wesslén. Experimentation

in Software Engineering. Springer Nature, 2012. doi: 10.1007/978-3-642-29044-2 (cit. on
p. 14).

[WHH79] M.R. Woodward, M.A. Hennell, and D. Hedley. “AMeasure of Control Flow Complexity
in Program Text”. In: IEEE Transactions on Software Engineering 5.1 (Jan. 1979), pp. 45–50.
issn: 0098-5589. doi: 10.1109/TSE.1979.226497 (cit. on pp. 54, 80).

[YXA+15] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. “AppContext: Differentiating
Malicious and Benign Mobile App Behaviors Using Context”. In: ICSE. Florence, Italy:
IEEE, 2015, pp. 303–313. isbn: 978-1-4799-1934-5 (cit. on p. 99).

[YM13] L. Yu and A. Mishra. “An Empirical Study of Lehman’s Law on Software Quality
Evolution”. In: International Journal of Software & Informatics 7.3 (2013), pp. 469–481 (cit. on
p. 58).

[ZHM+16] F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou. “The Use of Summation to Aggregate
Software Metrics Hinders the Performance of Defect Prediction Models”. In: IEEE
Transactions on Software Engineering (2016), pp. 1–1. doi: 10.1109/tse.2016.2599161 (cit. on
p. 119).

[ZAG+15] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and F. Massacci. “StaDynA:
Addressing the Problem of Dynamic Code Updates in the Security Analysis of Android
Applications”. In: Proceedings of the 5th ACM Conference on Data and Application Security

and Privacy, CODASPY 2015, San Antonio, TX, USA, March 2-4, 2015. Ed. by J. Park and
A.C. Squicciarini. ACM, 2015, pp. 37–48. doi: 10.1145/2699026.2699105 (cit. on pp. 100,
104).

139

https://doi.org/10.1109/2.402076
https://doi.org/10.1016/j.scico.2013.11.037
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1109/TSE.1979.226497
https://doi.org/10.1109/tse.2016.2599161
https://doi.org/10.1145/2699026.2699105








SUMMARY

Reverse Engineering Source Code:
Empirical Studies of Limitations and Opportunities

The goal of software renovation is to modernize software. One way to achieve this is
to first reverse engineer the essential concepts and abstractions used in the software
and then use these during renovation. Reverse engineering can use several sources:
users, documentation, or source code. We have focused on reverse engineering from
source code. Scaling reverse engineering to large software systems requires at the
very least partially automated analysis. Automation often comes at the cost of over- or
underapproximation. We have formulated three research questions to explore limits
and opportunities for these approximations.

To answer the first question, we have explored the limits of domainmodel recovery
by manually recovering two domain models from two software systems. Comparing
these models to a manually constructed reference domain model based on a reference
book of the domain and two manually constructed reference applications models
we found that most domain information could be recovered – with high quality –
by reading the source code of the software system. This motivates future work in
automating the domain model recovery from source code.

In trying to automate domain model recovery, we have identified challenges that
hold for a wider range of reverse engineering methods than just domain model
recovery. The second and third question address these challenges in the broader
context of reverse engineering.

To answer the second question, we have explored the opportunity of using both
Cyclomatic Complexity (cc) and Source Lines of Code (sloc) for automating reverse
engineering. Metrics, such as cc and sloc, are used in a wide variety of reverse-
engineering methods to filter methods or files of interest. Almost all of the literature
on the relation between the two metrics – identified using a Systematic Literature
Review (slr) – claim a strong linear correlation between them (R2 between 0.51
and 0.96). This is often interpreted as indication that cc and sloc measured the
same property. Often this is further interpreted that measuring cc and sloc next
to each other is redundant. In two large corpora – with 362 MSLOC of Java and
186 MSLOC of C – we did not observe a strong correlation (R2 of 0.40 and 0.44). We
have identified two transformations of the data that did increase the correlations to
the more commonly reported strengths. However these transformations complicate
the interpretation of the relationship between cc and sloc. Our final interpretation
is that there is a lack evidence for cc being redundant to sloc, which supports the
continued used of both metrics next to each other.
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In order to answer the final question, we have explored the limits of statically
analyzing Java – with respect to the Reflection Application Programming Interface
(api) – for a corpus of 462 Java projects (80 MSLOC). Using a slr of all static analysis
approaches – that published new heuristics for handling reflection –we have identified
the common assumptions and limitations. Analyzing the corpus revealed that 78%
of all projects use the parts of the Reflection api that are hard to model with static
analysis. Common challenges for analysis tools such as “non-exceptional exceptions”,
“programmatic filtering meta objects”, “semantics of collections”, and “dynamic
proxies” widely occur in the corpus. We support Java software engineers with tactics
to obtain more easy to analyze reflection code. We also propose new opportunities
for static analysis tools to significantly impact the analyses of real Java code.

All three results have been obtained with empirical studies on corpora of open
source software. The corpora and the scripts used to analyze them are available
online to support critique from other researchers and enable future work on different
challenges with the same corpora. We have used empirical studies to both answer
open questions and identify new opportunities in reverse engineering research and
practice.
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SAMENVATTING

Reverse Engineering Source Code:
Empirical Studies of Limitations and Opportunities

Bestaande software kan gemoderniseerd worden door deze te renoveren. Software-
renovatie vereist kennis over de software – zoals concepten en abstracties – die vaak
niet meer expliciet beschikbaar zĳn. Door middel van reverse engineering kunnen
dit soort interne aspecten weer zichtbaar gemaakt worden. Hiervoor staan allerlei
bronnen ter beschikking: gebruikers, documentatie, of broncode. Wĳ richten ons in
dit proefschrift op het reverse engineeren van kennis uit broncode.

Het reverse engineeren van grotere softwaresystemen vereist automatisering.
Echter, automatisering levert slechts een benadering van de gewenste kennis op.
Wĳ formuleren drie onderzoeksvragen die de grenzen en mogelĳkheden daarvan
verkennen.

Voor de eerste vraag zoeken we de grenzen op van het reverse engineeren van
een domeinmodel uit broncode. Een domeinmodel is een beschrĳving van de
concepten in een domein en de relatie daartussen. We maken eerst met de hand twee
domeinmodellen voor twee softwaresystemen in het domein van projectplanning.
Bovendien stellen we uitgaande van een handboek uit het domein van projectplanning
handmatig een domeinmodel op dat als referentiemodel dient. We hebben de
twee uit de code geëxtraheerde domeinmodellen vervolgens vergeleken met het
referentiemodel. Daarnaast vergelĳken we dezelfde modellen met domeinmodellen
verkregen uit de grafische gebruikersomgeving van de betreffende softwaresystemen.
Conclusie: de meeste domeinkennis kan verkregen worden uit de broncode zelf. Dit
motiveert nader onderzoek naar het automatiseren van broncode gedreven reverse
engineering van domeinmodellen.

Tĳdens het automatiseren van het reverse engineeren van domeinmodellen,
ontdekten wĳ nieuwe uitdagingen die voor een veel breder scala aan benaderingen
van reverse engineering gelden. De tweede en derde vraag richten zich daarom op
deze uitdagingen in de bredere context van reverse engineering.

Voor de tweede vraag onderzoeken we de mogelĳkheid om de Cyclomatic Com-
plexity (cc) en Source Lines of Code (sloc) metrieken naast elkaar te gebruiken voor
het automatiseren van reverse engineering. Metrieken zoals cc en sloc proberen
moeilĳk meetbare eigenschappen van broncode te benaderen en worden zeer veel
gebruikt. Om, bĳvoorbeeld, interessante methodes of bestanden te filteren uit een
grotere verzameling. De meeste literatuur – geïdentificeerd met een Systematic Lite-
rature Review (slr) – beweert echter dat deze twee metrieken sterk met elkaar lineair
correleren (R2 tussen 0.51 en 0.96). Deze correlatie wordt vaak geïnterpreteerd als
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bewĳs dat ze aan elkaar gelĳk zĳn. In twee grote corpora – bestaand uit 362 MSLOC
Java en 186 MSLOC C code – observeren wĳ deze sterke correlatie niet (R2 van 0.40
en 0.44). Wegens gebrek aan bewĳs dat cc redundant is ten opzichte van sloc,
concluderen wĳ dat het wel degelĳk zin heeft om cc en sloc naast elkaar te blĳven
gebruiken.

Voor de derde en laatste vraag onderzoeken wĳ de grenzen van het statisch
analyseren van Java broncode. Vooral de Reflectie Application Programming Inter-
face (api) is moeilĳk te analyseren. Deze api staat een programma toe zĳn eigen
interne structuur te bekĳken en te wĳzigen. Door middel van een slr maken wĳ
eerst een overzicht van alle benaderingen voor statische analyse die nieuwe heu-
ristieken voor reflectieve code geïntroduceerd hebben. Op basis van dit overzicht
inventariseren wĳ veelvoorkomende aannames en beperkingen. In een door ons
geconstrueerd corpus van Java software gebruikt 78% van alle projecten moeilĳk te
analyseren onderdelen van de Reflection api. Daarnaast kwamen tegenvoorbeelden
van de volgende aannames en beperkingen veel voor: “niet exceptionele excepties”,
“programmatische filtering van meta objecten”, “semantiek van verzamelingen”, en
“dynamische proxies”. Voor Java software ingenieurs geven wĳ strategieën om hun
reflectieve code makkelĳker analyseerbaar te maken. Voor ontwikkelaars van tools
voor statische analyse presenteren wĳ mogelĳkheden om de analyse van reflectieve
Java code te verbeteren.

Om tot deze drie resultaten te komen hebben wĳ gebruik gemaakt van empirisch
onderzoek op grote corpora van open source software. Deze corpora en bĳhorende
analyse-code stellen wĳ online beschikbaar; hiermee kunnen andere onderzoekers
onze resultaten repliceren en bekritiseren. Bovendien zĳn onze corpora te gebruiken
in nieuw onderzoek. Tenslotte hebben wĳ gebruik gemaakt van empirische studies
voor het beantwoorden van open vragen en identificeren van nieuwe mogelĳkheden
voor het onderzoek in en de praktĳk van de reverse engineering.
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