
Solving the Bank
LIGHTWEIGHT SPECIFICATION AND VERIFICATION TECHNIQUES FOR ENTERPRISE SOFTWARE

JOUKE HARMEN STOEL

Solving the Bank
Jouke H

arm
en Stoel

Solving the Bank
Lightweight Specification and Verification Techniques for

Enterprise Software

Solving the Bank
Lightweight Specification and Verification Techniques for

Enterprise Software

PROEFSCHRIFT

ter verkr⇥ging van de graad van doctor aan de
aan de Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof. dr. S.K. Lenaerts, voor een
commissie aangewezen door het College voor

Promoties, in het openbaar te verdedigen
op 8 november 2023 om 16.00 uur

door

Jouke Harmen Stoel

geboren te Delfz⇥l

Promotiecommissie:
Voorzitter: prof. dr. M.A. Peletier

Promotores: prof. dr. J.J. Vinju (⇤⌅⇧ - Technische Universiteit Eindhoven)
prof. dr. T. van der Storm (⇤⌅⇧ - R⇥ksuniversiteit Groningen)

Copromotor: prof. dr. M.G.J. van den Brand

Overige leden: dr. E.M. Torlak (University of Washington)
prof. dr. M. Huisman (Universiteit Twente)
dr. M.A. Reniers
prof. dr. G.K. Keller (Universiteit Utrecht)
J. Bosman (ING Nederland NV)

Adviseur: J. Bosman (ING Nederland NV)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

The work in this thesis has been carried out at Centrum Wiskunde & Informatica
(���) under the auspices of the research school Institute for Programming research
and Algorithmics (���) and has been supported by the ING.

A catalogue record is available from the Eindhoven University of Technology Library
����: ���-��-���-����-�.

Thesis cover art generated by Midjourney AI using the query “an iconic bank
building made up of electronic circuits with a dollar sign logo on top in an isometric
perspective. The bank building is standing on a large, colorful electronic motherboard.
The background is white”.

This thesis is printed by ProefschriftMaken | | www.proefschriftmaken.nl

CONTENTS

Contents vii

Acknowledgments xi

� Introduction �
�.� Keeping Enterprise Software Systems Evolving �
�.� The Need for Explicit Knowledge . �
�.� Formal Methods to Capture System Knowledge �
�.� Lightweight Formal Methods, a Pragmatic Middle ground �
�.� Research Context . �
�.� Lightweight Formal Methods: a short and incomplete overview �
�.� Questions along the different axes of partiality �
�.� Origin of the Chapters . �
�.� Software Artifacts . ��

� On the Design of the Rebel Specification Language and Its Application
inside a Bank ��
�.� Introduction . ��
�.� Background . ��
�.� Design of the Rebel Language and ISE ��
�.� Rebel Specifications Explained . ��
�.� Simulation and Checking Specifications ��
�.� Performing Model Based Testing of Existing Applications ��
�.� Applying Rebel inside the Bank . ��
�.� Related Work . ��
�.� Conclusion . ��

� AlleAlle: Bounded Relational Model Finding with Unbounded Data ��
�.� Introduction . ��
�.� A���A��� . ��
�.� Formal Definition of A���A��� . ��
�.� Translating A���A��� to SMT . ��
�.� Evaluation . ��
�.� Related Work . ��
�.� Conclusion . ��

� Constraint-based Run-time State Migration for Live Modeling ��

vii

�.� Introduction . ��
�.� Motivating Example . ��
�.� Structuring Constraints for Run-time State Migration ��
�.� N�����: a Language for State Migration ��
�.� Evaluation . ��
�.� Related Work & Discussion . ��
�.� Conclusion & Future Work . ��

� Modeling with Mocking ��
�.� Introduction . ��
�.� Rebel� by Example: Money Transfer . ��
�.� Formalization . ��
�.� Implementation . ���
�.� Evaluation . ���
�.� Related Work . ���
�.� Conclusion . ���

� Design & Implementation ���
�.� Rebel, version � . ���
�.� AlleAlle . ���
�.� Nextep . ���
�.� R����� . ���
�.� Conclusion . ���

� Conclusion ���
�.� Research Question �: Partiality of Language ���
�.� Research Question �: Partiality of Modeling ���
�.� Research Question �: Partiality of Analysis ���
�.� Research Question �: Partiality of Composition ���
�.� Future directions . ���
�.� Advice for our collaborating partner . ���

Bibliography ���

A About Rascal ���
A.� Rascal Programs . ���
A.� Rascal Syntax Definitions . ���

B Syntax definitions ���
B.� Syntax Definition of R���� . ���
B.� Syntax definition of A���A��� . ���
B.� Syntax definition of N����� in Rascal ���

viii ��������

B.� Syntax definition of R����� . ���

C Algorithms ���
C.� AlleAlle algorithms . ���
C.� Key algorithms from the R����� implementation ���
C.� Applying ’Forget’ and ’Mock’ . ���
C.� Translation from Rebel� to AlleAlle . ���

D Examples ���
D.� Example translation from R����� to A���A��� ���

E Data ���
E.� Optimal Package Dependency Resolution ���

�������� ix

ACKNOWLEDGMENTS

“And everything goes back to the beginning”�

It is strange to write this last and final chapter of this thesis. Looking back I
have had the privilege to have met and worked with so many amazing people. That
is the extra bonus for people that take their time ;) I have said it before but now I will
also put it to writing: having done this PhD has been one of the best jobs I had so far
and the people I have met are to thank for that!

First of all my gratitude goes out to my daily supervisors, Jurgen Vinju and Tĳs
van der Storm. Jurgen, I have never met another soul who is as positive as you.
Even in troubled times you manage to find the silver lining and turn situations into
learning experiences, for yourself and your surroundings. This is deeply inspiring
and humbling. Next to that, your endless belief in my ability to finish this journey
was of incredible support.

Tĳs, thank you for your exceptional keen insights. You always seem to know how
to break things down to their essence and remove all the unimportant bits. I greatly
admire you for that and that made working together such a nice experience.

To the both of you I thank you for all your valuable lessons, companionship and
support.

Mark, thank you for your guidance and taking me under your wings for � months.
Teaching at the TU/e was a very insightful experience showing me how much fun it
is to help others in their struggles to learn new things.

I would like to thank all the members of my committee, Joost Bosman Sr., Marieke
Huisman, Gabriele Keller, Michel Reniers and Emina Torlak for their time and valuable
feedback on the manuscript that lies before you.

An extra special thanks goes out to Joost Bosman Sr. of the ING, the instigator of
all of this. Your belief and desire to further develop the state of practice of making
software such that we are able to make stronger claims about its correctness, was
inspiring and admirable. Thanks for giving me the opportunity to dive into this quest
and give it my own personal twist.

Next to Joost Bosman Sr. there are many other people at the ING that I owe my
gratitude. My thanks goes out to Robbert van Dalen, Jorryt Dĳkstra, Luna Luo, Viet
Nguyen, Rene Niekel, Alessandro Vermeulen, Kevin van der Vlist and Herbert van de
Wetering. Special mention goes out to Herbert and Rene for helping out with putting
my work to practice, Alessandro for being one of the early adopters of Rebel and to
Viet who was brave enough to build a company on the ideas behind Rebel and code
generation.

�from the song Hollow Talk of the Choir of the Young Believers.

xi

I also look back with special fondness to my time at TU/e. In my (brief) time
helping out as teacher I met with many kind and smart people of both the SET
and FSA group. My thanks goes out to my office mates Yuexu (Celine) Chen, Josh
Mengerink, Sander de Putter, Raquel Álvárez Ramirez and Arash Khabbaz Saberi,
Next to my office mates there were many others at TU/e who I owe my thanks: Önder
Babur, Olav Bunte, Loek Cleophas, Rick Erkens, Kees Huizing, Ruurd Kuiper, Maurice
Laveaux, Thomas Neele, Agnes van Reek, Alexander Serebrenik, Mahmoud Talebi,
Wessley Torres, Tom Verhoeff and many other colleagues. An extra mention goes out
to Alexander for the enjoyable teaching we did together at the TU Twente.

The majority of my PhD I spent at CWI, in the SWAT group. An inspiring and
tranquil place, a true safe haven for research. I wish to thank all my colleagues
and friends that I have met over the years: Rodin Aarssen, Bas Basten, Nikolaos
Bezirgiannis, Aggelos Biboudis, Thomas van Binsbergen, Jeroen van den Bos, Joost
Bosman Jr., Yanja Dajsuren, Susanne van Dam, Thomas Degueule, Maarten Dĳkema,
Pablo Inostroza Valdera, Paul Klint, Davy Landman, Bert Lisser, Lina Ochea Venegas,
Atze van der Ploeg, Riemer van Rozen, Tim Soethout, Michaël Steindorfer, Ulyana
Tikhonova, Mauricio Verano Merino, Aiko Yamashita and many, many more. A
special mention goes out to Tim for being such a nice collaborating partner and friend.
We had many discussions about how you could go from a Rebel specification to an
actual implementation. His work does precisely this. How cool is that!

During this last part of my journey I am employed by Axini. They provided me
with the possibility to finish this thesis. Next to that, it is very cool to work at a place
that builds a very usable product around a formal theory for Model Based Testing. It
is nice to put theory into practice! Many thanks goes out to Tobias Bachmann, Mark
Bebawy, Machiel van der Bĳl, Bart-Jan Hilbrands, Menno Jonkers, Linda de Koter,
Lars Meĳer, Jorge Mora Perdiguero, Ruben Reĳers, Serena Rietbergen, Theo Ruys,
Lucas Steehouwer, Peter Verkade, Ivo Wever, Ronald Wilts and Floris Zeven.

During all this time I had the privilege to have many friends around me, keeping
me sane. It is impossible to list them all here but I am grateful to each and every one
of them. Special thanks goes out to Anne Seghers and Frank van Egmond for helping
each other out during those crazy corona years. As the saying goes, it takes a village
to raise a child. You guys were our village.

I also would like to express my gratitude to Sebastiaan Boekhoorn and Miron
Nabokov for the many hours we spent making music and your good friendship.
Thanks Jochem Noë for introducing me to bouldering and being such good company
while going up the wall. Lastly, a special thanks to Tim van der Weerd, my good
friend and paranymph, for all the good conversations and shared love for bad word
puns.

This brings me to my family. I am very grateful to my parents Roelf and Heily
Stoel for bringing me up the way they did. Thanks for all your love and guidance

xii ���������������

and learning me the joy of creating and wondering. This is something that I feel is so
essential for a lot of the things I have done in my grown-up live.

Thanks to my parent-in-laws, Cees and Carla Plat. You are always there for us
when we need you. We are always welcomed with open arms while often having the
most exquisit meals prepared for us!

Many thanks to my brother Gerhard for always supporting me no matter what
choice I make. Having you, Marjet, Emke and Jitske so close by this last year has
really been a joy.

Lastly, my biggest thanks and greatest gratitude goes out to my own family. When
I started this PhD, my daughter Lucie was just born. Now she is � years old and
already an amazing person of her own. Halfway the journey my just as amazing son
Boris was born. He is also already finding his way at school and is learning to read,
that is why I write the next part in Dutch for them:

Mĳn allerliefste kinderen, ik ben zóóó ontzettend blĳ en dankbaar om jullie in
mĳn leven te mogen hebben. Misschien weten jullie het niet, maar jullie hebben het
schrĳven van ’dit boekje’ zo veel fijner gemaakt. Jullie zorgen er altĳd weer voor
dat we vooral in het hier-en-nu moeten zĳn, en dat is de meest belangrĳke tĳd om te zĳn.

There can only be one to which I devote the last words of this chapter. Dear
Sara, you don’t know how grateful I am to have you by my side. By knowing that
we do all these things together makes it so much easier and more enjoyable. Thanks
for being there and sometimes nudging me to continue. Because of you I started
studying again and the rest is history. I love you with all my heart.

Thank you all!

xiii

INTRODUCTION 1
Growing large Enterprise Software Systems like those found in banks is a daunting
task. We use the word “growing” since large systems are never created in one go.
They evolve. They are the result of endless iterations of building parts of the system.
These different parts, often written by different people, in different time periods, using
different techniques and languages, make up the system as a whole. Constructing
and keeping these systems consistent and coherent is a challenging task.

�.� ������� ���������� �������� ������� ��������

In Lehman’s ���� landmark paper on Software Evolution he describes five laws� which
govern the evolution of real-world software systems [Leh��]. These laws describe
why it is hard to maintain large, real-world systems.† They state that in order to keep
a useful, functioning system it needs to be constantly adapted to meet the changing
requirements of the organization (the Law of Continuous Change). These changes
lead to an ever increasingly complex system (the Law of Increasing Complexity) and
to keep the system evolving it is necessary that everyone that associates with it (users,
developers, etc.) keeps a good understanding of its working (the law of Conservation
of Organizational Stability and the Law of Conservation of Familiarity). If not, the
evolution of the system comes to a halt and, ultimately, its demise since it cannot
fulfill the law of Continuous Change anymore.

Enterprises struggle with the implications of these laws. Enterprise software
has a tendency to exist for a long time [Fow��]. Keeping everyone that has a stake
in these systems familiar with its working such that changes can still be made is
challenging. This is even worsened when disruptive organizational changes happen
such as reorganizations or mergers. Suddenly different, unfamiliar software systems
must be integrated with existing systems, systems that were originally not meant to
integrate with each other. This unfamiliarity (both in functionality and technology)
makes assimilation of these systems in a coherent way hard, often resulting in
large, expensive software projects of which its successful implementation is hard to
predict [Cha��].

�In later work he extended these laws with the addition of three laws. [Leh��]
†Lehman introduced the classification of E-type systems for real-world systems that help with solving

actual, real-world problems [Leh��].

�

�.� ��� ���� ��� �������� ���������

One would expect that the design and rules —i.e., business logic— of these systems
would be thoroughly documented such that new stakeholders can get acquainted
with the system. This is, however, often not the case. Most documentation, whether
it is requirements, design or architectural, is only rarely, if ever, updated when the
system is changed [LSF��]. The result of this is that newcomers can at best partly
rely on the existing documentation but also need to consult other sources such as
experience of others.

Ultimately it is the source code of the software itself that encapsulates the design
and domain rules. However, recovering the needed details from source code is not an
easy task and depends highly on a number of factors such as used software language
and level of documentation in the code [Big��]. Source code is on a lower level of
abstraction in which domain and technical concepts are weaved together and can be
hard to unravel. As such, relying on the source code as the “source of truth” might be
costly and inefficient.

�.� ������ ������� �� ������� ������ ���������

One way to capture system knowledge is make use of a formal specification methodology.
Formal specifications allow to precisely capture (high- and low-level) system properties,
both descriptive and prescriptive properties [Lam��]. According to Lamsweerde a
formal specification is: “the expression in some formal language and at some level
of abstraction, of a collection of properties that some system must satisfy” [Lam��].
The benefit of these formal and precise definitions of properties are that, unlike
specifications in natural language, they do not leave any room for ambiguity. Next
to that, most formal specification methods allow for some kind of animation or
simulation, automatic verification or even sound refinement to source code from a
specification. Examples of these methods are B [Abr��], VDM [BJ], ASM [GB��],
mCRL� [GM��] and Promela [HL��]. The notion of using formal specification and
reasoning techniques is by no means new. It originated in the early days of computer
science (late ����) and has seen a long line of research resulting in many different
methodologies based on algebraic specifications, history based formalisms, state
machines based and process algebras.

Although these formal methods are promising there are some often heard argu-
ments that prohibit their use in industry scale projects:

• Cost: Applying formal methods to a large, industry scale project requires (at
least initially) a significant high-level of expertise and time. Although there
are success stories of the application of formal methods that show that making
use of these methods increases the quality of the software while decreasing the
overall development time [BBF+��], most often the use of these methods are

� ������� � ������������

perceived as too time consuming and too hard to grasp resulting in the need of
costly experts [RCB��].

• Scope: Using formal techniques for verification often reach the limits of our
current state-of-the-art. For instance, a technique such as model checking is
quickly plagued with the state-space explosion problem [CHV+��] or using
automatic proof assistance often requires the user to still discharge many manual
proof obligations.

A study amongst ��� industrial practitioners indicated that scalability, skills and
education where the perceived key challenges with regards to the use of formal
methods on industry scale systems [GM��]. These challenges probably contribute
to the fact that there are not many known examples of large enterprises, outside the
hardware domain (e.g. [AJM+��; KGN+��]) or safety critical software (i.e., NASA
organizes a Formal Methods symposium each year), that make use of formal methods.
Especially in a time were enterprises struggle with finding suitably skilled workers,
finding those who are trained in the use of formal methods is nearly impossible.

�.� ����������� ������ �������, � ��������� ������ ������

A variation to the formal methods described above could be the so called lightweight
formal methods [JW��]. The term lightweight formal methods was introduced by
Jackson and Wing in ���� [JW��]. They advocated for the creation of a formal method
approach which emphasized partiality: partiality of language, of modeling, of analysis
and of composition.

This emphasis on partiality would allow to make trade-offs amongst the different
partiality axes depending on the context the method is used. For instance, the partiality
of language balances the trade-off between the expressiveness of the language versus
the tractability of the analysis. E.g., a language which allows for the modeling of web
security protocols [Kum��] is less expressive than a specification language such as
Z [Spi��] but it allows for tractable, albeit partial, analysis of these protocols whereas
Z is, by itself, not analyzable. Next to that, a specification language specific for web
security protocols probably is much easier to pick up by security domain experts then
a very generic specification language.

A lightweight formal method could thus be less expressive and maybe not as
widely applicable as a traditional formal method but would be more cost effective and
better suited for a certain problem domain. Although such a method would not be
‘fully formal’ in the sense that it would give full correctness guarantees but it might
be more easy to teach and use and would give a higher level of correctness guarantee
than would be achieved using traditional testing techniques. Or, to put it in the words
of Jackson and Wing: “A surgical laser [...] produces less power and poorer coverage

� .� ����������� ������ ������� , � ��������� ������ ������ �

than a light bulb but it makes more efficient use of the energy it consumes and its
effects are more dramatic”.

The application of a lightweight formal method thus offers practitioners a prag-
matic choice along different axes of partiality such as completeness of analysis,
completeness of specification and expressiveness of the specification language. This
idea of partiality offers an attractive point of departure for our research since it offers
ways to influence the depth and breadth of the applied method. We are especially
interested in how these different axes of partiality influence the design and verification
of enterprise software systems.

The broader question that we are interested in investigating in this thesis is thus:

General Research Question (GRQ)

What is the impact of different choices along the axes of partiality on the
design and verification of enterprise software systems using lightweight formal
methods?

�.� �������� �������

We performed our research in collaboration with the ING bank: a large and interna-
tional operating, Dutch bank. Since the early ����’s the ING bank has been automating
its business processes. What started with the automation of money transferal to
facilitate companies to pay their employees in an automated manner, has resulted
in an enterprise ran by software. Anno ���� almost all facets of ING’s business is
governed by software with thousands of unique applications running and performing
all kinds of tasks: from sales to mortgages and from trading to account management.

These applications are the result of decades of software development. Since
computer languages and development techniques have changed over time, so have
the used languages and techniques at ING. The result is an application landscape that
contains a plethora of different languages, techniques and ideas. These applications
together make up the system as a whole. Keeping the software in such an enterprise
consistent and evolving is challenging. In this light we explore the creation and use
of lightweight formal methods that offer support to this process.

Although many of our work was inspired by challenges faced by our collaborating
partner, our work is more generally applicable. The problems faced by the ING bank
are not unique, they are faced by many large enterprises as has been summarized
by Charette [Cha��].

� ������� � ������������

�.� ����������� ������ �������: � ����� ��� ���������� ��������

There is no agreed upon definition of what makes a formal method lightweight [ZSR+��].
This is complicated even further by the fact that the term lightweight is used for two dif-
ferent categories: for formal methods that were specifically created to be lightweight
(e.g., Alloy [Jac��]) and for ‘traditional’ formal methods that can be used in a
lightweight fashion (e.g., with VDM [AL��]) . The latter category is also sometimes
characterized as light touch formal methods [Sim��]. Listing all different lightweight
formal methods is thus very difficult. In the overview to follow, we chose to highlight
some methods that we found are often referred to as being lightweight or used in a
light touch manner.

Alloy The first method that used the term lightweight formal method was Al-
loy [Jac��a; JSS��]. Alloy was created by Jackson in the early ����’s. The novelty of
Alloy was that its input language was based on relational logic and that it allowed for
automatic bounded analysis using a intermediate representation and tooling which
later became Kodkod [TJ��b]. The use of relational logic made it especially suitable
to describe problems with structural elements. Alloy was primarily positioned as
a design and verification tool for key-parts of a systems design and has since its
inception been used for a broad range of designs and problems (e.g file-systems [KJ��],
network protocols [Zav��] and security policies [PSK+��]).‡ Alloy is still under active
development with new extensions to the tool and language being added.§

TLA+ An example of a language and technique often referred to as lightweight is
TLA+ and its model checker TLC [Lam��; Lam��]. Although not specifically created
as a lightweight formal method, its use is often seen as lightweight since it can be
picked up with relative ease. TLA+ originated at the same time as Alloy and has
since its inception been used to model and verify many (parallel) algorithms. Like
Alloy, TLA+ also emphasizes ease of writing specifications and practical verification
using a bounded model checker. Since the analysis is bounded (partial), it does not
formally proof algorithms correct, but in practice it does find many inconsistencies
which would be hard to find using traditional testing techniques [NRZ+��].

VDM The Vienna Development Method (VDM) is one of the earliest formal methods
originating at IBM in Vienna in ���� [BJ]. Originally created as a rigorous method for
defining the operational semantics of the languages PL/� [BBH+��] it has been used
since then for the formalization of many other systems. Over the years, the method

‡http://alloytools.org/citations/case-studies.html holds an collection of case studies using Alloy.
§The newest version of Alloy, version �, offers the possibility to naturaly encode state transition problems

as pioneered in the earlier Alloy extension Electrum [BCC+��]

� .� ����������� ������ ������� : � ����� ��� ���������� �������� �

has also been used in a more lightweight manner. For instance, Agerholm et al. report
on a number of industry cases where a lightweight version of VDM was amongst
other things used to specify the doors of a metro [AL��]. Droschl et al. report on the
specification of a security system module using lightweight VDM [DKS+��].

�.�.� Examples of Lightweight Formal Methods in Enterprise Software

Using lightweight formal methods for designing enterprise software is not new either.
There are some reports on the use of lightweight formal methods during the design
and development of enterprise software. We will highlight some of them.

Lightweight formal methods at Amazon Newcombe et al. report on their experience
of using TLA+ (and its accompanying model checker TLC) at Amazon [NRZ+��].
They describe how TLA+ is used at Amazon to specify and verify complex algorithms
used in large distributed database, storage solutions and concurrency algorithms.
According to the authors they had little trouble learning TLA+ without additional
training. They report that making use of TLA+ uncovered numerous subtle bugs in
software designs that would not have been discovered using traditional reviewing
and testing practises. Next to that, they note that having a formal specification of a
design helps during the evolution of the software itself to both try-out refactorings
and optimizations and to help new engineers to get a better understanding of the
software.

Another example of lightweight formal methods at Amazon was described by
Bornholt et al. They describe the use of lightweight formal methods in the design and
implementation of ShardStore, a highly distributed key-value store [BJA+��]. For this
they used a combination of existing techniques that in their view can be seen as a
lightweight formal method. First, they implemented reference models of ShardStore
containing the expected semantics. This reference model was created in the same
language that was used for the implementation making it easier for engineers to pick
up. Second, the reference models are used in checking whether the implementation
is conform. These checks are performed using a combination of property based
testing [CH��] and stateless model checking [MQ��]. Using this methodology they
prevented �� potential bugs, including subtle concurrency and crash consistency
problems, from reaching production

The Merode method Another notable method that can be seen as a lightweight for-
mal method in enterprise modeling is Merode [Sno��; SMD��]. Merode was developed
in the early nineties as a object oriented system development methodology [DSD��]
The method was specifically created for the modeling and construction of enterprise
software systems. Its unique selling point is that it exploits the so called existence
dependency relation between different objects. This existence dependence relation is a

� ������� � ������������

formal contract which enforces the life-cycle (creation, modification and deletion) of
an object. A case in point is for instance that in a library information system the ‘Loan’
object is existence dependent on a ‘Book’ object: you can not borrow a book that does
not exist. These domain models can be composed in Information System Services
which in turn be composed in so called Business Process Services. In the end, Merode
allows for the automatic generation of software (using the correct-by-construction
principle) based on the defined models.

�.� ��������� ����� ��� ��������� ���� �� ����������

As stated in our general research question we are interested in the trade-offs the
different axes of partiality have on specification and verification methods for enterprise
software. In the coming sections we define our research questions in the context of
these different axes.

�.�.� Partiality in Language

According to Jackson et al. specification languages need to be designed with analysabil-
ity in mind. They state that: “[Analysis] tools designed as an afterthought can provide
only weak analysis” [JW��]. The more general a specification language is, the harder it
will be to perform deep, automatic analysis. This means that creators of a specification
language must balance the expressiveness of the language with the ability to perform
automatic analysis. The question is how this relates to the domain of enterprise
software. We thus formulate the question:

Research Question �: Partiality in Language (RQ�)

How can we design specification languages such that they are expressive
enough to specify problems in the enterprise domain while still able to perform
automatic analysis?

�.�.� Partiality in Modeling

The investment needed (both in time and expertise) to fully formalize a system is in
most cases not in balance with its gains. Jackson et al. argue that one should only
model those parts of which the merit of formalization outweigh the cost [JW��]. An
important question to ask is which risks are mitigated by the formalization.

On the other hand we know there is value in writing specifications of systems,
even if no verification is performed (see e.g. [GRS��; HA��]). Writing down system
specifications forces specifiers to think about the details which are required for the
needed system. Following this process leaves little room for hand waving. Even by

� .� ��������� ����� ��� ��������� ���� �� ���������� �

G
ua

ra
nt

ee
s

Effort

Strong

High

Weak
Low

Traditional Testing

Lightweight Formal Method

‘Full’ Formal Method

Figure �.�: Assessment of Effort versus Guarantees of different methods.

merely writing down the specification is known to already discover many design flaws
and other problems that would otherwise arise later on in the process (e.g. [DKS+��]).
This gives rise to the following question:

Research Question �: Partiality in Modeling (RQ�)

How can we manipulate the cost of modeling for different parts of an enterprise
system while preserving the positive impact of specifying?

The reasoning here is that by allowing different levels of formality within the
same specification a specifier could decide to apply certain verification techniques
for parts of the specification while other parts are merely specified (without any
automatic verification performed). This would give a specifier the advantages that
come from “merely specifying” while still allowing to perform automatic reasoning
and verification techniques on parts of the specification.

�.�.� Partiality in Analysis

An important part of the rationale of lightweight formal methods is that it should allow
for scalable, automatic analysis [JW��]. Having a complete and decidable reasoning
technique which still is tractable is nearly impossible for large, enterprise scale systems.
For this reason lightweight formal methods focus on analysis techniques which can
be applied in a partial manner. For instance by bounding the scope of the analysis to
a subset of the problem domain. Even though these techniques might not prove the
absence of bugs, they do offer a thorough way to show their presence given a bounded
scope and thus offer benefit over more traditional testing techniques (see Figure �.�
for our assessment on the different guarantees given by the different techniques).

Although there are many reasoning techniques that can be used for partial analysis,
we focus on the technique used by Alloy since this was the original method specifically

� ������� � ������������

designed to be lightweight. Alloy utilizes the bounded relational model finder Kodkod
for automatic reasoning [TJ��b]. Kodkod takes a relation specification as input and
translates this to a boolean satisfiability problem (SAT) which in turn is solved by an
off-the-shelf SAT-solver (e.g., SAT�J [LP��]). Although Kodkod is able to reason on
non-relational problems such as integer constraints, the encoding of these types of
constrains into a boolean satisfiability problem is not the most efficient. These type of
constraints do however occur often in our problem domain of financial systems. The
questions that thus arises is:

Research Question �: Partiality in Analysis (RQ�)

How can we extend the current state of the art in relational model finding in
such a way that it is possible to efficiently reason about other theories such as
integer arithmetic?

The rationale would be that by extending the current state-of-the art, analyzing
mixed theory problems would become more efficient and thus allowing to analyze a
larger part of the problem domain in the same amount of time. This would further
increase our confidence of the correctness of the specification.

�.�.� Partiality in Composition

According to the definition of Jackson et al. modeling a large system will most probably
result in many partial specifications. Each written for its own purpose or specific
aspect of interest. In such a web of separate specifications it is hard to reason about
cross-cutting properties such as consistency. This gives rise to the question how to
combine these specifications in such a way that some automatic reasoning can be
performed. A way forward would be to allow users to specify these compositions
in an ad hoc manner allowing for different compositions to be made during the
specification process. Such a solution would require a specification language which
would allow for these bespoke compositions. We formulate the following question:

Research Question �: Partiality in Composition (RQ�)

How can we lift the problem of composition to the language level such that the
user is able to specify different compositions during specification and analysis?

�.� ������ �� ��� ��������

In this section we will list the origin and contributions of the coming chapters in this
thesis. Chapters �–� are all published papers at different conferences and workshops.

� .� ������ �� ��� �������� �

We will highlight which of our defined research questions are addressed in the
different chapters.

Chapter �. On the Design of the Rebel Specification Language and its Application
inside a Bank

J. Stoel, T. v. d. Storm, J. Vinju, and J. Bosman. “Solving the bank with
Rebel: on the design of the Rebel specification language and its application
inside a bank”. In: Proceedings of the �st Industry Track on Software Language
Engineering. ����, pp. ��–��

In this chapter we introduce the Rebel specification language and Integrated
Specification Environment (ISE) within the context of the ING bank. We describe
the requirements that underlie the Rebel specification language and how it can be
translated and checked by an SMT solver. Lastly it contains an initial evaluation on
the use of this ISE within the bank. In this chapter we explore Research Question �,
partiality in language, as we experiment with a specific specification language design
for our collaborating partner. The thesis author was the main author of this chapter.

Chapter �. AlleAlle: Bounded Relational Model Finding with Unbounded Data

J. Stoel, T. van der Storm, and J. J. Vinju. “AlleAlle: bounded relational model
finding with unbounded data”. In: Proceedings of the ���� ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. ����, pp. ��–��

This chapter contains the description of AlleAlle, a relational bounded model
finder.

We introduce the language, its semantics and the translation of the language
to SMT. AlleAlle is inspired by other relational modeling language like Alloy and
Kodkod but it targets a different solving engine. It translates to SMT instead of to SAT.
Because of this the AlleAlle model finder is able to directly reason about non-relational
theories like integer arithmetic. We evaluate both the performance as well as the
expressiveness of AlleAlle.

In this chapter we explore Research Question �, partiality in analysis, as we extend
on the current state-of-the-art in relational model finding. The thesis author was the
main author of this chapter.

Chapter �. Constraint-based Run-time State Migration for Live Modeling

U. Tikhonova, J. Stoel, T. Van Der Storm, and T. Degueule. “Constraint-based
run-time state migration for live modeling”. In: Proceedings of the ��th ACM

�� ������� � ������������

SIGPLAN International Conference on Software Language Engineering. ����,
pp. ���–���

This paper won the Best Software Engineering Technology ���� award ap-
pointed by VERSEN (the Dutch National Association for Software Engi-
neering).

In this chapter we introduce a language, Nextep, and technique that lets users
describe runtime state meta-model, a technique that can be used in the context of
Live Modeling. The technique automatically updates the runtime state whenever
the underlying runtime meta-model is changed. This is realized by encoding the
described meta-model and runtime state as AlleAlle problems. The AlleAlle model
finder is then run to find a fix to the runtime state that is minimal to a chosen
heuristic. To find this minimal model the AlleAlle model finder is instrumented with
a minimization criteria that forces the model finder to look for a minimal model.

This chapter contains another use-case for the model finder AlleAlle. It also
explores Research Question �, partiality in language, as we define a language which
balances live modeling requirements with the possibility for automatic analysis and
repair. This chapter was done in collaboration with co-authors. The thesis author
contributed to the idea, design, implementation and benchmarking of the solution.

Chapter �. Modeling with Mocking

J. Stoel, T. van der Storm, and J. J. Vinju. “Modeling with Mocking”. In:
���� IEEE ��th International Conference on Software Testing, Validation and
Verification (ICST). ����

In this chapter we introduce the notion of Mocking to Model Checking, allowing the
user to write specifications for the complete system while still being able to check parts
of the system in isolation. Mocking originated as a testing technique of object oriented
systems and allows the user to test objects in isolation to other objects. We describe
this mocking technique in the context of the Rebel� specification language, a language
inspired by the specification language introduced in chapter �. The chapter contains
the formalization of two introduced language constructs for mocking, namely: mock
and forget. Next to that it contains an evaluation of this mocking technique on two
case studies, one from the automotive industry and one from the banking domain.
We find that the language is expressive enough to specify both case studies and that
mocking enables the (partial) checking of these specifications where checking without
mocking quickly results in long checking times.

In this chapter we explore research questions �, partiality in modeling and �,
partiality in composition. The thesis author was the main author of this chapter.

� .� ������ �� ��� �������� ��

�.� �������� ���������

During our research we have created a number of software artifacts. All these artifacts
are available as open source and created using Rascal and the Rascal Language
Workbench [KvdSV��]. The list of artifacts is as follows:

• Rebel (v�) [Sto��]
• AlleAlle [Sto��a; Sto��b]
• Nextep [Sto��c; STvdS+��]
• Rebel (v�) [Sto��]

The design and implementation of the different artifacts is described in more detail in
Chapter �.

�� ������� � ������������

ON THE DESIGN OF THE REBEL SPECIFICATION LANGUAGE
AND ITS APPLICATION INSIDE A BANK 2

Abstract

Large organizations like banks suffer from the ever growing complexity of
their systems. Evolving the software becomes harder and harder since a single
change can affect a much larger part of the system than predicted upfront. A large
contributing factor to this problem is that the actual domain knowledge is often
implicit, incomplete, or out of date, making it difficult to reason about the correct
behavior of the system as a whole. With Rebel we aim to capture and centralize
the domain knowledge and relate it to the running systems.

Rebel is a formal specification language for controlling the intrinsic complexity
of software for financial enterprise systems. In collaboration with ING, a large
Dutch bank, we developed the Rebel specification language and an Integrated
Specification Environment (ISE), currently offering automated simulation and
checking of Rebel specifications using a Satisfiability Modulo Theories (SMT)
solver.

In this paper we report on our design choices for Rebel, the implementation
and features of the ISE, and our initial observations on the application of Rebel
inside the bank.

�.� ������������

The ING bank is an organization with a long history and was among the first Dutch
companies that started automating their processes. In the past decades many different
systems on different technologies were created to support the ever growing need for
process automation. With every new automated service and with the growing use of
these services the demand on these systems also grew quickly. During these decades
the underlying technologies in which new systems where implemented changed
while often the underlying problem domain did not. This resulted in an application
landscape with numerous applications implemented in different technologies running
on different platforms.

Reasoning about the impact of change or the introduction of new features in such
a large and technologically scattered application landscape is hard. Especially since
the description of the domain knowledge which is captured by these applications if
often missing, out of date, or incomplete. When the domain knowledge is captured
it is written down in informal documents like Word files or Excel sheets without
connection to the implemented application. Changing the software becomes a labour
intensive task relying on the tacit knowledge of the people in the organization. As a

��

result, the ability to predict and control the correctness [Mey��], cost-of-ownership,
performance and reliability is compromised.

In a public/private partnership between our research institute and the ING bank we
set out to improve the quality of communication between stakeholders, to simplify the
design and implementation of products and services using lightweight formal meth-
ods [Jac��]. The initial result of this collaboration is the Rebel specification language
and its ISE. Rebel is built using of the language workbench Rascal [KvdSV��], and
employs the state-of-the-art SMT solver Z� [DB��] for simulation and checking. In this
paper we describe the current design and initial observations of Rebel within the bank.

The contributions of the current report can be summarized as follows:
• We provide a description of the requirements and design of Rebel (Section �.�);
• We sketch how Rebel specifications are translated to SMT formulas for formal

analysis and simulation (Section �.�).
• We show how the simulation of specifications can be used to test existing

applications (Section �.�).
• We report on initial observations in applying Rebel and its ISE inside the bank

(Section �.�).
Ultimately Rebel specification could serve as the base for new applications.

�.� ����������

Based on discussions we had with various stakeholders within the bank we identified
four challenges faced by the bank.

Dispersed Functionality. The current application landscape of the bank contains
approximately ���� applications with many interactions between them of unknown
scale. This landscape is the result of nearly �� years of software evolution within the
bank incorporating many different technologies, frameworks and design styles. Some
of the applications have overlapping functionality, but it is often unclear whether they
behave similarly under equal conditions. As a result, changes to the software require
extensive, labour intensive testing.

Scattered and Implicit Domain Knowledge. Which applications should encode
which part of the domain is informally documented (if at all) and scattered across the
landscape. There are many partial requirements documents, ranging from written
documentation and presentation slides to Excel sheets and sometimes UML diagrams
like Statecharts and sequence diagrams. These partial descriptions, however, are often
ambiguous, incomplete and under-specified. It is eventually up to the developers
to implement the requirements to the best of their knowledge. Ultimately, the only

�� ������� � �� ��� ������ �� ��� ����� ������������� �������� ��� ��� �����������
������ � ����

source of domain knowledge is the software itself, but eliciting this knowledge is a
hard problem, well-known from research in reverse engineering [TP��]. As a result,
questions like “What is a savings account?” or “Which operations are allowed on a
savings account?” are very hard to accurately answer.

Stricter Regulations. Regulation of banking is becoming more strict. This has
become even more urgent since the start of the economic crisis of ����. As a result the
accountability of the system as a whole must increase. Currently, questions like “Why
did this transaction fail?” are hard to answer and require intensive manual labour
like mining log files to trace calls through large parts of the application landscape.

Implicit Quality Assurance. There exists a conceptual gap between product owners—
domain experts that are responsible for a specific product—and development teams.
Currently the way to check whether development teams have implemented requested
features correctly is by demonstrating the actual software itself or a prototype of it.
It is then up to a product owner to decide whether the implemented feature meets
its specifications. Since the specification are often informally documented there is
currently no automated way to check whether the software meets this specification.
Next to this it can be hard for product owners to find deficiencies in the product that
are caused by under-specification. In other words, a product owner currently does
not have many tools that help making this decision.

�.� ������ �� ��� ����� �������� ��� ���

The design of the Rebel language and ISE is guided by the challenges that are described
in the previous section. In the coming section we will elaborate on the design choices.
How these choices are reflected in the language and ISE is delayed to later sections.

Centralized and Unambiguous Specifications. To tackle the challenge of scattered
and implicit domain knowledge we designed Rebel as a formal specification language
in which it is possible to represent the essential characteristics of financial products
at a very high level of abstraction. The language focusses on capturing domain
knowledge and omits any details of technical implementation. Rebel is designed as a
domain specific language (DSL) for the banking enterprise domain. This means that
it should be possible to capture all parts of banking. For example, banking is both
about financial transactions and customer relations. Both domains can be described
with Rebel.

Increase Collaboration between Product Owner and Development Team. It is
important that both product owner and development team have a thorough under-

� .� ������ �� ��� ����� �������� ��� ��� ��

standing of the product that was specified. For instance, a product owner must decide
whether or not a specification is complete regarding the desired functionality. To
check this so called external consistency of the product specification [SMD��] the
ISE offers a simulation environment as a means for rapid prototyping. Next to this
it should be possible to visualize Rebel specifications in other formalisms like UML
Statecharts, a formalism which is well known to the product owners of the bank. In
our vision both product owner and development team take part in the specification
process. By making use of techniques like simulation and other visualization methods
we aim to minimize the possibility for miscommunication and thus ultimately, the
inception of the wrong software.

Practical Automatic Reasoning. In light of stricter regulations reasoning on the level
of specification is required. For instance in the Netherlands the legislator prohibits a
person under the age of eighteen from buying certain financial products. Being able
to check whether the specification would allow or disallow this behavior is of great
value to the bank. This kind of automatic reasoning should still be practical in its use,
meaning that a user of Rebel should be able to check this kind of properties by the
push of a button in a reasonable amount of time. In the Rebel ISE we try to balance
completeness of reasoning with the response time of the reasoning process.

�.� ����� �������������� ���������

We introduce Rebel using an example specification. For explanatory reasons we chose
a simplified version of the real ING savings account.�

�.�.� The SimpleSavings Account

The SimpleSavings account can be opened by a customer provided that the customer
deposits more than or equal to �� euro into the account on opening. After the account
is opened the customer can deposit and withdraw money. Next to depositing money,
money can also flow into the account when interest is received. The amount of
interest that a customer gets is variable but it never exceeds a fixed percentage. This
percentage differs over different saving accounts but for this SimpleSaving account it
is fixed at �%. In extreme cases, for instance when the customer is under suspicion
of criminal behavior, the account can be blocked. This means that no money can be
withdrawn from, or deposited to the account. In the end, the account can be closed
provided that the remainder of money has been taken out of the account. When it is
closed the account finally ends up in a state without any possible further interactions.
It is invariant for every type of savings account that the balance is always positive. In
other words, it is not allowed to overdraw a savings account.

�See Appendix B.� for the complete syntax definition of R����.

�� ������� � �� ��� ������ �� ��� ����� ������������� �������� ��� ��� �����������
������ � ����

1 specification SimpleSavings {

2 fields {

3 accountNumber: IBAN

4 balance: Money

5 }

6

7 events {

8 openAccount[minimalDeposit = EUR 50.00]

9 withdraw[]

10 deposit[]

11 block[]

12 unblock[]

13 interest[maxInterest = 5%]

14 close[]

15 }

16

17 invariants { mustBePositive }

18

19 lifeCycle {

20 initial init -> opened: openAccount

21 opened -> opened: withdraw, deposit, interest

22 -> blocked: block

23 -> closed: close

24

25 blocked -> opened: unblock

26 final closed

27 }

28 }

Figure �.�: Rebel specification of a SimpleSavings account. The events and the mustBePositive
invariant are explained in more detail in Section �.�.�.

�.�.� Business Entities as State Machines

The Rebel implementation of the SimpleSaving account is shown in Fig. �.�.
Each specification consists of four (optional) parts: state variables, event decla-

rations, invariants and life cycles. The fields section describes state variables of this
entity and their types (e.g., balance, accountNumber). Since Rebel has been designed
specifically for the banking domain, some of the types are specific for this domain. For
example, Rebel has built-in types for Money, Currency and IBAN (unique European bank
account number), next to the standard types for booleans, numbers and strings. With
this design we aim to maximize the range of banking domain problems which can
be expressed, while using values which are natural to domain experts, and without
forcing them to formalize “trivial” details (e.g., uniqueness of IBAN).

� .� ����� �������������� ��������� ��

>?4=43 1;>2:43

2;>B43

openAccount

withdraw,deposit,interest

block

close
unblock

Figure �.�: Graphical representation of the life cycle of the SimpleSavings example shown in
Fig. �.�

The events section contains all possible transition triggers (e.g., openAccount,
withdraw, deposit, etc.). The lifeCycle section defines a state machine for each instance
of the specification. Fig. �.� depicts the state machine of a SimpleSaving instance. The
pattern for a transition B1 ! B2 : 41 , ..., 4= should be read as a transition from B1 to B2
is possible via any event in 41 , ..., 4= . For instance, it is possible to block an account
that has been opened, which changes the state of the savings account to state blocked.
A transition fires if and only if it is enabled by the life cycle and its conditions are
satisfied (see section �.�.�). The initial and final keywords mark the initial and final
states of the machine.

Finally, the invariants defined for an entity capture predicates that always have to
be true. For instance, it should not be possible to overdraw from the savings account,
given the invariant mustBePositive; it is up to the conditions of the withdraw event to
satisfy this invariant.

�.�.� Declaring Events and Invariants

Note that Fig. �.� does not show the definition of the pre- and post conditions and
invariants. These are specified elsewhere to promote reuse of events and invariants
for specifying other, similar business entities, and for making Rebel specifications
more concise. As an example, consider a possible definition of the openAccount

event, shown in Fig. �.�. Event definitions have two sets of parameters: configuration
parameters (enclosed in [...]) and transition parameters (enclosed in (...)). Configuration
parameters are bound at design time, and have default values. The default values
can be overridden when an event is included in a specification. For instance, the
configuration parameter minimalDeposit with the default value of EUR 0.00 (Fig. �.�,
line �) is bound in SimpleSavings (Fig. �.�, line �) to be EUR 50.00. With the use of

�� ������� � �� ��� ������ �� ��� ����� ������������� �������� ��� ��� �����������
������ � ����

1 event openAccount[minimalDeposit: Money = EUR 0.00]

2 (accountNumber: IBAN, initialDeposit : Money) {

3

4 preconditions {

5 initialDeposit >= minimalDeposit;

6 }

7

8 postconditions {

9 new this.balance == initialDeposit;

10 new this.accountNumber == accountNumber;

11 }

12 }

Figure �.�: Definition of the openAccount event

these configuration parameters it is possible to reuse the openAccount event in the
specification of other types of ING saving accounts.

Events can refer to entity fields using the keyword this. This notation is borrowed
from object-oriented languages and refers to the current instance of the specification.
The keyword new refers to the value of the variable in the post-state, after the transition
has fired. This distinction is necessary to express logical and arithmetic constraints
between the state of an instance before and after each transition. For instance, when
withdrawing money the post-state of the balance state variable would be expressed
using the current value (new this.balance == this.balance - amount). Semantically, all the
constraints written in the preconditions must hold for the instance of the specification
to make the transition and after the transition it is asserted that post-condition holds.

Invariants are also specified separately and they specify predicates that must be
true at all times. For instance, the mustBePositive invariant exists to assert that the
balance of the SimpleSavings is greater than or equal to EUR 0.00 in all reachable states:

invariant mustBePositive { this.balance >= EUR 0.00 }

�.� ���������� ��� �������� ��������������

Both simulation and checking share the the same underlying encoding strategy which
will be explained in the next subsection. The subsections that follow will contain
more details on the individual steps.

�.�.� Overall SMT Encoding Strategy

We define the semantics of Rebel in terms of labeled transition systems (as introduced
by Keller [Kel��] and popularized by Plotkin [Plo��]). The current state of the transition

� .� ���������� ��� �������� �������������� ��

system for a given specification maps to a named state of the specification, tupled with
the current field variable assignments and the event parameter assignments that led
to the current state. The labeled transitions map to the events and their preconditions
and postconditions. The invariants are used as external specifications of expected
behavior and are simply mapped to additionally asserted formulas.

Labeled transitions systems can be checked using bounded model checking [VBG+��].
We use an encoding of symbolic bounded model checking (with data) as an SMT
problem inspired by Milicevic [MK��] and Veanes et al. [VBG+��]. The goal of
bounded model checking is to find a reachable state in which some property of
interest does not hold (e.g., a state in which some invariant does not hold). We use
the bound, encoded by :, as a parameter to balance efficiency and response time in
the ISE with completeness of the check and we use it also to explore the state-space in
a breadth-first manner for simulation purposes.

In bounded model checking, the initial state B0 is constrained by some function: .
For Rebel the semantics of the function constrains the initial state to represent an
uninitialized specification.

Next, the transition function that constrains the valid transition from one state
B8�1 to the next B8 is captured by ⌧(B8�1 , B8). This means that in a valid trace—a
chain of valid transitions from one state to the next—the following formula must
hold: ⌧(B0 , B1) ^ ⌧(B1 , B2) ^ ...⌧(B:�1 , B:). For Rebel the semantics of the transition
function is the exclusive disjunction of all defined events. For instance, a SimpleSavings

specification can only transition via withdraw � deposit but never both. This means
that a state transition in a Rebel specification is always constrained by only one of the
defined events.

Like mentioned earlier, the goal of bounded model checking is to find a reachable
state in which some property of interest does not hold. This property is also known
as the safety property and captured by the function P. We are interested in a trace in
which the safety property holds in all states except for the last. More formally, the
following should hold: P(B0)^ P(B1)^ ...¬P(B:). In the case of Rebel we are interested
in finding states where the invariants do not hold. The safety property is defined as
the conjunction of all defined invariants since a specification can contain multiple
invariants.

So, using the above mapping of Rebel to SMT formulas we may verify—up to
transition traces of length :—that the specified invariants hold during the entire life
cycle of any entity. We may use the same mapping to infer single transition steps to
run a simulator. In this case the SMT solver provides us with computations which
satisfy the route from pre-condition to post-condition for every transition. Effectively,
the SMT solver has then become an interpreter for Rebel specifications.

In the coming sections we will give a more detailed description of the steps that
are used when translating a Rebel specification to SMT constraints.

�� ������� � �� ��� ������ �� ��� ����� ������������� �������� ��� ��� �����������
������ � ����

�.�.� Normalization

Before we simulate or check a Rebel specification it is normalized. Normalization
of the Rebel specification is not only done to make the mapping to SMT formulas
easier; it also partially gives semantics. After normalization a specification contains
all the necessary information for the aforementioned mapping to SMT. It consists of
the following steps:

�. Inlining. Referenced events with their configurations and invariants are resolved
and inlined with the specification.

�. Desugaring the Life Cycle. The life cycle is desugared by strengthening the
pre- and postconditions of the events with the life cycle information. To achieve
this two fields, _state and _step, are added to the fields of the specification. A
distinct identity is assigned to each state and event. The _state field holds the
identity of the current state and the _step field holds the identity of the event
that led to the current state. This way the original life cycle can be expressed
by adding constraints based on the two newly added fields to the pre- and
postconditions of the events.

�. Adding Frame Conditions. To guard the fields that are not changed by the
event frame conditions are added [Jac��]. These frame conditions make sure
that a field has the same value after the transition as before.

�.�.� Bounded Checking

The goal of checking Rebel specifications is to check whether a given specification
is consistent. A specification is considered consistent if the invariants hold in all
reachable states. A reachable state is a state which can be reached from the initial state
via (a chain of) valid transitions. Since Rebel specifications have data encapsulated
and life cycles may have loops model checking without reasonable bounds could
quickly suffer from the state explosion problem [CES��]. Here we describe two
verification techniques we implemented for Rebel (both use a similar encoding).

Step �: Quickly Check if the Specification is (trivially) Consistent. First we use
the SMT solver to try to inductively prove that the invariants hold in all possible
transitions. This is expressed using these three formulas:

�. If the initial condition holds in some state then the safety property should also
hold: (B0)) P(B0)

�. If the initial condition holds in the first state and there is a transitions possible
to a second state then the safety property should also hold in the second state:
(B8�1) ^ ⌧(B8�1 , B8)) P(B8)

� .� ���������� ��� �������� �������������� ��

�. If the safety property holds in the first state and there is a transition possible
to a second state then the safety property should also hold in the second state:
P(B8�1) ^ ⌧(B8�1 , B8)) P(B8)

If these three formulas can be proven by the SMT solver it means that the specification
is consistent. In this case we report back to the user that the specification is found
to be consistent. If they can not be proven it means that there might be a transition
possible which leads to a state in which the safety property does hold.

This strategy can lead to false positives—a specification which is wrongly labeled
as inconsistent—but never to false negatives. For instance: if the third hypothesis can
not be proven it means that it is possible to construct a state in which the invariants
hold, make a valid transition and end up in a state in which the invariants do not hold.
However, whether the first state of the counter example is reachable from the initial
state is unknown making it a potentially unreachable counter example. To find out
if the counter example is actually reachable we run a bounded model check on the
specification.

Step �: Run Bounded Analysis. During bounded analysis we are interested in
finding the smallest possible counter example, where smallest means in the least
possible steps. The formulas that we try to prove are similar to those described in the
previous section but the difference is that we now use explicit step unwinding.

The process of finding a counter example is fully automatic and incremental.
We start by checking if an invalid state can be reached in one step. If not then
we check if it can be reached in two steps. This is continued until a counter
example is found or some : is reached †. More formally, we try to prove that:
(B0) ^ P(B0) ^ ⌧(B0 , B1) ^ P(B1) ^ ...⌧(B:�1 , B:) ^ ¬P(B:).

If a counter example is found by the solver the found model is translated back to
the Rebel simulator which can then visualize the counter example as a trace in the
simulation environment. If no counter example can be found in the given : the ISE
reports to the user that the specification might be consistent. The phrasing ‘might’ is
used since it still could be the case that a counterexample can be found after = steps
where = > :.

�.�.� Simulation

The purpose of simulation differs from checking. Where checking is done to check
the internal consistency, simulation is used to check the external consistency [SMD��].
Fig. �.� shows a screenshot of the implemented simulator in the Eclipse IDE. Using
the simulator the user can quickly check whether the created specification behaves as

†In our implementation we have chosen to work with a configurable timeout given to the SMT solver
instead of some fixed :. This choice is practical by nature, we want to control the maximum time spent
waiting by the user.

�� ������� � �� ��� ������ �� ��� ����� ������������� �������� ��� ��� �����������
������ � ����

Figure �.�: Screenshot of the Rebel simulator. The right side shows a graphical representation
of the life cycle. The current state is highlighted by a red ellipse. The top left side contains the
current values assigned to the fields, and the bottom part displays buttons for each possible
transition that can be fired from the current state.

(informally) expected. Where checking is about reasoning about all possible traces,
simulation is about reasoning about individual steps. This can be implemented using
the similar strategy as described in the previous section. As mentioned earlier, when
simulating we effectively use the SMT solver and our encoding as an interpreter of
Rebel specifications.

Translate a Single Step to SMT. We translate the event the user wants to execute to
SMT formulas. The transition function, ⌧(B1 , B2), contains the pre- and postconditions
of the to be executed event. The current values of the simulated specification are
translated as constraints on the current state, B1, and the user is asked to provide the
data values for the transition parameters of the chosen event transition.

Next, the solver is asked whether it can indeed ‘make the step’. This means that
we check two things:

�. Whether it is possible to satisfy the constraints of the selected events given the
current state and actuals of the transition parameters of the event: ⌧(B1 , B2)

�. Whether the invariants (the safety property) hold in the resulting state: P(B2).
If it can not make the step because the first check fails we make use of the unsatisfiability
core functionality of the solver to find out which constraints are most likely the cause

� .� ���������� ��� �������� �������������� ��

of the failure. The unsatisfiability core functionality reports an unsatisfiable subset
of clauses of the asserted formulas [CGS��]. The returned constraints are mapped
back to the original Rebel expressions and presented to the user. If it can not make
the step because the second check fails we report back to the user which invariant is
violated as a result of the step, and we roll back to the previous state so that the user
can explore other options without having to restart the simulation.

�.� ���������� ����� ����� ������� �� �������� ������������

Another important aspect of the Rebel ISE is the ability to check whether an existing
application behaves according to the specification. Mismatches between specification
and the system under test (SUT) can point to bugs in the existing applications or to
erroneous assumptions in the specification. This is essentially a model based testing
approach to test existing ING applications [DJK+��].

To implement this functionality we use the traces that were described in Section �.�.
By automatically checking whether the SUT accepts the trace as a valid execution
trace we can check whether the SUT behaves similar as the specification. To playback
the steps in a trace on the SUT every transition is split into three steps:

�. Check whether the current state of the SUT conforms to the current state in the
trace (pre-transition check)

�. Ask the SUT to perform the actual operation according to the trace (transition
check)

�. Check whether the new state of the SUT conforms to the new state in the trace
(post-transition check)

To implement the above steps we map every event declared in the specification
to an operation in the SUT (to perform the transition check). Next to that we map
fields of the specification onto the state of the SUT (to perform the pre- and post-
transition checks). A requirement on these mappings is that all events and fields of
the specification are completely mapped onto the SUT (otherwise the trace effectively
can not be played back). Our first prototype used SOAP services provided by the SUT
and performed the operations by sending SOAP messages and by checking whether
the received responses were conform to the trace.

Currently, it is possible to perform the described testing interactively using
the simulation described in Section �.�.�. Every step made in the simulation is
automatically also performed in the configured SUT. Any difference between the
simulation and the SUT is then displayed in the simulation showing which values differ
between the two. Expanding this functionality to also work completely automatically
using a given trace is future work but should be straightforward to implement.

�� ������� � �� ��� ������ �� ��� ����� ������������� �������� ��� ��� �����������
������ � ����

�.� �������� ����� ������ ��� ����

We implemented a prototype of the Rebel ISE and tested its implementation inside
the bank. As a first test case we specified saving accounts [Pet��]. Fourteen (out of
seventeen) types of ING saving accounts were specified. These saving accounts were
built up out of fifteen distinct events. With the use of the configuration parameters
these events could be reused across different types of savings accounts.

The verification tool showed an unexpected counter example where the mustBePositive

invariant would not hold, caused by the —unlikely but real— possible circumstance
of a negative interest rate.

Using the prototype of the model based testing tool we found a difference between
the specification and an existing system where the existing system allowed for accounts
with incorrect account numbers.

During the use of Rebel inside the bank we observed that our initial assumption
that Rebel syntax would be understandable for product owners was incorrect. We
informally evaluated the understandability of Rebel specifications by asking a handful
of product owners whether they understood the specification. Some had more trouble
than others in performing this task. When faced with a manually written document
containing similar specifications and visualized using UML Statechart diagrams the
same product owners were able to understand the specifications. This led us to
develop transformations from Rebel specification to both natural language documents
and interactive UML Statechart visualizations to increase the ease of understanding
amongst product owners. A more thorough evaluation on the understandability of
Rebel specification is left as future work.

�.� ������� ����

Formal Specification Languages. Rebel is inspired by other formal methods. We
will discuss Alloy [Jac��a] and B [Abr��] since Rebel has similarities with both.

Alloy is a specification languages based on relational logic. Alloy is positioned as
a lightweight formal method [Jac��] meaning that instead of demanding rigorous
proofs of the specifications it uses the bounded model finder Kodkod [TD��] to
analyze the specification and gives counter examples if the assertions made in the
specifications do not hold. Rebel is also a lightweight formal method in the sense
that it uses similar bounded analysis of its specifications. Unlike Alloy, Rebel does
allow other theories to be used next to relational logic. For instance, a defined Rebel
parameter can be of type Integer allowing for all the usual arithmetic expressions to
be used in the pre- and postconditions. Next to this Rebel and Alloy handle state
differently. Alloy is a general purpose specification language allowing for different
modeling paradigms. It is possible to model state based systems in Alloy but this is
not a builtin, meaning that users should take special care when modeling state based

� .� �������� ����� ������ ��� ���� ��

systems. In Rebel State is a first class concern making it hard for other modeling
paradigms to be used.

B is a formal method in which abstract machines play a central role [Abr��]. It
uses first order logic and set theory to define operations on abstract machines. B
was built with code generation in mind. To achieve this B uses a process called
specification refinement. In every new refinement step the user adds more detail to
the specification. The last level of refinement is the actual code which can be executed.
On every refinement level B requires users to provide proof that the refinement is
correct. Most of these proofs can be obtained automatically but, if not, they must be
provided by the user. This proof obligation is the biggest difference with Rebel. Rebel
follows the same philosophy as Alloy. Requiring full proofs can be experienced as
‘too heavy’ by our intended users.

Enterprise Modeling. Modeling enterprise systems is a well known topic in both
research and industry (i.e. [DGW+��]). There are many approaches, but here we
highlight only one, MERODE, since it has a unique formal analysis component.
MERODE is a domain modeling approach for enterprise systems [SMD��]. MERODE
defines static entity-relationship (ER) models and a dynamic model based on a process
algebra. By combining the notion of existence dependency [SD��] in the ER model,
with the process algebra of the dynamic model, an enterprise model can be checked
for deadlocks [DS��]. Although MERODE offers some formal analysis techniques
it was not build with verification in mind. For instance, MERODE allows for the
definition of (class, attribute and method) constraints (in an OCL like syntax) but
there is no method to check whether certain assertions will hold. It is left to the user
to transform these constraints to meaningful implementations using model-to-source
transformations.

DSLs and Finance. Domain-specific languages (DSLs) have a long history in the
domain of finance‡. One of the earliest financial DSLs is RISLA [AvDR��]. The
language was designed to capture the nature of interest products offered by banks.
One of the findings of the authors was that financial engineering was extremely
suitable as an area to apply formal methods, because financial damage inflicted by
incorrect system behavior can be very severe.

The difference with Rebel and other financial DSLs is the scope of the problem
domain that is covered by the DSL. While Rebel focusses on the whole of the banking
enterprise, other financial DSLs, like RISLA, are specifically created to work on one
specific financial problem domain.

‡See [CFS] for an overview

�� ������� � �� ��� ������ �� ��� ����� ������������� �������� ��� ��� �����������
������ � ����

Formal Methods and Finance. Gimblett, Roggenback and Schlingloff present a
case-study on how to formally specify the international Electronic Payment System
(ep2) standard in CSP-CASL [GRS��]. With the formal specification they were able to
identify a number of deficiencies in the standard. As a source for the formalization
they used the informal documentation of the ep2 standard which was mostly text-
based, augmented with UML-like diagrams. They found that it was easy to formalize
high level descriptions but when it came to the details the standard was often found
lacking.

Gimblett, Roggenback and Schlingloff show that there is value in formally specify-
ing financial standards. It is not their aim to provide a method for specifying these
types of standards. With Rebel we aim to provide such a method.

�.� ����������

In this paper we presented the Rebel language and its ISE, an integrated specification
environment for defining financial enterprise systems. With the use of the Rebel ISE
we were able to formally specify banking products like saving accounts. By using a
mapping of the Rebel language to SMT formulas it is possible to simulate and check
Rebel specifications. Simulation is useful for checking the external correctness of the
specification (‘does the product behave as I expected’) and checking is useful to check
the internal correctness of the specification (‘do the specified invariants hold’). The
mapping to SMT uses the same strategy for both simulation and checking using a
bounded model checking encoding of the Rebel specifications.

Our first impression of the use of Rebel inside the bank is that formal specifications
help in translating vague and ambiguous product description in precise product
specifications. Simulation helps as an early prototyping mechanism with which
users can verify whether the specified product is complete regarding its functionality.
Checking helps users verifying internal consistency. It does not allow for traces where
the system ends up in a state in which the defined invariants do not hold.

Next to this we observed that transforming the specifications into documentation
that closely resembles the current documents that are written by hand seems to
help understanding. As future work we would like to more thoroughly evaluate the
understandability of Rebel specifications so we can further improve the communication
between stakeholders using these specifications.

Based on these initial results we are now further investigating the optimization of
the model checking and simulation processes, adding features of (parallel) composition
of entities and communication between entities from Rebel specifications. Meanwhile,
the bank has invested to produce more Rebel specifications of their products and
services as they already see the benefit of having an unambiguous product specification
as a method of communication.

� .� ���������� ��

ALLEALLE: BOUNDED RELATIONAL MODEL FINDING WITH
UNBOUNDED DATA 3

Abstract

Relational model finding is a successful technique which has been used in a
wide range of problems during the last decade. This success is partly due to the
fact that many problems contain relational structures which can be explored using
relational model finders. Although these model finders allow for the exploration of
such structures they often struggle with incorporating the non-relational elements.

In this paper we introduce A���A���, a method and language that integrates
reasoning on both relational structure and non-relational elements —the data— of
a problem. By combining first order logic with Codd’s relational algebra, transitive
closure, and optimization criteria, we obtain a rich input language for expressing
constraints on both relational and scalar values.

We present the semantics of A���A��� and the translation of A���A���
specifications to SMT constraints, and use the off-the-shelf SMT solver Z� to
find solutions. We evaluate A���A��� by comparing its performance with
K�����, a state-of-the-art relational model finder, and by encoding a solution to
the optimal package resolution problem. Initial benchmarking show that although
the translation times of A���A��� can be improved, the resulting SMT constraints
can efficiently be solved by the underlying solver.

�.� ������������

In the last decades relational modeling and model finding has been used to solve
problems in a wide range of domains, from security [BCR+��], program verification
and testing [GGL+��; KYZ+��], to enterprise modeling [BPH+��].� Since many
computational problems have relational structures relational model finding has
shown to be a powerful and useful method. But there is also a large class of problems
that is not purely relational and requires reasoning over other attributes as well.

Consider for instance, a simple file system. This structure can be naturally
expressed as a relational problem. However, adding constraints on properties like
the depth or the size of file system nodes is not straightforward, or cannot be solved
efficiently. In this paper we propose A���A���, a language that allows users to model
both the relational and the non-relational elements —the data— of their problem.

A���A��� combines first order logic, Codd’s relational algebra (projection,
restriction, renaming and natural join) [Cod��], and (reflexive) transitive closure in

�For a overview of the different areas where relational model finding has been applied visit http:
//alloytools.org/citations/case-studies.html.

��

a single formalism. A���A��� specifications can be translated to SMT formulas
which in turn can be solved by an off-the-shelf SMT solver, such as Z� [DB��]. We
implemented these ideas in a prototype tool.†

Next to solving Constraint Satisfaction Problems (CSP), A���A��� can be used
to solve Constraint Optimization Problems (COP) (cf. traveling salesman). This is
achieved by extending the syntax of A���A��� with the ability to express optimization
objectives on relations. These optimization criteria are added to the translated SMT
formulas and can be solved using Z�’s built-in optimization solver ⇡Z [BPF��].

We perform an initial performance benchmark and evaluate A���A���’s ex-
pressiveness on a well-known problem in software engineering: optimal package
resolution [ATC+��]. This problem, faced by software package managers, can be
compactly expressed as a relational problem in A���A��� and we show that the
resulting SMT formula can be efficiently solved by the underlying SMT solver.

The contributions of this paper can be summarized as follows:
• A���A���, a language combining Codd’s relational algebra with first order

logic, transitive closure, and optimization objectives (Section �.�).
• A translation semantics expressed by compiling A���A��� specifications to

SMT constraints (Section �.�).
• Initial performance benchmarking of A���A���, including a realistic bench-

mark based on the optimal dependency resolution problem (Section �.�).
We conclude the paper with a discussion of related work (Section �.�), and an outlook
towards future work (Section �.�).

†https://github.com/cwi-swat/allealle

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

1 File (oid:id, depth:int, size:int) >= {<f0,2,100>} <= {<f0,2,100>,<f1,?,?>,<f2,?,?>}
2 Dir (oid:id, depth:int, size:int) <= {<d0,?,?>,<d1,?,?>,<d2,?,?>}
3 Root (oid:id) = {<d0>}
4 contents (from:id, to:id) >= {<d0,d1>}
5 <= {<d0,d0>,<d0,d1>..<d2,d2>,<d0,f0>..<d2,f2>}
6

7 // Contents is a relation that goes from Dir -> (Dir+File)
8 contents in (Dir[oid as from][from] x (Dir + File)[oid as to][to])
9 // A dir cannot contain itself

10 forall d : Dir[oid] | no d[oid as to] & (d[oid as from] |x| ^contents)[to]
11 // Root is a Dir
12 Root in Dir[oid]
13 // All files and dirs are (reflexive-transitive) ’content’ of the Root dir
14 (File[oid] + Dir[oid])[oid as to] in (Root[oid as from] |x| *contents)[to]
15 // All files and dirs can only be contained by one dir
16 forall f : (File + Dir)[oid] | lone contents |x| f[oid as to]
17

18 // All files have a positive size
19 forall f : File | some f where size > 0
20

21 // The size of a dir is the sum of all files that are transitively part of this directory
22 forall d : Dir |
23 let containedFiles = (d[oid][oid as from] |x| ^contents)[to][to as oid] |x| File |
24 some (d x containedFiles[sum(size) as totalSize]) where size = totalSize
25

26 // The depth of a file or directory is equal to the depth of its parent + 1
27 forall d : Dir[oid,depth], o : (Dir + File)[oid,depth] |
28 o[oid][oid as to] in (d[oid][oid as from] |x| contents)[to] =>
29 some (o[oid as to] x d[depth as parentDepth]) where (depth = parentDepth + 1)
30

31 // The depth of Root is 0
32 some (Root |x| Dir) where depth = 0
33

34 // Get a solution with the least number of files and directories
35 objectives: minimize (File + Dir)[count()]

Listing �.�: A���A��� specification of a small file system, original example comes from [Tor��].
[..] is projection, [.. as ..] is renaming, x is cartesian product, & is intersection, + is union, *
and ^ are (reflexive) transitive closure, |x| is natural join.

�.� ��������

A���A��� is an intermediate language similar to K�����’s [TJ��a] internal model.
As such it is aimed at being a target language for high-level relational modeling
languages such as A���� [Jac��; TD��]. Instead of using SAT solvers to solve
relational constraints, however, A���A��� leverages native data theories built into
SMT solvers, such as Z�. Because of this, A���A��� can support constraints over
unbounded data such as integers, reals, and strings, without having to encode such

� .� �������� ��

data values into boolean propositions. As a result, relational specifications employing
constraints over data do not suffer from exponential blow-up problems that may
occur, for instance, when using fixed bit-width integers in A���� or K�����. In
other words, the solving power of A���A��� is a super-set of that of K�����.

A���A��� is designed to be extensible. Our current implementation supports
native integer constraints, but the design of the language and the translation to SMT
constraints allows support for other theories (e.g., reals, strings, etc.) in the same
way as the current prototype supports integer constraints. Below we illustrate how
A���A��� combines Codd’s relational algebra and unbounded data constraints
using the example of a file system specification.

�.�.� Modeling a File System in A���A���

Imagine that we would like to model a new kind of file system and we want to test our
design before building the new system. Our new simple file system would have the
following structural constraints: it may contain both directories and files, it only has
one root, there can be no cyclic dependencies and everything must be reachable from
the root. The file system does not allow symbolic links (preventing cyclic references).

Next to these structural constraints we also have some non structural constraints
namely, every file must have a positive size; the size of a directory derives from the
size of its contents. Finally, every file and directory has a depth which encodes the
distance from the root in the hierarchy.

To check these constraints we create an A���A��� specification that encodes the
above constraints, as shown in Listing �.�. In the next paragraphs we will explain the
different parts of this specification.

Declaring relations The first part, lines � to �, contains the declarations of the
relations. Every relation declaration has three parts: the name of the relation, its
header, and its tuple bounds. In A���A��� all relations are bounded meaning that
all the tuples that are potentially part of the relation are defined in its upper bound.

For instance, the File relation on line � has three attributes which are defined in
its header: oid, depth and size. The attribute oid is of the id domain while depth and
size are of the int domain. The id domain is a bounded domain of arbitrary chosen
labels, or atoms. The domain contains exactly those values as specified in the relation
declarations of the specification. For instance, for this specification the id domain
consists of f0,f1,f2,d0,d1 and d2.

The right hand side of the relation declaration lists the tuple bounds. These encode
the tuples that can be part of a relation. The File relation contains both a lower bound
(the tuple set after the >= sign), and an upper bound (the tuple set after the <= sign).
Every relation must have an upper bound. Lower bounds are optional.

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

Lower bounds can be used to encode partial solutions [TJ��b].‡ They encode
the tuples that must be part of every satisfying instance. In our example we see that
the lower bound of the File relation has one tuple, hoid : f0, depth : 2, size : 100i. This
means that in every satisfying instance found by the solver the relation File must at
least contain this tuple. In other words, we specify that our file system always must
have the file (identified by) f0 with a size of 100 and two steps removed from the root
(depth : 2).

The upper bound, on the other hand, contains the tuples that may be part of a
satisfying instance. For the File relation this means that two more tuples may be part
of any satisfying instance. Both of these tuples contain question marks for the depth

and size attributes. These question marks —or holes— in the tuple definition indicate
that the value can be freely assigned by the solver as long as the values satisfy the
specification. Holes can only be introduced for non-id attributes. Attributes of the id

domain always need a value assigned.
The lower and upper bounds of the Root relation (line �) are equal to each other

and contain a tuple set with only one tuple, {<d0>}. When the lower and upper bounds
of a relation are equal, the = sign is used to define the exact bound. As a result, in
every possible satisfying instance this relation must contain exactly these tuples and
not more. The Dir relation only has an upper bound (line �). This indicates that,
according to the relation definition, the empty relation is an accepted instance.

The contents relation (line �–�) is a binary relation encoding which directories and
files are contained by some directory. The .. notation is a short hand notation to
define a range of tuples.§

Declaring constraints The next part of the specification, lines � to ��, describes
constraints on the relations. Specifications have no directionality but for clarity of the
example we artificially split the constraints in two parts. The first part, lines � to ��,
defines constraints on the relational shape of the solution. The second part, lines �� to
��, defines constraints on the data.

Line � constrains the contents relation to be a subset of the Dir x (Dir + File)

relation. This enforces the contents relation to only contain tuples of which the id of
the from attribute exists in the Dir relation and the id of the to attribute exists in either
the Dir or File relation. Without this constraint the content relation might contain
junk. In other words, it might contain tuples tying non-existing directories to other
non-existing directories or files. Since the relation definition does not state anything
on how different relations relate to each other these associations must be supplied as
extra constraints.

‡Lower and upper bounds in relational model finding where first introduced in Kodkod [TJ��b].
§The range <d0>..<d2> denotes the tuples <d0>,<d1>,<d2>. Likewise, the range <d0,f0>..<d1,f1>

denotes the tuples <d0,f0>,<d0,f1>,<d1,f0>,<d1,f1>.

� .� �������� ��

Union compatibility In Codd’s relational algebra the union (+), intersection (&),
difference (-), subset (in), and equality (=) operators require relations to be union
compatible with each other. This means that both relations must have the exact same
header (both attribute names and associated domains). For instance, on line �� the
constraint that enforces that Root ‘is a’ Dir is expressed using the subset (in) operator.
The header of the root operator on the left hand side only contains the single attribute
oid of the id domain. The header of the Dir relation on the other hand has three
attributes (oid, depth and size). Since the subset operator needs the relations to be
union compatible we use the projection ([]) operator on the Dir relation to project the
oid attribute out of the Dir relation resulting in a new relation with only one attribute
of the same domain.

Transitive closure Line �� states that no directory can contain itself expressed with
the use of the transitive closure operator. Both the transitive closure (^) and reflexive
transitive closure (*) are special operators in A���A���. They are not part of the
traditional relational algebra since it is not possible to calculate such a transitive
closure on relations in general [AU��].

Since A���A��� relations are bounded it is possible to implement both operators,
albeit with restriction: both operators only operate on binary relations with two
attributes of the id domain. Line �� applies the transitive closure over the contents

relation.

The other constraints in the first part of the specification ensure that all directo-
ries and files are reachable from the Root directory (line ��), and that files and
directories can only be contained by one directory or none, as is the case for the Root

directory (line ��).
The used multiplicity constraints lone and some have their standard semantics: lone

means zero or one tuple in the relation is required, some means at least one tuple is
required.¶

Restriction Lines �� to �� define data constraints. Line �� states that all files must
have a positive size. To express this constraint the restrict operator (where) is used.
Using the restrict operator we can formulate constraints on the attributes of a relation.
Applying the restrict operator on a relation results in another relation. To enforce that
this restriction holds for all files, the multiplicity constraint some is used. This forces
the restricted relation to contain at least one tuple.

Aggregate functions Lines ��–�� define the value of the size attribute of directories.
The size of a directory in the file system is the summation of the sizes of the files which

¶The constructs lone, some, none and one were introduced in Alloy [Jac��b].

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

�8;4 7! {h 5 0, 100, 2i}
⇡8A 7! {h30, 100, 0i, h31, 100, 1i}
'>>C 7! {h30i}

2>=C4=CB 7! {h30, 31i, h31, 5 0i}

Id size depth
d0 100 0

Id size depth
d1 100 1

Id size depth
f0 100 2

Root

Dir

File

contents

contents

Figure �.�: The minimal instance of the small file system specification

are (transitively) contained by the directory. On line �� the containedFiles relation of
the current directory d is defined using the transitive closure of the contents relation
which is (naturally) joined (|x|) with the current directory d. This relation is then used
to calculate the size of the directory by using the aggregation function sum.

The sum function sums up all the values of the size attributes in the containedFiles

relation. The result of applying an aggregation function is yet another relation con-
taining zero or one tuples with one attribute (in this case totalSize). Other available
aggregation functions include min, max, avg and count. Count is the only aggregation
function that does not need an attribute to perform the aggregation on since it
counts the number of tuples in the relation. Note that with the use of the count ag-
gregation function all other multiplicity constraints (some, one, lone, no) can be expressed.

The remaining constraints describe the value of the depth attribute (line ��–��) and
enforce the depth of the Root directory to be zero (line ��).

Optimization objectives The last line, line ��, defines a single optimization objective.
This objective states that we want to optimize on the cardinality of the File and Dir

relations. Only a relation with a single integer attribute can be used as an optimization
criterion.

The optimization criteria are so called “soft constraints”. This means that, other
than the previously described “hard constraints” (lines �–��), they do not influence
the total number of satisfying instances of a problem. They do influence the order in
which the model finder returns solutions. In other words, the instance that is returned
first will be the instance that is optimal considering the optimization objectives.

The found solution Figure �.� shows the minimal solution of the file system
specification. The found solution contains a binding for all the declared relations.

� .� �������� ��

Since the optimization objective stated that we wanted a minimal number of files and
directories, it returned a solution that contains only those tuples that were part of
our lower bound definition (in the case of File and Root) and those tuples that were
needed to get a consistent model according to the described constraints (in case of the
Dir and contents relations).

Next to that, the model finder returned a binding for all the introduced holes. The
definition of the File tuple <f0,2,100> and the constraints on the data determined the
values of the other depth and size attributes.

�.� ������ ���������� �� ��������

Figure �.� shows the abstract syntax of A���A���. We define an A���A��� problem
as follows. A problem % consists of relation definitions '1 . . . '= which are bound to
a relational variables A1 . . . A= , formulas �1 . . . �= and possibly optimization criteria
$1 . . .$= . A formula � is a sentence over an alphabet of the relational variables
A1 . . . A= . A binding 1 is an instance of all the problem’s free relational variables to
relational constants. A relational constant of ' is a set of tuples. The binding 1 is
said to be a satisfying instance of % if it conforms to the relation definitions of % and
makes all the formulas of % true.

Relations are defined as in the relational model [Cod��; Dat��]. A relation '

over multiple domains ⇡1 . . .⇡= , not necessary distinct, consists of a header � and
a body ⌫. The header � consists of a fixed set of attribute names, domain pairs
{h01 : ⇡1i . . . h0= : ⇡=i}. An attribute name is an arbitrary label. A domain is a
named set of scalar values, all of the same type. Attribute names in a relation are
distinct.

A body ⌫ consists of a set of tuples {)1 . . .)=}. Since the body is a true set it means
that per definition the tuples in the body must be unique. A tuple) consists of a
set of attribute name, value pairs {h01 : E1i . . . h0= : E=i}. For each attribute name and
domain pair h0= : ⇡=i in � there exists an attribute name and value pair h0= : E=i in
) where E= is drawn from ⇡= . Relations can be bound to relational variables which
are arbitrary labels.

�.�.� Attribute Domains in A���A���

As stated in the definition above, the attribute domains are named sets of scalar values.
Currently A���A��� supports the int and id domains. The scalars of the int domain
are defined by the underlying SMT solver which is the unbounded set of all integer
numbers.

The id domain is a bounded domain consisting of arbitrary chosen labels (atoms).
Like mentioned earlier, it contains exactly those atoms that are defined in a specification.

See Appendix B.� for the concrete syntax definition of A���A���.

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

Please note that the existence of this domain is not strictly essential (since it could
be modeled using int values) but it allows for a convenient way to model different
dependencies between relations (associations, containment, specialization, etc.).

�.�.� Semantics

Figure �.� shows the semantics of A���A���. We do not include the semantics of
the optimization objectives since they are orthogonal to the semantics of formulas
and expressions, and defined in terms of the underlying SMT solver, ⇡Z [BPF��].
The meaning of an A���A��� problem is defined by four functions, %, ', � and ⇢,
which can be recursively applied. The function ' accepts a relation declaration and
binding and returns whether the header of the binding is equal to the header of the
declaration and whether the lower bound of the declaration is a subset of the body of
the binding which in turn must be a subset of the upper bounds of the declaration.
The function � accepts an A���A��� formula and a binding and returns whether
the binding satisfies the formula. The function ⇢ accepts an A���A��� expression
and a binding and returns a relational constant. The function % acts as the starting
point and accepts a Problem and a binding, and calls the ' and � functions.

The semantics of the rename, project, restrict, and aggregate operators on relations
are defined in the standard way [Cod��]. The same goes for union ([), intersection
(\), difference (\) and cartesian product (⇥). Union, intersection and difference can
only be applies on union compatible relations (see �.�.�). Cartesian product requires
two relations with disjoint headers. Applying the cartesian product on two relations
with respectively = and < sized tuples flattens both relations into a new relation of
= + < sized tuples.

The semantics of A���A��� shown in Figure �.� defines the meaning of an
A���A��� problem given an assignment of relation constants to all relational
variables in the binding 1. In order to find solutions rather than check their truth
value, however, A���A��� problems are translated to SMT formulas.

� .� ������ ���������� �� �������� ��

?A>1;4< ::= A4;⇡42; 0;;4�>A< >1 942C8E4

A4;⇡42; ::= G (A4;�4034A) A4;⌫>3H

A4;�4034A ::= {G : 3><08=}

A4;⌫>3H ::= = 1>D=3 | <= 1>D=3 | >= 1>D=3 <= 1>D=3

1>D=3 ::= CD?;4⇡42;

CD?;4⇡42; ::= hE0;D4i
E0;D4 ::= G | = | ?

3><08= ::= id | int

0;;4�>A< ::= not 0;;4�>A< negation
| no 0;;4⇢G?A empty
| lone 0;;4⇢G?A at most one
| one 0;;4⇢G?A exactly one
| some 0;;4⇢G?A at least one
| 0;;4⇢G?A in 0;;4⇢G?A subset
| 0;;4⇢G?A = 0;;4⇢G?A equal
| 0;;4�>A< || 0;;4�>A< disjunction
| 0;;4�>A< && 0;;4�>A< conjunction
| 0;;4�>A< => 0;;4�>A< implication
| 0;;4�>A< <=> 0;;4�>A< equality

| forall G : 0;;4⇢G?A | 0;;4�>A< universal

| exists G : 0;;4⇢G?A | 0;;4�>A< existential

| let G = 0;;4⇢G?A | 0;;4�>A< let

0;;4⇢G?A ::= G

| 0;;4⇢G?A [G as G] renaming
| 0;;4⇢G?A [G] projection
| 0;;4⇢G?A where 2>=38C8>= restriction
| ^0;;4⇢G?A trans. closure
| *0;;4⇢G?A refl. trans. clos.

| 0;;4⇢G?A [066�D=2] aggregate
| 0;;4⇢G?A + 0;;4⇢G?A union
| 0;;4⇢G?A & 0;;4⇢G?A intersection
| 0;;4⇢G?A- 0;;4⇢G?A difference
| 0;;4⇢G?A x 0;;4⇢G?A product
| 0;;4⇢G?A |x| 0;;4⇢G?A natural join

2>=38C8>= ::= not 2>=38C8>=

| 2>=38C8>= && 2>=38C8>=

| 2>=38C8>= || 2>=38C8>=

| 2>=38C8>=⇢G?A (< | <= | > | >= | =) 2>=38C8>=⇢G?A

2>=38C8>=⇢G?A ::= G | = | |2>=38C8>=⇢G?A| |- 2>=38C8>=⇢G?A

| 2>=38C8>=⇢G?A (+ |- | * | / | %) 2>=38C8>=⇢G?A

066�D=2 ::= count() | sum(G) | min(G) | max(G) | avg(G) 066A . 5 D=2.

>1 942C8E4 ::= maximize 0;;4⇢G?A | minimize 0;;4⇢G?A obj. crit.

Figure �.�: Abstract Syntax of A���A���

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

% : ?A>1;4< ! 18=38=6 ! 1>>;40=

' : A4;⇡42; ! 18=38=6 ! 1>>;40=

� : 0;;4�>A< ! 18=38=6 ! 1>>;40=

⇢ : 4G?A ! 18=38=6 ! 2>=BC0=C

18=38=6 : E0A ! 2>=BC0=C

%JA1 . . . A= 51 . . . 5<K1 = 'JA1K1 ^ . . . ^ 'JA=K1 ^ �J 51K1 ^ . . . ^ �J 5<K1

'JG (⌘) [; , D] K1 = ⌘ = 1[G]⌘4034A ^ ; ✓ 1[G]1>3H ✓ D

�Jnot 5 K1 = ¬�J 5 K1
�Jno AK1 = |⇢JAK1 | = 0
�Jlone AK1 = |⇢JAK1 | 1
�Jone AK1 = |⇢JAK1 | = 1
�Jsome AK1 = |⇢JAK1 | > 0
�JA in BK1 = ⇢JAK1 ✓ ⇢JBK1
�JA = BK1 = ⇢JAK1 ✓ ⇢JBK1 ^ ⇢JBK1 ✓ ⇢JAK1
�J 5 || 6K1 = �J 5 K1 _ �J6K1
�J 5 && 6K1 = �J 5 K1 ^ �J6K1
�J 5 => 6K1 = ¬�J 5 K1 _ �J6K1
�J 5 <=> 6K1 = �J 5 K () �J6K1
�Jforall E1 : A1 . . . E= : A= | 5 K1 =^

C2⇢J41K1
�
�Jforall E2 : 42 . . . E= : A= | 5 K(1 � E1 7! {C})

�
�Jexists E1 : A1 . . . E= : A= | 5 K1 =_

C2⇢JA1K1
�
�Jexists E2 : A2 . . . E= : A= | 5 K(1 � E1 7! {C})

�
�Jlet E1 : A1 . . . E= : A= | 5 K1 = �Jlet E2 : A2 . . . E= : A= | 5 K(1 � E1 7! ⇢JA1K1)

⇢JGK1 = 1[G]

⇢JA[01 as 001 , . . . 0= as 00=]K1 = ⌧(001/01...00=/0=)⇢JAK1

⇢JA[01 . . . 0=]K1 = ⇧(01...0=)⇢JAK1

⇢JA where 2K1 = �2⇢JAK1

⇢J^AK1 = let < ⇢JAK1 in
⌦
<⌘4034A , {(G : 83G , H : 83H) | 9 831 . . . 83= |

(G : 83G , H : 831), (G : 831 , H : 832) . . . (G : 83= , H : 83H) 2 <1>3H}
↵

⇢J*AK1 = ⇢J^AK1 [I
⇢JA[5 ()]K1 = 5 ()⇢JAK1 (where 5 is count)

⇢JA[5 (0)]K1 = 5 (0)⇢JAK1 (where 5 is sum, avg, min or max))
⇢JA + BK1 = ⇢JAK1 [⇢JBK1
⇢JA & BK1 = ⇢JAK1 \ ⇢JBK1
⇢JA- BK1 = ⇢JAK1 \ ⇢JBK1
⇢JA x BK1 = ⇢JAK1 ⇥ ⇢JBK1
⇢JA |x| BK1 = ⇢JAK1 34 ⇢JBK1

Figure �.�: Semantics of A���A���. Variables 5 and 6 range over formulas, A= and B over
expressions. The � operator updates bindings. I represents the binary identity relation on all
values in the id domain. [, \, \ and ⇥ have their standard relational algebra semantics.

� .� ������ ���������� �� �������� ��

�.� ����������� �������� �� ���

Specifications are translated to SMT constraints. Figure �.� describes the definition of
the resulting formula (����) that the translation algorithm produces. Our prototype
of A���A��� translates A���A��� problems to the standard ���-��� format, which
is supported by multiple SMT solvers [BST��]. As a result, A���A��� can potentially
be used in combination with different SMT solvers as backends.��

Apart from the optimization criteria, the translation consists of flattening A��� -
A��� problems to a single SMT formula within the logic fragment of quantifier-free
non-linear integer arithmetic (QF-NIA). This means that the final SMT formula is
a large, but flat formula made up of negation, conjunction, disjunction, integer
arithmetic, (in)equalities and if-then-else constructs, as shown in Figure �.�.

Before we go into the details of the translation rules we will give an example of
how translation unfolds for a small problem.

�.�.� Translation Example

Assume we have a relation Person with two attributes pId and age which is defined as
follows:

Person (pId: id, age: int) <= {<p1,17>,<p2,?>}

This relation has an upper bound containing two tuples. The lower bound is omitted
and thus empty (i.e., the empty set). Consequently, a satisfying instance may hold
zero, one or two tuples in the Person relation. The first tuple, <p1,17>, assigns the value
�� to the age attribute. This means that if this tuple is present the value of age must be
��. In the second tuple, <p2,?>, the value of the age is left open meaning that the value
is left to the underlying solver.

Next we define the following constraint:

some Person where age >= 18

This constraint states that there must be at least one person who is an adult. Or more
precisely, there needs to be at least one tuple in the Person relation where the value of
the age attribute is equal to or greater than ��. Please note that the first tuple in the
relation, <p1,17>, can never satisfy this constraint since the value of its age attribute
will always be ��.

��Currently optimization criteria are not supported by all SMT solvers. At least Z� [BPF��] and
MathSAT� [ST��] have built-in support.

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

form ::= > | ? | G | ¬form | form ^ form | form _ form |

expr (< | | = | � | >) expr
expr ::= ;8C4A0; | G | expr + expr | expr � expr | expr ⇤ expr |

expr / expr | expr % expr | form ? expr : expr

Figure �.�: Definition of form and expr.

As a first step in the translation an environment ⌧ is constructed, mapping relation
names (e.g., Person) to an internal relation representation. In the example the created
environment ⌧ is as follows:

⌧ = ©≠
´
Person 7!

pId age exists attCons
?1 17 10 >

?2 80 11 >

™Æ
¨

The internal representation of the Person relation consists of a table, with columns
for the declared attributes pId and age, and two additional columns, ������ and
���C���. The pId attribute contains the values p1 and p2 both drawn from the
id domain. For the first tuple the age attribute contains the constant ��. This is a
consequence of the given relation definition where the age attribute for this tuple
was assigned ��. For the second tuple the age attribute contains an integer variable
80. Since in the relation definition this value was left open it is converted to a fresh
integer variable.

The ������ column encodes whether the tuple should be present in a satisfying
instance or not. In this case the value of the ������ column for both tuples contains
a fresh boolean variable, 10 and 11 respectively. This is due to the fact that both
tuples are part of the upper bound of the relation but not of the lower bound (since
the lower bound of this relation is the empty set). For each satisfying instance the
solver will assign truth values to these variables. For instance, if 10 = > and 11 = ? it
means that the tuple <p1,17> is in the Person relation but <p2,?> is not. The ���C���
column encodes constraints formulated on the attribute values. Initially the ���C���
attributes have > assigned.

The next step in the translation is the translation of the constraints. The translation
of constraints consists of the recursive application of two translation functions)�

for the translation of A���A��� formulas and)⇢ for the translation of A���A���
expressions. Their full definitions are shown in Figures �.� and �.�. The full translation
tree for this example would look like:

� .� ����������� �������� �� ��� ��

)�[some Person where age >= 18]⌧

)⇢[Person where age >= 18]⌧

)⇢[Person]⌧

We describe the translation of the example in a bottom-up fashion. The first
expression that is translated is the lookup of the Person relation from the environment
⌧:

)⇢[Person]⌧ = ⌧(Person) =
pId age exists attCons
?1 17 10 >

?2 80 11 >

As shown above, the result of the translation function)⇢ is another relation. Now the
outer where expression is translated as follows:

)⇢[Person where age >= 18]⌧ =
pId age exists attCons
?1 17 10 ?

?2 80 11 80 � 18

The restriction expression (age >= 18) forces additional constraints on the age attribute.
In case of the first tuple the age attribute contains the constant ��. Since �� is less than
��, the value ? is assigned to the to the ���C��� attribute. For the second tuple the
age attribute was left open which resulted in the introduction of the 80 variable. For
this tuple the constraint 80 � 18 is added to the ���C��� column.

The last step is the translation of the outer formula:
)�[some Person where age >= 18]⌧. The)� function flattens the relation into a flat SMT
formula. The translation of the some operator gives the following result:

)�[some Person where age >= 18]⌧

=
_©≠

´
pId age exists attCons
?1 17 10 ?

?2 80 11 80 � 18

™Æ
¨

= (10 ^ ?) _ (11 ^ 80 � 18)
= 11 ^ 80 � 18

The some formula is satisfied if at least one tuple in the relation exists. This is
accomplished by translating it to a disjunction of the conjoined ������ and ���C���
columns of the tuples in the relation (i.e., this is depicted by the big vee notation in
the above translation).

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

A4; ::= hG : 3><08=⌘4034A , CD?;41>3H
i

CD?;4 ::= h(G=0<4 : 24;;E0;D4)0CCA81DC4B , form
4G8BCB

, form
0CC⇠>=B

i

24;; ::= 0C>< | expr
3><08= ::= ID | INT

Figure �.�: Definition of rel as used in the translation. expr and form are defined in Figure �.�.

As can be seen, the translation of this formula results in the SMT formula 11^80 � 18.
This means that an instance of this problem is satisfying iff it contains the second
tuple (i.e., 11 must be true) and the value of its age attribute is greater than or equal
to ��. The presence or absence of the first tuple does not change the validity of the
resulting instance since it assigned age value of �� never conforms to the formulated
constraint. This means that a satisfying instance can either contain or not contain the
first tuple as long as the second tuple is present.

�.�.� The Algorithm

The translation of an A���A��� specification starts with the translation of a problem
using the function)% :

)% : problem! form

)%[A1(⌘1)11 . . . A=(⌘=)1= 51 . . . 5<] =
<^
8=1

)�[58]⌧

where ⌧ =
=[
9=1

�
A9 7!)'[(⌘9) 19]

�

This function translates the constraints 51 . . . 5< of the problem to formulas (of
type form, see Figure �.�). The environment is populated using the)' function which
converts relation declarations to the internal tabular representation. The)% function
returns a conjunction of all the translated constraints.

The Relation data structure Central to the translation is the internal relation data
structure, shown in Figure �.�, which in this paper we visualize using the tabular
notation introduced above. A relation rel consists of a header and a body. The header
is defined as a mapping from attribute names to domains. The body is a set of
tuples. Each tuple in the body contains the declared ���������� and two additional
columns, ������ and ���C���. When we refer to tuple we refer to the combination
of the ���������� and ������ and ���C��� columns. In the translation rules we
will use the subscripts A⌘4034A and A1>3H for the header and body of a relation A and
C0CCA81DC4B , C4G8BCB and C0CC⇠>=B for the ����������, ������ and ���C��� columns of a
tuple C to refer to the specific parts of a relation or tuple (see Figure �.�).

� .� ����������� �������� �� ��� ��

)' : A4;�4034A ! A4;⌫>3H ! A4;

)'[(⌘) = 1] = add(h⌘ ,úi, 1 ,⌫C . hconvert(C),>,>i)
)'[(⌘) <= D1] = add(h⌘ ,úi, D1 ,⌫C . hconvert(C), G ,>i)
)'[(⌘) >= ;1 <= D1] = add(h⌘ ,úi, D1 ,⌫C . hconvert(C), exists(C , ;1),>i)

add : A4; ! CD?;4⇡42; ! (CD?;4⇡42; ! CD?;4)! A4;

add[A , 1 , 5] = if 1 = ú then A else let C 2 1 in add(addDistinct(A , 5 (C)), 1 \ C)

convert : CD?;4⇡42; ! G : 24;;

convert[C] = h(0CA=0<4 :

8>>><
>>>:
83 when 0CA = 83

8 when 0CA = ⌘>;4 (8 as fresh int var)
2>=BC0=C when 0CA = 2>=BC0=C

| 0CA 2 C)i

exists : CD?;4⇡42; ! 1>D=3! form

exists[C , ;1] =

(
>when C 2 ;1

G otherwise (with G as fresh bool var)

addDistinct : A4; ! CD?;4 ! A4;

Figure �.�: Definition and construction of relations. The definition of the addDistinct function
is included in Appendix C.�. relHeader, relBody, bound, tupleDecl, id and hole are declared in
Figure �.�. The other definitions are given in Figure �.� and Figure �.�.

File 7!

oId depth size exists attCons
5 0 2 100 > >

5 1 80 81 10 >

5 2 82 83 11 >

Figure �.�: The visual representation of File ��� after its construction based
on the relation declaration: File (oId:id,depth:int,size:int) >= {<f0,2,100>} <=

{<f0,2,100>,<f1,?,?>,<f2,?,?>}.

Constructing relations

A ��� can be constructed in three different ways depending on how it is declared.
Figure �.� shows the definition of the construction function)'. This function
translates the relation definition (i.e., the header and lower and upper bounds) to a
���. Which construction function is used depends on how the bounds are declared
and influences the value of the tuple’s ������ field. This value depends on whether
the tuple declaration is part of the lower and upper bound or only of the upper

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

bound. For instance, in the example of the small file system (Figure �.�) the File

relation is declared with both a lower and an upper bound (e.g., >= {<f0,2,100>} <=

{<f0,2,100>,<f1,?,?>,<f2,?,?>}).

On construction of the ��� the value > is assigned to the ������ field of the
tuple <f0,2,100> since there cannot be a satisfying instance without this tuple present.
It is a different case for the tuples <f1,?,?> and <f2,?,?>. Since they are only part
of the relation’s upper bound there may be satisfying instances where these tuples
(or one of these tuples) are not present. To encode this, fresh boolean variables are
assigned to the ������ fields of both tuples. It is then up to the underlying SMT
solver to find a satisfying assignment for these boolean variables. The full encoding
of the File relation is shown in Figure �.� (with the ������ column highlighted). The
encoding is adapted from the relational model finder K�����, with the difference
that it is encoded in our relation data structure instead of a boolean matrix as used by
K����� [TJ��a].

Ensuring tuple distinctness The ���C��� column holds the constraints that were
added on the tuple’s scalar attributes. On construction this column will be populated
with > for most tuples. The only exception to this is when the added tuples in the
relation are potentially non-distinct. Consider for instance the (valid) case that the
File relation would have an upper bound of two possible tuples: <f1,1,10>,<f1,?,?>.
Since they both share the same oid value (namely f1) these tuples could potentially
overlap if the depth and size attributes of the second tuple would evaluate to � and ��
respectively.

Since the relational model dictates true set semantics for its relational bodies, the
translation must enforce that all tuples in the relation are distinct, or collapsed into
each other. To enforce this the translation algorithm adds a constraint to the ���C���
field of the second tuple that forces the value of either the depth or size attribute to be
different, if the first tuple exists in the relation.

This distinctness rule is added on construction of the relations by applying the
addDistinct function (included in Appendix C.�). This function checks whether tuples
can potentially overlap and adds the necessary constraints to the ���C��� field. In
the case of the example given in this section the constructed relation would be as
follows:

File 7!

oid depth size exists attCons
5 1 1 10 10 >

5 1 80 81 11 ¬10 _ ¬(80 = 1 ^ 81 = 10)

� .� ����������� �������� �� ��� ��

Translating A���A��� constraints

The entry for translating A���A��� formulas to SMT formulas is the)� function,
shown in Figure �.�. To translate an A���A��� expression the)� function calls the
)⇢ function which is defined in Figure �.�.

The)⇢ function translates the expression and returns a new ���. The)� function
flattens the translated ���� into SMT formulas. These in turn get conjoined by the)%

function introduced earlier.

Tuple equality constraints When translating the subset formula and the union, inter-
section and difference expressions we again have to account for possible overlapping
tuples described earlier. The difference being that in the case of translating the above
rules we need to enforce equality instead of preventing it. In this case, the constraints
that need to be added to the ���C��� field are constraints that force the value of
the attributes to be the same; this is done using the helper functions canOverlap and
attEquals, which are included in Appendix C.�.

As an example consider the following case. Suppose we have the following specifica-
tion:

Shape (sid:id, size:int) <= {<s1,?>}

Square (sid:id, size:int) <= {<s1,?>}

Square in Shape

We define two relations, Shape and Square. Both relations have an sid field of type id

and a size field of type int. The sid fields contain the same id literal and both size

attributes have been left open. Translating the constraint Square in Shape would yield
the following result:

)⇢[Shape]⌧ =
sid size exists attCons
s1 80 10 >

)⇢[Square]⌧ =
sid size exists attCons
s1 81 11 >

)�[Square in Shape]⌧ = ¬11 _ (10 ^ 80 = 81)

The outcome is that a Square can only be a Shape if either the Square relation is empty
(by enforcing that 11 = ?) or the value of the size attributes of both relations is equal
(by enforcing that 80 = 81). Otherwise the tuple in Square would not overlap with the
tuple in Shape and thus would not be in the subset relation.

Translation of the projection expression Projection can reduce the numbers of
the tuples in the relation by truncating it. This again can potentially cause tuple

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

4=E : identifier! rel

)� : alleForm! env! form
)�[not 5]⌧ = ¬)�[5]⌧

)�[no A]⌧ = ¬)�[some A]⌧

)�[lone A]⌧ =)�[no A]⌧ _)�[one A]⌧

)�[one A]⌧ = let <)⇢[A]⌧ in_
C2<1>3H

⇣
tg(C) ^

⇣
^

C
02<1>3H ,C

0<C
�
¬tg(C0)

� ⌘ ⌘
)�[some A]⌧ = let <)⇢[?]⌧ in_

C2<1>3H

�
tg(C)

�
)�[A in B]⌧ = let <)⇢[A]⌧, let =)⇢[B]⌧⇣
^

C2<1>3H ,D2=1>3H ,canOverlap(C ,D)
�
¬C 6(C) _

�
C 6(D) ^ attEqual(C , D)

� � ⌘
^⇣

^
C2<1>3H ,C8=1>3H ¬C 6(C)

⌘
)�[A = B]⌧ =)�[A in B]⌧ ^)�[B in A]⌧

)�[5 || 6]⌧ =)�[5]⌧ _)�[6]⌧

)�[5 && 6]⌧ =)�[5]⌧ ^)�[6]⌧

)�[5 => 6]⌧ = ¬)�[5]⌧ _)�[6]⌧

)�[5 <=> 6]⌧ =)�[5 => 6]⌧ ^)�[6 => 5]⌧

)�[forall E1 : 4G1 . . . E= : 4G= | 5]⌧ = let <)⇢[4G1]⌧ in

^C2<1>3H

�
¬C 6(C) _)�[forall E2 : 4G2 . . . E= : 4G= | 5]⌧

⇥
E1 7! sing(<⌘4034A , C)

⇤ �
)�[exists E1 : 4G1 . . . E= : 4G= | 5]⌧ = let <)⇢[4G1]⌧ in

_C2<1>3H

�
C 6(C) ^)�[exists E2 : 4G2 . . . E= : 4G= | 5]⌧

⇥
E1 7! sing(<⌘4034A , C)

⇤ �
)�[let E1 : 4G1 . . . E= : 4G= | 5]⌧ =)�[let E2 : 4G2 . . . E= : 4G= | 5](⌧[E1 7!)⇢[4G1]⌧]

tg : tuple! form
tg[C] = C4G8BCB ^ C0CC⇠>=B

sing : G : 3><08= ! tuple! rel
sing[⌘ , C] =

⌦
⌘ , {hC0CCA81DC4B ,>, C0CC⇠>=Bi}

↵
Figure �.�: Translation rules for A���A��� formulas. A and B are alleExpr, 5 and 6 are alleForm.
Definitions of canOverlap and attEqual are included in Appendix C.�. tg is short for together and
sing is short for singleton meaning a relation with only one tuple.

overlap. Consider for instance the Person relation introduced in the translation example
(Section �.�.�). This relation has two attributes, pId and age and was defined as follows:
Person (pId:id, age:int) <= {<p1,17>,<p2,?>}.
resulting in the following internal representation:

� .� ����������� �������� �� ��� ��

)⇢ : alleExpr! env! rel
)⇢[E]⌧ = ⌧(E)

)⇢

⇥
A[01 as 001 . . . 0= as 00

=
]
⇤
⌧ = let <)⇢[A]⌧ in

)⇢

⇥
h<⌘[01/0

0

1],<1[01/0
0

1]i[02 as 002 . . . 0= as 00
=
]
⇤
⌧

)⇢

⇥
A[01 . . . 0=]

⇤
⌧ = let <)⇢[A]⌧ in

h(0 : <⌘[0] | 0 2 01 . . . 0=),merge(<1 , 01 . . . 0=)i

)⇢[A where 2]⌧ = let <)⇢[A]⌧ in
⌦
<⌘ , {hC0 , C4 , C0 ^)⇠[2]Ci | C 2 <1}

↵
)⇢[^A]⌧ = let <)⇢[A]⌧ in

let sqr ⌫A .8. if 8 >= |<1>3H | then A else joinOnce(A , 8 ⇤ 2) in sqr(< , 1)
)⇢[*A]⌧ =)⇢[iden + ^A]⌧

)⇢

⇥
A[5 (0) as G]

⇤
⌧ = let <)⇢[A]⌧ in (where 5 is count, sum, avg)⌦

(G : int), h(G : 8),>, 8 =)�6[5 (0)]<1i
↵

)⇢

⇥
A[5 (0) as G]

⇤
⌧ = let <)⇢[A]⌧ in (where 5 is min, max)⌦

(G : int), h(G : 8), if |< | > 0 then > else ?, 8 =)�6[5 (0)]<1i
↵

)⇢[A + B]⌧ = let <)⇢[A]⌧, let =)⇢[B]⌧ in⌦
<⌘ , {hC0 , C4 _ D4 , C2 ^ D2 ^ attEqual(C , D)i | C 2 <1 , D 2 =1 , canOverlap(C , D)
[(<1 \ =1) [(=1 \ <1)}

↵
)⇢[A & B]⌧ = let <)⇢[A]⌧, let =)⇢[B]⌧ in⌦

<⌘ , {hC0 , C4 ^ D4 , C2 ^ D2 ^ attEqual(C , D)i | C 2 <1 , D 2 =1 , canOverlap(C , D)}
↵

)⇢[?- @]4 = ;4C <)⇢[?]⌧, ;4C =)⇢[@]⌧ 8=⌦
<⌘ , {hC0 , C4 ^ ¬D4 , C2 ^ attEqual(C , D)i | C 2 <1 , D 2 =1 , canOverlap(C , D)
[(<1 \ =1)}

↵
)⇢[A x B]⌧ = let <)⇢[A]⌧, let =)⇢[B]⌧ in⌦

<⌘ [=⌘ , {hC0 [D0 , C4 ^ D4 , C2 ^ D2i | C 2 <1 , D 2 =1 , C0 [D0 = ú}
↵

)⇢[? |x| @]⌧ = ;4C <)⇢[?]⌧, ;4C =)⇢[@]⌧ 8=⌦
<⌘ [=⌘ , {hC0 [D0 , C4 ^ D4 , C2 ^ D2i | C 2 <1 , D 2 =1 , C0 [D0 < ú}

↵

merge : tuple! x! tuple
joinOnce : rel! G ! H ! rel

Figure �.�: Translation rules for A���A��� expressions. For abbreviation purposes the
notation A

⌘
means A

⌘4034A
, A

1
means A

1>3H
, C0 means C

0CCA81DC4B
, C4 means C

4G8BCB
and C2 means

C
0CC⇠>=B

. A and B are alleExpr, 2 is a condition. Definitions of canOverlap and attEqual are included
in Appendix C.�. The definition of merge and joinOnce is not given but sketched in the text.
iden resolves to the binary identity relation on all values in the id domain.

Person 7!

pId age exists attCons
?1 17 10 >

?2 80 11 >

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

)⇠ : CD?;4 ! 5 >A<

)⇠[!2]C = ¬)⇠[2]C

)⇠[21 && 22]C =)⇠[21]C ^)⇠[22]C

)⇠[21 || 22]C =)⇠[21]C _)⇠[22]C

)⇠[41 � 42]C =)⇠4[41]C �)⇠4[42]C

)⇠4 : CD?;4 ! 4G?A

)⇠4[G]C = C0CCA81DC4B[G]

)⇠4[=]C = =

)⇠4[- 4]C = �)⇠4[4]C

)⇠4[|4|]C = let 8)⇠4[4]C in 8 < 0 ? � 8 : 8

)⇠4[41 � 42]C =)⇠4[41] �)⇠4[42]

Figure �.��: Translation rules for the restriction conditions. � depicts the different equality
operators (<, <=, =, =>, >), � depicts the arithmetic operators (+, -, *, /, %).

If we would project the age attribute both tuples could potentially collapse into each
other. This would be the case if both tuples exist and the value of the age attribute
of the second tuple would also be ��. To prevent this the merge function adds extra
constraints to the tuples reusing the addDistinct function (see Appendix C.�) enforcing
that in all possible evaluations of its variables the result would be a relation with
distinct tuples. We would end up with a relation with the following values and
constraints:

Person 7!

age exists attCons
17 10 >

80 11 ¬10 _ ¬(80 = 17)

Translation of the aggregation expression Aggregation results in a new relation
containing zero or one tuple with a single attribute. The value of the ���C��� field
of this tuple contains the unfolded aggregation expression. The translation of the
different rules are shown in Figure �.��.

In case of the application of the count, sum and avg aggregation the resulting relation
will always contain a single tuple, even if the aggregated relation was empty. The
intuition behind this is that even if the aggregated relation is empty its cardinality is
zero and the sum of one of its attributes will also result in zero. The resulting relation
after applying the min and max aggregation could be empty since calculating the max or
min of an empty relation is undefined.

Translation of the transitive closure expression Transitive closure is only defined
for binary relations containing two id attributes. In theory it is possible to define

� .� ����������� �������� �� ��� ��

)�6 : 066�D=2 ! CD?;4 ! 5 >A<

)�6[count()]1 = let cnt ⌫10.C4A<. if 10 = ú then C4A< else
let C 2 10 in C4A< + cnt(10 \ C , tg(C) ? 1 : 0) in cnt(1 , 0)

)�6[sum(0)]1 = let sum ⌫10.C4A<. if 10 = ú then C4A< else
let C 2 10 in C4A< + sum(1

0
\ C , tg(C) ? C0CCA81DC4B[0] : 0) in sum(1 , 0)

)�6[avg(0)]1 =)�6[sum(0)]1 ÷)�6[count()]1

)�6[min(0)]1 = let min ⌫10.C4A<. if 10 = ú then C4A< else
let C 2 10 in C0CCA81DC4B[0] < C4A< ^ tg(C) ?

min(10 \ C , C0CCA81DC4B[0]) : min(10 \ C , C4A<) in min(1 , findFirst(0 , 1))
)�6[max(0)]1 = let max ⌫10.C4A<. if 10 = ú then C4A< else

let C 2 10 in C0CCA81DC4B[0] > C4A< ^ tg(C) ?
max(10 \ C , C0CCA81DC4B[0]) : max(10 \ C , C4A<) in max(1 , findFirst(0 , 1))

findFirst : G ! CD?;4 ! 4G?A

findFirst[0 , CB] = if CB = ú then 0 else let C 2 CB in C0CCA81DC4B[0]

Figure �.��: Translation rules for the aggregation functions

transitive closure for other data domains but the existence of possible holes would
complicate the generation of the right equality constraints. Because of this reason we
decided to postpone the calculation of transitive closure for other domains to possible
future work.

In essence, calculating the transitive closure can be performed by recursively
joining the relation with itself. To calculate the transitive closure we apply a variant
of iterative squaring that works on our relation data structure. On every iteration the
same translations are applied to the previously calculated relation. A single step of
this translation is applied in the declared but not defined joinOnce function.

�.�.� Testing the Translation

To gain more confidence in the correctness of the A���A��� translation we compared
A���A��� with K����� [Tor��] and the C���� solver [PFL��] on a number of
different Constraint Satisfaction Problems (CSP) an Constraint Optimization Problems
(COP). K����� is also a relational model finder but is not able to solve optimization
problems directly. The C���� solver is able to solve optimization problems but its
formalism and solving strategy is semantically further away from A���A���.

In the comparison of CSP problems we compare whether A���A��� and K�����,
or A���A��� and C���� find the same answer, and whether they produce the
same number of satisfying instances. When comparing COP problems we check
whether both A���A��� and C���� find the same optimal solution. All problems

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

Table �.�: Testing A���A��� against K����� and C����.

Problem Problem
type

Compare
with

Sat.
A���A���?

Sat.
other?

#inst
A���A���

#inst
other

Same opt.
solution?

FileSystem CSP K����� Yes Yes ���� ���� -
Handshake CSP K����� Yes Yes �� �� -
Pigeonhole CSP K����� No No - - -
RingElection CSP K����� Yes Yes � � -
RiverCrossing CSP K����� Yes Yes � � -
�Queens CSP C���� Yes Yes �� �� -
Sudoku CSP C���� Yes Yes � � -
SendMoreMoney CSP C���� Yes Yes � � -
Knapsack COP C���� Yes Yes - - Yes
Mariokart COP C���� Yes Yes - - Yes

are existing examples or benchmark problems from K����� or C����††. The
results are shown in Table �.�.‡‡

As can be seen in the results A���A��� finds the same solutions as K�����
and C���� for all implemented problems. Please note that the reported found
instances also contain all symmetric solutions. For instance the � queens problem has
�� solutions, but if symmetry is taken into account only �� distinct solutions remain.
K����� can detect such symmetries by generating so called symmetry breaking
predicates but for this benchmark we configured K����� not to do this [Tor��].

�.� ����������

We evaluate A���A��� in terms of performance and expressiveness, by comparing
the translation and solving times of A���A��� with K����� [Tor��] on different
problems, and by implementing a real-world use case, optimal dependency resolu-
tion [ATC+��], respectively. Finally, we qualitatively compare A���A��� to similar
systems for solving constraint problems.

�.�.� Translation and Solving Time Benchmark

We compare A���A���’s translation and solving time performance against the
translation and solving time performance of K����� by translating and solving six
different problems. Table �.� characterizes the benchmark problems in terms of the
kinds of constraints that are used.

For five of these problems we measure the performance for different configurations
of the same problem to get insight in the effect of the size of a problem specification.
Configuration parameters are the number of atoms or tuples that are allowed to

††See https://github.com/chocoteam/samples/
‡‡See https://github.com/joukestoel/allealle-benchmark/ for the encoding of the problems.

� .� ���������� ��

Table �.�: Overview of the benchmarked problems.

Problem Constraint types

Alloy FileSystem Relational
Halmos handshake Relational, cardinality
Pigeonhole Relational
River crossing puzzle Relational
Square H = G

2 Integer
Account state transition system Relational, integer

populate the relations, and the allowed bit-width for the integer encoding used for
K�����.

The benchmarks are run on a early ���� MacBook Pro with a �,� GHz quad core
Intel i� processor with �GB of DDR� RAM. Java � (version �.�.�_��� by Oracle) is used
for all benchmarks. The translation and solving per configuration per problem was
run �� times with a warmup of �� runs. All caches were flushed between each run.
We report the median of the translation and solving times.

A���A��� is implemented in Rascal [KvdSV��]. Rascal is a functional program-
ming language designed for the development and analysis of programming languages.
It is an interpreted language that runs on the JVM. All A���A��� benchmarks were
run using version �.��.�.������������ of Rascal and version �.�.� of Z�.

K����� is implemented in Java and was built and run using the previously
mentioned Java version. Some of the benchmarked problems contain cardinality
and integer constraints. To avoid wrap-around semantics for integer constraints
in K����� we use K�����⇤ [MJ��; MNK+��], which is currently packaged with
A���� �.�; the solver is configured with SAT�J (version �.�.�.v��������). As earlier,
we configured K����� to not generate symmetry breaking predicates.

Interpreting the results Table �.� contains the results of benchmarking A���A���
against K�����, comparing translation times and solving times. As can be seen
in the results, A���A��� is slower in translating purely relational problems (e.g.,
FileSystem, Pigeonhole and Rivercrossing). The reason for the slow-down is twofold.
First, our current implementation of A���A��� is a prototype, built as a proof-of-
concept to demonstrate the correctness of the translation algorithm. Furthermore,
A���A��� is implemented in Rascal, which is an interpreted language for language
prototyping, whereas K����� is implemented in Java. We are currently working
on a Java implementation of A���A��� which, we expect, will bring the translation
performance up to par with K����� since A���A��� translation algorithms are of
the same complexity as K�����’s translation.

A���A��� is also slower in solving purely relational problems compared to
K�����. This can be explained from the fact that A���A��� generates more

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

clauses than K�����. For instance, for the FileSystem problem in the configuration
with �� atoms A���A��� generates a total of 5 359 296.00 clauses while K�����
merely generates 24 753.00 clauses. The reason for this difference is that K�����
implements a clause rewriting system that is much more aggressive than what is
currently implemented in A���A��� [Tor��].

The results show, however, that A���A���’s native handling of data for problems
that contain both relational and integer constraints, pays off, both in translation times
and solving times. As mentioned before, K����� needs to specifically encode the
possible integers up to the configured bit-width. This is needed because it needs to
encode integer constraints as part of the SAT formula so that the underlying SAT-solver
can solve the problem. This results in more clauses in the generated SAT formula and
thus higher translation and solving times. Since A���A��� does not require this
explicit encoding but can use the solvers built-in reasoning power on different theories
it does not suffer from the same performance penalty. Therefore its translation and
solving times is consistent for the same problem even if larger integer values are
required.

For problems which encode explicit cardinality constraints like the HandShake
problem we also see better performance of A���A��� since relations with higher
cardinality require a larger bit-width in K�����.§§

§§Explicit meaning using K�����’s integer cast expression sum() on relations and using integer
arithmetic expressions to formulate cardinality constraints.

� .� ���������� ��

Ta
bl

e
�.

�:
Be

nc
hm

ar
k

co
m

pa
ris

on
be

tw
ee

n
A

��
�A

��
�

an
d

K
�

��
�

�.
C

om
pa

ris
on

sh
ow

ss
ix

pr
ob

le
m

so
fw

hi
ch

fiv
e

ar
e

sh
ow

n
w

ith
di

ffe
re

nt
re

la
tio

n
si

ze
s,

ei
th

er
in

nu
m

be
ro

fa
to

m
so

ri
nt

eg
er

bi
tw

id
th

us
ed

.

A
��

�A
��

�
K

��
��

�

Pr
ob

le
m

#A
to

m
s

Bi
tw

id
th

(K
��

��
�

on
ly

)
Sa

t?
Tr

an
s.

tim
e

(in
m

s)
So

lv
e

tim
e

(in
m

s)
#V

ar
s

#C
la

us
es

Tr
an

s.
tim

e
(in

m
s)

So
lv

e
tim

e
(in

m
s)

#V
ar

s
#C

la
us

es

Fi
le

Sy
st

em
A

15
.
00

-
SA

T
72

5.
00

20
.
00

13
0.

00
21

83
9.

00
12

.
00

4.
00

13
5.

00
32

35
.
00

Fi
le

Sy
st

em
A

30
.
00

-
SA

T
14

56
7.

00
11

0.
00

46
0.

00
53

59
29

6.
00

29
.
00

8.
00

47
0.

00
24

75
3.

00
H

an
dS

ha
ke

A
,
2

10
.
00

�
SA

T
48

0.
00

10
.
00

18
4.

00
16

33
.
00

12
.
00

61
.
00

20
0.

00
92

92
.
00

H
an

dS
ha

ke
A
,
2

17
.
00

�
U

N
SA

T
22

35
.
00

69
86

5.
00

54
8.

00
62

95
.
00

23
.
00

13
64

65
.
00

57
8.

00
39

21
4.

00
Pi

ge
on

ho
le

A
9.

00
-

U
N

SA
T

51
.
00

10
.
00

20
.
00

30
2.

00
2.

00
1.

00
20

.
00

13
7.

00
Pi

ge
on

ho
le

A
17

.
00

-
U

N
SA

T
77

.
00

11
80

.
00

72
.
00

14
24

.
00

1.
00

45
.
00

72
.
00

56
5.

00
Ri

ve
rc

ro
ss

in
gA

12
.
00

-
SA

T
32

7.
00

10
.
00

74
.
00

16
21

.
00

7.
00

0.
00

68
.
00

74
9.

00
Sq

ua
re

8
2.

00
�

SA
T

5.
00

10
.
00

2.
00

6.
00

2.
00

4.
00

36
.
00

30
25

.
00

Sq
ua

re
8

2.
00

��
SA

T
5.

00
10

.
00

2.
00

6.
00

19
8.

00
11

88
3.

00
20

52
.
00

37
17

22
.
00

A
cc

ou
nt

A
,
8

12
.
00

�
SA

T
72

.
00

10
.
00

33
.
00

28
9.

00
21

.
00

79
.
00

35
1.

00
19

69
8.

00
A

cc
ou

nt
A
,
8

12
.
00

�
SA

T
71

.
00

10
.
00

33
.
00

28
9.

00
46

0.
00

34
08

0.
00

51
51

.
00

48
01

98
.
00

Pr
ob

le
m

co
nt

ai
ns

r)
re

la
tio

na
lc

on
st

ra
in

ts
,c

)c
ar

di
na

lit
y

co
ns

tr
ai

nt
s,

i)
in

te
ge

rc
on

st
ra

in
ts

Legend:a

b c z

y

d e f g

= Installed

= Not installed

= Requested

= Dependency

= Conflict

Figure �.��: A package resolution problem (solution: install {0 , 1 , 2 , 3, 5 } and uninstall {4})

�.�.� Optimal Dependency Resolution

To evaluate the expressiveness of A���A��� we have implemented a solution to
the optimal package resolution problem, which is common in package managers
like ���, ���, or ����� [ATC+��]. Figure �.�� shows an example of a package
resolution problem taken from Tucker et.al. [TSJ+��]. The user asks to install package
0; the package resolver needs to compute which packages to install or uninstall in
such a way that all dependencies are satisfied and no conflicts are violated. This has
been shown to be an NP-complete problem [Cos��].

We ran the experiment on the “paranoid” track of the MISC ���� competition;
a solver competition for package managers.¶¶ This track required the contestants
to find the minimal ‘change’ needed to the system to comply to the package update
request.��� Because this problem requires to reason about the minimal change to the
system it can not be directly encoded in A���� or K����� since these formalisms
do not allow for the encoding of optimization problems.

All benchmarks were run on the same early ���� MacBook Pro with a �,� GHz
quad core Intel i� processor with �GB of DDR� RAM. We compare our found results
against the reported solutions and solving times from the MISC ���� competition.

The package resolution problem can be compactly defined as a relational problem
with data. The relevant relations are summarized in Table �.�. The first � relations
represent known facts about the package repository, what is installed on the user’s
system, and what the user requests to install, remove, or upgrade, respectively. These
relations have exact bounds meaning that for every possible solution the tuples of
these relations are exactly those that are defined in the specification. The other �
relations have an upper bound and represent the solution space for the solver to

¶¶http://www.mancoosi.org/misc-2012/
���Minimal change meaning, minimal amount of packages that need to be removed and the minimal

amount of packages needed to be installed or updated.

� .� ���������� ��

Table �.�: Relations for the optimal package resolution problem

Relation Signature Bound

installRequest pId:id, relop:int, version:int Exact
removeRequest pId:id, relop:int, version:int Exact
upgradeRequest pId:id, relop:int, version:int Exact
version vId:id, pId:id, nr: int Exact
installed vId:id Exact
keep kId:id, vId:id Exact
depends vId:id, dcId:id Exact
dependChoice dcId:id, pId:id, version:int, relop:int Exact
conflicts vId:id, pId:id, version:int, relop:int Exact

toBeInstalled vId:id Upper
toBeRemovedVersion vId:id Upper
toBeChanged vId:id Upper
toBeRemovedPackage pId:id Upper

satisfy the user’s request, given dependency and conflict constraints between package
versions. The rest of the specification is shown in Listing �.�, consisting of a mere ��
source lines of A���A��� code.

In total we translated �� of the competition problems, and measured the time spent
in translating A���A��� and running Z� to solve the constraints. All found solutions
by A���A��� were correct and optimal, showing that the constructed specification
is a correct implementation of the optimal dependency resolution problem according
to the paranoid criteria. The full results can be found in Table E.�, in Appendix E.�.

The results show that Z� can efficiently solve the formula produced by A���A���,
in the same order of magnitude as the winning solving times from the ���� MISC
competition. On the other hand, the time spent by A���A��� translating the
specification to SMT formula is high, ranging from �� seconds to �� minutes. Based
on the specific problems exhibiting this behavior, we hypothesize that translation
time correlates with the number of dependencies between the packages. The more
dependencies between packages, the longer it takes A���A��� to translate the
problem to SMT formulas.

�.�.� Comparing A���A��� to Similar Systems

A���A��� is a constraint solving system and language, comparable to K�����,
A����, and SMT solvers. A���A��� is an intermediate language: it is higher-level
than the first-order logic formulas of SMT solvers like Z� [DB��] or CVC� [BCD+��]
which are more general purpose logic solvers, but lower-level than, e.g., A����,
which is an end-user, modeling language.

K����� is the back-end framework of A����, which is at the same level
of abstraction as A���A���. Both A���A��� and K����� support relational

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

1 // All packages that are requested to be installed or upgraded should be part of the installation afterwards
2 let installedAfter = (toBeInstalled + (installed - toBeRemovedVersion)) |
3 (forall ir : installRequest | some (ir |x| version |x| installedAfter)
4 where ((relop = 0) || (relop = 1 && version = nr) || (relop = 2 && version != nr)
5 || (relop = 3 && nr >= version)|| (relop = 4 && nr <= version)))
6 &&
7 (forall ur : upgradeRequest | some (ur |x| version |x| installedAfter)
8 where ((relop = 0) || (relop = 1 && version = nr) || (relop = 2 && version != nr)
9 || (relop = 3 && nr >= version)|| (relop = 4 && nr <= version)))

10
11 forall rr : removeRequest | some (rr |x| version |x| toBeRemovedVersion)
12 // all the removal requests should be scheduled for removal
13 where ((relop = 0) || (relop = 1 && version = nr) || (relop = 2 && version != nr) || (relop = 3 && nr >= version) ||

(relop = 4 && nr <= version))
14
15 let installedAfter = (toBeInstalled + (installed - toBeRemovedVersion)) |
16 // installing version means installing its dependencies afterwards
17 forall d : depends | (d[vId] in installedAfter) =>
18 let possibleInstalls = ((d |x| dependChoice)[pId,version,relop] |x| (version |x| installedAfter)) |
19 (some (possibleInstalls where ((relop = 0) ||(relop = 1 && nr = version)) || (relop = 2 && nr != version) ||
20 (relop = 3 && nr >= version) ||(relop = 4 && nr <= version))[vId] & installedAfter)
21
22 let installedAfter = (toBeInstalled + (installed - toBeRemovedVersion)) |
23 // when a version is installed, no conflicting version can be installed
24 forall c : conflicts | (c[vId] in installedAfter) =>
25 let possibleConflicts = (c[pId,version,relop] |x| (version |x| installedAfter)) |
26 no (possibleConflicts where ((relop = 0) || (relop = 1 && nr = version) || (relop = 2 && nr != version) ||
27 (relop = 3 && nr >= version) || (relop = 4 && nr <= version))[vId] & installedAfter)
28
29 let installedAfter = (toBeInstalled + (installed - toBeRemovedVersion)) |
30 // all versions to be kept need to be installed afterwards as well
31 forall k : keep | some k |x| installedAfter
32
33 toBeRemovedPackage = (toBeRemovedVersion |x| version)[pId] - (toBeInstalled |x| version)[pId]
34 toBeChanged = (toBeInstalled + toBeRemovedVersion)
35
36 objectives: minimize toBeRemovedPackage[count()], minimize toBeChanged[count()] // the paranoid criteria

Listing �.�: Optimal Package Resolution in A���A���

constraints, yet A���A��� employs Codd’s relational algebra making it possible to
constraint data attributes directly (using the where operator), whereas K����� is
based on Tarski’s relation logic allowing constraints only to be expressed on the level
of relations.

Although in terms of abstraction level, A���A��� is comparable to K�����, the
latter only exists as a Java library and does not feature a concrete syntax. A���A���’s
syntax allows us to experiment with specifications in a more flexible way, and thus may
function as code generation target for higher-level languages, – essentially fulfilling
the same role that K����� fulfills for A����.

A���A��� leverages built-in theories of underlying SMT solvers, including
support for optimization criteria available in solvers like Z� [BPF��]. K����� (and
hence A����) require bit-encoding of integers because of their underlying SAT
solvers, which is an impediment to performance for constraint problems that require
such constraints. Optimization criteria are not available in either A���� or K�����.
For instance, the optimal dependency resolution problem (Section �.�.�) cannot be
expressed in either A���� or K�����.

� .� ���������� ��

A���A��� thus occupies a sweet spot in terms of both expressiveness (Codd’s
algebra) and solving performance (because of native SMT theories) between high-level
languages like A����, and low-level relational solvers like K�����.

�.� ������� ����

SEM- and MACE-style model finders There are several finite model finding tools
for first order logic (FOL). They can roughly be divided into two different groups: tools
that implement specialized search strategies to find satisfying models (also known
as SEM-style model finders) [Sla��; ZZ��] and tools that translate FOL formulas to
SAT or SMT formulas and use an off-the-shelf solver to find satisfying instances (also
known as MACE-style model finder) [CS��; McC��; Sag��; TJ��a]. A���A��� falls
in the MACE-style category.

Although all of these model finders accept FOL formulas as input not many of
them accept relational logic. SEM [ZZ��] and FINDER [Sla��] for instance accept a
many-sorted logic of uninterpreted functions but no quantifiers. MACE� [McC��],
PARADOX [CS��], Fortress [VD��] and Razor [Sag��] do allow for quantifiers but do
not offer direct support for relational expressions.

Razor opts for a slightly different angle where it focuses on model exploration
by searching for a minimal model first and allowing for model exploration using
a predefined preorder relation. To achieve this Razor also exploits the SMT solver
Z� [Sag��].

Fortress [VD��] also exploits an SMT solver by mapping FOL formulas to the logic
of equality with uninterpreted functions (EUF). To make the model finite Vakilie et
al. introduce so-called range functions to force restriction on the number of elements
assigned to the different sorts [VD��].

K����� [TJ��a], the model finding engine used by A���� [Jac��; TD��], accepts
relational logic and transitive closure but offers no support for optimization criteria or
first-class reasoning over data. As shown in the evaluation (see Section �.�) K�����
and A���� do support integers but require the user to specify a fixed bit-width.
K����� uses an explicit integer encoding which results in the introduction of more
variables and ultimately into more CNF clauses in the generated SAT formula.

The other main difference with K����� is the interpretation of relational logic:
K����� uses Tarski’s definition of relational logic, A���A��� uses Codd’s relational
algebra. The switch from Tarski to Codd prevents the need for an explicit encoding
of data variables (i.e., integers) in the problem domain. e.g., in A���A��� it is not
needed to explicitly define the set of integers to be used in the relational expressions,
it can directly encode constraints on the data attributes (using the where operator).

Relational reasoning with SMT El Ghazi et al. translate A���� specifications to
unbounded SMT constraints using an axiomatization of A����’s relational logic in

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

SMT, a so called shallow embedding of a relational theory [ET��]. Although this allows
for proving some A���� specifications it also struggles with many specifications, as
is shown in later work [MRT+��].

Meng et al. define a relational calculus based on the theory of finite sets with
cardinality constraints [BRB+��; MRT+��]. This calculus is created explicitly to be
implemented as a new theory in SMT solvers, a so called deep embedding, and
contains many of the relational expressions that are also part of K����� (like
join, transpose, product and transitive closure). The calculus does not require that
bounds are set on the relations but uses earlier work by the authors on finite model
finding [RTG+��]. The authors implement the calculus as a new theory in the
SMT solver CVC� [BCD+��] and evaluate its performance on existing benchmarks.
Contrary to A���A���, the new theory is able to prove when a relational problem
is unsatisfiable. Like A���� and K�����, A���A��� requires bounds on the
relations with the result that any reported unsat only means that it is unsatisfiable
with respect to the given bounds. The work by Meng et al. is based on the same
calculus as K����� (Tarski’s relational logic) meaning that reasoning on values of
other theories (like integers) is limited in the same way as it is limited in K�����.
Next to that, this work is implemented in CVC� which currently does not support
optimization objectives.

�.� ����������

Relational model finding is a powerful technique that can be applied to a wide range
of problems. In this paper we have introduced A���A���, a new language for
describing such problems with first-class support for data attributes. A���A���
specifications combine first-order logic with Codd’s relational algebra, transitive
closure, and optimization objectives. We have presented the formal semantics of
A���A��� and a detailed exposition of a novel algorithm to translate A���A���
specifications to SMT constraints, to be solved by standard SMT solvers such as Z�.

Initial evaluation of our prototype implementation has shown that the performance
leaves room for improvement. Both the translation speed and the generated formula
efficiency can be improved. Theoretically it should be possible to improve the
translation and solving time of pure relational problems to the level of K�����’s
performance since the translation algorithm of both model finders is comparable
in terms of complexity. Early performance experiments with a pure Java version of
A���A��� indeed hint into this direction.

A���A��� supports compact encodings of relational problems with data. One
example is optimal dependency resolution, as used in package managers. We have
used this problem to assess expressiveness of A���A���. Although currently the
translation times are high for these problems, the resulting SMT formulas can be
solved efficiently by off-the-shelf solvers. The specification itself is concise, taking

� .� ���������� ��

only half a page, which shows the expressiveness of combining relational logic, data,
and optimization criteria.

There are multiple directions for future work. The current prototype of A���A���
only supports integer domains; we will extend A���A��� with support for reals,
strings, and bit vectors since most SMT solves have built-in theories for these types.
Another direction for further work is to include symmetry breaking predicates [CS��]
to the generated SMT formulas, since this is well-known to have a positive effect
on solver performance. Torlak et al. introduce a method to create these symmetry
breaking predicates for relational logic [TJ��a], but it is an open question how this
should be done in the presence of A���A���’s data attributes. A final direction for
further research is to investigate how unsatisfiability core extraction [TCJ��] can be used
to explain reasons for ����� results. A particular challenge is how to map such
explanations back to the level of A���A���.

�� ������� � �������� : ������� ���������� ����� ������� ���� ��������� ����

CONSTRAINT-BASED RUN-TIME STATE MIGRATION FOR
LIVE MODELING 4

Abstract

Live modeling enables modelers to incrementally update models as they are
running and get immediate feedback about the impact of their changes. Changes
introduced in a model may trigger inconsistencies between the model and its run-
time state (e.g., deleting the current state in a statemachine); effectively requiring
to migrate the run-time state to comply with the updated model. In this paper, we
introduce an approach that enables to automatically migrate such run-time state
based on declarative constraints defined by the language designer. We illustrate the
approach using N�����, a meta-modeling language for defining invariants and
migration constraints on run-time state models. When a model changes, N�����
employs model finding techniques, backed by a solver, to automatically infer a
new run-time model that satisfies the declared constraints. We apply N�����
to define migration strategies for two DSLs, and report on its expressiveness and
performance.

�.� ������������

Live modeling [vdSto��; vRvdS��] allows users of executable modeling languages to
enjoy live, immediate feedback when editing their models, without having to restart
execution. Live modeling has its roots in live programming, which allows developers
to change program code and use the running application simultaneously, without
long edit-compile-restart cycles [McD��; RRL+��]. When the programmer changes the
program code, its execution state is updated accordingly on-the-fly. This effectively
bridges the “gulf of evaluation” [LF��] between changing a program and the impact
of these changes.

While the value of live modeling and live programming is widely recognized [KRB��;
LF��; Tan��], engineering live software languages requires a lot of effort and a deep un-
derstanding of the host language and its particular domain of application [BFdH+��].

A central problem for live modeling languages is how to reconcile changes to a
model with the run-time state of its execution. Changes to a model or program might
invalidate the current run-time state. That is, when the executing model is modified,
its run-time state still corresponds to the version before the change. The problem
is analogous to migrating a database after a change to the database schema. So the
question we address in this paper is how to migrate run-time state after a change to
an executing model.

Earlier work has explored (re)constructing the required migration steps to the
run-time state from the changes applied to the model [vRvdS��]. Unfortunately,

��

this requires intimate operational knowledge of how the change of the model itself
is propagated to the runtime in the first place, leading to brittle, imperative, and
non-modular code.

In this work, we employ model finding techniques [MGC��] to migrate the run-
time state of an executing model. A declarative, constraint-based specification of
invariants and migration policies on the run-time state is input to a solver to infer
a model that satisfies these constraints, given a representation of the old and new
models, and the old run-time state. The resulting model is taken as the new run-time
state of the updated version of the DSL program, and execution can continue.

We illustrate this approach using N�����, a prototype meta-modeling language
for defining the metamodel of both modeling language and run-time state model,
and migration policies as constraints. N����� specifications are then transformed to
A���A���, a language for relational model-finding modulo theories. The A���A���
specification is then processed by the Z� [DB��] constraint solver to obtain a new
consistent run-time state instance.

The remainder of this paper is organized as follows. In Chapter �.�, we introduce
a motivating example of live modeling and detail the associated challenges. In
Chapter �.�, we present a framework for structuring the constraints related to run-
time state migration. In Chapter �.�, we introduce N�����, our prototype language
for live modeling. In Chapter �.�, we evaluate the performance and expressiveness of
N�����. Finally, we discuss related work in Chapter �.� and draw some conclusions
in Chapter �.�.

�.� ���������� �������

Unlike General-Purpose Languages (GPL), DSLs capture the syntax and semantics of
a specific domain. As a result, the cognitive distance between DSL models and their
dynamic behavior can be arbitrarily large. Live modeling can thus be considered
especially beneficial for DSLs because the dynamic effect of a change in a DSL program
is harder to predict.

Throughout this paper, we use a simple finite-state machine (FSM) DSL as a
running example to explain the ideas and challenges of live modeling, and to illustrate
our approach. A program in this DSL is a particular machine that consists of a number
of states and transitions. An example scenario of live modeling for the FSM DSL is
depicted in Chapter �.�(a). The starting point (Step #�) is a simple machine with
two states closed and opened and transitions between them. We choose to model the
run-time state of machines as the combination of two elements: the current state of
execution current and a map visited that keeps track of how many times each state has
been visited. Note that the choice of what is part of the run-time state and how it
is specified is up to the language designer. In particular, it can be specified as an
extension of the static metamodel or as a separate semantic domain [CCP��]. Finally,

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

we assume the FSM DSL is executed by a step-based interpreter such that the user
can trigger events to trigger transitions, and consequently, modify the run-time state.
Changing the model pauses the interpreter for an instant so that the new version can
be reloaded.

At Step #�, the current state is initialized to the initial state closed and every counter
is initialized to �. At Step #�, following the first step of execution, the user triggers an
event, which changes the current state to opened and increments the visited counter for
closed by one. At Step #�, the user decides to insert a new state locked in the currently
running machine. As depicted in Chapter �.�(a), the question that arises is: what is
the new run-time state at this point? Does the newly added state locked become the
current state? How should locked be captured in the visited map?

These questions get even more complicated when considering the live modeling
scenario depicted in Chapter �.�(b). In Step #� of this scenario, the user chooses to
delete the state locked, which is at this point the current state of the machine. Here
an obvious question is: which state should be the new current state of the updated
machine? Should it be reverted to the initial state of the machine?

A generic live modeling engine cannot provide answers to these questions, because
they are inherently domain-specific and should thus comply with domain-specific run-
time state migration policies. Ultimately, it is the language designer’s responsibility to
define these migration policies. We investigate how a language designer can express
them in the next section.

� .� ���������� ������� ��

Step DSL program Run-time state

#�: initial
closed opened

current:

closed

visited:

closed 7! �
opened 7! �

#�: interpreter step
closed opened

current:

opened

visited:

closed 7! �
opened 7! �

#�: user edit

closed opened

locked

current:

???

visited:

???

((a)) Live modeling scenario ’Add New State‘ for the FSM DSL

Step DSL program Run-time state

#�: initial

closed opened

locked

current:

closed

visited:

closed 7! �
opened 7! �
locked 7! �

#�: interpreter step

closed opened

locked

current:

locked

visited:

closed 7! �
opened 7! �
locked 7! �

#�: user edit
closed opened current:

???

visited:

???

((b)) Live modeling scenario ’Remove Current State‘ for the FSM DSL

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

�.� ����������� ����������� ��� ���-���� ����� ���������

When considering a situation of live modeling, as described in the previous section,
we can distinguish two basic components: a static model (denoted ?) and a run-time
model (denoted G). The static model captures the structure (i.e., code) of the DSL
program.� The run-time model captures the state of the execution of the DSL program.
As we focus on the situation in which a DSL program is changed during its execution,
we distinguish two versions of the static and run-time models: ? and G before the
program has been changed, and ?

0 and G
0 after the program has been changed. Thus,

we can reformulate the problem of finding a new run-time state as follows: given that
?, G, and ?

0 are known, how do we find G
0?

A potential approach would be to modify the model interpreter to repair the
run-time state imperatively whenever the program is changed. Unfortunately, as we
discuss in more detail in Section �.�.�, this approach is error-prone and non-modular.
In this paper, we apply model-finding techniques to infer the run-time state based on
a set of declarative constraints. Concretely this means identifying requirements for
G
0 and representing these as a set of constraints in relation to ?, G, and ?

0, and then
solving the constraints for G0. We introduce the following two categories (subsets) of
constraints.
Semantic relations '(?0, G0): these constraints ensure that the new run-time state

G
0 is semantically consistent with the current (new) version of the DSL model

?
0. Note though that there might be multiple—possibly infinite—G

0 that are
semantically consistent with ?

0.
Migration rules "(? , G , ?0, G0): these constraints provide the possibility to take into

account what has changed in the DSL model and project this change onto the
run-time state. Migration rules restrict the choice of (semantically consistent) G0
in preference for those G

0 that reflect the change that has happened to the DSL
(static) model.

The definition of a solution space by semantic relations '(?0, G0) and its filtering
by migration rules "(? , G , ?0, G0) is illustrated by the Venn diagram depicted in
Figure �.�. Although migration rules restrict the choice of possible solutions, there
still can be many (potentially infinite) G0 that satisfy the semantic constraints. Selecting
an arbitrary element of this set as the new run-time state for the updated DSL program
might not result in an intuitive new run-time state. For instance, in our previously
described FSM scenario ’Add New State‘ (Table �.�(a)), it is perfectly valid to reset
the current to opened, and set the visited entities to ����. Although this would be a
correct run-time state (i.e., a valid solution to our set of constraints), it would only
add confusion to the user of the DSL.

�Although according to the main idea of live modeling the static model is not static anymore, we still
use the term static for the sake of the terminology legacy.

� .� ����������� ����������� ��� ��� -���� ����� ��������� ��

R(p��, x��)

M(p, x, p��, x��)

�

H(x��)

Figure �.�: Partitioning and selection of the new run-time model (G0)

To find the most suitable new run-time state, we need to introduce a heuristic for
selecting one of potentially many solutions. We represent such a heuristic as �(G0)

in Figure �.�. What are good heuristics may depend on many variables related to
domain-specific semantics and usability. One example of a heuristic that we will
use in the remainder of this paper is the minimum distance ⇡(G , G0). The minimum
distance heuristic requires that the new run-time state G

0 should be as close as possible
to the previous run-time state G. Intuitively, this heuristic captures the principle of
“first, do no harm” (i.e., do not break parts of the run-time state that do not have to
change), and the “principle of least surprise” (i.e., prefer small incremental changes
over invasive ones). In this way, we support the incremental process of editing a DSL
model, providing live feedback in relation to the previous run-time state of the DSL
program.

To apply constraint-based run-time state migration, language designers must
specify the semantic relations '(?0, G0) and migration rules "(? , G , ?0, G0). Semantic
relations can be automatically extracted from the DSL definition itself (metamodel,
static and dynamic semantics). Migration constraints are explicitly specified to relate
?, ?0, G, on the one hand, and G

0, on the other hand.
In the case of the FSM DSL, if the user chooses to delete the state pointed to by

current (Table �.�(b)), a possible strategy is to reset current to the initial state of the
machine. Another strategy is to set the current to the state that was the “closest” to the
deleted state. Both policies are equally valid: this is the designer’s responsibility to
make a choice. In contrast, the heuristic �(G0) is domain-agnostic and can be built
into the live modeling tool itself.

Note that our approach infers the new run-time state (G0) only based on the directly
preceding step of the execution (G), i.e., migration constraints cannot be defined in
terms of the full execution trace. For example, in our FSM DSL we cannot assign the

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

new current to a state that had been current previously in the execution. Taking the
execution trace into account is an essential direction for further research.

�.� ������: � �������� ��� ����� ���������

In this section we describe our proof-of-concept implementation of the approach
described in Section �.�, the N����� language. In particular, we discuss all described
constraints in detail and explain their implementation in N����� for our running
example of the FSM DSL.

�.�.� Syntax of N�����

The N����� language allows for formulating preferences for (i.e., for configuring)
live modeling in the form of a set of constraints. As described earlier, such constraints
are expressed using the constructs of the static and run-time models of a DSL.†
For this, N����� uses a simplified version of the Ecore metamodeling language to
express classes and references between them. An example N����� definition for the
statemachine DSL is depicted in Listing �.�.

A N����� configuration consists of three parts: static, runtime, and migration. The
static part (lines �–�� in Listing �.�) describes the static model of the DSL and, in
essence, corresponds to (the core of) the DSL metamodel. In our example, it consists of
three classes (Machine, State, and Trans) and four references (states, initial, transitions,
and target).

References can be of two types: referencing exactly one object (for example, target:
State, line �� in Listing �.�) or referencing a set of objects (such as states: State*, line
� in Listing �.�). However, this is not a conceptual limitation of N�����, but rather a
simplification for the sake of demonstration. For the sake of conciseness, we also omit
static constraints in the statemachine metamodel from the N����� specification, and
assume that these are dealt with by other means, such as parsers or type checkers.

The runtime part of a N����� definition (lines ��–�� in Listing �.�) describes the
run-time model of the DSL and the semantic relations '(?0, G0). The run-time model
is defined in the same way as the static model, using classes and references. The
semantic relations are defined in the form of invariants attached to these classes.

The class Runtime is a root class that stores references to all components that
constitute both the static and the run-time models of the DSL. For the FSM DSL, these
are machine for the static model, and current and visited for the run-time model (lines
��–�� in Listing �.�). This way, the Runtime class defines the scope for the semantic
relations '(p’,x’). We define the following semantic relations for the FSM DSL:

• the current state of the machine is one of its states (line �� in Listing �.�);

†See Appendix B.� for the definition of the concrete syntax of N�����.

� .� ������ : � �������� ��� ����� ��������� ��

1 static

2 class Machine

3 states: State*
4 initial: State

5

6 class State

7 transitions: Trans*
8

9 class Trans

10 target: State

11

12 runtime

13 class Runtime

14 machine: Machine

15 current: State

16 visited: Visit*
17

18 invariants

19 current in machine.states

20 forall s: machine.states | one (visited.state & s)

21 forall v1:visited, v2:visited | v1 != v2 => v1.state != v2.state

22

23 class Visit

24 state: State

25 nr: int

26

27 invariant: nr >= 0

28

29 migration

30 not (old.current in new.machine.states) => new.current = new.machine.initial

Figure �.�: N����� specification of the FSM DSL.

• the number of visits is defined exactly once for each state of the statemachine
(line �� in Listing �.�);

• different entries in visited correspond to different states of the statemachine,
visited is a function (line �� in Listing �.�);

• the number of visits for each state is greater than or equal to zero (line �� in
Listing �.�).

The migration part of a N����� definition (lines ��–�� in Listing �.�) describes the
migration rules "(?, G, ?0, G0). Here the keywords old and new denote the instances of
the Runtime class corresponding to the old and new versions of the run-time model,
respectively. Since the Runtime class refers to the static model, this also provides

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

access to ? and ?
0. For the FSM DSL, we define the following migration rule: if the

current state has been deleted (i.e., not (old.current in new.machine.states)), then the
new current state is assigned to the initial state (i.e., new.current = new.machine.initial).

�.�.� Semantics of N�����

In order to implement model finding for our live DSLs, we translate a N�����
definition of a DSL and its static and run-time models into A���A���. A���A���‡

is a bounded relational model finder. That is, A���A��� is a formalism that allows for
expressing a model using a combination of first order logic and relational algebra
and supports automatic construction of relational instances of such a model in a
bounded scope (i.e., limited set of cases) based on the constraints of the model. In
addition, A���A��� supports declaration of optimization criteria making it suitable
for solving optimization problems next to pure satisfiability problems.

As a back-end A���A��� uses Z�, an SMT (Satisfiability Modulo Theories)
solver [DB��].§ That is, A���A��� translates a model expressed in its input language
into a corresponding SMT formula and then invokes Z� to find solution(s) to this
formula. The solution is then translated back into an instance of the relational model.

A���A��� is comparable to the Alloy language and analyzer [Jac��].¶ The major
difference is that, unlike Alloy which is built on top of a SAT solver, A���A��� is
built on top of the Z� SMT solver, and thus, supports unbounded integer numbers
and allows for optimization criteria, which are used by the solver to find the most
suitable (optimal) solution.

In this section, we describe the semantics of N����� in the form of a translation
to A���A���. We illustrate our description using an excerpt of the A���A���
specification (see Listing �.�) that corresponds to the N����� specification described
in the previous section (Listing �.�).

Structure translation. All structural elements of both static and dynamic parts of a
N����� definition are translated to relations in A���A���:

• N����� classes are translated to A���A��� unary relations;
• N����� references are translated to A���A��� binary relations.

As the resulting A���A��� specification is used for solving our initial problem
“given ?, G, and ?

0, what is G
0?”, all the listed relations are generated for the concrete

instances of ?, G, ?0, and G
0.

For example, in Listing �.� relations with pn_ as their prefix (lines �–�) correspond
to the new version of the program ?

0; relations with xo_ as their prefix (lines �–�)

‡http://github.com/cwi-swat/allealle
§http://github.com/Z3Prover/z3
¶http://alloytools.org

� .� ������ : � �������� ��� ����� ��������� ��

1 pn_Machine (mId: id) = {<doors>}

2 pn_State (sId: id) = {<closed>, <opened>, <locked>}

3 pn_states (mId: id, sId: id) = {<doors, closed>, <doors, opened>,

4 <doors, locked>}

5 pn_initial (mId: id, sId: id) = {<doors, closed>}

6 ...

7 xo_current (mId: id, sId: id) = {<doors, opened>}

8 xo_visited (sId: id, val: int) = {<closed, 1>, <opened, 0>}

9 xn_current (mId: id, sId: id) <= {<doors, closed>, <doors, opened>,

10 <doors, locked>, <doors, s1>..<doors, s5>,

11 <m1, s1>..<m1, s5>}

12 xn_visited (sId: id, val: int) <= {<closed, ?>, <opened, ?>,

13 <locked, ?>, <s1, ?>..<s5, ?>}

14 ...

15 forall m : pn_Machine | one xn_current |x| m

16 ...

17 xn_current in pn_states

18 forall s : pn_states | one xn_visited |x| s

19 forall v : xn_visited | some (v where val >= 0)

20 ...

21 not (xo_current[sId] in pn_states[sId]) => xn_current[sId] = pn_initial[sId]

22 ...

23 objectives:

24 minimize ((xo_current - xn_current) &) (xn_current - xo_current))[count()]

Listing �.�: An excerpt of the generated A���A��� code for the statemachine DSL

correspond to the previous run-time state G; and relations with xn_ as their prefix
(lines �–��) correspond to the new run-time state G

0.

Bounds translation. As mentioned earlier, bounds are used to restrict the scope
of search for the back-end solver. In particular, bounds introduce a set of atoms
available for the instantiation of relations in an A���A��� specification. In the
context of N�����, ?, G, and ?

0 are known and, thus, determine the exact bounds
for the corresponding A���A��� relations. In other words, each of the relations
that represent the original ?, G, and ?

0 are assigned specific values (i.e., tuples)
corresponding to the concrete instances of ?, G, and ?

0 (lines �–� in Listing �.�, on the
right side of the ‘=’ symbol).

While ?, G, and ?
0 are known, the new run-time model G0 is what we are searching

for. Therefore, bounds for the A���A��� relations representing G
0 define an extended

search scope, not limited to the concrete instances of ?, G, and ?
0. In particular, the G

0

relations are constrained by an upper bound (lines �–�� in Listing �.�, on the right

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

side of the ‘<=’ symbol). The upper bounds include the atoms from the instances of ?,
G, and ?

0, and a finite number of auxiliary atoms of the same type. For instance, in
the example, this means that there is one extra machine m1 and five extra states s1..s5.

Constraints translation. Semantic relations and migration rules of a N�����
definition are translated to the corresponding A���A��� constraints (formulas)
instantiated for ?, G, ?0, and G

0 (lines ��–�� in Listing �.�). Moreover, additional
A���A��� constraints are generated to capture the structural properties of (static
and runtime) classes: types and multiplicities of references (line �� in Listing �.�).
The expressive power of N����� constraints is determined by the expressive power
of A���A��� formulas, which includes relational algebra extended with transitive
closure. Thus, N����� supports set theory notation, first-order predicates, (reflexive)
transitive closure, and unbounded integer arithmetic. For object navigation we use
the standard dot notation.

Minimum distance. As described earlier in Section �.�, the heuristic for the minimum
distance ⇡(G, G0) is not specific to each particular DSL. In particular, in A���A���,
the minimum distance heuristic is generically represented as optimization criteria.
For this, ⇡(G, G0) is represented as a set of metrics in A���A���, over which the
minimization criteria are applied (lines ��–�� in Listing �.�).

Minimization is performed over the following metrics:
• the number of elements in the difference of two sets representing G and G

0

correspondingly (such as current in the statemachine DSL);
• the sum of absolute differences between integer values of two vectors represent-

ing G and G
0 correspondingly (such as visited in the statemachine DSL).

As a result, for instance, not modifying the current state is preferred over modifying it,
because in the former case the set difference will be the empty set, which is minimal.
Similarly, minimization of integer values ensures that no arbitrary values will be put
in the map visited.

�.�.� Output of N�����

When applied to the two live modeling scenarios described in Section �.�, N�����
produces the following results. Tables �.� and �.� show the instances of ?, G, and ?

0

and the corresponding G
0 for the scenarios of Table �.�(a) and Table �.�(b), respectively.

Here, the instances of G0 (right bottom corner in both tables) represent the solutions
found by the solver. They are constructed by mapping an instance of the relational
model (calculated by Z� and translated to A���A���) on the corresponding instance
of the N����� run-time model.

� .� ������ : � �������� ��� ����� ��������� ��

Table �.�: N����� migration for the statemachine scenario ’Add New State‘

? G

states: closed, opened
transitions:

(closed 7! t�), (opened 7! t�)
target:

(t� 7! opened), (t� 7! closed)

current: opened
visited:

closed 7! �
opened 7! �

?
0

G
0

states: closed, opened, locked
transitions: (closed 7! t�, t�),

(opened 7! t�), (locked 7! t�)
target:

(t� 7! opened), (t� 7! closed),
(t� 7! locked), (t� 7! closed)

current: opened
visited:

closed 7! �
opened 7! �
locked 7! �

Table �.�: N����� migration for the statemachine scenario ’Remove Current State‘

? G

states: closed, opened, locked
transitions: (closed 7! t�, t�),

(opened 7! t�), (locked 7! t�)
target:

(t� 7! opened), (t� 7! closed),
(t� 7! locked), (t� 7! closed)

current: locked
visited:

closed 7! �
opened 7! �
locked 7! �

?
0

G
0

states: closed, opened
transitions:

(closed 7! t�), (opened 7! t�)
target:

(t� 7! opened), (t� 7! closed)

current: closed
visited:

closed 7! �
opened 7! �

As can be seen in Table �.�, the addition of the locked state does not change the
runtime state, except for adding a new entry to the visited map, initialized to zero.
However, if the current state is removed (i.e., locked in Table �.�), the current field is
reset to the initial state, and the locked entry is removed from the visited map.

The obtained results are determined by the domain-specific migration policies
in the N����� definition (in Listing �.�). For example, if we remove the migration
rule from our N����� definition, the calculated G

0 for the scenario ’Remove Current
State‘ would be some arbitrary state (e.g., opened), instead of the initial state of the
statemachine.

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

�.� ����������

5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

16000

States in Statemachine

Ti
m

e
(in

m
s)

N����� to A���A��� trans. (�)
A���A��� to SMTLIB trans. (�)

Z� Solving Time (�)

Figure �.�: Scenario ’Add New State’. Z� timed out for ��,��,��,��,��,��,��,�� and ��

5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

16000

States in Statemachine

Ti
m

e
(in

m
s)

Figure �.�: Scenario ’Remove Current State‘. Z� timed out for ��,��,��,��,��,��,��,��,��,��,��,��
and ��.

� .� ���������� ��

In this section, we use the N����� implementation for an early evaluation of
our approach. In Section �.�.�, we perform a quantitative evaluation to estimate the
performance of N�����. In Section �.�.�, we perform a qualitative evaluation to
challenge the expressive power of N����� by applying it to a DSL for robotic arm
control. Finally, in Section �.�.�, we conceptually compare N����� with the manual
encoding of migration strategies as presented in previous work [vRvdS��].

�.�.� Statemachine DSL Case Study

To evaluate the performance of our method, we ran two different scenarios for the
FSM example.

In the first scenario, we tested the live modeling situation where one extra state
and two new transitions are added to the new program. The corresponding new
run-time state has its visited map extended with an entry for the newly added state
assigned to ’�’ visits. In the second scenario, we tested the case where the current

state is removed from the statemachine. This forces the new current to be reset to the
initial keeping all the values for the visited map intact, minus the removed state.

In both scenarios, we gradually increased the number of states in the statemachine
to assess the impact of model size on performance. The results are shown in Figure �.�
and Figure �.�. The execution times reported in the figure include the following
three phases of our implementation: (�) translation of the N����� specification to the
relational specification, (�) translation of the relational specification to SMT constraints
(from A���A��� to SMTLIB), and (�) solving (model finding) by Z�.

We ran the benchmarks on an early ���� model MacBook Pro with a �.� GHz
quad core Intel processor with � GB of DDR� RAM. We ran each configuration of
the benchmark �� times, ensuring that each execution is independent of the other
(i.e., no shared memory, cache, etc.). Figure �.� and Figure �.� report the mean time
per configuration of each of the three different phases.

The translation times reported in both scenarios show a similar pattern. The
translation of N����� specifications to A���A��� specifications in the different
configurations is fairly stable time-wise with a minimum of ��� ms and a maximum
of ���� ms.

The translation times from A���A��� to SMTLIB also follow a similar trend in
both scenarios: the translation time goes up as the N����� specification grows. An
explanation is that increasing the size of N����� specifications causes the number
of tuples in the A���A��� relational models to increase as well. Then, the more
tuples in an A���A��� specification, the longer it takes to translate from A���A���
to SMTLIB. This is especially the case when quantifiers are used in the A���A���
specifications—and N����� relies heavily on these quantifiers.

The source code of our benchmark experiments can be found at https://github.com/cwi-swat/
live-modeling/tree/master/nextstep/src/benchmark/statemachine

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

The solving times reported for Z� tell a different story. For many configurations,
Z� was not able to find an optimal solution within a time limit of � seconds. We
empirically set this limit to � seconds after observing that Z� either manages to find
a solution within a second or quickly explodes to multiple minutes. Since the time
frame of multiple minutes is not in line with the spirit of live modeling, we decided
to consider all solving times exceeding � seconds as timeouts.

For the first scenario, Z� timed out for � configurations out of ��. For the second
scenario, it timed out for �� configurations out of ��.

Discussion Our benchmark results suggest that there is much room for improvement
in our prototype. These improvements can be classified according to the different
phases of our method: improving the translation from N����� to A���A���,
improving the translation from A���A��� to SMTLIB, and improving the solving
times by Z�.

A first improvement would be to optimize the translation from N����� to
A���A���. As mentioned earlier, the current implementation of N����� is an early
prototype that has not been aggressively optimized yet. Both the performance of
the translation and the generated A���A��� specifications can be improved. In
particular, improving the latter would help in speeding up the total execution time of
our method. To verify this intuition, we optimized some A���A��� specifications
manually, bypassing the automatic translation phase of our approach while keeping
the exact semantics of the original N����� specification, and observed substantial
improvements on performance. Generating an optimized A���A��� specification
would help in minimizing the translation time from A���A��� to SMTLIB as well, as
we have observed that translation times decrease when the A���A��� specification
shrinks. Finally, generating optimized A���A��� specifications would also help Z�
to find optimal solutions quicker: the smaller the A���A��� specification the less
variables are declared in the resulting SMT formula, often making it easier for the
solver to find optimal solutions.

Next to optimizing N�����, we could look at optimizing A���A���. The current
implementation of A���A��� is also in a prototype phase. Early experiments with an
optimized native Java version of the A���A��� model finder suggest that translation
times can potentially be improved by a factor �� to ��.

Improving the stability of the solving times of Z� is the hardest challenge which
for now is considered an open question. As mentioned earlier, generating optimized
A���A��� specifications will help to improve the solving times for Z�. However,
whether solving time can be predicted upfront from a given N����� specification
remains an open question.

� .� ���������� ��

�.�.� Robotic Arm DSL Case Study

The Robotic Arm DSL is used for controlling industrial robots that consist of various
subsystems (i.e., mechanical and/or electrical parts). For example, a robot can consist
of a hand, responsible for manipulating objects, an arm, responsible for moving the
hand to a particular position, and smaller subsystems like triggers and actuators. A
program in the Robotic Arm DSL describes the coordination of subsystems of a robot
during its execution. An example of such a program is shown in the middle column
of Table �.�.

To perform a certain task, a robot executes specific actions on its subsystems. Each
subsystem can execute its actions independently from other subsystems of the robot.
However, some of these actions should be executed in certain order, or in other words,
some actions have to wait for other actions to be executed first; such dependencies are
shown as arrows in Robotic Arm programs. For example, the subsystem hand should
not execute the action grab before the subsystem arm has executed the action down (see
the DSL program in the second row of Table �.�).

The semantics of the Robotic Arm DSL maps a Robotic Arm program to the
following execution behavior. In order to execute actions independently, each
subsystem maintains a queue of actions that should be executed. First, all actions are
collected in one Request pool (Step � in Table �.�). Then, the actions are taken from the
Request one by one and pushed to the corresponding subsystem Queue (Steps �–� in
Table �.�). When an action is executed, it is removed from the queue. To enforce the
ordering of actions, an action cannot be queued until all of the actions that this action
depends on are in the Request pool or in the Queues. An exception to this constraint is
the situation in which both ordered actions belong to the same subsystem. Then the
actions can be queued in the corresponding order. For example, in Step � of Table �.�,
both actions down and up are queued, as they belong to the same subsystem arm.

The bottom row of Table �.� introduces a live modeling step for the Robotic Arm
DSL. In particular, interrupting the normal execution of the Robotic Arm program
(Steps �–�), in Step � the user updates the program by adding a new subsystem trigger

with a new action switch and a new dependency between the actions up and switch.
As a result of this update, an obvious migration strategy for the run-time state would
be to add a new queue for the subsystem trigger. It is not clear though what to do
with the action switch. According to the semantics of the Robotic Arm DSL, the action
switch can be executed independently by trigger, and thus, does not need to appear in
the Request or Queues. However, intuition suggests that a newly added action should
(explicitly) show up in the execution. Therefore, we introduce a migration rule that
puts newly added actions to the Request.

The Robotic Arm N����� definition that captures the described semantic relations
and specifies the stated migration rule is depicted in Listing �.�. The new run-time
state calculated according to this N����� definition is shown in the bottom right cell

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

Table �.�: Update scenario for the Robotic Arm DSL

Step DSL program Run-time state
� arm hand

down

up

grab

Request:
{grab, down, up}

Queues:
arm 7! []
hand 7! []

� arm hand

down

up

grab

Request:
{grab, up}

Queues:
arm 7! [down]
hand 7! []

� arm hand

down

up

grab

Request:
{grab}

Queues:
arm 7!

[down, up]
hand 7! []

� arm hand

down

up

grab

switch

trigger Request:
{grab, switch, up}

Queues:
arm 7! [down]
hand 7! []
trigger 7! []

� .� ���������� ��

1 static
2 class Task
3 actions: Action*
4 order: OrderedPair*
5

6 class Subsystem
7 ssa: Action*
8

9 class Action
10

11 class OrderedPair
12 action: Action
13 succeeds: Action
14

15 runtime
16 class Queue
17 subsystem: Subsystem
18 actions: QueuedAction*
19

20 invariant:
21 forall qa: actions |
22 qa.item in subsystem.ssa
23

24 class QueuedAction
25 item: Action
26 index: int
27

28 class Runtime
29 request: Action*
30 queues: Queue*
31 task: Task

32 invariants
33 request in task.actions
34

35 forall s: Subsystem |
36 some (s.ssa & task.actions) =>
37 (exists q: queues | q.subsystem = s)
38

39 forall q: queues |
40 no (q.actions & request.actions)
41

42 forall o: task.order |
43 o.succeeds in request =>
44 o.action in request
45

46 forall o: task.order |
47 (exists q: Queue |
48 o.succeeds in q.actions.item
49 && not (o.action in q.subsystem.ssa)) =>
50 not(exists q:Queue |
51 o.action in q.actions.item)
52

53 forall o: task.order |
54 (exists q: Queue |
55 o.succeeds in q.actions.item &&
56 o.action in q.actions.item) =>
57 (forall qa1: queues.actions,
58 qa2: queues.actions |
59 qa1.item = o.succeeds &&
60 qa2.item = o.action
61 => qa1.index > qa2.index)
62

63 migration
64 (new.task.actions -- old.task.actions)
65 in new.request.actions

Figure �.�: N����� definition for the Robotic Arm DSL

of Table �.�. Note that in this new run-time state, the newly added action switch is
added to the Request and, as a result, the action up is moved (back) to the Request. This
allows for observing the execution order according to the newly added dependency.

The N����� definition of Listing �.� defines classes for all constructs introduced
above: Task for a Robotic Arm program, Subsystem for a robot subsystem, Action for a
subsystem action, OrderedPair to represent order dependencies, Queue and QueuedAction

to model a subsystem queue, and Runtime for the run-time state.
The semantics of the Robotic Arm DSL is captured by the following semantic

relations:

�. a Queue contains only actions of its corresponding subsystem (line ��–��);

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

�. a request contains only actions of the current task (i.e., program being executed)
(line ��);

�. if an action of a subsystem appears in the task, then there should be a corre-
sponding queue for this subsystem (lines ��–��);

�. queues and request do not intersect (line ��–��), i.e., when an action is queued, it
is removed from the request;

�. an action, that succeeds another action which is stored in the request, should be
also in the request, i.e., should not be queued yet (lines ��–��);

�. an action, that succeeds an action stored in a queue, should not be queued yet,
unless these actions belong to the same subsystem (lines ��–��);

�. if two ordered actions belong to the same subsystem queue, then their indexes
correspond to the order of the actions (lines ��–��).

Finally, the result that we get for the scenario of Table �.� is to a large extent
determined by the migration rule specified in lines ��–�� of Listing �.� according to
our earlier design decision. In particular, the constraint states that all actions from the
new task (new.task.actions) that are not in the old task (-- old.task.actions) should be
added to the request (in new.request.actions).

To conclude, in this section we demonstrated how N����� can be applied for
configuring live modeling for a DSL with a more complicated semantics than our
running example of the FSM DSL. The obtained result (i.e., the calculated new run-
time state) corresponds to our expectations about the semantic consistency of the DSL
and to our intuition about migration strategy of the run-time state.

�.�.� Comparison to Manual Migration

Earlier work in live modeling explored an operational way of encoding migration
strategies, called RMP���� [vRvdS��]. RMP���� consists of the following steps:

�. after a user changes a DSL program (static model), a delta is computed using a
model-based differencing algorithm;

�. a patch corresponding to the delta is then applied to the run-time model, which
is a copy of the static model extended with the necessary run-time data;

�. the code that applies the patch to the run-time model is specialized using
inheritance and updates the run-time data.

One of the take-aways of the experiment with RMP���� is that even for simple
examples such as the statemachine language, it is quite hard to correctly implement
migrations, and the code quickly becomes unwieldy. Below we consider the main
drawbacks of manually coded migrations in contrast with N�����.

Coupling between model and run-time state. RMP���� requires that run-time
state is an instance of the runtime meta-model which is a proper extension of the

� .� ���������� ��

static meta-model of the language. For instance, the State class defines the number
of visits as its own field. Similarly, the class Machine contains the reference to the
current state. Using N����� the representation of a run-time state is decoupled from
the meta-model, thus allowing for more flexibility for languages where the relation
between model and run-time state is less clear cut.

Operational instead of declarative. Second, using program code to encode migration
policies requires careful scheduling of operations, since there might be dependencies
between modification incurred by the user’s model change and migration side effects.
In contrast, N�����’s migration rules are defined as declarative constraints, thus
allowing for abstracting away from any ordering constraints.

Hard to reason about correctness. The third problem of encoding migration policies
manually using code is that migration is interleaved with the update of (the copy of)
the static model within the run-time model. As a result, the run-time model is in an
inconsistent state itself when the migrations are being applied. Separating migration
logic until after the update has fully finished is non-trivial, since migrations depend
on the knowledge of what has changed (i.e., the delta itself).

Scattering of migration logic. Another problem is that migration logic often requires
expressing and maintaining global invariants on the run-time state. Modularizing
the code according to the type of model elements (e.g., State, Transition, etc.), or delta
operations (e.g., Add, Remove, etc.), causes scattering of migration logic over multiple
classes and methods.

Lack of extensibility. Finally, as a result of the previous point, migration logic is not
modularly extensible. Extending the DSL with new constructs and corresponding
additional invariants and rules requires invasive modification of the existing migration
code. With N�����, migration rules and invariants can simply be added to the
N����� definition, i.e., in conjunction with existing constraints. The potential
interactions between constraints are handled by the solver back-end.

To summarize, N����� improves upon the earlier migration work in that it
provides a declarative, decoupled, and modular way of expressing migration policies.
The heavy lifting of finding the new run-time state that is consistent with the new
version of the DSL program is delegated to the solver.

�.� ������� ���� & ����������

In this section, we discuss the related work from three different points of view: the
problem of run-time state migration (Section �.�.�), the solutions based on constraint

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

solving (Section �.�.�), and the area of DSL debugging (Section �.�.�). Next to
highlighting the existing approaches, we discuss which of their findings we can
adopt in our work in order to improve efficiency, expressiveness, and usability of our
approach.

�.�.� Model Synchronization

In this paper, we address the problem of finding a new run-time state that is consistent
with an updated DSL program. In a broader perspective, this is a particular case
of the problem of keeping different models in sync, which includes well-known
sub-problems: consistency checking between different models, change propagation,
co-evolution, model repair, etc. As such, this problem has been studied in different
research fields and from multiple angles. For instance, the field of views and
viewpoints engineering studies the problem of consistency checking between source
models and views. The corresponding approaches that address this problem include
incremental backward change propagation [SDH+��], lenses [FGM+��], and triple-
graph grammars [Sch��]. Our approach distinguishes itself in letting the language
designer specify her own migration policies in a declarative way.

In Model-Driven Engineering (MDE), consistency relations between different
models are typically defined through model-to-model transformations. Such model
transformations can be used to (re)construct a new (run-time) model for an updated
(static) model. Concretely, our work was inspired by the work of Macedo et al. [MC��;
MGC��], which implements QVT-R bidirectional model transformations using Alloy
and its SAT solver to construct consistent models. In comparison, in our work we use
A���A��� and the SMT solver as a back-end, which allows for more expressiveness
when configuring live modeling for a DSL.

Bill et al. use UML and OCL to formalize a synchronization model that includes
both a change model and a consistency model [BGW��]. The synchronization model
defines inter-model relations and constraints (comparable to our N����� definition);
the change model introduces all possible changes that can be used to construct a new
model and assigns a cost to each of such changes. The USE model finder uses these
cost values to find the most suitable (optimal) model. On the one hand, defining
all possible changes (including language-agnostic, language-specific, and composite
changes) requires operational thinking and can result in a tangled and complex model.
In our approach, we strive towards a declarative definition. On the other hand, using
cost values the authors define five different heuristics for finding the most suitable
solution (including the least change strategy that we employ in N�����). Thus, we
plan to leverage their experience in future work to extend N����� with additional
heuristics.

� .� ������� ���� & ���������� ��

�.�.� Constraint-based Solving

In our approach, we use the SMT solver to find a new run-time model that satisfies
the specified constraints. Recently, constraint solvers are being adopted in MDE
for the automatic analysis of modeling languages. For instance, Erata et al. present
AlloyInEcore, a meta-modeling language that allows for adding Alloy-like invariants
into Ecore metamodels [EGK+��]. Built on top of the Kodkod (SAT) solver, their tool
automatically detects inconsistent models and completes partial models. As both
AlloyInEcore and N����� translate to the relational logic (of Kodkod and A���A���
correspondingly), the syntaxes of these two languages are similar. As AlloyInEcore is
a more developed and mature language comparing to N�����, we consider learning
from the design decisions of AlloyInEcore in our future work.

Straeten et al. assess the performance of using constraint solvers (Kodkod in
particular) for resolving inconsistencies in models [SPM��]. They experiment with
models that were reverse-engineered from a set of open-source projects and further
translated to Kodkod, to which they add consistency rules formulated directly in
Kodkod. The model sizes range from ���� to ���� elements. The results obtained in
this work demonstrate that “the approach does not provide instantaneous resolution
on medium scale models”. These results suggest a potential threshold for our
approach. However, we believe that we can still significantly improve the performance
of N�����.

An alternative approach to employing SAT/SMT solvers is to use constraint
programming systems. For instance, Cabot et al. translate UML class diagrams
extended with OCL constraints into Constraint Satisfaction Problems (CSPs) and
the ECLiPSe constraint programming system to construct model instances [CCR��].
Steimann et al. use constraints embedded into an attribute grammar to check the
well-formedness of programs and to compute repair alternatives for malformed
programs [SHU��]. Both these works propose various optimizations and search
algorithms in order to improve performance of constraint-based model finding.

�.�.� DSL Debugging

Although the objectives are different, live modeling is also closely related to debugging.
Debuggers enable programmers to monitor the execution of a program, set breakpoints,
inspect and modify runtime values, and, under certain constraints, hot swap some
parts of the code itself. Over time, a number of debuggers have been developed for
modeling languages, for instance for DEVS [vMvTV��], fUML [MLK��], or individual
diagrams of the Unified Modeling Language (e.g., [CD��; DK��]).

Beyond classical forward-in-time debuggers, Bousse et al. proposed a methodology
for the development of generic omniscient debuggers for DSLs [BLC+��] backed by
efficient and domain-specific execution trace management facilities [BMC+��]. Ráth

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

et al. use the VIATRA [VB��] framework to simulate Petri nets. Users can edit models
on-the-fly at simulation time, for instance to resolve cases of non-determinism [RVV��].

We expect many potential cross-fertilization between model debugging and live
modeling, and we would like to investigate in the future how our constraint-based
approach can solve some of the current problems of debuggers, regarding, for instance,
migration of run-time state after code swapping.

�.� ���������� & ������ ����

Conclusion Live modeling has the potential to improve the experience of using
executable DSLs. Immediate feedback allows DSL users to better assess the impact of
the changes they make to their models. A central problem for live modeling languages
is how to reconcile changes to a model with the run-time state of its execution. In this
paper, we proposed to formulate the problem of run-time state migration in terms of
constraints on the run-time state.

We have identified two categories of such constraints: semantic relations which
ensure that the new run-time state is consistent with the new version of the DSL model,
and domain-specific migration rules which are specified explicitly by the language
designer. To choose the most suitable run-time state out of potentially many solutions,
we used the heuristic of minimum distance between the new and old run-time states.

We have illustrated this approach using N�����, a meta-modeling language that
allows to define such invariants and migration policies. N����� employs model
finding technique, backed by a solver, to automatically infer a new run-time model
that satisfies the declared constraints.

We have evaluated the performance of N����� on a simple FSM DSL. Initial
results show that performance is satisfactory, albeit unpredictable even for similar
problem specifications. Furthermore, we have applied N����� to an existing DSL
for robotic arm control, which is semantically richer than the FSM DSL. Overall,
our results show that constraint-based state migration as realized by N����� is a
promising technique for engineering live modeling languages.

Future Work A number of research questions stem from our early prototype and
evaluation which we hope to address in future work.

First, we did not address all the steps of the live modeling experience. Once a new
run-time state is inferred, how should it be provided back in a seamless way to the
user? How should it be provided to the DSL interpreter itself to let it resume the
execution transparently?

Second, we believe user experience plays a crucial aspect in live modeling. How
should a user interact with the live modeling framework, through which interface?
To be adopted, live modeling must be as close to real time as possible to provide a

� .� ���������� & ������ ���� ��

seamless experience. How to optimize the time it takes to find a new run-time state?
We believe that live modeling tools should be evaluated empirically with real users to
assess their benefits, and we hope to address these questions in the future.

Finally, we consider the use of a generic minimum distance heuristic to guide
the constraint solving process as both a strength and a weakness of our approach.
Investigating whether other generic heuristics or domain-specific heuristics could be
employed requires more experience with various kinds of DSLs and remains future
work.

�� ������� � ����������-����� ��� -���� ����� ��������� ��� ���� ��������

MODELING WITH MOCKING 5
Abstract

Writing formal specifications often requires users to abstract from the original
problem. Especially when verification techniques such as model checking are
used. Without applying abstractions the search space the model checker need to
traverse tends to grow quickly beyond the scope of what can be checked within
reasonable time.

The downside of this need to omit details is that it increases the distance to
the implementation. Ideally, the created specifications could be used to generate
software from (either manual or automatic). But having an incomplete description
of the desired system is not enough for this purpose.

In this work we introduce the R����� specification language. R����� lets
the user write full system specifications in the notation of state machines with
data without the need to apply abstraction while still preserving the ability to
verify non-trivial properties. This is done by allowing the user to forget and mock
specifications only when running the model checker. The original specifications
are untouched by these techniques.

We compare the expressiveness of R����� and the effectiveness of mock and
forget by implementing two case studies: one from the automotive domain and
one from the banking domain. We find that R����� is expressive enough to
implement both case studies in a concise manner. Next to that, when performing
checks in isolation, mocking can speed up model checking significantly.

�.� ������������

Formal specifications combined with model checking have been shown to be very
effective in capturing and verifying desired system behavior. However when applying
model checking, the user is forced to think about the potential state space the model
checker needs to traverse [CHV+��]. Not taking this into enough consideration will
lead to a state space that is too large to check within reasonable time.

Applying abstractions is one of the most used techniques to overcome the state
space explosion problem [CGK+��; GM��]. Coming up with an abstraction that
models the problem in sufficient detail but is abstract enough such that it can be
model checked is in most cases left up to the specifier. Because of this need of
omitting details the specifications become incomplete. Translating such incomplete
specification to code, either automatic or manual, becomes very difficult since the
software that ultimately needs to run does need to contain all the omitted details.

The methods that do allow to specify systems until the level of executable code
such as Event-B [AH��] often require proofs that show that a refinement of an abstract

��

specification is indeed true to its abstraction. Writing such specifications and proofs
can increase the required effort both in time and expertise [Den��]. This effort can
be considered as too high and might be one of the reasons that industry adoption of
these techniques, aside from safety critical systems, is as of yet still low.

In this work we approach this problem from another angle, by combining formal
specifications, model checking and mocking. Mocking is a well known testing
technique from object-oriented programming where mock objects are created to
replace domain code with a dummy implementation for the purpose of emulating its
behavior [MFC��]. These mock objects are passed to the objects under test to allow
for the testing of features in isolation with respect to the rest of the system. Similarly
we propose to use mock specifications to replace specified behavior with a dummy
specification for the purpose of model checking. This allows to perform model checks
for parts of the system, isolated from other specifications. Although this technique is
inherently unsound we expect that it can still be of value. It allows the user to make a
pragmatic tradeoff between completeness of the check versus timely feedback from
the checker. This type of trade-off is not new. For instance, the lightweight formal
method Alloy is based around the "small-scope" hypothesis which says “many bugs
are found in a small scope” favoring partiality over completeness as well, although in
a different dimension [Jac��b].

We implement this mocking technique in R�����, a lightweight formal specifica-
tion method.� R����� specifications use the notation of state machines with data
and guarded transitions. Assumptions and assertions can be expressed using Linear
Temporal Logic (LTL). To check assertions R����� uses a bounded model checking
technique. This is realized by translating the specifications to the relational algebra
of A���A��� [SvdSV��] which in turn translates it to SMT and uses the Z� SMT
solver [DB��].

When model checking the user can mock parts of the specifications by using two
different language constructs: forget and mock. The forget construct slices out data
and constraints on this data. The mock construct replaces a specification entirely with
a mock specification. Like mock objects, mock specification can emulate parts of
the original specification in isolation which in turn can potentially reduce the state
space considerately. Although we introduce the constructs forget and mock in the
context of the R����� specification language, the ideas are more general and could
be implemented in other state-based techniques as well.

To test the expressiveness of R����� and the effectiveness of model checking with
mocking we evaluate R����� on two different case studies, one from the automotive
domain and one from the financial domain.

To summarize, the contributions of our work are:

�The term lightweight formal method was coined by Daniel Jackson in ���� [JW��]. It describes methods
with emphasis on partiality (partiality in language, modeling, analysis and composition).

�� ������� � �������� ���� �������

�. A description of the lightweight formal specification language R����� by
example (Section �.�).

�. A formalization of the forget and mock constructs (Section �.�).
�. A prototype implementation of R����� and model checking with mocking

using forget and mock (Section �.�).
�. An evaluation of our technique both in expressiveness and effectiveness (Section

�.�).
We conclude this chapter with a discussion of related work (Section �.�) and possible
future work (Section �.�)

�.� ������ �� �������: ����� ��������

In this section we introduce R����� by specifying a simple bank account state
machine.† R����� is inspired by earlier work of Stoel et al. [SSV+��].‡

Accounts can be opened, and after an initial deposit, any number of deposit,
withdraw and pay interest events are possible. An account can be temporarily blocked
(e.g., in case of suspicious transactions) and unblocked. When an account is blocked,
no transactions are allowed. Eventually an account can be closed either normally or
by force.

Listing �.� shows the R����� specification of an account that complies with
the rules stated above. A R����� specification consists of four parts, fields, events,
states, and assumptions. We explain the first three below. Assumptions are discussed
further-on in the section.

Fields Fields represent the internal state of a state machine. The Account specification
declares three fields. Fields can have primitive types, e.g., balance (of type Integer).
But fields may also refer to other R����� specifications as a type, as is the case with
the nr field, which has type AccountNumber.

Events Events define the business events and actions that may be triggered on
a state machine. In the Account example there are eight. Events may have formal
parameters (e.g., amount in deposit and withdraw), and are (optionally) guarded by
preconditions. The effect of an event is specified in the form of a postcondition where
the next value of a field is accessible by priming its name. For instance, the effect of
withdraw is defined as this. balance’ = this. balance − amount, effectively decrementing
the account’s balance.

†See Appendix B.� for the full syntax of R�����.
‡Section �.�.� in Chapter � describes the differences between R���� and R����� in more detail.

� .� ������ �� ������� : ����� �������� ��

1 spec Account

2 nr: AccountNumber, balance: Integer, openedOn: Date;

3

4 init event open(nr: AccountNumber, openedOn: Date)

5 post: this.balance’ = 0, this.nr’ = nr,

6 this.openedOn’ = openedOn;

7

8 event deposit(amount: Integer)

9 pre: amount > 0;

10 post: this.balance’ = this.balance + amount;

11

12 event withdraw(amount: Integer)

13 pre: amount > 0, this.balance >= amount;

14 post: this.balance’ = this.balance - amount;

15

16 event payInterest(rate: Integer)

17 post: this.balance’ = this.balance + ((this.balance * rate) / 100);

18

19 final event close()

20 pre: this.balance = 0;

21

22 event block()

23 event unblock()

24 final event forceClose()

25

26 states:

27 (*) -> activation: open;

28 activation -> opened: deposit;

29 opened -> opened: deposit, withdraw, payInterest;

30 opened -> blocked: block;

31 blocked -> opened: unblock;

32 blocked -> (*): forceClose;

33 opened -> (*): close;

Listing �.�: R����� specification of an Account.

States The last section in Listing �.� defines the lifecycle of an account, by defining
state transitions of the form “from −> to: via,...”, where via is a list of events declared
earlier. The special marker (�) is used to indicate initial and final states. Events from
the initial state need to be marked as initial (cf. init event open), and events to the
final state have to be marked final (cf. close and forceClose).

�� ������� � �������� ���� �������

Checking assertions Now that we have specified our Account we can validate its
behavior by checking the safety property that an account can not be overdrawn. For
this, R����� supports assertions. The above property is then expressed as follows:
assert CantOverdrawAccount = forall ac:Account |

always (ac is initialized => ac.balance >= 0);

Assertions are expressed using Linear Temporal Logic (LTL) expressions. R�����
supports the standard LTL operators always, eventually, next, until, and release. The
CantOverdrawAccount assertion can thus be read as follows: for all possible execution
paths, all initialized accounts have a non-negative balance.

R����� utilizes bounded model checking. To check the above property it is
required to specify the bound in terms of i) the number of instances (e.g., Account
objects) that take part and ii) the maximum search depth.

The number of instances is specified using the config directive:
config Basic = ac: Account is uninitialized,

aNr: AccountNumber, dt: Date;

A configuration defines all the specification instances that can participate during
model checking. This configuration specifies that there are three instances: an Account,
an AccountNumber and a Date. All instances in a configuration are bound to a label
(i.e., Account is bound to ac, AccountNumber to aNr and Date to d). The config statement
supports constraining the state and field values of an instance. In the example
the required state of the Account instance ac is set to uninitialized. The state of the
AccountNumber and Date instances are not specified and thus are left open for the
underlying model checker to decide.

The maximum search-depth is specified when invoking the verifier through the
check command:
check CantOverdrawAccount from Basic in max 10 steps;

This instructs the model checker to try and find a counter-example to the property
CantOverdrawAccount, starting in the Basic configuration, with a maximal search depth
of �� consecutively triggered event.

Forget Running the model checker on the above check command, results in a time-
out, because the AccountNumber and Date specifications (not shown here) are complex
state machines. As a result the state space that the checker must traverse is too large
to find a counter example or exhaust within the default �� second time-out.

The forget modifier can be used to abstract from the nr and openedOn fields in the
Basic configuration, as follows:
config Basic = ac: Account forget nr, openedOn

is uninitialized;

� .� ������ �� ������� : ����� �������� ��

The result is that the field definitions and all constraints referencing these fields
are removed resulting in a smaller (but well-formed) specification. Since the fields
that reference the AccountNumber and Date specifications have been removed, the
instances of these specifications can also be removed from the configuration (cf. aNr
and dt).

Running the model checker again now results in a trace, a counter example for our
assertion. The trace shows an execution path for which the assertion does not hold.
In other words, it is possible to overdraw the account according to the specification.
The following execution trace is shown: §

Counter example found:

1 (INIT): ac (Account) is ‘uninitialized‘ :

--> Raised open(nr = an) on ac (Account)

2: ac (Account) is ‘activation‘ : balance = 0

--> Raised deposit(amount = 1) on ac (Account)

3: ac (Account) is ‘opened‘ : balance = 1

--> Raised payInterest(rate = -101) on ac (Account)

4 (GOAL): ac (Account) is ‘opened‘ : balance = -1

Examining the trace shows the root of the problem: the rate parameter of the
payInterest action can be negative (see the third step in the trace). A way to prevent
this is by adding the constraint rate >= � to the precondition of the payInterest event:

event payInterest(rate: Integer)

pre: rate >= 0;

post: this.balance’ =

this.balance + ((this.balance * rate) / 100);

Rerunning the model checker after this fix yields the desired result: no counter
example is found given the specified configuration and search depth.

Synchronization To illustrate synchronization between state machines, Listing �.�
shows the specification of a Transaction which captures a transfer of money between
two accounts. This is modeled in the book event, which triggers the withdraw and
book events on the frm and to accounts, respectively. Semantically, all three events
happen as a single atomic step: either all three succeed, or none.

To check whether it is possible to perform such a booking a simulation is run. The
difference between a check and a simulation is that the model checker is not instructed
to look for a counter example, but to find a witness of the assertion of interest instead.

Here’s the assertion of interest:

assert CanBookATransaction =

exists t: Transaction | eventually book on t;

§Traces can be shown both textual and visual. In this paper they are listed in their textual notation.

�� ������� � �������� ���� �������

1 spec Transaction

2 frm: Account, to: Account, amount: Integer;

3

4 init event create(frm: Account, to: Account, amt: Integer)

5 pre: frm != to, amt > 0;

6 post: this.frm’ = frm, this.to’ = to,

7 this.amount’ = amt;

8

9 final event book()

10 pre: this.frm.withdraw(this.amount),

11 this.to.deposit(this.amount);

12

13 states:

14 (*) -> created: create;

15 created -> (*): book;

Listing �.�: Specification of a Money Transaction.

The assertion CanBookATransaction states that at some point in time there exists a
Transaction on which the event book has been triggered.

Just like with check, a configuration specifies the elements participating:
config BasicTrans = t: Transaction is uninitialized,

ac1,ac2: Account, an1,an2: AccountNumber,

d1,d2: Date;

We use the run command to have the model checker find a witness:
run CanBookATransaction from BasicTrans in max 5 steps;

Executing this command causes a time-out because, like earlier, the state space
is too large to check due to the inclusion of the detailed AccountNumber and Date
specifications. Instead of slicing out fields from the participating instances (using
forget), we want to keep the interaction between the Transaction and the two accounts
in place since this is the essence of a transaction. To realize this, R����� offers the
mock operator to substitute simpler entities for certain instances in a configuration.

Mocking Similar to mock classes in object-oriented programming, mocking in
R����� entails writing a compatible specification that acts as a drop-in replacement
for another specification. A potential mock specification of Account is shown in
Listing �.�.

This MockAccount contains two new concepts, internal events, and assume. The
internal modifier signals to the model checker, that the event can not be triggered in
isolation, but it can occur as part of a synchronizing event, like book in Transaction.

� .� ������ �� ������� : ����� �������� ��

1 spec MockAccount

2 balance: Integer;

3

4 internal event withdraw(amount: Integer)

5 pre: amount > 0;

6 post: this.balance’ = this.balance - amount;

7

8 internal event deposit(amount: Integer)

9 pre: amount > 0;

10 post: this.balance’ = this.balance + amount;

11

12 assume PositiveBalance =

13 always forall a:MockAccount | a.balance >= 0;

14

15 states:

16 opened -> opened: withdraw, deposit;

Listing �.�: A mock specification of the Account of Listing �.�

Assumptions are invariants that the model checker assumes to always hold, ex-
pressed using the same LTL and FO formulas used in assertions. For instance, the
PositiveBalance assumption in MockAccount allows the model checker to assume that
balance is always non-negative, an assumption that we have checked earlier on actual
accounts.

Mock specifications must be compatible with the mocked specification in that it
needs to support the same events (including their signature) as the original, restricted
to the events that are potentially triggered by the check.¶ For instance, MockAccount is
a valid mock specification for Account because it supports both events which can be
triggered by the book event of Transaction, namely withdraw and deposit.

The mock specification can now be used in the definition of a configuration and
run invocation:

config SimplifiedTrans =

t: Transaction is uninitialized,

ac1,ac2: MockAccount mocks Account;

run CanBookATransaction from SimplifiedTrans in max 5 steps;

Running the model checker returns the following witness showing a trace where
a Transaction is booked:

¶Checking whether a mocked specification is compatible is in the current implementation of R�����
left to the specifier. Configuring a mocked specification that is not compatible will result in an error during
translation.

�� ������� � �������� ���� �������

Witness found:

1 (INIT): ac1 (Account) is ‘opened‘ : balance = 7

ac2 (Account) is ‘opened‘ : balance = 1

t (Transaction) is ‘uninitialized‘ :

--> Raised create(from = ac1, amount = 3, to = ac2) on t (Transaction)

2: ac1 (Account) is ‘opened‘ : balance = 7

ac2 (Account) is ‘opened‘ : balance = 1

t (Transaction) is ‘created‘ : from = ac1, amount = 3, to = ac2

--> Raised book() on t (Transaction) : affected instances {t,ac2,ac1}

3 (GOAL): ac1 (Account) is ‘opened‘ : balance = 4

ac2 (Account) is ‘opened‘ : balance = 4

t (Transaction) is ‘finalized‘

Unsoundness In this section we have introduced the formal modeling language
R����� and shown how the forget and mock constructs can be used to check and
simulate properties of interest. Note, however, that both forget and mock are unsound:
neither construct guarantees that the abstractions they create are equivalent with
the original specification. This is by design. However, just like the “small scope”
assumption used in tools such as Alloy, we conjecture that, nevertheless, it is possible
and convenient to check non-trivial, useful properties, in limited amounts of (solving)
time. This gives the user additional flexibility and freedom in defining checks and
simulations, without immediately running into time-outs. As such, forget and mock
introduce a pragmatic middle-ground between full formal verification and traditional
testing as is practiced in many organizations.

�.� �������������

To define the semantics of forget and mock we need to define the semantics of R�����
as a framework. For this we will use the logic proposed in State / Event Linear Temporal
Logic (SE-LTL) [CCO+��]. This logic contains both the notion of states and events and
operates over a Labeled Kripke Structure (LKS). A LKS is a �-tuple ((, �=8C , % ,L ,) ,⌃, E)
where (is a finite set of states, �=8C ✓ (is the set of initial states, % is a finite set
of atomic propositions, L : (! 2% is a state labeling function from states to atomic
propositions,) ✓ (⇥ (is the transition relation, ⌃ a finite set (or alphabet) of events
and E :) !

�
2⌃ \ {;}

�
the transition labeling function. We will write B

⇢

�! B
0 to denote

a transition where (B , B0) 2) an ⇢ ✓ E(B , B0). If ⇢ is a singleton set we will just write
B

4

�! B
0. The transition relation) is assumed to be total meaning that every state has a

successor (no deadlock can occur).
A path � = hB1 , 41 , B2 , 42 , B3 , . . .i is an infinite alternating sequence of states and

events in which for each 8 � 1, B8 and B8+1 2 (, 48 2 ⌃ and B8

48

�! B8+1 2 E. All paths
together make up for the language of an LKS written as !(").

� .� ������������� ��

�.�.� R����� Specification to LKS

To map R����� specifications to an LKS we use the following translation. The set of
atomic propositions % contains all fields and possible values of a R����� specification
R. For the sake of our formalization we will restrict the Integer and String domains to
a bounded set of values where the bounds are arbitrary chosen. This way we restrict
the set of states (and the set of atomic propositions % to be finite. The state as defined
in a R����� specification is also considered part of the set of atomic propositions
and should not be confused with the state set (of the LKS. Also the parameters of
the defined events in ' are considered as being part of the set of atomic propositions.

The state labeling function L maps values to fields for each possible B 2 (. ⌃
contains all event labels as defined in '. We derive E by calculating for each possible
B , B
0 2 (and event 4 2 ⌃ the enabled events by checking whether the preconditions of

4 hold in L(B) and whether the postconditions hold in L(B0).

�.�.� Semantics of the Forget Operator

Our formalization of forget maps to the formalization of abstraction of an LKS as defined
by Chaki et al. [CCO+��]. We will recall the notion of abstraction from [CCO+��] to
show the meaning of forget.

Let " = ((" , �=8C" , %" ,L" ,)" ,⌃" , E") and
� = ((� , �=8C� , %� ,L� ,)� ,⌃� , E�). � is considered an abstraction of " (written
� v ") iff:

�. %� ✓ %" .
�. ⌃� = ⌃" .
�. For every path � = hB1 , 41 , B2 , 42 , . . .i 2 !(") there exists a path

�0 = hB01 , 4
0

1 , B
0

2 , . . .i 2 !(�) such that, for each 8 � 1, 40
8
= 48 and

L�(B
0

8
) = L(B8) \ %�.

This is also known as variable hiding since an abstraction � contains a subset of the
propositional variables of " while still accepting the original language of ".

This is also the essence of the forget operator. It will hide all atomic propositions
bound to the field that it is instructed to forget (e.g., every references that maps a value
to the field is removed from the set %). All constraints in the pre- and postconditions
of the event referencing the forgotten field can be considered to valuate to true and
thus can be removed.

�.�.� Semantics of the Mock Operator

To define the meaning of the mock operator we must first define the notion of parallel
composition as defined by Chaki et al. [CCO+��]. We recall it here for clarity.

��� ������� � �������� ���� �������

Parallel composition is defined via shared events. It is not allowed to share variables
between two LKSs. This facilitates the possibility to perform compositional reasoning.

Let "1 = ((1 , �=8C1 , %1 ,L1 ,)1 ,⌃1 , E1) and
"2 = ((2 , �=8C2 , %2 ,L2 ,)2 ,⌃2 , E2) then two LKSs are considered compatible if (�) they
do not share any variables: (1 \ (2 = %1 \ %2 = ;, and (�) their parallel composition
yields a total relation (so that no deadlock can occur). Thus, the parallel composition
can be defined as: "1 k "2 = ((1 ⇥ (2 , �=8C1 ⇥ �=8C2 , %1 [%2 ,L1 [L2 ,) ,⌃1 [⌃2 , E)

where (L1 [L2)(B1 , B2) = L1(B1)[L2(B2) and) and E are such that (B1 , B2)
⇢

�! (B01 , B
0

2)
iff ⇢ < ; and one of the following holds:

�. ⇢ 2 ⌃1 \ ⌃2 and B1
⇢

�! B
0

1 and B2 = B
0

2

�. ⇢ 2 ⌃2 \ ⌃1 and B2
⇢

�! B
0

2 and B1 = B
0

1

�. ⇢ 2 ⌃1 \ ⌃2 and B1
⇢

�! B
0

1 and B2
⇢

�! B
0

2
To put it on other words, LKSs synchronize on shared events while proceeding

independently from each other.
Communication between R����� machines operates in a similar manner. The

difference is that R����� allows users to define which events must synchronize
instead of relying on the mechanism of shared labels. Shared event parameters
become part of the local variables of both machines to maintain the separation of
variables and allow for compositional reasoning. State and field queries (between
two specifications) can be interpreted as synchronized communication between two
machines.

We also use this notion to define the mock operator. Assume we have two LKSs
"1 and "2 having the same signature as described earlier. Also assume that "1
and "2 have shared events: ⌃1 \ ⌃2 < ;. A LKS "3 = ((3 , �=8C3 , %3 ,L3 ,) ,⌃3 , E)
mock "2 iff (�) the parallel composition of "1 and "3 is valid (no shared variables,
composition yields a total relation) and (�) "3 has the same shared events as "1
and "2: ⌃1 \ ⌃3 = ⌃1 \ ⌃2. This means that all events that were synchronized in
the original composition, "1 k "2 will synchronize in the abstracted composition
"1 k "3.

�.�.� On the Logic of SE-LTL

Using the earlier definitions of LKS we use the definition of State/Event Linear
Temporal Logic as defined by Chaki et al. [CCO+��]. This logic operates on both
states and events and has the following syntax:) = ? | 4 | ¬) |) ^) | X) | G) |

F) |) U) where ? 2 % and 4 2 ⌃. The operators X (next), G (always), F (eventually)
and U (until) have their usual semantics,

Besides propositional constraints R����� also allows for first-order constraints like
quantification (forall, exists) and relational operators like membership (in). Given that

� .� ������������� ���

R����� only operates in a bounded setting (i.e., a bounded number of machines and
states) these operators can be translated to propositional logic via known translations
(i.e., [Jac��; MBC+��; SvdSV��]).

�.� ��������������

Performing a R����� check (or run) follows a pipeline described in Figure �.�. This
pipeline consists of four steps: prepare, normalize, translate and interpret. The general
scheme is that we translate R����� specifications onto the relational algebra of
A���A��� [SvdSV��] which in turn translates its relational algebra to an SMT
formula and calls the Z� SMT solver [DB��] to check whether the formula is satisfiable.
If it is satisfiable the result is interpreted back into the domain of R�����, via
A���A���, where it is presented as an interactive visualization or textual trace to the
user. R�����, the language and the transformations needed for model checking, are
all implemented using the Rascal Language Workbench [KvdSV��]. We will now
discuss each step in more detail.��

�.�.� Step �: Preparation

In the first step of the pipeline the assertion which is to be checked (or run) is prepared.
As an example we will use the check that was formulated earlier which we recall here
for readability:
check CantOverdrawAccount from Basic in max 10 steps;

This check references the CantOverdrawAccount assertion and the Basic configuration.
The Account specification references the AccountNumber and Date specifications. To
be able to perform checks on a account we must therefore at least also include the
AccountNumber and Date specifications. Therefore the referenced Basic configuration
is declared as:
config Basic = ac: Account is uninitialized,

aNr: AccountNumber, dt: Date;

For each check or run that is performed a specialized module is created during
preparation. This module, using the syntax of R����� (meaning that it is itself a
valid R����� module), contains exactly those specifications that are referenced in
the config and specs reachable from the check or run command to be performed. This
newly created module is self contained meaning that it does not need any external
dependencies (i.e., imports) to be checked.

To be able to create a module that only contains those specifications that are
referenced a specification dependency graph is build which in turn is used to find all

See https://github.com/cwi-swat/rebel2
��See Appendix D.� for the complete translation of the earlier introduced Account example.

��� ������� � �������� ���� �������

Prepare Normalize Translate AlleAlle Interpret
Specifications Visualization

Figure �.�: Overview of the model checking processing pipeline for R����� specifications.
The white parallelograms are part of R�����. The gray box is an external process.

reachable specifications. The reachability algorithm checks which specifications are
reachable from those specifications referenced in the config statement. The found set
of specifications contains the minimal needed (transitive) dependencies. This set of
specifications, together with the check (or run) command and referenced assert and
config statements make up the specialized check-module.

Applying Forget and Mock During preparation the execution of the forget and mock
operators are also performed.†† Both forget and mock manipulate the specification
dependency graph by removing those dependencies that are not needed any more
after applying forget and mock. Applying forget results in a subgraph of the original
dependency graph (with edges removed). Applying mock results in a graph that
overlaps the original graph but also holds the newly inserted mocked specification.
In both cases the reachability analysis is performed again after the alteration of the
graph resulting in the minimal set of specifications that is needed to perform the
check or run command. Figure �.� shows examples of applying forget and mock to the
specification dependency graph.

Next to altering the dependency graph both operators also rewrite parts of the
specification as well. Forget slices out the field that is to be forgotten from the
specification. It removes both the field definition as all constraints with references to
the field in the pre- and postconditions of the events. This is done via a data-flow
analysis in which the use-definition relation is traversed for the fields that need to be
forgotten.

Mock performs a rename on the specification that is configured as a mock. The mock
is renamed to the original (the specification of which it is a mock). This renaming is
necessary to make sure the new combination of specifications is well-formed again
since the unaltered specifications still reference the original, non-mocked specification
by name.

††Appendix C.� contains the implementation of the ’forget’ and ’mock’ algorithms.

� .� �������������� ���

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec Dspec E

((a)) Original

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec Dspec E

((b)) forget B

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec D

spec A

spec B

spec C

spec Dspec E

((c)) E mock B

Figure �.�: Example of an specification dependency graph (a) and the consequence of applying
forget (b) and mock (c) operators. The specifications in the grayed subgraphs are removed.

�.�.� Step �: Normalization

Normalization of a module entails three parts: (�) Inlining the state definitions as
local fields, (�) Adding frame conditions to the events and (�) Adding a frame event.
The result of normalizing a R����� specification is again a valid R����� specification.
Normalization is purely the application of local transformations. Figure �.� shows the
effect of normalizing the (slightly altered) Transaction specification. We will discuss
every part separately.

Inlining State Definitions As mentioned in the formalization section �.� the life
cycle definition in a R����� specification becomes part of the local fields. A simple
transformation is performed on each specification that introduces a new field state
with a new type representing the states as defined in the original specification. A
new specification is added to represent the new state type. Listing �.�(b) contains
an example of such a new ‘state specification’ (line ��). The definition of such a
specification also introduces constant instances (CREATED and BOOKED in our example).
These constant instances are instances of the TState specification that are implicitly part
of each config statement. They can be referenced as constants by other specifications
(i.e., see line �� or �� in Listing �.�(b)). Constant instances serve a similar purpose as
enumeration types do in other languages.

Next to the addition of this new ‘State’-type, the pre- and postconditions of
the events are strengthened with constraints on the newly added state field. These
constraints simulate the life cycle definition of the original specification. Lines �� and
�� contain the constraints to simulate the life cycle definition of the defined Transaction.

��� ������� � �������� ���� �������

1 spec Transaction
2 frm: Account,
3 to: Account,
4 amt: Integer;
5

6 init event create(...) ...
7 final event archive() ...
8

9 event book()
10 pre:
11 this.frm.withdraw(this.amt),
12 this.to.deposit(this.amt);
13

14 states:
15 (*) -> created: create;
16 created -> booked: book;
17 booked -> (*): archive;

((a)) Original specification.

1 spec Transaction
2 frm: Account,
3 to: Account,
4 amt: Integer,
5 state: TState;
6

7 init event create(...) ...
8 final event archive() ...
9

10 event book()
11 pre:
12 this.frm.withdraw(this.amt),
13 this.to.deposit(this.amt),
14 this.state = TState[CREATED];
15 post:
16 this.state’ = TState[BOOKED];
17

18 spec TState[CREATED,BOOKED];

((b)) Inlining life cycle.

1 spec Transaction
2 frm: Account,
3 to: Account,
4 amt: Integer,
5 state: TState;
6

7 init event create(...) ...
8 final event archive() ...
9

10 event book()
11 pre:
12 this.frm.withdraw(this.amt),
13 this.to.deposit(this.amt),
14 this.state = TState[CREATED];
15 post:
16 this.state’ = TState[BOOKED],
17 this.amt’ = this.amt,
18 this.frm’ = this.frm,
19 this.to’ = this.to;
20

21 spec TState[CREATED,BOOKED];

((c)) Adding frame conditions.

1 spec Transaction
2 frm: Account,
3 to: Account,
4 amt: Integer,
5 state: TState;
6

7 init event create(...) ...
8 final event archive() ...
9

10 event book()
11 pre:
12 this.frm.withdraw(this.amt),
13 this.to.deposit(this.amt),
14 this.state = TState[CREATED];
15 post:
16 this.state’ = TState[BOOKED],
17 this.frm’ = this.frm,
18 this.to’ = this.to;
19

20 event frame()
21 post: this.amt’ = this.amt,
22 this.frm’ = this.frm,
23 this.to’ = this.to,
24 this.state’ = this.state;
25

26 spec TState[CREATED,BOOKED];

((d)) Adding framing event.

Figure �.�: Result after each normalization step of the Transaction specification.

� .� �������������� ���

Adding frame conditions A known problem when modeling behavioral systems
declaratively is that a user must not only state what changes, but also what does not
change otherwise the system might be under-constrained and thus start to behave
in an unexpected manner. To relieve the user of this extra burden R����� offers a
simple heuristic; those fields whose next value is not referenced in a postcondition will
be automatically added as frame condition. Listing �.�(c) shows an example of this.
In the book event the frm, to and amt fields are not referenced in the the postcondition.
During normalization constraints are added to frame the value of these fields in the
next state.

This is also where the init and final modifiers come into play. Frame conditions are
not added in events flagged with these modifiers since this would lead to unsatisfiable
constraints (a variable can not have a value if the machine is not in an initialized state).

Please note that this heuristic is not conclusive. For instance when a fields
next value is referenced in a postcondition but the formulated constraint is under-
constrained allowing for multiple valuations. But considering that mistakes are often
easily spotted during model checking and the fact that a user can always add a custom
frame condition to the postcondition instead of relying on the automatic addition we
feel that this is less of a problem.

Adding frame event R����� allows for the model checking of multiple instances
of specifications at the same time. In each step however, only one instance may
make a step (or multiple if the step entails synchronization of events). The other
instances must by definition keep their current values (see Formalization, Section �.�).
To facilitate this a local frame event is added to every specification. This event is
raised whenever the instance is not (part of) the instance that makes a step. The frame
event frames all field values in the next state to the values of the current state (see
Listing �.�(d)).

�.�.� Step �: Translation

After normalization the resulting specification(s) are translated to an A���A���
problem [SvdSV��].‡‡ A���A��� is a relational model finder which searches for
satisfying relational instances of a given relational problem.

Short introduction of A���A��� A���A���’s logic combines relational algebra,
first order logic and transitive closure. A���A��� is similar to the relational model
finder Kodkod [TJ��b]. The difference is that A���A��� utilizes a SMT solver
instead of the SAT solver used by Kodkod. This means that A���A��� can utilize a
direct encoding of constraints over integers and strings without needing a specialized

‡‡See Appendix C.� for the complete translation algorithm as implemented in Rascal.

��� ������� � �������� ���� �������

boolean encoding. To allow for direct constraints on (integer) attributes A���A���
uses relational algebra as introduced by Codd [Cod��] as its underlying logic which
has the selection operator to express constraints on attributes directly.

An A���A��� problem contains two parts: i) Relational definitions and ii)
Constraints on these relations. The definition of A���A��� relations come from the
relational model [Dat��]. This definition prescribes that a relation contains a header
and a body. The header defines the attribute names and domains, the body contains
the (potential) tuples. A���A��� is bounded meaning that a relation can not hold
more or different tuples than described in its upper bound. Next to an upper bound,
a relation can have a lower bound. Tuples defined in the lower bound must always be
present in the relation.

The constraints are formulated using a combination of relational algebra, first
order logic and transitive closure. An A���A��� problem is satisfiable if there is a
valuation of each relation for which both the tuple bounds and the constraints hold.
There can be multiple satisfying instances possible. Finding these instances is done
by the A���A��� model finder.

Encoding R����� specifications as A���A��� problems A���A���, like Kod-
kod, is a general purpose model finder. It does not offer built-in support for encoding
transition systems. This needs to be encoded in the problem itself. To encode the
transition system we use a similar encoding as described by Cunha [Cun��]. In essence
it means that every value that can change between each step in the transition system
is encoded as a ternary relation. For instance, the balance of an Account can change in
each step of the transition system therefore the A���A��� relation representing this
value is defined as the ternary relation: Configuration x Account x Integer. We use the
term Configuration to describe the state of the LKS as a whole since the term ‘State’ is
highly ambiguous.§§ The Account relation holds all the instances of the Account that
are defined in the config statement.

Next to the Configuration relation there is the binary Step relation which encodes
the order of Configuration. The maximal number of Configurations and Steps depend
on the max steps defined in the check or run command.

Field and event parameter multiplicity definitions (optional, set or scalar) are
encoded as additional A���A��� constraints. Every event definition becomes a
constraint which utilizes the Step relation and encodes the fact that there can be
only one event that is raised in every step. The LTL expressions of assumptions and
assertions also utilize the Step relation in their translations to A���A���.

After the translation the translated problem is given to the A���A��� model
finder together with the minimization criteria to find a solution in the least number of

§§In each Configuration of the LKS every instance of a specification has its own current ‘State’.

� .� �������������� ���

steps. This means that in the case that a counter example exists (or witness, depending
on the executed command) the model finder will return the shortest path.¶¶

�.�.� Step �: Interpretation of the Result

The last step of the model checking pipeline is the interpretation of the result. If the
A���A��� problem is not satisfiable the user is prompted with the message that
A���A��� can not find a satisfying model. If this is the outcome of running a check
command it might mean that the checked assertion holds but since the used model
finding technique is bounded this is not guaranteed.���

If the relational constraints of the generated A���A��� problem are satisfiable,
the results are interpreted back into the domain of R����� and presented to the user
as an interactive trace. It enables the users to step through the found trace. The specified
machines are visualized as UML Statecharts with data. The different instances are
separately displayed as composite machines.

�.� ����������

We evaluate both the expressiveness of R����� and the effectiveness of mocking for
model checking by implementing two case studies, one from the automotive domain,
and one from the financial domain.

�.�.� Case Study – Exterior Lighting System

As part of the ABZ conference of ���� the real-world case study “Adaptive Exterior
Light and Speed Control System” (ELS and SCS respectively) was presented [HR��].
We have implemented a part of the case study, consisting of a model of the direc-
tion indicators and hazard warning lights system, to compare the expressiveness,
conciseness, and overall usability of R����� with others state-based implementations.

The system is split into three different subsystems: �) Input �) Sensors and �)
Actuators.††† The case also prescribes a timing component: the direction lights must
blink �� times per minute. This means that, when blinking, a full cycle (from bright
to dark) must be completed every second. Like other methods, R����� does not
support continuous time but it is possible to model a Timer machine to simulate time
at every step. This Timer has a single invariant: time always flows forward with each
successive behavioral step of the system. The Timer can be used to (partially) model
the timing requirements stated in the requirements.

¶¶This is a usability feature. shorter paths are easier to explore and comprehend when a bug is found.
���There still could potentially be a counterexample if the bounds would be extended.
†††See https://github.com/cwi-swat/rebel2/tree/master/examples/paper/els for the encoding of the ELS

case study in R�����.

��� ������� � �������� ���� �������

Table �.�: SLOC comparison between different methods.

Method SLOC Included files

ASMeta [ABG+��] ��� CarSystem���
Event-B [MFL��] ��� M� (not plain text, only lighting

related lines)
Classical-B [LMW��] ��� Sensors, PitmanController_v�,

PitmanController_TIME_v�,
GenericTimers, BlinkLamps_v�

Electrum [CML��] ��� AdaptiveExteriorLight_EU
(only lighting related lines)

R����� ��� Actuators, Input, Sensors, Timer

Table �.� contains an overview of the different implementations in terms of Source
Lines of Code (SLOC), restricted to the part that we have implemented. As can be seen
in Table �.� the R����� specification is comparable with the other implementations in
terms of size, sitting between the Electrum and ASM / Classical-B implementations.

Out of the �� stated requirements for the direction indicators and hazard warning
lights the R����� specification covers ��. The two missing or impartial requirements
(ELS-� and ELS-�) are concerned with modeling variants of the lighting system
for different markets (e.g., EU versus USA) and the timing of the blink cycle when
switching from tip-blinking to continuous blinking. Table �.� provides an overview
of the fulfillment of the requirements of each implementation, as extracted from cited
papers and available code.

We specified �� assertions to check relevant properties of direction indicators and
the hazard warning light . The initial decomposition of the system into four separate
specifications (Actuators, Sensors, Input, Timer) facilitated checking local properties of
each specification. The full sensor values contain more information than is needed to
check the behavior of the direction and warning lights, so they could be mocked out.
The mock state machine of Sensor only needed to specify single value (whether or not
the key was in the ignition on position) to fully support the assertions, which resulted
in a model checking speedup of approximately �.��x.

The case description also documented scenarios describing the input and expected
output values of all subsystems at a given time. For instance, the direction indicator
scenario contains �� steps. This scenario was represented as a dedicated (linear)
state machine with �� states, where each transition encoded a step of the scenario.
The events corresponding to the steps capture the given sensor values and inputs as
preconditions and the expected output values as postconditions.

� .� ���������� ���

Table �.�: Fulfillment of direction blinking and hazard warning lights requirements.

Method D.B.1 H.W.L.2 Remarks

ASMeta [ABG+��] No time management,
simulated via events. Blinking
frequency is missing.

Event-B [MFL��] Blinking frequency is missing.
Classical-B [LMW��] Presented solution only

addresses directional blinking
and hazard
warning lights.

Electrum [CML��] No time management. All
integer values are replaced
by enumerations.

R����� Variants (EU-USA) not
modelled. Time management
partially implemented.

�) Direction Blinking (ELS �–�) �) Hazard Warning Lights (ELS �–��)
= Fully implemented
= Fully implemented with minor omissions
= Implemented but with omissions.

�.�.� Case Study – Debit Card Lifecycle

This case study stems from the direct collaboration between the authors and a large
bank, and describes the lifecycle of debit cards for payments or ATM withdrawals.‡‡‡

The case study involves three key R����� specifications: DebitCard (�� SLOC), Limit
(weekly withdraw limits; �� SLOC), and Date (full date specification, including leap
years, day of the year, and day of the week; ��� SLOC).

The specified assertions either check for desired behavior (e.g., “Can a debit card
be produced and activated?”) or check a safety property (e.g., “A customer should
not be able to use a debit card after three failed PIN code attempts”). Per specification
the model checker was ran on a configuration without mocked specifications and one
with mocked specifications, for a total of � different assertions. The benchmark was
run on a MacBook Pro (late ���� model) with an Intel i� processor and �GB of RAM
using Java version �� (AdoptOpenJDK, build ����-��-��), Rascal version �.��.� and
Z� version �.�.�.

Table �.� shows the results of the experiment. As can be seen, all the checks
with mocked specifications complete faster than their counterparts without mocked

‡‡‡See https://github.com/cwi-swat/rebel2/tree/master/examples/paper/debitcard for the R����� en-
coding of the Debit Card case.

��� ������� � �������� ���� �������

specifications, with an overall speedup factor in the range of �x–�x. Most phases of
the checking pipeline are faster with mocked specifications, except the preparation
phase. The phase that mostly benefits of mocking is the solving phase. The speedup
factor for this phase is between �x to ���x (not taking the checks that timed out into
consideration). Four checks (“CanAddOverrideAndCheck”, “CanOverdrawLimit”,
“DebitCardCanBeProduced” and “CardCanExpire”) could not be checked with the
configuration without mocked specifications, due to time-outs. Their counterparts
with mocked specifications could however be checked within reasonable time.

As a proxy of the size of the explored state space, we report on the number of
declared SMT variables and SMT clauses. Table �.� shows a decrease in the case of
most mocked specifications, suggesting that solving time goes down because the
solver has to perform fewer valuations. Nevertheless, “BlockedAfterThreeAttempts”
and “Max�WrongPinAttempts” can still be solved while requiring more SMT variables
and clauses than “DebitCardCanBeProduced” and “CardCanExpire”, which result in
a time-out.

�.�.� Discussion

We found that R����� is expressive enough to implement both case studies with the
exception of the continuous time aspect of the automotive case. This problem is not
specific to the R����� language as other formalisms struggled with this same issue.

Next to the expressiveness of the language we evaluated the effectiveness of
mocking for model checking. We found that, especially in the financial case study,
mocking allowed for the checking of properties that resulted in time-outs without
mocked specifications. This however comes at an expense: using forget and mock
makes model checking inherently unsound. In other words, it is possible to validate a
property of interest in isolation, which will not hold when the system is considered
as a whole.

The unsoundness of forget and mock may seem dangerous from the point of formal
correctness, but lack of soundness is accepted in many other areas of validation and
verification. For instance, the “small scope”-hypothesis (most bugs are found in a
small scope) is at the heart of light-weight formal methods as, for instance, promoted
by Alloy; nevertheless it is technically unsound. Similarly, in bug-finding and static
analysis, it is well-known that many of these analyses are inherently unsound [LSS+��],
but that does not diminish their usefulness. Finally, mocked specification are similar
to mocked objects used for testing in object-oriented software development [MFC��].
Mocked objects often have different behaviors than the actual objects they substitute
for, but the benefit of using them is widely acknowledged [SAB+��].

The forget and mock operators in R����� are designed to support a more flexible,
conversational style of checking properties, much like unit testing or property-based

� .� ���������� ���

Ta
bl

e
�.

�:
C

om
pa

ris
on

be
tw

ee
n

m
od

el
ch

ec
ki

ng
w

ith
an

d
w

ith
ou

tm
oc

ki
ng

fo
rt

he
D

eb
it

C
ar

d
ca

se
.R

ep
or

te
d

tim
es

ar
e

th
e

fo
un

d
m

ed
ia

n
in

se
co

nd
sa

fte
r�

�
ru

ns
.

W
ith

ou
tm

oc
ki

ng
W

ith
m

oc
ki

ng
Pr

ep
.

(s
ec

.)
N

or
m

.
(s

ec
.)

Tr
an

s.
(s

ec
.)

So
lv

e
(s

ec
.)

To
ta

l
(s

ec
.)

#v
ar

s
(S

M
T)

#c
la

us
es

(S
M

T)
Pr

ep
.

(s
ec

.)
N

or
m

.
(s

ec
.)

Tr
an

s.
(s

ec
.)

So
lv

e
(s

ec
.)

To
ta

l
(s

ec
.)

#v
ar

s
(S

M
T)

#c
la

us
es

(S
M

T)

Li
m

it
-C

an
In

iti
al

iz
eL

im
it

4.
40

4.
50

9.
20

23
.
40

41
.
50

31
4.

00
71

57
08

.
00

1.
80

1.
80

5.
50

0.
10

9.
10

22
2.

00
34

83
99

.
00

-C
an

A
dd

O
ve

rr
id

eA
nd

C
he

ck
4.

20
4.

80
23

.
10

t/
o

t/
o

73
2.

00
21

44
34

8.
00

1.
80

1.
70

13
.
80

0.
70

17
.
90

50
4.

00
10

45
78

2.
00

-C
an

tO
ve

rd
ra

w
Li

m
it

4.
60

4.
80

40
.
90

t/
o

t/
o

11
50

.
00

35
87

83
9.

00
1.

80
1.

70
22

.
90

2.
70

29
.
10

78
6.

00
17

58
73

8.
00

-L
im

itI
sA

lw
ay

sP
os

iti
ve

4.
20

5.
10

33
.
30

2.
10

44
.
60

94
1.

00
28

58
96

8.
00

1.
80

1.
70

18
.
40

1.
20

23
.
10

64
5.

00
13

94
93

5.
00

-A
lw

ay
sI

nS
am

eC
ur

re
nc

y
4.

10
4.

80
33

.
80

1.
70

44
.
50

94
1.

00
28

58
93

6.
00

1.
80

1.
70

18
.
40

1.
00

22
.
90

64
5.

00
13

94
90

3.
00

D
eb

itC
ar

d
-D

eb
itC

ar
dC

an
Be

Pr
od

uc
ed

6.
40

10
.
30

68
.
30

t/
o

t/
o

14
71

.
00

85
57

65
6.

00
8.

50
3.

30
23

.
90

0.
60

36
.
30

88
3.

00
64

15
75

.
00

-C
ar

dC
an

Ex
pi

re
7.

00
10

.
30

12
0.

20
t/

o
t/

o
23

37
.
00

14
25

87
27

.
00

8.
60

3.
20

40
.
90

1.
90

54
.
70

14
05

.
00

10
69

52
9.

00
-B

lo
ck

ed
A

fte
r�

A
tte

m
pt

s
5.

80
7.

70
25

9.
20

33
.
90

30
6.

60
45

02
.
00

28
51

04
41

.
00

9.
60

3.
40

88
.
10

3.
80

10
4.

90
27

10
.
00

21
37

85
4.

00
-M

ax
�W

ro
ng

Pi
nA

tte
m

pt
s

5.
90

7.
90

26
4.

80
36

.
50

31
5.

20
45

02
.
00

28
51

04
71

.
00

9.
30

3.
40

89
.
70

3.
90

10
6.

30
27

10
.
00

21
37

88
4.

00
t/

o
=

Ti
m

ed
ou

ta
fte

r�
�

m
in

ut
es

.

testing in software development [Run��]. One of way of stating this is: R����� favors
timely feedback over logical soundness.

Another added benefit of mock and forget is that having language constructs
specific for abstraction helps making the applied abstractions needed for model
checking explicit where they would otherwise remain implicit for the unsuspecting
reader. In other words, a specification language without these constructs expects the
user to create abstract specifications in the first place, rendering it difficult for readers
to see which properties were abstracted from.

�.� ������� ����

Alloy is a popular lightweight formal specification language based on relational logic
with transitive closure [Jac��; Jac��b]. Alloy allows for bounded model finding by
translating specifications to SAT formulas and utilizing an external SAT solver [TJ��b].
Like R�����, the user specifies the bounds of a problem, which is used during model
finding. Because of Alloy’s generality specifying behavioral problems (which require
some sort of transition system) requires an encoding in the relational logic of Alloy.

Electrum extends Alloy with temporal operators [MBC+��] to make such encodings
more direct. The temporal operators can be used to express safety and liveness
properties and operate over so called variable relations, relations whose contents can
change over time. DynAlloy [FGL+��; RCG+��] is a dynamic logic-based extension of
Alloy, supporting partial correctness reasoning via actions and action composition.
The addition of actions in DynAlloy obviates the need of an explicit encoding of
the transition system, but it does not offer support for LTL formulas, which makes
expressing liveness properties hard.

Both Electrum and DynAlloy can be used to model structural and behavioral
problems, but differ from R����� in a number of ways. First, since Alloy translates
specifications to SAT formulas it is hard to reason about non-relational data, such as
integers, reals, or strings. Since R����� translates it specifications to A���A���
which in turn utilizes an SMT solver, R����� offers native reasoning support in the
theories supported by the solver. Second, Alloy, Electrum and DynAlloy support
modularizing specifications using modules and inheritance but lack the forget and
mock mechanisms of R�����. As a result, feasibility of checking properties is relative
to the full specification, rather than the property of interest. We do believe however
that both constructs could be implemented in these formalisms.

Abstraction is a key mechanism to control for complexity. In the context of formal
specification this applies to both a complexity reduction for humans, as well as a
potential reduction in the search space for automated proofs and model checking.
For instance, the specification language mCRL� [GM��] offers the primitives internal
action or �-step and the abstraction operator (��) for this purpose. Another approach,

� .� ������� ���� ���

which lies at the heart of formalisms such as Event-B [AH��] and ASM [Bör��],
is the concept of refinement. The specifier starts with a high-level specification of
the system which is then gradually refined into more detailed specifications. Each
refinement step must be proven to be a correct via proof obligations which can have
to be discharged, either using automatic tool support, or manually by providing a
proof. R�����’s mock and forget can be seen as similar operators to eliminate detail
from a specification, in order to make model checking more feasible.

�.� ����������

In this paper we have introduced the specification language R����� which contains
two language constructs, forget and mock, that offer the possibility to apply mocking
during model checking. These two constructs allow the user to reduce the state space
which needs to be traversed by the model checker. They can be used to redefine (parts
of) the specification during model checking without having to change the original
specifications. Users can specify the problem at hand without worrying about the
impact on model checking at design time, but rather defer such concerns until actually
checking a property of interest. We conjecture that this makes R����� suitable for
specifying industry-scale systems, such as those found in large enterprises, while still
being able to verify (parts of) a system using model checking.

We have evaluated R�����’s expressiveness and the effectiveness of model
checking with mocking by implementing two industrial case studies. In the first case
study – originating from automotive domain – we compared R����� with existing
solutions in alternative frameworks (ASMeta, Electrum, Classical-B and Event-B).
The results showed that R����� can be used to specify such problems in roughly
the same number of lines code, and that applying the mock construct to parts of the
specifications sped up model checking by a factor of roughly �.��x. In the second
case study we investigated the effectiveness of model checking with and without
mocking. This case stemmed from the financial industry and was conducted together
with employees from a large bank and showed that applying mocks while model
checking improved the overall checking times up to � times. In some cases it made
checking possible where performing the model checking without mocking resulted
in time-outs of the underlying solver.

Further research directions include �) extend R����� to support deadlock de-
tection, since this is now an impediment to model checking; �) implement different
slicing algorithms (e.g., [EHP+��]) and assess the impact in terms of performance and
soundness; and �) provide empirical corroboration of the mocking hypothesis.

To summarize, R����� is a formal specification language aimed at large industrial
enterprise settings, which brings the concept of mocking to the world of formal
methods, providing faster model checking feedback when checking behavioral
properties of interest.

��� ������� � �������� ���� �������

DESIGN & IMPLEMENTATION 6
In the previous chapters we have discussed ideas and methods that we have developed
in our search for lightweight specification and verification techniques for Enterprise
Software such as found in banks. In this chapter we will zoom in on the different
software components that we have created. We will discuss the design decisions that
were made and highlight some of the trade offs between different solutions.

Figure �.� shows a general overview of the different software components that we
developed. All components were developed in Rascal [KvdSV��]. We will discuss
each component separately in the coming sections.

�.� �����, ������� �

R���� was our first version of a specification language for a bank.� Chapter � contains
an overview of the language but we will list its key elements here for completeness:

• Easy to understand formalism based on Extended Finite State Machines
• Domain specific types such as Money, Currency and IBAN for natural encoding

of problems in the financial domain.
• Designed with Product Line Engineering in mind by separating declaration and

definition of events and invariants to increase reusability.
• Built-in simulator that allows users to step through a single state machine
• Built-in reachability verification

This first version of Rebel contained the following parts:

• Syntax definition of the language.
• A type checker.
• A module system.
• Web-based visualizations of specifications.
• A translation from the R���� language to ���-���.
• A simulator utilizing the Z� SMT solver.
• A model checker utilizing the Z� SMT solver.

In total R���� consists of approximately ���� lines of Rascal code of which the
majority of code is part of the Model Checker with ���� lines of Rascal.

�https://github.com/cwi-swat/rebel

���

Rebel2
State Machine Based

Specification Language

Nextep
Live Modeling Language with

Automatic Runtime
State Repair

AlleAlle
Relational Model Finder

Modulo Theories

Z3
SMT-Solver

translates to

Rebel (v1)
Domain Specific Specification

Language

developed by us

developed by others

discussed in chapter 2

discussed in chapter 3

discussed in chapter 4

discussed in chapter 5

Legend

Figure �.�: Overview of the different software components developed for the performed
research described in this thesis.

�.�.� Postmortem analysis - Lessons learned

Although the first version of R���� contained many features, it was not complete.
This had to do with a number of reasons of which we will list three of the most
prominent:

Incomplete Symbolic Compiler During the development of this first version of
R���� we experienced that constructing a symbolic compiler for a language requires
a tremendous engineering effort (as others before us [TB��]). Our symbolic compiler
worked by mapping each R���� language construct onto a formula in SMT. Creating
a correct, complete, reusable and maintainable mapping turned out to be a difficult
task. We found that the main reason was that the semantic distance between the input
language (in this case the R���� specification language) and the the target language
(���-���) was (too) large. As a result we were unable to create a mapping that was
complete for all constructs of the input language.

Inflexibility of the type system We specifically designed R���� to contain domain
specific types such as Money, IBAN and Currency. Although these domain specific

��� ������� � ������ & ��������������

types made that the specifications were easy to read it also made extending the
language with other types hard. Each type, including its operations, needed to be
implemented as a primitive in the language. Next to that, each type and its operations
needed a specific translation to SMT. This combination made the language inflexible
for change. This hampered the applicability of the language since we needed to
change the language when modeling problems from an adjacent financial domain (for
instance, modeling bank accounts required different types than modeling mortgages).

Inflexibility of the specification language Originally the tooling allowed for the
checking of invariants for a specified bound. The chosen syntax to define these
properties was fairly limited compared to properties that can be denfined using Linear
Temporal Logic (LTL) or Computational Temporal Logic (CTL) which made it hard
(or even impossible) to express interesting and deep properties. This in turn limited
the applicability of the model checker.

�.� ��������

We created A���A��� to bridge the earlier described semantic gap between the input
language, R����, and the target language ���-���.† The creation of A���A��� was
inspired on the A���� language and its relational model finder K����� [Jac��b;
TJ��b].

�.�.� Background of Alloy and Kodkod in relation to AlleAlle

A���� was created by Jackson in the early ����’s as a lightweight specification
language with an emphasis on partiality (partiality of models, partiality of language,
partiality of analysis). It uses Tarski’s relational algebra as underlying formalism.
Everything you can express in A���� is seen as an relation of different arities
(objects are expressed as unary relations, fields on these objects as binary relations,
etcetera) and constraints over these relations using first order logic and relational
algebra [Jac��]. K����� is the relational model finder used by A���� to translate
A���� specifications to SAT formula’s. K����� extends the language of A����
with the definitions of relational bounds. These bounds contain the minimal number
of tuples (lower bound) and maximal number of tuples (upper bound) that a relation
can contain. Since the analysis performed by K����� is bounded every defined
relation must have an upper bound. K�����’s main contribution is its highly efficient
translation of the relational input language to SAT formulas. An existing SAT solver is
used to solve K�����’s translated SAT formula. Found valuations are then translated
back to the level of the relational input language.

†https://github.com/cwi-swat/allealle

� .� �������� ���

IDE services

SMT Logic

AlleAlle

Solver
Integration

Translation

VisualizationEclipse IDE

Microsoft Z3

Legend

Internal logical component

External component

Logical connection

StringCore Int

Figure �.�: Overview of the different components of A���A���.

This decoupling of user-facing specification language, the A���� language, and
an intermediate language, K�����, that sits between the host language and the
target language (in level of abstraction) as well as the translation scheme of K�����
to a SAT-formula, was inspiration for the research and development of A���A���.
The reason that K����� itself was less suitable for our work was that it is not
optimized for reasoning on other theories than relational logic. Although it is possible
to define integer constraints and use integer operations, translating and solving these
constraints are not ideal since everything is translated to SAT formulas. As one can
imagine our problem domain, financial systems, often contain integer arithmetic
constraints. Using K����� and SAT solvers as back-end formalism is because of this
sub-optimal.

�.�.� Components of A���A���

Figure �.� shows an overview of the different components of AlleAlle. We will briefly
describe each component:

• IDE Services - Registers the A���A��� language and other IDE support (such
as type checking and outlines) with the Eclipse IDE.

• Interactive Visualizations - Offers visualizations of the found A���A��� models.
Models can be displayed as (augmented) graphs or as tables. Allows the user to
step through the different found models (via a ’next model’ button).

• Translation - Contains the core functionality of A���A���. Contains the
translation algorithms to translate an A���A��� specification to an SMT

��� ������� � ������ & ��������������

Table �.�: Overview of Source Lines Of Code (SLOC) for the different components of A���A���.
Source lines of tests are not counted.

Component SLOC

IDE Services ���
Visualizations ���
Translation
- Core ����
- Int ���
- String ���
SMT Logic ���
Solver Integration ���

Total ����

formula. Also contains the concrete and abstract syntax definitions of the
A���A��� specification language.

• SMT Logic - Is used by the translation component. Contains an Abstract Syntax
Tree (AST) definition of allowed constructs in ���-���.

• Solver Integration - Handles the communication to and from the external SMT
solver. Streams the translated SMT formula to the solver and reads the result.

In total A���A��� is made up of ���� lines of source code. Table �.� contains a
breakdown of the size of the different components.

�.�.� The translation algorithm

The core of A���A��� is its translation algorithm‡ that translates an A���A���
specification to an SMT formula. Figure �.� shows an overview of the complete
translation flow from specification to relational model. We will discuss each separate
step according to this flow.

The first step in the translation is the conversion of the relational definitions to
the internal data representation as described in section �.�.�. The second step uses
these internal relational representations to perform the actual translation to an SMT
formula as earlier described in �.�.�. This SMT formula is internally represented
as an AST. The translation is implemented using a recursive descent traversal style
since each construct can be converted without the need of extra information from the
context (context free).

‡As described in Chapter �, Section �.�.�.

� .� �������� ���

(repeatable part)

Translation

Microsoft Z3

Convert relational
definitions to internal

representation

Translate constraints
to logical (quantifier

free) formula

Convert formula to
SMT-LIB string

SAT?

Convert SMT values
to relational values

Add negation of
relational model

Send AlleAlle
specification

No relational models

Show relational model

No

Yes

Stream SMT-LIB string to
solver

Request next model Stream additional SMT-
LIB string to solver

The User

1

2

3

4

5

Figure �.�: From A���A��� specification to relational model.

The result of the translation is an AST which needs to be converted to ���-���
assertions (step �). Before this assertion can be interpreted by the SMT solver the
variables, which are referenced in the formula, must be declared in ���-��� (using
the construct declare-const). The type (or sort) of the variable depends on its definition
in the A���A��� specification (bool, int, string). Next the formula is constructed
in ���-���. The whole formula is formulated as one assert statement. The root of
this formula is a conjunction with many nested disjunctions and conjunctions. No
normalization is performed during this phase. If the original A���A��� specification
contains optimization criteria, then these criteria are translated to a minimize or
maximize commands. The last statement that is streamed to the SMT solver is the

��� ������� � ������ & ��������������

check-sat command which instructs the solver to solve the assertion. Depending of
the configuration, the solver can return four different answers:

• The formula is satisfiable.
• The formula is unsatisfiable.
• The solver reached a configured time-out.
• The solver cannot prove or disprove the assertion and returns unknown§

In the last three resulting cases (unsatisfiable, time-out or unknown satisfiability)
the user is prompted that no model was found and is shown the result from the solver.
If the assertion is satisfiable, the solver assigned variable values are queried (using
the ���-��� get-values command). These values are mapped back to the level of the
original relational problem resulting in a relational model in which all relations have
tuples assigned (or are empty) and each integer and string attribute in a tuple has a
value assigned (step �).

Whenever there is a model returned by the solver the user can request the solver
to return the next model. To get the next model the current model is mapped back to
���-��� variables and an assertion is constructed negating the current valuations
of the variables (step �). This new assertion is streamed to the solver. Since the
solver and its context (the solver process) are left alive after the initial solve, this new
assertion is added to the original assertion. The solver will again try to solve the
original assertion which now needs to result in different value assignments. If the
solver can find another assignment of values this again is queried and mapped back
to the relation model and presented to the user. These lasts steps (finding a next
model) can be repeated until the solver can not find new valuations anymore.

Algorithmic complexity of the translation The time it takes to perform a translation
is mostly dependent on the number of nested quantifiers defined in the A���A���
specification (see also Figure �.� in Chapter �). The time grows exponentially
depending on the number of nested quantifiers. The algorithmic time complexity
of the translation algorithm is therefore in O(2=) where = is the number of nested
quantifiers in an A���A��� problem. Specifications with fewer nested quantifiers will
have significantly shorter translation times. Some optimizations are implemented to
increase the performance of the translation of quantifiers such as short-circuit boolean
conjunction and disjunction detection and memoization of translated expressions
and formulas. Other techniques that could improve the translation time such as
skolemization¶ are not part of our current implementation of A���A���.

§Z� returns unknown if a formula is beyond its current reasoning power. Since theories can be
undecidable, such as the theory of strings [BTV��], it is fairly common to run into the problem that the
solver returns unknown.

¶Skolemization is a common technique to eliminate (nested) existential quantifiers by replacing them
with functions.

� .� �������� ���

1 (declare-const ParamEventPegAddD_c2_c3_d1 Bool)

2 (declare-const ParamEventPegAddD_c1_c2_d1 Bool)

3 (declare-const ParamEventPegAddD_c7_c8_d1 Bool)

...

367 (assert (and (or (not true) (= count_ (+ (ite (and Config_c2 true)

...

31161 (or (not ParamEventTowerMoveFrom_c5_c6_p1) order_c5_c6)

31162 (or (not ParamEventTowerMoveFrom_c7_c8_p1) order_c7_c8)

31163 (or (not ParamEventTowerMoveFrom_c4_c5_p1) order_c4_c5)

31164 (or (not ParamEventTowerMoveFrom_c6_c7_p1) order_c6_c7)

31165 (or (not ParamEventTowerMoveFrom_c1_c2_p1) order_c1_c2)

31166 (or (not ParamEventTowerMoveFrom_c3_c4_p1) order_c3_c4)

31167))))

31168 (set-option :opt.priority lex)

31169 (minimize count_)

31170

31171 (check-sat)

Listing �.�: Excerpt of the resulting ���-��� formula after translating the A���A���
specification for the Towers of Hanoi with three discs.

�.�.� Design decisions

In the coming paragraphs we will discuss two important design principles of A��� -
A���: theory extensibility and term rewriting.

Theory Extensibility We designed A���A��� in such a way that it is open to
extension of additional SMT background theory. The base translation algorithm of
A���A��� translates the relational operators (this is depicted by the ‘core’ component
in figure �.�). The different background theories translations are used whenever there
are constraints formulated on fields which are of a type other than id. These constraints
can happen in two different syntactical constructs: in the restriction operator (the
where construct) or in an aggregation function (e.g., the min or avg aggregation functions
are part of the int domain). In order to integrate new SMT theories with A���A���
new translation rules must be added for the specific restriction operations and, if
applicable, for new aggregation functions. The amount of code needed to implement
these new theories are, in our experience, limited (depending on the number of
attribute operations required). For instance, implementing the Integer SMT theory
required ��� source lines of code (see Table �.�).

Term rewriting on translation When translating the A���A��� constraints to
formulas in ���-��� normalizations can be applied. This is done by leveraging

��� ������� � ������ & ��������������

1 // Definition of the SMT Formula AST

2 data Formula = \true()

3 | \false()

4 | pvar(str name)

5 | \not(Formula f)

6 | \and(set[Formula] fs)

7 | \or(set[Formula] fs)

8 ...

9

10 // Rewrite rules that are applied on construction

11 Formula \or({}) = \false();

12 Formula \or({Formula x}) = x;

13 Formula \or({\false(), *Formula r}) = \or(r);

14 Formula \or({\true(), *Formula _}) = \true();

15 Formula \or({*Formula a, \or(set[Formula] b)}) = \or(a + b);

16 ...

Listing �.�: SMT Formula AST definition and the implemented constructor rewrite rules using
Rascal. the * is the splice operator matching zero or more elements.

Table �.�: Implemented ’Level �’ rewrite rules which are applied on construction of the SMT
formula.) denotes an SMT formula.

Operator Rule Result

or > _) _ . . . ! >

?_) _ . . . !) _ . . .

and > ^) _ . . . !) ^ . . .

? ^) _ . . . ! ?

Rascal’s built-in pattern matching mechanism on constructing AST’s. Whenever
a new ���-��� formula is created Rascal applies pattern matching to match the
constructor. Using constructor overrides, term rewriting can be applied so such
that the ���-��� formulas are rewritten to a normal form on creation of the AST.
Listing �.� shows how this can be implemented in Rascal.

Rascal pattern matching facilities are rich. Because of this powerful rewrite rules
can be defined in a concise manner. For instance, if we would like to define the
following rewrite rule:) _ () ^ . . .)!) (were the . . . denote one or more terms of
the conjunction) we can do this as follows:
Formula or(Formula a, and({a, *Formula _})) = a;

The * denotes Rascal’s splice operator matching zero of more elements.

� .� �������� ���

Table �.�: Implemented ’Level �’ rewrite rules which are applied on construction of the SMT
formula.) and # denote SMT formulas.

Operator Rule Result

or ¬) _) ! >

) _ (# _ . . .) !) _ # _ . . .

) _ () ^ # ^ . . .) !)
() ^ #) _ () ^ #) !) ^ #

and ¬) ^) ! ?

) ^ (# ^ . . .) !) ^ # ^ . . .

) ^ () _ # _ . . .) !)
() _ #) ^ () _ #) !) _ #

negation ¬¬# ! #
¬> ! ?

¬? ! >

implication > =)) !)
? =)) ! >

) =) > ! >

) =) ? !)
) =)) !)

equivalence) ()) ! >

if-then-else ite(>,),#) !)
ite(?,),#) ! #
ite(#,),)) !)

Although these rewrite rules are very concise and effective they can have a negative
impact on the translation time. For instance, matching elements in sets (i.e., ACI
matching) has long be proven to be an NP-complete problem [Eke��; KN��]. As one
can imagine, depending on the size of the original set, matching brings run-time
overhead. While performing the overall translation these rules are constantly checked
stacking up this run-time overhead. Not performing any rewrites on construction
could however have a negative impact on the solving time since the solver (Z� in our
case) needs to process a formula with more terms. This could, in theory, result in
longer solving times since the SMT solver now needs to do the heavy lifting that was
postponed during construction.

��� ������� � ������ & ��������������

Term rewriting experiment

To get insight into the impact of term rewriting on translation we tested the translation
and solving of formulas on a benchmark of A���A��� specifications. We constructed
three different sets of rewrite rules:

�. No rewriting - Only empty clauses are removed.
�. Level � rewriting - Short circuiting is performed for dis- and conjunctions. See

Table �.� for an overview.
�. Level � rewriting - Deeper patterns are matched and rewritten. See Table �.� for

an overview.

We ran each set of rewrite rules on four different specifications in different config-
urations (increasing the upper bounds of the relations). Two of these specifications,
FileSystem and Halmos Handshaking, were written directly as A���A��� speci-
fications. The two other specifications, DebitCard and The Tower of Hanoi, were
written in R�����. Since R����� uses A���A��� as an intermediate language,
the translation was captured and used in this benchmark. All experiments were
performed on an Intel i� CPU (�����U) containing ��GB of RAM running Ubuntu
��.�� with Rascal version �.��.� (stable), OpenJDK ��, Z� �.�.�� and Eclipse ����-��.
Each experiment was ran �� times (preceded by a �� time warm-up). The reported
times are the means of these �� runs. Table �.� shows the result of the experiment.

The results show that applying rewriting on construction indeed gives a run-time
performance overhead. A slightly counter intuitive result is that for some cases
applying level � rewriting increases the performance of the translation. For instance,
the translation of the Halmos specification is slightly quicker when translated using
the level � rewrite rules instead of only the level � rewrite rules. A possible explanation
for this could be that by applying more rigorous rewriting the number of terms in
each AST node decreases. As such, the number of elements that need to be matched
during the application of the rewrite rules go down. This is visible in the number of
clauses that are left in the resulting SMT formula after rewriting. They are decreased
significantly as a result of rewriting.

Looking at the reported solving times tells a different story. The impact of the
more concise, normalized formulas is low. Even more counter-intuitive is that in some
cases the smaller formulas have a negative impact on the solving times. For instance,
the reported solving times for the ‘DebitCard - in � steps’ problem is quickest for the
non-normalized formula. The reported Level � rewriting increases the solve time by
a factor of �,�x while the Level � rewrite rules increase the solving times with a factor
of �,�x even though in both cases the number of clauses decrease considerably. This
experiment again shows that it is hard to predict the performance behavior of the
solver given a formula. SMT solvers contain many heuristics to increase the speed
in which they can find an answer [DP��]. Predicting which heuristic is used given a

� .� �������� ���

certain problem without knowing the exact internals of each heuristic is a very hard
problem.

Given the fact that the current version of A���A��� is often most effected by
longer translation times and less by the solving times, we conclude that in the current
version of A���A��� no rewriting on construction is performed.

��� ������� � ������ & ��������������

Ta
bl

e
�.

�:
Co

m
pa

ris
on

of
di

ffe
re

nt
le

ve
ls

of
fo

rm
ul

a
re

w
rit

in
g

du
rin

g
tra

ns
la

tio
n.

Re
po

rt
ed

tim
es

ar
e

m
ea

ns
of

��
ru

ns
(p

re
ce

de
d

by
��

w
ar

m
up

ru
ns

).
Re

po
rt

ed
fa

ct
or

is
co

m
pa

re
d

to
th

e
’N

o
re

w
rit

in
g’

co
lu

m
n.

H
ig

hl
ig

ht
ed

ro
w

an
d

ce
lls

ar
e

di
sc

us
se

d
in

th
e

te
xt

.

N
o

re
w

rit
in

g
Le

ve
l�

re
w

rit
in

g
Le

ve
l�

re
w

rit
in

g

Pr
ob

le
m

Tr
an

s.
(in

m
s)

So
lv

e
(in

m
s)

#
C

la
us

es
Tr

an
s.

(in
m

s)
Tr

an
s.

(fa
ct

or
)

So
lv

e
(in

m
s)

So
lv

e
(fa

ct
or

)
#

C
la

us
es

Tr
an

s.
(in

m
s)

Tr
an

s.
(fa

ct
or

)
So

lv
e

(in
m

s)
So

lv
e

(fa
ct

or
)

#
C

la
us

es

D
eb

itC
ar

d
-i

n
�

st
ep

s
63

64
.
00

55
0.

00
20

04
31

3.
00

83
49

.
00

x
1.

31
36

0.
00

x
0.

65
84

22
88

.
00

89
16

.
00

x
1.

40
43

0.
00

x
1.

19
64

15
62

.
00

D
eb

itC
ar

d
-i

n
�

st
ep

s
13

04
1.

00
11

90
.
00

33
36

71
1.

00
16

22
9.

00
x

1.
24

20
40

.
00

x
1.

71
14

03
57

4.
00

17
29

6.
00

x
1.

33
17

00
.
00

x
1.

43
10

69
51

6.
00

H
an

oi
-�

di
sc

s
85

8.
00

20
.
00

68
03

8.
00

10
09

.
00

x
1.

18
20

.
00

x
1.

00
26

79
8.

00
93

5.
00

x
1.

09
20

.
00

x
1.

00
17

92
5.

00
H

an
oi

-�
di

sc
s

44
66

0.
00

11
80

.
00

12
40

55
3.

00
46

16
2.

00
x

1.
03

11
60

.
00

x
0.

98
87

31
47

.
00

46
65

6.
00

x
1.

04
11

90
.
00

x
1.

01
19

47
19

.
00

Fi
le

Sy
st

em
-�

ob
je

ct
s

37
3.

00
10

.
00

52
13

9.
00

47
9.

00
x

1.
28

10
.
00

x
1.

00
31

05
1.

00
44

5.
00

x
1.

19
10

.
00

x
1.

00
21

83
9.

00
Fi

le
Sy

st
em

-�
ob

je
ct

s
49

83
.
00

11
0.

00
47

08
71

9.
00

58
79

.
00

x
1.

18
11

0.
00

x
1.

00
45

24
05

3.
00

57
38

.
00

x
1.

15
40

.
00

x
0.

36
31

92
89

5.
00

H
al

m
os

-�
�

pe
op

le
59

6.
00

40
.
00

26
57

2.
00

65
3.

00
x

1.
10

40
.
00

x
1.

00
58

65
.
00

51
4.

00
x

0.
86

40
.
00

x
1.

00
31

93
.
00

H
al

m
os

-�
�

pe
op

le
99

9.
00

20
.
00

48
03

1.
00

10
92

.
00

x
1.

09
10

.
00

x
0.

50
97

47
.
00

85
6.

00
x

0.
86

10
.
00

x
0.

50
54

01
.
00

Ta
bl

e
�.

�:
Co

m
pa

ris
on

of
th

e
us

e
of

m
em

oï
za

tio
n

du
rin

g
tra

ns
la

tio
n.

Re
po

rt
ed

tim
es

ar
e

m
ea

ns
of

��
ru

ns
(p

re
ce

de
d

by
��

w
ar

m
up

ru
ns

).

W
ith

m
em

oï
za

tio
n

W
ith

ou
tm

em
oï

za
tio

n

Pr
ob

le
m

Tr
an

s.
(in

m
s)

So
lv

e
(in

m
s)

M
em

.u
se

d
(in

G
B)

Tr
an

s.
(in

m
s)

Tr
an

s.
(fa

ct
or

)
So

lv
e

(in
m

s)
So

lv
e

(fa
ct

or
)

M
em

.u
se

d
(in

G
B)

M
em

.u
se

d
(fa

ct
or

)

Fi
le

Sy
st

em
w

ith
�

ob
je

ct
s

37
3.

00
10

.
00

3.
85

20
35

.
00

x
5.

46
10

.
00

x
1.

00
2.

21
x

0.
57

Fi
le

Sy
st

em
w

ith
�

ob
je

ct
s

69
0.

00
10

.
00

4.
21

46
55

.
00

x
6.

75
10

.
00

x
1.

00
2.

05
x

0.
49

Fi
le

Sy
st

em
w

ith
�

ob
je

ct
s

12
80

.
00

20
.
00

4.
40

10
46

7.
00

x
8.

18
20

.
00

x
1.

00
2.

22
x

0.
50

Fi
le

Sy
st

em
w

ith
�

ob
je

ct
s

23
18

.
00

30
.
00

2.
80

22
88

7.
00

x
9.

87
30

.
00

x
1.

00
2.

41
x

0.
86

Fi
le

Sy
st

em
w

ith
�

ob
je

ct
s

49
83

.
00

11
0.

00
5.

12
65

54
1.

00
x

13
.
15

11
0.

00
x

1.
00

2.
53

x
0.

49

1 ...

2 // A dir cannot contain itself

3 forall d: Dir[oid] | no (d[oid as to] & (d[oid as from] |x| ^contents)[to]

4 // All files and dirs are (reflexive-transitive) ’content’ of the Root dir

5 (File[oid] + Dir[oid])[oid as to] in (Root[oid as from] |x| *contents)[to]

6 ...

Listing �.�: Excerpt from example given in section �.� in chapter �. During translation
memoïzation is used for the intermediate results.

Memoïzation To optimize the performance of the translation memoïzation is applied.
Memoïzation is a caching technique that caches the return value of function calls.
Whenever a function is called with arguments which it have been give before, the
cached result is returned instead of computing the function again.

A requirement for applying memoïzation is that a function must not have side
effects (e.g., writing to a file or database or changing a global variable) since the
function is not performed when a cached result can be returned. The translation
functions of A���A��� meet this requirement since all translations are side-effect
free. In many cases applying memoïzation to the translation functions has a positive
effect on the performance of the translation. Memoïzation does not only cache the
end result, it also caches the return values of functions that are called intermediate
making the effect even greater.

Listing �.� shows an excerpt of our used example from section �.� in chapter �.
The constraints encode that directories (Dir) cannot contain itself (first constraint, line
�) and that all files and directories must be reachable from the root directory (second
constraint, line �). In the calculation of the first constraint the transitive closure of the
content relation is calculated (with the ^content expression). In the second constraint
the reflexive transitive closure of this content relation is calculated to constraint that
all files and directories including root are reachable from the root directory. When
translating the reflexive transitive closure of the content relation (with the *content

expression) the earlier translated result of the transitive closure can be used since the
definition of the reflexive transitive closure translation is the union of the transitive
closure of the relation with the identity relation. Hence, using the same constraint
multiple times in an specification often does not impact performance much.

The memoïzation implemented in Rascal is fixed size in terms of memory. When-
ever the memoïzation cache needs to be cleaned (for instance because it reaches it
memory limit) the items that are least frequently used are purged, meaning that items
used often keep being persistent in the cache. The cache is not persistent between
runs: it only resides in memory during a single run of the program.

��� ������� � ������ & ��������������

To measure the effect of memoïzation we performed an experiment in which
we translated and solved the FileSystem specification with an increasing number of
tuples in the upper bound of the relations. This experiment was performed using the
same setup and configuration as described in the previous section. Table �.� shows
the outcome of this experiment.

The results clearly show the benefit of applying memoïzation on translation. The
more tuples in the relations upper-bound, the bigger the benefit of memoïzation. As
can be expected, using memoïzation does have an negative impact on the memory
space used, doubling the amount of memory used in most cases. Since Rascal caps
the amount of memory for its memoïzation cache however, the used memory will not
grow beyond its limits (which would causes out-of-memory exceptions).

�.� ������

N����� (see Chapter �) is a prototype implementation for automatic repair of
run-time state to aid live modeling.�� The idea of live modeling is that users get
immediate feedback of changes they make to the model without having to restart
the execution, provided that there is an interpreter for the model. N����� is our
prototype implementation to support this live modeling behavior. N����� allows
language engineers to describe their model declaratively (both the meta-model as the
run-time behavior) and employs a solver to automatically repair differences in the
run-time state before and after a change is made.

N����� uses A���A��� as an intermediate language to translate to. Because of
this, N����� is also another good case study on the expressiveness of A���A���.
N����� is implemented in the Rascal Language Workbench [KvdSV��] and consists
out of ��� SLOC. In the rest of this section we will discuss the different parts of the
design and implementation of N�����.

�.�.� Structure of N�����

N����� is designed using the well known pipe and filters pattern, a pattern for instance
often used by compilers. This means that each step in the pipeline accepts input,
performs some operation (e.g., a translation) and hands over its output to the next
step in the pipeline.

The general gist of the translation is as follows: A N����� model and a current
model instance are translated to an A���A��� specification which in turn translates
its specification to SMT which is solved using the Z� SMT solver. Figure �.� show an
overview of the different steps that are performed during this translation.

We will discuss each step in more detail using a part of the example introduced
in Chapter �, a DSL for State Machines. Listing �.� shows a part from this N�����

��https://github.com/cwi-swat/live-modeling

� .� ������ ���

Normalize
Extract

relation
information

Annotate spec
with relations

Generate
constraints

Generate
distance

objectives
AlleAlle

Interpret
result as new
runtime

1 2 3 4 5 76

Figure �.�: Overview of the N����� translation pipeline.

1 runtime

2 class Runtime

3 machine: Machine

4 current: State

5 visited: Visit*
6

7 invariants

8 current in machine.states

9 forall s: machine.states | one (visited.state & s)

10 forall v1:visited, v2:visited | v1 != v2 => v1.state != v2.state

11

12 class Visit

13 state: State

14 nr: int

15

16 invariant: nr >= 0

Listing �.�: Excerpt of a N����� specifications for live state machine. This excerpt shows the
runtime classes declared for the State Machine DSL. Complete specification can be found in
Listing �.� in Chapter �

definition containing the specification of the runtime behavior of our State Machine
DSL (see Listing �.� in Chapter � for the complete specification). This example shows
the scenario where the user added a new state locked to the state machine definition.
The addition of this new state requires the runtime instance to be fixed since the
meta model of this state machine language (not shown in the listing) dictates that
the runtime of each state also contains information on how many times the state
has been visited during execution. N����� should thus find a new runtime state
where the newly added state locked also contains information on how many times it
is visited. This information is, as captured in the specification, contained in a Visit

class. Listing �.� contains a definition of runtime information of an instance of a State
Machine DSL program (i.e., the current state of the evaluation). In Chapter � we use
the notation G to denote current runtime valuation and G

0 to denote the valuation of
the next runtime, in other words, the repaired runtime. We will continue to use these
notations.

��� ������� � ������ & ��������������

1 old runtime

2 Runtime r

3 machine = doors

4 current = closed

5 visited = v1, v2

6

7 Visit v1

8 state = opened

9 nr = 1

10

11 Visit v2

12 state = closed

13 nr = 1

Listing �.�: Excerpt of a N����� current runtime instance (G) of a state machine. Left hand
sides (‘machine’, ‘current’ and ‘visited’) are the names of the fields defined in the Runtime
class. Right hand sides (‘doors’, ’closed’ and ‘v�, v�’) are their current values and refer to other
instances. States and Machine are defined in the static part and not listed here. The value labels
are arbitrary chosen strings

1 class Runtime

2 machine: Machine

3 current: State

4 visited: Visit*
5

6 invariants x

7 forall inst : Runtime | inst.current in inst.machine.states

8

9 forall inst : Runtime | forall s:inst.machine.states |

10 one (inst.visited.state & s)

11 forall inst : Runtime | forall v1:inst.visited, v2:inst.visited |

12 v1 != v2 => v1.state != v2.state

13

14 class Visit

15 state: State

16 nr: int

17

18 invariant: forall inst : Visit | inst.nr >= 0

Listing �.�: Result after normalization. Highlighted lines are affected by normalization.

� .� ������ ���

�. Normalize. In the normalization phase constraints in the original N�����
model are augmented to aid translation to A���A��� later on. For instance, the
N����� live state-machine example (Listing �.�) used in Chapter � defines invariants
for the class Runtime. In the normalization phases these top-level formulas, e.g.,
current in machine.states, are quantified for all instances of the class in which these
invariants are defined. The normalized constraint for this example would result in:
forall inst: Runtime | current in inst.machine.states. This normalization allows for
easier relational lookup later on by effectively making each formula ‘operationally
complete’. This means that it is not necessary to add extra expressions to a constraint
when translating these formula’s to A���A��� constraints). Listing �.� shows the
result of normalization on our running example.

�. Extract relational information. The next step extracts the relational bounds from
the normalized model. To extract the bounds both the normalized specification (see
Listing �.�) and the current instance information is used (see Listing �.�). Section �.�.�
of Chapter � describes the details of this extraction. The outcome of this step is
the set of relational definitions (including their bounds) needed for the A���A���
specification. Tabel �.� shows the relational information extracted from our example
specification and runtime instance.

As can be seen in Table �.�, the bounds of the current valuation relations (denoted
by G) have exact bounds, meaning that these relations have exactly those tuples that
are defined in their tuple list. The next valuation relations (denoted by G

0) and the
difference relations (denoted by ⇣) are all upper bound meaning that these relations
must have a subset of the tuples defined. Also notice the addition of two new possible
visit tuples v_new_1 and v_new_2. Since Visit entities are part of the runtime state it could
be that a repaired runtime state dictates the addition of a new Visit entity (for instance
if a new state is added to the model as is the case with our running example). The ⇣
relations encode the differences between the G

0 and G relations. These ⇣ relations will
be used in a later step to minimize the number of difference between the G and G

0

relations.

�. Annotate spec with relations. This step takes the parsed normalized N�����
model and extracted relational information as input. It evaluates the Concrete Syntax
Tree (CST) of the normalized model (using recursive tree traversal) and annotates each
expression with its resolved relation. This annotation step eases the translation of the
N����� constraints to A���A��� constraints in the following step. The annotator
also acts as a type resolver. Whenever there is a type error in one of the expressions,
the annotator will be unable to find the corresponding relation ending up in an error
state.

��� ������� � ������ & ��������������

Table �.�: Extracted relations and their bounds for our running example. G denotes the current
valuation, G0 denotes the possible new valuation of the relation and ⇣ denotes the difference
relation G

0 � G

Relation Signature Bound Tuples

Runtime_G rId:id Exact <r>

Runtime_G0 rId:id Upper <r>

Runtime_⇣ rId:id Upper <r>

Runtime_machine_G rId:id, mId:id Exact <r,doors>

Runtime_machine_G0 rId:id, mId:id Upper <r,doors>

Runtime_machine_⇣ rId:id, mId:id Upper <r,doors>

Runtime_current_G rId:id, sId:id Exact <r,closed>

Runtime_current_G0 rId:id, sId:id Upper <r,opened>,<r,closed>,<r,locked>

Runtime_current_⇣ rId:id, sId:id Upper <r,opened>,<r,closed>,<r,locked>

Runtime_visited_G rId:id, vId:id Exact <r,v2>,<r,v1>

Runtime_visited_G0 rId:id, vId:id Upper <r,v_new_1>,<r,v_new_2>,<r,v2>,<r,v1>

Runtime_visited_⇣ rId:id, vId:id Upper <r,v_new_1>,<r,v_new_2>,<r,v2>,<r,v1>

Visit_G vId:id Exact <v2>,<v1>

Visit_G0 vId:id Upper <v_new_1>,<v_new_2>,<v2>,<v1>

Visit_⇣ vId:id Upper <v_new_1>,<v_new_2>,<v2>,<v1>

Visit_state_G vId:id, sId:id Exact <v1,opened>,<v2,closed>

Visit_state_G0 vId:id, sId:id Upper <v1,opened>,<v1,closed>,<v1,locked>,
<v2,opened>,<v2,closed>,<v2,locked>,
<v_new_1,opened>,<v_new_1,closed>,<v_new_1,locked>,
<v_new_2,opened>,<v_new_2,closed>,<v_new_2,locked>

Visit_state_⇣ vId:id, sId:id Upper <v1,opened>,<v1,closed>,<v1,locked>,
<v2,opened>,<v2,closed>,<v2,locked>,
<v_new_1,opened>,<v_new_1,closed>,<v_new_1,locked>,
<v_new_2,opened>,<v_new_2,closed>,<v_new_2,locked>

Visit_nr_G vId:id, val:int Exact <v2,1>,<v1,1>

Visit_nr_G0 vId:id, val:int Upper <v2,?>,<v1,?>,<v_new_1,?>,<v_new_2,?>

Visit_nr_⇣ vId:id, val:int Upper <v2,?>,<v1,?>,<v_new_1,?>,<v_new_2,?>

�. Generate constraints. In the next phase the N����� constraints are converted
to A���A��� constraints. This translation contains two parts: it translates the user
defined invariants in the N����� model and it generates relational type constraints.
The translation of the user defined invariants is straightforward since the previous
steps normalized these invariants and annotated each node in the CST with relational
information. Since N����� relies on A���A��� for its semantics, the operators in
N����� are a subset of those defined in A���A���. Hence, translation of the defined
N����� expressions can almost directly be mapped to expressions in A���A���.
Listing �.� shows an example of the translation of some of the invariants of our
running example.

For the relational type constraints the class and field definition in the N�����
specification are used. For instance, as mentioned earlier, fields in N����� are

� .� ������ ���

1 ...
2 // forall inst : Runtime | inst.current in inst.machine.states
3 forall inst: Runtime_x’ |
4 inst |x| Runtime_current_x’)[StateId] in
5 (inst |x| Runtime_machine_x’)[MachineId]) |x| Machine_states[StateId]
6

7 // forall inst : Runtime | forall s:inst.machine.states | one (inst.visited.state & s)
8 forall inst: Runtime_x’ |
9 forall s:(inst |x| Runtime_machine_x’[MachineId]) |x| Machine_states[StateId] |

10 one ((inst |x| Runtime_visited_x’[VisitId]) |x| Visit_state_x’[StateId]) & s
11 ...

Listing �.�: Example of two N����� invariants translated to A���A��� constraints.

1 ...
2 // class Runtime
3 // machine: Machine
4 forall r: Runtime_x’ | one r |x| Runtime_machine_x’
5 Runtime_machine_x’ in (Runtime_x’ |x| Machine)
6

7 // current: State
8 forall r: Runtime_x’ | one (r |x| Runtime_currenminimization on these relations is

donet_x’)
9 Runtime_current_x’ in (Runtime_x’ |x| State)

10

11 // visited: Visit*
12 Runtime_visited_x’ in (Runtime_x’ |x| Visit_x’)
13 // Since visited is defined as a set, no extra constraint is needed to
14 // to constraint the size of the relation
15 ...

Listing �.�: Example of the translation of the N����� field and type definition of the Runtime

class to A���A��� constraints.

translated to binary relations. If a field in the N����� model is defined to hold a
single value than we must generate relational constraints restricting it to act as an
injective relation. Listing �.� shows the translation of the field definitions of the
Runtime class. The outcome of this step is a list with A���A��� formulas.

�. Generate distance objectives. To complete the translation the distance objectives
need to be generated. These objectives encapsulate the heuristic to find a solution for
the new run-time state that is closest to the previous run-time state.

In N����� we use the earlier introduced ⇣-relations to implement the heuristic.
We constraint the ⇣-relations to contain the difference in relational tuples of the
current run-time state and the next run-time state. By adding optimization criteria to

��� ������� � ������ & ��������������

1 ...
2 Runtime_visited_d =
3 (Runtime_visited_x - Runtime_visited_x’) + (Runtime_visited_x’ - Runtime_visited_x)
4

5 Runtime_machine_d =
6 (Runtime_machine_x - Runtime_machine_x’) + (Runtime_machine_x’ - Runtime_machine_x)
7

8 Runtime_current_d =
9 (Runtime_current_x - Runtime_current_x’) + (Runtime_current_x’ - Runtime_current_x)

10 ...
11 objectives (lex): ..., minimize Runtime_current_d[count()],
12 minimize Runtime_machine_d[count()], minimize Runtime_visited_d[count()], ...

Listing �.�: Example of the constraints added for the ⇣-relations and the minimization criteria.

minimize the number of tuples in the ⇣-relations we effectively force the solver to find
solutions that are close to the previous run-time state. Since a N����� model can have
many fields, the resulting A���A��� specification can have many ⇣-relations and, as
a result, also many minimization criteria. These criteria are solved in lexicographical
order. Listing �.� shows the encoding of the ⇣-relations and the minimization criteria.

�. Solve using A���A��� In this step the completed A���A��� specification
is send to A���A��� which in turn translates the specification to a formula in
���-��� which is send to Z�. If the specification can be satisfied, A���A��� returns
a relational model back to N�����. If it is not satisfiable A���A��� returns UNSAT to
N�����.

�. Interpret result to construct new run-time state In case a satisfiable model was
found N����� maps the found relational tuples back to the level of the N�����
model meaning that a N����� model is constructed containing instances of classes
and field values. Listing �.�� shows the output generated by N����� for our running
example. As can be seen, A���A��� was able to solve this problem and came up
with a minimal solution: by adding a new Visit instance, v_new_1, which it linked to
the user defined, newly added state locked.

�.�.� Live State-Machines: a N����� example.

To test the applicability of N����� we constructed a simple, web-based live-modeling
environment for state-machines (��� SLOC). It consists of an interpreter allowing
users to interact with their defined state machine and a rudimentary IDE in which
users can model the state machine. Figure �.� shows a screenshot of this modeling
environment.

� .� ������ ���

1 new runtime

2 Runtime r

3 visited = v2, v1, v_new_1

4 machine = doors

5 current = closed

6

7 Visit v2

8 nr = 1

9 state = closed

10

11 Visit v1

12 nr = 1

13 state = opened

14

15 Visit v_new_1

16 nr = 0

17 state = locked

Listing �.��: Found N����� output of the live state machine running example

To make use of the automatic run-time state migration there are two requirements
for the interpreter:

�. The interpreter must be able to export its current run-time state (variables and
values).

�. The interpreter must be able to swap the current run-time state.
The first requirement is needed to be able to construct a N����� model which
encapsulates the current state of the run-time model. The second requirement is
necessary to replace the complete run-time state with new valuations (as found
by N�����). After each change made to the model (or the run-time meta-model)
N����� is called to repair the run-time state. If a new model is found, the current
run-time state is swapped with this new version.

Performance was never part of this experiment but in general we can remark
based on our experience that this method works for small models but it will probably
struggle with larger ones adding seconds to the live modeling cycle.

��� ������� � ������ & ��������������

Figure �.�: Screenshot of the Live State-Machine modeling environment. The red colored state is
the current active state. PlantUML was used to visualize the state machine [Pla]. CodeMirror.js
was used for the editor [Hav].

�.� ������

R����� is our second version of a specification language and model checker for a
bank.†† Like the first version, R����� was based on the formalism of Extended State
Machines with data. It allows users to specify problems as separate communicating
state machines. This possibility of specifying functionality as separate state machines
helps with the decomposition of the problem as a whole. Before we will discuss
the overall architectural overview of R����� we will discuss the main differences
between the first and the second version of the language.

�.�.� Comparison to R����

In the second version of we took the lessons learned into account as described in
section �.�.� on the postmortem analysis of R����.

Complete symbolic compiler R����� utilizes A���A��� as an intermediate
language. It translates R����� specifications to A���A��� specifications. All

††https://www.github.com/cwi-swat/rebel2

� .� ������ ���

expressions that can be formulated in R����� specifications can be translated
to A���A��� constraints. Next to encoding the different R����� constructs as
A���A��� constraints the transition system semantics are also encoded as A���A���
constraints. As discussed in Section �.�.� of Chapter � this translation of the transition
system semantics happens similarly as described by Cunha in Alloy [Cun��].

By exploiting A���A��� as intermediate language the encoding of R�����
specifications as logical constraints is of a higher level of abstraction (e.g., fewer lines
of A���A��� code required) than our encoding with the first version of R����
which eased the creation of a symbolic compiler.

Simple and flexible type system R���� contained many domain specific types that
made the encoding financial products easy and natural. The downside was that it
made the language rigid for change. New types required changes to the language.

In R����� we simplified this type system. In essence there are only two primitive
types, Integer and String, all other types need to be specified as state machines. The
consequence is that fields are either one of the two primitive types or are of the type of
other state machines. With special syntax to define an ‘enumeration type’ it is possible
to define other well known types such as booleans (see Section �.�.� of Chapter �).

Having no domain specific types also has the consequence that R����� is not a
domain specific language for financial products anymore. Instead R����� is more
general purpose and allows for the encoding of problems in many different problem
domains. The drawback of this choice is that reading R����� specifications can be
harder for domain experts since its syntax is less recognizable.

Model checker specification language based on Linear Temporal Logic As dis-
cussed in the previous paragraph the encoding of R����� as constraint problem was
based on earlier work of encoding transition systems in Alloy [Cun��]. This made
implementing a specification language to check properties of interest straightforward.
Since LTL is a well known and powerful logic, it allows to express deep properties to
check.

�.�.� Components

R����� has a similar design as the earlier described systems. It contains four different
logical components: IDE services, Language, Visualizations and Checker. Figure �.�
shows these different components in relation to each other. Table �.� shows the size
in SLOC for each component. We will discuss the different components.

IDE services Like the earlier described software, R����� is written in Ras-
cal [KvdSV��]. Rascal is a language workbench [EVV+��]. By making use of Rascal’s

��� ������� � ������ & ��������������

AlleAlle

 IDE services

Rebel2

Checker

Language

VisualizationEclipse IDE

Legend

Internal logical component

External component

Logical connection

Grammar

Type Checker

Dependency
Analyzer

Outliner

Normalizer

Translator

Model
Checker

Figure �.�: Logical components of R�����

Table �.�: Overview of Source Lines Of Code (SLOC) for the different logical components of
R�����. Source lines of tests are not counted.

Component SLOC

IDE Services ���
Visualizations ���
Language ����
Model Checker ����

Total ����

support for IDE integration we constructed an IDE for R�����. Rascal eases in-
tegration into Eclipse by offering high-level abstractions for IDE integration (such
as hyperlinking, outlines, error messaging, hover documentation, etc.) and having
out-of-the-box techniques for specifying grammars of which parser are automatically
generated. Using these techniques we implemented IDE features for R����� such as
syntax highlighting, outline, hyperlinking by jumping from use to definition, error

� .� ������ ���

Figure �.�: Example of the R����� IDE displaying the Tower of Hanoi specification.

messaging and warning. Most operations that can be done by users (visualizing a
specification, checking an assumption, etc.) are done via this component. It coordi-
nates the interaction between the underlying Language, Checker and Visualization
components. Figure �.� shows a screenshot of the R����� IDE.

Language The language components contains the grammar definition and type
checker. The type checker is build using TypePal [Kli��]. TypePal is a Rascal framework
with which a declarative type checker can be implemented on top of a grammar.
The result of type checking via this framework is a record, called a TypeModel in
TypePal, containing type information and possible error messages. This TypeModel is
used by many of the other (sub)components. For instance, when translating R�����
specifications to A���A��� problems. The size of the implemented type checker is
��� SLOC.

Model Checker The model checker component is responsible of translating R�����
specifications to an A���A��� specification. To perform this translation it takes the

��� ������� � ������ & ��������������

Figure �.�: Visualizing a found trace in a R����� formalization of UK’s COVID-�� isolation
rules which where in place during the COVID-epidemic (����-����).

R����� specifications, the type model and the assumption of interest as input. The
outcome can either be that the assumption can not be verified or that a trace has been
found. The model checker returns this trace as an internal data structure (i.e., as an
ADT). Section �.� of chapter � describes the different steps of the translation from
R����� to A���A���.

Interactive visualization The interactive, web-based visualization allows the user
to step through the found trace. Figure �.� shows an example of the visualizer. The
Javascript library ‘State Machine cat’ is used to render the state machines [Ver��].

In each step the current state in the state machines is updated together with the
assigned values. Navigating through the trace is done using the previous and next
buttons. Next to the state and data, the event which is raised between the steps is also
shown. Hovering over the ‘next’-button highlights the state machines will take part
in the next transition.

� .� ������ ���

�.� ����������

During the course of our research we have created four different DSL’s. Two of these
DSL’s (R���� and R�����) were created to support the use of lightweight formal
methods within the context of an enterprise. One DSL, A���A���, was created
to act as an intermediate language to ease the transition from other DSL’s to SMT
solvers. The last DSL, N�����, was amongst other reasons created to validate the
expressiveness of A���A���.

R���� is our first iteration of a DSL to define banking products. It allows for the
checking of some user defined properties. The problem with R���� is that it has an
incomplete mapping to SMT and it has a too restrictive type system.

To overcome some of the problems we faced during the development of R����
we developed A���A���. A���A��� is created to act as an intermediate language
between DSL’s such as R���� and SMT. A���A��� is based on Codd’s relational
algebra and allows for the definition of relational problems. The translation of
A���A��� is complete meaning that all constructs of A���A��� can be automatically
translated and expressed in SMT.

To test A���A��� (amongst other things) N����� was created. N����� is a
formalism that allows for the definition of the static and dynamic semantics of a
DSL. This definition, together with run-time state information, can be utilized during
execution to automatically repair the run-time state when the program changes.

Lastly, we created R�����, a new iteration of R����. Unlike R����, R�����
has a complete translation to A���A��� meaning that all properties that can be
expressed in R����� can be (model) checked by A���A���. Next to that, R�����
implements a novel idea that lets users apply mocking to their specifications enabling
model checking on parts of the full system specification.

All our components were created using the language workbench Rascal [KvdSV��].
Using such a language workbench has been instrumental in the creation of our DSL’s.
It enabled us to quickly prototype certain ideas without having to spend time on
creating parsers and basic IDE support. The prototypes we created could be used
to validate with our collaborating partner whether a DSL was understandable and
expressive enough. Having a quick turn-around time (from idea to DSL) was very
beneficial.

�.�.� Future engineering work

All prototypes lack run time speed in their current form. This could hamper adoption
by a broader audience. There are, however still many performance improvements
possible but these would require a considerable engineering effort.

Another direction for future work that could help adoption would be to support
different IDE’s. The current implementations of A���A��� and R����� are tied to

��� ������� � ������ & ��������������

the Eclipse IDE.‡‡ This IDE has seen declining user numbers over the last couple of
years. One way forward would be to utilize the Language Server Protocol (LSP).§§

LSP allows for the decoupling of language IDE services (such as jump to definition
and auto completion) from editor integration making it easier to integrate a language
in multiple editors. Fortunately Rascal itself moved toward the use of LSP. Offering
language service for R����� and A���A��� to other editors should therefore be
straightforward.

‡‡https://www.eclipse.org/ide/
§§https://microsoft.github.io/language-server-protocol/

� .� ���������� ���

CONCLUSION 7
Enterprise Software Systems are complex systems consisting out of many different
applications, written in different languages, over different eras, by different people.
Evolving such a system is a daunting task. One of the problems encountered during
this task is that the intended working of the system as a whole is often not captured
in a precise description. If this knowledge is captured it is often informal, incomplete
and outdated or became tacit knowledge to the people working in these organizations.

Making this knowledge explicit and precise in the form of formal specifications
can help in understanding and verifying its intended working. Such a specification
can be used to formally verify the correct behavior of a system a priori instead of
testing for correctness a posteriori. The problem however with the application of
these formal specifications is that the cost of fully formalizing a system is considered
too high by many professionals in the field [GM��].

In the late nineties Jackson et al. proposed the creation and use of so called
lightweight formal methods. They argued that instead of focusing on full formalization
the emphasis should be on partiality: partiality in (specification) language, partiality
in modeling, partiality in analysis and partiality in composition. These different
partialities offer practitioners tools to make different trade-offs depending on the
problem at hand.

Our work is done in collaboration with the ING bank, a large, Dutch national bank.
The ING experiences similar challenges as described above. Their IT landscape is vast
and wide containing many applications which evolved over a time period of sixty
years. Fully formalizing such a system is bordering the impossible.

To this end we explored the use of lightweight formal methods in the context of
the ING bank leading to our general research question:

General Research Question

What is the impact of different choices along the axes of partiality on the
design and verification of enterprise software systems using lightweight formal
methods?

To gain insight into this general question we formulated questions placed amongst
the different axes of partiality. In the remainder of this chapter we will revisit these
questions and consolidate the conclusions from the different chapters.

���

�.� �������� �������� �: ���������� �� ��������

Research Question �

How can we design specification languages such that they are expressive
enough to specify problems in the enterprise domain while still able to perform
automatic analysis?

In chapter � we described the design and (prototype) implementation of the
R���� language and its Interactive Specification Environment (ISE). This version of
R���� was a domain specific language and created for the definition of financial
products [MHS��]. This was especially reflected in its domain specific types (such
as Money, IBAN and Term). We observed (qualitatively) that having domain specific
types helped non-technical readers to better understand these specifications.� The
downside of this approach was that implementing automatic reasoning for these
domain specific types was complex (see chapter �). Our analysis of this problem is
that this first iteration of the language was not designed with full automated reasoning
in mind from the start. Adding an efficient encoding for the different domain specific
types as an afterthought has proven to be a big hurdle (as is also remarked by Jackson
et al. [JW��]).

In chapter � we described a second iteration of the R���� language named R�����.
This new version was more generic by nature but was created with automatic reasoning
in mind from the early stages. The types that were domain specific in the first version,
were now created as specifications in the language itself. The benefit of this approach
was that the constructs that needed to be translated to the automatic reasoning
engine were less than for the first version of the language. Experimentation with the
expressiveness of this second version of the language showed that it was possible
to specify similar banking products as specified in the first version of the language
while being able to check for user defined properties in (parts of) the specifications.
The downside of this approach being that the specifications written in R����� are
further away from the problem domain which could hinder understanding for domain
experts in the field.

�Research by van Gasteren showed that natural language documents derived from R���� specification
were considered even better understandable by bank employees than the specifications themselves [vGas��].

��� ������� � ����������

�.� �������� �������� �: ���������� �� ��������

Research Question �

How can we manipulate the cost of modeling for different parts of an enterprise
system while preserving the positive impact of specifying?

This question was fueled by the notion that there is value in specifying even if
these specifications are not used for verification (see chapter �, section �.�.�).

In chapter � we explored the concepts of mocking in the context of formal
specifications. By enabling users to either remove parts of a specification (using the
forget keyword) or replacing parts of the specification with different behavior (using
the mock keyword) it became possible to perform model checking on parts of the
specification of the system without altering the original specifications. We argue
that this paves the way for more hybrid specification approaches where a user can
choose which parts of a system design are important enough to justify the cost of full
formalization and verification while other parts can be merely specified.

The potential downside of this method is that this method does not give the
user guarantees that the chosen specification replacements (or removals) are valid
abstractions of the problem. It could be that the user introduces behavior in a mocked
specification that is not present in the original specification. This can lead to false
positives while model checking, meaning that a user can get the impression that a
specification contains the desired behavior while in practice it does not. This judgment
call is left to the user. Still we argue that this method has benefits since it gives the
user a method to balance the trade-off of full versus partial formalization. Next to that,
this false sense of correctness is also present when performing traditional unit testing
using mocks [MFC��]. This technique, however, is widely used and recognized as
valuable [SAB+��].

�.� �������� �������� �: ���������� �� ��������

Research Question �

How can we extend the current state of the art in relational model finding in
such a way that it is possible to efficiently reason about other theories such as
integer arithmetic?

Relational model finding is a successful technique for solving problems that are
of a structural nature as often found in software design. K����� is a very efficient
implementation of this techniques [TJ��b]. The state of the art utilizes SAT solvers
as a solver back-end. While SAT solvers are very efficient when it comes to solving

� .� �������� �������� � : ���������� �� �������� ���

boolean problems, the are less efficient in solving problems that require reasoning
over other domains such as integer arithmetic.

In chapter � we introduced A���A���. A���A��� is based on Codd’s relational
algebra [Cod��]. Utilizing Codd’s algebra allowed for the use of multi sorted relations
while preserving the well known semantics of relational operators. This allowed for
the encoding of problems that were both relational and numerical by nature. An
algorithm was introduced to translate this hybrid relational and numerical problem
to an SMT formula which in turn could be solved by an SMT solver, Z� [DB��]. The
benefit of this approach is efficient reasoning on these hybrid problems. A���A���
out performed K����� on these type of problems. K����� however was more
efficient in reasoning on pure relational problems.

�.� �������� �������� �: ���������� �� �����������

Research Question �

How can we lift the problem of composition to the language level such that the
user is able to specify different compositions during specification and analysis?

As advocated by Jackson et al. specifying a complex system will most likely result
in many partial specifications describing different parts. Although it is possible
to perform automatic reasoning on the different parts, it is hard to automatically
reason about different cross sections of these specifications. This would require new
specifications describing the cross section of interest.

In chapter � we explore this problem and introduce a mechanism to perform
impromptu compositions of specifications. This is achieved with the use of two
language concepts:

�. By allowing different configurations (bounds) to be used for checking user
defined properties of interest.

�. With the earlier mentioned constructs of forget and mock which allow for the
removal or replacement of a specification for the purpose checking a user
defined property.

The combination of these two concepts allow for ad hoc compositions of specifica-
tions when performing model checking, giving more flexibility to the user to verify
properties on different constellations of specifications.

�.� ������ ����������

During our work we identified many different potential directions for future work of
which we will highlight the most important here:

��� ������� � ����������

Solver aided design for specification languages Designing and construction lan-
guages and symbolic compilers for specification languages such that automatic
reasoning can be performed is a difficult problem. It poses a significant engineering
challenge and a large time investment. One possible way to lessen this burden is by
making use of a framework that helps creating solver aided languages. Rosette is an
example of such a framework [TB��]. By using such a framework for the definition of
a specification language such as described in this work some automated reasoning
techniques could be achieved with low cost. For instance, the power of Rosette could
be used to perform some sort of equivalence checking whether introduced mocks
display similar behavior than their full counterparts (see chapter �).

Multi-aspect modeling In our work we focused on the composition of different
functional specification of a system. Besides this we can imagine that for some
parts of a system it would be of interest to specify non-functional properties such as
performance or security aspects as well. How to compose these different views of the
system is an open question.

Another angle is to investigate methods that would allow for the composition of
different verification techniques in a single set of specifications. For instance, for some
parts of a system performing a shallow (and often cheap) verification technique such
as static checking might suffice while other parts that are considered critical require
the formal proof of some safety properties.

Improving relational model finding with SMT solvers There are several directions
to explore that could increase the effectiveness of A���A���. Firstly, the current
implementation of A���A��� lacks symmetry breaking [TJ��b]. Symmetry breaking
is a technique that prevents searching for symmetric solutions of a problem. Although
it is known how to perform this for the current SAT based solution (using an algorithm
known as greedy base partitioning and the addition of symmetry breaking predicates)
it is an open question how this should be implemented for multi sorted relations.

Secondly, the current implementation does not offer the user any guidance on
the reason why a specification is satisfiable or not. It is left to the user to find out
why a specified property is not satisfiable. There are known ways to provide (some)
feedback to the user in these situations. For instance, Torlak describes the use of
unsatisfiability core extraction, a method to derive the minimal set of clauses that make
the formula unsatisfiable. This information is then lifted to the level of the relational
specification and shown to the user. How this is to be done for the relational logic of
A���A��� is an open question.

Another way to supply information on reasoning is to provide provenance for
the existence of certain tuples in a relation [NDD+��]. This would allow users to
interactively query the specification to automatically deduce why certain tuples are

� .� ������ ���������� ���

or are not allowed. Again, how to do this in the light of A���A���’s multi sorted
relations is to be seen.

�.� ������ ��� ��� ������������� �������

Our research was inspired by the challenges faced by our industrial partner. In the
final paragraphs of this thesis we would like to offer some further advice to our
collaborating partner, the ING bank, we derived from our research and experiences.

Creating specifications has value During this work we closely worked together
with different employees of the bank. What became clear time after time again is that
the process of specifying holds great value. By systematic elicitation and the need to
concisely notate this gained knowledge in a specification many unknowns, unclarities
and assumptions already arose. To this end we advise that the process of writing
(formal) specifications to describe the functional behavior should become part of the
development cycle. Whether this should be done for existing applications depends
on how critical it is versus how often it changes. Whenever a large refactoring is to be
performed, it could be wise to create specifications up front such that it can be used
to check for conformance later.

Use specifications for testing purposes The created specifications can be used for
testing purposes to check whether applications conform to their specifications. This
could be done in an automated fashion using techniques such as model based test-
ing [DJK+��]. But even if no automated techniques are used, using the specifications
to guide the testing (unit, integration or manual system tests) hold value and can help
in spotting inconsistencies early in the process.

Continue the path of application generation from specifications The ultimate goal
of writing formal specifications of the system was to generate new software that is
correct-by-construction. In a parallel track during our research great strides were
made in this area. Soethout et al. researched sound methods for generating systems
from R���� specifications [SSV��; SvdSV��a]. These generated systems are highly
distributed and scalable by nature while staying true to the semantics of R����. To
the author of this thesis, this seems as a promising method to create the correct and
scalable applications of the future!

��� ������� � ����������

BIBLIOGRAPHY

[AJM+��] M. D. Aagaard, R. B. Jones, T. F. Melham, J. W. O’leary, and C.-J. H. Seger.
“A methodology for large-scale hardware verification”. In: International
Conference on Formal Methods in Computer-Aided Design. Springer. ����,
pp. ���–��� (cit. on p. �).

[ATC+��] P. Abate, R. Treinen, R. D. Cosmo, and S. Zacchiroli. “MPM : a modular
package manager”. In: CBSE. ACM, ����, pp. ���–��� (cit. on pp. ��, ��,
��).

[Abr��] J. Abrail. The B-Book: Assigning programs to meaning. Cambridge Univer-
sity Press, ���� (cit. on pp. �, ��, ��).

[AH��] J.-R. Abrial and S. Hallerstede. “Refinement, decomposition, and in-
stantiation of discrete models: Application to Event-B”. In: Fundamenta
Informaticae ��.�-� (����), pp. �–�� (cit. on pp. ��, ���).

[AL��] S. Agerholm and P. G. Larsen. “A lightweight approach to formal
methods”. In: International Workshop on Current Trends in Applied Formal
Methods. Springer. ����, pp. ���–��� (cit. on pp. �, �).

[AU��] A. Aho and J. Ullman. “Universality of data retrieval languages”. In:
POPL. ACM. ����, pp. ���–��� (cit. on p. ��).

[ABG+��] P. Arcaini, S. Bonfanti, A. Gargantini, E. Riccobene, and P. Scandurra.
“Modelling an Automotive Software-Intensive System with Adaptive
Features Using ASMETA”. In: International Conference on Rigorous State-
Based Methods. Springer. ����, pp. ���–��� (cit. on pp. ���, ���).

[AvDR��] B. Arnold, A. van Deursen, and M. Res. “An algebraic specification of a
language for describing financial products”. In: ICSE-�� Workshop on
Formal Methods Application in Software Engineering. ����, pp. �–�� (cit. on
p. ��).

[BPH+��] B. Bajić-Bizumić, C. Petitpierre, H. Huynh, and A. Wegmann. “A model-
driven environment for service design, simulation and prototyping”.
In: ESS. Springer. ����, pp. ���–��� (cit. on p. ��).

[BRB+��] K. Bansal, A. Reynolds, C. Barrett, and C. Tinelli. “A new decision
procedure for finite sets and cardinality constraints in SMT”. In: CAV.
Springer. ����, pp. ��–�� (cit. on p. ��).

[BCD+��] C. Barrett, C. Conway, M. Deters, L. Hadarean, J. D., T. King, A. Reynolds,
and C. Tinelli. “CVC�”. In: CAV. Ed. by G. Gopalakrishnan and S.
Qadeer. Vol. ����. Lecture Notes in Computer Science. Springer, July
����, pp. ���–��� (cit. on pp. ��, ��).

���

[BST��] C. Barrett, A. Stump, and C. Tinelli. The smt-lib standard: Version �.�.
Tech. rep. Department of Computer Science, The University of Iowa,
���� (cit. on p. ��).

[BBF+��] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. “METEOR: A
successful application of B in a large project”. In: International Symposium
on Formal Methods. Springer. ����, pp. ���–��� (cit. on p. �).

[BBH+��] H. Bekić, D. Bjørner, W. Henhapl, C. Jones, and P. Lucas. A formal defini-
tion of a PL/i subset. TR (IBM Laboratory Vienna) dl. �. IBM Laboratory
Vienna, ���� (cit. on p. �).

[Big��] T. J. Biggerstaff. “Design recovery for maintenance and reuse”. In:
Computer ��.� (����), pp. ��–�� (cit. on p. �).

[BGW��] R. Bill, M. Gogolla, and M. Wimmer. “On Leveraging UML/OCL for
Model Synchronization”. In: Proceedings of the ��th Workshop on Models
and Evolution co-located with ACM/IEEE ��th International Conference
on Model Driven Engineering Languages and Systems (MODELS ����),
Saint-Malo, France, October �, ����. Ed. by T. Mayerhofer, A. Pierantonio,
B. Schätz, and D. Tamzalit. Vol. ����. CEUR Workshop Proceedings.
CEUR-WS.org, ����, pp. ��–�� (cit. on p. ��).

[BJ] D. Bjørner and C. B. Jones. The Vienna development method: The meta-
language. Springer (cit. on pp. �, �).

[BPF��] N. Bjørner, A. Phan, and L. Fleckenstein. “⇡Z - An Optimizing SMT
Solver”. In: TACAS. Vol. ��. ����, pp. ���–��� (cit. on pp. ��, ��, ��, ��).

[BTV��] N. Bjørner, N. Tillmann, and A. Voronkov. “Path feasibility analysis
for string-manipulating programs”. In: Tools and Algorithms for the
Construction and Analysis of Systems: ��th International Conference, TACAS
����, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS ����, York, UK, March ��-��, ����. Proceedings ��.
Springer. ����, pp. ���–��� (cit. on p. ���).

[Bör��] E. Börger. “High level system design and analysis using abstract state
machines”. In: International Workshop on Current Trends in Applied Formal
Methods. Springer. ����, pp. �–�� (cit. on p. ���).

[BJA+��] J. Bornholt, R. Joshi, V. Astrauskas, B. Cully, B. Kragl, S. Markle, K.
Sauri, D. Schleit, G. Slatton, S. Tasiran, et al. “Using lightweight formal
methods to validate a key-value storage node in Amazon S�”. In:
Proceedings of the ACM SIGOPS ��th Symposium on Operating Systems
Principles. ����, pp. ���–��� (cit. on p. �).

��� ������������

[BLC+��] E. Bousse, D. Leroy, B. Combemale, M. Wimmer, and B. Baudry. “Omni-
scient debugging for executable DSLs”. In: Journal of Systems and Software
��� (����), pp. ���–���. ���: 10.1016/j.jss.2017.11.025 (cit. on p. ��).

[BMC+��] E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry. “Advanced and
efficient execution trace management for executable domain-specific
modeling languages”. In: Software & Systems Modeling (����), pp. �–��
(cit. on p. ��).

[BCR+��] J. Brunel, D. Chemouil, L. Rioux, M. Bakkali, and F. Vallée. “A viewpoint-
based approach for formal safety & security assessment of system
architectures”. In: MoDeVVa. Vol. ����. ����, pp. ��–�� (cit. on p. ��).

[BCC+��] J. Brunel, D. Chemouil, A. Cunha, and N. Macedo. “The electrum
analyzer: model checking relational first-order temporal specifications”.
In: Proceedings of the ��rd ACM/IEEE International Conference on Automated
Software Engineering. ����, pp. ���–��� (cit. on p. �).

[BFdH+��] S. Burckhardt, M. Fähndrich, P. de Halleux, S. McDirmid, M. Moskal,
N. Tillmann, and J. Kato. “It’s alive! continuous feedback in UI pro-
gramming”. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’��, Seattle, WA, USA, June ��-��, ����.
����, pp. ��–���. ���: 10.1145/2462156.2462170 (cit. on p. ��).

[CCR��] J. Cabot, R. Clarisó, and D. Riera. “On the verification of UML/OCL
class diagrams using constraint programming”. In: Journal of Systems
and Software �� (����), pp. �–��. ���: 10.1016/j.jss.2014.03.023 (cit. on
p. ��).

[CCO+��] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha.
“State/event-based software model checking”. In: International Con-
ference on Integrated Formal Methods. Springer. ����, pp. ���–��� (cit. on
pp. ��–���).

[Cha��] R. N. Charette. “Why software fails”. In: IEEE spectrum ��.� (����),
pp. ��–�� (cit. on pp. �, �).

[CFS] M. Christerson, D. Frankel, and T. Schiller. Financial Domain-Specific
Language Listing. http://www.dslfin.org/resources.html. Accessed:
�-�-���� (cit. on p. ��).

[CGS��] A. Cimatti, A. Griggio, and R. Sebastiani. “Computing small unsatis-
fiable cores in satisfiability modulo theories”. In: Journal of Artificial
Intelligence Research �� (����), pp. ���–��� (cit. on p. ��).

������������ ���

[CS��] K. Claessen and N. Sörensson. “New techniques that improve MACE-
style finite model finding”. In: CADE-�� Workshop: Model Computation-
Principles, Algorithms, Applications. Citeseer. ����, pp. ��–�� (cit. on
pp. ��, ��).

[CH��] K. Claessen and J. Hughes. “QuickCheck: a lightweight tool for random
testing of Haskell programs”. In: Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming. ����, pp. ���–���
(cit. on p. �).

[CHV+��] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Handbook of model
checking. Vol. ��. Springer, ���� (cit. on pp. �, ��).

[CES��] E. Clarke, E. Emerson, and J. Sifakis. “Model Checking : Algorithmic
Verification and Debugging”. In: Communications of the ACM ��.�� (����),
pp. ��–�� (cit. on p. ��).

[CGK+��] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith.
Model checking. MIT press, ���� (cit. on p. ��).

[Cod��] E. Codd. “A relational model of data for large shared data banks”. In:
Communications of the ACM ��.� (����), pp. ���–��� (cit. on pp. ��, ��,
��, ���).

[Cod��] E. F. Codd. “A relational model of data for large shared data banks”. In:
Communications of the ACM ��.� (����), pp. ��–�� (cit. on p. ���).

[CCP��] B. Combemale, X. Crégut, and M. Pantel. “A design pattern to build
executable DSMLs and associated V&V tools”. In: Software Engineering
Conference (APSEC), ���� ��th Asia-Pacific. Vol. �. IEEE. ����, pp. ���–���
(cit. on p. ��).

[Cos��] R. D. Cosmo. EDOS deliverable WP�-D� . � : Report on Formal Management
of Software Dependencies. Tech. rep. ����. ���: https://hal.inria.fr/hal-
00697463/document (cit. on p. ��).

[CD��] M. L. Crane and J. Dingel. “Towards a UML virtual machine: imple-
menting an interpreter for UML � actions and activities”. In: Proceedings
of the ���� conference of the Centre for Advanced Studies on Collaborative
Research, October ��-��, ����, Richmond Hill, Ontario, Canada. ����, p. �.
���: 10.1145/1463788.1463799 (cit. on p. ��).

[Cun��] A. Cunha. “Bounded model checking of temporal formulas with Alloy”.
In: International Conference on Abstract State Machines, Alloy, B, TLA, VDM,
and Z. Springer. ����, pp. ���–��� (cit. on pp. ���, ���).

��� ������������

[CML��] A. Cunha, N. Macedo, and C. Liu. “Validating Multiple Variants of an
Automotive Light System with Electrum”. In: International Conference on
Rigorous State-Based Methods. Springer. ����, pp. ���–��� (cit. on pp. ���,
���).

[DJK+��] S. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. Lott, G. Patton, and
B. Horowitz. “Model-based testing in practice”. In: Proceedings of the
���� International Conference on Software Engineering ����.May (����),
pp. ���–��� (cit. on pp. ��, ���).

[Dat��] C. Date. An Introduction to Database Systems. �th. Reading, MA, Addison-
Wesley, ����, p. ��� (cit. on pp. ��, ���).

[DGW+��] J. Davies, J. Gibbons, J. Welch, and E. Crichton. “Model-driven engi-
neering of information systems: �� years and ���� versions”. In: Science
of Computer Programming �� (Sept. ����), pp. ��–��� (cit. on p. ��).

[DB��] L. De Moura and N. Bjørner. “Z�: An efficient SMT solver”. In: Interna-
tional conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer. ����, pp. ���–��� (cit. on pp. ��, ��, ��, ��, ��, ��,
���, ���).

[DP��] L. De Moura and G. O. Passmore. “The strategy challenge in SMT
solving”. In: Automated Reasoning and Mathematics. Springer, ����, pp. ��–
�� (cit. on p. ���).

[DS��] G. Dedene and M. Snoeck. “Formal deadlock elimination in an object
oriented conceptual schema”. In: Data & Knowledge Engineering ��.�
(����), pp. �–�� (cit. on p. ��).

[DSD��] G. Dedene, M. Snoeck, and A. Depuydt. “On generalisation/specialisa-
tion hierarchies in MERODE-object-oriented business modeling”. In:
DTEW Research Report ���� (����) (cit. on p. �).

[Den��] G. D. Dennis. “A relational framework for bounded program verifica-
tion”. PhD thesis. Massachusetts Institute of Technology, ���� (cit. on
p. ��).

[DK��] D. Dotan and A. Kirshin. “Debugging and testing behavioral UML
models”. In: Companion to the ��nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ����, October ��-��, ����, Montreal, Quebec, Canada. ����,
pp. ���–���. ���: 10.1145/1297846.1297915 (cit. on p. ��).

[DKS+��] G. Droschl, W. Kuhn, G. Sonneck, and M. Thuswald. “A formal methods
case study: Using light-weight VDM for the development of a security
system module”. In: International Conference on Computer Safety, Reliability,
and Security. Springer. ����, pp. ���–��� (cit. on pp. �, �).

������������ ���

[EHP+��] R. Eilers, J. Hage, W. Prasetya, and J. Bosman. “Fine-Grained Model
Slicing for Rebel”. In: ���� IEEE ��th International Working Conference on
Source Code Analysis and Manipulation (SCAM). IEEE. ����, pp. ���–���
(cit. on p. ���).

[Eke��] S. Eker. “Single elementary associative-commutative matching”. In:
Journal of Automated Reasoning ��.� (����), pp. ��–�� (cit. on p. ���).

[ET��] A. El Ghazi and M. Taghdiri. “Relational reasoning via SMT solving”.
In: FM. Springer. ����, pp. ���–��� (cit. on p. ��).

[EGK+��] F. Erata, A. Goknil, I. Kurtev, and B. Tekinerdogan. “AlloyInEcore:
Embedding of First-Order Relational Logic into Meta-Object Facility
for Automated Model Reasoning”. In: Proceedings of the ��th ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ��). ����. ���: 10.1145/
3236024.3264588 (cit. on p. ��).

[EVV+��] S. Erdweg, T. Van Der Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, et al. “The state of the
art in language workbenches”. In: International Conference on Software
Language Engineering. Springer. ����, pp. ���–��� (cit. on p. ���).

[FGM+��] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.
“Combinators for bidirectional tree transformations: A linguistic ap-
proach to the view-update problem”. In: ACM Trans. Program. Lang.
Syst. ��.� (����), p. ��. ���: 10.1145/1232420.1232424 (cit. on p. ��).

[Fow��] M. Fowler. Patterns of enterprise application architecture. Addison-Wesley
Longman Publishing Co., Inc., ���� (cit. on p. �).

[FGL+��] M. F. Frias, J. P. Galeotti, C. G. López Pombo, and N. M. Aguirre. “DynAl-
loy: upgrading alloy with actions”. In: Proceedings of the ��th international
conference on Software engineering. ����, pp. ���–��� (cit. on p. ���).

[GRS��] A. Gimblett, M. Roggenbach, and H. Schlingloff. “Towards a formal
specification of electronic payment systems in CSP-CASL”. In: Recent
Trends in Algebraic Development Techniques. Springer, ����, pp. ��–��
(cit. on pp. �, ��).

[GM��] M. Gleirscher and D. Marmsoler. “Formal methods in dependable
systems engineering: a survey of professionals from Europe and North
America”. In: Empirical Software Engineering ��.� (����), pp. ����–����
(cit. on pp. �, ���).

[GM��] J. F. Groote and M. R. Mousavi. Modeling and analysis of communicating
systems. MIT press, ���� (cit. on pp. �, ��, ���).

��� ������������

[GGL+��] D. Grunwald, C. Gladisch, T. Liu, M. Taghdiri, and S. Tyszberowicz.
“Generating JML specifications from alloy expressions”. In: Hardware
and Software: Verification and Testing: ��th International Haifa Verification
Conference, HVC ����, Haifa, Israel, November ��-��, ����. Proceedings ��.
Springer. ����, pp. ��–��� (cit. on p. ��).

[GB��] Y. Gurevich and E. Börger. “Evolving algebras ����: Lipari guide”. In:
Evolving Algebras �� (����) (cit. on p. �).

[Hav] M. Haverbeke. CodeMirror. https://codemirror.net/. Accessed: ����-
��-�� (cit. on p. ���).

[HL��] G. J. Holzmann and W. S. Lieberman. Design and validation of computer
protocols. Vol. ���. Prentice hall Englewood Cliffs, ���� (cit. on p. �).

[HA��] J. Horl and B. K. Aichernig. “Validating voice communication require-
ments using lightweight formal methods”. In: IEEE Software ��.� (����),
pp. ��–�� (cit. on p. �).

[HR��] F. Houdek and A. Raschke. “Adaptive Exterior Light and Speed Control
System”. In: International Conference on Rigorous State-Based Methods.
Springer. ����, pp. ���–��� (cit. on p. ���).

[Jac��] D. Jackson. “Lightweight formal methods”. In: FME ����: Formal Methods
for Increasing Software Productivity. Springer, ����, pp. �–� (cit. on pp. ��,
��).

[Jac��a] D. Jackson. “Alloy: a lightweight object modelling notation”. In: ACM
Transactions on Software Engineering and Methodology ��.� (����), pp. ���–
��� (cit. on pp. �, ��).

[Jac��] D. Jackson. Software Abstractions - Logic, Language, and Analysis. Revised.
MIT press, ����, p. ��� (cit. on pp. �, ��, ��, ��, ��, ���, ���, ���).

[JSS��] D. Jackson, I. Schechter, and H. Shlyahter. “Alcoa: the alloy constraint
analyzer”. In: ICSE. ACM. ����, pp. ���–��� (cit. on p. �).

[Jac��b] D. Jackson. “Alloy: a lightweight object modelling notation”. In: ACM
Transactions on Software Engineering and Methodology (TOSEM) ��.� (����),
pp. ���–��� (cit. on pp. ��, ��, ���, ���).

[JW��] D. Jackson and J. Wing. “Lightweight formal methods”. In: IEEE Comput.
��.� (����), pp. ��–�� (cit. on pp. �, �–�, ��, ���, ���, ���).

[KGN+��] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S.
Pandav, A. Slobodová, C. Taylor, V. Frolov, E. Reeber, et al. “Replacing
Testing with Formal Verification in Intel CoreTM i� Processor Execu-
tion Engine Validation”. In: International Conference on Computer Aided
Verification. Springer. ����, pp. ���–��� (cit. on p. �).

������������ ���

[KJ��] E. Kang and D. Jackson. “Designing and analyzing a flash file system
with Alloy.” In: Int. J. Softw. Informatics �.�-� (����), pp. ���–��� (cit. on
p. �).

[KN��] D. Kapur and P. Narendran. “NP-completeness of the set unification and
matching problems”. In: International conference on automated deduction.
Springer. ����, pp. ���–��� (cit. on p. ���).

[Kel��] R. M. Keller. “Formal verification of parallel programs”. In: Communica-
tions of the ACM ��.� (����), pp. ���–��� (cit. on p. ��).

[KYZ+��] S. Khalek, G. Yang, L. Zhang, D. Marinov, and S. Khurshid. “Testera:
A tool for testing Java programs using Alloy specifications”. In: ASE.
IEEE Computer Society. ����, pp. ���–��� (cit. on p. ��).

[KvdSV��] P. Klint, T. van der Storm, and J. Vinju. “RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation”. In: ���� Ninth
IEEE International Working Conference on Source Code Analysis and Manip-
ulation. IEEE, ����, pp. ���–��� (cit. on pp. ��, ��, ��, ���, ���, ���, ���,
���, ���).

[Kli��] P. Klint. TypePal: Name and Type Analysis made Easy. https://docs.
rascal-mpl.org/unstable/TypePal/. Accessed: ����-��-�� (cit. on p. ���).

[KRB��] J. Kubelka, R. Robbes, and A. Bergel. “The Road to Live Programming:
Insights from the Practice”. In: Proceedings of the ��th International
Conference on Software Engineering. ICSE ’��. Gothenburg, Sweden: ACM,
����, pp. ����–����. ����: ���-�-����-����-�. ���: 10.1145/3180155.
3180200 (cit. on p. ��).

[Kum��] A. Kumar. “A lightweight formal approach for analyzing security of
web protocols”. In: International Workshop on Recent Advances in Intrusion
Detection. Springer. ����, pp. ���–��� (cit. on p. �).

[Lam��] L. Lamport. “Specifying concurrent systems with TLA+”. In: Calcula-
tional System Design (����), pp. ���–��� (cit. on p. �).

[Lam��] L. Lamport. Specifying systems: the TLA+ language and tools for hardware
and software engineers. Addison-Wesley Longman Publishing Co., Inc.,
���� (cit. on p. �).

[Lam��] A. v. Lamsweerde. “Formal specification: a roadmap”. In: Proceedings
of the Conference on the Future of Software Engineering. ����, pp. ���–���
(cit. on p. �).

[LP��] D. Le Berre and A. Parrain. “The Sat�j library, release �.�”. In: Journal
on Satisfiability, Boolean Modeling and Computation �.�-� (����), pp. ��–��
(cit. on p. �).

��� ������������

[Leh��] M. M. Lehman. “Laws of software evolution revisited”. In: European
Workshop on Software Process Technology. Springer. ����, pp. ���–���
(cit. on p. �).

[Leh��] M. M. Lehman. “Programs, life cycles, and laws of software evolution”.
In: Proceedings of the IEEE ��.� (����), pp. ����–���� (cit. on p. �).

[LSF��] T. C. Lethbridge, J. Singer, and A. Forward. “How software engineers
use documentation: The state of the practice”. In: IEEE software ��.�
(����), pp. ��–�� (cit. on p. �).

[LMW��] M. Leuschel, M. Mutz, and M. Werth. “Modelling and Validating
an Automotive System in Classical B and Event-B”. In: International
Conference on Rigorous State-Based Methods. Springer. ����, pp. ���–���
(cit. on pp. ���, ���).

[LF��] H. Lieberman and C. Fry. “Bridging the gulf between code and behavior
in programming”. In: Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM Press/Addison-Wesley Publishing
Co. ����, pp. ���–��� (cit. on p. ��).

[LSS+��] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral,
B.-Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis.
“In defense of soundiness: a manifesto”. In: Communications of the ACM
��.� (����), pp. ��–�� (cit. on p. ���).

[MBC+��] N. Macedo, J. Brunel, D. Chemouil, A. Cunha, and D. Kuperberg.
“Lightweight specification and analysis of dynamic systems with rich
configurations”. In: Proceedings of the ���� ��th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. ����, pp. ���–
��� (cit. on pp. ���, ���).

[MC��] N. Macedo and A. Cunha. “Implementing QVT-R Bidirectional Model
Transformations Using Alloy”. In: Fundamental Approaches to Software
Engineering - ��th International Conference, FASE ����, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS
����, Rome, Italy, March ��-��, ����. Proceedings. ����, pp. ���–���. ���:
10.1007/978-3-642-37057-1_22 (cit. on p. ��).

[MGC��] N. Macedo, T. Guimarães, and A. Cunha. “Model repair and transfor-
mation with Echo”. In: ���� ��th IEEE/ACM International Conference
on Automated Software Engineering, ASE ����, Silicon Valley, CA, USA,
November ��-��, ����. Ed. by E. Denney, T. Bultan, and A. Zeller. IEEE,
����, pp. ���–���. ���: 10.1109/ASE.2013.6693135 (cit. on pp. ��, ��).

������������ ���

[MFC��] T. Mackinnon, S. Freeman, and P. Craig. “Endo-testing: unit testing with
mock objects”. In: Extreme programming examined (����), pp. ���–���
(cit. on pp. ��, ���, ���).

[MFL��] A. Mammar, M. Frappier, and R. Laleau. “An Event-B Model of an
Automotive Adaptive Exterior Light System”. In: International Conference
on Rigorous State-Based Methods. Springer. ����, pp. ���–��� (cit. on
pp. ���, ���).

[MLK��] T. Mayerhofer, P. Langer, and G. Kappel. “A runtime model for fUML”.
In: Proceedings of the �th Workshop on Models@ run. time. ACM. ����,
pp. ��–�� (cit. on p. ��).

[McC��] W. McCune. A Davis-Putnam program and its application to finite first-order
model search: Quasigroup existence problems. Tech. rep. Technical report,
Argonne National Laboratory, ���� (cit. on p. ��).

[McD��] S. McDirmid. “Usable live programming”. In: ACM Symposium on New
Ideas in Programming and Reflections on Software, Onward! ����, part of
SPLASH ’��, Indianapolis, IN, USA, October ��-��, ����. ����, pp. ��–��.
���: 10.1145/2509578.2509585 (cit. on p. ��).

[MRT+��] B. Meng, A. Reynolds, C. Tinelli, and C. Barrett. “Relational constraint
solving in SMT”. In: CAV. Springer. ����, pp. ���–��� (cit. on p. ��).

[MHS��] M. Mernik, J. Heering, and A. M. Sloane. “When and how to develop
domain-specific languages”. In: ACM computing surveys (CSUR) ��.�
(����), pp. ���–��� (cit. on p. ���).

[Mey��] B. Meyer. “On Formalism in Specifications”. In: IEEE Software �.� (����),
pp. �–�� (cit. on p. ��).

[MJ��] A. Milicevic and D. Jackson. “Preventing arithmetic overflows in Alloy”.
In: Science of Computer Programming �� (����), pp. ���–��� (cit. on p. ��).

[MK��] A. Milicevic and H. Kugler. “Model checking using SMT and theory
of lists”. In: NASA Formal Methods. Springer, ����, pp. ���–��� (cit. on
p. ��).

[MNK+��] A. Milicevic, J. Near, E. Kang, and D. Jackson. “Alloy*: a general-purpose
higher-order relational constraint solver”. In: ICSE. IEEE Press. ����,
pp. ���–��� (cit. on p. ��).

[MQ��] M. Musuvathi and S. Qadeer. “Fair stateless model checking”. In: ACM
SIGPLAN Notices ��.� (����), pp. ���–��� (cit. on p. �).

[NDD+��] T. Nelson, N. Danas, D. Dougherty, and S. Krishnamurthi. “The power
of why and why not: enriching scenario exploration with provenance”.
In: FSE. ACM. ����, pp. ���–��� (cit. on p. ���).

��� ������������

[NRZ+��] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M.
Deardeuff. “How Amazon web services uses formal methods”. In:
Communications of the ACM ��.� (����), pp. ��–�� (cit. on pp. �, �).

[PSK+��] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh. “Formal verification
of OAuth �.� using Alloy framework”. In: ���� International Conference on
Communication Systems and Network Technologies. IEEE. ����, pp. ���–���
(cit. on p. �).

[Pet��] C. Peters. “FORS - Seperating Configuration From Formal Specification”.
MA thesis. Universisty of Amsterdam, ���� (cit. on p. ��).

[Pla] PlantUML. PlantUML. https://plantuml.com/state-diagram. Accessed:
����-��-�� (cit. on p. ���).

[Plo��] G. D. Plotkin. A structural approach to operational semantics. Tech. rep.
Computer Science Dept., Aarhus University, Denmark, ���� (cit. on
p. ��).

[PFL��] C. Prud’homme, J. Fages, and X. Lorca. Choco Documentation. ����. ���:
http://www.choco-solver.org (cit. on p. ��).

[RVV��] I. Ráth, D. Vago, and D. Varró. “Design-time simulation of domain-
specific models by incremental pattern matching”. In: IEEE Sympo-
sium on Visual Languages and Human-Centric Computing, VL/HCC ����,
Herrsching am Ammersee, Germany, ��-�� September ����, Proceedings.
����, pp. ���–���. ���: 10.1109/VLHCC.2008.4639089 (cit. on pp. ��, ��).

[RCG+��] G. Regis, C. Cornejo, S. Gutiérrez Brida, M. Politano, F. Raverta, P.
Ponzio, N. Aguirre, J. P. Galeotti, and M. Frias. “DynAlloy Analyzer: A
tool for the specification and analysis of Alloy models with dynamic
behaviour”. In: Proceedings of the ���� ��th Joint Meeting on Foundations
of Software Engineering. ����, pp. ���–��� (cit. on p. ���).

[RRL+��] P. Rein, S. Ramson, J. Lincke, R. Hirschfeld, and T. Pape. “Exploratory
and Live, Programming and Coding - A Literature Study Comparing
Perspectives on Liveness”. In: Programming Journal �.� (����), p. �. ���:
10.22152/programming-journal.org/2019/3/1 (cit. on p. ��).

[RTG+��] A. Reynolds, C. Tinelli, A. Goel, and S. Krstić. “Finite model finding in
SMT”. In: CAV. Springer. ����, pp. ���–��� (cit. on p. ��).

[RCB��] D. Richard, K. R. Chandramouli, and R. W. Butler. “Cost effective use of
formal methods in verification and validation”. In: (����) (cit. on p. �).

[Run��] P. Runeson. “A survey of unit testing practices”. In: IEEE software ��.�
(����), pp. ��–�� (cit. on p. ���).

[Sag��] S. Saghafi. “A Framework for Exploring Finite Models”. PhD thesis.
Worcester Polytechnic Institute, ���� (cit. on p. ��).

������������ ���

[Sch��] A. Schürr. “Specification of Graph Translators with Triple Graph Gram-
mars”. In: Graph-Theoretic Concepts in Computer Science, ��th International
Workshop, WG ’��, Herrsching, Germany, June ��-��, ����, Proceedings.
����, pp. ���–���. ���: 10.1007/3-540-59071-4_45 (cit. on p. ��).

[ST��] R. Sebastiani and P. Trentin. “OptiMathSAT: a tool for optimization
modulo theories”. In: CAV. Springer. ����, pp. ���–��� (cit. on p. ��).

[SDH+��] O. Semeráth, C. Debreceni, Á. Horváth, and D. Varró. “Incremental
backward change propagation of view models by logic solvers”. In:
Proceedings of the ACM/IEEE ��th International Conference on Model Driven
Engineering Languages and Systems, Saint-Malo, France, October �-�, ����.
����, pp. ���–��� (cit. on p. ��).

[Sim��] A. Simpson. “Logic, damned logic, and statistics”. In: Teaching Formal
Methods: Practice and Experience (����), pp. �–� (cit. on p. �).

[Sla��] J. Slaney. “FINDER: Finite domain enumerator system description”. In:
CAV. Springer. ����, pp. ���–��� (cit. on p. ��).

[SD��] M. Snoeck and G. Dedene. “Existence Dependency: The key to semantic
integrity between structural and behavioral aspects of object types”.
In: Software Engineering, IEEE Transactions on ��.� (����), pp. ���–���
(cit. on p. ��).

[Sno��] M. Snoeck. Enterprise Information Systems Engineering. Springer, ����
(cit. on p. �).

[SMD��] M. Snoeck, C. Michiels, and G. Dedene. “Consistency by construction:
the case of MERODE”. In: International Conference on Conceptual Modeling.
Springer. ����, pp. ���–��� (cit. on pp. �, ��, ��, ��).

[SSV��] T. Soethout, T. v. d. Storm, and J. J. Vinju. “Automated Validation of State-
Based Client-Centric Isolation with TLA+”. In: International Conference
on Software Engineering and Formal Methods. Springer. ����, pp. ��–��
(cit. on p. ���).

[SvdSV��a] T. Soethout, T. van der Storm, and J. J. Vinju. “Path-Sensitive Atomic
Commit-Local Coordination Avoidance for Distributed Transactions.”
In: The Art, Science, and Engineering of Programming �.� (����), p. � (cit. on
p. ���).

[SAB+��] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli. “To mock or not
to mock? an empirical study on mocking practices”. In: ���� IEEE/ACM
��th International Conference on Mining Software Repositories (MSR). IEEE.
����, pp. ���–��� (cit. on pp. ���, ���).

[Spi��] J. M. Spivey. The Z Notation: A Reference Manual. USA: Prentice-Hall,
Inc., ����. ����: ���������X (cit. on p. �).

��� ������������

[SHU��] F. Steimann, J. Hagemann, and B. Ulke. “Computing Repair Alternatives
for Malformed Programs Using Constraint Attribute Grammars”. In:
Proceedings of the ���� ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. OOPSLA
����. Amsterdam, Netherlands: ACM, ����, pp. ���–���. ����: ���-�-
����-����-�. ���: 10.1145/2983990.2984007 (cit. on p. ��).

[Sto��] J. Stoel. Rebel. ����. ���: unknown. ���: https : / / github . com / cwi -

swat/rebel (cit. on p. ��).
[Sto��a] J. Stoel. AlleAlle. ����. ���: unknown. ���: https://github.com/cwi-

swat/allealle (cit. on p. ��).
[Sto��b] J. Stoel. AlleAlle Benchmarks. ����. ���: unknown. ���: https://github.

com/joukestoel/allealle-benchmark (cit. on p. ��).
[Sto��c] J. Stoel. Nextep Live Statemachine Example. ����. ���: unknown. ���:

https://github.com/joukestoel/live-state-machines (cit. on p. ��).
[Sto��] J. Stoel. Rebel�. ����. ���: unknown. ���: https://github.com/cwi-

swat/rebel2 (cit. on p. ��).
[SSV+��] J. Stoel, T. v. d. Storm, J. Vinju, and J. Bosman. “Solving the bank with

Rebel: on the design of the Rebel specification language and its applica-
tion inside a bank”. In: Proceedings of the �st Industry Track on Software
Language Engineering. ����, pp. ��–�� (cit. on pp. ��, ��).

[STvdS+��] J. Stoel, U. Tikhonova, T. van der Storm, and T. Degueule. Nextep. ����.
���: unknown. ���: https://github.com/cwi-swat/live-modeling (cit. on
p. ��).

[SvdSV��] J. Stoel, T. van der Storm, and J. J. Vinju. “AlleAlle: bounded relational
model finding with unbounded data”. In: Proceedings of the ���� ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. ����, pp. ��–�� (cit. on pp. ��,
��, ���, ���).

[SvdSV��b] J. Stoel, T. van der Storm, and J. J. Vinju. “Modeling with Mocking”. In:
���� IEEE ��th International Conference on Software Testing, Validation and
Verification (ICST). ���� (cit. on p. ��).

[SPM��] R. V. D. Straeten, J. P. Puissant, and T. Mens. “Assessing the Kodkod
Model Finder for Resolving Model Inconsistencies”. In: Modelling Foun-
dations and Applications - �th European Conference, ECMFA ����, Birming-
ham, UK, June � - �, ���� Proceedings. Ed. by R. B. France, J. M. Küster, B.
Bordbar, and R. F. Paige. Vol. ����. Lecture Notes in Computer Science.
Springer, ����, pp. ��–��. ���: 10.1007/978-3-642-21470-7_6 (cit. on
p. ��).

������������ ���

[Tan��] S. L. Tanimoto. “A perspective on the evolution of live programming”.
In: Proceedings of the �st International Workshop on Live Programming, LIVE
����, San Francisco, California, USA, May ��, ����. Ed. by B. Burg, A.
Kuhn, and C. Parnin. IEEE Computer Society, ����, pp. ��–��. ���:
10.1109/LIVE.2013.6617346 (cit. on p. ��).

[TSV+��] U. Tikhonova, J. Stoel, T. Van Der Storm, and T. Degueule. “Constraint-
based run-time state migration for live modeling”. In: Proceedings of
the ��th ACM SIGPLAN International Conference on Software Language
Engineering. ����, pp. ���–��� (cit. on p. ��).

[TP��] P. Tonella and A. Potrich. Reverse Engineering of Object Oriented Code
(Monographs in Computer Science). Springer, ���� (cit. on p. ��).

[Tor��] E. Torlak. “A Constraint Solver for Software Engineering : Finding
Models and Cores of Large Relational Specifications”. PhD thesis.
Massachusetts Institute of Technology, ���� (cit. on pp. ��, ��, ��, ��,
���).

[TB��] E. Torlak and R. Bodik. “Growing solver-aided languages with Rosette”.
In: Proceedings of the ���� ACM international symposium on New ideas, new
paradigms, and reflections on programming & software (����), pp. ���–���
(cit. on p. ���).

[TB��] E. Torlak and R. Bodik. “A Lightweight Symbolic Virtual Machine for
Solver-aided Host Languages”. In: Proceedings of the ��th ACM SIGPLAN
Conference on Programming Language Design and Implementation � (����),
pp. ���–���. ����: �������� (cit. on p. ���).

[TCJ��] E. Torlak, F. Chang, and D. Jackson. “Finding minimal unsatisfiable
cores of declarative specifications”. In: FM. Springer. ����, pp. ���–���
(cit. on p. ��).

[TJ��a] E. Torlak and D. Jackson. “Kodkod: A relational model finder”. In:
TACAS. Springer. ����, pp. ���–��� (cit. on pp. ��, ��, ��, ��).

[TD��] E. Torlak and G. Dennis. “Kodkod for Alloy users”. In: First ACM Alloy
Workshop, Portland, Oregon. ACM, ���� (cit. on pp. ��, ��, ��).

[TJ��b] E. Torlak and D. Jackson. “Kodkod: A relational model finder”. In:
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer. ����, pp. ���–��� (cit. on pp. �, �, ��, ���,
���, ���, ���, ���, ���).

[TSJ+��] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. “Opium: Optimal
package install/uninstall manager”. In: ICSE. IEEE Computer Society.
����, pp. ���–��� (cit. on p. ��).

��� ������������

[VD��] A. Vakili and N. Day. “Finite Model Finding Using the Logic of Equality
with Uninterpreted Functions”. In: FM. Springer. ����, pp. ���–���
(cit. on p. ��).

[vdSto��] T. van der Storm. “Semantic deltas for live DSL environments”. In: �st
International Workshop on Live Programming (LIVE). IEEE. ����, pp. ��–��
(cit. on p. ��).

[vGas��] R. van Gasteren. “Natural Language Generation from Rebel Specifica-
tions”. MA thesis. Utrecht, the Netherlands: University of Utrecht, ����
(cit. on p. ���).

[vMvTV��] S. van Mierlo, Y. van Tendeloo, and H. Vangheluwe. “Debugging
Parallel DEVS”. In: Simulation ��.� (����), pp. ���–���. ���: 10.1177/
0037549716658360 (cit. on p. ��).

[vRvdS��] R. van Rozen and T. van der Storm. “Toward live domain-specific
languages”. In: Software & Systems Modeling (Aug. ����) (cit. on pp. ��,
��, ��).

[VB��] D. Varró and A. Balogh. “The model transformation language of the
VIATRA� framework”. In: Sci. Comput. Program. ��.� (����), pp. ���–
���. ���: 10.1016/j.scico.2007.05.004 (cit. on p. ��).

[VBG+��] M. Veanes, N. Bjørner, Y. Gurevich, and W. Schulte. “Symbolic bounded
model checking of abstract state machines”. In: Int J Software Informatics
� (����), pp. ���–��� (cit. on p. ��).

[Ver��] S. Verweĳ. State Machine cat. https://github.com/sverweij/state-

machine-cat. Accessed: ����-��-�� (cit. on p. ���).
[ZSR+��] A. Zamansky, M. Spichkova, G. Rodriguez-Navas, P. Herrmann, and

J. Blech. “Towards classification of lightweight formal methods”. In:
��th International Conference on Evaluation of Novel Approaches to Software
Engineering, ENASE ����, �� March ���� through �� March ����. SciTePress.
����, pp. ���–��� (cit. on p. �).

[Zav��] P. Zave. “Reasoning about identifier spaces: How to make chord correct”.
In: IEEE Transactions on Software Engineering ��.�� (����), pp. ����–����
(cit. on p. �).

[ZZ��] J. Zhang and H. Zhang. “SEM: a system for enumerating models”. In:
ĲCAI. Vol. ��. ����, pp. ���–��� (cit. on p. ��).

������������ ���

ABOUT RASCAL A
a.� ������ ��������

Rascal is a functional/procedural programming language with immutable data,
builtin generic containers (lists, sets, relations, tuples, etc.), abstract and concrete
syntax declarations, high-level polymorphic pattern matching, traversal, substitution
and query primitives. The high-level features are meant to cover what is needed
for language design and implementation, as well as reverse engineering from code.
Pattern matching and substitution, generic traversal and relational calculus are the
core features of the language that find different applications. For example, "patterns"
drive dynamic dispatch of overloaded functions, and bind the generic traversal ‘visit‘
statement to specific ad-hoc types at run-time, and produce the different bindings
to iterate over for comprehensions. Function bodies can be either expressions or
simply structured programming basic blocks (assignment, ‘if-then-else‘, ‘for‘, ‘while‘,
‘try-catch‘), including lexically scoped (re)assignment of variables and lexically scoped
backtracking. Choice points for backtracking in Rascal are produced by either
generators (of elements of containers) or alternative patterns, or non-unitary patterns.
There is no ‘null‘ or ‘uninitialized‘ in Rascal, since all binding via pattern matching
with conditional scopes, and all optional values have defaults. Further information
can be found at https://www.rascal-mpl.org/docs [KvdSV��].

a.� ������ ������ �����������

Rascal is a meta programming language with embedded context-free grammars in a
BNF-like notation. R����, A���A���, N����� and R����� are defined in Rascal
notation in the comming appendices. We summarize the Rascal notation here.

• Non-terminals act as algebraic data-types: syntax Exp = Exp "+" Exp defines the
type Exp for parse trees generated for the Exp non-terminal.

• There is no separate scanner or lexer; all syntax is defined with context-free
grammar rules: lexical Id = [a-z]+ defines identifiers.

• Whitespace and comment non-terminals are interspersed with all syntax rules:
layout W = [] mixes into the aforementioned Exp definition like so syntax Exp =

Exp W "+" W Exp.
• Regular expressions over non-terminals (a.k.a. extended BNF) allow for short-

hands for lists and separated lists: {Stat ";"} is a list of Stat separated by
semicolons.

• Character classes and character class operations are used to specify "lexical"
syntax: [A-Za-z0-9] a class of (capital) roman letters including the digits.

���

• Literal tokens and case-insensitive literal tokens are used for keywords and
punctuation: i.e., "if" and the case-insensitive variant ’if’.

• A partial order between mutually recursive production rules declares binding
strength: Exp "*" Exp > Exp "+" Exp.

• Associativity ‘left‘ and ‘right‘ declares binding strength to the left of right of a
recursive operator: left Exp "+" Exp.

• A language difference operator Id \ Keywords generates the difference between
the language of Id and Exp.

• A follow restriction operator Id !>> [a-z] declares that Id instances can not be
followed immediately by any character in [a-z].

• A rule can be tagged with a constructor name and field names for the elements
of the rule: Exp = addition: Exp lhs "+" Exp rhs

There are no restrictions on the shape of the grammar: even left-recursion is
allowed, and non-determinism or ambiguity as well. From the grammar definition
Rascal generates a context-free general parsing algorithm based on GLL.

��� ������� � ����� ������

SYNTAX DEFINITIONS B
b.� ������ ���������� �� �����

1 start syntax Module
2 = ModuleDeflexicals modDef Import* imports Specification spec
3 | ModuleDef modDef Import* imports LibraryModule* decls;
4
5 syntax ModuleDef = "module" FullyQualifiedName fqn;
6
7 syntax FullyQualifiedName = ({VarName "."}+ packages ".")? modulePath TypeName modName;
8 syntax FullyQualifiedVarName = (FullyQualifiedName fqn ".")? VarName name;
9

10 syntax Import = "import" FullyQualifiedName fqn;
11
12 syntax Expr
13 = bracket "(" Expr ")"
14 > literal: Literal!reference lit
15 | reference: Ref ref
16 | VarName function "(" {Expr ","}* exprs ")"
17 | left fieldAccess: Expr lhs "." VarName field
18 | "{" Expr lower ".." Expr upper"}"
19 | Expr var!accessor "[" Expr indx "]"
20 | "(" {MapElement ","}* mapElems ")"
21 | staticSet: "{" {Expr ","}* setElems "}"
22 | comprehension: "{" VarName elemName ":" Expr set "|" {Expr ","}+ conditions "}"
23 | cardanality: "|" Expr set "|"
24 | universalQuantifier: "forall" VarName elemName ":" Expr set "|" {Expr ","}+ conditions
25 | existentialQuantifier: "exists" VarName elemName ":" Expr set "|" {Expr ","}+ conditions
26 > new: "new" Expr expr
27 | "not" Expr expr
28 | "-" Expr
29 > Expr cond "?" Expr whenTrue ":" Expr whenFalse
30 > left (Expr lhs "*" Expr rhs
31 | isMember: Expr lhs "in" Expr rhs
32 | Expr lhs "/" Expr rhs
33 | Expr lhs "%" Expr rhs
34)
35 > left (Expr lhs "+" Expr rhs
36 | subtract: Expr lhs "-" Expr rhs
37)
38 > non-assoc (smallerThan: Expr lhs "\<" Expr rhs
39 | smallerThanEquals: Expr lhs "\<=" Expr rhs
40 | greaterThan: Expr lhs "\>" Expr rhs
41 | greaterThanEquals: Expr lhs "\>=" Expr rhs
42 | equals: Expr lhs "==" Expr rhs
43 | notEqual: Expr lhs "!=" Expr rhs
44)
45 > "initialized" Expr
46 | "finalized" Expr
47 | Expr lhs "instate" StateRef sr
48 > left and: Expr lhs "&&" Expr rhs
49 > left Expr lhs "||" Expr rhs
50 | right Expr cond "-\>" Expr implication;
51
52 syntax StateRef
53 = VarName state
54 | "{" VarName+ states "}";
55

���

56 syntax MapElement = Expr key ":" Expr val;
57
58 syntax Ref
59 = FullyQualifiedVarName field
60 | FullyQualifiedName tipe
61 | this: "this"
62 | "it";
63
64 syntax Type
65 = "Boolean"
66 | "Period"
67 | "Integer"
68 | "Money"
69 | "Currency"
70 | "Date"
71 | "Frequency"
72 | "Percentage"
73 | "Period"
74 | "Term"
75 | "String"
76 | "map" "[" Type ":" Type "]"
77 | "set" "[" Type "]"
78 | Term
79 | "Time"
80 | "IBAN"
81 | "InterestNorm"
82 | "InterestTariff"
83 | Type "-\>" Type
84 | "(" {Type ","}+ ")"
85 | TypeName custom;
86
87 syntax Literal
88 = Int
89 | Bool
90 | Period
91 | Frequency
92 | Term term
93 | Date
94 | Time
95 | DateTime
96 | Percentage
97 | String
98 | Money
99 | Currency

100 | IBAN
101 | InterestNorm
102 | InterestTariff;
103
104 syntax Literal = anyVal: "ANY";
105 syntax Date = Int day Month month Int? year;
106
107 syntax Time
108 = hhmm: [0-9][0-9]? hour ":" [0-9][0-9]? minutes
109 | hhmmss: [0-9][0-9]? hour ":" [0-9][0-9]? minutes ":" [0-9][0-9]? seconds;
110
111 syntax DateTime
112 = Date date "," Time time
113 | "now";
114
115 syntax Term = Int factor Period period;
116 syntax Money = Currency cur MoneyAmount amount;
117
118 syntax InterestTariff
119 = fixed: "fixed" Percentage p

��� ������� � ������ �����������

120 | normBased: "norm" InterestNorm norm
121 | withPosAddition: InterestTariff base "++" InterestTariff posAddition
122 | withNegAddition: InterestTariff base "--" InterestTariff negAddition
123 | withMinMaxTariff: InterestTariff base "bounded by" ("min" "=" InterestTariff min)?
124 ("max" "=" InterestTariff max)?;
125
126 syntax LibraryModule
127 = EventDef eventDef
128 | FunctionDef functionDef
129 | InvariantDef invariantDef;
130
131 // Library rules
132
133 syntax EventDef = Annotations annos "event" FullyQualifiedVarName name EventConfigBlock? configParams
134 "(" {Parameter ","}* transitionParams")" "{"
135 Preconditions? pre Postconditions? post MaybeSyncBlock sync
136 "}";
137
138 syntax MaybeSyncBlock = SyncBlock?;
139 syntax EventConfigBlock = "[" {Parameter ","}+ params "]";
140 syntax Preconditions = "preconditions" "{" Statement* stats"}";
141 syntax Postconditions = "postconditions" "{" Statement* stats "}";
142 syntax SyncBlock = "sync" "{" SyncStatement* stats "}";
143
144 syntax FunctionDef = Annotations annos "function" FullyQualifiedVarName name
145 "(" {Parameter ","}* params ")" ":" Type returnType "=" Statement statement;
146
147 syntax InvariantDef = Annotations annos "invariant" FullyQualifiedVarName name
148 "{" Statement* stats "}";
149
150 // Specification rules
151
152 syntax Specification =
153 spec:Annotations annos SpecModifier? modifier "specification" TypeName name Extend? extend "{"
154 Fields? optFields EventRefs? optEventRefs InvariantRefs? optInvariantRefs LifeCycle? optLifeCycle
155 "}";
156
157 syntax Extend = "extends" FullyQualifiedName parent;
158 syntax Fields = @Foldable "fields" "{" FieldDecl* fields "}";
159 syntax EventRefs = @Foldable eventInstances: "events" "{" EventRef* events "}";
160
161 syntax EventRef
162 = ref: FullyQualifiedVarName eventRef "[" {ConfigParameter ","}* config "]"
163 | interfaceDecl: VarName name "(" Parameter ","* params ")";
164
165 syntax InvariantRefs = @Foldable "invariants" "{" FullyQualifiedVarName* invariants "}";
166 syntax LifeCycle = "lifeCycle" "{" StateFrom* from "}";
167
168 syntax StateFrom = LifeCycleModifier? mod VarName from StateTo* destinations;
169 syntax StateTo = "->" VarName to ":" StateVia via;
170 syntax StateVia = {VarName ","}+ refs;
171
172 // Generic rules
173 syntax ConfigParameter = VarName name "=" Expr val;
174 syntax Parameter = VarName name ":" Type tipe DefaultValue? defaultValue;
175 syntax DefaultValue = "=" Expr val;
176 syntax SyncStatement = Annotations doc SyncExpr expr ";";
177
178 syntax SyncExpr
179 = not: "not" SyncExpr expr
180 | syncEvent: TypeName specName "[" Expr id "]" "." VarName event "(" {Expr ","}* params ")";
181
182 syntax Statement
183 = bracket "(" Statement ")"

� .� ������ ���������� �� ����� ���

184 | "case" Expr "{" Case+ cases "}" ";"
185 | Annotations annos Expr expr ";";
186
187 syntax Case = Literal lit "=\>" Statement stat;
188
189 syntax StateRef
190 = VarName state
191 | "{" VarName+ states "}";
192
193 syntax MapElement = Expr key ":" Expr val;
194
195 syntax FieldDecl = VarName name ":" Type tipe Annotations meta;
196
197 syntax Ref
198 = FullyQualifiedVarName field
199 | FullyQualifiedName tipe
200 | this: "this"
201 | "it";
202
203 syntax Annotations = Annotation* annos;
204
205 syntax Annotation
206 = key: "@" "key"
207 | ref: "@" "ref" "=" FullyQualifiedName spc
208 | doc:"@" VarName name TagString tagString;
209
210 lexical InterestNorm = "EURIBOR" | "AIRBOR" | "LIBOR" | "INGBASIS" | "LIMITBASED";
211
212 lexical Currency
213 = "EUR" | "USD"
214 | "CUR" ’_’ ([A-Z][A-Z][A-Z]) name;
215
216 lexical IBAN = [A-Z] !<<
217 ([A-Z][A-Z]) countryCode ([0-9][0-9]) checksum [0-9 A-Z]+ accountNumber
218 !>> [0-9 A-Z];
219
220 lexical TypeName = ([A-Z] !<< [A-Z][a-z 0-9 _][a-z A-Z 0-9 _]* !>> [a-z A-Z 0-9 _]) \Keywords;
221 lexical VarName = ([a-z] !<< [a-z][a-z A-Z 0-9 _]* !>> [a-z A-Z 0-9 _]) \Keywords;
222 lexical Month = "Jan" | "Feb" | "Mar" | "Apr" | "May" | "Jun" |
223 "Jul" | "Aug" | "Sep" | "Oct" | "Nov" | "Dec";
224 lexical Frequency = "Daily" | "Weekly" | "Monthly" | "Quarterly" | "Yearly";
225 lexical Period = "Day" | "Week" | "Month" | "Quarter" | "Year";
226 lexical Bool = "True" | "False";
227 lexical Percentage = [0-9]+ per "%";
228 lexical Int = [0-9]+ | "Inf";
229 lexical String = "\"" ![\"]* "\"";
230 lexical MoneyAmount = [0-9]+ whole [.] ([0-9][0-9][0-9]?) decimals;

Listing B.�: Rascal definition of R���� syntax.

��� ������� � ������ �����������

b.� ������ ���������� �� ��������

1 start syntax Problem = problem: Relation* relations AlleConstraint* constraints
2 ObjectiveSection? objSection Expect? expect;
3
4 syntax Relation = RelVar v "(" {HeaderAttribute ","}+ header ")" RelationalBound bounds;
5
6 syntax HeaderAttribute = AttributeName name ":" Domain dom;
7
8 syntax AttributeHeader = header: AttributeName name ":" Domain dom;
9

10 syntax RelationalBound
11 = exact: "=" "{" {Tuple ","}*tuples "}"
12 | atMost: "\<=" "{" {Tuple ","}* upper "}"
13 | atLeastAtMost: "\>=" "{" {Tuple ","}+ lower "}" "\<=" "{" {Tuple ","}+ upper "}";
14
15 syntax Tuple
16 = tup: "\<" {Value ","}+ values "\>"
17 | range: "\<" {RangedValue ","}+ from "\>" ".." "\<" {RangedValue ","}+ to "\>";
18
19 syntax Value
20 = Idd id
21 | lit: Literal lit
22 | "?";
23
24 syntax RangedValue
25 = id: RangedId prefix RangedNr numm
26 | idOnly: RangedId id
27 | templateLit: Literal lit
28 | "?";
29
30 syntax Domain = "id";
31
32 syntax Literal = idLit: "\’" Idd id "\’";
33
34 syntax AlleConstraint
35 = AlleFormula form
36 | AllePredicate predDef;
37
38 syntax AllePredicate = "pred" Idd name "[" {PredParam ","}* params "]" "=" AlleFormula form;
39
40 syntax PredParam = RelVar name ":" "(" {HeaderAttribute ","}+ header ")";
41
42 syntax AlleFormula
43 = bracket "(" AlleFormula form ")"
44 > predCall: Idd predName "[" {AlleExpr ","}* args "]"
45 > negation: "not" AlleFormula form
46 > empty: "no" AlleExpr expr
47 | atMostOne: "lone" AlleExpr expr
48 | exactlyOne: "one" AlleExpr expr
49 | nonEmpty: "some" AlleExpr expr
50 | subset: AlleExpr lhsExpr "in" AlleExpr rhsExpr
51 | left equal: AlleExpr lhsExpr "=" AlleExpr rhsExpr
52 | left inequal: AlleExpr lhsExpr "!=" AlleExpr rhsExpr
53 > left conjunction: AlleFormula lhsForm "&&" AlleFormula rhsForm
54 | left disjunction: AlleFormula lhsForm "||" AlleFormula rhsForm
55 > implication: AlleFormula lhsForm "=\>" AlleFormula rhsForm
56 | equality: AlleFormula lhsForm "\<=\>" AlleFormula rhsForm
57 > let: "let" {VarBinding ","}+ bindings "|" AlleFormula form
58 > universal: "forall" {VarDeclaration ","}+ decls "|" AlleFormula form
59 | existential: "exists" {VarDeclaration ","}+ decls "|" AlleFormula form;
60
61 syntax VarDeclaration = varDecl: RelVar var ":" AlleExpr expr;

� .� ������ ���������� �� �������� ���

62
63 syntax VarBinding = varBinding: RelVar var "=" AlleExpr expr;
64
65 syntax AlleExpr
66 = bracket "(" AlleExpr expr ")"
67 > variable: RelVar v
68 | lit: Literal l
69 > rename: AlleExpr r "[" {Rename ","}+ "]"
70 | project: AlleExpr r "[" {AttributeName ","}+ "]"
71 | renameAndProject: AlleExpr r "[" {ProjectAndRename ","}+ "]"
72 | select: AlleExpr r "where" Criteria criteria
73 | aggregate: AlleExpr r "[" {AggregateFunctionDef ","}+ "]"
74 | groupedAggregate: AlleExpr r "[" {AttributeName ","}+ groupBy ","
75 {AggregateFunctionDef ","}+ aggregateFunctions "]"
76 > transpose: "~" AlleExpr r
77 | closure: "^" AlleExpr r
78 | reflexClosure: "*" AlleExpr r
79 > left naturalJoin: AlleExpr lhs "|x|" AlleExpr rhs
80 > left (union: AlleExpr lhs "+" AlleExpr rhs
81 |intersection: AlleExpr lhs "&" AlleExpr rhs
82 |difference: AlleExpr lhs "-" AlleExpr rhs
83 |product: AlleExpr lhs "x" AlleExpr rhs
84)
85 | comprehension: "{" {VarDeclaration ","}+ decls "|" AlleFormula form "}"
86 ;
87
88 syntax TupleAttributeSelection
89 = "\<" AttributeName first "," AttributeName second "\>";
90
91 syntax Rename = AttributeName orig "as" AttributeName new;
92
93 syntax ProjectAndRename = AttributeName orig "-\>" AttributeName new;
94
95 syntax AggregateFunctionDef
96 = AggregateFunction func
97 | AggregateFunction func "as" AttributeName bindTo;
98
99 syntax AggregateFunction

100 = dummy: " " !>> " ";
101
102 syntax Criteria
103 = bracket "(" Criteria ")"
104 > "not" Criteria
105 > non-assoc
106 (CriteriaExpr lhsExpr "=" CriteriaExpr rhsExpr
107 | CriteriaExpr lhsExpr "!=" CriteriaExpr rhsExpr
108)
109 > left (Criteria lhs "&&" Criteria rhs
110 | Criteria lhs "||" Criteria rhs
111);
112
113 syntax CriteriaExpr
114 = bracket "(" CriteriaExpr ")"
115 | AttributeName att
116 | Literal l
117 > left Criteria condition "?" CriteriaExpr thn ":" CriteriaExpr els;
118
119 syntax ObjectiveSection
120 = "objectives" ":" {Objective ","}+ objectives
121 | "objectives" "(" ObjectivePriority prio ")" ":" {Objective ","}+ objectives;
122
123
124 syntax ObjectivePriority
125 = "lex"

��� ������� � ������ �����������

126 | "pareto"
127 | "independent";
128
129 syntax Objective
130 = maximize: "maximize" AlleExpr expr
131 | minimize: "minimize" AlleExpr expr;
132
133 syntax Expect
134 = "expect" ":" ResultType result ("," ModelRestriction models)?;
135
136 syntax ResultType
137 = "sat"
138 | "trivial-sat"
139 | "unsat"
140 | "trivial-unsat";
141
142 syntax ModelRestriction
143 = "#" "models" ("(" Domain dom ")")? ModelRestrExpr expr;
144
145 syntax ModelRestrExpr
146 = "=" Arity
147 | "\>" Arity
148 | "\<" Arity;
149
150 lexical RangedId = ([a-zA-Z_] !<< [a-zA-Z_][a-zA-Z_\-.]* !>> [a-zA-Z_\-.]) \ Keywords;
151 lexical RangedNr = [0-9]+;
152 lexical Idd = ([a-zA-Z_] !<< [a-zA-Z_][a-zA-Z_\-0-9.]* !>> [a-zA-Z_\-0-9.]) \ Keywords;
153 lexical AttributeName = ([a-zA-Z] !<< [a-zA-Z][a-zA-Z0-9_\’]* !>> [a-zA-Z0-9_]) \ Keywords;
154 lexical Arity = [0-9]+;
155 lexical RelVar = ([a-zA-Z_] !<< [a-zA-Z_][a-zA-Z0-9_\’]* !>> [a-zA-Z0-9_]) \ Keywords;

Listing B.�: Syntax definition of the common constructs of A���A��� in Rascal.

1 syntax Domain = "int";
2
3 syntax Value = neglit: "-" Literal lit;
4 syntax RangedValue = neglit: "-" Literal lit;
5
6 syntax Criteria
7 = non-assoc (lt: CriteriaExpr lhsExpr "\<" CriteriaExpr rhsExpr
8 | lte: CriteriaExpr lhsExpr "\<=" CriteriaExpr rhsExpr
9 | gt: CriteriaExpr lhsExpr "\>" CriteriaExpr rhsExpr

10 | gte: CriteriaExpr lhsExpr "\>=" CriteriaExpr rhsExpr
11);
12
13 syntax CriteriaExpr
14 = abs: "|" CriteriaExpr expr "|"
15 | neg: "-" CriteriaExpr expr
16 > left mult: CriteriaExpr lhs "*" CriteriaExpr rhs
17 | non-assoc (div: CriteriaExpr lhs "/" CriteriaExpr rhs
18 | \mod: CriteriaExpr lhs "%" CriteriaExpr rhs
19)
20 > left (add: CriteriaExpr "+" CriteriaExpr rhs
21 | sub: CriteriaExpr "-" CriteriaExpr rhs
22)
23 > non-assoc ("min" "(" CriteriaExpr a "," CriteriaExpr b ")"
24 | "max" "(" CriteriaExpr a "," CriteriaExpr b ")"
25);
26
27 syntax Literal = intLit: IntLit i;
28
29 syntax AggregateFunction
30 = car: "count" "()"

� .� ������ ���������� �� �������� ���

31 | sum: "sum" "(" AttributeName att ")"
32 | min: "min" "(" AttributeName att ")"
33 | max: "max" "(" AttributeName att ")"
34 | avg: "avg" "(" AttributeName att ")";
35
36 lexical IntLit = [0-9]+;

Listing B.�: Syntax definition of the integer operation of A���A��� in Rascal.

��� ������� � ������ �����������

b.� ������ ���������� �� ������ �� ������

1 start syntax Spec = StaticDef static DynamicDef dynamic MigrationDef migration DistanceDef? distance;
2
3 syntax StaticDef = "static" "{" Class* classes "}";
4 syntax DynamicDef = "runtime" "{" Class* classes "}";
5 syntax MigrationDef = "migration" "{" Formula* rules "}";
6 syntax DistanceDef = "distance" "{" PriorityDistance* priorities "}";
7
8 syntax Class = "class" ClassName name "{" ClassBody body "}";
9 syntax ClassBody = FieldDecl* fields Invariant* inv;

10
11 syntax FieldDecl = VarName fieldName ":" Type type "*"? ;
12
13 syntax Invariant
14 = "invariant" ":" Formula form
15 | "invariants" "{" Formula+ forms "}";
16
17 syntax Formula
18 = bracket "(" Formula ")"
19 > neg: "not" Formula
20 > some: "some" Expr
21 | no: "no" Expr
22 | \one: "one" Expr
23 > subset: Expr "in" Expr
24 | equality: Expr "=" Expr
25 | inequality: Expr "!=" Expr
26 > implies: Formula "=\>" Formula
27 | iff: Formula "\<=\>" Formula
28 > conj: Formula "&&" Formula
29 | disj: Formula "||" Formula
30 > forall: "forall" {QuantDecl ","}+ decls "|" Formula form
31 | exists: "exists" {QuantDecl ","}+ decls "|" Formula form;
32
33 syntax QuantDecl = VarName ":" Expr;
34
35 syntax Formula
36 = intGte: Expr "\>=" Expr
37 | intGt: Expr "\>" Expr
38 | intLte: Expr "\<=" Expr
39 | intLt: Expr "\<" Expr;
40
41 syntax Expr
42 = bracket "(" Expr ")"
43 > var: VarName
44 | lit: Literal
45 | left dotJoin: Expr "." Expr
46 | left relJoin: Expr "\<-\>" Expr
47 > restrict: Expr "where" RestrictStat
48 > left (union: Expr "++" Expr
49 | intersec: Expr "&" Expr
50 | setDif: Expr "--" Expr
51)
52 > transCl: "^" Expr
53 | reflTrans: "*" Expr
54 > old: "old" "[" Expr expr "]"
55 | new: "new" "[" Expr expr "]";
56
57 syntax Expr
58 = abs: "|" Expr "|"
59 > left (div: Expr "\\" Expr
60 | mul: Expr "*" Expr
61 > add: Expr "+" Expr

� .� ������ ���������� �� ������ �� ������ ���

62 | sub: Expr "-" Expr
63);
64
65 syntax RestrictStat = "(" RestrictExpr "=" RestrictExpr ")";
66
67 syntax RestrictExpr = QualifiedName att;
68
69 syntax QualifiedName = left VarName ("." VarName)*;
70
71 syntax Literal = intLit: Int;
72
73 syntax PriorityDistance = Expr distance ":" Int priority;
74
75 syntax Type
76 = class: ClassName className
77 | \int: "int"
78 ;
79
80 lexical ClassName = ([A-Z] !<< [A-Z][a-zA-Z0-9_\’]* !>> [a-zA-Z0-9_]) \ Keywords;
81 lexical VarName = ([a-zA-Z] !<< [a-zA-Z][a-zA-Z0-9_\’]* !>> [a-zA-Z0-9_]) \ Keywords;
82 lexical Atom = ([a-zA-Z] !<< [a-zA-Z][a-zA-Z0-9_\’]* !>> [a-zA-Z0-9_]) \ Keywords;
83
84 lexical Int = [0-9]+;

Listing B.�: Rascal definition of N����� syntax.

��� ������� � ������ �����������

b.� ������ ���������� �� ������

This appendix contains the Rascal syntax definition of R�����. It is split in the
definitions of lexical constructs (Listing B.�), common syntax definitions (Listing B.�),
the syntax definitions that can be used when defining configurations and checks
(Listing B.�) and the syntax definitions that can be used when defining specifications
(Listing B.�). All three parts together make up the complete syntax definition of
R�����.

1 lexical Id = [a-z A-Z 0-9 _] !<< ([a-z A-Z_][a-z A-Z 0-9 _]* !>> [a-z A-Z 0-9 _]) \ Keywords;
2
3 lexical TypeName = [a-z A-Z 0-9 _] !<< [A-Z][a-z A-Z 0-9 _]* !>> [a-z A-Z 0-9 _] \ Keywords;
4
5 lexical Int = [0-9] !<< [0-9]+ !>> [0-9];
6
7 lexical StringConstant = "\"" StringCharacter* "\"";
8
9 lexical UnicodeEscape

10 = utf16: "\\" [u] [0-9 A-F a-f] [0-9 A-F a-f] [0-9 A-F a-f] [0-9 A-F a-f]
11 | utf32: "\\" [U] (("0" [0-9 A-F a-f])|"10")[0-9 A-F a-f][0-9 A-F a-f][0-9 A-F a-f][0-9 A-F a-f]
12 | ascii: "\\" [a] [0-7] [0-9A-Fa-f];
13
14 lexical StringCharacter
15 = "\\" [\" \’ \< \> \\ b f n r t]
16 | UnicodeEscape
17 | ![\" \’ \< \> \\]
18 | [\n][\ \t \u00A0 \u1680 \u2000-\u200A \u202F \u205F \u3000]* [\’];

Listing B.�: Rascal definition of R����� lexicals.

� .� ������ ���������� �� ������ ���

1 start syntax Module = ModuleId module Import* imports Part+ parts;
2
3 syntax Part = ; // Is extended in later definitions
4 syntax ModuleId = "module" QualifiedName name;
5 syntax Import = "import" QualifiedName module;
6 syntax QualifiedName = {Id "::"}+ names !>> "::";
7
8 syntax Formula
9 = brackets: "(" Formula ")"

10 > "!" Formula form
11 > sync: Expr spc "." QualifiedName event "(" {Expr ","}* params ")"
12 | inState: Expr expr "is" QualifiedName state
13 | membership: Expr "in" Expr
14 | nonMembership: Expr "notin" Expr
15 > Expr "\<" Expr
16 | Expr "\<=" Expr
17 | Expr "=" Expr
18 | Expr "!=" Expr
19 | Expr "\>=" Expr
20 | Expr "\>" Expr
21 > right Formula "&&" Formula
22 | right Formula "||" Formula
23 > right Formula "=\>" Formula
24 | right Formula "\<=\>" Formula
25 | non-assoc "if" Formula cond "then" Formula then "else" Formula else
26 | non-assoc "if" Formula cond "then" Formula
27 > "forall" {Decl ","}+ "|" Formula
28 | "exists" {Decl ","}+ "|" Formula;
29
30 syntax Decl = {Id ","}+ vars ":" Expr expr;
31
32 syntax Expr
33 = brackets: "(" Expr ")"
34 > var: Id
35 | "|" Expr "|"
36 > fieldAccess: Expr "." Id
37 | trans: Expr "." "^" Id
38 | reflTrans: Expr "." "*" Id
39 | functionCall: Id func "(" {Expr ","}* actuals ")"
40 | instanceAccess: Expr spc "[" Id inst"]"
41 | Lit
42 > nextVal: Expr "\’"
43 > "-" Expr
44 > left Expr lhs "*" Expr rhs
45 | non-assoc Expr lhs "/" Expr rhs
46 | non-assoc Expr lhs "%" Expr rhs
47 > left Expr lhs "+" Expr rhs
48 | non-assoc Expr lhs "-" Expr rhs
49 | left Expr lhs "++" Expr rhs
50 > "{" Decl d "|" Formula form "}";
51
52 syntax Lit
53 = Int
54 | StringConstant
55 | setLit: "{" {Expr ","}* elems "}"
56 | "none";
57
58 syntax Type
59 = TypeName tp
60 | "set" TypeName tp
61 | "?" TypeName tp;

Listing B.�: Rascal definition of common R����� syntax.

��� ������� � ������ �����������

1 syntax Part
2 = Config cfg
3 | Assert asrt
4 | Check chk
5 ;
6
7 syntax Config = "config" Id name "=" {InstanceSetup ","}+ instances ";";
8
9 syntax InstanceSetup

10 = {Id ","}+ labels ":" Type spec Mocks? mocks Forget?
11 forget InState? inState WithAssignments? assignments
12 | Id label WithAssignments assignments;
13
14 syntax Mocks = "mocks" Type concrete;
15 syntax Forget = "forget" {Id ","}+ fields;
16 syntax InState = "is" State state;
17 syntax WithAssignments = "with" {Assignment ","}+ assignments;
18 syntax Assignment = Id fieldName "=" Expr val;
19 syntax Assert = "assert" Id name "=" Formula form ";";
20
21 syntax Formula
22 = non-assoc "if" Formula cond "then" Formula then "else" Formula else
23 > TransEvent event "on" Expr var WithAssignments? with
24 > "next" Formula form
25 | "first" Formula form
26 | "last" Formula form
27 > "eventually" Formula form
28 | "always" Formula form
29 | "always-last" Formula form
30 | right Formula first "until" Formula second
31 | right Formula first "release" Formula second;
32
33 syntax TransEvent = wildcard: "*";
34
35 syntax Check
36 = Command cmd Id name "from" Id config "in" SearchDepth depth Objectives? objs Expect? expect";";
37
38 syntax Command
39 = "check"
40 | "run";
41
42 syntax SearchDepth
43 = "max" Int steps "steps"
44 | "exact" Int steps "steps";
45
46 syntax Objectives
47 = "with" {Objective ","}+ objs;
48
49 syntax Objective
50 = "minimal" Expr expr
51 | "maximal" Expr expr
52 | "infinite" "trace"
53 | "finite" "trace";
54
55 syntax Expect
56 = "expect" ExpectResult;
57
58 syntax ExpectResult
59 = "trace"
60 | "no" "trace";
61

Listing B.�: Rascal definition of R����� ’check’ syntax.

� .� ������ ���������� �� ������ ���

1 syntax Part = Spec spc;
2
3 syntax Spec = "spec" Id name Instances? instances Fields? fields
4 Event* events Pred* preds Fact* facts States? states;
5
6 syntax Instances = "[" {Instance ","}+ instances "]";
7
8 syntax Instance
9 = Id

10 | Id "*";
11
12 syntax Fields = {Field ","}+ fields ";";
13 syntax Field = Id name ":" Type tipe;
14
15 syntax Event = Modifier* modifiers "event" Id name "(" {FormalParam ","}* params ")" EventBody body;
16 syntax Modifier = "init" | "final" | "internal";
17 syntax FormalParam = Id name ":" Type tipe;
18
19 syntax EventBody = Pre? pre Post? post EventVariant* variants;
20 syntax Pre = "pre" ":" {Formula ","}* formulas ";";
21 syntax Post = "post" ":" {Formula ","}* formulas ";";
22 syntax EventVariant = "variant" Id name EventVariantBody body;
23 syntax EventVariantBody = Pre? pre Post? post;
24 syntax Pred = "pred" Id name "(" {FormalParam ","}* params ")" "=" Formula form ";";
25
26 syntax Fact = "assume" Id name "=" Formula form ";";
27
28 syntax States = "states" ":" StateBlock root;
29 syntax StateBlock = InnerStates? inner Transition* trans;
30
31 syntax Transition
32 = State from "-\>" State to ":" {TransEvent ","}+ events ";"
33 | Id super "{" StateBlock child "}";
34
35 syntax InnerStates = "[" {Id ","}+ states "]";
36
37 syntax State = QualifiedName name | "(*)";
38
39 syntax TransEvent
40 = QualifiedName event \ "empty"
41 | "empty";
42
43 syntax Lit = "this";

Listing B.�: Rascal definition of R����� ’Specification’ syntax.

��� ������� � ������ �����������

ALGORITHMS C
c.� �������� ����������

addDistinct The function ���D ������� adds a tuple to a relation, ensuring that it
will be distinct from other tuples in the relation by adding constraints to the ���C���
column:

�: function ���D �������(A: ���, C: �����)
�: for C0 A1>3H , C < C

0, canOverlap(C,C0) do
�: C0CC⇠>=B C0CC⇠>=B ^ (¬C0

4G8BCB
_ ¬attEqual(C , C0))

�: end for
�: A1>3H A1>3H [{C}

�: return A

�: end function

canOverlap The function ���O������ returns >when two tuples are indistin-
guishable with respect to their attribute values:

�: function ���O������(C: �����, C0: �����)
�: for 0 C0CCA81DC4B , 00 C

0

0CCA81DC4B
, 0=0<4 = 0

0
=0<4

do
�: if 0E0;D4 < ? ^ 0

0

E0;D4
< ? ^ 0E0;D4 < 0

0

E0;D4
then

�: return ? 3 non-’holes’, different values, overlap impossible
�: end if
�: end for
�: return >
�: end function

attEqual The function ���E���� constructs a constraint to ensure that two tuples
will be equal.

�: function ���E����(C: �����, C0: �����)
�: ⇣ >
�: for 0 C0CCA81DC4B , 00 C

0

0CCA81DC4B
, 0=0<4 = 0

0
=0<4

do
�: ⇣ ⇣ ^ 0E0;D4 = 0

0

E0;D4
3 force atts to have same values

�: end for
�: return ⇣
�: end function

���

c.� ��� ���������� ���� ��� ������ ��������������

The coming sections contain the key algorithms of the R����� language, namely the
implementation of the forget and mock operators. We implemented these algorithms
in Rascal, which is what is shown in the listings in this appendix. See Appendix A.�
for a brief overview of Rascal.

C.�.� The ’Forget’ algorithm

Listing C.� shows the Rascal implementation of the forget algorithm. The essence of
this algorithm is that it removes all references to the fields that need to be ’forgotten’
from the specifications to check. The algorithm operates on the Concrete Syntax Tree
(CST) of the parsed and type checked specifications and performs a source-to-source
transformation where the target is still in the same Rebel� syntax. Formula’s which
have a term which references a forgotten field are removed as a whole from the
pre(conditions), post(conditions) and facts. Removing the entire formula on a single
term that must be forgotten may not be strictly necessary: the term could also be
reduced to true. This could however unintentionally change the meaning of the whole
formula. The ripple effect of such an operation might be hard to forsee by users thus
we chose to the easier to follow approach of removing the whole formula.

C.�.� The ’Mock’ algorithm

Listing C.� contains the mock algorithm. Like the forget algorithm, the mock algorithm
performs a source-to-source transformation on the language level of R�����. The
algorithm performs a replace operation by renaming all type references of the mock
specification with the name of the original specification. It is a similar operation as
is performed by a renaming refactoring in a statically typed language such as Java.
It performs this renaming operations in the context of the mock specifications. The
reason is that the change is then local to the mocked specification. In the end, the
name of the mocked specification is replaced by the name of the original specification
(see line �� of Listing C.�).

��� ������� � ����������

1 // RebelDependency = <Module m, TModel tm, datetime timeOfParse> where
2 // Module = The root node of the concrete syntax tree (CST) of a parsed Rebel2 text file.
3 // TModel = TypeModel containing gathered type information
4 // (see https://www.rascal-mpl.org/docs/Packages/typepal/TypePal/)
5
6 // modDep = Graph[RebelDependency], a dependency graph of type checked Rebel2 specifications
7 // that import each other
8
9 // Extract a graph only containing the Rebel2 Specifications without the attached TypeModels

10 Graph[Spec] spcDep = extractSpecDependencyGraph(modDep);
11
12 // Merge all use-def relations from the type models (tm).
13 // * = the Rascal ’splat’ operator for flatting all elements in underlying containers
14 rel[loc,loc] globDefUse = {*dep1.tm.useDef<1,0>,*dep2.tm.useDef<1,0> |
15 <RebelDependency dep1, RebelDependency dep2> <- modDep};
16
17 bool slice(set[Id] fields) {
18 set[Spec] allSpecs = {s | Spec s <- spcDep<0>+spcDep<1>};
19
20 // Loop over all fields to be ’forgotten’
21 for (Id field <- fields) {
22 Field fld = lookupFieldByRef(tm.useDef[field@\loc], spcDep);
23
24 // Find all the uses of the field in all included specifications.
25 set[loc] uses = globDefUse[fld.name@\loc];
26
27 // Remove all fields, formula’s in pre and post and
28 // facts that reference the ’forgotten’ field
29 allSpecs = visit(allSpecs) {
30 case Spec s => filterFieldAndFacts(fld, s, uses)
31 case Pre pre => filterPre(pre, uses)
32 case Post post => filterPost(post, uses)
33 }
34
35 // Remove all parameters that became unused
36 allSpecs = visit(allSpecs) {
37 case Event e => filterParameters(e, globDefUse)
38 }
39 }
40
41 // Replace all occurrences of the specs in the spec dependency graph
42 spcDep = visit(spcDep) {
43 case Spec orig => changed
44 when Spec changed <- allSpecs,
45 changed@\loc == orig@\loc
46 }
47
48 return true;
49 }

Listing C.�: The Rascal implementation of the ’Forget’ (slice) algorithm. The algorithm
removes all references to fields that are to be ’forgotten’. It is a source-to-source transformation
on the language level of R�����.

� .� ��� ���������� ���� ��� ������ �������������� ���

1 private Spec filterFieldAndFacts(Field fld, Spec s, set[loc] uses)
2 = filterFacts(filterField(s, fld), uses);
3
4 private Spec filterField(spc:(Spec)‘spec <Id name> <Instances? inst> <Fields? flds>
5 <Constraints? cons> <Event* evnts> <Pred* preds> <Fact* fcts> <States? sts>‘, Field fld) {
6
7 if (size({f | /Field f := flds}) == 1, /fld := flds) {
8 return ((Spec)‘spec <Id name> <Instances? inst> <Constraints? cons>
9 <Event* evnts> <Fact* fcts> <States? sts>‘)[@\loc=spc@\loc];

10 }
11
12 Fields filterFields((Fields)‘<Field f>, <{Field ","}+ after>;‘)
13 = (Fields)‘<{Field ","}+ after>;‘ when f == fld;
14
15 Fields filterFields((Fields)‘<{Field ","}+ before>, <Field f>;‘)
16 = (Fields)‘<{Field ","}+ before>;‘ when f == fld;
17
18 Fields filterFields((Fields)‘<{Field ","}+ before>, <Field f>, <{Field ","}+ after>;‘)
19 = (Fields)‘<{Field ","}+ before>, <{Field ","}+ after>;‘ when f == fld;
20
21 return visit(spc) {
22 case Fields ff => filterFields(ff) when /fld := ff
23 }
24 }
25
26 private Spec filterFacts(Spec spc, set[loc] uses) {
27 Spec filterFact(s:(Spec)‘spec <Id name> <Instances? inst> <Fields? flds>
28 <Constraints? cons> <Event* evnts> <Fact ff> <States? sts>‘, Fact f)
29 = (Spec)‘spec <Id name> <Instances? inst> <Fields? flds>
30 <Constraints? cons> <Event* evnts> <States? sts>‘[@\loc=s@\loc]
31 when ff == f;
32
33 Spec filterFact(s:(Spec)‘spec <Id name> <Instances? inst> <Fields? flds>
34 <Constraints? cons> <Event* evnts> <Fact ff> <Fact* other> <States? sts>‘, Fact f)
35 = (Spec)‘spec <Id name> <Instances? inst> <Fields? flds>
36 <Constraints? cons> <Event* evnts> <Fact* other> <States? sts>‘[@\loc=s@\loc]
37 when ff == f;
38
39 Spec filterFact(s:(Spec)‘spec <Id name> <Instances? inst> <Fields? flds>
40 <Constraints? cons> <Event* evnts> <Fact* other> <Fact ff> <States? sts>‘, Fact f)
41 = (Spec)‘spec <Id name> <Instances? inst> <Fields? flds>
42 <Constraints? cons> <Event* evnts> <Fact* other> <States? sts>‘[@\loc=s@\loc]
43 when ff == f;
44
45 Spec filterFact(s:(Spec)‘spec <Id name> <Instances? inst> <Fields? flds>
46 <Constraints? cons> <Event* evnts> <Fact* before> <Fact ff> <Fact* after> <States? sts>‘, Fact f)
47 = (Spec)‘spec <Id name> <Instances? inst> <Fields? flds>
48 <Constraints? cons> <Event* evnts> <Fact* before> <Fact* after> <States? sts>‘[@\loc=s@\loc]
49 when ff == f;
50
51 // Remove all the formulas from the facts in which a field that is to be ’forgotten’ is referenced
52 for (loc use <- uses, Fact f <- spc.facts, isContainedIn(use, f@\loc)) {
53 spc = filterFact(spc, f);
54 }
55
56 return spc;
57 }

Listing C.�: The Rascal implementation of the functions that remove the field definition from
the specs (the filterFields function) and the formulas in the facts that reference these fields
(the filterFacts function).

��� ������� � ����������

1 private Pre filterPre(Pre pre, set[loc] uses) {
2 Pre filterPre(p:(Pre)‘pre: <Formula ff>;‘,
3 Formula f)
4 = (Pre)‘pre: ;‘[@\loc=p@\loc] when ff == f;
5
6 Pre filterPre(p:(Pre)‘pre: <{Formula ","}* form>, <Formula ff>;‘,
7 Formula f)
8 = (Pre)‘pre: <{Formula ","}* form>;‘[@\loc=p@\loc] when ff == f;
9

10 Pre filterPre(p:(Pre)‘pre: <Formula ff>, <{Formula ","}* form>;‘,
11 Formula f)
12 = (Pre)‘pre: <{Formula ","}* form>;‘[@\loc=p@\loc] when ff == f;
13
14 Pre filterPre(p:(Pre)‘pre: <{Formula ","}* before>, <Formula ff>, <{Formula ","}* after>;‘,
15 Formula f)
16 = (Pre)‘pre: <{Formula ","}* before>,
17 ’ <{Formula ","}* after>;‘[@\loc=p@\loc] when ff == f;
18
19 for (loc use <- uses,
20 isContainedIn(use, pre@\loc),
21 Formula f <- pre.formulas,
22 isContainedIn(use, f@\loc)) {
23 pre = filterPre(pre, f);
24 }
25
26 return pre;
27 }
28
29 private Post filterPost(Post post, set[loc] uses) {
30 Post filterPost(p:(Post)‘post: <Formula ff>;‘, Formula f)
31 = (Post)‘post: ;‘[@\loc=p@\loc] when ff == f;
32
33 Post filterPost(p:(Post)‘post: <{Formula ","}* form>, <Formula ff>;‘,
34 Formula f)
35 = (Post)‘post: <{Formula ","}* form>;‘[@\loc=p@\loc] when ff == f;
36
37 Post filterPost(p:(Post)‘post: <Formula ff>, <{Formula ","}* form>;‘,
38 Formula f)
39 = (Post)‘post: <{Formula ","}* form>;‘[@\loc=p@\loc] when ff == f;
40
41 Post filterPost(p:(Post)‘post: <{Formula ","}* before>, <Formula ff>, <{Formula ","}* after>;‘,
42 Formula f)
43 = (Post)‘post: <{Formula ","}* before>,
44 ’ <{Formula ","}* after>;‘[@\loc=p@\loc] when ff == f;
45
46 for (loc use <- uses,
47 isContainedIn(use, post@\loc),
48 Formula f <- post.formulas,
49 isContainedIn(use, f@\loc)) {
50 post = filterPost(post, f);
51 }
52
53 return post;
54 }

Listing C.�: The Rascal implementation of the functions that remove the formulas from the pre-
and postconditions that reference these fields (the filterFacts function).

� .� ��� ���������� ���� ��� ������ �������������� ���

1 bool replace(Type abstractSpcType, Type concreteSpcType) {
2 Spec abstractSpc = lookupSpecByRef(tm.useDef[abstractSpcType@\loc], deps);
3 Spec concreteSpc = lookupSpecByRef(tm.useDef[concreteSpcType@\loc], deps);
4
5 Spec unalteredAbstractSpc = abstractSpc;
6
7 abstractSpc = visit(abstractSpc) {
8 case Type t => concreteSpcType when "<t>" == "<abstractSpcType>"
9 case Expr e => [Expr]"<concreteSpcType>" when "<e>" == "<abstractSpcType>"

10 };
11
12 abstractSpc.name = concreteSpc.name;
13
14 spcDep += {<f,abstractSpc> | <f,t> <- spcDep, t == concreteSpc};
15 spcDep = {<f,t> | <Spec f, Spec t> <- spcDep, f != concreteSpc, t != concreteSpc};
16
17 // remove the original mock spec from the depencendies
18 spcDep -= {<unalteredAbstractSpc,unalteredAbstractSpc>};
19
20 return true;
21 }
22
23 // Config cfg = the referenced configuration in the check statement to be executed
24
25 cfg = visit (cfg) {
26 case (InstanceSetup)‘<{Id ","}+ labels> : <Type abstractSpc> mocks <Type concreteSpc>
27 <Forget? forget> <InState? inState> <WithAssignments? assignments>‘
28 =>
29 (InstanceSetup)‘<{Id ","}+ labels> : <Type concreteSpc> <Forget? forget> <InState? inState>
30 <WithAssignments? assignments>‘ when replace(abstractSpc, concreteSpc)
31 };

Listing C.�: The Rascal implementation of the ’mock’ (replace) algorithm.

��� ������� � ����������

c.� �������� ’������’ ��� ’����’

Listing C.� contains the code that applies both the forget and mock algorithms. Both
algorithms are run inside the same closure manipulating the shared variabled spcDep,
which holds the CST’s of the parsed specifications. This altered spcDep is then type
checked again (Listing C.�, line ��) to see if the resulting specification is correct. In
the case that a user applied a mock that is not interface compatible, the type checker
will report this error.

1 // Step 1: Apply Mock
2 cfg = visit (cfg) {
3 case (InstanceSetup)‘<{Id ","}+ labels> : <Type abstractSpc> mocks <Type concreteSpc>
4 <Forget? forget> <InState? inState> <WithAssignments? assignments>‘ =>
5 (InstanceSetup)‘<{Id ","}+ labels> : <Type concreteSpc> <Forget? forget>
6 <InState? inState> <WithAssignments? assignments>‘
7 when replace(abstractSpc, concreteSpc)
8 };
9

10 // Step 2: Apply Forget (removing ’forgotten’ fields)
11 cfg = visit (cfg) {
12 case (InstanceSetup)‘<{Id ","}+ labels> : <Type spc> forget <{Id ","}+ fields>
13 <InState? inState> <WithAssignments? assignments>‘ =>
14 (InstanceSetup)‘<{Id ","}+ labels> : <Type spc> <InState? inState> <WithAssignments? assignments>‘
15 when slice({f | f <- fields})
16 };
17
18 set[Spec] filteredSpecs = filterNonReferencedSpecs(spcDep, tm, cfg);
19
20 Module gen = assembleModule(root.\module.name, filteredSpecs, as, cfg, chk);
21 TModel genTm = rebelTModelFromModule(gen, {}, pcfg);

Listing C.�: Applying the forget and mock algorithms.

� .� �������� ’������ ’ ��� ’���� ’ ���

c.� ����������� ���� ������ �� ��������

This section contains the listings of the translation functions translating a R�����
specification to a A���A��� specification. The translation is split in several parts.
Listing C.� contains the overall algorithm.

1 alias TransResult = tuple[str alleSpec, int duration];
2
3 TransResult translateToAlleAlle(Config cfg, Module m, TModel tm, PathConfig pcfg,
4 bool saveAlleAlleFile = true) {
5 RelMapping rm = constructRelMapping(m, tm);
6
7 set[Spec] spcs = {inst.spc | inst <- cfg.instances};
8
9 str alleSpec = "<translateRelationDefinitions(cfg, tm)>

10 ’<translateConstraints(cfg, spcs, tm, rm)>
11 ’<translateFacts(m, rm, tm, spcs)>
12 ’<translateAssert(m, rm, tm, spcs)>
13 ’
14 ’// Minimize the number of steps by minimizing the number of Configurations
15 ’objectives: minimize Config[count()]";
16
17
18 if (saveAlleAlleFile) {
19 writeFile(addModuleToBase(pcfg.checks, m)[extension="alle"], alleSpec);
20 }
21
22 return <alleSpec, duration>;
23 }
24
25 str translateFacts(Module m, RelMapping rm, TModel tm, set[Spec] spcs) {
26 int lastUnique = 0;
27 int nxtUnique() { return lastUnique += 1;}
28 Context ctx = ctx(rm, tm, spcs, true, defaultCurRel(), defaultStepRel(), nxtUnique);
29
30 return "<for (/Spec s <- m.parts) {>// Facts from spec ‘<s.name>‘
31 ’<for (Fact f <- s.facts) {>// Fact ‘<f.name>‘
32 ’<translate(f.form, ctx)>
33 ’<}><}>";
34 }
35
36 str translateAssert(Module m, RelMapping rm, TModel tm, set[Spec] spcs) {
37 set[Assert] asserts = {as | /Assert as <- m.parts};
38 if (size(asserts) > 1) {
39 throw "There should be only one assert to translate";
40 }
41
42 int lastUnique = 0;
43 int nxtUnique() { lastUnique += 1; return lastUnique; }
44 Context ctx = ctx(rm, tm, spcs, true, defaultCurRel(), defaultStepRel(), nxtUnique);
45
46 return "<for (Assert a <- asserts) {>// Assert ‘<a.name>‘
47 ’<translate(a.form, ctx)><}>";
48 }

Listing C.�: The Rascal implementation of translating R����� to A���A���.

As a first step the normalized R����� specification is annotated with A���A���
relations (Listing C.�, line �). Listing C.� contains this complete annotation algorithm.

��� ������� � ����������

The result is a map mapping a location in the R����� specification to a tuple consisting
of the A���A��� relational expression and the relational header.

1 alias RelMapping = map[loc, RelExpr];
2 alias RelExpr = tuple[str relExpr, Heading heading];
3 alias Heading = map[str,Domain];
4
5 data Domain
6 = idDom()
7 | intDom()
8 | strDom()
9 ;

10
11 data AnalysisContext = actx(RelExpr (loc l) lookup, void (loc l, RelExpr r) add, str curRel,
12 str stepRel, TModel tm, map[loc,Spec] specs, set[str] emptySpecs,
13 void (loc,str) addCurRelScoped, str (loc) lookupCurRelScoped);
14
15 AnalysisContext nextCurRel(AnalysisContext old) = actx(old.lookup, old.add, getNextCurRel(old.curRel),
16 old.stepRel, old.tm, old.specs, old.emptySpecs, old.addCurRelScoped, old.lookupCurRelScoped);
17
18 AnalysisContext newCurRel(str newCurRel, AnalysisContext old) = actx(old.lookup, old.add, newCurRel,
19 old.stepRel, old.tm, old.specs, old.emptySpecs, old.addCurRelScoped, old.lookupCurRelScoped);
20
21 AnalysisContext nextStepRel(AnalysisContext old) = actx(old.lookup, old.add, old.curRel,
22 getNextStepRel(old.stepRel), old.tm, old.specs, old.emptySpecs,
23 old.addCurRelScoped, old.lookupCurRelScoped);
24
25 AnalysisContext nextCurAndStepRel(AnalysisContext old) = actx(old.lookup, old.add,
26 getNextCurRel(old.curRel), getNextStepRel(old.stepRel), old.tm, old.specs,
27 old.emptySpecs, old.addCurRelScoped, old.lookupCurRelScoped);
28
29 RelMapping constructRelMapping(Module m, TModel tm) {
30 RelMapping mapping = ();
31 void addRel(loc l, RelExpr r) { mapping[l] = r; }
32 RelExpr lookupRel(loc l) = mapping[l] when l in mapping;
33 default RelExpr lookupRel(loc l) { throw "No Relation expression stored for location ‘<l>‘"; }
34
35 map[loc,str] curRelScoped = ();
36 void addCurRelScoped(loc l, str r) { curRelScoped[l] = r; }
37 str lookupCurRelScoped(loc l) = curRelScoped[l] when l in curRelScoped;
38 default str lookupCurRelScoped(loc l) { throw "No current relation stored for expression at <l>"; }
39
40 map[loc,Spec] specs = (s@\loc : s | /Spec s <- m.parts);
41 set[str] emptySpecs = findEmptySpecs(m);
42
43 AnalysisContext ctx = actx(lookupRel, addRel, defaultCurRel(), defaultStepRel(), tm, specs,
44 emptySpecs, addCurRelScoped, lookupCurRelScoped);
45
46 // First do all the events in the specification
47 for (/Spec s <- m.parts) {
48 for (Event ev <- s.events) {
49 analyse(ev, "<s.name>", ctx);
50 }
51
52 for (Fact f <- s.facts) {
53 analyse(f,ctx);
54 }
55 }
56
57 for (/Assert a <- m.parts) {
58 analyse(a,ctx);
59 }
60

� .� ����������� ���� ������ �� �������� ���

61 return mapping;
62 }
63
64 private set[str] findEmptySpecs(Module m) = {"<s.name>" | /Spec s <- m.parts, isEmptySpec(s)};
65 private bool isEmptySpec(Spec spc) = /Transition _ !:= spc.states;
66
67 void analyse(current:(Event)‘<Modifier* _> event <Id name>(<{FormalParam ","}* params>)
68 <EventBody body>‘, str specName, AnalysisContext ctx) {
69 // Add relations for parameters
70 for (FormalParam p <- params) {
71
72 str fldName = isPrim(p.name@\loc,ctx) ? "<p.name>" : "instance";
73 ctx.add(p.name@\loc, <"<p.name>", (fldName : type2Dom(getType(p.name@\loc, ctx)))>);
74 }
75
76 analyse(body, ctx);
77 }
78
79 void analyse((EventBody)‘<Pre? maybePre> <Post? maybePost> <EventVariant* variants>‘,
80 AnalysisContext ctx) {
81 for (/Pre pre := maybePre, Formula f <- pre.formulas) {
82 analyse(f, ctx);
83 }
84
85 for (/Post post := maybePost, Formula f <- post.formulas) {
86 analyse(f, ctx);
87 }
88
89 // There should not be any variants any more since the analyzer should run on
90 // normalized specifications only
91 if (/EventVariant v := variants) {
92 throw "Can not analyse events with variants. Analyzer only handles normalized specifications";
93 }
94 }
95
96 void analyse(Fact f, AnalysisContext ctx) = analyse(f.form, ctx);
97 void analyse(Assert a, AnalysisContext ctx) = analyse(a.form, ctx);
98
99 // From Common Syntax

100 void analyse((Formula)‘(<Formula f>)‘, AnalysisContext ctx) = analyse(f,ctx);
101 void analyse((Formula)‘!<Formula f>‘, AnalysisContext ctx) = analyse(f,ctx);
102 void analyse((Formula)‘<Expr spc>.<Id event>(<{Expr ","}* actuals>)‘, AnalysisContext ctx) {
103 analyse(spc,ctx);
104
105 for (Expr arg <- actuals) {
106 analyse(arg, ctx);
107 }
108 }
109
110 void analyse((Formula)‘<Expr spc> is <QualifiedName state>‘, AnalysisContext ctx) = analyse(spc, ctx);
111 void analyse((Formula)‘<Expr lhs> in <Expr rhs>‘, AnalysisContext ctx)
112 { analyse(lhs, ctx); analyse(rhs,ctx); }
113 void analyse((Formula)‘<Expr lhs> notin <Expr rhs>‘, AnalysisContext ctx)
114 { analyse(lhs, ctx); analyse(rhs,ctx); }
115 void analyse((Formula)‘<Expr lhs> \< <Expr rhs>‘, AnalysisContext ctx)
116 { analyse(lhs, ctx); analyse(rhs,ctx); }
117 void analyse((Formula)‘<Expr lhs> \<= <Expr rhs>‘, AnalysisContext ctx)
118 { analyse(lhs, ctx); analyse(rhs,ctx); }
119 void analyse((Formula)‘<Expr lhs> = <Expr rhs>‘, AnalysisContext ctx)
120 { analyse(lhs, ctx); analyse(rhs,ctx); }
121 void analyse((Formula)‘<Expr lhs> != <Expr rhs>‘, AnalysisContext ctx)
122 { analyse(lhs, ctx); analyse(rhs,ctx); }
123 void analyse((Formula)‘<Expr lhs> \>= <Expr rhs>‘, AnalysisContext ctx)
124 { analyse(lhs, ctx); analyse(rhs,ctx); }

��� ������� � ����������

125 void analyse((Formula)‘<Expr lhs> \> <Expr rhs>‘, AnalysisContext ctx)
126 { analyse(lhs, ctx); analyse(rhs,ctx); }
127 void analyse((Formula)‘<Formula lhs> && <Formula rhs>‘, AnalysisContext ctx)
128 { analyse(lhs, ctx); analyse(rhs,ctx); }
129 void analyse((Formula)‘<Formula lhs> || <Formula rhs>‘, AnalysisContext ctx)
130 { analyse(lhs, ctx); analyse(rhs,ctx); }
131 void analyse((Formula)‘<Formula lhs> =\> <Formula rhs>‘, AnalysisContext ctx)
132 { analyse(lhs, ctx); analyse(rhs,ctx); }
133 void analyse((Formula)‘<Formula lhs> \<=\> <Formula rhs>‘, AnalysisContext ctx)
134 { analyse(lhs, ctx); analyse(rhs,ctx); }
135 void analyse((Formula)‘if <Formula cond> then <Formula then> else <Formula els>‘, AnalysisContext ctx)
136 { analyse(cond, ctx); analyse(\then,ctx); analyse(els,ctx);}
137 void analyse((Formula)‘if <Formula cond> then <Formula then>‘, AnalysisContext ctx)
138 { analyse(cond, ctx); analyse(\then,ctx);}
139
140 void analyse((Formula)‘forall <{Decl ","}+ decls> | <Formula f>‘, AnalysisContext ctx) {
141 for (Decl d <- decls) {
142 analyse(d,ctx);
143 }
144 analyse(f,ctx);
145 }
146
147 void analyse((Formula)‘exists <{Decl ","}+ decls> | <Formula f>‘, AnalysisContext ctx) {
148 for (Decl d <- decls) {
149 analyse(d,ctx);
150 }
151 analyse(f,ctx);
152 }
153
154 void analyse((Formula)‘noOp(<Expr expr>)‘, AnalysisContext ctx) { analyse(expr,ctx); }
155
156 void analyse((Formula)‘eventually <Formula f>‘, AnalysisContext ctx) = analyse(f,ctx);
157 void analyse((Formula)‘always <Formula f>‘, AnalysisContext ctx) = analyse(f,ctx);
158 void analyse((Formula)‘always-last <Formula f>‘, AnalysisContext ctx) = analyse(f,ctx);
159 void analyse((Formula)‘next <Formula f>‘, AnalysisContext ctx) = analyse(f,ctx);
160 void analyse((Formula)‘first <Formula f>‘, AnalysisContext ctx) = analyse(f,ctx);
161 void analyse((Formula)‘last <Formula f>‘, AnalysisContext ctx) = analyse(f,ctx);
162
163 void analyse((Formula)‘<Formula u> until <Formula r>‘, AnalysisContext ctx) {
164 analyse(u,ctx);
165 analyse(r,ctx);
166 }
167
168 void analyse((Formula)‘<TransEvent event> on <Expr var> <WithAssignments? w>‘, AnalysisContext ctx) {
169 analyse(var,ctx);
170
171 for (/(Assignment)‘<Id fieldName> = <Expr val>‘ <- w) {
172 analyse(val,ctx);
173 }
174 }
175
176 void analyse((WithAssignments)‘with <{Assignment ","}+ assignments>‘, AnalysisContext ctx) {}
177
178 // From Common Syntax
179 void analyse(current:(Expr)‘(<Expr expr>)‘, AnalysisContext ctx) {
180 analyse(expr,ctx);
181 ctx.add(current@\loc, ctx.lookup(expr@\loc));
182 }
183
184 void analyse(current:(Expr)‘<Id var>‘, AnalysisContext ctx) {
185 analyse(var,ctx);
186 ctx.add(current@\loc, ctx.lookup(var@\loc));
187 }
188

� .� ����������� ���� ������ �� �������� ���

189 void analyse(current:(Expr)‘<Lit l>‘, AnalysisContext ctx) {
190 analyse(l,ctx);
191 ctx.add(current@\loc, ctx.lookup(l@\loc));
192 }
193
194 void analyse(current:(Id)‘<Id var>‘, AnalysisContext ctx) {
195 Define def = getDefinition(var@\loc, ctx);
196
197 switch (def.idRole) {
198 case paramId(): ctx.add(current@\loc, ctx.lookup(def.defined));
199 case quantVarId(): ctx.add(current@\loc, <"<var>", ctx.lookup(def.defined).heading>);
200 case fieldId(): ctx.add(current@\loc,
201 <"(<getSpecName(current@\loc,ctx)><capitalize("<var>")> |x| <ctx.curRel>)",
202 ("instance":idDom(), "<var>": type2Dom(getType(current@\loc,ctx)))>);
203 case specId(): ctx.add(current@\loc,
204 <"(Instance |x| <capitalize("<var>")>)[instance]", ("instance":idDom())>);
205 case specInstanceId(): ctx.add(current@\loc,
206 <"<getSpecName(current@\loc,ctx)>_<var>", ("instance":idDom())>);
207 default: throw "Id expression at ‘<current@\loc>‘ with role ‘<def.idRole>‘
208 ’is used in a way not yet handled by the relation analyser";
209 }
210 }
211
212 void analyse(current:(Expr)‘<Expr expr>.<Id fld>‘, AnalysisContext ctx) {
213 analyse(expr,ctx);
214 RelExpr exprRel = ctx.lookup(expr@\loc);
215
216 if (getType(expr@\loc, ctx) == stringType() && "<fld>" == "length") {
217 // built-in attribute on string
218 ctx.add(current@\loc, <"(<exprRel.relExpr>)[<getFieldName(exprRel)>]",
219 ("<getFieldName(exprRel)>":type2Dom(intType()))>);
220 } else {
221 analyse(fld,ctx);
222 RelExpr fieldRel = ctx.lookup(fld@\loc);
223
224 ctx.add(current@\loc,
225 <"(<exprRel.relExpr>
226 ’<renameIfNeeded(getFieldName(exprRel),"instance")> |x| <fieldRel.relExpr>)[<fld>]",
227 ("<fld>":type2Dom(getType(fld@\loc,ctx)))>);
228 }
229 }
230
231 void analyse(current:(Expr)‘<Expr expr>.*<Id fld>‘, AnalysisContext ctx) {
232 analyse(expr,ctx);
233 analyse(fld,ctx);
234
235 RelExpr exprRel = ctx.lookup(expr@\loc);
236 RelExpr fieldRel = ctx.lookup(fld@\loc);
237
238 ctx.add(current@\loc,
239 <"(<exprRel.relExpr><renameIfNeeded(getFieldName(exprRel),"instance")> |x|
240 ’*(<fieldRel.relExpr>)[instance,<fld>])[<fld>]",
241 ("<fld>": type2Dom(getType(fld@\loc,ctx)))>);
242 }
243
244 void analyse(current:(Expr)‘<Expr expr>.^<Id fld>‘, AnalysisContext ctx) {
245 analyse(expr,ctx);
246 analyse(fld,ctx);
247
248 RelExpr exprRel = ctx.lookup(expr@\loc);
249 RelExpr fieldRel = ctx.lookup(fld@\loc);
250
251 ctx.add(current@\loc, <"(<exprRel.relExpr><renameIfNeeded(getFieldName(exprRel),"instance")> |x|
252 ’^(<fieldRel.relExpr>)[instance,<fld>])[<fld>]",

��� ������� � ����������

253 ("<fld>": type2Dom(getType(fld@\loc,ctx)))>);
254 }
255
256 void analyse(current:(Expr)‘<Id func>(<{Expr ","}* actuals>)‘, AnalysisContext ctx) {
257 list[Expr] params = [p | p <- actuals];
258 for (p <- params) {
259 analyse(p,ctx);
260 }
261
262 switch ("<func>") {
263 case "substr": {
264 RelExpr strFld = ctx.lookup(params[0]@\loc);
265 ctx.add(current@\loc, <"<strFld.relExpr>[<getFieldName(strFld)>]",
266 ("<getFieldName(strFld)>":type2Dom(stringType()))>);
267 }
268 case "toInt": {
269 RelExpr strFld = ctx.lookup(params[0]@\loc);
270 ctx.add(current@\loc, <"<strFld.relExpr>[<getFieldName(strFld)>]",
271 ("<getFieldName(strFld)>":type2Dom(intType()))>);
272 }
273 case "toStr": {
274 RelExpr intFld = ctx.lookup(params[0]@\loc);
275 ctx.add(current@\loc, <"<intFld.relExpr>[<getFieldName(intFld)>]",
276 ("<getFieldName(intFld)>":type2Dom(stringType()))>);
277 }
278 }
279 }
280
281 void analyse(current:(Expr)‘<Expr spc>[<Id fld>]‘, AnalysisContext ctx) {
282 analyse(spc,ctx);
283 analyse(fld,ctx);
284
285 RelExpr exprRel = ctx.lookup(spc@\loc);
286 RelExpr fieldRel = ctx.lookup(fld@\loc);
287
288 ctx.add(current@\loc, <"<fieldRel.relExpr>", ("instance":type2Dom(getType(fld@\loc,ctx)))>);
289 }
290
291 void analyse(current:(Expr)‘<Expr expr>’‘, AnalysisContext ctx) {
292 analyse(expr, newCurRel("nxt", ctx));
293 ctx.add(current@\loc, ctx.lookup(expr@\loc));
294 }
295
296 void analyse(current:(Expr)‘- <Expr expr>‘, AnalysisContext ctx) {
297 analyse(expr, ctx);
298 ctx.add(current@\loc, ctx.lookup(expr@\loc));
299 }
300
301 void analyse(current:(Expr)‘|<Expr expr>|‘, AnalysisContext ctx) {
302 analyse(expr, ctx);
303 AType tipe = getType(expr@\loc,ctx);
304 if (intType() := tipe) {
305 ctx.add(current@\loc, ctx.lookup(expr@\loc));
306 } else if (setType(_) := tipe || spectType(_) := tipe) {
307 RelExpr re = ctx.lookup(expr@\loc);
308 ctx.add(current@\loc, re);
309 }
310 }
311
312 private void setOperation(loc current, Expr lhs, Expr rhs, str op, AnalysisContext ctx) {
313 RelExpr lhsRel = ctx.lookup(lhs@\loc);
314 RelExpr rhsRel = ctx.lookup(rhs@\loc);
315
316 str relExpr = "(<lhsRel.relExpr> <op> <rhsRel.relExpr><renameIfNeeded(rhsRel, lhsRel)>)";

� .� ����������� ���� ������ �� �������� ���

317 ctx.add(current, <relExpr, lhsRel.heading>);
318 }
319
320 void analyse(current:(Expr)‘<Expr lhs> + <Expr rhs>‘, AnalysisContext ctx) {
321 analyse(lhs,ctx);
322 analyse(rhs,ctx);
323
324 switch ({getType(lhs@\loc, ctx), getType(rhs@\loc, ctx)}) {
325 case {setType(AType tipe), tipe}: setOperation(current@\loc, lhs, rhs, "+", ctx);
326 case {setType(AType tipe), setType(tipe)}: setOperation(current@\loc, lhs, rhs, "+", ctx);
327 case {intType()}: ctx.add(current@\loc, ctx.lookup(lhs@\loc));
328 }
329 }
330
331 void analyse(current:(Expr)‘<Expr lhs> - <Expr rhs>‘, AnalysisContext ctx) {
332 analyse(lhs,ctx);
333 analyse(rhs,ctx);
334
335 switch ({getType(lhs@\loc,ctx), getType(rhs@\loc,ctx)}) {
336 case {setType(AType tipe), tipe}: setOperation(current@\loc, lhs, rhs, " \ ", ctx);
337 case {setType(AType tipe), setType(tipe)}: setOperation(current@\loc, lhs, rhs, " \ ", ctx);
338 case {intType()}: ctx.add(current@\loc, ctx.lookup(lhs@\loc));
339 }
340 }
341
342 void analyse(current:(Expr)‘<Expr lhs> * <Expr rhs>‘, AnalysisContext ctx) =
343 analyseBinOp(lhs,rhs,current@\loc,ctx);
344 void analyse(current:(Expr)‘<Expr lhs> / <Expr rhs>‘, AnalysisContext ctx) =
345 analyseBinOp(lhs,rhs,current@\loc,ctx);
346 void analyse(current:(Expr)‘<Expr lhs> % <Expr rhs>‘, AnalysisContext ctx) =
347 analyseBinOp(lhs,rhs,current@\loc,ctx);
348
349 void analyseBinOp(Expr lhs, Expr rhs, loc complete, AnalysisContext ctx) {
350 analyse(lhs,ctx);
351 analyse(rhs,ctx);
352
353 ctx.add(complete, ctx.lookup(lhs@\loc));
354 }
355
356 void analyse(current:(Expr)‘<Expr lhs> ++ <Expr rhs>‘, AnalysisContext ctx) {
357 analyse(lhs,ctx);
358 analyse(rhs,ctx);
359
360 switch ({getType(lhs@\loc, ctx), getType(rhs@\loc, ctx)}) {
361 case {strType()}: ctx.add(current@\loc, ctx.lookup(lhs@\loc));
362 }
363 }
364
365 void analyse(current:(Expr)‘{<Decl d> | <Formula f>}‘, AnalysisContext ctx) {
366 analyse(d,ctx);
367 analyse(f,ctx);
368
369 ctx.add(current@\loc, ctx.lookup(d@\loc));
370 }
371
372 void analyse(current:(Decl)‘<{Id ","}+ vars>: <Expr expr>‘, AnalysisContext ctx) {
373 analyse(expr, ctx);
374
375 for (Id var <- vars) {
376 ctx.add(var@\loc, ctx.lookup(expr@\loc));
377 ctx.addCurRelScoped(var@\loc, ctx.curRel);
378 }
379
380 ctx.add(current@\loc, ctx.lookup(expr@\loc));

��� ������� � ����������

381 }
382
383 void analyse(current:(Lit)‘this‘, AnalysisContext ctx) {
384 ctx.add(current@\loc, <"<toLowerCase(getSpecName(current@\loc,ctx))>", ("instance": idDom())>);
385 }
386
387 void analyse(current:(Lit)‘<Int i>‘, AnalysisContext ctx) {
388 ctx.add(current@\loc, <"__IntConst_<i>", ("const_<i>":intDom())>);
389 }
390
391 void analyse(current:(Lit)‘none‘, AnalysisContext ctx) {
392 ctx.add(current@\loc, <"__EMPTY", ("instance":idDom())>);
393 }
394
395 void analyse(current:(Lit)‘<StringConstant s>‘, AnalysisContext ctx) {
396 ctx.add(current@\loc, <"__StrConst_<unquote(s)>", ("const_<unquote(s)>":strDom())>);
397 }
398
399 void analyse(current:(Lit)‘{<{Expr ","}* elems>}‘, AnalysisContext ctx) {
400 if ((Lit)‘{}‘ := current) {
401 ctx.add(current@\loc, <"__EMPTY", ("instance":idDom())>);
402 }
403 }
404
405 private str unquote(StringConstant s) = "<s>"[1..-1];
406
407 private str getSpecName(loc l, AnalysisContext ctx) {
408 Define d = getDefinition(l, ctx);
409
410 if (d.defined in ctx.specs) {
411 return "<ctx.specs[d.defined].name>";
412 } else if (d.scope in ctx.specs) {
413 return "<ctx.specs[d.scope].name>";
414 } else {
415 println("Something is wrong: <d>");
416 throw "Unable to determine spec for ‘<d.id>‘ at <l>";
417 }
418 }
419
420 private Define getDefinition(loc use, AnalysisContext ctx) {
421 if ({loc def} := ctx.tm.useDef[use]) {
422 if (def in ctx.tm.definitions) {
423 return ctx.tm.definitions[def];
424 }
425 }
426
427 throw "Unable to define role";
428 }
429
430 private Maybe[Define] getDefinitionIfExists(loc use, AnalysisContext ctx) {
431 if (use notin ctx.tm.useDef<0>) {
432 return nothing();
433 }
434
435 if ({loc def} := ctx.tm.useDef[use]) {
436 if (def in ctx.tm.definitions) {
437 return just(ctx.tm.definitions[def]);
438 }
439 }
440
441 return nothing();
442 }
443
444

� .� ����������� ���� ������ �� �������� ���

445 private str getFieldName(RelExpr re) {
446 if (size(re.heading) > 1) {
447 throw "More than 1 attribute in the relation, unable to determine field name";
448 }
449
450 return getOneFrom(re.heading);
451 }
452
453 private str renameIfNeeded(RelExpr lhs, RelExpr rhs) {
454 if (lhs.heading == rhs.heading) {
455 return "";
456 }
457
458 return "[<getFieldName(lhs)> as <getFieldName(rhs)>]";
459 }
460
461 private str renameIfNeeded(str lhs, str rhs) {
462 if (lhs == rhs) {
463 return "";
464 }
465
466 return "[<lhs> as <rhs>]";
467 }
468
469 private bool isPrim(loc expr, AnalysisContext ctx) = isPrim(t) when AType t := getType(expr, ctx);
470
471 private bool isPrim(intType()) = true;
472 private bool isPrim(stringType()) = true;
473 private default bool isPrim(AType t) = false;
474
475 private AType getType(loc expr, AnalysisContext ctx) = ctx.tm.facts[expr] when expr in ctx.tm.facts;
476 private default AType getType(loc expr, AnalysisContext ctx) {
477 throw "No type information known for expression at ‘<expr>‘";
478 }
479
480 private Domain type2Dom(intType()) = intDom();
481 private Domain type2Dom(stringType()) = strDom();
482 private default Domain type2Dom(AType t) = idDom();
483
484 str dom2Str(intType()) = "int";
485 str dom2Str(stringType()) = "str";
486 default str dom2Str(AType t) = "id";
487
488 private str getNextCurRel(str oldCurRel) {
489 if (oldCurRel == defaultCurRel()) {
490 return "<defaultCurRel()>_1";
491 } else if (/cur_<n:[0-9]+>/ := oldCurRel) {
492 return "<defaultCurRel()>_<toInt(n)+1>";
493 }
494
495 throw "Should not happen";
496 }
497
498 private str getNextStepRel(str oldStepRel) {
499 if (oldStepRel == defaultStepRel()) {
500 return "<defaultStepRel()>_1";
501 } else if (/step_<n:[0-9]+>/ := oldStepRel) {
502 return "<defaultStepRel()>_<toInt(n)+1>";
503 }
504
505 throw "Should not happen";
506 }
507
508 private str defaultCurRel() = "cur";

��� ������� � ����������

509 private str defaultStepRel() = "step";

Listing C.�: The algorithm that annotates each expression in the R����� CST with the to be
constructed A���A��� relation.

The next part of the translation algorithm translates the normalized R�����
specification to an A���A��� specification, using the constructed relational mapping.
Listing C.� contains the relational translation algorithm.

1 str translateRelationDefinitions(Config cfg, TModel tm)
2 = "<translateStaticPart(cfg.instances<0>, tm)>
3 ’
4 ’<translateDynamicPart(cfg, tm)>
5 ";
6
7 private str translateStaticPart(set[Spec] spcs, TModel tm) {
8 str def = "// Static configuration of state machines
9 ’<buildSpecRel(spcs)>

10 ’<buildStateRel(spcs,tm)>
11 ’<buildAllowedTransitionRel(spcs)>
12 ’<buildEventsAsSingleRels(spcs)>
13 ’<buildConstantRels(spcs)>";
14
15 return def;
16 }
17
18 private str translateDynamicPart(Config cfg, TModel tm) {
19 str def = "// Dynamic configuration of state machines
20 ’<buildConfigRels(cfg.numberOfTransitions, cfg.finiteTrace, cfg.exactNrOfSteps)>
21 ’<buildInstanceRel(cfg.instances)>
22 ’<buildInstanceInStateRel(cfg.instances, cfg.numberOfTransitions, tm)>
23 ’<buildRaisedEventsRel(cfg.instances<0,1>, cfg.numberOfTransitions, cfg.finiteTrace)>
24 ’<buildChangedInstancesRel(cfg.instances<0,1>, cfg.numberOfTransitions, cfg.finiteTrace)>
25 ’<buildStateVectors(lookupSpecs(cfg.instances), cfg, tm)>
26 ’<buildEnumRels(lookupSpecs(cfg.instances))>
27 ’<buildEventParamRels(lookupSpecs(cfg.instances), cfg, tm)>";
28
29 return def;
30 }
31
32 private str buildSpecRel(set[Spec] spcs)
33 = "// Define the specs that can take place in the transition system
34 ’<for (s <- spcs) {><buildSpecRel(s)>
35 ’<}>";
36
37 private str buildSpecRel(Spec spc)
38 = "<getCapitalizedSpecName(spc)> (spec:id) = {\<<getLowerCaseSpecName(spc)>\>}";
39
40 private str buildStateRel(set[Spec] spcs, TModel tm)
41 = "// Define all possible states for all machines
42 ’State (state:id) = {<stateTuplesWithDefaults>}
43 ’initialized (state:id) = {<stateTuples>}
44 ’finalized (state:id) = {\<state_finalized\>}
45 ’uninitialized (state:id) = {\<state_uninitialized\>}
46 ’<buildIndividualStateRels(spcs,tm)>"
47 when stateTuples := intercalate(",", [st | s <- spcs, str st := buildStateTuples(s,tm), st != ""]),
48 stateTuplesWithDefaults := intercalate(",", dup([st | s <- spcs,
49 str st := buildStateTuplesWithDefaultStates(s,tm), st != ""]));
50
51 private str buildIndividualStateRels(set[Spec] spcs, TModel tm)
52 = "<for (s <- spcs) {><buildIndividualStateRel(s,tm)>
53 ’<}>";

� .� ����������� ���� ������ �� �������� ���

54
55 private str buildIndividualStateRel(Spec spc, TModel tm)
56 = "<for (str s <- states) {>State<getCapitalizedSpecName(spc)><capitalize(s)> (state:id) =
57 ’{\<<getStateLabel(spc, s)>\>}
58 ’<}>"
59 when set[str] states := lookupStates(spc,tm);
60
61 private str buildStateTuples(Spec spc, TModel tm) = intercalate(",", ["\<<s>\>" | str s <- states])
62 when set[str] states := lookupStateLabels(spc, tm);
63
64 private str buildStateTuplesWithDefaultStates(Spec spc, TModel tm) =
65 intercalate(",", ["\<<s>\>" | str s <- states])
66 when set[str] states := lookupStateLabelsWithDefaultStates(spc, tm);
67
68 private str buildAllowedTransitionRel(set[Spec] spcs)
69 = "// Define which transitions are allowed
70 ’//(in the form of ‘from a state‘ -\> ‘ via an event‘ -\> ‘to a state)‘
71 ’allowedTransitions (from:id, to:id, event:id) =
72 ’{<intercalate(",", [tt | s <- spcs, str tt := buildAllowedTransitionTuples(s), tt != ""])>}";
73
74 private str buildAllowedTransitionTuples(Spec spc)
75 = intercalate(",", ["\<<f>,<t>,<e>\>" | <f,t,e> <- flattenTransitions(spc)])
76 when /Transition _ := spc.states;
77
78 private default str buildAllowedTransitionTuples(Spec s) = "";
79
80 private str buildEventsAsSingleRels(set[Spec] spcs)
81 = "// Define each event as single relation so that the events can be used as variables
82 // in the constraints
83 ’<for (r <- rels) {><r>
84 ’<}>"
85 when
86 set[str] rels := {buildSingleEventRel("<s.name>", e) | s <- spcs, /Event e := s.events};
87
88 private str buildSingleEventRel(str specName, Event e)
89 = "Event<capitalize(specName)><capitalize(event)> (event:id) =
90 ’{\<event_<toLowerCase(specName)>_<toLowerCase(event)>\>}"
91 when str event := replaceAll("<e.name>", "::", "_");
92
93 private str buildConstantRels(set[Spec] spcs) {
94 set[str] constRels = {};
95
96 for (/(Expr)‘<Lit l>‘ := spcs) {
97 switch (l) {
98 case (Lit)‘<Int i>‘: constRels += "__IntConst_<i> (const_<i>: int) = {\<<i>\>}";
99 case (Lit)‘{}‘: constRels += "__EMPTY (instance:id) = {}";

100 case (Lit)‘none‘: constRels += "__EMPTY (instance:id) = {}";
101 }
102 }
103
104 return "<for (r <- constRels) {><r>
105 ’<}>";
106 }
107
108 private str unquote(StringConstant s) = "<s>"[1..-1];
109
110 private rel[str,str,str] flattenTransitions(Spec s)
111 = {<"<cfrom>", "<cto>", "event_<name>_<event>"> |
112 str name := getLowerCaseSpecName(s),
113 /(Transition)‘<State from> -\> <State to> : <{TransEvent ","}+ events>;‘ := s.states,
114 str cfrom := convertFromState(from, name), str cto := convertToState(to, name),
115 str event <- {toLowerCase(replaceAll("<e>", "::", "_")) | TransEvent e <- events}};
116
117 private str convertFromState((State)‘(*)‘, str _) = "state_uninitialized";

��� ������� � ����������

118 private default str convertFromState(rebel::lang::SpecSyntax::State st, str spec) =
119 convertState(st, spec);
120
121 private str convertToState((State)‘(*)‘, str _) = "state_finalized";
122 private default str convertToState(rebel::lang::SpecSyntax::State st, str spec) =
123 convertState(st, spec);
124
125 private str convertState(rebel::lang::SpecSyntax::State st, str spec) =
126 "state_<spec>_<toLowerCase(replaceAll("<st>", "::", "_"))>";
127
128 str translateConfigState(Spec spc, uninitialized()) = "state_uninitialized";
129 str translateConfigState(Spec spc, finalized()) = "state_finalized";
130 str translateConfigState(Spec spc, state(str name)) =
131 "state_<toLowerCase("<spc.name>")>_<toLowerCase(replaceAll("<name>", "::", "_"))>";
132
133 private str buildEventParamRels(set[Spec] specs, Config cfg, TModel tm) {
134 list[str] rels = [];
135
136 for (Spec s <- specs, e <- lookupEvents(s), /FormalParam p <- e.params) {
137 rels += buildEventParamRel(s,e,p,cfg,tm);
138 }
139
140 return intercalate("\n", [r | r <- rels, r != ""]);
141 }
142
143 private str buildEventParamRel(Spec s, Event e, FormalParam p, Config cfg, TModel tm) {
144 list[str] defs = ["cur:id", "nxt:id", getParamHeaderDef(p,cfg)];
145 return "ParamEvent<getCapitalizedSpecName(s)><getCapitalizedEventName(e)>
146 ’<getCapitalizedParamName(p)> (<intercalate(", ", defs)>) <buildParamTuples(s,e,p,cfg,tm)>";
147 }
148
149 private str buildParamTuples(Spec s, Event e, FormalParam p, Config cfg, TModel tm) {
150 void addTuple(int i, int j) {
151 if (isPrim(p.tipe, tm)) {
152 upperBound += "\<c<i>,c<j>,?\>";
153 } else {
154 for (str otherInst <- getInstancesOfType(p.tipe, cfg.instances<0,1>, tm)) {
155 upperBound += "\<c<i>,c<j>,<otherInst>\>";
156 }
157 }
158 }
159
160 list[str] upperBound = [];
161 for (int i <- [1..cfg.numberOfTransitions]) {
162 addTuple(i, i+1);
163 }
164
165 if (!cfg.finiteTrace) {
166 for (int i <- [cfg.numberOfTransitions..0]) {
167 addTuple(cfg.numberOfTransitions, i);
168 }
169 }
170
171 return "\<= {<intercalate(",", upperBound)>}";
172 }
173
174 private str buildEnumRels(set[Spec] specs) {
175 list[str] rels = ["<s.name>_<instance> (instance:id) = {\<<instance>\>}" |
176 Spec s <- specs, /Id instance <- s.instances];
177 return "<for (r <- rels) {><r>
178 ’<}>";
179 }
180
181 private str buildStateVectors(set[Spec] specs, Config cfg, TModel tm) {

� .� ����������� ���� ������ �� �������� ���

182 list[str] rels = [buildFieldRel(s, f, cfg, tm) | Spec s <- specs, /Field f <- s.fields];
183 return "<for (r <- rels) {><r>
184 ’<}>";
185 }
186
187 private str buildFieldRel(Spec spc, Field f, Config cfg, TModel tm) {
188 list[str] defs = ["config:id", "instance:id", getFieldHeaderDef(f,cfg)];
189 return "<getCapitalizedSpecName(spc)><getCapitalizedFieldName(f)>
190 (<intercalate(", ", defs)>) <buildFieldTuples(spc, f, cfg, tm)>";
191 }
192
193 private str getFieldHeaderDef(Field f, Config cfg) = "<f.name>:<convertType(f.tipe)>";
194 private str getParamHeaderDef(FormalParam p, Config cfg) = "<p.name>:<convertType(p.tipe)>";
195
196 private str buildFieldTuples(Spec spc, Field f, Config cfg, TModel tm) {
197 list[str] lowerBound = [];
198 for (<str inst, "<f.name>", str val> <- cfg.initialValues[spc], val != "__none") {
199 lowerBound += "\<c1,<inst>,<val>\>";
200 }
201
202 list[str] upperBound = [];
203 for (str inst <- lookupInstances(spc, cfg.instances<0,1>), int i <- [1..cfg.numberOfTransitions+1]) {
204 if (!(i == 1 && /<inst, "<f.name>", "__none"> := cfg.initialValues[spc])) {
205 if (isPrim(f.tipe, tm)) {
206 upperBound += "\<c<i>,<inst>,?\>";
207 } else if (isSetOfInt(f.tipe, tm)) {
208 for (int j <- [1..cfg.maxSizeIntegerSets+1]) {
209 upperBound += "\<c<i>,<inst>,<inst>_elem<j>\>";
210 }
211 } else if (isSetOfString(f.tipe, tm)) {
212 for (int j <- [1..cfg.maxSizeStringSets+1]) {
213 upperBound += "\<c<i>,<inst>,<inst>_elem<j>\>";
214 }
215 }else { // Set of other specification
216 for (str otherInst <- getInstancesOfType(f.tipe, cfg.instances<0,1>, tm)) {
217 upperBound += "\<c<i>,<inst>,<otherInst>\>";
218 }
219 }
220 }
221 }
222
223 if (lowerBound != []) {
224 return "\>= {<intercalate(",", lowerBound)>} \<= {<intercalate(",", upperBound)>}";
225 } else {
226 return "\<= {<intercalate(",", upperBound)>}";
227 }
228 }
229
230 private str buildChangedInstancesRel(rel[Spec,str] instances,
231 int numberOfTransitions, bool finiteTrace) {
232 list[str] tuples = ["\<c<c>,c<c+1>,<i>\>" | int c <- [1..numberOfTransitions],
233 Spec s <- instances<0>, !isEmptySpec(s), str i <- instances[s]];
234
235 if (!finiteTrace) {
236 tuples += ["\<c<c>,c<j>,<i>\>" | int c <- [numberOfTransitions..0], int j <- [c..0],
237 Spec s <- instances<0>, !isEmptySpec(s), str i <- instances[s]];
238 }
239
240 return "changedInstance (cur:id, nxt:id, instance:id) \<= {<intercalate(",", tuples)>}
241 ’";
242 }
243
244 private str buildRaisedEventsRel(rel[Spec spc, str instance] instances,
245 int numberOfTransitions, bool finiteTrace)

��� ������� � ����������

246 = "raisedEvent (cur:id, nxt:id, event:id, instance:id) \<=
247 {<intercalate(",", [tups | <spc, i> <- instances,
248 str tups := buildRaisedEventsTuples(spc, i, numberOfTransitions, finiteTrace), tups != ""])>}";
249
250 private str buildRaisedEventsTuples(Spec spc, str instance,
251 int numberOfTransitions, bool finiteTrace) {
252 list[str] tuples = ["\<c<c>,c<c+1>,<toLowerCase(event)>,<instance>\>" |
253 int c <- [1..numberOfTransitions], str event <- lookupRaisableEventName(spc)];
254
255 if (!finiteTrace) {
256 tuples += ["\<c<c>,c<j>,<toLowerCase(event)>,<instance>\>" |
257 int c <- [numberOfTransitions..0], int j <- [c..0], str event <- lookupRaisableEventName(spc)];
258 }
259
260 return intercalate(",", tuples);
261 }
262
263 private str buildConfigRels(int numberOfTransitions, bool finiteTrace, bool exactNrOfSteps)
264 = "Config (config:id) \>= {\<c1\>} \<=
265 ’{<intercalate(",", ["\<c<i>\>" | int i <- [1..numberOfTransitions+1]])>}
266 ’<if (exactNrOfSteps) {>order (cur:id, nxt:id) =
267 ’{<intercalate(",", ["\<c<i>,c<i+1>\>" | int i <- [1..numberOfTransitions]])>}<} else {>
268 ’order (cur:id, nxt:id) \<=
269 ’{<intercalate(",", ["\<c<i>,c<i+1>\>" | int i <- [1..numberOfTransitions]])>}<}>
270 ’first (config:id) = {\<c1\>}
271 ’last (config:id) \<= {<intercalate(",", ["\<c<i>\>" | int i <- [1..numberOfTransitions+1]])>}
272 ’back (config:id) <if (finiteTrace) {>= {}<} else {>
273 ’\<= {<intercalate(",", ["\<c<i>\>" | int i <- [1..numberOfTransitions+1]])>} <}>
274 ’loop (cur:id, nxt:id) <if (finiteTrace) {>= {}<} else {>
275 ’\<= {<intercalate(",", ["\<c<i>,c<j>\>" | int i <- [2..numberOfTransitions+1],
276 int j <- [1..i+1]])>} <}>
277 ’";
278
279 private str buildInstanceRel(rel[Spec spc, str instance, State initialState] instances)
280 = "Instance (spec:id, instance:id) =
281 ’{<intercalate(",", ["\<<toLowerCase("<inst.spc.name>")>,<inst.instance>\>" |
282 inst <- instances])>}";
283
284 private str buildInstanceInStateRel(rel[Spec spc, str instance, State state] instances,
285 int numberOfTransitions, TModel tm) {
286 str initialTup = buildInitialInstanceInStateTuples(instances,tm);
287 str iisRel = "instanceInState (config:id, instance:id, state:id) <if (initialTup != "") {>
288 ’\>={<initialTup>}<}>
289 ’\<= {<buildInstanceInStateTuples(instances<spc,instance>, numberOfTransitions, tm)>}";
290 return iisRel;
291 }
292
293 private str buildInitialInstanceInStateTuples(rel[Spec spc, str instance, State state] instances,
294 TModel tm)
295 = intercalate(",", ["\<c1,<i>,<translateConfigState(s, st)>\>" |
296 <s,i,st> <- instances, !isEmptySpec(s), st != noState()]);
297
298 private str buildInstanceInStateTuples(rel[Spec spc, str instance] instances,
299 int numberOfTransitions, TModel tm)
300 = intercalate(",", ["\<c<c>,<i>,<toLowerCase(st)>\>" | int c <- [1..numberOfTransitions+1],
301 <s,i> <- instances, str st <- lookupStateLabelsWithDefaultStates(s,tm)]);

Listing C.�: The Rascal implementation of translating the relational definitions of a R�����
specification to A���A���.

The next part is responsible for translating all the events, type restrictions and
transition function to A���A���. Listing C.� contain these translations.

� .� ����������� ���� ������ �� �������� ���

1 str translateConstraints(rebel::checker::ConfigTranslator::Config cfg, set[Spec] spcs, TModel tm,
RelMapping rm)

2 = "<configurationConstraints(cfg.finiteTrace)>
3 ’<genericTypeConstraints(cfg.finiteTrace)>
4 ’<machineFieldTypeConstraints(spcs, tm)>
5 ’<eventParamTypeAndMultiplicityConstraints(spcs, tm)>
6 ’<allConfigsAreReachable()>
7 ’<onlyOneTriggeringEvent(cfg.finiteTrace)>
8 ’<noMachineWithoutState(spcs)>
9 ’<machineOnlyHasValuesWhenInitialized(spcs, tm)>

10 ’<noTransitionsBetweenUnrelatedStates(cfg.finiteTrace)>
11 ’<changeSetPredicates(spcs)>
12 ’<helperPredicates()>
13 ’<translateEventsToPreds(spcs, rm, tm)>
14 ’<constructTransitionFunctions(spcs, rm, tm)>
15 ’<translateCompleteTransitionFunction(spcs, cfg)>";
16
17 private str configurationConstraints(bool finiteTrace)
18 = "
19 ’// Constraints for the configuration and ordering relations
20 ’order in Config[config as cur] x Config[config as nxt]
21 ’last = Config \ order[cur-\>config] // There is only one last configuration
22 ’<if (!finiteTrace) {>back in Config
23 ’lone back
24 ’some loop
25 ’loop in last[config as cur] x back[config as nxt]
26 ’// Loop contains at most one tuple going back from the last configuration to the<}>
27 ’";
28
29 private str genericTypeConstraints(bool finiteTrace)
30 = "// Generic \’Type\’ constraints
31 ’raisedEvent in (order<if (!finiteTrace) {> + loop<}>) x
32 ’allowedTransitions[event] x Instance[instance]
33 ’instanceInState in Instance[instance] x Config x State
34 ’changedInstance in (order<if (!finiteTrace) {> + loop<}>) x Instance[instance]
35 ";
36
37 private str machineFieldTypeConstraints(set[Spec] specs, TModel tm) {
38 rel[Spec,str] cons = {};
39
40 for (Spec spc <- specs, /Field f <- spc.fields) {
41 if (isPrim(f.tipe, tm)) {
42 cons += <spc, "<getCapitalizedSpecName(spc)><getCapitalizedFieldName(f)>[config,instance]
43 ’in Config x (Instance |x| <getCapitalizedSpecName(spc)>)[instance]">;
44 } else {
45 cons += <spc, "<getCapitalizedSpecName(spc)><getCapitalizedFieldName(f)>
46 ’in Config x (Instance |x| <getCapitalizedSpecName(spc)>)[instance] x
47 ’(Instance |x| <getSpecOfType(f.tipe, tm)>)[instance-\><f.name>]">;
48 }
49 }
50
51 return "// Machine specific ‘type‘ constraints
52 ’<for (Spec spc <- cons<0>) {>// For ‘<spc.name>‘
53 ’<for (str fc <- cons[spc]) {><fc>
54 ’<}><}>";
55 }
56
57 private str machineOnlyHasValuesWhenInitialized(set[Spec] spcs, TModel tm) {
58 str cons = "// Specific per machine: In every configuration iff a machine is
59 ’// in an initialized state then it must have values\n";
60
61 for (Spec s <- spcs) {
62 cons += "// for <s.name>\n";
63 bool isEmpty = isEmptySpec(s);

��� ������� � ����������

64
65 for (/Field f <- s.fields) {
66 str relName = "<getCapitalizedSpecName(s)><getCapitalizedFieldName(f)>";
67 list[str] fldCons = [];
68
69 switch (<isPrim(f.tipe, tm), isEmpty>) {
70 case <_,true>: {
71 switch(getType(f, tm)) {
72 case optionalType(_): fldCons += "lone <relName> |x| c |x| inst";
73 case setType(_): ;
74 default: fldCons += "one <relName> |x| c |x| inst";
75 }
76 }
77 case <true,false>: fldCons += "(((c x inst) |x| instanceInState)[state] in initialized
78 ’<=> one <relName> |x| c |x| inst)";
79 case <false,false>: {
80 fldCons += "(no (((c x inst) |x| instanceInState)[state] & initialized) =>
81 ’no <relName> |x| c |x| inst)";
82
83 switch(getType(f, tm)) {
84 case optionalType(_): fldCons += "(((c x inst) |x| instanceInState)[state] in
85 ’initialized => lone <relName> |x| c |x| inst)";
86 case setType(_): ;
87 default: fldCons += "(((c x inst) |x| instanceInState)[state] in initialized =>
88 ’one <relName> |x| c |x| inst)";
89 }
90 }
91 }
92
93 cons += "<intercalate("\n", ["forall c: Config,
94 ’inst: (Instance |x| <getCapitalizedSpecName(s)>)[instance] | <fc>" | fc <- fldCons])>\n";
95 }
96 }
97
98 return cons;
99 }

100
101 private str eventParamTypeAndMultiplicityConstraints(set[Spec] spcs, TModel tm) {
102 rel[Spec,str] typeCons = {};
103 rel[Spec,str] multCons = {};
104
105 for (Spec spc <- spcs, Event ev <- spc.events, /FormalParam p <- ev.params) {
106 str relName =
107 "ParamEvent<getCapitalizedSpecName(spc)><getCapitalizedEventName(ev)>
108 ’<getCapitalizedParamName(p)>";
109
110 if (isPrim(p.tipe, tm)) {
111 typeCons[spc] = "<relName>[cur,nxt] in order + loop";
112 multCons[spc] = "(some (step |x|
113 ’Event<getCapitalizedSpecName(spc)><getCapitalizedEventName(ev)>)
114 ’<=> one (step |x| <relName>))";
115 } else {
116 typeCons[spc] = "<relName> in (order + loop) x
117 ’(Instance |x| <p.tipe.tp>)[instance-\><p.name>]";
118
119 switch(getType(p,tm)) {
120 case setType(_): mult = multCons[spc] = "(no (step |x|
121 ’Event<getCapitalizedSpecName(spc)><getCapitalizedEventName(ev)>) =>
122 ’no (step |x| <relName>))";
123
124 case optionalType(_): multCons[spc] = "((some (step |x|
125 Event<getCapitalizedSpecName(spc)><getCapitalizedEventName(ev)>) =>
126 ’lone (step |x| <relName>)) &&
127 ’(no (step |x| Event<getCapitalizedSpecName(spc)><getCapitalizedEventName(ev)>) =>

� .� ����������� ���� ������ �� �������� ���

128 ’no (step |x| <relName>)))";
129
130 default: multCons[spc] = "(some (step |x|
131 ’Event<getCapitalizedSpecName(spc)><getCapitalizedEventName(ev)>) <=>
132 ’one (step |x| <relName>))";
133 }
134 }
135 }
136
137 return "// Specific per event: parameter type and multiplicity constraints
138 ’<for (Spec spc <- typeCons<0>) {>// Type constraints for events of <spc.name>
139 ’<for (str tc <- typeCons[spc]) {><tc>
140 ’<}><}>
141 ’<if (multCons != {}) {>// Multiplicity constraints for event parameters
142 ’forall step: (order + loop) |x| raisedEvent | (
143 ’ <intercalate(" &&\n", toList(multCons<1>))>
144 ’)<}>";
145 }
146
147 private str allConfigsAreReachable()
148 = "// Generic: All configurations are reachable
149 ’forall c: Config \ first | c in (first[config as cur] |x| ^order)[nxt -\> config]
150 ’";
151
152 private str onlyOneTriggeringEvent(bool finiteTrace)
153 = "// Generic: Every transition can only happen by exactly one event
154 ’forall o: order<if (!finiteTrace) {> + loop<}> | one o |x| raisedEvent
155 ’";
156
157 private str noMachineWithoutState(set[Spec] spcs)
158 = "// Specific: In every configuration all machines have a state IFF
159 ’its a machine which is not empty
160 ’forall c: Config, inst: <nonEmptyMachineInstances(spcs)> | one instanceInState |x| c |x| inst
161 ’";
162
163 private str nonEmptyMachineInstances(set[Spec] spcs) {
164 list[str] emptyMachines = [];
165 for (Spec s <- spcs, isEmptySpec(s)) {
166 emptyMachines += "<s.name>";
167 }
168
169 if (emptyMachines == []) {
170 return "Instance";
171 } else {
172 return "(Instance \ ((<intercalate(" + ", emptyMachines)>) |x| Instance))";
173 }
174 }
175
176 private str noTransitionsBetweenUnrelatedStates(bool finiteTrace)
177 = "// Generic: Transitions are only allowed between if an event is specified between two states
178 ’forall o: (order<if (!finiteTrace) {> + loop<}>) |x| raisedEvent |
179 ’ (o[cur as config] |x| instanceInState)[state-\>from] x (o[nxt as config] |x| instanceInState)
180 ’ [state-\>to] x o[event] in allowedTransitions
181 ’";
182
183 private str changeSetPredicates(set[Spec] spcs)
184 = "// Change set predicates
185 ’pred inChangeSet[step: (cur:id, nxt:id), instances: (instance:id)]
186 ’ = instances in (changedInstance |x| step)[instance]
187 ’
188 ’pred notInChangeSet[step: (cur:id, nxt:id), instances: (instance:id)]
189 ’ = no instances & (changedInstance |x| step)[instance]
190 ’
191 ’pred changeSetCanContain[step: (cur:id, nxt:id), instances: (instance:id)]

��� ������� � ����������

192 ’ = (changedInstance |x| step)[instance] in instances
193 ’ <if (freeInstances != []) {>+ <intercalate(" + ", freeInstances)><}>
194 ’"
195 when list[str] freeInstances := ["<s.name>_<inst>" |
196 Spec s <- spcs, /Instances instances <- s.instances,
197 /(Instance)‘<Id inst>*‘ <- instances.instances];
198
199
200 private str helperPredicates()
201 = "// Generic predicates
202 ’pred forceState[curState: (state:id), nxtState: (state:id), raisedEvent: (event:id)]
203 ’ = nxtState = (curState[state as from] |x| (allowedTransitions |x| raisedEvent))[to-\>state]
204 ’
205 ’pred inState[config: (config:id), instance: (instance:id), state: (state:id)]
206 ’ = ((instance x config) |x| instanceInState)[state] in state
207 ’";
208
209 private bool hasTransitions(Spec s) = /Transition _ := s.states;
210
211 private str translateEventPredicates(AlleAlleSnippet snippets)
212 = "<for (str spc <- snippets.eventPred<0>) {>// Event predicates for ‘<spc>‘
213 ’<for (str ep <- snippets.eventPred[spc]) {><ep>
214 ’<}><}>";
215
216 private str translatePartialTransitionFunctions(AlleAlleSnippet snippets)
217 = "<for (str spc <- snippets.transPred<0>) {>// Transition function for ‘<spc>‘
218 ’<snippets.transPred[spc]>
219 ’<}>";
220
221 private str translateCompleteTransitionFunction(set[Spec] spcs, Config cfg)
222 = "// Transition function
223 ’forall step: order<if (!cfg.finiteTrace) {> + loop<}>| <intercalate(" && ", posTrans)>
224 ’"
225 when
226 posTrans := ["possibleTransitions<getCapitalizedSpecName(s)>[step]" |
227 s <- spcs, hasTransitions(s)],
228 posTrans != [];
229
230 private default str translateCompleteTransitionFunction(set[Spec] spcs, Config cfg) = "";
231
232 private bool isFrameEvent(Event e) = "<e.name>" == "__frame";

Listing C.�: The algorithm that translates all R����� constraints to A���A���

During the translation of the events the formula’s and expressions are translated.
Listing C.�� shows these translation rules.

1 data Context = ctx(RelMapping rm, TModel tm, set[Spec] allSpecs, bool topLevelLtl,
2 str curRel, str stepRel, int () nxtUniquePrefix);
3
4 Context nextCurRel(Context old) = ctx(old.rm, old.tm, old.allSpecs, old.topLevelLtl,
5 getNextCurRel(old.curRel), old.stepRel, old.nxtUniquePrefix);
6 Context nextStepRel(Context old) = ctx(old.rm, old.tm, old.allSpecs, old.topLevelLtl,
7 old.curRel, getNextStepRel(old.stepRel), old.nxtUniquePrefix);
8 Context nextCurAndStepRel(Context old) = ctx(old.rm, old.tm, old.allSpecs, old.topLevelLtl,
9 getNextCurRel(old.curRel), getNextStepRel(old.stepRel), old.nxtUniquePrefix);

10
11 Context flipTopLevelLtl(Context old) = ctx(old.rm, old.tm, old.allSpecs, false, old.curRel,
12 old.stepRel, old.nxtUniquePrefix);
13
14 Context replaceCurRel(Context old, str newCurRel) = ctx(old.rm, old.tm, old.allSpecs,
15 old.topLevelLtl, "nxt", old.stepRel, old.nxtUniquePrefix);

� .� ����������� ���� ������ �� �������� ���

16
17 str translate((Formula)‘(<Formula f>)‘, Context ctx) = "(<translate(f,ctx)>)";
18 str translate((Formula)‘!<Formula f>‘, Context ctx) = "not (<translate(f,ctx)>)";
19
20 str translate((Formula)‘<Expr spc>.<Id event>(<{Expr ","}* params>)‘, Context ctx) {
21 str relOrSync = translateRelExpr(spc, ctx);
22
23 Spec syncedSpec = getSpecByType(spc, ctx.allSpecs, ctx.tm);
24 Event syncedEvent = lookupEventByName("<event>", syncedSpec);
25
26 // Fix synced event param values
27 list[str] actuals = [ctx.stepRel, "<relOrSync><maybeRename(getFieldName(spc,ctx), "instance")>"];
28
29 list[FormalParam] formals = [p | FormalParam p <- syncedEvent.params];
30 list[Expr] args = [a | Expr a <- params];
31
32 for (int i <- [0..size(formals)]) {
33 switch (args[i]) {
34 case (Expr)‘<Int ii>‘: actuals += "__IntConst_<ii>[const_<ii>-\><formals[i].name>]";
35 case (Expr)‘<StringConstant s>‘: actuals += "__StrConst_<unquote(s)>[const_<unquote(s)>-\>
36 ’<formals[i].name>]";
37 default: actuals += "<translateRelExpr(args[i], ctx)>
38 ’<maybeRename(getFieldName(args[i], ctx), isPrim(formals[i].tipe,ctx.tm) ?
39 "<formals[i].name>" : "instance")>";
40 }
41 }
42
43 return "event<getCapitalizedSpecName(syncedSpec)><getCapitalizedEventName(syncedEvent)>
44 ’[<intercalate(", ", actuals)>]";
45 }
46
47 str translate((Formula)‘<Expr lhs> is <QualifiedName state>‘, Context ctx) {
48 str specOfLhs = getSpecTypeName(lhs, ctx.tm);
49 str specRel = ctx.rm[lhs@\loc].relExpr;
50
51 str stateRel = "";
52 switch ("<state>") {
53 case "initialized" : stateRel = "initialized";
54 case "finalized" : stateRel = "finalized";
55 case "uninitialized" : stateRel = "uninitialized";
56 default: stateRel = "State<capitalize(specOfLhs)><capitalize(replaceAll("<state>", "::", "__"))>";
57 };
58
59 str stepRel = (Expr)‘<Expr _>’‘ := lhs ? "nxt" : "cur";
60 return "inState[<stepRel>, <specRel><maybeRename(getFieldName(lhs,ctx), "instance")>, <stateRel>]";
61 }
62
63
64 str translate((Formula)‘eventually <Formula f>‘, Context ctx) {
65 str s = ctx.topLevelLtl ? "let cur = first | " : "";
66 ctx = flipTopLevelLtl(ctx);
67
68 return "<s>(exists cur: (cur[config as cur] |x| *(order + loop))[nxt-\>config] |
69 ’let step = cur[config as cur] |x| (order + loop), nxt = step[nxt-\>config] |
70 ’<translate(f,ctx)>)";
71 }
72
73 str translate((Formula)‘always <Formula f>‘, Context ctx) {
74 str s = ctx.topLevelLtl ? "let cur = first | " : "";
75 ctx = flipTopLevelLtl(ctx);
76
77 return "<s>(forall cur: (cur[config as cur] |x| *(order + loop))[nxt-\>config] |
78 ’let step = cur[config as cur] |x| (order + loop), nxt = step[nxt-\>config] |
79 ’<translate(f,ctx)>)";

��� ������� � ����������

80 }
81
82 str translate((Formula)‘always-last <Formula f>‘, Context ctx) {
83 str s = ctx.topLevelLtl ? "let cur = first | " : "";
84 ctx = flipTopLevelLtl(ctx);
85
86 return "<s>(forall cur: (cur[config as cur] |x| *(order + loop))[nxt-\>config] - last |
87 ’let step = cur[config as cur] |x| (order + loop), nxt = step[nxt-\>config] |
88 ’<translate(f,ctx)>)";
89 }
90
91 str translate((Formula)‘<Formula u> until <Formula r>‘, Context ctx) {
92 str s = ctx.topLevelLtl ? "let cur = first | " : "";
93 ctx = flipTopLevelLtl(ctx);
94
95 return "<s>
96 ’ (((no loop || (exists goal: (cur[config as cur] |x| *order)[nxt-\>config] |
97 ’ (let cur = goal, step = cur[config as cur] |x| (order + loop),
98 ’ nxt = step[nxt-\>config] | <translate(r,ctx)>))) =\>
99 ’ (exists goal: (cur[config as cur] |x| *order)[nxt-\>config] |

100 ’ (let cur = goal, step = cur[config as cur] |x| (order + loop),
101 ’ nxt = step[nxt-\>config] |
102 ’ (forall cur: ((cur[config-\>cur] |x| *order)[nxt-\>config] &
103 ’ (goal[config-\>nxt] |x| ^order)[cur-\>config]) |
104 ’ (let step = cur[config as cur] |x| (order + loop), nxt = step[nxt-\>config] |
105 ’ <translate(u,ctx)>)))))
106 ’ && ((not (no loop || (exists goal: (cur[config as cur] |x| *order)[nxt-\>config] |
107 ’ (let cur = goal, step = cur[config as cur] |x| (order + loop),
108 ’ nxt = step[nxt-\>config] | <translate(r,ctx)>)))) =\>
109 ’ (exists goal: (cur[config as cur] |x| *(order+loop))[nxt-\>config] |
110 ’ (let cur = goal, step = cur[config as cur] |x| (order + loop),
111 ’ nxt = step[nxt-\>config] |
112 ’ (forall cur: (((cur[config-\>cur] |x| *order)[nxt-\>config] +
113 ’ (goal[config-\>nxt] |x| ^order)[cur-\>config]) &
114 ’ (last[config-\>cur] |x| *order)[nxt-\>config]) |
115 ’ (let step = cur[config as cur] |x| (order + loop), nxt = step[nxt-\>config] |
116 ’ <translate(u,ctx)>))))))";
117 }
118
119 str translate((Formula)‘next <Formula f>‘, Context ctx) {
120 str s = ctx.topLevelLtl ? "let cur = first | " : "";
121 ctx = flipTopLevelLtl(ctx);
122
123 return "<s>(let cur = (cur[config as cur] |x| (order + loop))[nxt-\>config],
124 ’ step = cur[config as cur] |x| (order + loop), nxt = step[nxt-\>config] |
125 ’ some cur && (<translate(f,ctx)>))";
126 }
127
128 str translate((Formula)‘first <Formula f>‘, Context ctx) {
129 return "let cur = first | <translate(f,ctx)>";
130 }
131
132 str translate((Formula)‘<TransEvent event> on <Expr var> <WithAssignments? with>‘, Context ctx) {
133 str spec = getSpecTypeName(var, ctx.tm);
134 str r = translateRelExpr(var, ctx);
135
136 if ((TransEvent)‘*‘ := event) {
137 return "some (raisedEvent |x| <ctx.stepRel> |x| <r>)";
138 }
139
140 set[str] paramConstraints = {};
141 str spc = "";
142 if (specType(str name) := getType(var,ctx.tm)) {
143 spc = name;

� .� ����������� ���� ������ �� �������� ���

144 } else {
145 throw "Must be of spec type";
146 }
147
148 for (/(Assignment)‘<Id fld> = <Expr val>‘ <- \with) {
149 str paramRel = "(ParamEvent<spc><capitalize("<event>")><capitalize("<fld>")> |x|
150 ’<ctx.stepRel>)[<fld>]";
151
152 if (isPrim(val, ctx.tm)) {
153 AttRes r = translateAttrExpr(val, ctx);
154 paramConstraints += "some ((<paramRel><if (r.rels != {}) {>
155 ’x <intercalate(" x ", [*r.rels])><}>) where (<fld> = <r.constraint>))";
156 } else {
157 paramConstraints += "<paramRel> = <translateRelExpr(val,ctx)>";
158 }
159 }
160
161 return "(<for (pc <- paramConstraints) {><pc> && <}>Event<capitalize(spec)><capitalize("<event>")>
162 ’in (raisedEvent |x| <ctx.stepRel> |x| <r>)[event])";
163 }
164
165 str translate((Formula)‘forall <{Decl ","}+ decls> | <Formula form>‘, Context ctx)
166 = "(forall <intercalate(",", [translate(d,ctx) | Decl d <- decls])> | <translate(form,ctx)>)";
167
168 str translate((Formula)‘exists <{Decl ","}+ decls> | <Formula form>‘, Context ctx)
169 = "(exists <intercalate(",", [translate(d,ctx) | Decl d <- decls])> | <translate(form,ctx)>)";
170
171 str translate(current:(Decl)‘<{Id ","}+ ids>: <Expr expr>‘, Context ctx) {
172 str te = translateRelExpr(expr, ctx);
173 return intercalate(",", ["<name>: <te>" | Id name <- ids]);
174 }
175
176 str translate((Formula)‘<Expr lhs> in <Expr rhs>‘, Context ctx) =
177 "(<translateRelExpr(lhs,ctx)>[<getFieldName(lhs,ctx)>-\><getFieldName(rhs,ctx)>] in
178 ’ <translateRelExpr(rhs,ctx)>)";
179 str translate((Formula)‘<Expr lhs> notin <Expr rhs>‘, Context ctx) =
180 "no (<translateRelExpr(rhs,ctx)> & <translateRelExpr(lhs,ctx)>[<getFieldName(lhs,ctx)>-\>
181 ’ <getFieldName(rhs,ctx)>])";
182
183 str translate((Formula)‘<Formula lhs> && <Formula rhs>‘, Context ctx) =
184 "(<translate(lhs,ctx)> && <translate(rhs,ctx)>)";
185 str translate((Formula)‘<Formula lhs> || <Formula rhs>‘, Context ctx) =
186 "(<translate(lhs,ctx)> || <translate(rhs,ctx)>)";
187 str translate((Formula)‘<Formula lhs> =\> <Formula rhs>‘, Context ctx) =
188 "(<translate(lhs,ctx)> => <translate(rhs,ctx)>)";
189 str translate((Formula)‘<Formula lhs> \<=\> <Formula rhs>‘, Context ctx) =
190 "(<translate(lhs,ctx)> <=> <translate(rhs,ctx)>)";
191
192 str translate((Formula)‘<Expr expr> = {}‘, Context ctx) = "no <translateRelExpr(expr, ctx)>";
193 str translate((Formula)‘{} = <Expr expr>‘, Context ctx) = "no <translateRelExpr(expr, ctx)>";
194 str translate((Formula)‘<Expr expr> = none‘, Context ctx) = "no <translateRelExpr(expr, ctx)>";
195 str translate((Formula)‘none = <Expr expr>‘, Context ctx) = "no <translateRelExpr(expr, ctx)>";
196 default str translate((Formula)‘<Expr lhs> = <Expr rhs>‘, Context ctx) =
197 translateEq(lhs, rhs, "=", ctx);
198
199 str translate((Formula)‘<Expr expr> != {}‘, Context ctx) = "some <translateRelExpr(expr, ctx)>";
200 str translate((Formula)‘{} != <Expr expr>‘, Context ctx) = "some <translateRelExpr(expr, ctx)>";
201 str translate((Formula)‘<Expr expr> != none‘, Context ctx) = "some <translateRelExpr(expr, ctx)>";
202 str translate((Formula)‘none != <Expr expr>‘, Context ctx) = "some <translateRelExpr(expr, ctx)>";
203 default str translate((Formula)‘<Expr lhs> != <Expr rhs>‘, Context ctx) =
204 translateEq(lhs, rhs, "!=", ctx);
205
206 str translate((Formula)‘<Expr lhs> \< <Expr rhs>‘, Context ctx) =
207 translateRestrictionEq(lhs, rhs, "\<", ctx);

��� ������� � ����������

208 str translate((Formula)‘<Expr lhs> \<= <Expr rhs>‘, Context ctx) =
209 translateRestrictionEq(lhs, rhs, "\<=", ctx);
210 str translate((Formula)‘<Expr lhs> \>= <Expr rhs>‘, Context ctx) =
211 translateRestrictionEq(lhs, rhs, "\>=", ctx);
212 str translate((Formula)‘<Expr lhs> \> <Expr rhs>‘, Context ctx) =
213 translateRestrictionEq(lhs, rhs, "\>", ctx);
214
215 str translate((Formula)‘if <Formula cond> then <Formula then> else <Formula \else>‘, Context ctx) =
216 translate((Formula)‘(<Formula cond> =\> <Formula then>) &&
217 (!(<Formula cond>) =\> <Formula \else>)‘, ctx);
218
219 str translate((Formula)‘if <Formula cond> then <Formula then>‘, Context ctx) =
220 translate((Formula)‘(<Formula cond> =\> <Formula then>)‘, ctx);
221
222 str translate((Formula)‘noOp(<Expr expr>)‘, Context ctx) {
223 return "notInChangeSet[step, <ctx.rm[expr@\loc].relExpr>
224 ’<renameIfNecessary(expr, "instance", ctx)>]";
225 }
226
227 default str translate(Formula f, Context ctx) {
228 throw "No translation function implemented yet for ‘<f>‘";
229 }
230
231 str translateEq(Expr lhs, Expr rhs, str op, Context ctx) {
232 // Is it equality on attributes?
233 if (isPrim(lhs, ctx.tm) && isPrim(rhs, ctx.tm)) {
234 // it is equality on attributes
235 return translateRestrictionEq(lhs, rhs, op, ctx);
236 } else {
237 return translateRelEq(lhs, rhs, op, ctx);
238 }
239 }
240
241 str translateRelEq(Expr lhs, Expr rhs, str op, Context ctx)
242 = "<translateRelExpr(lhs, ctx)> <op> <translateRelExpr(rhs, ctx)>
243 ’ <maybeRename(getFieldName(rhs,ctx),getFieldName(lhs,ctx))>";
244
245 str translateRestrictionEq(Expr lhs, Expr rhs, str op, Context ctx) {
246 AttRes l = translateAttrExpr(lhs, ctx);
247 AttRes r = translateAttrExpr(rhs, ctx);
248
249 return "(some (<intercalate(" x ", [*(l.rels + r.rels)])>) where
250 ’ (<l.constraint> <op> <r.constraint>))";
251 }
252
253 str translateRelExpr(current:(Expr)‘(<Expr e>)‘, Context ctx) = "(<translateRelExpr(e,ctx)>)";
254 str translateRelExpr(current:(Expr)‘<Id id>‘, Context ctx) = ctx.rm[current@\loc].relExpr;
255 str translateRelExpr(current:(Expr)‘<Expr expr>’‘, Context ctx) = ctx.rm[current@\loc].relExpr;
256 str translateRelExpr(current:(Expr)‘<Expr expr>.<Id field>‘, Context ctx) =
257 ctx.rm[current@\loc].relExpr;
258 str translateRelExpr(current:(Expr)‘<Expr spc>[<Id field>]‘, Context ctx) =
259 ctx.rm[current@\loc].relExpr;
260
261 str translateRelExpr(current:(Expr)‘<Expr expr>.^<Id field>‘, Context ctx) =
262 ctx.rm[current@\loc].relExpr;
263 str translateRelExpr(current:(Expr)‘<Expr expr>.*<Id field>‘, Context ctx) =
264 ctx.rm[current@\loc].relExpr;
265
266 str translateRelExpr(current:(Expr)‘{<Id var> : <Expr expr> | <Formula f>}‘, Context ctx) {
267 str te = ctx.rm[expr@\loc].relExpr;
268 return "{<var> : <te> | <translate(f,ctx)>}";
269 }
270
271 str translateRelExpr(current:(Expr)‘<Expr lhs> + <Expr rhs>‘, Context ctx) =

� .� ����������� ���� ������ �� �������� ���

272 ctx.rm[current@\loc].relExpr;
273 str translateRelExpr(current:(Expr)‘<Expr lhs> - <Expr rhs>‘, Context ctx) =
274 ctx.rm[current@\loc].relExpr;
275 str translateRelExpr(current:(Expr)‘{<{Expr ","}* elems>}‘ , Context ctx) =
276 ctx.rm[current@\loc].relExpr;
277
278 str translateRelExpr(current:(Expr)‘this‘, Context ctx) = ctx.rm[current@\loc].relExpr;
279
280 default str translateRelExpr(Expr e, Context ctx) {
281 throw "Can not translate expression ‘<e>‘ at location <e@\loc>";
282 }
283
284 alias AttRes = tuple[set[str] rels, str constraint];
285
286 AttRes translateAttrExpr((Expr)‘(<Expr e>)‘, Context ctx) {
287 AttRes r = translateAttrExpr(e, ctx);
288 return <r.rels, "(<r.constraint>)">;
289 }
290
291 AttRes translateAttrExpr((Expr)‘<Expr e>’‘, Context ctx) {
292 AttRes r = translateAttrExpr(e, replaceCurRel(ctx, "nxt"));
293 return <r.rels, "<r.constraint>">;
294 }
295
296 AttRes translateAttrExpr(current:(Expr)‘<Id id>‘, Context ctx) {
297 str fld = "param_<ctx.nxtUniquePrefix()>_<id>";
298 str r = "<ctx.rm[current@\loc].relExpr><renameIfNecessary(current, fld, ctx)>";
299 return <{r}, fld>;
300 }
301
302 AttRes translateAttrExpr(current:(Expr)‘this.<Id id>‘, Context ctx) {
303 str r = "<ctx.rm[current@\loc].relExpr><renameIfNecessary(current, "<ctx.curRel>_<id>", ctx)>";
304 return <{r}, "<ctx.curRel>_<id>">;
305 }
306
307 AttRes translateAttrExpr(current:(Expr)‘<Expr spc>[<Id inst>].<Id fld>‘, Context ctx) {
308 str fldName = "<inst>_<fld>_<ctx.nxtUniquePrefix()>";
309 str r = "<ctx.rm[current@\loc].relExpr><renameIfNecessary(current, fldName, ctx)>";
310 return <{r}, fldName>;
311 }
312
313 AttRes translateAttrExpr(current:(Expr)‘<Expr expr>.<Id fld>‘, Context ctx) {
314 str r = ctx.rm[current@\loc].relExpr;
315
316 if (getType(expr, ctx.tm) == stringType() && "<fld>" == "length") {
317 str newFld = "<getFieldName(expr,ctx)>_<ctx.nxtUniquePrefix()>";
318 r = "<r><renameIfNecessary(expr, newFld, ctx)>";
319 return <{r}, "length(<newFld>)">;
320 } else {
321 IdRole role = getIdRole(expr,ctx.tm);
322 str newFld = "<fld>";
323 switch (role) {
324 case fieldId(): newFld = "<ctx.curRel>_<ctx.nxtUniquePrefix()>_<fld>";
325 case paramId(): newFld = "param_<ctx.nxtUniquePrefix()>_<fld>";
326 case quantVarId(): newFld = "<expr>_<fld>_<ctx.nxtUniquePrefix()>";
327 }
328
329 r = "<r><renameIfNecessary(current, newFld, ctx)>";
330 return <{r}, newFld>;
331 }
332 }
333
334 AttRes translateAttrExpr(current:(Expr)‘<Id func>(<{Expr ","}* actuals>)‘, Context ctx) {
335 str r = ctx.rm[current@\loc].relExpr;

��� ������� � ����������

336 list[Expr] params = [p | p <- actuals];
337
338 switch("<func>") {
339 case "substr": {
340 str newFld = "<getFieldName(params[0],ctx)>_<ctx.nxtUniquePrefix()>";
341 AttRes sub = translateAttrExpr(params[0],ctx);
342 AttRes frm = translateAttrExpr(params[1],ctx);
343 AttRes to = translateAttrExpr(params[2],ctx);
344
345 r = "<r><renameIfNecessary(params[0], newFld, ctx)>";
346 return <{r} + sub.rels + frm.rels + to.rels,
347 "substr(<newFld>,<frm.constraint>,<to.constraint>)">;
348 }
349 case "toInt": {
350 str newFld = "<getFieldName(params[0],ctx)>_<ctx.nxtUniquePrefix()>";
351 r = "<r><renameIfNecessary(params[0], newFld, ctx)>";
352 AttRes p0 = translateAttrExpr(params[0],ctx);
353 return <{r} + p0.rels, "toInt(<p0.constraint>)">;
354 }
355 case "toStr": {
356 str newFld = "<getFieldName(params[0],ctx)>_<ctx.nxtUniquePrefix()>";
357 r = "<r><renameIfNecessary(params[0], newFld, ctx)>";
358 AttRes p0 = translateAttrExpr(params[0],ctx);
359 return <{r} + p0.rels, "toStr(<p0.constraint>)">;
360 }
361 default: throw "Unknown function ‘<func>‘";
362 }
363 }
364
365 AttRes translateAttrExpr((Expr)‘- <Expr e>‘, Context ctx) {
366 AttRes r = translateAttrExpr(e,ctx);
367 return <r.rels, "(- <r.constraint>)">;
368 }
369
370 AttRes translateAttrExpr(cur:(Expr)‘|<Expr e>|‘, Context ctx) {
371 AType tipe = getType(e, ctx.tm);
372 AttRes r = translateAttrExpr(e,ctx);
373
374 if (intType() := tipe) {
375 return <r.rels, "|<r.constraint>|">;
376 } else if (setType(_) := tipe || specType(_) := tipe) {
377 str sizeParam = "size_<ctx.nxtUniquePrefix()>";
378 return <{"(<intercalate(" x ", [re | re <- r.rels])>)[count() as <sizeParam>]"}, sizeParam>;
379 }
380
381 throw "Unable to translate ‘|<e>|‘ of type ‘<tipe>‘";
382 }
383
384 private AttRes translateBinAttrExpr(Expr lhs, Expr rhs, str op, Context ctx) {
385 AttRes l = translateAttrExpr(lhs,ctx);
386 AttRes r = translateAttrExpr(rhs,ctx);
387
388 return <l.rels + r.rels, "<l.constraint> <op> <r.constraint>">;
389 }
390
391 AttRes translateAttrExpr((Expr)‘<Expr lhs> * <Expr rhs>‘, Context ctx) =
392 translateBinAttrExpr(lhs, rhs, "*", ctx);
393 AttRes translateAttrExpr((Expr)‘<Expr lhs> / <Expr rhs>‘, Context ctx) =
394 translateBinAttrExpr(lhs, rhs, "/", ctx);
395 AttRes translateAttrExpr((Expr)‘<Expr lhs> + <Expr rhs>‘, Context ctx) =
396 translateBinAttrExpr(lhs, rhs, "+", ctx);
397 AttRes translateAttrExpr((Expr)‘<Expr lhs> - <Expr rhs>‘, Context ctx) =
398 translateBinAttrExpr(lhs, rhs, "-", ctx);
399 AttRes translateAttrExpr((Expr)‘<Expr lhs> % <Expr rhs>‘, Context ctx) =

� .� ����������� ���� ������ �� �������� ���

400 translateBinAttrExpr(lhs, rhs, "%", ctx);
401
402 AttRes translateAttrExpr((Expr)‘<Expr lhs> ++ <Expr rhs>‘, Context ctx) {
403 AttRes l = translateAttrExpr(lhs,ctx);
404 AttRes r = translateAttrExpr(rhs,ctx);
405
406 return <l.rels + r.rels, "<l.constraint> ++ <r.constraint>">;
407 }
408
409 AttRes translateAttrExpr(current:(Expr)‘{<Id var> : <Expr expr> | <Formula f>}‘, Context ctx) {
410 str te = ctx.rm[expr@\loc].relExpr;
411 return <{"{<var> : <te> | <translate(f,ctx)>}"}, "">;
412 }
413
414 AttRes translateAttrExpr((Expr)‘<Lit l>‘, Context ctx) = <{}, translateLit(l)>;
415
416 default AttRes translateAttrExpr(Expr e, Context ctx) {
417 throw "Can not translate expression ‘<e>‘ at location <e@\loc>";
418 }
419
420 str translateLit((Lit)‘<Int i>‘) = "<i>";
421 str translateLit((Lit)‘<StringConstant s>‘) = "<s>";
422
423 str prefix(RelExpr r, str prefix) {
424 if (size(r.heading) > 1) {
425 throw "Can only prefix an unary relation";
426 }
427
428 str fld = getOneFrom(r.heading);
429 return "<r.relExpr><maybeRename(fld, "<prefix>_<fld>")>";
430 }
431
432 str renameIfNecessary(Expr expr, str renamed, Context ctx) {
433 str origName = getFieldName(expr,ctx);
434 if (origName != renamed) {
435 return "[<origName> as <renamed>]";
436 } else {
437 return "";
438 }
439 }
440
441 str getFieldName(Expr expr, Context ctx) {
442 Heading header = ctx.rm[expr@\loc].heading;
443 if (size(header) > 1) {
444 throw "More than 1 attribute in the relation, unable to determine field name";
445 }
446
447 return getOneFrom(header);
448 }
449
450 str getNextCurRel(str oldCurRel) {
451 if (oldCurRel == defaultCurRel()) {
452 return "<defaultCurRel()>_1";
453 }
454
455 if (/cur_<n:[0-9]+>/ := oldCurRel) {
456 return "<defaultCurRel()>_<toInt(n)+1>";
457 }
458 }
459
460 str getNextStepRel(str oldStepRel) {
461 if (oldStepRel == defaultStepRel()) {
462 return "<defaultStepRel()>_1";
463 }

��� ������� � ����������

464
465 if (/step_<n:[0-9]+>/ := oldStepRel) {
466 return "<defaultStepRel()>_<toInt(n)+1>";
467 }
468 }
469
470 str defaultCurRel() = "cur";
471 str defaultStepRel() = "step";
472
473 private str maybeRename(str orig, str renameAs) = "[<orig> as <renameAs>]" when orig != renameAs;
474 private default str maybeRename(str orig, str renameAs) = "";
475
476 str getSpecTypeName(Expr expr, TModel tm) = name when specType(str name) := getType(expr, tm);
477 str getSpecTypeName(Expr expr, TModel tm) =
478 name when optionalType(specType(str name)) := getType(expr, tm);
479
480 default str getSpecTypeName(Expr expr, TModel tm) {
481 throw "Expression ‘<expr>‘ is not a Spec Type";
482 }

Listing C.��: The algorithm that translates Formula’s and Expressions’s to A���A���.

Lastly, Listing C.�� contains the translation helper functions that are commonly
used in the translation of R����� to A���A���.

1 data State
2 = uninitialized()
3 | finalized()
4 | state(str name)
5 | anyState()
6 | noState();
7
8 alias AlleAlleSnippet = tuple[rel[str,str] typeCons, rel[str,str] fieldMultiplicityCons,
9 rel[str,str] paramMultiplicityCons, rel[str,str] eventPred, map[str,str] transPred,

10 rel[str,str] facts, map[str,str] asserts];
11
12 str getLowerCaseSpecName(Spec spc) = toLowerCase("<spc.name>");
13 str getCapitalizedSpecName(Spec spc) = capitalize("<spc.name>");
14 str getCapitalizedEventName(Event e) = capitalize("<e.name>");
15 str getCapitalizedParamName(FormalParam p) = capitalize("<p.name>");
16 str getCapitalizedFieldName(Field f) = capitalize("<f.name>");
17
18 list[str] getInstancesOfType(Type tipe, rel[Spec spc, str instance] instances, TModel tm)
19 = ["<i.instance>" | i <- instances, "<i.spc.name>" == getSpecOfType(tipe, tm)];
20
21 str getSpecOfType(Type tipe, TModel tm) {
22 if (setType(specType(str spc)) := getType(tipe, tm)) {
23 return spc;
24 } else if (specType(str spc) := getType(tipe, tm)) {
25 return spc;
26 } else if (optionalType(specType(str spc)) := getType(tipe, tm)) {
27 return spc;
28 } else {
29 throw "<tipe> is not a (set) spec type";
30 }
31 }
32
33 str type2Str(intType()) = "int";
34 str type2Str(stringType()) = "str";
35 default str type2Str(AType t) = "id";
36
37 str convertType((Type)‘Integer‘) = "int";
38 str convertType((Type)‘String‘) = "str";

� .� ����������� ���� ������ �� �������� ���

39 default str convertType(Type t) = "id";
40
41 AType getType(Field f, TModel tm) = tm.facts[f.name@\loc] when f.name@\loc in tm.facts;
42 default AType getType(Field f, TModel tm) { throw "No type info available for ‘<f>‘"; }
43
44 AType getType(Expr expr, TModel tm) = tm.facts[expr@\loc] when expr@\loc in tm.facts;
45 default AType getType(Expr expr, TModel tm) {
46 throw "No type info available for ‘<expr>‘ at ‘<expr@\loc>‘";
47 }
48
49 AType getType(Id id, TModel tm) = tm.facts[id@\loc] when id@\loc in tm.facts;
50 default AType getType(Id id, TModel tm) {
51 throw "No type info available for ‘<id>‘ at ‘<id@\loc>‘";
52 }
53
54 AType getType(FormalParam p, TModel tm) = tm.facts[p.name@\loc] when p.name@\loc in tm.facts;
55 default AType getType(FormalParam p, TModel tm) {
56 throw "No type info available for ‘<p>‘";
57 }
58
59 AType getType(Type t, TModel tm) = tm.facts[t@\loc] when t@\loc in tm.facts;
60 default AType getType(Type t, TModel tm) {
61 throw "No type info available for ‘<t>‘";
62 }
63
64 IdRole getIdRole(Expr expr, TModel tm) {
65 switch (expr) {
66 case c:(Expr)‘this‘: return getIdRole(c@\loc, tm);
67 case (Expr)‘<Id id>‘: return getIdRole(id@\loc, tm);
68 case (Expr)‘<Expr expr>.<Id id>‘: return getIdRole(id@\loc, tm);
69 }
70
71 throw "No fetch of Id role defined for ‘<expr>‘";
72 }
73
74 IdRole getIdRole(loc expr, TModel tm) = tm.definitions[def].idRole
75 when {loc def} := tm.useDef[expr];
76
77 default IdRole getIdRole(loc expr, TModel tm) {
78 throw "Role can not be found for expression at ‘<expr>‘";
79 }
80
81 bool isParam(Expr expr, TModel tm) = getIdRole(expr,tm) == paramId();
82 default bool isParam(Expr _, TModel _) = false;
83
84 Spec getSpecByType(Expr expr, set[Spec] specs, TModel tm) {
85 AType tipe = getType(expr, tm);
86
87 if (specType(str specName) := tipe || optionalType(specType(str specName)) := tipe) {
88 return lookupSpecByName(specName, specs);
89 }
90
91 throw "Expression ‘<expr>‘ is not of spec type";
92 }
93
94 set[Spec] lookupSpecs(rel[Spec spc, str instance, State initialState] instances) =
95 {i.spc | i <- instances};
96
97 private Spec lookupSpecByName(str specName, set[Spec] specs) {
98 for (s <- specs, "<s.name>" == specName) {
99 return s;

100 }
101
102 throw "Spec ‘<specName>‘ could not be found";

��� ������� � ����������

103 }
104
105 set[str] lookupStates(Spec spc, TModel tm) {
106 set[str] states = {};
107 for (Define d <- tm.defines, d.idRole == stateId(), d.scope == spc@\loc,
108 d.id notin {"initialized","finalized","uninitialized"}) {
109 states += d.id;
110 }
111
112 return states;
113 }
114
115 set[str] lookupStateLabels(Spec spc, TModel tm) =
116 {getStateLabel(spc, st) | str st <- lookupStates(spc,tm)};
117
118 set[str] lookupStateLabelsWithDefaultStates(Spec spc, TModel tm) {
119 set[str] states = lookupStateLabels(spc,tm);
120
121 if (/(Transition)‘(*) -\> <State _> : <{TransEvent ","}+ _>;‘ := spc.states) {
122 states += "state_uninitialized";
123 }
124
125 if (/(Transition)‘<State _> -\> (*) : <{TransEvent ","}+ _>;‘ := spc.states) {
126 states += "state_finalized";
127 }
128
129 return states;
130 }
131
132 str getStateLabel(Spec spc, str state) = "state_<getLowerCaseSpecName(spc)>_<toLowerCase(state)>";
133
134 bool isEmptySpec(Spec spc) = /Transition _ !:= spc.states;
135
136 set[str] lookupInstances(Spec spc, rel[Spec spc, str instance] instances) = instances[spc];
137
138 set[str] lookupEventNames(Spec spc)
139 = {"event_<specName>_<ev>" | Event event <- lookupEvents(spc),
140 str ev := toLowerCase(replaceAll("<event.name>", "::", "_"))}
141 when str specName := toLowerCase("<spc.name>");
142
143 set[str] lookupRaisableEventName(Spec spc)
144 = {"event_<specName>_<ev>" | Event event <- lookupEvents(spc),
145 !isInternalEvent(event), str ev := toLowerCase(replaceAll("<event.name>", "::", "_"))}
146 when str specName := toLowerCase("<spc.name>");
147
148 set[Event] lookupEvents(Spec spc) = {e | /Event e := spc.events};
149
150 Event lookupEventByName(str eventName, Spec spc) {
151 for (Event e <- lookupEvents(spc), "<e.name>" == eventName) {
152 return e;
153 }
154
155 throw "Event with name ‘<eventName>‘ could not be found";
156 }
157
158 bool isNonOptionalScalar(Type tipe, TModel tm) = isNonOptionalScalar(t)
159 when tipe@\loc in tm.facts, AType t := tm.facts[tipe@\loc];
160 default bool isNonOptionalScalar(Type tipe, TModel tm) {
161 throw "No type information found for ‘<tipe>‘";
162 }
163
164 bool isNonOptionalScalar(setType(_)) = false;
165 bool isNonOptionalScalar(optionalType(_)) = false;
166 default bool isNonOptionalScalar(AType _) = true;

� .� ����������� ���� ������ �� �������� ���

167
168 bool isSetOfInt(Type tipe, TModel tm) = isSetOfType(tipe, intType(), tm);
169 bool isSetOfString(Type tipe, TModel tm) = isSetOfType(tipe, stringType(), tm);
170
171 bool isSetOfPrim(Type tipe, TModel tm) = isSetOfInt(tipe, tm) || isSetOfString(tipe, tm);
172
173 private bool isSetOfType(Type tipe, AType elemType, TModel tm) {
174 if (tipe@\loc notin tm.facts) {
175 throw "No type information found for ‘<tipe>‘";
176 }
177
178 return setType(elemType) := tm.facts[tipe@\loc];
179 }
180
181 bool isPrim(Type tipe, TModel tm) = isPrim(t)
182 when tipe@\loc in tm.facts, AType t := tm.facts[tipe@\loc];
183 default bool isPrim(Type tipe, TModel tm) {
184 throw "No type information found for ‘<tipe>‘";
185 }
186
187 bool isPrim(Expr expr, TModel tm) = isPrim(t)
188 when expr@\loc in tm.facts, AType t := tm.facts[expr@\loc];
189 default bool isPrim(Expr expr, TModel tm) {
190 throw "No type information found for ‘<expr>‘ at <expr@\loc>";
191 }
192
193 bool isPrim(intType()) = true;
194 bool isPrim(stringType()) = true;
195 default bool isPrim(AType _) = false;
196
197 bool isInternalEvent(TransEvent te, Spec s) = isInternalEvent(lookupEventByName("<te>", s), s);
198 default bool isInternalEvent(TransEvent te, Spec s) {
199 throw "Unable to find event with name ‘<te>‘ in ‘<s.name>‘";
200 }
201
202 bool isInternalEvent(Event e) = /(Modifier)‘internal‘ := e.modifiers;

Listing C.��: Translation functions that are commonly used during the translation of R�����
to A���A���.

��� ������� � ����������

EXAMPLES D
d.� ������� ����������� ���� ������ �� ��������

This appendix shows the different intermediate steps when converting the Account
running example of Chapter �. These steps are automatic and generate either a new
R���� � specification or an A���A��� specification.

Listing D.� shows the Account specification as originally written by the user.
Listing D.� show the Account specification after applying the first step of the trans-
formation pipeline, the outcome after applying the ’forget’ and ’mock’ algorithms
(see Listing C.� for an overview of the ’forget’ algorithm). Listing D.� show the result
after applying normalization.

After normalization the specification is translated to A���A���. Listing D.� and
Listing D.� show the first part of the A���A��� specification, the definitions of the
relations. Listing D.� and D.� contain the definition of the type and multiplicity
constraints as well as generic helper predicates. Listing D.�, D.� and D.�� show the
encoding of the events as A���A��� predicates. Finally, Listing D.�� contains the
generated transition function, assertion and optimization criteria.

���

1 module paper::example::Account
2 import paper::example::AccountNumber
3 import paper::example::Date
4
5 spec Account
6 nr: AccountNumber,
7 balance: Integer,
8 openedOn: Date;
9

10 init event open(nr: AccountNumber, openedOn: Date)
11 post: this.nr’ = nr, this.balance’ = 0, this.openedOn’ = openedOn;
12
13 event deposit(amount: Integer)
14 pre: amount > 0;
15 post: this.balance’ = this.balance + amount;
16
17 event withdraw(amount: Integer)
18 pre: amount > 0, this.balance >= amount;
19 post: this.balance’ = this.balance - amount;
20
21 event payInterest(rate: Integer)
22 post: this.balance’ = this.balance + ((this.balance * rate) / 100);
23
24 event block()
25 event unblock()
26 final event forceClose()
27 final event close()
28 pre: this.balance = 0;
29
30 assume AllAccountsHaveUniqueAccountNumbers
31 = always forall ac1, ac2: Account |
32 (ac1 is initialized && ac2 is initialized && ac1.nr = ac2.nr => ac1 = ac2);
33
34 states:
35 (*) -> opened: open;
36 opened -> opened: deposit, withdraw, payInterest;
37 opened -> blocked: block;
38 blocked -> opened: unblock;
39 blocked -> (*): forceClose;
40 opened -> (*): close;
41
42 assert CantOverdrawAccount = always forall a:Account | (a is initialized => a.balance >= 0);
43
44 config Sliced = ac: Account forget nr, openedOn is uninitialized;
45
46 check CantOverdrawAccount from Sliced in max 5 steps;

Listing D.�: Original R����� specification of an Account as written by the user.

��� ������� � ��������

1 module paper::example::Account_CantOverdrawAccount
2
3 spec Account
4 balance: Integer;
5
6 init event open()
7 post: this.balance’ = 0;
8
9 event deposit(amount: Integer)

10 pre: amount > 0;
11 post: this.balance’ = this.balance + amount;
12
13 event withdraw(amount: Integer)
14 pre: amount > 0, this.balance >= amount;
15 post: this.balance’ = this.balance - amount;
16
17 event payInterest(rate: Integer)
18 post: this.balance’ = this.balance + ((this.balance * rate) / 100);
19
20 event block()
21 event unblock()
22 final event forceClose()
23
24 final event close()
25 pre: this.balance = 0;
26
27 states:
28 (*) -> opened: open;
29 opened -> opened: deposit, withdraw, payInterest;
30 opened -> blocked: block;
31 blocked -> opened: unblock;
32 blocked -> (*): forceClose;
33 opened -> (*): close;
34
35 assert CantOverdrawAccount = !(always forall a:Account | (a is initialized => a.balance >= 0));
36
37 config Sliced = ac : Account is uninitialized ;
38
39 check CantOverdrawAccount from Sliced in max 5 steps;

Listing D.�: Generated R����� specification after applying the ’forget’ and ’mock’ algorithms.
In this case only ’forget’ was needed since the configuration used (Sliced, line �� of Listing D.�)
specified that both the nr and openedOn fields are to be forgotten but no specifiations were
instructed to be mocked. Please also notice that the assertion (CantOverdrawAccount) has been
negated. Since a check is performed, we are interested in finding a state where the assertion
does not hold.

� .� ������� ����������� ���� ������ �� �������� ���

1 module paper::example::Account_CantOverdrawAccount
2
3 spec Account
4 balance: Integer;
5
6 init event open()
7 post: this.balance’ = 0;
8
9 event deposit(amount: Integer)

10 pre: amount > 0;
11 post: this.balance’ = this.balance + amount;
12
13 event withdraw(amount: Integer)
14 pre: amount > 0, this.balance >= amount;
15 post: this.balance’ = this.balance - amount;
16
17 event payInterest(rate: Integer)
18 post: this.balance’ = this.balance + ((this.balance * rate) / 100);
19
20 event block()
21 post: this.balance’ = this.balance;
22
23 event unblock()
24 post: this.balance’ = this.balance;
25
26 final event forceClose()
27
28 final event close()
29 pre: this.balance = 0;
30
31 internal event __frame()
32 post: this.balance’ = this.balance;
33
34 states:
35 (*) -> opened : open;
36 opened -> opened : deposit;
37 opened -> opened : withdraw;
38 opened -> opened : payInterest;
39 opened -> blocked : block;
40 blocked -> opened : unblock;
41 blocked -> (*) : forceClose;
42 opened -> (*) : close;
43
44 assert CantOverdrawAccount = !(always forall a:Account | (a is initialized => a.balance >= 0));
45
46 config Sliced = ac : Account is uninitialized;
47
48 check CantOverdrawAccount from Sliced in max 5 steps;

Listing D.�: Generated R����� specification after normalization. Frame conditions where
added to the event as well as a new __frame() event which fixes all values between steps.

��� ������� � ��������

1 // Define the specs that can take place in the transition system
2 Account (spec:id) = {<account>}
3

4 // Define all possible states for all machines
5 State (state:id) = {<state_account_opened>,<state_account_blocked>,
6 <state_uninitialized>,<state_finalized>}
7 initialized (state:id) = {<state_account_opened>,<state_account_blocked>}
8 finalized (state:id) = {<state_finalized>}
9 uninitialized (state:id) = {<state_uninitialized>}

10 StateAccountOpened (state:id) = {<state_account_opened>}
11 StateAccountBlocked (state:id) = {<state_account_blocked>}
12

13 // Define which transitions are allowed in the form of:
14 // ‘from a state‘ -> ‘ via an event‘ -> ‘to a state‘
15 allowedTransitions (from:id, to:id, event:id) = {
16 <state_account_opened,state_account_opened,event_account_deposit>,
17 <state_account_opened,state_account_blocked,event_account_block>,
18 <state_account_opened,state_finalized,event_account_close>,
19 <state_account_opened,state_account_opened,event_account_withdraw>,
20 <state_account_blocked,state_account_opened,event_account_unblock>,
21 <state_account_blocked,state_finalized,event_account_forceclose>,
22 <state_uninitialized,state_account_opened,event_account_open>,
23 <state_account_opened,state_account_opened,event_account_payinterest>}
24

25 // Define each event as single relation so that the events can be used as variables in the constraints
26 EventAccountForceClose (event:id) = {<event_account_forceclose>}
27 EventAccountWithdraw (event:id) = {<event_account_withdraw>}
28 EventAccountOpen (event:id) = {<event_account_open>}
29 EventAccountDeposit (event:id) = {<event_account_deposit>}
30 EventAccountPayInterest (event:id) = {<event_account_payinterest>}
31 EventAccount__frame (event:id) = {<event_account___frame>}
32 EventAccountUnblock (event:id) = {<event_account_unblock>}
33 EventAccountBlock (event:id) = {<event_account_block>}
34 EventAccountClose (event:id) = {<event_account_close>}

Listing D.�: Generated A���A��� relation definition for the ’static’ part of the Account
specification

� .� ������� ����������� ���� ������ �� �������� ���

1 Config (config:id) >= {<c1>} <= {<c1>,<c2>,<c3>,<c4>,<c5>,<c6>}
2

3 order (cur:id, nxt:id) <= {<c1,c2>,<c2,c3>,<c3,c4>,<c4,c5>,<c5,c6>}
4 first (config:id) = {<c1>}
5 last (config:id) <= {<c1>,<c2>,<c3>,<c4>,<c5>,<c6>}
6 back (config:id) = {}
7 loop (cur:id, nxt:id) = {}
8

9 Instance (spec:id, instance:id) = {<account,ac>}
10

11 instanceInState (config:id, instance:id, state:id) >={<c1,ac,state_uninitialized>} <= {
12 <c1,ac,state_account_opened>,<c1,ac,state_account_blocked>,<c1,ac,state_uninitialized>,
13 <c1,ac,state_finalized>,<c2,ac,state_account_opened>,<c2,ac,state_account_blocked>,
14 <c2,ac,state_uninitialized>,<c2,ac,state_finalized>,<c3,ac,state_account_opened>,
15 <c3,ac,state_account_blocked>,<c3,ac,state_uninitialized>,<c3,ac,state_finalized>,
16 <c4,ac,state_account_opened>,<c4,ac,state_account_blocked>,<c4,ac,state_uninitialized>,
17 <c4,ac,state_finalized>,<c5,ac,state_account_opened>,<c5,ac,state_account_blocked>,
18 <c5,ac,state_uninitialized>,<c5,ac,state_finalized>,<c6,ac,state_account_opened>,
19 <c6,ac,state_account_blocked>,<c6,ac,state_uninitialized>,<c6,ac,state_finalized>}
20

21 raisedEvent (cur:id, nxt:id, event:id, instance:id) <= {
22 <c1,c2,event_account_forceclose,ac>,<c1,c2,event_account_deposit,ac>,
23 <c1,c2,event_account_block,ac>,<c1,c2,event_account_payinterest,ac>,
24 <c1,c2,event_account_unblock,ac>,<c1,c2,event_account_close,ac>,<c1,c2,event_account_open,ac>,
25 <c1,c2,event_account_withdraw,ac>,<c2,c3,event_account_forceclose,ac>,
26 <c2,c3,event_account_deposit,ac>,<c2,c3,event_account_block,ac>,
27 <c2,c3,event_account_payinterest,ac>,<c2,c3,event_account_unblock,ac>,
28 <c2,c3,event_account_close,ac>,<c2,c3,event_account_open,ac>,<c2,c3,event_account_withdraw,ac>,
29 <c3,c4,event_account_forceclose,ac>,<c3,c4,event_account_deposit,ac>,
30 <c3,c4,event_account_block,ac>,<c3,c4,event_account_payinterest,ac>,
31 <c3,c4,event_account_unblock,ac>,<c3,c4,event_account_close,ac>,<c3,c4,event_account_open,ac>,
32 <c3,c4,event_account_withdraw,ac>,<c4,c5,event_account_forceclose,ac>,
33 <c4,c5,event_account_deposit,ac>,<c4,c5,event_account_block,ac>,
34 <c4,c5,event_account_payinterest,ac>,<c4,c5,event_account_unblock,ac>,
35 <c4,c5,event_account_close,ac>,<c4,c5,event_account_open,ac>,<c4,c5,event_account_withdraw,ac>,
36 <c5,c6,event_account_forceclose,ac>,<c5,c6,event_account_deposit,ac>,
37 <c5,c6,event_account_block,ac>,<c5,c6,event_account_payinterest,ac>,
38 <c5,c6,event_account_unblock,ac>,<c5,c6,event_account_close,ac>,<c5,c6,event_account_open,ac>,
39 <c5,c6,event_account_withdraw,ac>}
40

41 changedInstance (cur:id, nxt:id, instance:id) <= {
42 <c1,c2,ac>,<c2,c3,ac>,<c3,c4,ac>,<c4,c5,ac>,<c5,c6,ac>}
43

44 AccountBalance (config:id, instance:id, balance:int) <= {
45 <c1,ac,?>,<c2,ac,?>,<c3,ac,?>,<c4,ac,?>,<c5,ac,?>,<c6,ac,?>}
46

47 ParamEventAccountWithdrawAmount (cur:id, nxt:id, amount:int) <= {
48 <c1,c2,?>,<c2,c3,?>,<c3,c4,?>,<c4,c5,?>,<c5,c6,?>}
49

50 ParamEventAccountPayInterestRate (cur:id, nxt:id, rate:int) <= {
51 <c1,c2,?>,<c2,c3,?>,<c3,c4,?>,<c4,c5,?>,<c5,c6,?>}
52

53 ParamEventAccountDepositAmount (cur:id, nxt:id, amount:int) <= {
54 <c1,c2,?>,<c2,c3,?>,<c3,c4,?>,<c4,c5,?>,<c5,c6,?>}

Listing D.�: Generated A���A��� relation definition for the ’dynamic’ part of the Account
specification

��� ������� � ��������

1 // Constraints for the configuration and ordering relations
2 order in Config[config as cur] x Config[config as nxt]
3 last = Config \ order[cur->config] // There is only one last configuration
4

5 // Generic ’Type’ constraints
6 raisedEvent in (order) x allowedTransitions[event] x Instance[instance]
7 instanceInState in Instance[instance] x Config x State
8 changedInstance in (order) x Instance[instance]
9

10 // Machine specific ‘type‘ constraints
11 // - for ‘Account‘
12 AccountBalance[config,instance] in Config x (Instance |x| Account)[instance]
13

14 // Specific per event: parameter type and multiplicity constraints
15 // Type constraints for events of Account
16 ParamEventAccountDepositAmount[cur,nxt] in order + loop
17 ParamEventAccountWithdrawAmount[cur,nxt] in order + loop
18 ParamEventAccountPayInterestRate[cur,nxt] in order + loop
19

20 // Multiplicity constraints for event parameters
21 forall step: (order + loop) |x| raisedEvent | (
22 (some (step |x| EventAccountDeposit) <=> one (step |x| ParamEventAccountDepositAmount)) &&
23 (some (step |x| EventAccountPayInterest) <=> one (step |x| ParamEventAccountPayInterestRate)) &&
24 (some (step |x| EventAccountWithdraw) <=> one (step |x| ParamEventAccountWithdrawAmount))
25)
26 // Generic: All configurations are reachable
27 forall c: Config \ first | c in (first[config as cur] |x| ^order)[nxt -> config]
28

29 // Generic: Every transition can only happen by exactly one event
30 forall o: order | one o |x| raisedEvent
31

32 // Specific: In every configuration all machines have a state IFF its a machine which is not empty
33 forall c: Config, inst: Instance | one instanceInState |x| c |x| inst
34

35 // Specific per machine: In every configuration iff a machine is in an initialized state
36 // then it must have values
37 // - for Account
38 forall c: Config, inst: (Instance |x| Account)[instance] |
39 (((c x inst) |x| instanceInState)[state] in initialized <=> one AccountBalance |x| c |x| inst)
40

41 // Generic: Transitions are only allowed between states if an event is specified for those two states
42 forall o: (order) |x| raisedEvent |
43 (o[cur as config] |x| instanceInState)[state->from] x
44 (o[nxt as config] |x| instanceInState)[state->to] x
45 o[event] in allowedTransitions

Listing D.�: Generated A���A��� constraints encoding the type and multiplicity constraints
of the Account specification

� .� ������� ����������� ���� ������ �� �������� ���

1 // Allow for an instance to be part of the changing machines
2 pred inChangeSet[step: (cur:id, nxt:id), instances: (instance:id)]
3 = instances in (changedInstance |x| step)[instance]
4
5 // Disallow an instance to be part of the changing machines
6 pred notInChangeSet[step: (cur:id, nxt:id), instances: (instance:id)]
7 = no instances & (changedInstance |x| step)[instance]
8
9 pred changeSetCanContain[step: (cur:id, nxt:id), instances: (instance:id)]

10 = (changedInstance |x| step)[instance] in instances
11
12 pred forceState[curState: (state:id), nxtState: (state:id), raisedEvent: (event:id)]
13 = nxtState = (curState[state as from] |x| (allowedTransitions |x| raisedEvent))[to->state]
14
15 pred inState[config: (config:id), instance: (instance:id), state: (state:id)]
16 = ((instance x config) |x| instanceInState)[state] in state
17
18 pred frameAccount[step: (cur:id, nxt:id), account: (instance:id)]
19 = let cur = step[cur->config],
20 nxt = step[nxt->config],
21 curState = (instanceInState |x| cur |x| account)[state],
22 nxtState = (instanceInState |x| nxt |x| account)[state] | (
23 nxtState = curState && (
24 curState in uninitialized ||
25 // Postconditions
26 some ((account |x| (AccountBalance |x| nxt))[balance][balance as nxt_balance] x
27 (account |x| (AccountBalance |x| cur))[balance][balance as cur_balance])
28 where (nxt_balance = cur_balance))
29)

Listing D.�: Generated A���A��� constraints encoding helper predicates and the generated
frame event which is enforced when an instance is not allow to change during a state transition.

��� ������� � ��������

1 // Event predicates for Account
2 pred eventAccountOpen[step:(cur:id, nxt:id), account: (instance:id)]
3 = let cur = step[cur->config],
4 nxt = step[nxt->config],
5 curState = (instanceInState |x| cur |x| account)[state],
6 nxtState = (instanceInState |x| nxt |x| account)[state] | (
7 // Postconditions
8 (some ((account |x| (AccountBalance |x| nxt))[balance][balance as nxt_balance])
9 where (nxt_balance = 0)) &&

10 // Generic event conditions
11 forceState[curState, nxtState, EventAccountOpen] &&
12 // Make sure this instance is in the change set
13 inChangeSet[step, account]
14)
15

16 pred eventAccountDeposit[step:(cur:id, nxt:id), account: (instance:id), amount: (amount:int)]
17 = let cur = step[cur->config],
18 nxt = step[nxt->config],
19 curState = (instanceInState |x| cur |x| account)[state],
20 nxtState = (instanceInState |x| nxt |x| account)[state] | (
21 // Preconditions
22 (some (amount[amount as param_1_amount]) where (param_1_amount > 0)) &&
23 // Postconditions
24 (some ((account |x| (AccountBalance |x| nxt))[balance][balance as nxt_balance] x
25 (account |x| (AccountBalance |x| cur))[balance][balance as cur_balance] x
26 amount[amount as param_2_amount]) where (nxt_balance = cur_balance + param_2_amount)) &&
27 // Generic event conditions
28 forceState[curState, nxtState, EventAccountDeposit] &&
29 // Make sure this instance is in the change set
30 inChangeSet[step, account]
31)
32

33 pred eventAccountWithdraw[step:(cur:id, nxt:id), account: (instance:id), amount: (amount:int)]
34 = let cur = step[cur->config],
35 nxt = step[nxt->config],
36 curState = (instanceInState |x| cur |x| account)[state],
37 nxtState = (instanceInState |x| nxt |x| account)[state] | (
38 // Preconditions
39 (some (amount[amount as param_1_amount]) where (param_1_amount > 0)) &&
40 (some ((account |x| (AccountBalance |x| cur))[balance][balance as cur_balance] x
41 amount[amount as param_2_amount]) where (cur_balance >= param_2_amount)) &&
42 // Postconditions
43 (some ((account |x| (AccountBalance |x| nxt))[balance][balance as nxt_balance] x
44 (account |x| (AccountBalance |x| cur))[balance][balance as cur_balance] x
45 amount[amount as param_3_amount]) where (nxt_balance = cur_balance - param_3_amount)) &&
46 // Generic event conditions
47 forceState[curState, nxtState, EventAccountWithdraw] &&
48 // Make sure this instance is in the change set
49 inChangeSet[step, account]
50)

Listing D.�: Generated A���A��� constraints encoding the open, deposit and withdraw
events of the Account specification

� .� ������� ����������� ���� ������ �� �������� ���

1 pred eventAccountPayInterest[step:(cur:id, nxt:id), account: (instance:id), rate: (rate:int)]
2 = let cur = step[cur->config],
3 nxt = step[nxt->config],
4 curState = (instanceInState |x| cur |x| account)[state],
5 nxtState = (instanceInState |x| nxt |x| account)[state] | (
6 // Postconditions
7 (some ((account |x| (AccountBalance |x| nxt))[balance][balance as nxt_balance] x
8 rate[rate as param_1_rate] x
9 (account |x| (AccountBalance |x| cur))[balance][balance as cur_balance])

10 where (nxt_balance = cur_balance + ((cur_balance * param_1_rate) / 100))) &&
11 // Generic event conditions
12 forceState[curState, nxtState, EventAccountPayInterest] &&
13 // Make sure this instance is in the change set
14 inChangeSet[step, account]
15)
16

17 pred eventAccountBlock[step:(cur:id, nxt:id), account: (instance:id)]
18 = let cur = step[cur->config],
19 nxt = step[nxt->config],
20 curState = (instanceInState |x| cur |x| account)[state],
21 nxtState = (instanceInState |x| nxt |x| account)[state] | (
22 // Postconditions
23 (some ((account |x| (AccountBalance |x| nxt))[balance][balance as nxt_balance] x
24 (account |x| (AccountBalance |x| cur))[balance][balance as cur_balance])
25 where (nxt_balance = cur_balance)) &&
26 // Generic event conditions
27 forceState[curState, nxtState, EventAccountBlock] &&
28 // Make sure this instance is in the change set
29 inChangeSet[step, account]
30)
31

32 pred eventAccountUnblock[step:(cur:id, nxt:id), account: (instance:id)]
33 = let cur = step[cur->config],
34 nxt = step[nxt->config],
35 curState = (instanceInState |x| cur |x| account)[state],
36 nxtState = (instanceInState |x| nxt |x| account)[state] | (
37 // Postconditions
38 (some ((account |x| (AccountBalance |x| nxt))[balance][balance as nxt_balance] x
39 (account |x| (AccountBalance |x| cur))[balance][balance as cur_balance])
40 where (nxt_balance = cur_balance)) &&
41 // Generic event conditions
42 forceState[curState, nxtState, EventAccountUnblock] &&
43 // Make sure this instance is in the change set
44 inChangeSet[step, account]
45))

Listing D.�: Generated A���A��� constraints encoding the payInterest, block and unblock
events of the Account specification

��� ������� � ��������

1 pred eventAccountForceClose[step:(cur:id, nxt:id), account: (instance:id)]
2 = let cur = step[cur->config],
3 nxt = step[nxt->config],
4 curState = (instanceInState |x| cur |x| account)[state],
5 nxtState = (instanceInState |x| nxt |x| account)[state] | (
6 // Generic event conditions
7 forceState[curState, nxtState, EventAccountForceClose] &&
8 // Make sure this instance is in the change set
9 inChangeSet[step, account]

10)
11

12 pred eventAccountClose[step:(cur:id, nxt:id), account: (instance:id)]
13 = let cur = step[cur->config],
14 nxt = step[nxt->config],
15 curState = (instanceInState |x| cur |x| account)[state],
16 nxtState = (instanceInState |x| nxt |x| account)[state] | (
17 // Preconditions
18 (some ((account |x| (AccountBalance |x| cur))[balance][balance as cur_balance])
19 where (cur_balance = 0)) &&
20 // Generic event conditions
21 forceState[curState, nxtState, EventAccountClose] &&
22 // Make sure this instance is in the change set
23 inChangeSet[step, account]
24)

Listing D.��: Generated A���A��� constraints encoding the forceClose and close events of
the Account specification

� .� ������� ����������� ���� ������ �� �������� ���

1 // Transition function for Account
2 pred possibleTransitionsAccount[step: (cur:id, nxt:id)]
3 = forall inst: (Instance |x| Account)[instance] |
4 (some inst & ((raisedEvent |x| step)[instance]) <=> (
5 (eventAccountOpen[step,inst] &&
6 (step |x| raisedEvent)[event] = EventAccountOpen &&
7 changeSetCanContain[step, inst])
8 ||
9 (eventAccountBlock[step,inst] &&

10 (step |x| raisedEvent)[event] = EventAccountBlock &&
11 changeSetCanContain[step, inst])
12 ||
13 (eventAccountClose[step,inst] &&
14 (step |x| raisedEvent)[event] = EventAccountClose &&
15 changeSetCanContain[step, inst])
16 ||
17 (eventAccountForceClose[step,inst] &&
18 (step |x| raisedEvent)[event] = EventAccountForceClose &&
19 changeSetCanContain[step, inst])
20 ||
21 (eventAccountWithdraw[step,inst,(step |x| ParamEventAccountWithdrawAmount)[amount]] &&
22 (step |x| raisedEvent)[event] = EventAccountWithdraw &&
23 changeSetCanContain[step, inst])
24 ||
25 (eventAccountPayInterest[step,inst,(step |x| ParamEventAccountPayInterestRate)[rate]] &&
26 (step |x| raisedEvent)[event] = EventAccountPayInterest &&
27 changeSetCanContain[step, inst])
28 ||
29 (eventAccountUnblock[step,inst] &&
30 (step |x| raisedEvent)[event] = EventAccountUnblock &&
31 changeSetCanContain[step, inst])
32 ||
33 (eventAccountDeposit[step,inst,(step |x| ParamEventAccountDepositAmount)[amount]] &&
34 (step |x| raisedEvent)[event] = EventAccountDeposit &&
35 changeSetCanContain[step, inst])
36))
37 &&
38 (notInChangeSet[step, inst] => frameAccount[step, inst])
39

40 // Transition function
41 forall step: order| possibleTransitionsAccount[step]
42

43 // Assert ‘CantOverdrawAccount‘
44 not ((let cur = first | (forall cur: (cur[config as cur] |x| *(order + loop))[nxt->config] |
45 let step = cur[config as cur] |x| (order + loop), nxt = step[nxt->config] |
46 (forall a: (Instance |x| Account)[instance] |
47 ((inState[cur, a, initialized] =>
48 (some ((a |x| (AccountBalance |x| cur))[balance][balance as a_balance_1])
49 where (a_balance_1 >= 0))))))))
50

51 // Minimize the number of steps by minimizing the number of Configurations
52 objectives: minimize Config[count()]

Listing D.��: Generated A���A��� constraints encoding the payInterest, block and unblock
events of the Account specification

��� ������� � ��������

DATA E
e.� ������� ������� ���������� ����������

Table E.�: “MISC paranoid” A���A��� results. Problem names refer to the problems as
they were named in the original competition. See http://www.mancoosi.org/misc-2012/results/

paranoid/ for an overview.

Problem name Re
qu

es
tt

yp
e

#
of

Pa
ck

ag
es

in
C

U
D

F

#
de

pe
nd

en
ci

es

A
��

�A
��

�
tr

an
sl

at
io

n
tim

e
(in

se
c)

Z
�

so
lv

in
g

tim
e

(in
se

c)

Be
st

��
��

co
m

pe
tit

io
n

so
lv

in
g

tim
e

(in
se

c)

C
or

re
ct

?

O
pt

im
al

?

adf�b���-�af�-��df-bc��-�����e��d��a upgrade ����� ����� ���.�� �.�� �.�� yes yes
e�bd��a�-��d�-��df-b��f-�����e�a�f�e upgrade ����� ����� ���.�� �.�� �.�� yes yes
e�f����a-�fe�-��e�-aa�f-�����e�e���d install ����� ����� ����.�� �.�� �.�� yes yes
��������-����-��df-�f��-�����e�a�f�e upgrade ����� ����� ���.�� �.�� �.�� yes yes
�bf��d�c-�b�b-��df-�b��-�����e��d��a upgrade ����� ����� ���.�� �.�� �.�� yes yes
�b�e�c��-bab�-��e�-a���-�����e�e���d install ����� ����� ����.�� �.�� �.�� yes yes
����a��c-c���-��df-�bb�-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
�b�d�da�-c���-��df-a�c�-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
�����cfe-db�f-��df-�e�c-�����e�d�b�c upgrade ����� ����� ���.�� �.�� �.�� yes yes
������fa-c���-��df-b���-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
dd��e��e-d���-��df-b�cf-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
d����bd�-d���-��df-�a��-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
dba�a�fe-����-��e�-�e�c-�����e�d�b�c upgrade ����� ����� ���.�� �.�� �.�� yes yes
f�ebf�e�-���e-��e�-�e�c-�����e�d�b�c upgrade ����� ����� ���.�� �.�� �.�� yes yes
�ede�d��-c��a-��df-a�c�-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
��bb�fbc-����-��e�-����-�����e�e���d install ����� ����� ���.�� �.�� �.�� yes yes
ab����be-bacc-��e�-b�f�-�����e�e���d install ����� ����� ����.�� �.�� �.�� yes yes
ff�a�d��-d���-��df-�e�c-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
fa�d�fb�-db�e-��df-a�ec-�����e�d�b�c upgrade ����� ����� ���.�� �.�� �.�� yes yes
��e�fda�-����-��e�-����-�����e�e���d install ����� ����� ���.�� �.�� �.�� yes yes
d���d���-����-��e�-bdb�-�����e�d�b�c upgrade ����� ����� ���.�� �.�� �.�� yes yes
���c����-����-��df-�bc�-�����e�a�f�e upgrade ����� ����� ���.�� �.�� �.�� yes yes
�a��cf��-c���-��df-����-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
��f�d�cc-d���-��df-�e�c-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
ec��fc��-����-��e�-����-�����e�e���d upgrade ����� ����� ���.�� �.�� �.�� yes yes
cff�����-����-��e�-����-�����e�e���d install ����� ����� ���.�� �.�� �.�� yes yes
����dd�a-����-��e�-b���-�����e�e���d install ����� ����� ����.�� �.�� �.�� yes yes
caefdef�-����-��e�-��ef-�����e�d�b�c upgrade ����� ����� ���.�� �.�� �.�� yes yes
e���ba�e-a���-��e�-����-�����e�e���d install ����� ����� ���.�� �.�� �.�� yes yes
deb���a�-db�e-��df-�f�f-�����e�d�b�c upgrade ����� ����� ���.�� �.�� �.�� yes yes
ca�f���c-db�e-��df-b�cf-�����e�d�b�c upgrade ����� ����� ���.�� �.�� �.�� yes yes
e���f�fc-���e-��e�-���e-�����e�d�b�c upgrade ����� ����� ���.�� �.�� �.�� yes yes

���

Table E.�: “MISC paranoid” A���A��� results. Problem names refer to the problems as
they were named in the original competition. See http://www.mancoosi.org/misc-2012/results/

paranoid/ for an overview.

Problem name Re
qu

es
tt

yp
e

#
of

Pa
ck

ag
es

in
C

U
D

F

#
de

pe
nd

en
ci

es

A
��

�A
��

�
tr

an
sl

at
io

n
tim

e
(in

se
c)

Z
�

so
lv

in
g

tim
e

(in
se

c)

Be
st

��
��

co
m

pe
tit

io
n

so
lv

in
g

tim
e

(in
se

c)

C
or

re
ct

?

O
pt

im
al

?

d�cc����-c���-��df-a���-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
bccf��ae-db�e-��df-�a��-�����e�d�b�c upgrade ����� ����� ���.�� �.�� �.�� yes yes
�����e��-c�c�-��df-a�c�-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
d����b�e-����-��e�-���e-�����e�d�b�c upgrade ����� ����� ���.�� �.�� �.�� yes yes
e��a�e��-�ef�-��df-�d�a-�����e��d��a install ����� ����� ����.�� �.�� �.�� yes yes
��e�����-c��a-��df-b���-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
ed�cc��e-��b�-��e�-����-�����e�e���d install ����� ����� ���.�� �.�� �.�� yes yes
a���ac��-��cc-��e�-����-�����e�e���d install ����� ����� ���.�� �.�� �.�� yes yes
��ae�afa-�b��-��df-�a�b-�����e�d��dc install ����� ���� ��.�� �.�� �.�� yes yes
�e���b��-d��c-��df-�f�f-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
fe���ea�-�b�b-��df-bc��-�����e��d��a upgrade ����� ����� ���.�� �.�� �.�� yes yes
b����c��-��b�-��e�-aa�f-�����e�e���d install ����� ����� ���.�� �.�� �.�� yes yes
eeee��ce-����-��df-b��f-�����e�a�f�e upgrade ����� ����� ���.�� �.�� �.�� yes yes
��cfe�a�-�b�b-��df-���e-�����e��d��a upgrade ����� ����� ���.�� �.�� �.�� yes yes
�aabfc��-d���-��df-�a��-�����e�d�b�c install ����� ����� ����.�� �.�� �.�� yes yes
�������a-�af�-��df-�b��-�����e��d��a upgrade ����� ����� ���.�� �.�� �.�� yes yes
���cbe��-a��c-��e�-����-�����e�e���d install ����� ����� ����.�� �.�� �.�� yes yes
�c���c�e-��b�-��e�-a��e-�����e�e���d install ����� ����� ���.�� �.�� �.�� yes yes
�e�f����-�b��-��df-���d-�����e�d��dc install ����� ���� ��.�� �.�� �.�� yes yes
�afdd��e-��b�-��e�-acd�-�����e�e���d install ����� ����� ���.�� �.�� �.�� yes yes
�f��e�c�-a��c-��e�-�eb�-�����e�e���d install ����� ����� ����.�� �.�� �.�� yes yes
�f��e�f�-�fe�-��e�-acd�-�����e�e���d install ����� ����� ���.�� �.�� �.�� yes yes
c����c��-b���-��df-�b��-�����e��d��a upgrade ����� ����� ���.�� �.�� �.�� yes yes
����e��a-�b�c-��df-af��-�����e��d��a upgrade ����� ����� ���.�� �.�� �.�� yes yes

��� ������� � ����

SUMMARY

Large enterprises such as banks face many challenges when it comes to controlling
the every growing complexity of their systems. These systems are never created in
one go, they are the result of many iterations during many decades of development.
Since techniques evolve, so do these software systems. Controlling this complexity
is a wicked problem since all the separate sub-systems influence each other in ways
often not foreseen upfront.

One way to increase the confidence of correctness in such a system is to apply
Formal Methods such as the B-method, VDM of mCRL�. Applying a formal method
requires to specify the intended behavior of a system in some precise and formal
notation. In turn, these specifications can be used to reason about properties of
the system (such as safety properties) using theorem proving or model checking.
However, the drawback that is often mentioned on the use of such formal method in
industry scale projects is that the cost of use (both in time and expertise) is conceived
as too high.

A variation on the use of formal methods is to make use of a so called lightweight
formal method. A lightweight formal method builds on the same principals as the
earlier mentioned formal methods but with emphasis on partiality. This can either
be partiality in modeling (e.g., model the core design instead of the whole system),
partiality in analysis (e.g., perform model checking on a subdomain of the problem),
partiality in language (e.g., prohibit a specification language to those constructs
which allow for automatic reasoning) and partiality of composition (e.g., allow for
the composition of specifications focusing on different aspects for a single system).
This emphasis on partiality offers trade-offs to influence the breath and depth of the
applied specification and verification technique. In this thesis we explore some of
these trade-offs in the context of developing and maintaining enterprise software
systems.

Firstly, we explore the impact of supporting automatic verification of a specification
has on the design of such a specification language. A very expressive specification
language allows for the definition of a large class of problems but will be very hard to
automatically verify. We experiment with two different designs in which we balance
this trade-off.

Secondly, we focus on partiality of analysis by contributing to the state-of-the-art
in relational model finding. Relational model finding is a technique which allows for
the definition of problems using a specification language build on a rich relational
logic. In existing work of Torlak et al. such a problem is automatically translated into
a boolean satisfiability problem which in turn can be solved by an off-the-shelf SAT
solver. Our work generalizes this idea by extending the relational input language

���

to contain definitions and constraints of non-relational data types (such as integers)
and by translating this to a Satisfiability Modulo Theories (SMT) problem which
in turn can be solved by an off-the-shelf SMT solver. This generalization increases
the expressiveness of the relational specification language while still preserving the
ability for automatic verification.

Thirdly, we explore partiality of modeling and composition by designing and
implementing a specification language and verification method that allows users to
perform bespoke specification compositions that allow for partial model checking.
These bespoke compositions allow for a modeling technique in which it is possible
to specify a complete system while being able to verify parts of it. To offer these
partial verification technique we draw upon well known concepts from software
testing, mocking. To facilitate the verification of these partial system specifications,
the specifications are translated to the language of our generalized relational model
finder. We apply this new specification technique to a case study from our problem
domain, banking systems, and we find that it is expressive enough to specify such a
real-world problem while still retaining the possibility to perform checking of user
defined properties on a subset of the specifications.

We conclude that the use of lightweight specification and verification techniques
can hold value for domains that are currently not quick to adept formal methods.

��� ������� � ����

Titles in the IPA Dissertation Series since ����

M.A. Cano Grĳalba. Session-Based Con-
currency: Between Operational and Declar-
ative Views. Faculty of Science and Engi-
neering, RUG. ����-��

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. ����-��

R.A. van Rozen. Languages of Games and
Play: Automating Game Design & Enabling
Live Programming. Faculty of Science,
UvA. ����-��

B. Changizi. Constraint-Based Analy-
sis of Business Process Models. Faculty
of Mathematics and Natural Sciences,
UL. ����-��

N. Naus. Assisting End Users in Workflow
Systems. Faculty of Science, UU. ����-��

J.J.H.M. Wulms. Stability of Geometric
Algorithms. Faculty of Mathematics and
Computer Science, TU/e. ����-��

T.S. Neele. Reductions for Parity
Games and Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. ����-��

P. van den Bos. Coverage and Games in
Model-Based Testing. Faculty of Science,
RU. ����-��

M.F.M. Sondag. Algorithms for Coher-
ent Rectangular Visualizations. Faculty
of Mathematics and Computer Science,
TU/e. ����-��

D. Frumin. Concurrent Separation Logics
for Safety, Refinement, and Security. Fac-

ulty of Science, Mathematics and Com-
puter Science, RU. ����-��

A. Bentkamp. Superposition for Higher-
Order Logic. Faculty of Sciences, Depart-
ment of Computer Science, VU. ����-��

P. Derakhshanfar. Carving Information
Sources to Drive Search-based Crash Repro-
duction and Test Case Generation. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. ����-��

K. Aslam. Deriving Behavioral Specifi-
cations of Industrial Software Components.
Faculty of Mathematics and Computer
Science, TU/e. ����-��

W. Silva Torres. Supporting Multi-
Domain Model Management. Faculty
of Mathematics and Computer Science,
TU/e. ����-��

A. Fedotov. Verification Techniques for
xMAS. Faculty of Mathematics and Com-
puter Science, TU/e. ����-��

M.O. Mahmoud. GPU Enabled Auto-
mated Reasoning. Faculty of Mathematics
and Computer Science, TU/e. ����-��

M. Safari. Correct Optimized GPU Pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. ����-��

M. Verano Merino. Engineering
Language-Parametric End-User Program-
ming Environments for DSLs. Faculty
of Mathematics and Computer Science,
TU/e. ����-��

G.F.C. Dupont. Network Security Moni-
toring in Environments where Digital and

Physical Safety are Critical. Faculty of
Mathematics and Computer Science,
TU/e. ����-��

T.M. Soethout. Banking on Domain
Knowledge for Faster Transactions. Faculty
of Mathematics and Computer Science,
TU/e. ����-��

P. Vukmirović. Implementation of Higher-
Order Superposition. Faculty of Sci-
ences, Department of Computer Science,
VU. ����-��

J. Wagemaker. Extensions of (Concur-
rent) Kleene Algebra. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. ����-��

R. Janssen. Refinement and Partiality
for Model-Based Testing. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. ����-��

M. Laveaux. Accelerated Verification
of Concurrent Systems. Faculty of
Mathematics and Computer Science,
TU/e. ����-��

S. Kochanthara. A Changing Land-
scape: On Safety & Open Source in Au-
tomated and Connected Driving. Faculty
of Mathematics and Computer Science,
TU/e. ����-��

L.M. Ochoa Venegas. Break the Code?
Breaking Changes and Their Impact on Soft-
ware Evolution. Faculty of Mathematics
and Computer Science, TU/e. ����-��

N. Yang. Logs and models in engineer-
ing complex embedded production software
systems. Faculty of Mathematics and
Computer Science, TU/e. ����-��

J. Cao. An Independent Timing Analysis
for Credit-Based Shaping in Ethernet TSN.
Faculty of Mathematics and Computer
Science, TU/e. ����-��

K. Dokter. Scheduled Protocol Program-
ming. Faculty of Mathematics and Natu-
ral Sciences, UL. ����-��

J. Smits. Strategic Language Workbench
Improvements. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. ����-��

A. Arslanagić. Minimal Structures for Pro-
gram Analysis and Verification. Faculty of
Science and Engineering, RUG. ����-��

M.S. Bouwman. Supporting Railway
Standardisation with Formal Verification.
Faculty of Mathematics and Computer
Science, TU/e. ����-��

S.A.M. Lathouwers. Exploring Annota-
tions for Deductive Verification. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. ����-��

J.H. Stoel. Solving the Bank, Lightweight
Specification and Verification Techniques
for Enterprise Software. Faculty of
Mathematics and Computer Science,
TU/e. ����-��

Solving the Bank
LIGHTWEIGHT SPECIFICATION AND VERIFICATION TECHNIQUES FOR ENTERPRISE SOFTWARE

JOUKE HARMEN STOEL

Solving the Bank
Jouke H

arm
en Stoel

	Contents
	Acknowledgments
	Introduction
	Keeping Enterprise Software Systems Evolving
	The Need for Explicit Knowledge
	Formal Methods to Capture System Knowledge
	Lightweight Formal Methods, a Pragmatic Middle ground
	Research Context
	Lightweight Formal Methods: a short and incomplete overview
	Questions along the different axes of partiality
	Origin of the Chapters
	Software Artifacts

	On the Design of the Rebel Specification Language and Its Application inside a Bank
	Introduction
	Background
	Design of the Rebel Language and ISE
	Rebel Specifications Explained
	Simulation and Checking Specifications
	Performing Model Based Testing of Existing Applications
	Applying Rebel inside the Bank
	Related Work
	Conclusion

	AlleAlle: Bounded Relational Model Finding with Unbounded Data
	Introduction
	AlleAlle
	Formal Definition of AlleAlle
	Translating AlleAlle to SMT
	Evaluation
	Related Work
	Conclusion

	Constraint-based Run-time State Migration for Live Modeling
	Introduction
	Motivating Example
	Structuring Constraints for Run-time State Migration
	Nextep: a Language for State Migration
	Evaluation
	Related Work & Discussion
	Conclusion & Future Work

	Modeling with Mocking
	Introduction
	Rebel2 by Example: Money Transfer
	Formalization
	Implementation
	Evaluation
	Related Work
	Conclusion

	Design & Implementation
	Rebel, version 1
	AlleAlle
	Nextep
	Rebel2
	Conclusion

	Conclusion
	Research Question 1: Partiality of Language
	Research Question 2: Partiality of Modeling
	Research Question 3: Partiality of Analysis
	Research Question 4: Partiality of Composition
	Future directions
	Advice for our collaborating partner

	Bibliography
	About Rascal
	Rascal Programs
	Rascal Syntax Definitions

	Syntax definitions
	Syntax Definition of Rebel
	Syntax definition of AlleAlle
	Syntax definition of Nextep in Rascal
	Syntax definition of Rebel2

	Algorithms
	AlleAlle algorithms
	Key algorithms from the Rebel2 implementation
	Applying 'Forget' and 'Mock'
	Translation from Rebel2 to AlleAlle

	Examples
	Example translation from Rebel2 to AlleAlle

	Data
	Optimal Package Dependency Resolution

	Lege pagina
	Lege pagina
	Lege pagina

