
B R E A K T H E C O D E ? B R E A K I N G C H A N G E S
A N D T H E I R I M PA C T O N S O F T WA R E E V O L U T I O N

THESIS

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de rector magnificus
prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen

door het College voor Promoties, in het openbaar te verdedigen
op woensdag 29 maart 2023 om 16:00 uur

door

lina maría ochoa venegas

geboren te Bogotá, Colombia

Dit proefschrift is goedgekeurd door de promotoren en de samen-
stelling van de promotiecommissie is als volgt:

Voorzitter: prof.dr. J.J. Lukkien
Promotoren: prof.dr. J.J. Vinju

prof.dr. M.G.J. van den Brand
Co-promotor: dr. T.F. Degueule (Université de Bordeaux,

CNRS, LaBRI)
Overige leden: prof.dr. B. Baudry (KTH Royal Institute of

Technology)
dr. K. Blincoe (University of Auckland)
prof.dr. A. van Deursen (Technische Univer-
siteit Delft)
prof.dr. T. Mens (Université de Mons)
prof.dr. A. Serebrenik

Het onderzoek of ontwerp dat in dit thesis wordt beschreven
is uitgevoerd in overeenstemming met de TU/e Gedragscode
Wetenschapsbeoefening.

The work in the thesis has been carried out under the auspices
of the research school Institute for Programming research and
Algorithmics (IPA). Thesis number 2023-02.

A catalogue record is available at the Eindhoven University of
Technology (TU/e) Library.

Cover art © Nomádica. "There is nothing permanent except
change". All rights reserved.

ISBN 978-90-386-5688-5

All rights reserved. This book or parts thereof may not be repro-
duced in any form, stored in any retrieval system, or transmitted
in any form by any means—electronic, mechanical, photocopy,
recording, or otherwise—without prior written permission of the
copyright owner.

Copyright © 2023 Lina María Ochoa Venegas

Para Claudia, Carlos e Isabella.
Mi entonces, ahora y para siempre.

S U M M A RY

Software seldom lives in isolation. Instead, projects dwell in
software ecosystems where they depend on each other to favour
reuse. Software projects have a dual role: (i) the library role when
exposing a set of services to other projects, and; (ii) the client role
when depending on other libraries to leverage their functionality.

As time passes, library developers introduce changes to include
functional and extra-functional enhancements. Although changes
aim at increasing the library’s value, they might propagate to
client projects resulting in broken code. Versioning schemes—
such as semantic versioning—are often used to communicate the
nature of introduced changes namely, changes that potentially
break (or not) client code. Nevertheless, library developers still
face a dilemma: whether to introduce changes at the cost of
increasing the technical lag on their clients or even losing them;
or avoid change at the cost of increasing technical debt. This
thesis states that Breaking Changes (BCs) are not harmful by
themselves. However, their impact should be first assessed, so
developers can make informed decisions on their introduction
and subsequent coping strategies.

In this thesis, we address the library-client co-evolution prob-
lem from the nounal and the verbal views. On the one hand, the
nounal view allows us to empirically understand the nature of the
library-client co-evolution phenomenon. In particular, we study
(i) best practices to define dependencies as a way of preventing
the propagation of BCs, and; (ii) syntactic BCs and their impact on
client projects in relation with semantic versioning.

On the other hand, the verbal view encourages us to provide
new processes, methods, and tools that can better support the
library-client co-evolution process. Concretely, we introduce (i)
the static impact analysis approach to detect BCs introduction and
their impact on client code, and; (ii) the static reverse dependency

vii

compatibility testing approach to perform static impact analysis
as part of a pull-based development workflow. The former is
implemented in Maracas, a static analysis tool for Java projects,
and the latter is implemented in BreakBot, a GitHub bot that
assists library evolution.

As the main conclusions of the thesis, we find that: (i) Practi-
tioners do not widely follow best practices when defining depen-
dencies. (ii) Libraries tend to comply with semantic versioning
when introducing syntactic BCs; the adherence to such scheme
has increased over time, and; only a few clients are impacted
by these changes. (iii) Tooling to support software evolution is
accurate, applicable, and relevant for pull-based development
workflows.

viii

S A M E N VAT T I N G

Softwareprojecten zijn vaak onderdeel van grote software ecosys-
temen met veel onderlinge afhankelijkheden, onder meer van-
wege het hergebruik van software bibliotheken. Softwarepro-
jecten hebben vaak een dubbele rol: (i) enerzijds dienen ze als
bibliotheek, ze bieden functionaliteit aan andere projecten, en; (ii)
anderzijds hebben ze zelf een klant rol, de software is afhanke-
lijk van andere bibliotheken om de vereiste functionaliteit te
implementeren.

In de loop van der tijd evolueren bibliotheken; software on-
twikkelaars passen de bibliotheken aan om functionele en extra-
functionele verbeteringen door te voeren. Het doel van deze
veranderingen is om de bruikbaarheid van de bibliotheek te ver-
groten. Maar hebben deze wijzigingen tegelijkertijd ook effect op
de projecten van de klanten en kunnen de veranderingen leiden
tot broncode die niet meer voldoet of zelfs niet meer werkt, zoge-
naamde "brekende wijzigingen" of "Breaking Changes (BCs)". Ver-
siebeheer—zoals semantisch versiebeheer—wordt vaak gebruikt
om de aard van de geïntroduceerde veranderingen inzichtelijk te
maken, namelijk veranderingen die mogelijk negatieve effecten
op de broncode van de klant hebben. De ontwikkelaars van bib-
liotheken staan daarom voor een dilemma: moeten ze veranderin-
gen introduceren ten koste van het veroorzaken van (grotere)
veranderingen in de broncode van hun klanten of zelfs het kwij-
traken van hun klanten; of het vermijden van de veranderingen
ten koste van het verhogen van technische schuld ("technical
debt"). Dit proefschrift laat zien dat een verandering die effect
heeft op de broncode van de klanten op zichzelf geen ramp
hoeft te zijn. Het effect van deze veranderingen moet echter eerst
in kaart worden gebracht, zodat ontwikkelaars onderbouwde
beslissingen kunnen nemen over het wel of niet introduceren van

ix

veranderingen, de consequenties en de daarbij horende strate-
gieën.

In dit proefschrift wordt het bibliotheek-klant co-evolutie prob-
leem vanuit nominaal en verbaal perspectief bestudeerd. Enerz-
ijds stelt het nominale perspectief ons in staat om de aard van
het bibliotheek-klant co-evolutie fenomeen empirisch beter te
begrijpen. In het bijzonder, bestuderen we (i) de meest effectieve
huidige werkmethodes, ook wel best practices genoemd, om
afhankelijkheden te definiëren om verspreiding van brekende wi-
jzigingen te voorkomen, en; (ii) syntactisch brekende wijzigingen
en het effect van deze wijzigingen op de software van klanten in
relatie tot semantische versiebeheer.

Anderzijds spoort het verbale perspectief aan om nieuwe pro-
cessen, methoden, en gereedschappen te ontwikkelen die het
bibliotheek-klant co-evolutie proces beter kunnen ondersteunen.
Daarom introduceren wij: (i) een statische impact analyse meth-
ode om brekende wijzigingen, en de effecten op software van de
klant, te detecteren, en; (ii) een statische comptabiliteit test meth-
ode om omgekeerde afhankelijkheden te detecteren als onderdeel
van een pull-gebaseerd ("pull-based") manier van werken. De
eerste methode is geïmplementeerd in Maracas, een statisch
analyse tool voor Java projecten, en de tweede methode is geïm-
plementeerd in BreakBot, een GitHub bot die bibliotheekevolu-
tie ondersteunt.

De belangrijkste resultaten en conclusies van het proefschrift
zijn: (i) gebruikers passen in het algemeen niet de best practices
toe bij het definiëren van afhankelijkheden; (ii) bibliotheken ge-
bruiken over het algemeen semantische versiebeheer wanneer
er syntactisch brekende wijzigingen worden geïntroduceerd; dit
wordt in toenemende mate toegepast, en; een beperkte aantal
klanten heeft last van deze veranderingen; (iii) gereedschappen
("tools") om software evolutie te ondersteunen is accuraat, toepas-
baar, en relevant voor pull-gebaseerd manier van werken.

x

A C K N O W L E D G E M E N T S

This was the last chapter I wrote for this thesis. However (or
consequently), I decided to place it at the beginning of the series.
It appears in this order for a reason: It is here where I have the
opportunity to, in the shape of small fragments, thank all the
people that have either prepared me for or joined me in this
journey. I warn you, the words won’t be sufficient, meanings will
be unfairly reduced to a few lines, and much to my regret, this is
the best way I found to honor your lives into mine.

Our story started in a rainy month. I call it rainy because in
our land there are no seasons. Since then, we have shared other
storms. "We have shared" as if this was the expected outcome.
Today, three decades after that beginning, I understand that
"being always there" was your constant decision. Mom, you have
never let me down. Every time I have fallen, you have been there
to reach out and help me stand. I hope life will allow me to love
with the devotion you love, to face adversities with the braveness
you face them. Thanks for showing me that joy and fun are not
supposed to disappear with age. Dad, your calm speech hides
tenderness and wisdom. You have taught me that one shall do
what one loves, that it shall be done with commitment, and
that surrender is never an option. Thanks for teaching me the
language of silence and caress. To you two that always chose to
be without saying, to you that have given everything without
asking for anything, to you my absolute love, admiration, and
gratitude. This achievement is as much yours as mine.

Isa, my little sister and friend, thanks for constantly challeng-
ing me, for showing me that the own voice should never be
silenced, and for lending me yours when mine has failed. Thanks
also for proving me wrong when I feared for your early deci-
sions, for your betting on everything, and for not being afraid of
anything. Thanks for making me see that fear should, under no

xi

circumstance, define our limits. Knowing that I can always come
to you when life turns serious fills my heart with happiness and
relief. Tata, my daisy, it was you who taught me how to celebrate
life, to sing our joys and sorrows to the sound of cumbias and
mariachi. You instilled in us that crazy idea of betting on dreams
and that, while life allows it, there will always be an excuse to
toast and cheer. Uncle, you have the gift of sowing smiles in peo-
ple’s hearts, of not leaving the essentials unsaid. Thanks for the
right word in the proper moment, for the jokes and the laughter,
for The Beatles and music. Juancho and Caro, thanks for being
part of the illusion of coming back home. Your brotherhood has
always been complete (if you know what I mean). To all of you
who I carry in my heart, to Nubia, Mari, Juanda, Roci, Joha, Alejo,
Cami, to you whom I call family, from the deepest part of my
soul, thanks.

Okan, sharing the present with you has been a beautiful sur-
prise. A present that sounds like bağlama, blues, and boleros.
You showed me the now when I wandered between the fears
of the past and the uncertainties of the future. Thanks for the
days filled with laughter, for the pul biber and the butter, for
the peace that comes from tenderness and understanding, for
propelling me to be a better version of myself. You were my
company and shelter in this last chapter, and you are already
part of the sketches of the next. Campi, already for a long time
the word "friend" fell short. You have been to me bliss and shield.
Disappointments have never been part of your language. Despite
the fact that for years kilometers have stood between us, there
has not been a day where I have not felt you close. For your
unconditional and unshakable friendship, for warming up my
soul, thank you. Dieguis, people should not get confused with
that humor that is so yours. Beneath the surface, one can find
a person with principles, an unquestioningly loyal friend. For
taking me to discover the unknown, for the creamy lasagna, for
your honesty and authenticity, for the late-night conversations,
thank you. To Natis Torres who has never stopped being present
and surprising me, to my life and childhood friends Natis Sofi,
Dianis, Gabi, Juli, Mari, Lulu, Cata, and Ale, to you all thanks

xii

for more than twenty years of being here. Seeing you will always
make me feel at home.

Cami Sánchez, for years you have been a sister to me. We grew
up together, we shared our families, and, after the ups and downs
of life, we always found a way to come back to each other. I want
to let you, Ceci, and Meji know that when the melancholy and the
memories pay a visit, knowing you close has been a consolation.
I find a deeper level of understanding in our conversations, an
understanding that only comes to those who have adventured
to leave that place they call home. Roquita, how much joy you
have brought to my life. You taught me how to laugh more, and
that the minute spent with a friend will always be well-invested.
Recently, the discussions with Caro and you have been a source
of enjoyment and inspiration. Thanks to you two for the banyat
and the chocolate plumcake, for the fits of laughter, and for the
rice pudding. In these foreign lands, you are the friendly sight,
the heartfelt hug, the nearby family. To you all, thanks for being
here today.

Verni, we gave the first steps of this adventure together. I thank
you for years of the closest friendship. It seems that the road has
finally ended and I remain here with an immense gratitude for
the sincere affection, the learned lessons, and the new and old
dreams. How much I learned from you. Thanks for who you were
in my life and for all the beautiful memories, I will always keep
them in my heart. Jesse and Hans, you do not know each other
but I find so much in common between you both. My friends of
life, contemplation, and perspective. In your advice, I always find
a hidden truth and an authentic desire to have a heart a little bit
more similar to yours. Anis, thanks for the words, your honesty,
and your sweetness. You boosted my energy when it was missing.
Juanpis, thanks for the sudden calls in moments when events
have requested them, the thoughtful words, the pizza in Libery,
and the landscape of the Po. George, thanks for your trust, the
calculus classes, and the trip to Paris. Your friendships have been
a constant in my life. Thanks for still being here.

Felipe (garotinho) and Mila, although at the beginning we were
nothing more than strangers, you opened a space for me in your

xiii

routine, and you gave me smiles that were scarce at the time.
Thanks for accompanying me in giving a difficult step, and for
holding me tight while I was trembling. You must know that I
keep a big affection and gratitude for you. Paola and Francesca,
I am almost certain you don’t know it, mainly because I never
found the space to share it, but your friendships changed me
deeply. La May, we reconnected after ten years in a remote city,
more than 8,000 kilometers away from where we originally met.
You taught me to question what has been learned, to unlearn the
unnecessary, and to accept the other one and our destiny. Thanks
for the deformed buñuelos and the arepitas, for the jogging
techniques and the thoughtful bike rides, for showing me how to
shift our limits. Franci, I told you once and I don’t mind repeating
it, you brought joy and confidence to my life. I won’t ever forget
the days you walked by my side, the tiramisú and the risotto
during pandemic nights, the laughter just before the curfew,
and the 60-kilometer bike ride to Den Bosch. You taught me to
pay attention to details, raise my gaze and discover the infinite.
Thanks for the friendship of gestures and feats that you gave me.
Evelina, my chica of mimosas for breakfast and gin and tonics
on Sunday afternoons. In lonely times, your cautious presence
on the other side of the wall nourished me with company and
comfort. Merve, Maria, and Hamza, my friends of letters and
reflection. Thanks for being an affectionate and welcoming face
in an unknown city.

Mazyar, we met during the pandemic, since then and until
now we have been a team. The little giants. You have been to me
a committed friend, a colleague that helps me see the objective
from unforeseen angles. Thanks for the laughter, your trust, your
peculiar logic (yes you are logic), the sour gummies and the
teacakes, for showing me that professionalism can and should be
a synonym for fun. David (cuatecito), I have found in you a loyal
friend. The conversations about our similar cultures make me
feel closer to home. Thanks for listening, for the good advice and
the kind heart, for the chilaquiles and the homemade beer. Hope
to have you around for longer. Gijs, do you remember the early
morning of that Thursday when we were fighting against sleep

xiv

to get the work done? You did not need to be there, nevertheless,
you accompanied me until we falsely believed we were done
with the task. That day and many others you showed me that
thing that is naturally forged when building a shared project.
Thanks for being that sweet version of the Dutch culture, for not
letting the other one down, for finding motivation in the people
and not just in the labour. To you friends who taught me to find
joy in doing what one loves, thank you.

Óscar, you shared your knowledge, taught me to appreciate
this profession, and pushed me to follow this dream. Thank you
because this decision started with you. Conchita, my history
teacher. You inspired me to discover and tell new stories. You
showed me that memory has the ability to save everything that
the soul starts owning. My dear Paul, thanks for the late after-
noon talks about work and life, happening just after the offices
started getting emptied. Your humbleness, regardless of being
the greatest of all the ones I have met, will always inspire me.
Nico Jiménez, we met on street 72, in the black building at the
corner of seventh avenue. While we toured Bogotá, you taught
me all about the technical and humans aspects behind our labour.
Jenny, you listened to me for hours following firsthand the events
that were happening in my life. Thanks for always posing the
right question. Your intelligence and your passion for what you
do are inspiring to me. To you all, thanks for showing me the
direction.

From CWI I thank Aiko, Bikkie, Bert, Davy, Esteban, Felipe,
Jouke, Irma, Muriel, Nikos, Pablo, Riemer, Rodin, Remko, Rob,
Sussane, Thomas van Binsbergen, Tijs, Tim, and Ulyana for the
smiles and conversations. You were part of the first half of this
road. From TU/e I thank Agnes, Alexander, Erik Scheffers, Hos-
sain, Jacob, Kees, Lars, Loek, Nathan, Maurice, Michel, Rick,
Samar, Satrio, Tukaram, Weslley, and Zahra for the cozy work-
ing environment. Working with you has been a source of joy.
Sangeeth, Nan, and Priyanka, our processes coincided in this
last stage. The nervous motivational discussions about our Ph.D.
made evident our humanity and vulnerability, that, despite and
thanks to it, we are not alone. Jean-Rémy, Harold, Tom Verhoeff,

xv

Eleni, Juliana Alves, Thomas Thüm, the teams from L’Aquila and
the VUB, thanks for contributing to my research and learning
process. To my Ph.D. committee, thanks for the time you took
to carefully review this thesis and share useful questions and
feedback. I also thank Cor, Dani, Erik Takke, Guillermo, Karina,
Kasra, Niels, and Nora for inspiring me, for making me question
my own methods, for renewing the energy and enthusiasm that
sometimes might get lost with time. In particular, I thank Erik for
teaching me that we should always "expect the best from people
and the worst from their circumstances".

In 2015, three strangers crossed paths in an event hall in a
hotel in Pittsburgh. Life would make them meet again two years
later, this time in a building of red frames and green sunshades.
Jurgen the story followed with an interview in winter and an
offer in spring. I am not sure if I ever told you but that offer
meant to me the happiness and fear of starting over. Thanks to
that, I am, almost six years later, still writing that same story.
From you I learned that a person is never too important to lose
their kindness, that mastery comes with experience, and that it is
okay to not always be fine. Thomas, you were the other person in
that hall. I will always admire your intelligence and the (almost
obsessive) thoroughness you use to do your job. Thanks for your
commitment and every single invested minute, for believing, for
pushing and challenging me, and for generously sharing your
knowledge. When times were difficult you offered me your hand
without even waiting for a call. In this journey, you have been to
me not only a guide but foremost a friend. For your dedication,
and endless patience, thank you. Mark, I met you at a later stage.
You believed in me when I was doubting. I confess that it was
your faith the one that propelled me to do what I considered
impossible, to reach what I thought unreachable. Sometimes we
only need someone to believe in us to start shining. You were that
someone in my life. You have been like a father and guardian to
me and many people that have had the fortune to work with you.
I was lucky to have the three of you as mentors. For the invested
time, guidance, and respect, my sincere and deepest gratitude.

xvi

With these words, I close up this chapter, a chapter that lasted
almost six years. I know that during these times, we did not
always smiled (although there were several occasions). However,
I can say without hesitation that each minute was well lived,
that every step was well taken. Life will take its course, new
goals will come, maybe we will meet again, maybe we will say
goodbye, but to wherever the route takes us, your imprint will
remain forever in my heart. To all of you who have been part of
this journey and who have shaped who I am, again and from the
depths of my heart, thank you.

xvii

A G R A D E C I M I E N T O S

Fue este el último capítulo que escribí para este libro y, sin
embargo (o en consecuencia), decidí situarlo al comienzo de la
serie. Aparece en este orden por una razón: es aquí donde tengo
la oportunidad de, a modo de pequeños fragmentos, agradecer
a esas personas que bien me prepararon para este camino o
me acompañaron en su recorrido. Advierto de antemano que las
palabras no serán suficientes, que los significados serán reducidos
injustamente a unas pocas líneas, y que, muy a su pesar, es esta
mi manera de honrar sus vidas en la mía.

Nuestra historia comenzó en un mes de lluvias. De lluvias
porque en nuestra tierra no hay estaciones. Desde entonces y
hasta hoy hemos compartido otros temporales. "Compartido"
como si eso fuera lo esperado. Hoy, tres décadas después de
ese comienzo, entiendo que el "siempre estar" fue su elección
constante. Mamá jamás me has faltado. Cada vez que he caído
has estado allí para tenderme la mano y levantarme. Que la
vida me permita amar con la intensidad y entrega con que tú
amas, que me permita enfrentar la adversidad con la valentía
con que tú la enfrentas. Gracias por mostrarme que la alegría y
la diversión no se pierden con los años. Papá, cuánta ternura y
sabiduría esconde tu hablar pausado. Me enseñaste que uno hace
lo que ama, y que lo hace uno con entrega, y que uno no se rinde
porque rendirse no es una opción. Gracias por enseñarme ese
lenguaje de silencios y caricias. A ustedes que eligieron siempre
estar sin decirlo, a ustedes que lo han dado todo sin pedir nada,
para ustedes mi absoluto amor, admiración y gratitud. Este logro
es tan suyo como mío.

Isa, mi hermanita y amiga, gracias por nunca dejar de retarme,
por mostrarme que la propia voz no debe ser silenciada, y por
prestarme la tuya cuando la mía faltó. Gracias por mostrarme
cuán equivocada estaba cuando temí por tus decisiones tem-

xix

pranas, por tu apostarle a todo y no temerle a nada. Gracias por
enseñarme que el miedo no debe, bajo ninguna circunstancia,
definir nuestros límites. Saber que puedo volver a ti siempre que
la vida se torne seria me llena el corazón de alegría y alivio. Tata,
mi margarita, fuiste tú quien me enseñó a celebrar la vida, a
cantar las penas y alegrías al son de cumbias y mariachi. Incul-
caste en todos esa tendencia casi loca de apostarle a los sueños,
y de que mientras la vida lo permita siempre habrá una excusa
para brindar y vestir de gala. Tío, qué don el tuyo de sembrar
sonrisas en los corazones, de no dejar lo importante sin ser dicho.
Gracias por la palabra indicada en el momento oportuno, por las
ocurrencias y carcajadas, por los Beatles y la música. Juancho y
Caro, gracias por ser parte de esa ilusión de volver a casa. Su
hermandad siempre ha sido completa, nunca a medias, si entien-
den a los que me refiero. A todos ustedes que atesoro y admiro,
a Nubia, Mari, Juanda, Roci, Joha, Alejo, Cami, a ustedes a quien
llamo familia, desde lo más profundo de mi alma, gracias.

Okan, qué linda sorpresa ha sido compartir el presente contigo.
Un presente que suena a bağlama, blues y boleros. Me mostraste
el ahora cuando deambulaba entre los miedos del pasado y la
incertidumbre del porvenir. Gracias por los días llenos de risas,
por el pul biber y la mantequilla, por la paz que trae la dulzura
y el entendimiento, por impulsarme a ser una mejor versión
de mí. Fuiste mi compañía y abrigo en este último capítulo y
eres ya parte de la ilusión del siguiente. Campi, desde hace
mucho la palabra "amiga" se quedó corta. Tu amistad ha sido
para mí, dicha y refugio. Las decepciones nunca han tenido
cabida contigo. A pesar de que por años los kilómetros se han
interpuesto entre las dos, no ha habido un solo día en el que no te
haya sentido cerca. Por tu amistad incondicional e inquebrantable,
por calentar mi alma cuando hacía frío, gracias. Dieguis, que no
se deje confundir la gente con ese humor que es tan tuyo. Bajo la
superficie encuentra uno una persona de principios, un amigo
incondicional. Por llevarme a conocer lo desconocido, por la
lasagna "cremosita", por tu honestidad y autenticidad, por las
conversaciones de madrugada, gracias. A Natis Torres que no
ha dejado de estar presente y sorprenderme, a mis amigas de la

xx

vida y de la infancia, Natis Sofi, Dianis, Gabi, Juli, Mari, Lulu,
Cata y Ale, a ustedes gracias por seguir estando después de más
de veinte años. Verlas siempre me hará sentir en casa.

Cami Sánchez, has sido desde hace años una hermana para
mí. Crecimos juntas, compartimos nuestras familias y siempre
volvimos a la otra después de los vaivenes de la vida. Quiero
hacerte saber a ti, a Ceci y a Meji que cuando la melancolía y las
memorias visitan saberlas cerca ha sido un consuelo. Son aquí
mi terreno conocido. Encuentro en nuestras conversaciones una
capa adicional de entendimiento, que sólo el que se aventura
lejos puede entender. Roquita, cuánta alegría has traído. Me en-
señaste a reír más, que el minuto con un amigo siempre será
bien invertido. La tuya ha sido una amistad constante. Recien-
temente, el tiempo y las conversaciones con Caro y contigo han
sido fuente de goce e inspiración. Gracias a los dos por el banyat
y el plumcake de chocolate, los ataques de risa y el arroz con
leche. Son ustedes aquí, en estas tierras extranjeras, la mirada
amiga, el abrazo sentido, la familia cercana. A los cinco, gracias
por estar hoy.

Verni, los primeros pasos de esta aventura los dimos juntos.
A ti te agradezco años de la más estrecha amistad. Parece que
finalmente ha terminado el trayecto y hoy me queda una inmensa
gratitud por el cariño sincero, las lecciones aprendidas y los viejos
y nuevos sueños. Cuánto aprendí de ti. Gracias por quién fuiste
en mi vida y por las lindas memorias, siempre las atesoraré en
mi corazón. Jesse y Hans, los dos no se conocen y, sin embargo,
tienen ustedes para mí tanto en común. Mis amigos de la vida,
de reflexiones y perspectiva. En su abrazo y consejo siempre en-
cuentro una verdad oculta y un deseo sincero de tener el corazón
un poquito más como el suyo. Anis, gracias por las palabras, tu
honestidad y tu dulzura. Recargaste mi energía cuando carecía
de ella. Juanpis, gracias por las llamadas repentinas cuando los
eventos lo han requerido, por las palabras sentidas, por la pizza
en Libery y el paisaje del Po. George, gracias por tu confianza,
las clases de cálculo y el viaje a París. Su amistad ha sido una
constante en mi vida, gracias por seguir estando.

xxi

Felipe (garotinho) y Mila, a pesar de que en un comienzo
no éramos más que extraños, abrieron ustedes un espacio para
mí en su rutina, me regalaron sonrisas que para cuando nos
conocimos escaseaban. Gracias por acompañarme a dar un paso
difícil, por sostenerme mientras tambaleaba. Sepan que guardo
por ustedes un inmenso cariño y gratitud. Paola y Francesca,
probablemente no lo sepan porque nunca busqué la oportunidad
para decirlo, pero su amistad me cambió profundamente. La
May, nos reencontramos después de diez años en una ciudad
remota a más de 8.000 kilómetros de donde nos conocimos.
Tú me enseñaste a cuestionar lo aprendido, a desaprender lo
innecesario y sobre todo a aceptar al otro y al destino. Gracias
por los buñuelos deformes y las arepitas, por las técnicas de
jogging y los viajes contemplativos en bicicleta, por mostrarme
cómo desdibujar los límites. Franci, te lo dije una vez y te lo
repito hoy, trajiste a mi vida dicha y confianza. No olvidaré los
días que caminaste a mi lado, el tiramisú y el risotto en noches
de pandemia, las risas antes del toque de queda, el paseo en
bicicleta de 60 kilómetros a Den Bosch. Me enseñaste a fijarme
en los detalles, a subir la mirada y descubrir el infinito. Gracias
por la amistad de gestos y locuras que me regalaste. Evelina, mi
chica de mañanas con mimosa y domingos de gin and tonics.
En épocas solitarias tu presencia cautelosa al otro lado del muro
me brindó compañía y bienestar. Merve, Maria y Hamza mis
amigos de letras y reflexión. Gracias por ser un rostro amigo en
una ciudad desconocida.

Mazyar, nos conocimos en pandemia, desde entonces y hasta
ahora hemos sido un equipo. Los pequeños gigantes. Has sido
para mí un amigo entregado y comprometido, un colega que me
hace ver el objetivo desde rincones que no había contemplado.
Gracias por las risas, por tu confianza, por tu tan peculiar lóg-
ica (sí, eres lógica), por las gomitas ácidas y los teacakes, por
mostrarme que profesionalismo puede y debe ser sinónimo de
diversión. David (cuatecito) en tí he encontrado a un amigo leal.
Las charlas sobre nuestras culturas tan cercanas me hacen sentir
en casa. Gracias por escuchar, por el buen consejo y un corazón
bondadoso, por los chilaquiles y la cerveza hecha en casa. Espero

xxii

poder seguir teniéndote cerca. Gijs, ¿recuerdas esa madrugada
del jueves luchando contra el sueño para terminar el trabajo? Tú
no tenías que estar ahí, pero me acompañaste hasta que falsa-
mente creímos terminar con la tarea. Ese y muchos otros días me
mostraste eso que naturalmente se forja cuando se construye un
proyecto compartido. Gracias por ser esa versión dulce de la cul-
tura holandesa, por no fallarle al otro, por encontrar motivación
en las personas y no sólo en la labor. A ustedes amigos que me
enseñaron a encontrar el goce en hacer lo que uno ama, a ustedes
gracias.

Óscar, compartiste tu conocimiento, me enseñaste a apreciar
esta labor y me empujaste a seguir el sueño. Gracias porque esta
decisión empezó contigo. Conchita, mi profesora de historia. Me
inspiraste a descubrir y contar historias, me mostraste que la
memoria tiene la habilidad de guardar todo aquello que uno
apropia. Mi querido Paul, agradezco las charlas sobre el trabajo
y la vida al final de la tarde cuando las oficinas se desocupaban.
Tu humildad, muy a pesar de ser el más grande de todos los que
he conocido, siempre me inspirará. Nico Jiménez, nos conocimos
en la 72, en un edificio negro justo en la esquina de la séptima.
Mientras recorríamos Bogotá, me enseñaste el aspecto técnico y
humano que se esconde tras nuestra labor. Jenny, me escuchaste
por horas siguiendo de primera mano lo que acontecía en la
vida. Escuchaste con atención mi historia y formulaste siempre
la pregunta precisa. Tu inteligencia y la pasión por lo que haces
son una fuente de inspiración para mí. A ustedes maestros de la
vida, gracias.

Del CWI agradezco a Aiko, Bikkie, Bert, Davy, Esteban, Felipe,
Jouke, Irma, Muriel, Nikos, Pablo, Riemer, Rodin, Remko, Rob,
Sussane, Thomas van Binsbergen, Tijs, Tim y Ulyana por las risas
y conversaciones. Ustedes fueron parte de la primera mitad de
este trayecto. De TU/e agradezco a Agnes, Alexander, Erik Schef-
fers, Hossain, Jacob, Kees, Lars, Loek, Nathan, Maurice, Michel,
Rick, Samar, Satrio, Tukaram, Weslley y Zahra por un ambiente
acogedor. Trabajar con ustedes ha sido una fuente de alegría.
Sangeeth, Nan y Priyanka, nuestros procesos coincidieron en esta
última etapa. Las nerviosas charlas de motivación del doctor-

xxiii

ado nos recordaron nuestra humanidad y vulnerabilidad, que
a pesar de y gracias a ellas no estamos solos en el recorrido.
Jean-Rémy, Harold, Tom Verhoeff, Eleni, Juliana Alves, Thomas
Thüm, y los equipos de L’Aquila y de VUB, gracias por con-
tribuir en el aprendizaje de mi labor. Cada uno de ustedes me
dejó una lección. A mi comité doctoral, gracias por el tiempo que
tomaron para revisar esta tésis y compartir su retroalimentación
y preguntas valiosas. También agradezco a Cor, Dani, Erik Takke,
Guillermo, Karina, Kasra, Niels y Nora por inspirarme, por hac-
erme cuestionar mis propios métodos, por renovar en mí esa
energía y entusiasmo que a veces se pierde con los años. En
particular, agradezco a Erik por enseñarme a "esperar lo mejor
de las personas y lo peor de sus circunstancias".

En 2015, tres extraños cruzaron su camino en la sala de eventos
de un hotel en Pittsburgh. La vida volvería a reencontrarlos dos
años después en un edificio de marcos rojos y parasoles verdes.
Jurgen, la historia continuó con esa entrevista corta en invierno
y una invitación en primavera. No sé si algún día supiste o si
me tomé la molestia de decirte, pero esa invitación significó para
mí la alegría y el temor de iniciar de nuevo. Gracias porque fue
por ese "sí" que hoy, casi seis años después, sigo escribiendo esa
historia. De ti aprendí que nunca se es lo suficientemente grande
para perder la dulzura, que la maestría viene con la experiencia,
y que está bien no siempre estarlo. Thomas, fuiste la tercera
persona de este cuento. Siempre admiraré tu inteligencia y esa
rigurosidad (casi obsesiva) con la que haces tu trabajo. Gracias
por la entrega y cada minuto invertido, por creer, por compartir
conmigo tu saber sin ningún recelo. Cuando los tiempos fueron
difíciles ofreciste tu mano incluso antes de escuchar el llamado.
Fuiste para mí en este camino no sólo una guía, sino sobre todo
un amigo. Por tu entrega e infinita paciencia, gracias. Mark, a ti te
encontré un poco más tarde. Creíste en mí en un momento en el
que dudaba. Confieso hoy que fue tu fe la que me impulsó a hacer
lo imposible, a alcanzar lo inalcanzable. A veces sólo se necesita
que alguien crea en el otro para brillar, tú fuiste ese alguien en
mi vida. Has sido como un padre y protector para muchos de los
que hemos tenido la suerte de trabajar contigo. Fui afortunada al

xxiv

tenerlos a los tres como mentores. Por el tiempo, por los consejos,
por el respeto, mi más sentida y profunda gratitud.

Con estas palabras finalmente cierro este capítulo, un capítulo
que duró casi seis años. Sé que en este tiempo no todo fueron
sonrisas (aunque sí que hubo bastantes). Puedo, sin embargo,
decir con toda certeza que cada minuto fue bien vivido, que cada
paso estuvo bien dado. La vida seguirá su curso, vendrán nuevos
objetivos, quizás nos reencontraremos, nos despediremos, pero
hacia donde sea que nos lleve el camino, su huella permanecerá
por siempre en mi corazón. A todos ustedes que han hecho parte
de mi vida y han moldeado quien soy hoy, nuevamente y desde
lo más profundo de mi corazón, gracias.

xxv

C O N T E N T S

i the origin

1 introduction 3

1.1 Background . 6

1.2 Problem Statement 11

1.3 Research Questions 13

1.4 Thesis Context . 16

1.5 Artefacts . 17

1.6 Origin of the Chapters 20

ii the nounal view

2 osgi dependency management best practices 25

2.1 Introduction . 26

2.2 Background: the OSGi Framework 28

2.3 OSGi Best Practices 31

2.4 OSGi Corpus Analysis 41

2.5 Related Work . 56

2.6 Conclusion . 59

3 breaking bad? semantic versioning and break-
ing changes 61

3.1 Introduction . 62

3.2 Background . 65

3.3 Original Study . 72

3.4 Design of the Replication Study 73

3.5 Results & Analysis 91

3.6 Related Work . 113

3.7 Discussion . 119

3.8 Conclusion . 122

iii the verbal view

4 maracas : designing and implementing the

static impact analysis approach 127

4.1 Introduction . 128

xxvii

4.2 Background & Motivating Example 130

4.3 API Change & Impact Requirements 138

4.4 Static Impact Analysis: The Approach 141

4.5 Maracas: The Implementation 147

4.6 Current Solutions 151

4.7 Conclusions . 154

5 breakbot : static reverse dependency compat-
ibility testing for java libraries 157

5.1 Background . 160

5.2 Motivation & Current Solutions 162

5.3 Static RDCT . 167

5.4 BreakBot . 171

5.5 Evaluation . 177

5.6 Discussion . 195

5.7 Related Work . 198

5.8 Conclusion . 199

iv todo cambia

6 conclusion 203

6.1 Main Findings . 203

6.2 Future Research Directions 206

v appendix

a breakbot survey 213

bibliography 218

xxviii

L I S T O F F I G U R E S

Figure 1.1 Library-client co-evolution 8

Figure 2.1 Resources selection of the systematic review . 36

Figure 2.2 Corpus analysis process 43

Figure 2.3 Bundle state diagram taken from the Open
Service Gateway Initiative (OSGi) specification [5] 45

Figure 2.4 Classpath size is a poor indicator for resolution
time (ms) in C0 (ρ0 = −0.17) 46

Figure 2.5 Comparing classpath size of corpora Ci (with
best practices Bi applied) to the original corpus
C0 . 48

Figure 2.6 Comparing resolution time (ms) of corpora Ci

(with best practices Bi applied) to the original
corpus C0 . 49

Figure 2.7 Relative change in classpath size and resolu-
tion time between the control (C0) and trans-
formed corpora (Ci) 55

Figure 3.1 Overview of the analysis protocol 74

Figure 3.2 Extracting relevant upgrades from the JavaServlet
project (javax.servlet:javax.servlet-api) be-
tween versions 3.0.1 and 4.0.1 78

Figure 3.3 Histogram of projects Java versions in Maven
Dependency Dataset (MDD) and Maven Depen-
dency Graph (MDG) 80

Figure 3.4 Java versions and semver levels histograms . . 81

Figure 3.5 Violin plots of the number of BCs in breaking
upgrades per semver level 95

Figure 3.6 BC types frequency per semver level in Do
u . . 97

Figure 3.7 BC types frequency per semver level in Dr
u . . 98

Figure 3.8 Evolution of the ratio of breaking upgrades
per semver level in Dr

u 101

Figure 3.9 Number of detections per semver level 108

Figure 3.10 Ratio of breaking and non-breaking uses of API

elements w.r.t. the BC type in Dr
d 110

Figure 4.1 JUnit 4 and Concordion co-evolution 132

Figure 4.2 UML component diagram of the static impact
analysis approach 142

xxix

Figure 4.3 Component-view of the Maracas architecture 147

Figure 5.1 Overview of the static Reverse Dependency
Compatibility Testing (RDCT) approach 169

Figure 5.2 By default, BreakBot compares the merge-base
and the HEAD commits when analysing a Pull
Request (PR) . 174

Figure 5.3 Excerpt of the BreakBot report for Spoon’s
PR#3184 with the BCs and their impact on clients 175

Figure 5.4 Excerpt of the BreakBot report for Spoon’s
PR#3184 with the clients’ overview 176

xxx

L I S T O F TA B L E S

Table 2.1 Systematic review of OSGi dependencies speci-
fication best practices I 34

Table 2.2 Systematic review of OSGi dependencies speci-
fication best practices II 35

Table 2.3 Characteristics of the Eclipse 4.6 OSGi Corpus . 42

Table 3.1 Descriptive statistics of the datasets Do
u and

Dr
u . 79

Table 3.2 Main commonalities and differences between
the original study and the replication study
protocols . 89

Table 3.3 Total and breaking upgrades in the original
study, Do

u, and Dr
u datasets 94

Table 3.4 Samples derived from the population of de-
pendencies . 105

Table 3.5 p-values and odds ratios across all pairs of
semver levels in Dr

d to assess the differences in
terms of broken clients 106

Table 3.6 p-values and Cliff’s delta across all pairs of
semver levels in Dr

d 107

Table 5.1 Selection criteria for GitHub repositories and PRs 179

Table 5.2 Descriptive statistics of the 230 studied reposi-
tories . 180

Table 5.3 Descriptive statistics of the 3,786 studied PRs . 182

Table 5.4 Descriptive statistics of the breaking PRs 183

Table 5.5 Maracas accuracy measures and metrics . . . 192

xxxi

L I S T I N G S

Listing 2.1 An idiomatic MANIFEST.MF file 29

Listing 3.1 Excerpt of the POM file of the Spring TestCon-
text Framework project version 4.2.5.RELEASE . 67

Listing 3.2 HttpServletRequest in JavaServlet version 3.0.1

. 69

Listing 3.3 HttpServletRequest in JavaServlet version 3.1.0

. 69

Listing 3.4 Broken MockHttpServletRequest in Spring Test-
Context Framework version 4.2.5.RELEASE . . . 69

Listing 4.1 Example of a method removal BC introduced
in JUnit 4.5. The BC impacts Concordion 1.3.0
code . 134

Listing 4.2 Example of a source-only BC adapted from
Jezek, Dietrich, and Brada [71] 136

Listing 4.3 Example of a binary-only BC adapted from
Jezek, Dietrich, and Brada [71] 137

Listing 5.1 Excerpt of japicmp’s output for PR#3184 164

Listing 5.2 Extract of Astor’s build log file (704 lines in
total) . 166

Listing 5.3 An example BreakBot configuration file . . . 172

xxxii

A C R O N Y M S

ADT Algebraic Data Type

API Application Programming Interface

AST Abstract Syntax Tree

BENEVOL Belgium-Netherlands Software Evolution Workshop

BC Breaking Change

CAU Conditional API Usage

CD Continuous Development

CI Continuous Integration

CNRS Centre National de la Recherche Scientifique

CWI Centrum Wiskunde & Informatica

ICSE International Conference on Software Engineering

IDE Integrated Development Environment

IoC Inversion of Control

IPA Institute for Programming research and Algorithmics

JAR Java ARchives

JDK Java Development Kit

JLS Java Language Specification

JNI Java Native Interface

JPMS Java Platform Module System

JVM Java Virtual Machine

KOSP KT OSGi Service Platform

LSP Liskov Substitution Principle

MCR Maven Central Repository

MDD Maven Dependency Dataset

MDG Maven Dependency Graph

NIER New Ideas and Emerging Results

OSGi Open Service Gateway Initiative

OSS Open-source Software

POM Project Object Model

PR Pull Request

xxxiii

RDCT Reverse Dependency Compatibility Testing

REST REpresentational State Transfer

SET Software Engineering and Technology

TSE IEEE Transactions on Software Engineering

TU/e Eindhoven University of Technology

VCS Version Control System

xxxiv

Part I

T H E O R I G I N

On the content of this thesis and its background

1
I N T R O D U C T I O N

Designing software for reuse and change has been an abiding
quest in software engineering. Parnas introduced the principle of
information hiding as a means to achieve this goal. The principle
states that implementation details and changeable information
should be hidden and encapsulated [126, 127]. On the one hand,
the application of the information hiding principle opens the
door to software modularisation—that is, software is split up
into modules that offer a set of well-defined services via an
interface [19]. Modules can then favour reuse by establishing
dependencies among each other. On the other hand, information
hiding facilitates maintenance by allowing developers to make
changes to the implementation code without impacting the in-
terface. By avoiding the introduction of such changes in the
interface, developers prevent ripple effects that might impact
other modules.

Software modularisation can be applied at different scales, in
particular, to software projects and software ecosystems. In this
thesis, we define a software project as a collection of source or bi-
nary code together with additional documentation and metadata
that addresses a specific problem. The functionality offered by a
software project can be split into modules, each one addressing a
different functional aspect. Moreover, software projects seldom
live in isolation. Instead, they coexist with other projects in soft-
ware ecosystems. We define a software ecosystem as a collection of
software projects that evolve together [102]. Modularisation can
also be applied to software ecosystems where software projects
act as modules. In a software ecosystem, a software project has a

3

dual role: the library role when it offers a set of services to other
projects via a well-defined interface, and; the client role when it
depends on other projects to leverage their functionality.

The environment where software dwells and its underlying
requirements can change with time. This change results in a
chain of software modifications that Lehman coined software evo-
lution [96]. Software evolution is a phenomenon that materializes
after executing a set of design and development processes that
lead to a modified piece of software. Introduced changes can
impact not only the concrete implementation of a module but
also its interface.

Regardless of how well-maintained dependencies are, modular
systems face the risk of propelling a ripple effect where changes
to a module’s interface propagate to client code in a backwards-
incompatible fashion. Such changes are known as breaking changes.
Changes are said to be backwards-incompatible if they raise
syntactic or semantic errors in client code. The adverse effects
of breaking changes can even be amplified by poorly managed
dependencies (i.e., dependencies that do not follow best practices)
among modules [105].

For decades, some software communities and scientific litera-
ture have assumed that breaking changes are inherently harm-
ful [18, 68]. In fact, several software communities and projects
such as Eclipse and the Java programming language itself [18],
have gone as far as to forbid the introduction of any breaking
change to guarantee backwards compatibility. However, contrary
to aiming at damaging client code, software evolves to increase its
offered value; the introduction of new features, bug fixes, security
patches, refactorings, and other extra-functional enhancements
are common triggers of software evolution [12, 20]. Neverthe-
less, these improvements might come at the cost of increasing
the technical lag [55, 150] on their client projects or even losing
them. Technical lag refers to the lag between the deployment of
a new library release and a client project that takes no action to
upgrade [55]. That is, the release of the library used by the client
gets outdated [150]. If the client keeps stagnant avoiding the
upgrade of its dependencies and code, technical debt builds up.

4

Technical debt represents the costs a software project incurs when
a good enough solution is shipped instead of providing the full
set of expected features [29]. For instance, in the case of software
evolution, a maintainer can refrain from refactoring its Applica-
tion Programming Interface (API) for the sake of compatibility,
which, in turn, increases maintenance costs in the future [18].

On that account, we claim that breaking changes are not harm-
ful per se. Some of them won’t ever impact client code. Even if
they do, they might bring benefits that can be leveraged by client
projects. Nevertheless, they must not come unannounced, other-
wise, the trust client projects have put in the evolving module
might be threatened. To increase trust, transparency and com-
munication must be reinforced. Concretely, knowing when and
where breaking changes are to be expected is needed to inform
about the stability of the interface and the effort required to
update to a newer release [23]. Different mechanisms such as ver-
sioning schemes, as well as code mechanisms such as annotations
and naming conventions are used to share this information. How-
ever, developers need first to be aware of all sorts of introduced
breaking changes—which is an undecidable problem—and be
disciplined enough to label them accordingly. To help with the
former, there are some static tools that automatically detect the
introduction of breaking changes in the code. Unfortunately, they
are not able to detect their impact on client projects. A more
accurate method to automatically detect breaking changes intro-
duction and their impact on client code is, thus, needed.

In this thesis, we address the so-called library-client co-
evolution problem where breaking changes introduced in a li-
brary propagate to client code. We study the problem from the
nounal view that aims at understanding the nature of the library-
client co-evolution phenomenon, and; from the verbal view that
aims at providing new processes, methods, and tools that can bet-
ter support the software maintenance process [98]. In the nounal
view, we study (i) best practices to define dependencies as a
way of preventing the propagation of breaking changes, and; (ii)
syntactic breaking changes and their impact on client projects in
relation with semantic versioning. In the verbal view, primarily

5

motivated with the statistical-backed findings provided in the
nounal view, we introduce the static impact analysis approach
and its implementation in Maracas, and the static reverse depen-
dency compatibility testing and its implementation in BreakBot.
Maracas is a static analysis tool that detects syntactic breaking
changes between two versions of a Java library and their impact
on client code. This library is the main engine providing informa-
tion to BreakBot. The latter is a GitHub bot that assists library
evolution by reporting insights into syntactic breaking changes
introduction and their impact on client code.

The remainder of the chapter is structured as follows. Sec-
tion 1.1 introduces the core concepts needed to understand the
contributions of the thesis. In Section 1.2, we introduce the thesis
problem statement including the underlying motivation and the
used methodology. Section 1.3 dives into the research questions
and methods to address the thesis problem. Section 1.4 gives
general information about the context in which this thesis was
developed. In Section 1.5, we present the thesis contributions
in terms of produced software and datasets. Lastly, Section 1.6
describes the origin of the chapters included in this thesis.

1.1 background

In this section, we introduce the main concepts needed to under-
stand the contributions of this thesis. In particular, we present
an overview of software modularisation and how it manifests at
different scales. We then explore how modular systems undergo
software maintenance processes and how the execution of such
processes leads to software evolution. We also discuss how changes
introduced in these processes can yield breaking changes, which
are backwards-incompatible by nature. We wrap up the section by
describing some mechanisms (e.g., versioning and naming con-
ventions) used to signal code prone to be impacted by breaking
changes.

6

Software Modularisation

The time-honoured principle of information hiding [126] states
that implementation details must be hidden from other parts of
the system [19]. Consequently, information hiding propels the
principle of software modularisation, which states that software
should be split into modules that expose functionality via a
well-defined interface and keep information details hidden [19].
Modules can reuse and leverage the functionality provided by
others by depending on them.

These design principles can be applied at different scales, e.g.,
at the software project and software ecosystem scales. On the
one hand, a software project is a set of source code files and
additional metadata and documentation that can be built, run,
and debugged. A software project can be modularised by split-
ting it into modules (e.g., classes, components). On the other
hand, software projects can act themselves as modules within
a software ecosystem. There are diverse definitions for soft-
ware ecosystem, many of them addressing social and business
perspectives [104]. However, we stick to the one provided by
Lungu et al., which considers software projects—our subjects of
study—as first-class citizens: "A software ecosystem is a collection
of software projects which are developed and evolve together in
the same environment." [102] A software ecosystem is usually
built around a shared project, programming language, package
manager, and/or community [18]. To act as modules, software
projects define an interface known as an API, which exposes a
set of services that can later be used by other projects within the
ecosystem. Dependent projects are known as client projects (refer
to as clients henceforth), whilst dependee projects are known as
library projects (refer to as libraries henceforth).

Software Evolution & Maintenance

In a software ecosystem, the evolution of a software project trig-
gers changes in others due to existing dependencies. Figure 1.1
shows an overview of how library-client co-evolution manifests.

7

com.google.guava

com.github.maracas

21.0

1.0 2.0

22.0 23.0

de
pe
nd
s

de
pe
nd
s

evolves evolves

evolves

Figure 1.1: Library-client co-evolution

A client project release depends on a specific release of a library.
A software release is a versioned distribution of a software project.
Each release is packed not only with code but also with metadata
that is later used to resolve dependencies towards other project
releases. The metadata varies depending on the ecosystem where
the project inhabits, but, in general, it contains the name that
identifies the project; the specific version of the release, and; the
list of dependencies that point to other required project releases [2].
At some point, library developers adapt their libraries. The new
library distributions containing all the introduced changes result
in new releases. If clients aim at leveraging these changes, they
need to bear some of the costs of upgrading their own code and
potentially the ones of their own clients—if any.

To provide a definition of software evolution we need to start
by referring to software maintenance. Software maintenance is
defined in The IEEE Standard for Software Maintenance as the "mod-
ification of a software product after delivery to correct faults, to
improve performance or other attributes, or to adapt the product
to a modified environment." [103] The term maintenance on its
own refers to the process of preserving something in appropriate
condition or state, avoiding its deterioration. However, as pointed
out by Lehman, software cannot deteriorate spontaneously [95].
Changes introduced to maintain software are directed towards
fixing existing faults (i.e., corrective maintenance), adapting to a
changing environment (i.e., adaptive maintenance), or improving
existing code (i.e., perfective maintenance) [103].

8

The difference between software evolution and software main-
tenance is then fuzzy [24]. Actually, some researchers and practi-
tioners use the terms interchangeably [25, 152, 154], even though
there is indeed a semantic difference [7]. To avoid confusion and
overlapping definitions, we define software maintenance as the
process of modifying a software project to preserve or increase
its value, and; software evolution as the phenomenon that results
from executing a collection of evolutionary processes resulting in
some sort of software modification. Software maintenance is, in
this regard, an evolutionary process that impacts how software
evolution manifests [80].

Backwards Compatibility

Library evolution can introduce two different types of changes:
breaking and non-breaking changes. Breaking Changes (BCs) are
said to be backwards incompatible—that is, when introduced,
they can potentially break client code. On the contrary, non-
breaking changes are considered backwards compatible, meaning
that client projects upgrading to newer releases of the library can-
not be negatively impacted by the changes [43]. BCs are language-
specific, meaning that the kind of BCs present in one program-
ming language might differ from other. To generalize the types
of BCs that we can get regardless of the programming language,
we introduce the following simile: the API of a library is like a
language with its own syntax and semantics. BCs can either be syn-
tactic if they impact the form of the API (e.g., removing a method,
changing the parameter list of a function), or; semantic if they
change the behaviour of certain API members (e.g. changing the
returned value of a method, adding or removing side effects from
a function).

In Java—the language subject of study of this thesis—syntactic
BCs, can happen at different levels [40], namely: (i) at the source
level—BCs are detected at compile time in the form of compilation
errors, and; (ii) at the binary level—BCs are detected at linking
time in the form of linkage errors. Different BC types can appear
at both levels, for instance, removing a public method in Java

9

is considered both a binary and source incompatible change.
However, in Java, each set of BCs—as classified by levels [40]—is
independent of the other set, and even though they intersect,
none is a superset of the other [70]. Additionally, semantic BCs are
detected at run time in the form of unexpected behaviour—for
instance, after executing unit tests.

Various mechanisms, such as code annotations and versioning
and naming conventions, have been created to help developers
announce the introduction of different types of changes. For in-
stance, unstable interfaces or implementation code that should
not be used by clients can be signaled with annotations such
as @Deprecated, or other annotations like Google’s @Beta and
Apache’s @Internal; or by means of using naming conventions
on packages, classes, and other members of a software project
(e.g., internal or experimental). Moreover, developers rely on ver-
sioning conventions—such as semantic versioning—to communi-
cate the change introduced between releases of the same library.

In particular, semantic versioning (semver for short) is a version-
ing convention used to inform about the nature of the changes
introduced in a library release [130]. A version in semver is
defined as major.minor.patch-qualifier, where major, minor,
and patch are version numbers, and qualifier is an alphanu-
meric identifier. According to semver, a change in the major

number announces the introduction of BCs; changes in the
minor number announce the introduction of a new feature in
a backwards-compatible manner; changes in the patch number
signal the introduction of backwards-compatible bug fixes, and;
the qualifier labels the project with information about the pre-
release or build metadata. In addition, there are initial development
releases identified by the use of a zero in the major number (i.e.,
0.minor.patch-qualifier). These releases must be considered
unstable, meaning that BCs might appear at any time during
the development process [130]. Nevertheless, developers do not
always stick to this scheme and its semantics, making the inter-
pretation of changes in version numbers imprecise. For instance,
developers might introduce BCs in minor or patch releases [135],
or treat initial development versions as stable and mature [33].

10

1.2 problem statement

After introducing the main concepts and background needed to
understand the contributions of this thesis, we now present the
thesis problem statement. We introduce first the motivation and
the problem addressed in this manuscript. We then describe the
methodology we followed to address the given problem.

motivation BCs introduced in library interfaces potentially
impact client code. The effects of such changes are amplified by
poorly managed dependencies among software projects. These
circumstances result in the so-called library-client co-evolution
problem.

Library-client co-evolution problem. Lack of understanding
of co-evolution between library and client projects in a given
software ecosystem and support for their evolutionary processes:
the evolution of a library might negatively impact client code.
Evidence about this impact is required, so developers can decide
when, where, and how changes should be introduced.

On the one hand, poorly managed dependencies might result
in clients depending on an unstable API. For instance, (i) depend-
ing on concrete implementations rather than interfaces; (ii) not
providing a specific tested version or version range when defin-
ing a dependency, and; (iii) keeping unneeded dependencies
as part of the project are some known behaviours of unhealthy
dependency management (cf. Chapter 2). Knowing which con-
crete best practices are advised to manage dependencies might
significantly decrease the impact of library evolution on client
projects in diverse ecosystems [16].

On the other hand, library developers need to evolve their
libraries to preserve or increase the libraries’ value. However, in-
troduced changes might threaten clients even in scenarios where
dependencies are well-maintained. These threats are perceived
as an additional cost that hampers the development process of
the client project itself. The latter might opt for incurring the

11

costs of upgrading to the new release of the library or dropping
its use if they consider it too costly. That is why some software
communities have deemed BCs harmful [68]. This line of thought
has resulted in the misconception that stability is equivalent
to stagnation [18, 21, 109]. We claim instead that stability is a
state in which software does not introduce BCs that break client
code (cf. Chapter 3). However, if a BC does impact a client, the
change must be identified and communicated to avoid damage
and mistrust in the project [16]. Knowing when and where BCs

are introduced is thus essential to improve the communication
among libraries and clients. How many known clients will a BC

impact? How significant is the impact, if any, in terms of affected
client code? In particular, the answers to these questions support
library maintainers when deciding whether and how to introduce
a BC (cf. Chapter 5), and; clients in deciding whether to upgrade
to a new release of a library or which library to use.

In this thesis, we address the library-client co-evolution prob-
lem. In particular, we dive into the introduction and impact of
BCs, and the way dependencies should be defined to reduce their
propagation.

methodology Lehman suggested two different views to
study the software evolution phenomenon, namely the nounal
and the verbal views. The nounal view (evolution as a noun) also
known as the knowledge-seeking view [148, 149], studies the nature
of the phenomenon, contributing to the understanding of soft-
ware evolution by studying its causes, properties, and impact,
among others. In contrast, the verbal view (evolution as a verb)
otherwise called the solution-seeking view [148, 149], focuses on
the means of the phenomenon—that is, on developing and im-
proving the processes, methods, and activities used to support
software evolution [98]. Findings in the nounal view motivate
studies in the verbal view by providing empirical evidence that
support the development of new software evolution approaches.
These two views are used as the backbone of this thesis to both
motivate, plan, and structure all included research contributions.

12

Regarding the nounal view, we aim first at gaining knowledge
on how dependencies are established in software ecosystems, and
which practices can hinder software maintenance when defining
such dependencies in a software project. Once dependency han-
dling is better understood, it is important to dig into the code to
describe how software evolution happens in the wild. In particu-
lar, we aim at identifying what is the type and frequency of BCs

and their actual impact on projects within a software ecosystem.
Methods and techniques coming from the empirical software
engineering field are used to provide answers to our inquiries.

Knowledge discovered in the nounal view of the research
provides statistical evidence to motivate the development of
new approaches in the verbal view, which can better support
the library-client co-evolution processes. In particular, with the
creation of adequate methods and tools, we can help library
developers in understanding and foreseeing the impact that
introduced BCs have on clients before releasing them.

1.3 research questions

Given the problem statement and methodology introduced in
the previous section, we now discuss the research questions that
help us address the library-client co-evolution problem. Concretely,
we present three research questions that target (i) dependency
management best practices (Q1); (ii) semantic versioning, break-
ing changes, and their impact on client code (Q2), and; (iii) a new
method and tool to offer library evolution assistance (Q3). We
introduce each question with its corresponding motivation and
employed method to address it.

Research Question 1: Dependency Management Best Practices

motivation Starting with the nounal view of the study, we
first analyse how dependencies are defined between the library
and client projects. Dependencies can usually be declared in
various manners, for instance, they can be declared at different

13

levels of granularity (e.g., package or component level), scopes
(e.g., compile, runtime, test), etc. However, this freedom creates
confusion among developers; it is not clear which is the best alter-
native to follow. We aim, therefore, at identifying best practices
when defining such relationships, measuring the impact of these
best practices in the project, and evaluating to what extent these
practices are being followed. This brings us to the definition of
the first research question of the thesis.

Q1: What dependency management best practices are advised
and followed and what observable effect do they have on software
projects?

method To answer Q1, we use the Open Service Gateway
Initiative (OSGi) framework as the subject of study [6]. OSGi is
a module system and service framework, designed to support
modular development in Java. First, to identify dependency man-
agement best practices suggested by experts and practitioners, we
conduct a systematic review of gray literature. We then perform
an empirical study to analyse the use of such best practices in a
corpus of OSGi bundles. Finally, we modify the studied bundles,
so they follow a subset of best practices, and we register their
observable effects in terms of size and performance.

Research Question 2: Semantic Versioning, Breaking Changes & Impact
Analysis

motivation Once best practices of dependency management
and their implications are identified, it is time to zoom into
the library-client co-evolution problem itself. How does this co-
evolution manifest in terms of BCs? Are BCs communicated by
libraries? What is the real impact of these changes on clients?
These and other related questions are of foremost importance
when unveiling the magnitude of the library-client co-evolution
problem. Moreover, the means used by library developers to
communicate change or instability must be considered. Changes

14

are not pernicious by themselves but they should not come unan-
nounced. The use of versioning schemes (e.g., semver)—which
also happens to be a dependency management best practice (cf.
Chapter 2)—and code-level mechanisms (e.g., annotations, nam-
ing conventions) must be considered in the analysis to correctly
diagnose the severity of BCs in software ecosystems.

Q2: What is the real impact of BCs on clients?

method Our starting point to explore Q2 is the study by
Raemaekers, Deursen, and Visser, entitled Semantic Versioning and
Impact of Breaking Changes in the Maven Repository and published
in The Journal of Systems and Software in 2017 [135]. This study
investigates whether library developers use semver to signal
BCs introduction, and how these BCs impact client projects in
terms of compilation errors. Given the relevance of this research
and the closeness to our own inquiries, we conduct an external
and differentiated replication study of this empirical work [101].
We also develop a new tool, Maracas, to address some of the
limitations of the original protocol. Descriptive and inferential
statistics are later used to analyse the data and provide a robust
answer to our research question.

Research Question 3: Library Evolution Assistance

motivation Once the previous two research questions have
been answered, we get enough information to feed back into the
software evolution process and focus on the verbal view. Library
developers are constantly facing the following dilemma: whether
to introduce changes to preserve or increase the library’s value
at the cost of breaking client code; or avoid the risk and confront
the consequences of immobility and technical debt [27, 55]. In
this regard, we aim at helping library developers to understand
and anticipate BCs that might be harmful to clients [65]. Tools
that support the identification of BCs before a new release is

15

distributed in an ecosystem are required to help stakeholders
make evidence-backed decisions.

Q3: How to assist library evolution?

method To answer Q3, we develop a new approach that
statically analyses the introduction of BCs in a set of commits,
and their impact on relevant clients. The result of the analysis
is fed back to developers via an enriched code review report.
The approach is implemented in our prototype BreakBot. We
evaluate the accuracy of the tool by reporting the precision and
recall obtained for two synthetic projects. Then, to validate the
usefulness of the approach, we gather a corpus of relevant library
pull requests and use BreakBot to generate impact analysis
reports. A survey is then distributed to gather the opinion and
feedback of library maintainers. Results are then qualitatively
analysed.

1.4 thesis context

The research enclosed in this thesis was partially executed under
the umbrella of the Crossminer project,1 funded by the Euro-
pean Union’s Horizon 2020 Research and Innovation Programme
under grant agreement no. 732223. The main goal behind this
project was to support developers on the adoption of Open-
source Software (OSS) given a set of required standards in terms
of quality, maturity, activity of development, and user support.
Both risks and benefits should be exposed to help developers
and other stakeholders make informed decisions. The contri-
bution of the project was twofold: (i) deliver an open-source
platform that supports the analysis of OSS, and; (ii) facilitate the
knowledge extraction from OSS repositories. To do so, diverse
information sources were considered e.g., source code, source
code repositories, communication channels (e.g., forums, mail-

1 https://www.crossminer.org/

16

https://www.crossminer.org/

ing lists), bug tracking systems, and other relevant metadata
(e.g., licenses, dependency definitions). As part of the Centrum
Wiskunde & Informatica (CWI) team, our work package was di-
rected towards analysing source code and dependencies, and
extracting actionable knowledge from them.

The outcome of this initial work set the foundations of the
Alien (Usage-Driven Software Library Evolution) project, pro-
posed by Thomas Degueule and funded by the French National
Research Agency through the grant ANR-21-CE25-0007. The
main goal of the project is "to investigate how library maintainers
can better understand and anticipate the impact of their changes
on their clients and ecosystems to help them make informed
and responsible decisions about the development and evolution
of their library." As main contributions, the project aims at: (i)
understanding software libraries usage; (ii) performing impact
analysis of software evolution, and; (iii) augmenting develop-
ment tools with usage-driven feedback. I am one of the main
collaborators of the project as a Ph.D. student affiliated to the
Software Engineering and Technology (SET) group at TU/e.

1.5 artefacts

In the context of this thesis, a set of software artefacts and datasets
were produced. Such assets are listed in this section and point-
ers to the locations where they were originally published are
provided to guarantee the repeatability, reproducibility, and
replicability of our results. To ease the searching process and
avoid having all assets spread around, we gather such assets
as part of a Zenodo repository that can be found at https:

//zenodo.org/record/7466409/.

Software

osgi analysis project The OSGi Analysis Project2 was de-
veloped to help answer Q1. It was built in the context of the

2 https://github.com/crossminer/osgi-analysis-rascal/

17

https://zenodo.org/record/7466409/
https://zenodo.org/record/7466409/
https://github.com/crossminer/osgi-analysis-rascal/

Crossminer project, using the Rascal meta-programming lan-
guage [84]. The goal of the project is to extract and model relevant
information from bundles metadata (aka., Manifest files) and Java
bytecode to, then, compute a set of metrics that help us perform a
dependency analysis. In particular, it helps verify if dependency
management best practices are being followed by bundles.

maracas in rascal Initially, the Maracas
3 project was

developed in the Rascal meta-programming language under the
umbrella of the Crossminer project. It was used to address Q2.
The project aims at (i) modeling Java bytecode facts by using
Rascal M3 models [10]; (ii) computing the list of BCs between
two versions of a Java ARchives (JAR) file by relying on japicmp4,
and; (iii) identifying client locations that are impacted by the
aforementioned BCs.

maracas in java To better integrate Maracas with under-
lying Java libraries and improve its performance, the Mara-
cas project was migrated to Java.5 Its development, this time,
was done in the context of the Alien project. The new Mara-
cas project was defined as a source code and bytecode analysis
framework used to analyse the library-client co-evolution in Java
ecosystems. At the time of writing this thesis, Maracas relied
both on japicmp and the Spoon framework [128] to perform the
required analyses. Additionally, the project was extended with (i)
a REST API that exposes Maracas capabilities to analyse libraries
and clients, and; (ii) source code forge connectors that enable the
analysis of remote OSS projects. This extension was included to
address Q3.

breakbot BreakBot
6 was developed to address Q3. It was

built at Centre National de la Recherche Scientifique (CNRS) in
the context of the Alien project. Its main contributor is Leonard

3 https://github.com/crossminer/maracas/

4 https://siom79.github.io/japicmp/

5 https://github.com/alien-tools/maracas/

6 https://github.com/alien-tools/breakbot/

18

https://github.com/crossminer/maracas/
https://siom79.github.io/japicmp/
https://github.com/alien-tools/maracas/
https://github.com/alien-tools/breakbot/

Rizzo. BreakBot’s main goal is to identify the introduction of
BCs in Java libraries hosted on GitHub and their impact on client
projects. A report is generated with insightful information to
help library maintainers evolve their projects.

Datasets

osgi sources and corpus A set of OSGi authorized re-
sources and Eclipse bundles were included to answer Q17. The
Zenodo repository contains: (i) the OSGi resources and the result
of the systematic review, and; (ii) seven OSGi corpora used dur-
ing the empirical evaluation to address Q1. It includes a control
corpus with 372 original Eclipse bundles and six transformed cor-
pora, which are the output of transforming the original corpus
to address OSGi best practices.

breaking bad? dataset & analysis A dedicated pipeline8

was created to generate required datasets and analyses to answer
Q2. The Zenodo repository contains: (i) the Java code, R scripts,
and SQL queries to get relevant information from two different
corpora, namely the Maven Dependency Dataset (MDD) and the
Maven Dependency Graph (MDG); (ii) the resulting datasets, and;
(iii) a set of Jupyter notebooks written in R, which analyse the
extracted data and help us draw conclusions on our research
inquiries.

breakbot dataset This dataset9 contains information of
breaking and impactful Pull Requests (PRs) of popular Java li-
braries hosted on GitHub. This dataset is used to address Q3. It
was also later used to simulate interesting PRs in the BreakBot

playground. BreakBot reports were generated for these subjects.

7 https://github.com/msr18-osgi-artifacts/msr18-osgi-artifacts/

8 https://zenodo.org/record/5221840/

9 https://zenodo.org/record/7475823

19

https://github.com/msr18-osgi-artifacts/msr18-osgi-artifacts/
https://zenodo.org/record/5221840/
https://zenodo.org/record/7475823

1.6 origin of the chapters

This thesis is a compilation of multiple research publications that
have been organized into chapters following a common research
line and narrative. Each publication has been slightly adapted
with respect to its original version based on the thesis format
and additional comments performed by the Ph.D. committee
members. Beware that each chapter was built as an independent
article that by nature needs to be self-contained, leading to some
redundancy across the manuscript.

The research done for this thesis led to five peer-reviewed pub-
lications. I am the main author of four of them and they are the
result of a collaboration with Thomas Degueule (co-promotor),
Jurgen J. Vinju (promotor), and Jean-Rémy Falleri. These four
publications are the ones that give origin to the chapters con-
tained in this document. The fifth publication was a collaboration
with Phuong Nguyen, Juri Di Rocco, Davide Ruscio, Thomas
Degueule, and Massimiliano Di Penta. Hereafter, I give details on
how the chapters relate to the research questions (cf. Section 1.3)
and the aforementioned publications.

Chapter 2 - OSGi Dependency Management Best Practices

Chapter 2 addresses Q1 and the main results are consolidated in
the following publication.

Lina Ochoa, Thomas Degueule and Jurgen J. Vinju. "An
Empirical Evaluation of OSGi Dependencies Best Practices
in the Eclipse IDE". In: 15th International Conference on Min-
ing Software Repositories (2018). IEEE/ ACM, pp. 170-180,
doi: 10.1145/3196398.3196416

As a result of this first step towards understanding the com-
plexity of project relations, researchers at the University of
L’Aquila strove to create a collaborative-filtering recommender
system that suggests usage patterns when depending on and
using an OSS project. The result of this research was the develop-
ment of focus, a tool that mines OSS repositories to recommend li-

20

brary method invocations and usage patterns. These suggestions
are taken from projects that resemble the one that is requesting
the advice. The Centrum Wiskunde & Informatica (CWI) team
contributed with static analysis tools that helped in the identifica-
tion of the library method invocations and usage patterns, as well
as on the final report of the study. This collaboration resulted in
the following publication—which has not been included in the
current thesis.

Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina
Ochoa, Thomas Degueule and Massimiliano Di Penta.
"focus: A Recommender System for Mining API Function
Calls and Usage Patterns". In: 41st International Conference
on Software Engineering (2019). IEEE/ACM, pp. 1050-1060,
doi: 10.1109/ICSE.2019.00109

Chapter 3 - Breaking Bad? Semantic Versioning and Breaking Changes

Q2 is answered in Chapter 3. The results of this study were ac-
cepted as a presentation abstract in the 19th Belgium-Netherlands
Software Evolution Workshop (BENEVOL) in 2020 and further de-
veloped in the following article.

Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and
Jurgen J. Vinju. "Breaking Bad? Semantic Versioning and
Impact of Breaking Changes in Maven Central". In: Em-
pirical Software Engineering 27-3 (2022), pp. 1573–7616 doi:
10.1007/s10664-021-10052-y

Afterwards, the same article was accepted at the Journal-First
Papers track at the International Conference on Software Engi-
neering (ICSE) in 2023.

Chapter 4 - Maracas: Designing and Implementing the Static Impact
Analysis Approach

Chapter 4 introduces Maracas, the backbone tool of this thesis.
It was used to answer Q2 and Q3. It is designed as a technical
chapter that presents the functional and extra-functional require-

21

ments of the static impact analysis approach, the architecture of
the approach, its implementation (i.e., Maracas), and the testing
of such an implementation.

Chapter 5 - BreakBot: Static Reverse Dependency Compatibility
Testing for Java Libraries

Chapter 5 answers Q3. The first results of this research were
published in the following article selected as best paper of the
New Ideas and Emerging Results (NIER) track at ICSE in 2022.

Lina Ochoa, Thomas Degueule, and Jean-Rémy Falleri.
"BreakBot: Analyzing the Impact of Breaking Changes to
Assist Library Evolution". In: 44th International Conference
on Software Engineering: New Ideas and Emerging Results
(2022). IEEE/ACM, doi: 10.1145/3510455.3512783

The approach and its evaluation were later extended in the fol-
lowing article, which has been submitted to the IEEE Transactions
on Software Engineering (TSE) journal at the end of 2022. This
article is still subject to modification depending on the comments
shared with the journal reviewers.

Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and
Jurgen J. Vinju. "BreakBot: Static Reverse Dependency
Compatibility Testing for Java Libraries". In: IEEE Transac-
tions on Software Engineering (2023). IEEE, (Submitted)

22

Part II

T H E N O U N A L V I E W

On the nature of the library-client co-evolution
phenomenon: the role of dependencies, breaking

changes, and their impact on client code

2
O S G I D E P E N D E N C Y M A N A G E M E N T B E S T
P R A C T I C E S

abstract Open Service Gateway Initiative (OSGi) is a module
system and service framework that aims to fill Java’s lack of support
for modular development. Using OSGi, developers divide software into
multiple bundles that declare constrained dependencies towards other
bundles. However, there are various ways of declaring and managing
such dependencies, and it can be confusing for developers to choose
one over another. Over the course of time, experts and practitioners
have defined "best practices" related to dependency management in
OSGi. The underlying assumptions are that these best practices (i)
are indeed relevant and (ii) help to keep OSGi systems manageable
and efficient. In this chapter, we investigate these assumptions by
first conducting a systematic review of the best practices related to
dependency management issued by the OSGi Alliance and OSGi-endorsed
organizations. Using a large corpus of OSGi bundles (1,124 core plug-
ins of the Eclipse IDE), we then analyze the use and impact of 6 selected
best practices. Our results show that the selected best practices are not
widely followed in practice. Besides, we observe that following them
strictly reduces classpath size of individual bundles by up to 23% and
results in up to ±13% impact on performance at bundle resolution time.
In summary, this chapter contributes an initial empirical validation
of industry-standard OSGi best practices. Our results should influence

This chapter is originally published as Lina Ochoa, Thomas Degueule, and
Jurgen J. Vinju. "An Empirical Evaluation of OSGi Dependencies Best Practices in
the Eclipse IDE". In: 15th International Conference on Mining Software Repositories
(2018). IEEE/ ACM, pp. 170-180, doi: 10.1145/3196398.3196416.

25

practitioners especially, by providing evidence of the impact of these
best practices in real-world systems.

2.1 introduction

The time-honored principle of separation of concerns entails
splitting the development of complex systems into multiple com-
ponents interacting through well-defined interfaces. This way,
the development of a system can be broken down into multiple,
smaller parts that can be implemented and tested independently.
This also fosters reuse by allowing software components to be
reused from one system to the other, or even to be substituted by
one another provided that they satisfy the appropriate interface
expected by a client. Three crucial aspects [126] of successful sep-
aration of concerns are module interfaces, module dependencies,
and information hiding—a module’s interface hides any number
of different functionalities, possibly depending on other modules
transitively.

Historically, the Java programming language did not offer any
built-in support for the definition of versioned modules with ex-
plicit dependency management [151]. This led to the emergence
of Open Service Gateway Initiative (OSGi), a module system and
service framework for Java standardized by the OSGi Alliance
organization [5]. Initially, one of the primary goals of OSGi was
to fill the lack of proper support for modular development in the
Java ecosystem (popularly known as the "JAR hell"). OSGi rapidly
gained popularity and, as of today, numerous popular software of
the Java ecosystem, including Integrated Development Environ-
ments (IDEs) (e.g., Eclipse, IntelliJ), application servers (e.g., JBoss,
GlassFish), and application frameworks (e.g., Spring) rely inter-
nally on the modularity capabilities provided by OSGi.

Just like any other technology, it may be hard for newcomers
to grasp the complexity of OSGi. The OSGi specification describes
several distinct mechanisms to declare dependencies, each with
different resolution and wiring policies. Should dependencies
be declared at the package level or the component level? Can
the content of a package be split amongst several components or

26

should it be localized in a single one? These are questions that
naturally arise when attempting to modularize Java applications
with OSGi. There is little tool support to help writing the meta-
data files that wire the components together, and so modularity
design decisions are mostly made by the developers themselves.
The quality of this meta-data influences the modularity aspects
of OSGi systems. The reason is that OSGi’s configurable semantics
directly influences all the aforementioned key aspects of modu-
larity: the definition of module interfaces, what a dependency
means (wiring), and information hiding (e.g., transitive depen-
dencies). A conventional approach to try and avoid such issues
is the application of so-called "best practices" advised by experts
in the field. To the best of our knowledge, the assumptions un-
derlying this advice have not been investigated before: are they
indeed relevant and do they have a positive effect on OSGi-based
systems? Our research questions are:

Q1 What OSGi best practices are advised?
Q2 Are OSGi best practices being followed?
Q3 Does each OSGi best practice have an observable effect on

the relevant qualitative properties of an OSGi bundle?

To begin answering these questions, this chapter reports on the
following contributions:

• A systematic review of best practices for dependency man-
agement in OSGi emerging from either the OSGi Alliance
itself or OSGi-endorsed partners; we identify 11 best prac-
tices and detail the rationale behind them (Q1).

• An analysis of the bytecode and meta-data of a represen-
tative corpus of OSGi bundles (1,124 core plug-ins of the
Eclipse IDE) to determine whether best practices are being
followed (Q2), and what is their impact (Q3).

Our results show that:

• Best practices are not widely followed in practice. For instance,
half of the bundles we analyze specify dependencies at the
bundle level rather than at the package level—despite the

27

fact that best practices encourage to declare dependencies
at the package level.

• The lack of consideration for best practices does not significantly
impact the performance of OSGi-based systems. Strictly follow-
ing the suggested best practices reduces classpath size of
individual bundles by up to 23% and results in up to ±13%
impact on performance at bundle resolution time.

The remainder of this chapter is structured as follows. In
Section 2.2, we introduce background notions on OSGi itself. In
Section 2.3, we detail the methodology of the systematic review
from which we extract a set of best practices related to depen-
dency management. In Section 2.4, we evaluate whether best
practices are being followed on a representative corpus of OSGi

bundles extracted from the Eclipse IDE. We discuss related work
in Section 2.5 and conclude in Section 2.6.

2.2 background : the osgi framework

OSGi is a module system and service framework for the Java
programming language standardized by the OSGi Alliance orga-
nization [5], which aims at filling the lack of support for modular
development with explicit dependencies in the Java ecosystem
(aka., the "JAR hell"). Some of the ideas that emerged in OSGi were
later incorporated in the Java standard itself, e.g., as part of the
module system released with Java 9. In OSGi, the primary unit
of modularization is a bundle. A bundle is a cohesive set of Java
packages and classes (and possibly other arbitrary resources)
that together provide some meaningful functionality to other
bundles. A bundle is typically deployed in the form of a JAR

that embeds a Manifest file describing its content, its meta-data
(e.g., version, platform requirements, execution environment),
and its dependencies towards other bundles. The OSGi frame-
work itself is responsible for managing the life cycle of bundles
(e.g., installation, startup, pausing). As of today, several certi-

28

Listing 2.1: An idiomatic MANIFEST.MF file

1 Bundle-ManifestVersion: 2

2 Bundle-Name: Dummy

3 Bundle-SymbolicName: a.dummy

4 Bundle-Version: 0.2.1.build-21

5 Bundle-RequiredExecutionEnvironment: JavaSE-1.8

6 Export-Package: a.dummy.p1,

7 a.dummy.p2;version="0.2.0"

8 Import-Package: b.p1;version="[1.11,1.13]",

9 c.p1

10 Require-Bundle: d.bundle;bundle-version:="3.4.1",

11 e.bundle;resolution:=optional

fied implementations of the OSGi specification have been defined,
including Eclipse Equinox2 and Apache Felix3 to name but a few.

OSGi is a mature framework that comprises many aspects rang-
ing from module definition and service discovery to life cycle
and security management. In this chapter, we focus specifically
on its support for dependency management.

The Manifest File

Every bundle contains a meta-data file located at META-INF/-

MANIFEST.MF. This file contains a list of standardized key-value
pairs (known as headers) that are interpreted by the framework to
ensure all requirements of the bundle are met. Listing 2.1 depicts
an idiomatic Manifest file for an imaginary bundle named Dummy.

In this simple example, the Manifest file declares the bun-
dle a.Dummy in its version 0.2.1.build-21. It requires the execution
environment JavaSE-1.8. The main purpose of this header is to
announce what should be available to the bundle in the standard
java.* namespace, as the exact content may vary according to
the version and the implementer of the Java virtual machine on
which the framework runs. The Manifest file specifies that the

2 https://www.eclipse.org/equinox/

3 https://felix.apache.org/

29

https://www.eclipse.org/equinox/
https://felix.apache.org/

bundle exports the a.dummy.p1 package, and the a.dummy.p2 package
in version 0.2.0. These packages form the public interface of the
bundle—its API. Next, the Manifest file specifies that the bundle
requires the package b.p1 in version 1.11 to 1.13 (inclusive) and
the package c.p1. Finally, the Manifest declares a dependency
towards the bundle d.bundle in version 3.4.1 and an optional
dependency towards the bundle e.bundle. We dive into greater
details of the semantics of these headers and attributes in the
next section.

It is important to note that the Manifest file is typically written
by the bundle’s developer themself, and has to co-evolve with
its implementation. Therefore, discrepancies between what is
declared in the Manifest and what is actually required by the
bundle at the source or bytecode level may arise. Although some
tools provide assistance to the developers (for instance using
bytecode analysis techniques on bundles to automatically infer
the appropriate dependencies), getting the Manifest right remains
a tedious and error-prone task.

OSGi Dependency Management

The OSGi specification declares 28 Manifest headers that relate to
versioning, i18n, dependencies, capabilities, etc.,. Amongst them,
six are of particular interest regarding dependency management:
Bundle-SymbolicName which "together with a version must identify a
unique bundle", Bundle-Version which "specifies the version of this bun-
dle", DynamicImport-Package which "contains a comma-separated list
of package names that should be dynamically imported when needed",
Export-Package which "contains a declaration of exported packages",
Import-Package which "declares the imported packages for this bundle",
and Require-Bundle which "specifies that all exported packages from
another bundle must be imported, effectively requiring the public inter-
face of another bundle" [5]. The OSGi specification prescribes two
distinct mechanisms for declaring dependencies: at the package
level, or at the bundle level. In the former case, it is the responsi-
bility of the framework to figure out which bundle provides the
required package—multiple bundles can export the same pack-

30

age in the same version. Conversely, the latter explicitly creates a
strong dependency link between the two bundles.

The Import-Package header consists of a list of comma-separated
packages the declaring bundle depends on. Each package in
the list accepts an optional list of attributes that affects the way
packages are resolved. The resolution attribute accepts the values
mandatory (default) and optional, which indicate, respectively, that
the package must be resolved for the bundle to load, or that
the package is optional and will not affect the resolution of the
requiring bundle. The version attribute restricts the resolution on
a given version range, as shown in Listing 2.1.

When it requires another bundle through the Require-Bundle

header, a bundle imports not only a single package but the whole
public interface of another bundle, i.e., the set of its exported
packages. As the Require-Bundle header requires to declare the
symbolic name of another bundle explicitly, this creates a strong
dependency link between both. Thus, not only does this header
operate on a coarse-grained unit of modularization, but it also
tightly couples the components together.

For a bundle to be successfully resolved, all the packages it
imports must be exported (Export-Package) by some other bundle
known to the framework, with their versions matching. Similarly,
all the bundles it requires must be known to the framework,
with their versions matching. This wiring process is carried out
automatically by the framework as the bundles are loaded.

2.3 osgi best practices

The OSGi specification covers numerous topics in depth and it
can be hard for developers to infer idiomatic uses and good
practices. Should dependencies be declared at the package or
the bundle level? Can the content of a package be split amongst
several bundles or should it be localized in a single one? These
are questions that naturally arise when attempting to modular-
ize Java applications with OSGi. Although all usages are valid
according to the specification, OSGi experts tend to recommend
or discourage some of them. In this section, we intend to identify

31

a set of best practices in the use of OSGi. In particular, we look
for best practices related to the specification of dependencies
between bundles, thus answering our first research question:

Q1 What OSGi best practices are advised?

Systematic Review Methodology

To perform the identification of best practices related to OSGi

dependency management, we follow the guidelines specified
by [83], which include the definition of the research question,
search process, study selection, data extraction, and search results.
In this regards, Q1 is selected as the research question of the
systematic review.

search process Given the absence of peer-reviewed re-
search tackling OSGi best practices (cf. Section 2.5), we select
as primary data sources web resources of the OSGi Alliance and
OSGi-endorsed products. The complete list of certified products4

corresponds to Knopflerfish, ProSyst Software, SuperJ Engine, Apache
Felix, Eclipse Equinox, Samsung OSGi, and KT OSGi Service Plat-
form (KOSP). With the aim to identify best practices, we define a
search string that targets a set of standard best practices synonyms,
and their corresponding antonyms:

((good OR bad OR best) AND (practices OR design)) OR

smell

Some of the official web pages of the selected organizations
provide their own search functionality. However, we seek to
minimize the heterogeneous conditions of the searching envi-
ronment and only use Google Search to explore the set of web
resources. We use JSoup, an HTML parser for Java, to execute
the search queries and to scrape the results. We compute all
possible keyword combinations from the original search string

4 https://www.osgi.org/osgi-compliance/osgi-certification/

osgi-certified-products/

32

https://www.osgi.org/osgi-compliance/osgi-certification/osgi-certified-products/
https://www.osgi.org/osgi-compliance/osgi-certification/osgi-certified-products/

and execute one query per combination and organization do-
main. For instance, to search for the best AND practices keywords
in English-written resources on the OSGi Alliance domain, we
define the following Google Search query: http://www.google.co
m/search?q=best+practices+site:www.osgi.org&domains:www.osgi.

org&hl=en. We retrieved the resources in January 2018.

study selection Figure 2.1 details the resource selection
process we follow in this study. First, we only include web re-
sources written in English in the review. As shown before in
the Google Search query, this language restriction is included
as a filtering option in all searches: hl=en. In the end, the search
engine returns a total of 268 resources.5 Second, selected docu-
ments should describe best practices related to the management
of dependencies in OSGi. To this aim, we conduct a two-task selec-
tion where we first consider the occurrences of keywords in the
candidate resources, and then we perform a manual selection of
relevant documents. On the one hand, we count the occurrences
of the searched keywords in each web resource (including HTML,
XML, PDF, and PPT files). If one of the keywords is missing in
the resource, we automatically discard it. Using this criterion,
we reduce the set to 156 resources, and finally 87 after removing
duplicates. On the other hand, we manually review the resulting
set, looking for documents that address the research question. In
particular, if a resource points to another document (through an
HTML link) that is not part of the original set of candidates, it is
also analyzed and, if it is relevant to the study, it is included as
part of our data sources. This task is performed by two reviewers
to minimize selection bias. In the end, we select 21 web resources
to derive the list of best practices related to OSGi dependencies
specification. Some of the OSGi-endorsed organizations do not
provide relevant information for the study.

data extraction During the data extraction phase, we con-
sider the organization that owns the resource (e.g., OSGi Alliance),
its title, year of publication, authors, and the targeted best prac-

5 https://github.com/msr18-osgi-artifacts/msr18-osgi-artifacts/

33

https://github.com/msr18-osgi-artifacts/msr18-osgi-artifacts/

Table
2.

1:System
atic

review
of

O
SG

idependencies
specification

best
practices

I

R
esource

Year
A

uthor(s)
Best

practices

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
1

0
B

1
1

OSGi Alliance

A
u

tom
atically

m
anaging

ser-
vice

dependencies
in

O
SG

i[
1
2
3]

2
0

0
5

O
fferm

ans,
M

.
#

#
#

#
#

#

#
#

#
#

O
SG

ibest
practices![

6
2]

2
0

0
7

H
argrave,

B.J.et
al.

#

#

#

#
#

#

Very
im

portant
bundles

[
1

3
7]

2
0

0
9

R
oelofsen,R

.

#
#

#
#

#

#
#

#

O
SG

i:the
best

tool
in

you
r

em
-

bedded
system

s
toolbox

[
6

1]
2

0
0

9
H

acklem
an,

B.et
al.

#

#
#

#
#

#

#
#

#

bndtools:m
ostly

painless
tools

for
O

SG
i[

9]
2

0
1

0
B

artlett,
N

.
et

al.
#

#

#

#
#

#

#
#

D
eveloping

O
SG

ienterprise
ap-

plications
[
8]

2
0

1
0

B
arci,

R
.

et
al.

#
#

#
#

#
#

#

#
#

#

Experiences
w

ith
O

SG
iin

indus-
trialapplications

[
4

4]
2

0
1

0
D

orninger,
B.

#
#

#
#

#
#

#

#
#

#

M
igration

from
Java

EE
applica-

tion
server

to
server-sid

e
O

SG
i

for
p

rocess
m

anagem
ent

and
event

handling
[
7

6]

2
0

1
0

K
achel,

G
.

et
al.

#
#

#

#
#

#
#

#

#

1
0

T
hings

to
know

you
are

d
o-

ing
O

SG
iin

the
w

rong
w

ay
[
1
1
3]

2
0

1
1

M
oliere,J.

#
#

#
#

#
#

#

Stru
ctu

ring
softw

are
system

s
w

ith
O

SG
i[

4
8]

2
0

1
1

Fild
ebrand

t,
U

.

#

#
#

#

#
#

#
#

34

Ta
bl

e
2
.2

:S
ys

te
m

at
ic

re
vi

ew
of

O
SG

i
de

pe
nd

en
ci

es
sp

ec
ifi

ca
ti

on
be

st
pr

ac
ti

ce
s

II

R
es

ou
rc

e
Ye

ar
A

ut
ho

r(
s)

Be
st

pr
ac

ti
ce

s

B1
B2

B3
B4

B5
B6

B7
B8

B9
B1

0
B1

1
OSGiAlliance

B
es

t
p

ra
ct

ic
es

fo
r

(e
nt

er
p

ri
se

)
O

SG
i

ap
pl

ic
at

io
ns

[1
5

5
]

2
0

1
2

W
ar

d,
T.

#
#

#

#

#

Bu
ild

in
g

a
m

od
ul

ar
se

rv
er

pl
at

-
fo

rm
w

it
h

O
SG

i
[6

9
]

2
0

1
2

Ja
ya

ko
dy

,D
.

#

#
#

#
#

#

O
SG

i
ap

p
lic

at
io

n
be

st
p

ra
c-

ti
ce

s
[7

4
]

2
0

1
2

Ji
an

g,
E.

#
#

#
#

#

#

T
R

E
SO

R
:

th
e

m
od

u
la

r
cl

ou
d

-
B

u
ild

in
g

a
d

om
ai

n
sp

ec
ifi

c
cl

ou
d

pl
at

fo
rm

w
it

h
O

SG
i

[6
0

]

2
0

1
3

G
rz

es
ik

,A
.

#
#

#
#

#
#

#

#
#

#

G
ui

de
lin

es
[3

]
n.

d.
O

SG
i

A
ll.

#
#

#
#

#
#

#

#
#

#
O

SG
i

d
ev

el
op

er
ce

rt
ifi

ca
ti

on
-

Pr
of

es
si

on
al

[4
]

n.
d.

O
SG

i
A

ll.
#

#
#

#
#

#

#
#

#
#

Felix

U
si

ng
A

p
ac

he
Fe

lix
:O

SG
i

be
st

pr
ac

ti
ce

s
[1

2
4

]
2

0
0

6
O

ff
er

m
an

s,
M

.

#
#

#

#

#
#

#
#

O
SG

i
fr

eq
u

en
tl

y
as

ke
d

qu
es

-
ti

on
s

[4
6
]

2
0

1
3

A
pa

ch
e

Fe
lix

#
#

#
#

#
#

#

#
#

D
ep

en
d

en
cy

m
an

ag
er

-
B

ac
k-

gr
ou

nd
[4

7
]

2
0

1
5

A
pa

ch
e

Fe
lix

#

#
#

#
#

#

#
#

#

Equinox

Be
st

pr
ac

tic
es

fo
r

pr
og

ra
m

m
in

g
Ec

lip
se

an
d

O
SG

i
[6

3
]

2
0

0
6

H
ar

gr
av

e,
B.

J.
et

al
.

#

#
#

#
#

#
#

#
#

#

O
SG

i
co

m
p

on
en

t
p

ro
gr

am
-

m
in

g
[1

5
6
]

2
0

0
6

W
at

so
n,

T.
et

al
.

#

#
#

#
#

#

#
#

#

35

Google
search

Select based on
keyword occurrences

Remove
duplicates

Select based on
relevance

26
8

87 21

Automatic task Task Number of resources

15
6

Figure 2.1: Resources selection of the systematic review

tices. To have a common set of best practices, one reviewer reads
the selected resources and groups the obtained results in 11 best
practices. Afterwards, two reviewers check which best practices
are suggested per web resource. Table 2.1 and Table 2.2 present
the results of the review. The best practices labels in the table
correspond to the best practices presented in Dependencies Spec-
ification Best Practices.

Dependencies Specification Best Practices

In this section, we review the best practices identified and sum-
marized in Table 2.1 and Table 2.2. We elaborate on the rationale
behind each best practice using peer-reviewed research articles
and the OSGi Core Specification Release 6 [5].

prefer package-level dependencies [b1] Dependen-
cies should be declared using the Import-Package header instead of
using the Require-Bundle header. The latter creates a tight coupling
between the requiring bundle and the required bundle, which
is an implicit dependency towards an implementation rather
than an interface. Thus, it impacts the flexibility of dependency
resolution, as the resolver has only one source to provide the
dependency (i.e., the required bundle itself). This also naturally
complicates refactoring activities: moving a package from one
bundle to the other requires to patch all bundles depending
on it to point to the new bundle. In contrast, the Import-Package

36

header only relies on an interface and various bundles may
offer the corresponding package. Finally, Require-Bundle automati-
cally imports all the exported packages of the required bundle,
which may introduce unnecessary dependencies. This can get
worse in some cases, since package shadowing can be introduced
unwittingly [5].

use versions when possible [b2] Versions should be
set when requiring bundles, or when importing or exporting
packages. When a bundle requires another bundle or imports
a package, a version range or a minimum required version can
be defined. Versions must be consciously used to control the de-
pendencies of a bundle, avoiding the acceptance of new versions
that might break the component. Version ranges are preferred
over minimum versions, because both upper and lower bounds,
as well as all in between versions, are supposed to be tested and
considered by bundle developers [35]. In addition, with version
ranges the dependency resolver has fewer alternatives to resolve
the given requirements, allegedly speeding up the process.

export only needed packages [b3] Only the packages
that may be required by other bundles should be exported. In-
ternal and implementation packages should be kept hidden.
Because the set of exported packages forms the public API of a
bundle, changes in these packages should be accounted for by the
clients [28]. Consequently, the more packages are exported, the
more effort is required to maintain and evolve the corresponding
API.

minimize dependencies [b4] Unnecessary dependencies
should be avoided, given their known impact on failure-
proneness [11] and performance of the resolution process. In the
case of OSGi framework and the employment of the Require-Bundle

header, a required bundle might depend on other bundles.
If these transitive dependencies are not considered in the
OSGi environment, then the requiring bundle may not be re-
solved [5]. Moreover, dependencies specification in Require-Bundle

37

and Import-Package headers may impact performance during the
resolution process of the OSGi environment. A bundle is resolved
if all its dependencies are available [5]. Presumably, the more
dependencies are added to the Manifest file, the longer the frame-
work will take to start and resolve the bundle assuming that all
dependencies are included in the environment.

import all needed packages [b5] All the external pack-
ages required by a bundle must be specified in the Import-Package

header. If this is not the case, a ClassNotFoundException may be
thrown when there is a reference to a class of an unimported pack-
age [5]. This also applies to dynamic dependencies, e.g., classes
that are dynamically loaded using the reflective API of Java. The
only packages that are automatically available to any bundle are
the ones defined in the namespace java.*, which are offered by
the selected execution environment. However, this environment
can offer other packages included in other namespaces. Thus,
if these packages are not explicitly imported and the execution
environment is modified, they will become unavailable and the
bundle will not get resolved.

avoid dynamicimport-package [b6] This header lists
a set of packages that may be imported at runtime after the
bundle has reached a resolved state. In this case, dependency
resolution failures may appear in later stages in the life cycle
of the system and are harder to diagnose. This effectively hurts
the fail fast idiom adopted by the OSGi framework [146]. Also,
the DynamicImport-Package creates an overhead due to the need
to dynamically resolve packages every time a dynamic class is
used [5].

separate implementation, api , and osgi-specific pack-
ages [b7] It is highly recommended to separate API packages
from both implementation and OSGi-specific packages. Therefore,
many implementation bundles can be provided for a given API,
favoring system modularity. The OSGi service registry is offered
to select an implementation once a bundle is requiring and using

38

the associated API packages. With this approach, API packages
can be easily exported in isolation from implementation packages,
allowing a change of implementation if needed. Moreover, im-
plementation changes that result in breaking changes for clients
bundles are avoided. The abovementioned APIs are known as
clean APIs, i.e., exported packages that do not use OSGi, internal,
or implementation packages in a given bundle [5].

use semantic versioning [b8] Semantic versioning6 is a
version naming scheme that aims at reducing risks when upgrad-
ing dependencies. This goal is achieved by providing concrete
rules and conventions to label breaking and non-breaking soft-
ware changes [134]. Following these rules, a version number
should be defined as major.minor.micro. In some cases, the version
number is extended with one more alphanumerical slot known as
qualifier. The major number is used when incompatible changes
are introduced to the system, while the other three components
represent backward-compatible changes related to functionality,
bugs fixing, and system identification, respectively. The use of
semantic versioning supposedly communicate more information
and reduces the chance of potential failures.

avoid splitting packages [b9] A split package is a pack-
age whose content is spread in two or more required bundles [5].
The main pitfalls related to the use of split packages consist on
the mandatory use of the Require-Bundle header, which is labeled
as a bad practice, and the following set of drawbacks mentioned
in the OSGi Core Specification [5]: (i) completeness, which means that
there is no guarantee to obtain all classes of a split package; (ii)
ordering, an issue that arises when a class is included in different
bundles; (iii) performance, an overhead is introduced given the
need to search for a class in all bundle providers; and (iv) mutable
exports, if a requiring bundle visibility directive is set to reexport,
its value may suddenly change depending on the visibility value
of the required bundle.

6 http://semver.org/

39

http://semver.org/

declare dependencies that do not add value to the

final user in the bundle-classpath header [b10] If a
non-OSGi dependency is used to support the internal functionality
of a bundle, it should be specified in the Bundle-ClassPath header.
These dependencies are known as containers composed by a set
of entries, which are then grouped under the resources namespace.
They are resolved when no package or bundle offers the required
functionality [5]. Given that a subset of these resources is meant
to support private packages functionality, they should be kept as
private packages and defined only in the classpath of the bundle.

import exported api packages [b11] All the packages
that are exported and used by a given bundle should also be
imported. This may seem counter-intuitive, as exported packages
are locally contained in a bundle and can thus be used without
being imported explicitly. Nevertheless, it is a best practice to
import these packages explicitly, so that the OSGi framework can
select an already-active version of the required package. Be aware
that this best practice is only applicable to clean API packages [5].

Q1: What OSGi best practices are advised? We identify 11 best
practices advised by OSGi experts, namely:

B1. Prefer package-level dependencies.

B2. Use version when possible.

B3. Export only needed packages.

B4. Minimize dependencies.

B5. Import all needed packages.

B6. Avoid the use of DynamicImport-Package.

B7. Separate implementation, API, and OSGi-specific packages.

B8. Use semantic versioning.

B9. Avoid splitting packages.

40

B10. Declare dependencies that do not add value to the final
user in the Bundle-ClassPath header.

B11. Import exported API packages.

2.4 osgi corpus analysis

The best practices we identify in Section 2.3 emerge from experts
of the OSGi ecosystem. The goal of the following two research
questions is to assess their relevance and impact critically:

Q2 Are OSGi best practices being followed?
Q3 Does each OSGi best practice have an observable effect on

the relevant qualitative properties of an OSGi bundle?

Specifically, because beyond their qualitative aspect they are
meant to improve performance, we study their impact on the
classpath size and resolution time of individual bundles. We first
discuss the initial setup and method of our evaluation, and then
go through all the selected best practices, aiming at answering our
research questions for each of them. After some concluding re-
marks, we discuss the threats to validity. A complete description
of all the artifacts discussed in this section (corpora, transforma-
tions, results), along with their source code, is available on the
companion webpage.7

Studied Corpus

We use an initial corpus consisting of 1,124 OSGi bundles (cf. Ta-
ble 2.3) corresponding to the set of core plug-ins of the Eclipse
IDE 4.6 (Neon.1). This corpus emerges from the specific needs
of a partner in the collaborative project Crossminer in which
the authors are involved. The Eclipse IDE consists of a base plat-
form that can be extended and customized through plug-ins

7 https://github.com/msr18-osgi-artifacts/msr18-osgi-artifacts/

41

https://github.com/msr18-osgi-artifacts/msr18-osgi-artifacts/

Table 2.3: Characteristics of the Eclipse 4.6 OSGi Corpus

Attribute Value

Initial corpus size 1,124

Number of documentation bundles 17

Number of source bundles 446

Number of test bundles 97

Number of duplicate bundles 192

Studied corpus (C0) 372

Total size of C0 (MB) 163.76

Number of dependencies declared in C0 2,751

that can be remotely installed from so-called update sites. Both
the base platform and the set of plug-ins are designed around
OSGi, which enables this dynamic architecture. The Eclipse IDE

relies on its own OSGi-certified implementation of the specifica-
tion: Eclipse Equinox. Because the Eclipse IDE is a mature and
widely-used platform, its bundles are supposedly of high quality.
As they all contribute to the same system, they are also highly
interconnected: the combination of Import-Package, Require-Bundle,
and DynamicImport-Package dependencies results in a total of 2,751

dependency links. As a preliminary step, we clean the corpus to
eliminate duplicate bundles and bundles that deviate from the
very nature of Eclipse plug-ins. This includes:

• Bundles with multiple versions. We only retain the most recent
version for each bundle to avoid a statistical bias towards
bundles which (accidentally) occur multiple times for dif-
ferent versions.

• Documentation bundles that neither contain any code nor
any dependency towards other bundles are considered as
outliers to be ignored. The best practices are specifically
about actual code bundles so these documentation bundles
would introduce arbitrary noise.

• Source bundles that only contain the source code of another
binary bundle are ignored since they are a (technical) acci-
dent not pertaining to the best practices either.

42

Curate

Tr
an

sf
or

m

C
om

pa
re

B
en

ch
m

ar
k

Analyze

Initial
corpus

C0

Cn

C1

Rn

R1

ResultsCorpora

Q2

Q
3

… …

QiTask DataResearch question Flow

Figure 2.2: Corpus analysis process

• Similarly, test bundles which do not provide any functional-
ity to the outside would influence our statistical observa-
tions without relating to the studied best practices.

We identify and remove these bundles from the corpus according
to their names. The (strong) convention in this Eclipse corpus is
that these, respectively, end with a .doc, .source, or .tests suffix.
The remaining bundles constitute our control corpus C0.

Method

The overall analysis process we follow is depicted in Figure 2.2
and detailed below.

selected best practices For the current analysis, we focus
on a subset of the best practices ([B1–B6]) elicited in Dependen-
cies Specification Best Practices, which can be studied using a
common research method. The other best practices are interest-
ing as future work: [B7, B10, B11] require distinguishing between
implementation and API packages, [B8] requires distinguishing
between breaking and non-breaking software changes, and [B9]
requires refactoring the source code organization of the bundles
in addition to their meta-data.

43

q2 : are osgi best practices being followed? To an-
swer this research question, we develop an analysis tool, written
in Rascal [84], that computes a set of metrics on the control cor-
pus C0. Specifically, the tool analyses the meta-data (the Manifest
files) and bytecode of each bundle to record in which way depen-
dencies and versions are declared, which packages are actually
used in the bytecode compared to what is declared in their meta-
data, etc.,. Based on this information, we then count per best
practice how many bundles (or bundle dependencies) satisfy it
in the corpus. Using descriptive statistics we then analyze the
support for the best practice in the corpus to answer Q2. For
each best practice, based on the maturity of the Eclipse corpus
the hypothesis is that they are being followed (H2.i).

q3 : does each osgi best practice have an observable

effect on the relevant qualitative properties of an

osgi bundle? To answer this research question, we hypoth-
esize that each best practice would indeed have an observable
impact on the size of dynamically computed classpaths (H3.1.i)
and on the time it takes to resolve and load the bundles (H3.2.i).
If either hypothesis is true, then there is indeed evidence of ob-
servable impact of the best practice of some kind, if not then
deeper analysis based on hypothesizing other forms of impact
would be motivated. We are also interested to find out if there
exists a correlation between classpath size and related resolution
time (H3.3). Since the latter requires an accurate time measure-
ment setup, while the former can be computed from meta-data,
it would come in handy for IDE tool builders (recommendations,
smell detectors, and quick fix) if classpath size would be an
accurate proxy for bundle resolution time.

Figure 2.2 depicts how we compare the original corpus C0 to
alternative corpora Ci in which each best practice Bi has been
simulated. For each Bi, a specialized transformation T(Bi) takes
as input the control corpus C0 and turns it into a new corpus

C0
T(Bi)−−−−→ Ci where bundles are automatically transformed to sat-

isfy the best practice Bi. For all transformations T(Bi), we ensure
that for all bundles that can be resolved in the original corpus,

44

Uninstalled

StateInitial state Transition

Installed

Resolved

Starting

Active

Stopping

uninstall

install update
refresh

resolve
uninstall
update
refresh

lazy activation

stop

start

Figure 2.3: Bundle state diagram taken from the OSGi specification [5]

the corresponding bundle in the transformed corpus can also be
resolved. For instance, the transformation T(B1) transforms ev-
ery Require-Bundle header to a set of corresponding Import-Package

headers, according to what is actually used in the bundle’s byte-
code. Note that bundles using extension points declared by other
bundles must use the Require-Bundle header and therefore cannot
be replaced with the corresponding Import-Package headers. Below,
we discuss such detailed considerations with the result of each
transformation. Then, we load every corpus Ci in a bare Equinox
OSGi console and compute, for every bundle, (i) the size of its
classpath, including the classes defined locally and the classes
that are accessible through wiring links according to the seman-
tics of OSGi, and (ii) measure the exact time it takes to resolve it.
Figure 2.3 shows the bundle state diagram defined in the OSGi

specification [5, p. 107]. Resolution time of a bundle is measured
as the delta between the time it enters the INSTALLED state ("The
bundle has been successfully installed") and the time it enters the
RESOLVED state ("All Java classes that the bundle needs are available").
To report a change in terms of classpath size or performance,
we also compute the relative change between observations in
Ci and observations in C0, where by an observation (vij), we

45

0 5000 10000 15000 20000 25000

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0

Classpath Size

R
e

s
o

lu
ti
o

n
 T

im
e

 (
m

s
)

Figure 2.4: Classpath size is a poor indicator for resolution time (ms)
in C0 (ρ0 = −0.17)

refer to the average measure of classpath size or performance
for the jth bundle in the ith corpus. The relative change is com-
puted as dij =

v0j−vij

v0j
× 100%, where dij is the relative change

between the observation of the jth bundle in C0 (i.e., v0j) and
the corresponding observation of the same bundle in Ci (i.e.,
vij). The median (x̃) value of the set of relative changes is used
as a comparison measure.8 All performance measurements are
conducted on a MacOS Sierra version 10.12.6 with an Intel Core
i5 processor 2GHz, and 16GB of memory running OSGi version
3.11.3 and Java Virtual Machine (JVM) version 1.8. Measurements
are executed 10 times each after discarding the 2 initial warm-
up observations [15]. We then compute the average of the 10

measurements and their standard deviation.

8 We use x̃c and x̃p, respectively, for classpath size and performance compar-
isons.

46

Results

To evaluate H3.3 we use both scatter plots and correlations (per
corpus) that show the relation between our two studied variables,
classpath size and resolution time. Figure 2.4 shows the graph
to identify the hypothesized correlation in C0. Given that there
is no linear relation between the variables, we compute the non-
parametric Spearman’s rank correlation coefficient ρ0 = −0.17,
resulting in a weak negative relation. Similar results are observed
on all corpora Ci: ρ1 = −0.06, ρ2 = −0.17, ρ3 = −0.11, ρ4 =

−0.13, ρ5 = −0.17, and ρ6 = −0.17. According to both visual and
statistical analysis, we can reject hypothesis H3.3. Therefore, it
remains interesting to study these variables independently. The
benchmark results regarding classpath size and resolution time
for every corpus Ci, compared to the control corpus C0, are given
in Figure 2.5 and Figure 2.6.

prefer package-level dependencies [b1]

H2 .1 To test this hypothesis, we count the number of bun-
dles using the Require-Bundle and Import-Package headers. We cross-
analyze these results by computing the number of extension plug-
ins and the number of bundles declaring split packages, which
may impact the use of the Require-Bundle header. The bundles
declare 1,283 Require-Bundle dependencies and 1,459 Import-Package

dependencies. 57.79% of the bundles use the Require-Bundle

header, 50.00% use the Import-Package header, and 34.95% use
both. These results suggest that this best practice tends not to be
widely followed by Eclipse plug-ins developers. The declaration
of extension points and extension bundles, as well as the use of
split packages, contribute to these results. In fact, 38.98% of the
bundles in C0 are extension bundles that require a dependency
on the bundle declaring the appropriate extension point to pro-
vide the expected functionality. Two of the bundles in C0 use a
Require-Bundle dependency to cope with the requirements of split
packages.

47

0 5000 10000 15000 20000 25000

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0

C0

C
1

0 5000 10000 15000 20000 25000

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0

C0

C
2

0 5000 10000 15000 20000 25000

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0

C0

C
3

0 5000 10000 15000 20000 25000

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0

C0

C
4

0 5000 10000 15000 20000 25000

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0

C0

C
5

0 5000 10000 15000 20000 25000

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0

C0

C
6

Figure 2.5: Comparing classpath size of corpora Ci (with best practices
Bi applied) to the original corpus C0

48

200 400 600 800 1000

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

C0

C
1

200 400 600 800 1000

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

C0

C
2

200 400 600 800 1000

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

C0

C
3

200 400 600 800 1000

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

C0

C
4

200 400 600 800 1000

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

C0

C
5

200 400 600 800 1000

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

C0

C
6

Figure 2.6: Comparing resolution time (ms) of corpora Ci (with best
practices Bi applied) to the original corpus C0

49

H3 .1 .1 and H3 .2 .1 Transforming bundle-level dependencies
to package-level dependencies reduces the classpath size of bun-
dles by x̃c = 15.40%. This is because, in the case of Require-Bundle,
every exported package in a required bundle is visible to the re-
quiring bundle, whereas the more fine-grained Import-Package only
imports the packages that are effectively used in the bundle’s
code. We observe a gain of x̃p = 7.11% regarding performance
(Figure 2.6).

use versions when possible [b2]

H2 .2 To tackle this question, we compute the number of ver-
sioned Require-Bundle, Import-Package, and Export-Package relations
and the proportion of those that specify a version range. 84.80%
of the Require-Bundle dependencies are versioned, of which 71.97%
(i.e., 783) use a version range. In the case of Import-Package, 59.22%
of the dependencies are versioned, of which 45.14% use a ver-
sion range. Finally, 24.88% of the 2,620 exported packages tuples
are explicitly versioned. The remaining tuples get a value of
0.0.0 according to the OSGi specification. We observe a tendency
to use versions when defining Require-Bundle relations, which is
highly advised given the need to maintain a tight coupling with
a specific bundle. Nonetheless, the frequency of version specifica-
tions decreases when using Import-Package and even more so with
Export-Package.

H3 .1 .2 and H3 .2 .2 The transformation T(B2) takes all unver-
sioned Import-Package and Require-Bundle headers in C0 and assign
a strict version range of the form [V , V] to them, where V is
the highest version number of the bundle or package found in
the corpus. In the resulting corpus C2, we observe that this best
practice has no impact on classpath size (x̃c = 0%), and close
to zero impact on resolution time (x̃p = 1.56%) of individual
bundles.

50

export only needed packages [b3]

H2 .3 In this case, we investigate how many of the exported
packages in the corpus are imported by other bundles, using ei-
ther Import-Package or Require-Bundle, taking versions into account.
If an exported package is never imported, this may indicate
that this package is an internal or implementation package that
should not be exposed to the outside. There may, however, be
a fair amount of false positives: some of the exported packages
may actually be part of a legitimate API but are just not used by
other bundles yet. From the whole set of exported package tuples,
14.62% are explicitly imported by other bundles. This suggests
that a large portion of the packages that are exported are never
used by other bundles. Nevertheless, if we also consider packages
imported through the Require-Bundle header, at least 80.34% of the
total tuples are imported by other bundles. The question that
arises is: is this situation intended, or is it a collateral effect of
the use of Require-Bundle?

H3 .1 .3 and H3 .2 .3 [B3] has an impact on classpath size in
the transformed corpus C3: exporting only the needed packages
results in a x̃c = 23.27% gain sizewise. We also observe an
improvement of x̃p = 12.83% in terms of resolution time for
individual bundles.

minimize dependencies [b4]

H2 .4 To investigate whether bundles declare unnecessary de-
pendencies, we cross-check the meta-data declared in the Man-
ifest files with bytecode analysis. We deem any package that
is required but never used in the bytecode as superfluous. In
the corpus, 19.25% of the Require-Bundle dependencies are never
used locally, i.e., none of the packages of the required bundle
are used in the requiring bundle’s code. Regarding Import-Package

dependencies, 13.78% of the explicitly-imported packages are
not used in the bytecode. Digging deeper into the relations, we
find that the Require-Bundle declarations are implicitly importing

51

15,399 packages that have been exported by the corresponding
required bundles. From this set, only 16.50% are actually used in
the requiring bundle bytecode. These results suggest that devel-
opers tend not to use all the dependencies they declare and that
these could be minimized. The situation is much worse in the
case of implicitly imported packages through the Require-Bundle

header, which backs the arguments of [B1].

H3 .1 .4 and H3 .2 .4 [B4] has a close to zero impact on class-
path size in the transformed corpus C4 (x̃c = 0.14%). How-
ever, the improvement is higher with regards to resolution time
(x̃p = 7.24%).

import all needed packages [b5]

H2 .5 We compute the number of packages that are used in
the code but are never explicitly imported in the Manifest file
by analyzing the bundles meta-data and bytecode. Our analysis
identifies 2,194 packages (269 unique) that are never explicitly
imported. Overall, 45.70% of the bundles in C0 use a package
that they do not explicitly import (excluding java.* packages).

H3 .1 .5 and H3 .2 .5 For every package that can be found
somewhere in the corpus but is missing in the Import-Package

list of a given bundle, the transformation T(B5) creates a new
Import-Package statement pointing to it. The resulting corpus C5

does not differ from C0 in terms of classpath size, but appears to
be slower in terms of resolution time (x̃p = −13.35%). By creating
new explicit dependencies to be resolved, this best practice adds
to the dependency resolution process, which in turn may explain
this difference.

avoid dynamicimport-package [b6]

H2 .6 In the corpus, only 7 bundles declare DynamicImport-Package

dependencies, for a total of 9 dynamic relations declared in C0. 4

of these dynamically imported packages are not exported by any

52

bundle. This may result in runtime exceptions after the resolution
of the involved bundles. While there are some occurrences in
the corpus of this not-advisable type of dependency, results sug-
gest that developers tend to avoid using the DynamicImport-Package

header and thus generally follow this best practice.

H3 .1 .6 and H3 .2 .6 We do not observe any impact in terms
of classpath size, and in terms of performance we observe a gain
of x̃p = 3.47%. As our benchmark stops at resolution time and
[B6] only has an impact after resolution time, this is unsurprising.

Analysis of the Results

Figure 2.7 summarizes the overall results regarding relative
change of our analysis for classpath size and resolution time.

q2 Overall, we observe that most of the best practices we
identify are not widely followed in the corpus. This is for instance
the case with [B1], despite being the most-widely advocated best
practice among the ones we select (cf. Table 2.1 and Table 2.2).

Q2: Are OSGi best practices being followed? Three ([B1], [B4],
and [B5]) out of the six studied OSGi best practices related to de-
pendency management ([B1-B6]) are not widely followed within
the Eclipse ecosystem. No conclusive remark can be made regard-
ing [B3] without further analysis of the packages usage within
the bundles’ code.

q3 [B1] and [B3] appear to have a positive impact on classpath
size (15.40% and 23.27%, respectively), whereas we observe a
close to zero impact for [B2], [B4], [B5], and [B6]. Moreover, five
of the selected best practices (i.e., [B1], [B2], [B3], [B4], and [B6])
show an improvement on performance that oscillates between
1.55% and 12.83%. [B5] shows a negative impact of 13.35% relative
change for the same variable. The absence of larger gains may
be explained by the fact that the time required to build the

53

classpath is negligible compared to the other phases involved in
bundle resolution (e.g., solving dependencies constraints, as can
be observed for [B5]).

Q3: Does each OSGi best practice have an observable effect on
the relevant qualitative properties of an OSGi bundle? Only
one third of the OSGi best practices we analyze have a positive
impact (of up to ∼23% change) on the classpath size of individual
bundles. Either way, impact on resolution times does not exceed
±13% relative change for all practices.

Threats to Validity

In principle, the construct of measuring classpath size and reso-
lution time for OSGi bundles can show the presence of a specific
kind of impact of a best practice, but not the absence of any
other kind of impact. Hence, for where we observed no impact,
future analysis of possible other dependent quality factors (e.g.
coupling metrics) is duly motivated. However, since the prime
goal of OSGi is configuring which bundles to dynamical load
into the classpath, any change to OSGi configuration must also
be reflected in the classpath. Therefore, in theory, we would not
expect any other unforeseen effects when a classpath does not
change much. Although relevant, our research methods did not
focus on the downstream effects of OSGi best practices on sys-
tem architecture or object-oriented design quality in source code.
However, minor changes to a classpath may have large impact
on those aspects, in particular class visibility may impact soft-
ware evolution aspects such as design erosion and code cloning.
In IDEs specifically, performance is not always a key considera-
tion and other aspects of dependency management remain to be
studied as future work. With respect to internal validity of the
research methods, we calculated classpath size using the OSGi

classloader and wiring APIs. Internally, for every bundle, OSGi cre-
ates a Java classloader that holds every class local to the bundle,

54

●

●

●●
●●
●●●●●●●●●●●●

●

●
●●
●●

●●

●
●

●●●

●

●●●●●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●
●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

C1 C2 C3 C4 C5 C6

−200

−150

−100

−50

0

50

100

C
la

s
s
p

a
th

 S
iz

e
 R

e
la

ti
ve

 C
h

a
n

g
e

 (
in

 %
)

S
h

o
rt

e
r

L
a

rg
e

r

C1 C2 C3 C4 C5 C6

−15

−10

−5

0

5

10

15

Corpus

R
e

s
o

lu
ti
o

n
 T

im
e

 R
e

la
ti
ve

 C
h

a
n

g
e

 (
in

 %
)

F
a

s
te

r
S

lo
w

e
r

Figure 2.7: Relative change in classpath size and resolution time
between the control (C0) and transformed corpora (Ci)

55

plus all the classes of the bundles it depends on, regardless of the
granularity of the dependencies, their visibilities, etc.,. The OSGi

classloaders, on the other hand, hide classes from the required
bundles when necessary, e.g., when a bundle only requires a few
packages from another one using the Import-Package header. We
aimed to calculate classpath size as seen by the OSGi framework
itself, but results may vary if we look at Java classloaders instead.
Besides, our analysis and transformation tools may be incorrect
in some way. We tried to mitigate this pitfall by having our code
written and reviewed by several developers, as well as by writing
a set of sanity tests that would catch the most obvious bugs.
The corpus we use for the analysis may also greatly influence
the results we obtain for Q2—our conclusions only hold for the
Eclipse IDE. Nonetheless, we tried to mitigate this effect as much
as possible, for instance by taking into account the specificities of
the extensions and extension points mechanism within Eclipse
which influences our conclusions for [B1]. Similarly, for Q3, a
different implementation of the OSGi specification may influence
the benchmark results.

2.5 related work

Seider et al. [142] explore modularization of OSGi-based com-
ponents using an interactive visualization tool. They extract
information from meta-data files and organize it at different
abstraction levels (e.g., package and service). Forster et al. [49]
perform static analyses of software dependencies in the OSGi and
Qt frameworks. They identify runtime connections using source
code analysis. Management of false positives is still a challenge in
their research. Both approaches study dependencies in the OSGi

framework but are focused on the current state of the framework
rather than potential dependencies specification pitfalls or smells.
We aim at filling in this gap by empirically studying dependency
definition in relation to dependency management best practices
in the OSGi ecosystem.

With regards to smell detection in configuration management
frameworks, Sharma, Fragkoulis, and Spinellis [143] present a

56

catalog of configuration management code smells for 4K Puppet
repositories on GitHub. Smell distributions and co-occurrences
are also analyzed. Jha, Lee, and Lee [73] provide a static analysis
tool that aims at detecting common errors made in Manifest files
of 13K Android apps. Common mistakes are classified as: mis-
placed elements and attributes, incorrect attribute values, and
incorrect dependency. Karakoidas et al. [79] and Mitropoulos
et al. [112] describe a subset of Java projects hosted in the Maven
Central Repository (MCR). They use static analysis to compute
metrics related to object-oriented design, program size, and pack-
age design [79]. FindBugs tool is also used to detect a set of
bugs present in the selected projects. They discover that bad
practices are the main mistakes made by developers, but do not
detail the kinds of recurrent smells. Furthermore, Raemaekers,
Van Deursen, and Visser [134] analyze a set of projects hosted
in the MCR to check whether they adhere to the semantic ver-
sioning scheme. They find that developers tend to introduce
breaking changes even if they are related to a minor change.
In like-manner, Decan and Mens [34] study semver compliance
in Cargo, npm, Packagist, and Rubygems. As main takeaways,
they find out that semver compliance has increased over time for
all ecosystems, however, differences do exist among them (e.g.,
Rubygems tends to be more permissive). They also highlight that
these ecosystems assume that patch changes in initial develop-
ment releases (releases with their version numbers starting with
0) remain backwards compatible—contrary to what semver sug-
gests. Rather than beating the aforementioned studies, we offer
a complementary view that brings OSGi to the body of studied
ecosystems. In addition, we first identify best practices in such
an ecosystem and then proceed with our empirical evaluation.
Some of the exposed approaches start from a common ground
where certain code smells are already known by the community
focusing mainly on their identification.

Regarding dependency modeling approaches, Shatnawi et
al. [144] aim at identifying dependency call graphs of legacy Java
EE applications to ease their migration to loosely coupled archi-
tectures. Kula et al. [85] also study JVM-based projects to support

57

migration to more recent versions of a given open source library.
Nevertheless, manifold dependencies are not only specified in
source code but also in configuration files. To face this challenge,
both approaches parse dependencies from these sources and ex-
tract information in their own models: the Knowledge Discovery
Meta-model (KDM) [129, 144] and the Software Universe Graph
(SUG) [85]. Jezek et al. [72] statically extract dependencies and po-
tential smells from the source code and bytecode of applications.
Similarly, Abate et al. [1] dig into Debian, OPAM, and Drupal
repositories to identify failing dependencies and to present ac-
tionable information to the final user. To this aim, dependencies
information is gathered from components’ meta-data files, which
is then represented in the Common Upgradability Description
Format (CUDF) model. In our study, we rely on Rascal to create a
data type that stores and represents the dependency information
extracted from the Manifest file of each of the studied bundles.

Considering software repositories and dependencies descrip-
tion, Decan, Mens, and Claes [35] conduct an empirical analy-
sis of the evolution of npm, RubyGems, and CRAN repositories,
later extended to reach a total of 7 software ecosystems (Cargo,
CPAN, NuGet, and Packagist) [38]. Kikas et al. [82] also consider
the first two mentioned repositories and the Crates ecosystem.
In both cases, dependencies are identified and modeled in de-
pendency graphs or networks to analyze the evolution of the
repositories and the ecosystem resilience. Tufano et al. [153]
study the evolution of 100 Java projects, finding that 96% of them
contain broken snapshots, mostly due to unresolved dependen-
cies. Finally, Williams et al. [158] study more than 500K open
source projects taken from Eclipse, SourceForge, and GitHub. They
cross-check users needs against projects properties, by means
of computing and analyzing metrics provided at forge-specific
and forge-agnostic levels. We focus mainly on studying Eclipse
and whether its developers follow best practices when defining
dependencies. Additionally, we consider the observable effects
these practices have in terms of classpath size and resolution
time.

58

2.6 conclusion

In this chapter, we first conducted a systematic review of OSGi

best practices to formally document a set of 11 known best
practices related to dependency management. We then focused
on 6 of them and, using a corpus of OSGi bundles from the Eclipse
IDE, we studied whether these best practices are being followed
by developers and what their impact is on the classpath size and
bundle resolution times. On the one hand, the results show that
many best practices tend not to be widely followed in practice.
We also observed a positive impact of applying two of the best
practices (artificially) to classpath sizes (i.e., [B1] and [B3]), from
which we can not conclude that the respective best practices are
irrelevant. Based on this we conjecture most of the identified
advice is indeed relevant. Deeper qualitative analysis is required
to validate this. On the other hand, the performance results show
that OSGi users can expect a performance improvement of up to
±13% when applying certain best practices (e.g., [B3]). For future
work, building on this initial study, we plan to scale up our
analysis on other OSGi-certified implementations (e.g., Apache
Felix) and other corpora of bundles (e.g., bundles extracted from
JIRA or GitHub), and to cross-reference relevant quality attributes
on the system architecture and object-oriented design levels with
the current OSGi meta-data and bytecode analyses.

59

3
B R E A K I N G B A D ? S E M A N T I C V E R S I O N I N G A N D
B R E A K I N G C H A N G E S

abstract Just like any software, libraries evolve to incorporate new
features, bug fixes, security patches, and refactorings. However, when a
library evolves, it may break the contract previously established with
its clients by introducing Breaking Changes (BCs) in its Application
Programming Interface (API). These changes might trigger compile-
time, link-time, or run-time errors in client code. As a result, clients
may hesitate to upgrade their dependencies, raising security concerns
and making future upgrades even more difficult. Understanding how
libraries evolve helps client developers to know which changes to expect
and where to expect them, and library developers to understand how
they might impact their clients. In one of the most extensive Java studies
to date, Raemaekers, Van Deursen, and Visser investigate to what extent
developers of Java libraries hosted on the Maven Central Repository
(MCR) follow semantic versioning conventions to signal the introduction
of BCs and how these changes impact client projects. Their results
suggest that BCs are widespread without regard for semantic versioning,
with a significant impact on clients. In this chapter, we conduct an
external and differentiated replication study of their work. We identify
and address some limitations of the original protocol and expand the
analysis to a new corpus spanning seven more years of the MCR. We also
present a novel static analysis tool for Java bytecode, Maracas, which
provides us with: (i) a subset of syntactic BCs between two versions of a

This chapter is originally published as Lina Ochoa, Thomas Degueule, Jean-
Rémy Falleri, and Jurgen J. Vinju. "Breaking Bad? Semantic Versioning and
Impact of Breaking Changes in Maven Central". In: Empirical Software Engineer-
ing 27-3 (2022), pp. 1573–7616 doi: 10.1007/s10664-021-10052-y

61

library, and; (ii) the set of locations in client code impacted by individual
BCs. Our key findings, derived from the analysis of 119, 879 library
upgrades and 293, 817 clients, contrast with the original study and
show that 83.4% of these upgrades do comply with semantic versioning.
Furthermore, we observe that the tendency to comply with semantic
versioning has significantly increased over time. Finally, we find that
most BCs affect code that is not used by any client, and that only 7.9%
of all clients are affected by BCs. These findings should help (i) library
developers to understand and anticipate the impact of their changes; (ii)
library users to estimate library upgrading effort and to pick libraries
that are less likely to break, and; (iii) researchers to better understand
the dynamics of library-client co-evolution in Java.

3.1 introduction

Just like any software, libraries evolve to incorporate new fea-
tures, bug fixes, security patches, and refactorings. It is critical for
clients to stay up to date with the libraries they use to benefit from
these improvements and to avoid technical lag [55, 171]. When
a library evolves, however, it may break the contract previously
established with its clients by introducing Breaking Changes (BCs)
in its public Application Programming Interface (API), resulting
in compilation-time, link-time, or run-time errors. These errors
burden client developers given the sudden urgency to fix issues
without intrinsic motivation. As a result, clients may hesitate
to upgrade their dependencies, raising security concerns and
making future upgrades even more difficult [87, 111].

BCs are language-specific: they vary with the syntax and seman-
tics of a particular programming language. In Java, seemingly
innocuous changes such as altering the visibility or abstractness
modifier of a type declaration, or simply inserting a new method
into an abstract class can, under certain conditions, break client
code [57]. Most refactoring operations, although essential to main-
tain and evolve libraries, also induce BCs. Thus, it does not come
as a surprise that BCs are widespread in Java libraries [165]. It
is, however, essential to realize that not all BCs are intrinsically
harmful. Nonetheless, they should not come unannounced and

62

take clients by surprise. It should be clear for clients what con-
sequences upgrading their dependencies will have on their own
software, so they can make an informed decision beforehand.

To this end, Java library developers can leverage various mech-
anisms to communicate with their clients on the stability of their
APIs and the effort required to upgrade to a newer version. These
mechanisms enable them to specify when and where BCs are to be
expected. On the one hand, semantic versioning (semver) enables
developers to use well-defined versioning conventions to classify
new library releases as major releases (which may introduce BCs),
minor releases (which may introduce new backward-compatible
features but should not introduce any BC), patch releases (which
should not affect the public API whatsoever), and initial develop-
ment releases (which may break anything at any time) [130]. On
the other hand, annotations directly placed on source code ele-
ments (e.g., Google’s @Beta and Apache’s @Internal) and naming
conventions (such as internal and experimental packages) can be
used to indicate that certain parts of the public API are exempt
from compatibility guarantees and subject to sudden changes.

Clients who upgrade towards a new major release of a library
or early adopters who rely on beta-stage APIs are well aware
of the consequences. It is thus crucial to distinguish between
libraries that evolve gracefully by introducing BCs only when and
where appropriate, and those that "break bad" by introducing
BCs in minor and patch releases or in allegedly stable APIs.

In one of the most extensive Java studies to date, Raemaekers,
Van Deursen, and Visser dissect backwards compatibility issues
in the Maven Central Repository (MCR)2 with respect to semantic
versioning [135]. The study uses the tool clirr to infer the list
of BCs between two versions of a Java library and measures
their impact on client code using the Java compiler itself. The
empirical evaluation is carried on a complete snapshot of MCR,
up to the year 2011. To name but a few of their findings, the
study concludes that: (i) BCs are widespread without regard for
versioning conventions; (ii) the adherence to semantic versioning
principles has increased over time, and; (iii) BCs have a significant

2 https://search.maven.org/

63

https://search.maven.org/

impact on clients. The relevance and quality of this study for
understanding the API-client co-evolution problem motivate us
to replicate and expand its protocol and corpus.

In this chapter, we conduct an external and differentiated
replication study [101] of the study by Raemaekers, Van Deursen,
and Visser [135], which from now on we will refer to as the
original study. After reviewing the original protocol, we introduce
major changes to alleviate some of its limitations and address key
threats to its validity. The main differences between our study
and the original study are as follows:

• We refine the original protocol by introducing new filters and
sanity checks to avoid analysing Maven artefacts that are not
used as libraries and versions that are not meant to be used by
clients—only 12% of all artefacts in our replication corpus are
indeed used as libraries;

• We implement a new tool built atop japicmp,3 Maracas, more
accurate than clirr, which we use to analyse Java bytecode
and compute the set of BCs between two versions of a library,
as well as to compute how client projects are impacted by
individual changes;

• We re-analyse the original corpus to assess the impact of our
new protocol and tool, and expand the analysis to a new
corpus spanning seven more years of the MCR (from 144K
Maven artefacts to 2.4M).

We focus on a subset of three of the research questions inves-
tigated in the original study which are central to the API-client
co-evolution problem, eluding other less relevant questions re-
lated to deprecation tags and characteristics of libraries that break
more, among others. Our research questions are as follows:

Q1 How are semantic versioning principles applied in the
Maven Central Repository in terms of BCs?

Q2 To what extent has the adherence to semantic versioning
principles increased over time?

Q3 What is the impact of BCs on clients?

3 https://siom79.github.io/japicmp/

64

https://siom79.github.io/japicmp/

Our results show that, overall, library and client projects on
MCR are not "breaking bad". First, 83.4% of all library upgrades
comply with semver principles, introducing BCs only when they
are expected. However, 20.1% of non-major releases are breaking,
being a potential threat to their clients. Second, the tendency to
comply with semver practices has significantly increased over
time. In particular, the ratio of non-major releases introducing
BCs has gradually decreased from 67.7% in 2005 to 16.0% in 2018.
Third, only 7.9% of clients are actually impacted by BCs intro-
duced in library releases. In most cases, clients do not use the
breaking declarations (i.e., the library declarations affected by
BCs)—but when they do, they are very likely to break. These
results should help library developers to understand and an-
ticipate the impact of their changes; library users to estimate
library upgrading effort and to pick libraries that are less likely
to break, and; researchers to better understand the dynamics of
client-library co-evolution in Java and prioritize research in the
future.

The remainder of this chapter is organized as follows. We first
introduce background notions on Maven, semver, and backwards
compatibility in Java in Section 3.2. We then briefly present the
original study in Section 3.3. In Section 3.4, we detail the key
differences in the protocol and datasets for our replication study.
We discuss our new results in Section 3.5 and then present re-
lated work in Section 3.6. We then discuss the key findings and
implications of our study in Section 3.7 and finally conclude the
chapter and discuss future work in Section 3.8.

3.2 background

In this section, we first introduce some background notions on
Apache Maven, APIs, and backwards compatibility in Java. We
also discuss the mechanisms available to developers to communi-
cate the stability of their libraries through versioning conventions
and source code annotations.

65

Apache Maven

Apache Maven (simply referred to as Maven hereafter) is a
build automation tool particularly popular in the Java ecosystem.
Maven follows a plugin-oriented architecture that enables devel-
opers to specify the dependencies of a particular piece of software
and how to build it. When used to build Java projects, it enables
developers to convert Java source code to Java bytecode (.class
files) typically bundled as JARs, which potentially depend on
other JARs. These artefacts can be deployed to and retrieved from
remote Maven repositories. The most popular Maven repository
is the MCR which, as of May 2021, hosts 6, 723, 367 artefacts.

The cornerstone file defining a Maven project is the Project
Object Model (POM) file. Typically, the POM file is an XML file that
contains metadata about the current project, its dependencies,
and additional configurations required to build it. Listing 3.1
illustrates the typical structure and tags defined within a POM

file, using the Spring TestContext Framework as an example. The
modelVersion tag specifies the POM version of the file; the groupId

tag identifies the organization or group that develops the project
(org.springframework); the artifactId tag identifies the project it-
self (spring-test); the version tag specifies the current version of
the project (4.2.5.RELEASE), and; the packaging tag specifies how
the project is packaged (jar). Together, the group, artefact, and
version (also known as project coordinates and denoted groupId:

artifactId:version) uniquely identify a Maven artefact.
Dependencies of a project are declared within the dependencies

tag. Each dependency points to a unique Maven artefact (using
its project coordinates), possibly supplemented with additional
metadata. In particular, the scope tag specifies when the depen-
dency is needed and thus in which classpath(s) it is included (e.g.,
compile-time, test-time, or run-time dependencies). One can au-
tomatically determine which libraries a Maven artefact depends
on by parsing its POM file. In Listing 3.1, the Spring TestCon-
text Framework declares a compile-time dependency towards
the JavaServlet library version 3.0.1. Dependencies may employ

66

Listing 3.1: Excerpt of the POM file of the Spring TestContext
Framework project version 4.2.5.RELEASE

1 <project>

2 <modelVersion>4.0.0</modelVersion>

3 <groupId>org.springframework</groupId>

4 <artifactId>spring-test</artifactId>

5 <version>4.2.5.RELEASE</version>

6 <packaging>jar</packaging>

7 <dependencies>

8 <dependency>

9 <groupId>javax.servlet</groupId>

10 <artifactId>javax.servlet-api</artifactId>

11 <version>3.0.1</version>

12 <scope>compile</scope>

13 </dependency>

14 </dependencies>

15 </project>

version constraints (e.g., [1.0, 2.0)), letting the dependency
resolver find a suitable version within this range.

API Evolution & Backwards Compatibility

An Application Programming Interface (API) is an interface that
exposes the set of services from a library that can be invoked by
client projects. In Java and other object-oriented languages, this
interface consists of programming constructs such as packages,
types, methods, and fields. To delimit this interface, library de-
velopers use visibility modifiers and other dedicated constructs
provided by the host language [43].

As an environment changes, software used in such an environ-
ment faces the need to change accordingly. This is what Lehman
[94] coined as software evolution, later formalized as the eight
Lehman’s laws that synthesize observations about software evo-
lution [53, 99]. Consequently, APIs—being software themselves—
undergo continual and progressive change over time. The moti-
vation behind this evolution is to provide more value to users by

67

patching security issues, adding new features, simplifying the
current API, fixing bugs, and improving maintainability [40, 88].

API evolution comes with the introduction of changes that can
be classified according to how they affect client projects [43]
and specifically whether they ensure backwards compatibility. In
Java, backwards compatibility is defined at the source, binary,
and behavioural levels [40]. Source compatibility is checked by
the compiler when recompiling a client project with the new
version of an API. Binary compatibility is checked by the Java
Virtual Machine (JVM) during the linking process, as described in
Chapter 13 of the Java Language Specification (JLS) [39, 57]. Lastly,
behavioural compatibility can only be verified at run time to check
whether the program exhibits a behaviour that is different from
its previous version, without triggering compilation or linkage
errors [40].

There are two types of API changes, namely breaking and non-
breaking changes. On the one hand, Breaking Changes (BCs) are
not backwards compatible: client projects using an API entity
affected by a BC might break when migrating to a more recent
version of the API [43]. On the other hand, non-breaking changes
are backwards compatible, meaning that they do not trigger
any source, binary, or behavioural incompatibility. If an API only
introduces backwards compatible changes, it is said to be stable.
It is important to note that some BCs break several kinds of
compatibility (e.g., removing a public method is both source and
binary incompatible), but none is a superset of the other [71]. In
this chapter, to align with the original study, we only consider
binary compatibility and the associated set of BCs.

To illustrate how backwards incompatible changes might im-
pact client projects, we refer to the Spring TestContext Framework
example. The JavaServlet library releases version 3.1.0 in April
2013. This happens almost two years after its latest major release
(i.e., 3.0.1) in July 2011. This new version introduces backwards
incompatible changes that might break client code. Some of
those changes include adding new abstract methods to classes
and interfaces. One example of such changes is illustrated in
Listing 3.2 and Listing 3.3. These changes can potentially impact

68

Listing 3.2: HttpServletRequest
in JavaServlet version

3.0.1

1 public interface

HttpServletRequest

2 extends ServletRequest {

3 public String getAuthType();

4 public String getMethod();

5

6 [...]

7 }

8

Listing 3.3: HttpServletRequest
in JavaServlet version

3.1.0

public interface

HttpServletRequest

extends ServletRequest {

public String getAuthType();

public String getMethod();

public String changeSessionId

();

[...]

}

Listing 3.4: Broken MockHttpServletRequest in Spring TestContext
Framework version 4.2.5.RELEASE

1 public class MockHttpServletRequest implements HttpServletRequest {

2 Override public String getAuthType() return
this.authType;Override public String getMethod() {

3 return this.method;

4 }

5 // MockHttpServletRequest must implement method

HttpServletRequest.changeSessionId()

6 }

the Spring TestContext Framework in its 4.2.5.RELEASE version. In
some cases, stating that a BC affects client code is straightforward.
For instance, removing a type, method, or field that is used by a
client will obviously break this client. However, client code may
also break when inserting new declarations in the library, for
instance when inserting a new abstract method in an interface.
This change will break client code if it extends this interface,
as illustrated in Listing 3.4. In this case, the changeSessionId()

method is added to the HttpServletRequest class within the
JavaServlet library. Given that the MockHttpServletRequest class
in the Spring TestContext Framework implements such an in-
terface, it will be forced to implement the new abstract method
resulting in broken code. The literature often overlooks the BCs

69

induced by uses of a library in an Inversion of Control (IoC) style
(i.e., where the client extends types exposed in the library, fol-
lowing the Hollywood principle "don’t call us, we’ll call you!") [20,
165]. In contrast, we include all of those cases in our analyses.
An exhaustive list of the 31 BCs we consider in this chapter is
available on the companion webpage.4

API Stability Conventions

It is critical for clients to be able to pinpoint which versions and
which parts of an API introduce changes that might break their
code. Semantic versioning, also known as semver, is a popular con-
vention to announce the introduction of BCs, and its use is encour-
aged in many software ecosystems (e.g., npm, RubyGems, Cargo,
Maven Central) [34]. This versioning scheme is used to label
library versions according to compatibility guarantees. Each ver-
sion number is specified in the form <major>.<minor>.<patch>,
where major, minor, and patch are non-negative integers. A
change in the major version signals the possible introduction
of backwards-incompatible changes. Changes in the minor or
patch versions signal the introduction of new features or bug
fixes in a backwards-compatible fashion [130]. Initial develop-
ment releases, which use zero as the major version, should also
be considered unstable:

"[m]ajor version zero (0.Y.Z) is for initial development.
Anything MAY change at any time. The public API SHOULD
NOT be considered stable." [130]

Finally, version numbers may be suffixed with hyphen-
separated qualifiers specifying pre-releases or build metadata
(e.g., 2.1.1-beta2). At the code level, library developers may use
annotations such as Google’s @Beta and Apache’s @Internal to
signal unstable declarations. For instance, Guava developers state
that

4 https://crossminer.github.io/maracas/detections/

70

https://crossminer.github.io/maracas/detections/

"APIs marked with the @Beta annotation at the class or
method level are subject to change. They can be modified
in any way, or even removed, at any time,"5 and Apache
POI developers state that "Program elements annotated
@Internal are intended for [...] internal use only. Such
elements are not public by design and likely to be removed,
have their signature change, or have their access level de-
creased [...] without notice."6

Naming conventions on packages (e.g., internal and experimental
packages) are sometimes used for the same purpose [21]. For in-
stance, the following comment is attached to the class Finalizer

contained in the package com.google.common.base.internal of
Guava:

"While this class is public, we consider it to be *internal*
and not part of our published API. It is public so we can
access it reflectively across class loaders in secure environ-
ments".7

This comment highlights the lack of mechanisms for develop-
ers to fine-tune the boundaries of their APIs in languages such
as Java. Some elements are made public because of technical
constraints and not because of the desire to expose these ele-
ments in the API; developers must therefore rely on band-aid
solutions such as naming conventions. When used in relation to
semver, these code-level mechanisms enable library developers
to delimit a portion of their API that escapes the strict rules re-
garding backwards compatibility. That is, BCs can be introduced
in declarations labelled with these mechanisms without regard
for semver.

5 https://guava.dev/#important-warnings/

6 https://poi.apache.org/apidocs/dev/org/apache/poi/util/Internal/

7 https://guava.dev/releases/9.0/api/docs/com/google/common/base/

internal/Finalizer/

71

https://guava.dev/#important-warnings/
https://poi.apache.org/apidocs/dev/org/apache/poi/util/Internal/
https://guava.dev/releases/9.0/api/docs/com/google/common/base/internal/Finalizer/
https://guava.dev/releases/9.0/api/docs/com/google/common/base/internal/Finalizer/

3.3 original study

In this section, we briefly introduce the original study object
of this replication. We present its goal, main findings, and the
protocol used to answer its research questions.

The original study by Raemaekers, Van Deursen, and Visser,
entitled "Semantic versioning and impact of breaking changes in the
Maven repository" and published in The Journal of Systems and
Software in 2017, investigates whether API developers use ver-
sioning practices to signal backwards incompatibility, and how
unstable interfaces impact client projects in terms of compilation
errors [135]. Although the original study is organized around
seven research questions, we decide to focus our effort on three of
them that are specifically aimed at understanding the API-client
co-evolution problem. In particular, they address the relationship
between BCs and versioning conventions, and the impact of BCs

on client code. The main findings of the original study are sum-
marized in the following statements. Each of these answers one
of the research questions we selected: statement Hi corresponds
to question Qi. In this chapter, we reuse these results as new
hypotheses, which we aim to test under different conditions for
replication purposes.

Q1 How are semantic versioning principles applied in the
Maven Central Repository in terms of BCs?

H1 BCs are widespread without regard for semantic versioning
principles.

Q2 To what extent has the adherence to semantic versioning
principles increased over time?

H2 The adherence to semantic versioning principles has in-
creased over time.

Q3 What is the impact of BCs on clients?

H3 BCs have a significant impact in terms of compilation errors
in client systems.

72

On the one hand, the study relies on clirr [89] to study back-
wards compatibility. This tool is used to compute the list of
changes between two versions of a Java library. However, the de-
velopment of clirr has stopped in 2005, and Jezek and Dietrich
[70] later showed that it is the least sound of a list of 9 tools for
BCs detection in Java. On the other hand, to identify the impact
of BCs on client code, the original study uses a novel approach
that isolates individual changes on the newer version of the API,
and injects them one by one in the older version. Then, clients
are recompiled against each variant of the old version. The num-
ber of compilation errors raised by the Maven compiler is used
as a proxy to measure the impact of BCs. As the main corpus,
the study uses a snapshot of MCR dated July 2011, consisting of
148,253 JARs and named the Maven Dependency Dataset. In the
next section, we dive deeper into the design of our replication
study to highlight how it differs from the original study in terms
of protocol and corpora.

3.4 design of the replication study

In this section, we present the protocol of our replication study,
summarized in Figure 3.1. The source material of our study is
extracted from two different corpora: the Maven Dependency
Dataset (MDD) [133], which is used in the original study, and
the Maven Dependency Graph (MDG) [14]. These two corpora
are snapshots of MCR containing metadata information about
artefacts, versions, and dependencies between artefacts. The MDD

includes all artefacts from the MCR up to 2011, while the MDG

spans seven more years up to 2018. However, due to subtle
differences in the methodology used to build these snapshots,
the MDD is not strictly a subset of the MDG. In this study, we
run the very same analysis protocol on both corpora. On the one
hand, re-analysing the MDD enables us to assess the impact of our
updated protocol on the results obtained in the original study.
On the other hand, analysing the MDG enables us to broaden the
scope of analysed artefacts and strengthen our conclusions.

73

Maven Corpus
(MDD or MDG)

Upgrades
⟨v1, v2⟩

Dependencies

Δ-models

Detection
models

Q1
Q2

Q3

Compute BCs
(Maracas)

Extract relevant
library upgrades

Analyse

Compute impact
(Maracas)

Analyse

Extract dependencies

Figure 3.1: Overview of the analysis protocol

First, to answer Q1 and Q2, we extract relevant upgrades for
all libraries in the corpora, i.e., pairs of adjacent releases (e.g.,
JavaServlet versions 3.0.1 and 3.1.0) that conform to the selection
criteria presented in Derived Datasets section. The outputs of this
task are the upgrades datasets Do

u (for the MDD) and Dr
u (for the

MDG). Then, we use our tool Maracas to compute delta models
(∆-models) that store the list of BCs introduced in a particular
upgrade between two versions of a library. We analyse the re-
sulting ∆-models in Section 3.5 to answer our first two research
questions.

Second, to uncover the impact of BCs on client code and an-
swer Q3, we build the dependencies datasets Do

d and Dr
d, which

consist of all clients in the corresponding corpus that might be
impacted by the changes identified in a ∆-model (i.e., all artefacts
declaring a dependency towards a library upgrade extracted
previously). We again use Maracas to identify locations in these
clients that are impacted by BCs. The output is stored in a set
of detection models, where BCs are linked to affected locations in
client code. We analyse the resulting models in Section 3.5 to
answer our last research question.

The remainder of this section is structured as follows. The Data
Extraction section describes the data extraction process of the pro-
tocol. Then, the Maracas section gives an overview of our static
analysis tool, Maracas. Finally, in the Analysis Approach sec-
tion, we highlight the key differences between our protocol and

74

the original study’s protocol in terms of data selection, filtering,
and treatment.

Data Extraction

In this section, we introduce the two corpora used in this study,
together with the datasets derived from them to answer our
research questions.

corpora Our study relies on two corpora: the Maven Depen-
dency Dataset (MDD) and the Maven Dependency Graph (MDG).
The former is used to verify whether the main findings of the
original study hold when following a different protocol, while
keeping the same base data. The latter is included to assess
whether the conclusions of the original study remain valid on
a larger population, and whether the phenomenon under study
(BCs and semver in MCR) has evolved between 2011 and 2018.

the maven dependency dataset. The MDD is a publicly
available snapshot of the MCR dated July 30, 2011 [131]. The
corpus contains 148,253 JARs plus additional metadata stored
in three different database formats: MySQL, Berkeley DB, and
Neo4j [133]. For our purpose, we rely on the metadata stored in
the MySQL database. More specifically, we consider the files ta-
ble which stores information about the groupId, the artifactId, and
the version of each JAR in the corpus. There is a minor difference
in the number of JARs reported in the original study [135] and
the dataset paper [133]. We consider the information presented
in the latter after manually validating the data exposed in the
MySQL database.

the maven dependency graph . The MDG is a graph-based
snapshot of all artefacts on MCR as of September 6, 2018 [13, 14].
It is available as a Neo4j graph database where nodes are Maven
artefacts and edges are either dependency relations between two
artefacts (denoted :DEPENDS) or upgrade relations between two
artefacts of the same library (denoted :NEXT). The MDG contains

75

2.4M libraries, 9.7M dependency relations, and 2.1M upgrade re-
lations. We rely on the MDG to extract libraries metadata (e.g., ver-
sions, clients), and to identify dependency and upgrade relations
from which we derive the datasets required for our analyses.

derived datasets In what follows, we present the datasets
that are derived from each of the two corpora: the upgrade datasets
Do

u and Dr
u, and the dependencies dataset Do

d and Dr
d.

upgrades datasets To answer Q1 and Q2, we derive
datasets from our corpora consisting of a set of library upgrades
⟨v1 → v2⟩. For our analysis to be accurate and relevant, these
library upgrades must fulfill a set of criteria.

As a first filter, we only consider library upgrades ⟨v1 → v2⟩
such that v1 and v2 are two versions of the same library (uniquely
identified by its groupId and artifactId) which comply with the
semver scheme. More precisely, these versions must be of the
form X.Y[.Z], where X, Y, Z ∈ N, X is the major version, Y
the minor version, and Z the (optional) patch version. Versions
suffixed with an additional hyphen-separated qualifier often
used to tag release candidates, beta versions, or particular build
metadata (e.g., -b01, -rc1, -beta, -issue101) are discarded, as
they are not meant to be used by the general public. In the
MDG, for instance, we find 328,448 suffixed versions for 8,251

unique suffixes. The top five most frequent suffixes which we
have discarded correspond to release candidates and milestones,
namely: -rc1 (20,007 occurrences, 6.1%), -rc2 (12,373 occurrences,
3.8%), -M1 (10,614 occurrences, 3.2%), -rc3 (7,829 occurrences,
2.4%), and -M2 (7,780 occurrences, 2.4%). Looking closely at the
data, we also notice that a number of versions, even though they
technically comply with semver, use dates as versions numbers
(e.g., 2.5.20110712). We decide to discard them, as they do not
convey the meaning originally intended by semver.

Second, v1 and v2 must either be adjacent versions (v2 was
released immediately after v1) or separated with non-semver-
compliant versions only (all intermediate versions connecting v1
and v2 through upgrade relations do not match our criteria). For

76

instance, considering the three versions ⟨3.0.1 → 3.1-b01 →
3.1.0⟩, only ⟨3.0.1 → 3.1.0⟩ would be included.

Third, we only consider upgrades where v1 has at least one
external client in the dependency graph (either MDD or MDG). An
external client c of a library version v is a Maven artefact such that
c depends on v and belongs to a different groupId. This way, we
confirm that the artefacts we analyse are indeed used as libraries
in practice, and that there are real clients potentially affected by
the changes between v1 and v2. In the MDG, 56% of all artefacts
do not have any client (1, 356, 413 out of 2, 407, 395), and only
12% of all artefacts (293, 152) have at least one external client. In
the MDD, 61% of all artefacts do not have any client (89, 772 out
of 148, 253), and only 17% of all artefacts (24, 522) have at least
one external client.

Fourth, as we are only interested in the Java language, we
discard all JARs that contain code written in any other JVM-based
programming language (e.g., Scala, Clojure, Kotlin, Groovy), also
hosted on MCR. Our heuristic reads the source attribute of .class
files, set by most bytecode compilers, to retrieve the source file
that was used to produce the bytecode and infer the base lan-
guage. When languages other than Java are detected in a JAR, it
is discarded.

Fifth, to ensure that Maracas can process the JARs accurately,
we only select library upgrades for which v1 and v2 are packaged
as JAR files and are compiled with a Java version up to 8 included,
as the list and semantics of BCs differ in later versions with the
introduction of new language constructs. This differs from the
original study, given that Java 8 was released in 2014 and the
original snapshot dates from 2011. Thus, we expect to report new
types of BCs that were not considered for previous Java versions
(e.g., insertion of a new default method). The choice of Java 8 is
motivated by its popularity: looking at the data, we notice that it
is still by far the most popular Java version on MCR.

Lastly, when looking for clients of libraries, we discard all
dependency relations that are not in the compile scope or test

scope since they are either not reliably resolvable (e.g., provided
and system dependencies are not hosted on MCR) or are not

77

3.0.1 3.1-b01 3.1.0 4.0.0-b01 4.0.0-b02 4.0.0 4.0.1

∆Minor
∆Major

∆Patch

Figure 3.2: Extracting relevant upgrades from the JavaServlet project
(javax.servlet:javax.servlet-api) between versions

3.0.1 and 4.0.1

included in the compile-time and link-time classpaths of the
client and thus cannot impact binary compatibility (e.g., runtime
dependencies). Only dependencies in the compile and test

scopes are considered.
As an illustration of the selection process, Figure 3.28 depicts

how interesting upgrades are picked up between versions 3.0.1

and 4.0.1 of the JavaServlet library, and how ∆-models are
classified as major, minor, or patch.

From the original corpus (MDD), we obtain the upgrades dataset
Do

u consisting of 11, 384 upgrade pairs, along with the associ-
ated ∆-models computed using Maracas. This dataset differs
from the one presented in the original study which contains
126, 070 pairs [135]. This difference is explained by the additional
filters employed in our protocol: most upgrades are discarded
because they do not have any external client; 848 because they
contain bytecode generated from other JVM-based languages (2
in Clojure, 71 in Groovy, 76 in Scala, 699 a mix of these or other
languages); 641 because of an invalid Java version; 306 because
the JARs could not be retrieved from MCR; 2 because Maracas

raised an exception when processing the JARs; 31 because they
use dates as versions; 309 because the metadata states that v1 of
the library was released after v2, and; 27 that have an erroneous
release date strictly greater than 2011.

From the replication corpus (MDG), we obtain the upgrades
dataset Dr

u consisting of 119, 879 upgrade pairs. Most upgrades
are discarded because they do not have any external client; 39, 986

8 Dotted lines denote upgrade relationships between Maven artefacts. Only
major, minor, and patch upgrades are analysed: release candidates, alpha and
beta versions, and other qualified versions are discarded. Here, ∆-models are
computed for the upgrades ⟨3.0.1 → 3.1.0⟩, ⟨3.1.0 → 4.0.0⟩, and ⟨4.0.0 → 4.0.1⟩.

78

Table 3.1: Descriptive statistics of the datasets Do
u and Dr

u

Dimension Min. Q1 Med. Mean Q3 Max.

Do
u

External clients 1 1 3 24.31 8 6,153

of releases 1 1 1 1.23 1 55

Age (in months) 1 1 2 5.55 5 146

Releases/month 0.01 0.25 0.5 0.53 1 18

of decls. 1 71 280 2,076 1,276 218,274

of API decls. 1 49 200.5 1,515.6 891.2 159,478

Dr
u

External clients 1 1 2 25.31 7 36,186

of releases 1 7 20 39.4 49 587

Age (in months) 1 10 24 34.38 49 158

Releases/month 0.01 0.4 0.85 1.96 1.79 320

of decls. 1 79 329 2,519 1,346 586,172

of API decls. 0 52 220 1,850 974 561,465

because they are written in other JVM-based languages (20 in
Clojure, 1, 137 in Groovy, 1, 359 in Kotlin, 14, 402 in Scala, 23, 068
a mix of these or other languages); 852 because of an invalid
Java version; 10, 588 because the JARs could not be retrieved from
MCR; 271 because Maracas raised an exception when processing
the JARs; 115 because they use dates as versions, and; 2, 929
because the metadata states that v1 of the library was released
after v2.

Table 3.1, Figure 3.3, and Figure 3.4 summarize some descrip-
tive statistics of both datasets. As most distributions are strongly
skewed and difficult to visualize (number of clients, size, etc.), Ta-
ble 3.1 lists their minimum, maximum, median, mean, and quar-
tile values. As an illustration, the top five most popular libraries
in Dr

u are commons-io 2.4 (36,186 clients), slf4j-api 1.7.21

(33,582 clients), commons-codec 1.10 (32,990 clients), slf4j-api
1.7.12 (25,317 clients), and slf4j-api 1.7.7 (22,939 clients). We

79

0.00

0.25

0.50

0.75

1.00

1.2 1.3 1.4 5.0 6.0 7 8
Java version

R
at

io

Dataset

Duo

Dur

Java versions histogram.

Figure 3.3: Histogram of projects Java versions in MDD and MDG

80

0.00

0.25

0.50

0.75

1.00

MAJOR MINOR PATCH DEV
Semver level

R
at

io

Dataset

Duo

Dur

Semver levels histogram.

Figure 3.4: Java versions and semver levels histograms

81

refer the reader to the companion webpage and Zenodo reposi-
tory9 to access and interact with the datasets.

dependencies datasets To answer Q3, for each upgrade
in Do

u and Dr
u, we compute the list of all clients potentially

impacted. That is, all clients that declare a compile-time or test-
time dependency towards the library v1 in a ⟨v1 → v2⟩ upgrade
pair, which are potentially affected by the ∆-model between v1

and v2. We observe that, often, different versions of the same
client (e.g., cv1

, cv2
, and cv3

) all depend on the same library
version v1. In such a case, it is unlikely that cv1

would migrate
to v2 as it is superseded by cv3

. Thus, we only include cv3
in the

resulting datasets to avoid counting the impact of the ∆-model
between v1 and v2 on c multiple times. The resulting datasets for
Do

u and Dr
u are Do

d and Dr
d, which contain, respectively, 35,539

and 293,817 clients.

Maracas

Maracas is a new static analysis tool written in Rascal [84] and
Java, which allows us to (i) automatically compute a ∆-model
between two binary versions of a library and (ii) detect locations
in a client binary that are affected by the BCs listed in a ∆-model.

∆-models A ∆-model is a model that stores the list of BCs

between two versions ⟨v1 → v2⟩ of a library. To compute the
∆-model between two versions of a library, Maracas internally
relies on japicmp. japicmp is a tool that compares two JAR files
and generates a list of BCs between these two JARs. It is able to
identify 31 binary incompatible BCs as specified in the JLS 8

th Edi-
tion [57]. Examples of BCs include removals (e.g., fieldRemoved,
methodRemoved), changes in modifiers (e.g., methodNowAbstract,
classNowFinal) and visibilities (e.g., fieldLessAccessible), type

9 https://zenodo.org/record/5221840/

82

https://zenodo.org/record/5221840/

changes (e.g., methodReturnTypeChanged), to name a few.10 As
we shall see later in the Q3 section, some are more critical than
others in terms of impact on clients. A ∆-model in japicmp fol-
lows a tree structure and consists of a list of modified types
(classes, interfaces) that recursively contain all modified child
elements (e.g., methods, fields, modifiers). Modified elements
themselves are labelled with a kind of BC (e.g., classRemoved,
fieldNowFinal). Maracas transforms japicmp’s tree-structured
models into a value in Rascal conforming to a ∆-model Algebraic
Data Type (ADT), which we use for further analysis. The choice
of japicmp is motivated by its high popularity and accuracy [70],
and by its active community.

Atop japicmp, we implement in Maracas a mechanism to
classify declarations in a library as stable or unstable. Unstable
declarations are code elements (e.g., classes, methods, fields)
that are explicitly marked with a specific annotation or that are
contained in a package not meant to be used by clients. For in-
stance, Google libraries use the annotation @Beta and Apache
libraries use the annotations @Internal to denote code elements
that are subject to sudden changes or that should not be used by
clients. Similarly, Eclipse packages containing the word internal

and Java Development Kit (JDK) packages starting with sun.*
should not be considered part of the API [21]. Because declara-
tions that are explicitly marked as unstable by developers escape
the rules of semver, it is important to classify stable and un-
stable declarations. To come up with a list of annotations to
consider, we automatically extract all annotations used in the
100 most popular libraries on MCR and manually review their
documentation to state whether they are used to delimit unstable
APIs. This way, we extract 185 unique annotations and a list of
keywords that typically appear in their name (api, alpha, beta,
internal, protected, private, restricted, experimental, dev, access). Then,
we conduct a keyword-based search on the annotations used
in the top 1,000 most popular libraries on MCR using as input

10 A complete list and description of these BCs is available on the companion web-
page (https://crossminer.github.io/maracas/emse21/) and Zenodo reposi-
tory (https://zenodo.org/record/5221840/).

83

https://crossminer.github.io/maracas/emse21/
https://zenodo.org/record/5221840/

the keywords extracted manually. This way, we extract 1, 258
annotations of which 48 match a keyword. The five most com-
mon API annotations encountered in these 1,000 libraries are as
follows: @Beta (1,451 occurrences), @InterfaceAudience (1,819

occurrences), @InternalApi (1,414 occurrences), @Internal (716

occurrences), and @SdkInternalApi (607 occurrences). In Mara-
cas, we use the list of extracted keywords to extract package and
annotation names used to delimit unstable APIs. Then, we classify
each BC in the ∆-models according to whether they affect a stable
or unstable declaration of the library.

detection models Prior work uses two main techniques
to assess the impact of BCs on client projects: either by tracing
library types that are imported in client code (through import

statements in Java) [12, 165] or by measuring the ripple effect
of changes on clients that have already been migrated manually
by developers [136]. The former approach largely over-estimates
the impact of BCs (a client may not use the broken declaration
in the imported type) and the latter requires the availability of
migrated clients. The original study employs a novel technique
that consists in isolating and injecting each individual BC in the
old library’s source code. Then, every client is compiled against
every ad-hoc version of the library where a single BC is inserted
to measure its impact in terms of compilation errors [135]. To
the best of our knowledge, however, it is rarely possible to inject
individual changes in a library without having to refactor other
parts of the API. Removing or renaming a method, for instance,
triggers a ripple effect within the library itself, which results
in multiple changes being inserted and impacting the clients.
Therefore, we hypothesize that this technique overestimates the
impact of BCs on clients. Moreover, while measuring the impact
of source incompatible BCs by counting compilation errors is a valid
approach, it is not appropriate to measure the impact of binary
incompatible BCs which are instead checked by the JVM linker. This
motivates the need of having a dedicated tool for identifying BCs

impact using static analysis.

84

Maracas leverages the ∆-models and Rascal M3 models to
link BCs to affected client declarations using static analysis of
binary code. An M3 model is an ADT that models relations be-
tween Java elements, extracted from a JAR file, in immutable
binary relations (e.g., containment relations among classes and
method declarations, invocation relations among method dec-
larations) [10]. Internally, M3 relies on the ASM framework11

to parse Java bytecode and populate the relations. By combin-
ing information about breaking declarations in ∆-models and
uses of these declarations in client code using M3 model, Mara-
cas is able to mark affected client declarations. This detection
algorithm is based on the JLS specification [57], and its imple-
mentation in Maracas for each kind of BC is detailed on the
companion webpage. The output of this task is a set of detections
that point to the affected client element, the modified API element,
the way it is being used (e.g., methodInvocation, fieldAccess,
implements), and the type of BC. In the example of Listing 3.4,
the affected client element is MockHttpServletRequest which
uses the modified API element changeSessionId() through an
implements relation due to a methodAddedToInterface change.

limitations

overridden methods M3 models generated from Java bi-
naries do not have information related to overridden methods.
This means that Maracas cannot detect BCs impact on code
that uses the API through method overriding. For instance, the
method now final BC breaks clients that override the now-final
method, but has no impact on clients that do not override this
method. In such a case, due to the lack of information, we follow
a pessimistic approach and report a detection in all cases.

exceptions handling Information related to thrown and
caught exceptions is not part of the M3 models. Maracas has
no information related to the types of exceptions handled in the
try-catch statements of clients. Thus, if a method in a library

11 https://asm.ow2.io/

85

https://asm.ow2.io/

throws a new kind of checked exception, Maracas is not able to
state whether the client will be impacted. In this case, we follow
a pessimistic approach and always report a detection.

inheritance hierarchy Changing the type of a field,
method, parameter, or any other member, or casting might turn
out to be a generalization or specialization of the associated type.
A type is generalized when it is changed to a supertype and a
type is specialized when it is changed to a subtype. In Maracas

we only have access to the client and to the analysed API binaries.
Other APIs used by the client are not part of the analysis. There-
fore, when a type is changed in a library, we cannot build the
whole inheritance hierarchy to state whether this type change
corresponds to a generalization or specialization. Without this
information, Maracas might report false positive detections,
following a pessimistic approach.

the super keyword The super keyword in Java gets a spe-
cial treatment when detecting errors caused by BCs at the client
level. When the visibility of a constructor goes from public to
protected, and the constructor is invoked through the use of the
super keyword in the subtype constructor, no error should be
reported. However, if the constructor is invoked without using
the super keyword, an error should be reported. Maracas is not
able to differentiate between these two types of invocations, and
thus follows a pessimistic approach to always report a detection.

the strictfp and native modifiers japicmp does not
report BCs related to the strictfp and native modifiers. There-
fore, Maracas is unable to detect client code affected by changes
related to these modifiers, directly affecting the recall of the tool.

validation Maracas is the cornerstone tool of our approach
as it is used to both compute the ∆-models revealing BCs (using
japicmp under the hood) and the detection models revealing
their impact. To correctly interpret our results, it is essential to
analyse the accuracy of Maracas.

86

When Maracas cannot accurately state whether a BC actually
has an impact due to the limitations listed above, the approach
we follow is to always over-approximate the detections at the
cost of sometimes reporting false positives, while avoiding any
false negative. This means that the results we obtain regarding
BCs and their impact might be slightly overestimated, but they
are not underestimated.

Binary compatibility is checked by the JVM linker. To evaluate
Maracas, we aim to compute its accuracy by comparing Mara-
cas detections with the error messages thrown by the JVM linker
itself when encountering code impacted by BCs. The JLS states
that binary compatibility should be checked during the loading
and linking phases of the JVM, but the choice of implementing
lazy or eager initialization of classes is up to the implementors.
In practice, the reference implementation (OpenJDK HotSpot)
implements lazy loading and waits for class initialization to load
and link a class. It follows that, to record the errors thrown by
the linker, it is necessary to execute a Java program making use
of breaking declarations. In addition, the Java linker throws an
exception and stops processing the class after the first error is
encountered, so the executed Java programs should contain only
a single use of a breaking declaration to record all errors.

To evaluate the accuracy of Maracas, we thus reuse and
extend the benchmark proposed by Jezek and Dietrich [70]. Their
benchmark consists of a library v1, a library v2 that breaks v1 in
all possible ways, and a client c that uses all declarations of v1 in
various ways. In order to trigger linking errors, client c consists
of a set of Main files. In the original version of the benchmark,
however, some Main files use several declarations of the library
v1: if the first use fails, the others are not evaluated by the linker.
Thus, we split the client c into more cases so that every case
exercises a single declaration of v1.

Our final benchmark for detections consists of 345 cases, where
each case consists of a Java entry point (Main file and method)
that exercises one particular BC and one particular way of using it.
The benchmark script first compiles v1, v2, and c in their binary
form (JAR), and then attempts to run every single Main file in c,

87

replacing v1 with v2 in its classpath. Whenever a linking error is
encountered, it is written to disk. Then, we run Maracas giving
it v1, v2, and c as inputs to get the list of detections. If a detection
matches an error reported by the linker, it is a true positive, if it
does not match any linker error it is a false positive, and if there
is no detection for a particular linker error it is a false negative. To
support future research, we have made our benchmark publicly
available on the companion webpage.

Out of the 345 cases, the JVM linker reports 132 errors and
Maracas reports 135 detections. Out of the 135 detections, 130

are true positives and 5 are false positives. There are 2 false
negatives. In this benchmark, Maracas achieves a precision of
96.3% and a recall of 98.5%. The five false positives are due to
the limitations listed in the section above. The two false negatives
are due to a limitation of japicmp, which does not compute BCs

related to the strictfp and native modifiers.
In addition to this benchmark, we developed a test suite as

part of Maracas consisting of 402 test cases. Using our own test
cases, we highlighted a bug in japicmp which we fixed through
a pull request accepted by the project maintainers.12

Analysis Approach

In this section, we compile some of the most relevant aspects
of the analysis performed in this study, and we contrast them
against the original study (cf. Table 3.2). We refer the reader to
Section 4 of the original work for further information.

backwards compatibility The original study computes
binary incompatible changes with clirr. However, clirr is not
able to report BCs related to exceptions and generics, and misin-
terprets changes related to inheritance and other modifiers [70].
In this study, we use japicmp to compute both source and binary
incompatible changes. The latter performs better than clirr ac-
cording to Jezek and Dietrich [70]. Although japicmp is unable to

12 https://github.com/siom79/japicmp/pull/251/

88

https://github.com/siom79/japicmp/pull/251/

Table 3.2: Main commonalities and differences between the original
study and the replication study protocols

Original study Replication study

Corpus MDD [133] MDD+MDG [14]
Corpus date interval 2005–2011 2005–2018

Backwards compati-
bility

Binary Binary

Static analysis tool clirr japicmp

Compared versions Adjacent Adjacent
Versioning scheme semver semver

Languages JVM-based Java
Clients per library ⩾ 0 ⩾ 1

Client impact detec-
tion

Compilation errors Static analysis

Code-level mecha-
nisms

@Deprecated Annotations, pack-
age naming

identify changes related to generics—which, due to type erasure
in Java, does not impact binary compatibility analysis—it accu-
rately reports all changes related to exceptions and inheritance.
In addition, it is more accurate than clirr when reporting on
changes associated with modifiers. We also contributed to the
tool by fixing a bug related to the detection of modifier changes.
Other committers have also made some contributions to improve
japicmp accuracy in recent times. With these changes, one new
case within the Jezek and Dietrich [70]’s benchmark passes: the
decrease of a nested interface access modifier from public to
protected.

library and version selection As is the case in the
original study, we only compute deltas between adjacent versions
of an API, which strictly follow the X.Y[.Z] version convention.
However, in contrast, we only consider artefacts that have at
least one external client on the MCR. This way, we ensure that
the artefacts we analyse are indeed used as libraries by clients.
This is a significant difference with the original study, as only
17% of all artefacts in the MDD and 12% of all artefacts in the

89

MDG have at least one external client. We also account for initial
development releases (0.Y[.Z]), which are not considered in the
original study.

parallel branches and maintenance releases The
original study does not account for maintenance releases that
happen in practice. For instance, suppose version 2.4 is released
after 3.0, as a maintenance release for the 2.X branch. Using
release dates to infer the order of versions, BCs for the upgrade
⟨3.0 → 2.4⟩ would be computed, even though this is not the
expected behaviour. Instead, we employ the MDG which properly
represents these upgrade relations regardless of release date, and
accounts for maintenance releases.

breaking changes impact The original study detects client
code affected by BCs by means of injecting changes in the source
code of an API. After the code injection, the client is compiled
against the modified API and new compilation errors are recorded.
There might be pre-existing compilation errors before changes
are injected in the API. These errors are intentionally excluded
from the analysis. However, this approach introduces a set of
limitations that can affect the outcome of the study, some of them
have already been identified by Raemaekers, Van Deursen, and
Visser [135]. We describe them as follows: (i) injecting changes in
isolation might introduce compilation errors that must be fixed.
In some cases, multiple changes should be injected at the same
time in order to avoid introducing compilation errors; (ii) pre-ex-
isting errors might hide new errors related to the injected BC;
(iii) reporting on compilation errors gives us an idea of how
source compatibility is affected. However, binary compatibility
is not equivalent to source compatibility. Compilation errors
account for source incompatible changes and cases of binary
incompatibility that are shared between both sets; (iv) we cannot
guarantee that all expected compilation errors are reported by
the compiler. For instance, if at least one imported package in a
class cannot be found, the compiler will not reach subsequent
errors [135]; (v) when injecting changes in the API, it is difficult

90

to manage cases where one piece of code is related to multiple
BCs. For instance, we inject a piece of code related to changes C1

and C2 in a given API. If we want to measure the impact of both
changes, we will end up with the same number of compilation
errors for both cases without discriminating their origin, and;
(vi) the compiler cannot tell the cause or the BC that produces a
given error.

Overall, given the widespread use of the language features
involved in the above possible causes of inaccuracy, and their
relation to the research questions, we believe that developing and
using a more accurate tool will have a significant impact on the
outcome. Thus, we use Maracas to detect affected code on the
client side and report on its accuracy.

deprecated and unstable interfaces The original
study uses @Deprecated annotations to identify unstable inter-
faces. Occurrences of this annotation are computed, except for
nested cases. This means that the analysis will not detect declara-
tions within a deprecated class, where explicit annotations have
not been used [135]. These cases are considered in the present
work. Moreover, there are also other mechanisms to signal unsta-
ble interfaces. We argue that other annotations, such as Google’s
@Beta and Apache’s @Internal annotations, are also used to sig-
nal instability in an API. In addition, naming conventions on
packages are also used for the same purpose. We then include
the detection of these cases to perform a deeper analysis of the
derived datasets.

3.5 results & analysis

In this section, we analyse the data extracted using the protocol
described in Section 3.4. Each subsection describes the method,
results, and analysis of a particular research question.

91

Q1: How are semantic versioning principles applied in the Maven
repository in terms of BCs?

Method

With Q1, we analyze when and where BCs happen and with
which frequency. We attempt to distinguish expected and un-
expected BCs according to the semver principles and the use of
code-level mechanisms to signal unstable APIs. In a first step, we
seek to highlight the impact of the updated protocol described
in Section 3.4 on the results reported in the original study. To do
so, we compute the ∆-models between every ⟨v1 → v2⟩ ∈ Do

u,
while distinguishing among major, minor, patch, and initial de-
velopment releases. In a second step, to assess whether the results
hold on the larger dataset Dr

u comprising seven more years of
MCR, we run the same analysis for every ⟨v1 → v2⟩ ∈ Dr

u. The ∆-
models distinguish between BCs that are introduced in stable and
unstable parts of the APIs, according to code-level annotations
(such as @Beta or @Internal, cf. Section 3.4), as well as naming
conventions (such as internal). As BCs in unstable parts of an API

are to be expected, only BCs introduced in the stable parts are
included.

To know where to expect BCs or in which type of upgrades, we
compare the percentage of breaking upgrades per semver level.
Alongside semver categories (i.e., major, minor, patch, and initial
development), we also consider the group of non-major releases
as a whole (i.e., minor and patch releases combined). Then, to
know how many BCs are usually introduced in each semver level,
we consider the distribution of BCs over all groups.

We wrap up the analysis of Q1 by studying the frequency of
each type of BC. From these results, we identify the most common
BCs in our datasets and compare these results against the ones
presented in the original study.

Results

breaking upgrades Table 3.3 highlights the main results
obtained for Q1. The first block lists the results reported in the

92

original study [135], the second block the results obtained for
Do

u (for replication purposes), and the third block the results
obtained for Dr

u.
First of all, we compare the results reported in the original

study against those obtained for Do
u. While we report a similar

number of breaking upgrades overall (cf. Total row: 32.2% in Do
u

vs. 30.0% in the original study), we observe that the difference
in the ratio of breaking upgrades per semver level is stronger
(cf. Major, Minor, Patch, and Dev rows). As expected, most major
upgrades in Do

u introduce BCs (72.7%), which contrasts with the
results obtained in the original study (35.9%). While the original
study reports that there are as many breaking major upgrades
as breaking minor upgrades, we observe a sharper difference
between these two levels in the same corpus: 72.7% of major
upgrades (vs. 35.9% in the original study) and 50.1% of minor
upgrades (vs. 35.7% in the original study) break in Do

u. With
regards to patch upgrades, we observe a similar percentage of
breaking cases (24.2% in Do

u vs. 23.8% in the original study).
39.3% of the initial development upgrades, which are not con-
sidered in the original study, are breaking. Overall, we report
that 30.5% of non-major releases13 do not conform to semver,
which matches the results obtained in the original study (29.0%).
Upgrades that comply with the scheme principles (i.e., major up-
grades, initial development upgrades, and non-breaking minor
and patch upgrades) represent 72.8% of all upgrades in Do

u.
For Dr

u, which spans seven more years of the MCR and com-
prises ten times more upgrades, we observe that the tendency to
comply with semver improves. The ratio of breaking upgrades
is lower overall (22.0% in Dr

u vs. 32.2% in Do
u), and for each

level: 61.8% for major upgrades, 37.9% for minor upgrades, 14.6%
for patch upgrades, and 26.7% for initial development upgrades.
This amounts to 83.4% of all upgrades conforming to semver

principles. However, 20.1% of non-major upgrades are still break-
ing and thus do not comply with the versioning conventions.

13 Non-major releases only consider patch and minor releases. Initial development
releases are excluded from this category as these ones are allowed to introduce
BCs at any moment.

93

Table 3.3: Total and breaking upgrades in the original study, Do
u, and

Dr
u datasets

Level

Total Breaking

Count % Count %

Original study

Major 11,892 14.8 4,268 35.9
Minor 29,957 37.2 10,690 35.7
Patch 38,740 48.1 9,239 23.8
Dev n/a n/a n/a n/a
Non-major 68,697 85.3 19,929 29.0
Total 80,589 100 24,197 30.0

Do
u

Major 253 2.2 184 72.7
Minor 2,413 21.2 1,228 50.1
Patch 7,728 67.9 1,870 24.2
Dev 990 8.7 389 39.3
Non-major 10,141 89.1 3,098 30.5
Total 11,384 100 3,671 32.2

Dr
u

Major 2,431 2.0 1,503 61.8
Minor 23,309 19.4 8,837 37.9
Patch 75,282 62.8 11,031 14.6
Dev 18,857 15.7 5,036 26.7
Non-major 98,591 82.2 19,868 20.1
Total 119,879 100 26,407 22.0

The difference in results between Do
u and Dr

u suggests that the
adherence to semantic versioning may have increased over time.
This intuition is investigated further in the next research question
Q2.

number of bc To study the frequency of BCs introduction, we
first look at the number of BCs introduced in breaking releases,

94

52

13

6

12
8

3
2

4

20
2.

5

53

21

46

11010
0

10
00

10
00

0

M
A

JO
R

M
IN

O
R

PA
T

C
H

D
E

V

S
em

ve
r

le
ve

l

Number of BCs (log10 scale)

(a
)
D

o u

28

9

5
8

7

2
2

2

13
1.

5

38

18

32

1e
+

01

1e
+

03

1e
+

05

M
A

JO
R

M
IN

O
R

PA
T

C
H

D
E

V

S
em

ve
r

le
ve

l

Number of BCs (log10 scale)

(b
)
D

r u

Fi
gu

re
3
.5

:V
io

lin
pl

ot
s

of
th

e
nu

m
be

r
of

BC
s

in
br

ea
ki

ng
up

gr
ad

es
pe

r
s
e
m
v
e
r

le
ve

l

95

i.e., releases that contain at least one BC. Figure 3.514 shows the
distribution in a logarithmic scale of BCs per semver level for
breaking releases in Do

u and Dr
u. Looking at the median values,

we notice that the number of BCs is higher in major upgrades (52

in Do
u and 28 in Dr

u). Minor and initial development upgrades
tend to have a similar number of BCs in both datasets (13 and 12

in Do
u, and 9 and 8 in Dr

u, respectively). Patch upgrades introduce
the least number of BCs (6 in Do

u and 5 in Dr
u). This suggests that

non-major development releases not only do break less often,
they also tend to introduce fewer BCs when they do.

bc types Figure 3.6 and Figure 3.7 present the ratio of BC

types (e.g., method removed, field removed) using a bar plot, for both
Do

u and Dr
u. BCs are discriminated by semver levels and ordered

from the most to the least frequent. We notice that the ratio of BC

types is consistent across semver levels (except perhaps for the
method return type changed and field type changed in the original
dataset). In both datasets, the 10 most common BC types and their
associated ratios remain mostly unchanged: method removed, field
removed, interface removed, constructor removed, superclass removed,
class removed, interface added, method added to interface, method return
type changed, and field type changed. Similarly, in both datasets, the
BC kinds ranked after method return type changed are very rare.
Interestingly, the five most frequent BC kinds are all related to
the removal of API entities. We cannot directly compare these
results with the original study, given that not all reported BC

types are identified in the same way between the underlying
tools (i.e., clirr and japicmp). However, our observations align
with the results reported in the original study where method,
class, and field removal headed the list. Naturally, the BCs method
new default and method abstract now default do not occur in the Do

u

dataset, as they relate to the default operator which was only
introduced in Java 8 (2014), while the most recent artefacts in Dr

u

date back to 2011.

14 Inside each violin plot, we display the first quartile, the median, and the third
quartile.

96

0.0

0.1

0.2

0.3

0.4

0.5

m
et

ho
dR

em
ov

ed
fie

ld
R

em
ov

ed

in
te

rfa
ce

R
em

ov
ed

co
ns

tru
ct

or
R

em
ov

ed

su
pe

rc
la

ss
R

em
ov

ed
cl

as
sR

em
ov

ed
in

te
rfa

ce
A

dd
ed

m
et

ho
dA

dd
ed

To
In

te
rfa

ce

m
et

ho
dR

et
ur

nT
yp

eC
ha

ng
ed

fie
ld

Ty
pe

C
ha

ng
ed

m
et

ho
dM

or
eA

cc
es

si
bl

e

m
et

ho
dA

bs
tra

ct
A

dd
ed

To
C

la
ss

fie
ld

M
or

eA
cc

es
si

bl
e

su
pe

rc
la

ss
A

dd
ed

cl
as

sN
ow

Fi
na

l

m
et

ho
dN

ow
Fi

na
l

fie
ld

Le
ss

A
cc

es
si

bl
e

m
et

ho
dL

es
sA

cc
es

si
bl

e
fie

ld
N

ow
Fi

na
l

co
ns

tru
ct

or
Le

ss
A

cc
es

si
bl

e

m
et

ho
dN

ow
A

bs
tra

ct

m
et

ho
dN

oL
on

ge
rS

ta
tic

cl
as

sN
ow

A
bs

tra
ct

cl
as

sT
yp

eC
ha

ng
ed

m
et

ho
dN

ow
S

ta
tic

cl
as

sL
es

sA
cc

es
si

bl
e

cl
as

sN
oL

on
ge

rP
ub

lic

fie
ld

N
oL

on
ge

rS
ta

tic
fie

ld
N

ow
S

ta
tic

m
et

ho
dA

bs
tra

ct
N

ow
D

ef
au

lt

m
et

ho
dN

ew
D

ef
au

lt

BC kind

R
at

io

Semver level

MAJOR

MINOR

PATCH

DEV

Figure 3.6: BC types frequency per semver level in Do
u

97

0.0

0.1

0.2

0.3

0.4

0.5

m
et

ho
dR

em
ov

ed
fie

ld
R

em
ov

ed

in
te

rfa
ce

R
em

ov
ed

co
ns

tru
ct

or
R

em
ov

ed

su
pe

rc
la

ss
R

em
ov

ed
cl

as
sR

em
ov

ed
in

te
rfa

ce
A

dd
ed

m
et

ho
dA

dd
ed

To
In

te
rfa

ce

m
et

ho
dR

et
ur

nT
yp

eC
ha

ng
ed

fie
ld

Ty
pe

C
ha

ng
ed

m
et

ho
dM

or
eA

cc
es

si
bl

e

m
et

ho
dA

bs
tra

ct
A

dd
ed

To
C

la
ss

fie
ld

M
or

eA
cc

es
si

bl
e

su
pe

rc
la

ss
A

dd
ed

cl
as

sN
ow

Fi
na

l

m
et

ho
dN

ow
Fi

na
l

fie
ld

Le
ss

A
cc

es
si

bl
e

m
et

ho
dL

es
sA

cc
es

si
bl

e
fie

ld
N

ow
Fi

na
l

co
ns

tru
ct

or
Le

ss
A

cc
es

si
bl

e

m
et

ho
dN

ow
A

bs
tra

ct

m
et

ho
dN

oL
on

ge
rS

ta
tic

cl
as

sN
ow

A
bs

tra
ct

cl
as

sT
yp

eC
ha

ng
ed

m
et

ho
dN

ow
S

ta
tic

cl
as

sL
es

sA
cc

es
si

bl
e

cl
as

sN
oL

on
ge

rP
ub

lic

fie
ld

N
oL

on
ge

rS
ta

tic
fie

ld
N

ow
S

ta
tic

m
et

ho
dA

bs
tra

ct
N

ow
D

ef
au

lt

m
et

ho
dN

ew
D

ef
au

lt

BC kind

R
at

io

Semver level

MAJOR

MINOR

PATCH

DEV

Figure 3.7: BC types frequency per semver level in Dr
u

98

Analysis

Artefacts on MCR do not strictly follow semver, as an important
ratio of non-major upgrades are breaking (20.1% in Dr

u), confirm-
ing the main result from the original study. However, we observe
a sharp difference in the ratio of breaking upgrades per semver
level with our protocol (61.8% of major upgrades, 37.9% of minor
upgrades, 14.6% of patch upgrades, and 26.7% of initial devel-
opment upgrades break). This contrasts with the original study,
which reports a similar ratio of breaking upgrades for major and
minor cases, with patch upgrades only slightly more stable. In
general, differences between the results reported in the original
study and Do

u are explained by the additional filters considered
in our protocol, the increased accuracy of Maracas and japicmp

in detecting BCs, and the consideration of APIs annotated as un-
stable at the source code level (cf. Analysis Approach section).
Differences between Do

u and Dr
u are mainly due to the increased

time span and the number of artefacts. This rationale applies
to the forthcoming analyses. Our results suggest that semver

principles are followed to some extent in practice, as 83.4% of
the library upgrades we analyse do comply with the backwards
compatibility requirements of the versioning scheme.

We also notice that major upgrades not only result in a higher
number of breaking cases but also tend to introduce more BCs per
breaking upgrade. Patch upgrades are the ones introducing the
least number of BCs. This suggests that, even when a non-major
release is breaking, the amount of work ending on the clients’
shoulders is not as high as for a major release. Finally, the most
common BCs are aligned with results presented in the original
study: removal of API members is the most common type of BC

occurring in libraries.

Q1: How are semantic versioning principles applied in the
MCR? H1 asserts that "BCs are widespread without regard for ver-
sioning principles." From our analysis, we conclude that although
semver principles are not always strictly applied (20.1% of non-
major releases are breaking), they are largely followed: 83.4% of

99

all upgrades comply with semver regarding backwards compati-
bility guarantees, and the differences between semver levels are
notable. Not only do minor and patch releases break less often
than major releases, they also introduce fewer BCs. This leads us
to reject H1.

Q2: To what extent has the adherence to semantic versioning principles
increased over time?

Method

To answer Q2, we first study how the ratio of breaking upgrades
for the various semver levels has evolved over time, aggregated
per year. The ratio of breaking upgrades corresponds to the
number of upgrades containing at least one BC over the total
number of upgrades per semver level. We still consider the four
different semver levels plus the analysis of non-major upgrades
as a whole. Reported results are based on the data extracted from
the Dr

u dataset. The latter spans fourteen years of Maven artefacts
from MCR (2005 to 2018 included). We then contrast these results
against the ones reported in the original study. Studying the
evolution of the adherence to semantic versioning principles is
especially relevant as the semver specifications are fairly recent in
the history of MCR: semver 1.0.0 was released in 2009 and semver

2.0.0 in 2013. It is thus likely that the principles of semver did
not percolate yet in the dataset used in the original study.

Results

Figure 3.815 depicts how the ratio of breaking upgrades has
evolved for major, minor, patch, initial development, and non-
major levels. Overall, the ratio of breaking upgrades, regardless
of the semver level, tends to decrease. As expected, the ratio of

15 Each data point aggregates the number of breaking upgrades of the given type
for an entire year. A vertical line delimitates the periods of the original and
updated datasets.

100

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

R
el

ea
se

 y
ea

r

Ratio of breaking upgrades

S
em

ve
r

le
ve

l

D
E

V

M
A

JO
R

M
IN

O
R

N
O

N
M

A
JO

R

PA
T

C
H

Fi
gu

re
3
.8

:E
vo

lu
ti

on
of

th
e

ra
ti

o
of

br
ea

ki
ng

up
gr

ad
es

pe
r
s
e
m
v
e
r

le
ve

li
n
D

r u

101

breaking upgrades of major and initial development levels is
more chaotic since BCs are allowed in these releases. Neverthe-
less, even major and initial development releases contain fewer
BCs in 2018 than in 2005. One possible hypothesis is that clients’
tolerance for BCs has decreased over time and that libraries are
avoiding them more and more, even when allowed. Additionally,
different ecosystems such as npm, RubyGems, Cargo, MCR [34],
and GitHub are encouraging library developers to follow semver
guidelines. In particular, GitHub explicitly states in its official
documentation: "We recommend naming tags that fit within semantic
versioning."16 Another relevant example is the Maven ecosys-
tem, which offers the maven-release-semver-policy plugin to
enforce the use of semver when releasing a project.

Over 14 years, the ratio of breaking minor upgrades has de-
creased almost by a factor of three (from 84.4% to 30.1%) and
the ratio of breaking patch upgrades has decreased by a factor
of six (from 59.7% to 9.6%). This is to be contrasted with the
results of the original study, which finds that, from 2005 to 2011,
the number of non-major breaking upgrades has decreased from
28.4% to 23.7%. Conversely, we find that non-major breaking
upgrades have decreased from 67.7% in 2005 to 16.0% in 2018.

Analysis

As Maracas and japicmp are able to detect more types of BCs,
the percentages we report are higher than the ones reported
in the original study, which makes the decrease of the ratio
of breaking non-major upgrades much steeper than originally
reported (a 44% reduction instead of a 5% decrease). However,
the decrease in the extended period is less evident: only a 9.2%
decrease. Visually, 2011 appears as a turning point w.r.t. the
decrease of breaking non-major upgrades, as the slope is less
steep after this date. We found no plausible explanation for this
phenomenon. Overall, it confirms once more the statement that
even though not all artefacts on MCR follow semver guidelines,

16 https://docs.github.com/en/github/administering-a-repository/

releasing-projects-on-github/managing-releases-in-a-repository/

102

https://docs.github.com/en/github/administering-a-repository/releasing-projects-on-github/managing-releases-in-a-repository/
https://docs.github.com/en/github/administering-a-repository/releasing-projects-on-github/managing-releases-in-a-repository/

there is an increasing tendency to comply with the versioning
scheme principles.

Q2: To what extent has the adherence to semantic versioning
principles increased over time? H2 states that "The adherence to
versioning principles has increased over time." Our results confirm the
results of the original study. They also show that the improvement
over time is much higher than initially reported for the 2005–2011

period. The tendency persists in the 2011–2018 period, although
the slope is less steep. Thus, we cannot reject H2.

Q3: What is the impact of BCs on clients?

Method

In Q3, we investigate to which extent BCs introduced in Java
libraries impact their clients on MCR. More formally, for every
∆-model computed between versions ⟨v1 → v2⟩ of a given library
(cf. Q1), we extract all the clients c declaring a compile-time or
test-time dependency towards v1 to uncover the impact ∆⟨v1, v2⟩
would have on c if it was updated to v2. Concretely, we use the
static analysis capabilities of Maracas to pinpoint which code
locations in c are impacted by individual BCs of the corresponding
∆-model (cf. Maracas section).

The impact a BC has on client code varies according to if and
how the client uses the declaration affected by the change (cf.
Listing 3.4). Hence, determining the impact of BCs requires a
deep understanding of how clients and libraries interact. For
every client, we classify the impact of each individual BC in one
of three categories: (i) the declaration affected by the change is
not used in client code (unused); (ii) the declaration affected by
the change is used in a non-breaking way (non-breaking), and; (iii)
the declaration affected by the change is used in a breaking way
(breaking).

As with the first two research questions, we report results for
both the MDD and the MDG corpora. The datasets Do

d and Dr
d

103

contain, respectively, 35, 539 and 293, 817 clients which are po-
tentially impacted by a ∆-model extracted in Q1. As it would
be impractical to analyse these cases exhaustively, we resort to
analyse a subset of them by performing a random sampling. The
question we ask for each case is: does client c break when upgrad-
ing from version v1 to version v2 of a library it uses? To answer
this question with a confidence level of 99% (c = 0.99), an error
margin of 1% (e = 0.01), and an estimated proportion of the pop-
ulation p = 0.5 (the more conservative value yielding the largest
sample size) of broken clients, we apply the standard Cochran’s
sample size formula to determine sample sizes for each kind of
upgrade (i.e., major, minor, patch, and initial development). Then,
we draw upgrades at random, without replacement, from the
set of all upgrades, all major upgrades, all minor upgrades, all
patch upgrades, and all initial development upgrades, yielding
the samples depicted in Table 3.4. For each tuple ⟨c, v1, v2⟩ in
the corresponding samples, we use Maracas to compute their
detection models and analyse the impact of ∆(v1, v2) on client c,
distinguishing among unused declarations, non-breaking uses, and
breaking uses.

To uncover which kinds of upgrade break clients the most,
we compare the percentage of overall broken clients per semver
level. Afterwards, we consider the number of broken locations
per client for each level.

Results

broken clients Table 3.4 depicts the size of each semver

sample and the number and proportion of broken clients for
both Do

d and Dr
d. We observe that 9.5% and 7.9% of all clients

for Do
d and Dr

d, respectively, would break if they upgraded their
dependency to the next release.

Taking into account the kind of upgrade yields interesting
results: in both datasets, initial development upgrades lead to the
highest percentage of broken clients (18.4% for Do

d and 16.8% for
Dr

d), followed by major (12.7% for Do
d and 11.7% for Dr

d), minor
(11.9% for Do

d and 7.8% for Dr
d), and finally, patch upgrades (6.0%

104

Table 3.4: Samples derived from the population of dependencies

All Major Minor Patch Dev

Do
d

Population size 35,539 2,861 13,444 17,425 1,809

Sample size 11,310 2,440 7,426 8,498 1,631

Broken clients 1,076 309 883 514 300

% broken clients 9.5% 12.7% 11.9% 6.0% 18.4%

Dr
d

Population size 293,817 29,847 111,830 123,286 28,854

Sample size 15,701 10,663 14,445 14,621 10,533

Broken clients 1,237 1,250 1,130 735 1,772

% broken clients 7.9% 11.7% 7.8% 5.0% 16.8%

for Do
d and 5.0% for Dr

d). This indicates that clients are more
likely to break when upgrading to a version of a library that is
potentially breaking according to semver conventions, with initial
development releases being the most problematic. Conversely,
clients that upgrade to minor and patch releases are less likely to
be affected.

As we resort to random sampling to estimate the proportion
of broken clients, we use statistical inference to assess our raw
results. For the sake of simplicity, we only perform the statis-
tical analysis for the Dr

d dataset. We have the following null
hypothesis: "the proportion of broken clients is the same across each
semver level of library upgrades". Note that in the remainder of this
section, we use * to label the significance of the p-values using
the following scale: * indicates a p < 0.1, ** a p < 0.05 and *** a
p < 0.01. We run a X2 (chi-squared) test on the table containing
the number of broken and non-broken clients for each level. This
test yields a p < 2.2× 10−16 ***, therefore, we reject the null
hypothesis and accept the alternative hypothesis "the proportion of
broken clients is different across each semver level of library upgrades".

To assess the differences across semver levels, we conduct post-
hoc analyses for each pair of groups using Fisher’s exact test on
the contingency tables. We adjust the resulting p-values using

105

Table 3.5: p-values and odds ratios across all pairs of semver levels in
Dr

d to assess the differences in terms of broken clients

Semver level p-value Odds ratio

Major vs. minor 7.45× 10−25 *** 0.64
Major vs. patch 3.02× 10−83 *** 0.40
Major vs. dev 6.34× 10−26 *** 1.52
Minor vs. patch 1.80× 10−22 *** 0.62
Minor vs. dev 2.13× 10−104 *** 2.38
Patch vs. dev 1.37× 10−206 *** 3.82

a Holm-Bonferroni correction. Finally, we assess the effect size
using the odds ratio. We obtain the results shown in Table 3.5.

The p-values are all significant considering a 0.01 threshold.
If we look at the direction of the odds ratios, the results are
as expected w.r.t. the differences among levels. The proportion
of broken clients is higher for initial development upgrades,
then major upgrades, then minor upgrades, and finally patch
upgrades. Looking at the values of the odds ratios, we note that
the difference in the odds of being broken depending on the
semver level is perhaps not as high as one would expect. For
instance, for major versus minor the odds of being broken in a
minor upgrade is 0.6 times the odds of being broken in a major
upgrade. An interesting finding is that, in the Maven ecosystem,
initial development upgrades break a greater proportion of clients
than major upgrades.

number of detections Figure 3.9 presents the distribution
in logarithmic scale of the number of broken declarations (i.e.,
detections) per client. Figures are presented for each semver sam-
ple in both Do

d and Dr
d. In these distributions we only consider

broken clients, that is, clients that have at least one declaration
affected by a BC. In both datasets Do

d and Dr
d, we observe a

similar trend: major upgrades yield the highest number of bro-
ken declarations (medians of 5 and 6, respectively), followed by
minor upgrades (medians of 4 and 3.5, respectively) and patch
upgrades (medians of 3 and 3, respectively). In Do

d, initial devel-

106

Table 3.6: p-values and Cliff’s delta across all pairs of semver levels in
Dr

d

Semver level p-value Cliff’s delta

Major vs minor 4.89× 10−11 *** 0.16 (small)
Major vs patch 2.79× 10−13 *** 0.20 (small)
Major vs dev 2.04× 10−8 *** 0.12 (negligible)
Minor vs patch 0.165 0.04 (negligible)
Minor vs dev 0.165 −0.04 (negligible)
Patch vs dev 0.004 *** −0.08 (negligible)

opment upgrades yield even more broken declarations than in
major upgrades (median of 6), as opposed to what we observe in
Dr

d (median of 4).
As we resort to random sampling to estimate the number of

breaking declarations in broken clients, we use statistical infer-
ence to assess our raw results. For the sake of simplicity, we
only perform the statistical analysis for the Dr

d dataset. We have
the following null hypothesis: "the number of broken declarations
is the same across each semver level of library upgrades". We run a
Kruskal-Wallis rank-sum test on the number of broken declara-
tions for each semver level. This test yields a p = 3.82× 10−16 ***,
therefore, we reject the null hypothesis and accept the alternative
hypothesis "the number of broken declarations of broken clients is
different across each semver level of library upgrades".

To make an in-depth assessment of the differences across
semver levels, we conduct post-hoc analyses for each pair of
groups, using a two-tailed Mann-Whitney test. We adjust the
resulting p-value using a Holm-Bonferroni correction. In addi-
tion, we compute Cliff’s delta to assess the effect size and report
the interpretation of its value using Cohen’s scale. We obtain the
results shown in Table 3.6.

We note that two pairs are not significant (minor vs. patch
and minor versus initial development), while the others are all
significant at the 0.01 threshold. Looking at the direction of
Cliff’s deltas, the results are aligned with our expectations: the
number of breaking declarations in major upgrades is greater

107

5
4

3

6

2
2

1

2

15
11

11

17.2

1 10

100

1000

M
A

JO
R

M
IN

O
R

PAT
C

H
D

E
V

S
em

ver level

Number of detections (log10 scale)

(a)
D

od

6

3.5
3

4

2

1
1

2

21.7

12
10

13

1 10

100

1000

10000

M
A

JO
R

M
IN

O
R

PAT
C

H
D

E
V

S
em

ver level

Number of detections (log10 scale)
(b)

D
rd

Figure
3.

9:N
um

ber
of

detections
per

s
e
m
v
e
r

level

108

than in minor, patch, and initial development upgrades, and the
number of breaking declarations in initial development upgrades
is greater than in minor and patch upgrades. Looking at the
values of Cliff’s deltas, however, we note that the differences are
very small across the groups. It indicates that, when a client is
broken, the number of broken declarations it contains is similar
whatever the semver level of the upgrade is.

bc types Figure 3.10 shows the ratio of breaking and non-
breaking uses of broken declarations for each BC type in Dr

d. We
note that most BCs result in breaking clients as soon as they use
the broken declaration. Interestingly, we find several BCs that, in
most cases, do not break clients even when the broken declaration
is used in the client code. On the other hand, apart from the
interface removed and interface added BCs, all other popular BCs (as
computed in Section 3.5) are prone to break clients. However, it
should be noted that, for most types of BCs, there is not enough
data to support a definitive conclusion. This prevents us from
proceeding to a reliable statistical analysis.

Analysis

Considering the results for the MDG corpus, we find that initial
development and major releases tend to impact a higher number
of clients (11.7% and 16.8%, respectively), as compared to minor
and patch releases (7.8% and 5.0%, respectively). The same ten-
dencies can be observed in the MDD corpus. Additionally, not
only do clients break more often in major and initial development
upgrades, but they also tend to break more. In general, clients
are rarely impacted by breaking declarations in the libraries they
use because they do not explicitly use the affected declaration.
However, when a client uses a declaration that is affected by a
BC, it is likely to break. These results are probably explained by
the fact that library developers introduce BCs in parts of their API

that are less likely to be used by their clients. This intuition has
already been investigated in the literature [64], and our results
are aligned with their observations.

109

classLessAccessible
classNoLongerPublic

classNowAbstract
classNowFinal
classRemoved

classTypeChanged
constructorLessAccessible

constructorRemoved
fieldLessAccessible
fieldMoreAccessible
fieldNoLongerStatic

fieldNowFinal
fieldNowStatic
fieldRemoved

fieldTypeChanged
interfaceAdded

interfaceRemoved
methodAbstractAddedToClass

methodAbstractNowDefault
methodAddedToInterface

methodLessAccessible
methodMoreAccessible

methodNewDefault
methodNoLongerStatic

methodNowAbstract
methodNowFinal

methodNowStatic
methodRemoved

methodReturnTypeChanged
superclassAdded

superclassRemoved

0.00 0.25 0.50 0.75 1.00

Usage kind breaking nonbreaking

Figure 3.10: Ratio of breaking and non-breaking uses of API elements
w.r.t. the BC type in Dr

d

110

Q3: What is the impact of BCs on clients? H3 asserts that "BCs

have a significant impact in terms of compilation errors in client sys-
tems." Conversely, we observe that in most cases breaking decla-
rations are not used by client projects, which instead yields a low
number of broken clients (7.9% for all releases). The number is
even lower in the case of minor and patch upgrades. However,
when a breaking declaration is used by a client, there is a high
chance that it will be impacted. These results contrast with those
of the original study and lead us to reject H3.

Threats to Validity

In this section, we discuss the main threats to the validity of
our replication study, following the structure recommended by
Wohlin et al. [159].

internal validity As explained in the Maracas section, the
tool we implement and use to detect BCs and their impact on
client code is not perfectly accurate, which impacts the metrics we
compute. As a sanity check, we reuse and extend a benchmark for
Java evolution and compatibility to evaluate the accuracy of our
tool, using the reference implementation of the Java linker itself as
ground truth. Maracas obtains a precision of 96.3% and a recall
of 98.5%, making the impact of this threat very low. Moreover,
our tool is designed to be pessimistic and to over-approximate
the impact of BCs in case of uncertainty. Therefore, the impact
of this threat is to slightly over-estimate the number of broken
clients. Maracas does not reach 100% recall because of two false
negatives: these are due to limitations of the underlying tool
japicmp which is not able to detect BCs related to the strictfp

and native modifiers. However, we do not expect that BCs related
to these modifiers are common in practice.

We identify unstable API declarations of the libraries using a
pre-defined list of naming conventions and annotations, which
was extracted by semi-automatically analysing the top-1,000 most

111

popular libraries on MCR. However, this list is not exhaustive
and cannot account for library-specific or organization-specific
conventions. As a result, we have probably misidentified some
API declarations as stable. Assuming that unstable declarations
are more likely to break than stable ones, the impact of this threat
is to over-estimate the number and impact of BCs.

Since it is not possible to reliably state whether a particular
Maven artefact is a library or not, we consider that an artefact
from MCR is a library if it has as least one external client. As
a result, we potentially misidentify some artefacts as libraries.
Assuming that libraries are more likely to be careful about BCs

than other kinds of projects, the impact of this threat is to over-
estimate the number and impact of BCs.

Our protocol excludes every library version suffixed with a
qualifier (e.g., -beta1, -rc2) as they are not final and are not
meant to be used by the general public. This complies with
the Maven principle stating that every qualified version is ante-
rior to the corresponding non-qualified version. However, there
are some libraries that always tag their versions with specific
qualifiers. For instance, the developers of the popular Google
Guava library tag every version released since 2017 with a -jre

or -android suffix: there are no unqualified versions. Google
Guava versions released after 2017 are thus excluded from our
datasets—even though they are legitimate, while anterior ver-
sions are included. The impact of this threat is however low, as
most of the qualifiers we found in our datasets correspond to
pre-releases (cf. Derived Datasets section).

The corpora we use to extract our datasets (MDD and MDG)
do not contain any information regarding version ranges and
constraints. Concrete dependency versions have been resolved
at the time the corpora were created, so a dependency with a
version range (or no version at all) would be replaced with a
concrete version picked by the Maven dependency resolver. As
a result, even if some artefacts were using version ranges, we
are not able to see and analyse them. We expect the impact of
this threat to be low, as version ranges are not popular in the
MCR [41].

112

external validity Our study targets Java libraries and
clients inside the MCR ecosystem. Since the definition of BCs is
specific to a particular programming language and since ecosys-
tems have very different practices when it comes to BCs and
versioning culture and habits [34], there is no particular reason
to expect that our results generalize to the ecosystems of other
programming languages or other Java ecosystems.

3.6 related work

Prior research in the field of library evolution has focused on
understanding why and how evolution happens [42]. Answer-
ing the why involves understanding the motives triggering the
need to change a library and its API. In particular, researchers
study the social factors motivating software change [12, 17, 18,
20, 166]. Conversely, to understand how library evolution occurs,
researchers analyse the API evolution process and the evolving
software itself. In this section, we discuss a set of studies that
aim at understanding how software libraries evolve over time. We
consider studies that analyse the evolution of software ecosys-
tems as a whole; the nature of change in terms of backwards
compatibility; and the impact that API evolution stirs up on client
projects.

Ecosystems Evolution

Several studies aim at understanding the evolution of a software
ecosystem on its own (e.g., Eclipse, Apache). This is done to catch
a glimpse of the evolution practices and expectations within
the ecosystem community [17, 18]. As a direct consequence,
researchers are able to create models and claims that support the
development process within the studied ecosystem.

In the case of the Eclipse ecosystem, Businge, Serebrenik, and
Brand [22] evaluate the applicability of Lehman’s laws of software
evolution to their corpus. In a later study, the same authors
analyse to which extent client plug-ins rely on unstable and

113

internal Eclipse APIs [23]. They claim that more than 40% of
Eclipse plug-ins depend on this type of libraries. Likewise, Wu
et al. [164] study API changes and usages in both Eclipse and
Apache ecosystems. The Apache ecosystem is also studied by
Bavota et al. [12] and Raemaekers, Van Deursen, and Visser [132].
On the one hand, Bavota et al. [12] report on the evolution of
dependencies among projects within the ecosystem. As the main
conclusion, they discover that both the size of the ecosystem
and the number of dependencies grow exponentially over time.
On the other hand, Raemaekers, Van Deursen, and Visser [132]
measure Apache APIs stability with a set of metrics based on
method removal, modification, and addition.

The Squeak and Pharo ecosystems have also been a target of
research. Robbes, Lungu, and Röthlisberger [136] study the ripple
effects caused by method and class deprecation in these ecosys-
tems. They state that 14% of the deprecated methods and 7% of
the deprecated classes impact at least one client project. Hora
et al. [66] complement Robbes, Lungu, and Röthlisberger [136]
findings. They conclude that 61% of client projects are impacted
by API changes, and more than half of those changes trigger a
reaction in affected clients. In addition, Decan and Mens [34]
perform an empirical study where they analyse the compliance
to semver principles of projects hosted in four software pack-
aging ecosystems (i.e., Cargo, npm, Packagist, and RubyGems).
They discover that certain ecosystems, such as RubyGems, do
not adhere to semver principles when analysing dependency
constraints.

The abovementioned studies give a good overview of the evolu-
tion of certain ecosystems. However, conclusions drawn by these
studies do not hold outside the studied ecosystem [139]. Our
study contributes to this body of knowledge by complementing
the original results of Raemaekers, Van Deursen, and Visser [135]
regarding the adherence to semver and the impact of BCs in the
MCR ecosystem.

114

Backwards Compatibility

The growing interest in BCs is related to the need of analysing
the stability of APIs and the impact these changes have on client
projects. One of the main observations in the literature is that
backwards incompatible changes are often introduced between
two versions of an API. In fact, in a corpus of Java APIs, Dietrich,
Jezek, and Brada [40] find that 75% of library upgrades introduce
BCs between adjacent versions. This study was later enhanced
by Jezek, Dietrich, and Brada [71] who argue that 80% of API

releases are backwards incompatible. Mostafa, Rodriguez, and
Wang [116] also report that 76.5% of the releases they analyse
introduce behavioural incompatible changes. Nevertheless, there
is still disagreement regarding these figures. For instance, Xavier
et al. [165] claim that only 14.78% of the changes in their dataset
are backwards incompatible, while Brito et al. [20] state that
39% of the introduced changes are classified as breaking. These
differences are due to the diversity of libraries that are analysed
and their characteristics, and the criteria used to select them (for
instance, the most popular Java libraries hosted on GitHub). In
this study, we detail a protocol that enables us to give a clear
overview of the state of BCs in MCR over the past 13 years.

In addition, Raemaekers, Van Deursen, and Visser [134, 135]
conduct a study that relates semver with backwards incompat-
ibility. The authors discover that semver is not strictly followed
in practice. That is, BCs are also introduced in minor and patch
releases [71, 134]. They also claim that minor releases introduce
more changes than major releases [135]. Similarly, some studies
relate the nature of the API with the tendency to introduce BCs.
Xavier et al. [165] find that APIs with a higher frequency of BCs in-
troduction tend to be more popular, larger, and active. They also
argue that the frequency of BCs increases over time. Raemaekers,
Van Deursen, and Visser [135] partially confirm this claim: larger
libraries tend to introduce more BCs. However, they also conclude
that more mature APIs do not introduce more BCs, which seems
counter-intuitive when contrasting the results against Xavier et al.
[165] study. Decan and Mens [34] study adherence to semver

115

principles at the dependency constraints level. They find out that
newer ecosystems tend to follow semver guidelines, and that
semver practices have become more popular as time passes. Our
study complements these results by studying the adherence to
semver in MCR.

It is also important to be aware of the type of changes that are
usually introduced during API evolution. Cossette and Walker
[28] analyse a set of binary BCs based on the affected entity
type (i.e., class, method, field) and its visibility (i.e., protected,
public). In more recent work, Wu et al. [164] undergo a study that
analyses 23 types of changes related to API types and methods [39,
57]. They find that missing classes and methods are important
types of BCs affecting client projects. Ketkar, Tsantalis, and Dig
[81] study type changes and required code adaptations. They
find out that type changes are more common than renamings,
and that they usually appear on public entities. Furthermore, a
particular kind of change has drawn much attention from the
community: API deprecation [20, 134, 136, 139]. While deprecating
an API entity does not immediately break client code, it signals
that BCs may be coming in the future—as the semantics of the
annotation suggests. However, Raemaekers, Van Deursen, and
Visser [134, 135] notice that API developers tag deprecated API

entities without ever removing them from their API. In other cases,
they do quite the opposite: API developers remove declarations
from the API without deprecating them first. Brito et al. [20] point
out that this is needed to reduce the required maintenance effort
by API developers.

In spite of the contributions and findings of the abovemen-
tioned studies, there is still a long way to go. First, some studies
do not define a clear scope of the applicability of their conclu-
sions. In essence, it is not clear if findings account for source,
binary, or behavioural incompatibility. Moreover, how to detect
and classify behavioural incompatibilities is still an open prob-
lem. Second, the selection and study of the subset of BCs seems
arbitrary, incomplete, and in some cases incorrect. For instance,
some studies concluding on backwards compatibility claim that
adding a method to a class is not a BC. Although this change

116

is indeed binary compatible, it will break source compatibility
when the method is added to an abstract class that is extended
by client code. Third, there is a lack of consensus in research
findings across studies. This is the case when reporting on the
percentage of incompatible API releases and the correlation be-
tween API properties and BCs frequency. This might be related
to the underlying datasets: some studies analyse only popular
projects [20, 116, 165], and others consider few libraries [88, 138].

Refactorings

Refactorings are changes aimed at improving the structure of
a project without changing its observable behaviour [50]. One
of the main inquiries concerning refactorings in API evolution is
understanding to what extent API changes are actual refactorings.
Dig and Johnson [42] discover that between 3% and 27% of
changes on two common Java APIs are refactorings. Furthermore,
they find that at least 81% of BCs in four Java APIs are due to
refactorings. However, in more recent studies this number might
be lower. For instance, Brito et al. [20] show that 47% confirmed
BCs in their corpus are actual refactorings, and these are the most
common types of BCs. Additionally, Kula et al. [88] state that
refactorings break less than 37% of all clients of a given API. They
find a tendency to find more BCs and refactorings in API internal
entities [20, 88].

The main limitation of these studies is the level of abstraction
at which the analysis is performed. That is, a refactoring might
be composed of multiple BCs and, in some cases, by multiple
refactorings. For instance, method renamed could be recorded
in a delta as both a method removed and method added change.
Analysing these changes requires an additional effort in dissect-
ing compound cases.

117

Impact of API Evolution

More recent studies attempt to understand how client projects are
impacted by API evolution. In some of them [12, 40, 136, 165] we
find the same claim: there is no massive impact of API changes on
client code. In fact, Bavota et al. [12] state that only around 5% of
the projects in their corpus are impacted by API evolution; Xavier
et al. [165] discover that only 2.54% client projects in the dataset
are impacted by API BCs; and Robbes, Lungu, and Röthlisberger
[136] show that 14% and 7% of class and method deprecations,
respectively, impact client projects. From a different perspective,
Kula et al. [88] state that BCs are more likely to appear in API

entities that are not used by client code. Later, Raemaekers, Van
Deursen, and Visser [135] relate the number of compilation errors
with the introduced BCs. They do so by individually inserting BCs

in the API source code.
Regarding API-client co-evolution, there is a growing interest

in understanding why, when, and how client projects upgrade to a
newer version of an API. On the quest of answering the why and
when, Raemaekers, Van Deursen, and Visser [134] show that API

upgrading tends to be performed when major API updates are
released. Bavota et al. [12] indirectly confirm this claim by stating
that client projects upgrade to a newer version of an API only
when substantial changes are introduced. Regarding the how,
Bavota et al. [12] highlight that even though few client projects
might be affected by API evolution, certain dependencies that
offer cross-cutting services can strongly impact them. To support
these first insights, Robbes, Lungu, and Röthlisberger [136] find
that resolving the first 25% ripple effects in the Squeak and Pharo
ecosystem, requires more than 14 developers. In addition, several
commits are registered to resolve the issue, which suggests the
existence of non-trivial changes. Both Robbes, Lungu, and Röth-
lisberger [136] and Sawant, Robbes, and Bacchelli [139] claim that
finding systematic changes in affected client code is rare. There
are many cases where impacted code is simply dropped, or an
ad-hoc solution is provided. These findings are contrary to what
developers postulate in Brito et al. [20] study: they argue that

118

API migration results in minor and easy changes. In addition,
Mostafa, Rodriguez, and Wang [116] claim that 67% of bugs in-
troduced by behavioural changes can be fixed by simple changes
(e.g., replacing arguments, converting return values).

Despite the new contributions in the field, few papers study
both how APIs evolve and how this evolution impacts client
projects. Moreover, when they analyse API usage there is a mis-
alignment between the API change and usage types. For instance,
Wu et al. [164] label inheritance for IoC as an API usage type. How-
ever, this type of usage can be split into other categories, such as
method overriding, class extension, and interface implementation. With
this differentiation it is possible to relate API changes at different
levels (i.e., class, method, and field levels) with atomic API usages;
and accurately point to affected client members. Finally, as in the
case of studies related to backwards compatibility, we perceive
contradicting results that are most likely due to differences in
the studied datasets.

3.7 discussion

In this section, we discuss the main implications of our findings
for library developers, library clients, and researchers.

implications for library developers The introduction
of BCs is inherent to software evolution and cannot always be
avoided. Although libraries are encouraged to preserve back-
wards compatibility, the need to introduce new features and
improve the quality of the library sometimes results in incompat-
ible changes. We claim that introducing BCs is tolerable as long
as they are properly announced in advance to not take clients
by surprise. Versioning conventions or code-level mechanisms
(e.g., annotations, naming conventions) are regularly used for this
purpose. In addition, many software ecosystems such as Maven,
GitHub, and npm encourage their users to adhere to the semver

policies. They even offer core tooling to support developers on
this quest for quality and compliance. The semantics of such

119

policies might differ among ecosystems, thus, library developers
are exhorted to carefully understand and follow such rules [18].

Introducing too many BCs may, however, hurt the reputation
of a library. It is very hard for developers to manually detect
BCs in source code, so we believe that the use of tools such as
japicmp and Maracas is important to help library maintainers
make the right decisions. The Apache Commons developers, for
instance, use japicmp on every new release of their libraries to
check for backwards compatibility.17 These tools are also able to
automatically generate reports that help clients to anticipate the
changes.18 The first step towards a more disciplined evolution
of libraries is to detect and communicate on BCs, two aspects
addressed by these tools. As we have shown in our analysis of
Q3, some BCs appear to be more critical than others for client
developers. We thus encourage library developers to interpret
the output of these tools wisely and to account for the severity
of different changes.

The ability of Maracas to infer the impact of BCs on client
code is also beneficial for library developers. Developers may
run Maracas as part of a continuous integration pipeline to
check that a particular commit, pull request, or release does not
significantly impact their clients, and reconsider the changes if
the impact is too high. This type of tooling can also yield valuable
information on how unstable or unsafe parts of APIs are being
used by client projects. With this information, library developers
can either decide to promote internal interfaces to public ones,
including new features in their list of public interfaces [67]. They
can also analyse to what degree unsafe declarations are impacting
client projects, and based on these results, they can even come
up with new designs to transform an unsafe interface into a safe
one [108].

implications for client developers The main implica-
tion of our results for client developers is that the situation is not

17 https://garygregory.wordpress.com/2020/06/14/how-we-handle-binary-
compatibility-at-apache-commons/

18 https://commons.apache.org/proper/commons-lang/japicmp/

120

https://garygregory.wordpress.com/2020/06/14/how-we-handle-binary-compatibility-at-apache-commons/
https://garygregory.wordpress.com/2020/06/14/how-we-handle-binary-compatibility-at-apache-commons/
https://commons.apache.org/proper/commons-lang/japicmp/

as bad as reported in the literature. In MCR, most releases comply
with semver requirements and avoid BCs in non-major releases.
Besides, as we have shown in Q2, the situation has significantly
improved over time.

Each ecosystem has its own policy regarding versioning con-
ventions and the treatment of BCs [18]. Cargo, npm, Packagist,
and Rubygems, for instance, do not apply semantic versioning
in the same way [34]. Client developers should thus pay atten-
tion to ecosystem-specific guidelines and pick an ecosystem that
advocates a strict policy to minimize the risk of being impacted
by unwanted changes. Additionally, identifying unstable declara-
tions in used APIs via semver or other code-level mechanisms is
important to avoid broken client code after upgrading to more
recent releases. Naming conventions [21] and use of annotations
are some of the signaling mechanisms that client developers
should look for.

Tools such as Maracas should also be beneficial to client
developers. When faced with the possibility of upgrading a de-
pendency, developers may employ Maracas to evaluate the
impact of different versions, and choose the one that addresses
their requirements without causing too much disruption.

implications for researchers As we have seen, the use
of code-level mechanisms to delimit unstable APIs relies on con-
ventions that might vary from one organization to the other
or from one library to the other (@Beta for Google, @Internal
for Apache, sun.* packages in the JDK, etc.,). Contrary to se-
mantic versioning, there is no standardization of these mech-
anisms, which makes it hard for clients to understand which
declarations should be considered stable or unstable. Besides, it
is not clear how semver and code-level mechanisms interact: the
semver specification only mentions the @Deprecated annotation.
Should developers release a major revision when they introduce
a BC in a beta-stage API? We believe that clarifying the role of
code-level mechanisms and their relation with semver would be
beneficial. Another interesting line of work would be to incorpo-
rate better mechanisms to delimit APIs directly in programming

121

languages: developers are currently forced to make some dec-
larations public only for technical reasons (cf. Section 3.2) even
though they are not part of the intended API.

Researchers should also strive to design and implement bench-
marks to compare tools related to library evolution objectively.
The benchmark of Jezek and Dietrich [70], which we reuse and ex-
tend to evaluate the accuracy of Maracas, is the first step in this
direction and should be complemented with other benchmarks,
for instance, related to behavioural compatibility.

Furthermore, when analysing software evolution, the design
of a study protocol and the creation of the underlying datasets
should be carefully performed. Sampling bias is a recurrent
threat to validity that can hurt the interpretation of API evolution
studies. For instance, selecting only the most popular libraries on
a repository, or only the ones related to a particular ecosystem
hurts the generalizability of the study findings. To cope with this
issue, representative and diverse samples are required to come
up with relevant conclusions [119].

Finally, because BCs are not always avoidable, researchers
should continue to develop tools and methods that assist client
developers in automatically migrating their code [28, 167, 169].

3.8 conclusion

In this chapter, we conduct an external and differentiated replica-
tion study of the work presented by Raemaekers, Van Deursen,
and Visser [135]. The motivation behind this study is to better
understand which kind of BCs happen in libraries hosted on the
MCR, and what is their impact. We rely on semver principles to
draw conclusions that are aligned with versioning conventions
that signal API instability. Our protocol addresses some limita-
tions of the original study and expands the analysis to a new
dataset spanning seven more years of the MCR. We implement
and use Maracas to compute BCs between adjacent versions of
libraries, and to detect locations in client code that are affected
by such BCs.

The main results of the study are as follows:

122

Q1: How are semantic versioning principles applied in the
Maven Central Repository? 83.4% of all upgrades on MCR

do comply with semver principles. Still, 20.1% of non-major
releases are breaking, threatening client projects.

Q2: To what extent has the adherence to semantic version-
ing principles increased over time? The tendency to com-
ply with semver practices has significantly increased over
time: the number of non-major breaking releases has de-
creased from 67.7% in 2005 to 16.0% in 2018.

Q3: What is the impact of BCs on clients? Only 7.9% of the
clients we analyse are impacted by the BCs introduced in
adjacent library releases. However, when breaking declara-
tions are used by client projects, they are likely to break.

According to these results, we state that libraries and client
projects on the Maven ecosystem are not "breaking bad". To
be precise, developers of Maven projects tend to follow semver

principles and are for the most part disciplined when introducing
BCs. While the situation has improved over time, there is still
room for improvement. Although the impact of BCs on client
projects is low, more research is needed to support clients that
are impacted and need to migrate their code. Differences with
results reported in the original study are explained by major
changes introduced in the protocol and the extended time span
of the new corpus.

As future work, we first would like to perform qualitative
analyses to complement our findings. In particular, we would
like to explain the phenomenon we observed: what are the moti-
vations behind inserting BCs in non-major releases, and why has
the adherence to semantic versioning increased so significantly.
These questions could be answered by interviewing library main-
tainers and clients. Second, we would like to study how the
evolution of the Java language itself impacts the definition of BCs,
and how this affects libraries and clients. As new constructs are
made available in Java (e.g., the default operator in Java 8 or the
record data type in Java 15), new BCs appear. At the same time,

123

these new constructs provide new strategies to deal with certain
BCs (e.g., default methods allow to gracefully evolve an interface
without forcing changes in existing implementations). Third, we
believe that the understanding of how client projects react to BCs

is another step towards finding a way to support library-client
co-evolution. Thus, we aspire to study how clients react in the
wild and which patterns can be identified from these reactions.
Finally, we also would like to study behavioral incompatible
changes in Java libraries.

124

Part III

T H E V E R B A L V I E W

On the means of the library-client co-evolution
phenomenon: assisting library evolution

4
M A R A C A S : D E S I G N I N G A N D I M P L E M E N T I N G
T H E S TAT I C I M PA C T A N A LY S I S A P P R O A C H

abstract Software projects seldom live in isolation: they offer
services to other projects when acting as libraries, and consume ser-
vices from other projects when acting as clients. These projects are
undergoing constant change, which might result in the introduction
of breaking changes. Several studies have focused on their detection,
however, breaking changes are not enough to identify the actual broken
code a library change can cause on clients. Thus, library developers
might hesitate to introduce a change that decreases its technical debt for
fear of breaking client code and losing advocates, or; on the contrary,
an unnoticed breaking change can slip into the next library release
of the library hampering both library and client projects. The lack of
language-agnostic, accurate, and resource-efficient approaches that in-
form about Application Programming Interface (API) evolution and
impact on client projects hinders software evolution as a whole. In this
chapter, we introduce the requirements and design of the static impact
analysis approach that aims at (i) providing a language-agnostic ap-
proach that can be implemented in any language to study API evolution
and impact, and; (ii) efficiently and accurately identifying client code
that is broken due to the introduction of a breaking change. The approach
is implemented in Maracas, a static analysis tool for studying API

evolution and impact on Java projects, which was previously introduced
in Chapter 3. The tool has been tested by means of providing unit
tests and an accuracy evaluation based on the synthetic benchmarks
comp-changes and API evolution data. The tool reports a precision of
0.96 and 0.92 and a recall of 0.95 and 0.99 for these two benchmarks,
respectively. Although some aspects about the tool have already been

127

exposed in other chapters within this manuscript, this chapter expands
on previous descriptions and centralizes the technicalities surrounding
our approach and its implementation.

4.1 introduction

Software developers favour reuse to focus on the development
of features that add value to their projects. Designing software
for reuse requires, among different aspects, complying with the
long-standing principle of information hiding [126]. According
to this principle, implementation details should be hidden for
external use, and only the specification of offered functionality
should be exposed to the public. This specification is known as
an Application Programming Interface (API).

As time passes, the requirements and environment of software
projects change. Thus, code undergoes an evolutionary process
where both the implementation and offered API change. A chang-
ing API might pose a threat to client projects, especially if such
changes are made in a backwards-incompatible manner. Back-
wards compatibility is a software property that can be achieved
when no client project depending on the changing API is broken.

When backwards incompatibility manifests, changes that can
break client code are said to be Breaking Changes (BCs). BCs are a
proxy to foresee the potential impact—in the form of broken code—
of the API evolution on clients. However, they do not inform about
the actual broken code on clients of the library. The lack of tool
support and information about BCs introduction and impact on
client code, lead to decisions on whether to introduce BCs end
up being made without enough evidence. As stated by Darcy,
"[t]he basic challenge of compatibility is judging if the benefits of
a change outweigh the possible negative consequences (if any)
to existing software and systems impacted by the change." [32]
For instance, the identification of a BC introduction in a release
to maintain or add value to the library, might be reverted due
to the fear of impacting too many clients. Moreover, a client
might not upgrade to a newer backwards-incompatible release to
avoid bearing the costs of fixing broken code. The lack of impact

128

information then hinders change, both on the library and client
sides [91].

Several studies in the field of software evolution have focused
on the detection and study of BCs [70]. From these studies, a
vast majority have opted to investigate the phenomenon in
Java ecosystems [91]. This has hampered the development of
a language-agnostic theory about software evolution. Moreover,
when studying impact analysis, current research focuses on con-
ducting empirical studies to extract insights from the crowd [91].
To the best of our knowledge, a handful of studies have opted to
develop static analysis approaches to detect such impact, how-
ever, they are either resource-expensive, often requiring manual
labour or building the software project [136], or; too coarse com-
promising the accuracy of the developed tools [165].

This chapter aims at (i) identifying use cases and require-
ments coming from library and client developers when facing
API evolution; (ii) proposing the static impact analysis approach
to statically detect BCs and broken uses of modified API members
in client code. The approach aims at being language-agnostic,
resource-efficient, and accurate, and; (iii) presenting the imple-
mentation of our approach for Java projects, Maracas, which has
been tested in terms of functionality and accuracy. Evaluating if
the approach is indeed language-agnostic and efficient is yet to
be investigated in future research.

The remainder of the chapter is structured as follows. In Sec-
tion 4.2, we introduce core concepts related to backwards com-
patibility and a motivating example to illustrate such concepts.
Section 4.3 briefly introduces the perspective of library and client
developers, together with a list of functional and extra-functional
requirements to consider when performing API evolution anal-
ysis. This section will motivate the introduction of our static
impact analysis approach in Section 4.4. Then, in Section 4.5,
we present Maracas, the implementation of the static impact
analysis approach. In Section 4.6, we introduce the current state
of the art regarding the detection of BCs (aka., evolution analysis)
and their impact on client code (aka., impact analysis). We draw
our conclusions in Section 4.7.

129

4.2 background & motivating example

In this section, we present the core concepts related to back-
wards compatibility, which frame the requirements, design, and
architecture of our static impact analysis approach. In particular,
we define what an application programming interface is as a base
to later understand backwards compatibility. We then dive into
how backwards compatibility manifests in Java and its different
flavours in this programming language.

Application Programming Interface

An Application Programming Interface (API) is a software inter-
face that specifies and exposes functionality offered by a library,
framework, or Web service to client projects [91, 126]. The API is
a contract between two parties that specifies the communication
between them and the type of inputs and outputs expected in
each specific interaction. It is also a way to comply with the
information-hiding principle—that is, hiding implementation
details [126]. In the context of this thesis, we only study APIs

exposed by libraries or frameworks—we do not consider APIs

offered by Web services.
The API of a project can be shaped by means of leveraging spe-

cific constructs of the host programming language. For instance,
Java offers a set of access modifiers (i.e., public, protected, and
private) that determine which parts of the code can be accessed
by client classes. In particular, public members can be accessed
by any client class; protected members can be accessed only by
subclasses of the class owning the member or by classes declared
in the same package as the owning class, and; private members
can only be accessed in the body of the top-level class owning
such members [57]. The language also offers annotations such
as @Deprecated, which signals the parts of the code that will be
removed in the future, and hence, should not be used by client
projects anymore [57]. As a final example, the JSR 376 introduced
the Java Platform Module System (JPMS), which brings in the
module language construct. Modules aggregate packages and

130

define the set of offered and consumed services, where a ser-
vice must be understood as a type—usually an interface—that
provides a set of methods [100].

example JUnit 4
1 is a Java testing framework originally writ-

ten by Erich Gamma and Kent Beck. The framework is sup-
ported by the main Java IDEs (e.g., IntelliJ, Eclipse, Visual Studio
Code), and it is popular among Java developers (e.g., Concor-
dion2, Eclipse Tycho3, Grails4, Groovy5).

Software Deployment & Evolution

Software undergoes continuous and progressive change over time
to cope with changes in its requirements and environment [97].
Changes are typically introduced to patch security issues, add
new features, refactor the code, fix bugs, and introduce other
enhancements [40, 87]. These changes lead to software evolution,
which is the phenomenon resulting from executing a set of pro-
cesses directed to modify a software project [80]. To manage this
evolution library developers pack the project code into releases.
A library release is a versioned distribution of a snapshot of a
software project at a given moment. Client developers can set
dependencies on a specific release of a library, ensuring the use
of a set of stable features.

example JUnit 4 has several releases, each one with a set of
clients that depend on it. Concordion is one such client. The
latter is an open-source library that automates specification by
example—that is, the documentation used to specify a feature is
used as input to generate code that tests it. Figure 4.16 shows a co-
evolution scenario where some changes are introduced to JUnit 4

1 https://junit.org/junit4/

2 https://concordion.org/

3 https://projects.eclipse.org/projects/technology.tycho/

4 https://grails.org/

5 https://groovy-lang.org/

6 Additional versioning information (i.e., qualifier identifier coming after the
third version number) is taken out from the image for readability purposes.

131

https://junit.org/junit4/
https://concordion.org/
https://projects.eclipse.org/projects/technology.tycho/
https://grails.org/
https://groovy-lang.org/

junit.junit

org.concordion.concordion

4.4

1.3.0 1.3.1

4.5

de
pe
nd
s

de
pe
nd
s

evolves

evolves

Figure 4.1: JUnit 4 and Concordion co-evolution

release 4.4 resulting in a new release labeled with version number
4.5. Concordion release 1.3.0 depending on JUnit 4.4 is modified
to leverage the changes introduced in JUnit 4.5, resulting in a
new release 1.3.1.

Backwards Compatibility

When software evolution manifests, any change introduced in a
library can potentially break client code [32]. A change is then
said to be a Breaking Change (BC) if it potentially breaks client
code depending on the library at hand [32]; otherwise, it is said
to be a non-breaking change.

If we consider an API to be a language that has a well-defined
syntax and semantics, we can also classify BCs as either syntactic
or semantic. On the one hand, syntactic BCs impact the form of
the API. For example, when a method is renamed or its param-
eter list is altered. On the other hand, semantic BCs impact the
meaning of API members. Other researchers also refer to them
as behavioural BCs [26, 30, 116]. However, we stick to the term
semantic compatibility given that any syntactic BC also impacts
the behaviour of a program. Examples of semantic BCs include
getting different outputs for two versions of the same method
after providing the same inputs, or when side effects are added
or removed from a method.

The definition of a BC is language-specific; it depends on how
the language and related tools (e.g., compiler, linker) are imple-
mented, and, consequently, when and where to expect errors

132

in its programs. To illustrate, consider the changes in access
modifiers in Java. Decreasing the visibility of an API member
(e.g., going from public to protected or protected to private)
is considered a BC. Nevertheless, in Python, this BC cannot exist
by design: access modifiers are not part of the constructs of the
language.

Backwards compatibility is an attribute of a library release that
guarantees that no BC has been introduced in the targeted release
with respect to the previous one. In other words, safe substitution
is guaranteed in the contracts established between the library
and its clients [70]. As stated by Jezek, Dietrich, and Brada and
based on the Liskov Substitution Principle (LSP):

"[S]ubstitution is safe if the preconditions of invoked
services are not strengthened, and the postconditions
are not weakened." [71]

When studying backwards compatibility, this means that the
preconditions of the API contracts should not have stricter valida-
tion rules, otherwise, an error might be raised when getting more
general inputs, and; the postconditions of the contracts cannot be
less restrictive, otherwise an error can be raised when returning
a more general output.

Consider the sequence L of relevant releases of a given library,
and the library releases li and li+1 for i ∈ N and li, li+1 ∈ L.
Consider also the universe of clients C depending on a library
release in L. li+1 is said to be an adjacent release of li if it comes
immediately after the latter in L. A set of changes ∆ are intro-

duced in li+1 (i.e., li
∆−→ li+1). A subset of these changes ∆ ′ (i.e.,

∆ ′ ⊂ ∆) are BCs that potentially impact a client project c for c ∈ C.
Thus, li+1 is said to be backwards compatible if ∆ ′ = Ø, and
backwards incompatible, otherwise. These definitions are to be
used in the current chapter henceforth.

example Bringing back our motivating example, a set of
changes ∆ were introduced between JUnit 4.4 and 4.5. A subset
of those changes ∆ ′ resulted in a set of modifications that can
potentially impact clients like Concordion. Listing 4.1 shows

133

Listing 4.1: Example of a method removal BC introduced in JUnit 4.5.
The BC impacts Concordion 1.3.0 code

1 // JUnit diff between 4.4 and 4.5

2 public class RunNotifier {

3 ...

4 - public void testAborted(Description description, Throwable

cause) {...}

5 }

6

7 // Concordion 1.3.0 depending on JUnit 4.4

8 public class ConcordionRunner extends JUnit4ClassRunner {

9 private Description fixtureDescription;

10 ...

11 protected void runMethods(final RunNotifier notifier) {

12 Description description = fixtureDescription;

13 ...

14 try {...}

15 catch (InvocationTargetException e) {

16 notifier.testAborted(description, e.getCause());

17 ...

18 } catch (Exception e) {

19 notifier.testAborted(description, e);

20 ...

21 }

22 ...

23 }

24 }

an example of a syntactic BC introduced in JUnit 4.5. From
line 1 to 5, we present the textual diff between the two re-
leases of JUnit 4, while the rest presents Concordion code us-
ing the modified API member. In this example, JUnit 4 develop-
ers decided to remove the method testAborted(Description,

Throwable) from the RunNotifier class (lines 3 and 4). This
change impacts the code in Concordion 1.3.0. In particular,
the runMethods(RunNotifier) method in the ConcordionRunner

class is impacted twice (lines 16 and 19) when the client project
invokes the testAborted(Description, Throwable) method via
the notifier object of type RunNotifier.

134

Syntactic Backwards Compatibility in Java

In Java, syntactic backwards compatibility manifests in two
flavours: source or binary compatibility [32]. Hereafter, we de-
scribe these two compatibility kinds and illustrate them with
examples taken from the literature [70].

source compatibility Source compatibility is preserved
in li+1, if every client c depending on li compiles without error
against li+1. An example of source-only incompatible changes
includes, among others, modifications to type parameters [71].
These modifications are only considered by the compiler; this in-
formation is removed from the bytecode as a result of performing
type erasure.

Listing 4.2 shows an example of a source-only BC based on an
example presented by Jezek, Dietrich, and Brada. From line 1 to
5, we present the textual diff between the two releases li and
li+1, while the rest presents client code using the modified API

member. Consider the class Library defined in li (line 2) and
a method foo that returns a list of integers (i.e., List<Integer>)
defined in such a class (line 3). The return type of the method and
its implementation is later modified in li+1, so it now returns
a list of strings (i.e., List<String>) (line 4). A client project that
originally depends on li defines the class Client (line 8). Within
the main method of the class, a Library object is created (line
10) and then the foo method is invoked (line 11). The result of
the invocation is saved in the listOfIntegers variable of type
List<Integer> (line 11). However, when the client upgrades its
dependency to li+1, a compilation error will be raised when
the compiler checks the type parameters of the variable. The
same change is not considered a binary-incompatible change due
to type erasure. Type erasure was introduced in 2004, in Java
Development Kit (JDK) 1.5, as a means to preserve backwards
compatibility with previous versions of the JDK. It removes type
parameters from the code when generating Java bytecode. This
means that changes to classes that are used as type parameters

135

Listing 4.2: Example of a source-only BC adapted from Jezek, Dietrich,
and Brada [71]

1 // Library diff between release i and i + 1

2 public class Library {

3 - public List<Integer> foo() {...}

4 + public List<String> foo() {...}

5 }

6

7 // Client using the library release i

8 public class Client {

9 public static void main(String[] args) {

10 Library library = new Library();

11 List<Integer> listOfIntegers = library.foo();

12 }

13 }

might impact source compatibility, but go completely unnoticed
when checking binary compatibility.

binary compatibility Binary compatibility is preserved
if every client c depending on li links without error against
li+1 [57]. Linking is the process of taking the previously loaded
binary form of a type and combining it with the JVM run-time
state for future execution [57]. The Java programming language
enforces binary compatibility as one of its main policies. It also
encourages library developers to inform client developers about
the impact new releases of the library can have on client binaries
that cannot be recompiled [57]. This is of particular importance
in ecosystems such as Open Service Gateway Initiative (OSGi)
and Maven, where bundle wiring and transitive dependencies
resolution can result in the use of a release different from the one
used during compilation [70]. Furthermore, the Java Language
Specification (JLS) dedicates a whole chapter (cf. Chapter 13 -
Binary Compatibility) to describe binary compatibility in the Java
language. The chapter enumerates a subset of known binary BCs

that can impact client code [57].

136

Listing 4.3: Example of a binary-only BC adapted from Jezek, Dietrich,
and Brada [71]

1 // Library diff between release i and i + 1

2 public class Library {

3 - public Collection foo() {...}

4 + public List foo() {...}

5 }

6

7 // Client using the library release i

8 public class Client {

9 public static void main(String[] args) {

10 Library library = new Library();

11 Collection collection = library.foo();

12 }

13 }

Listing 4.3 presents an example of a binary-only BC based on an
example presented by Jezek, Dietrich, and Brada. From line 1 to 5,
we present the textual diff between the two releases li and li+1,
while the rest presents client code using the modified API member.
Consider the class Library defined in li (line 2) and a method
foo that returns a collection of values (i.e., Collection) defined
in such a class (line 3). The return type of the method and its
implementation is later modified in li+1, so it now returns a list of
values (i.e., List) (line 4). A client project that originally depends
on li defines the class Client (line 8). Within the main method
of the class (line 9), a Library object is created (line 10) and then
the foo method is invoked (line 11). The result of the invocation
is saved in the collection variable of type Collection (line
11). However, when the client upgrades its dependency to li+1

without recompiling its source code against the new dependency,
a linkage error will be raised when the JVM linker checks the
descriptor of the method. A method descriptor in bytecode has
the format methodName()returnType, which in the case of the foo

method in li will look like foo()Ljava/util/Collection;, while
in li+1 will look like foo()Ljava/util/List;. By simple string
comparison these two descriptors are not interchangeable to the

137

eyes of the linker when performing the method resolution [100].
The same change will not be considered a source incompatible
change given that the compiler does consider information about
inheritance.

4.3 api change & impact requirements

In this section, we introduce the main actors involved in the
API evolution phenomenon and their perspectives when the phe-
nomenon manifests. We wrap up the section by introducing the
use cases and general requirements to provide an approach and tools
that support the identified actors when facing API evolution.

Actors & Perspective

The API evolution phenomenon directly affects two kinds of ac-
tors, namely library developers and client developers. Library de-
velopers (e.g., JUnit 4 developers) are the actors deciding whether
to introduce changes in the library API. Once changes are intro-
duced in the API, client developers are faced with a dilemma: to
upgrade or not to upgrade? Client developers (e.g., Concordion devel-
opers) are in charge of deciding how detrimental or convenient
the upgrade is for their project [41]. Moreover, they need to as-
sess what the consequences are in terms of resources investment
when supporting any decision.

In general, when facing API evolution, library developers can
follow one of two approaches to introduce required changes,
namely:

technical debt-averse approach Library developers pri-
oritize a robust and clean design for their project. Ideal
changes can come along in a backwards-compatible or
backwards-incompatible manner. When the ideal change
can be provided in a backwards-compatible fashion, no
client project is impacted and no technical debt—associated
with the evolution of the library—is generated. However,
when the ideal change is introduced in a backwards-

138

incompatible fashion, there is a risk of breaking client
code. Client projects can, then, (i) opt for upgrading to
the new library release and the upgrade costs must be
spread between the library and client projects; (ii) do not
upgrade, increasing their technical lag as well as their tech-
nical debt [150], or; (iii) drop the use of the changing library
as they assess too costly the resources required to upgrade
to the new release. Costs of moving to other libraries are
then to be considered.

bc-averse approach Library developers prioritize offering
backwards-compatible changes that reduce the risk of im-
pacting client code or losing clients. If the ideal change can
be implemented without introducing BCs, no risk manifests.
However, if the ideal change cannot be implemented in a
backwards-compatible manner, library developers provide
a workaround solution that can negatively impact their de-
sign and increase their technical debt. For instance, library
developers can introduce an inefficient solution or dupli-
cate code. Client projects can upgrade with the certainty
that there will be no broken code, but even in this case,
the technical debt borne by the library propagates to all its
clients.

Following one of the two approaches requires having enough
information about the evolution of the library and how this one
impacts client code [16]. In the case of library developers, this
information is relevant to know whether they are introducing
BCs that are impacting client code. Based on this information,
library developers can decide to keep the change or revert it. If
they keep it and if the change is impacting client code, they can
plan coping strategies to deal with the change [16]. In the case
of client developers, they need to know if there are BCs in the
new release they want to upgrade to, and if so, to what extent
these changes impact their code. Based on this information, client
developers can decide to not upgrade and bear the technical lag
and debt inherent to these changes , upgrade to the new release

139

and modify their own code accordingly [150], or drop the use of
the library and possibly migrate to other one.

Use Cases & General Requirements

As a general remark, library and client developers must be pro-
vided with enough evidence to face API evolution while prioritiz-
ing their values [18]. Without this information they need to make
decisions based on assumptions and conventions (e.g., semantic
versioning) that provide incomplete, and, sometimes even, in-
correct information. For instance, in Chapter 3, we have shown
that 16.6% of projects in Maven Central Repository (MCR) do
not increase the major number or use the initial development
version to signal the introduction of BCs in their releases version
numbers. They neither include these changes in the unstable
part of their APIs, usually identified by the use of annotations or
naming conventions. This behaviour might be related to a lack
of knowledge about the nature of the introduced changes on the
library side, and lead to misleading assumptions on the client
side.

Furthermore, information about how BCs impact client code
is also required. From the library perspective, developers might
hesitate to include certain BCs in their new releases to decrease
the risks of impacting client code [18, 35]. However, in MCR, there
is evidence that only 7.9% of clients—within a sample of 15,701

projects in MCR—using a backwards-incompatible library release
are impacted by BCs (cf. Chapter 3). Additionally, client develop-
ers need to foresee to what extent upgrading to a newer library
release impacts their code, without waiting until performing the
actual upgrade. Based on this information they can opt to bear
the upgrade costs, incur in technical debt via technical lag, or
drop the use of a library that to their eyes is problematic. Stringer
et al. [150] have shown that for a set of 14 studied ecosystems,
there is a percentage of dependencies that lag. This percentage
varies depending on the values and policies of each ecosystem,
being Maven the most affected one with 63% lagging dependen-

140

cies. This reasoning brings us to the two uses cases described
below.

UC1 Library use case: Identify BCs introduction and whether
they impact client code.

UC2 Client use case: Identify broken code caused by upgrading
to a newer release of a library.

The aforementioned use cases can be further decomposed into
a list of both functional and extra-functional requirements that
must be addressed by approaches supporting API evolution.

R1 The approach must identify syntactic BCs introduction be-
tween two versions of a library.

R2 The approach must identify broken uses caused by BCs in a
client project.

R3 The approach must be performed efficiently, so it can out-
perform language tools (e.g., compiler, linker) and scale
when analysing multiple clients.

R4 The approach must be accurate so it avoids erroneous infor-
mation that hinders the evolution of both library and client
projects. However, when facing undecidable scenarios, the
approach must follow an over-approximation approach,
prioritizing completeness over soundness.

4.4 static impact analysis : the approach

In this section, we introduce the static impact analysis approach,
which performs the evolution analysis of an API and the suc-
ceeding impact analysis on a client project while considering
the requirements defined in Section 4.3. In short, the goal of
the approach is to efficiently and accurately (requirements R3
and R4) identify the set of syntactic BCs introduced between two
releases of a library (requirement R1), and the set of API uses on
client code that are impacted by such changes (requirement R2).

141

li

Li
br

ar
y

co
de

C
lie

nt
 c

od
e

∆-Analyser

API usage model

∆ model Impact model

li+j

API Usage
Analyser

Impact
Analyser

c {01}

{01}

{01}

 Component

Artifact

Static impact analysis

Provided interface

Data flow

Consumed interface

Port

Figure 4.2: UML component diagram of the static impact analysis
approach

Approach Overview

Figure 4.2 introduces our three-component approach to perform
static impact analysis. The three components involved in the
solution consists of the API usage analyser, the ∆-analyser, and the
impact analyser. The approach takes as input the source or binary
code of (i) an old release of a library li, (ii) a newer release of the
same library li+j, and (iii) a client project c that depends on li,
for j ∈ N. Notice that the type of code provided for li and li+j

must be of the same kind to perform an accurate comparison
between the two. However, this is not a requirement for c. As
a result, it generates (i) a ∆-model containing the set of changes
introduced between li and li+j; (ii) an API usage model with a
mapping between client members and used API members, and;
(iii) an impact model with the set of impacted client members and
the breaking API members. The ∆-model is required to address

142

requirement R1, while the API usage and impact models are
needed to address requirement R2.

API Usage Analyser

The API usage analyser takes as input the byte or source code
of client c and the library release li. The main output of the
component is a model that captures the uses of a specific API

in the client code. In particular, the API usage analyser reports
what API members are being used in the client code, how they
are being used, and where they are being used. For instance,
in Listing 4.1, the API usage model should inform that the JU-
nit 4 method testAborted(Description, Throwable) from the
RunNotifier class (what) has been invoked (how) twice in the
Concordion method runMethods(RunNotifier) located in the
class RunNotifier (where).

To compute the API usage model, the API usage analyser com-
putes an annotated Abstract Syntax Tree (AST) of the client, with
the structure provided by the parser and annotations on names
and types as provided by the name and type analysers. The li-
brary release must be included as part of the classpath to resolve
the API members. As proposed by Pawlak et al. [128], we differ-
entiate between two types of nodes in the AST, namely structural
and code nodes. On the one hand, structural nodes provide infor-
mation about project members (e.g., type, function, method, field).
Usually, these nodes are top-level nodes defining the structure
of the AST and containing low-level nodes with the code and
logic implemented in each one of them (aka., code nodes). On
the other hand, code nodes give information about how project
members are being used (e.g., import statement, function call,
method invocation).

The AST is, then, traversed to build the API usage model, which
is a set of tuples U, where u = ⟨CN, UAN, SAN, AU⟩, where
∀u ∈ U. CN represents the client node using an API member,
UAN represents the used API member, SAN represents the source
API member, and AU represents the API type use. These four
elements are further described below.

143

client node (cf. CN) This element is a reference to the client
node that is using an API member. For example, in Java, we
can refer to a code node representing a method invocation
or a structural node representing a class with information
about its superclass and interfaces.

used api member (cf. UAN) This element is a reference to the
structural node representing the API member that is being
used by the client node. For example, in Java, we can refer
to a structural node representing a method or a class.

source api member (cf. SAN) This element is a reference to
the structural node representing the API member that is
transitively being used by the client node via the UAN

node. As it is the case of UAN, in Java, we can refer to a
structural node representing a method or a class.

api use (cf. AU) Abstraction that represents how the API mem-
ber is being used. For example, in the case of Java, we can
refer to a method invocation use, a superclass extension, or an
interface implementation.

example In our JUnit 4 example, if we refer to the client
code in Listing 4.1, we can extract two API uses. The first usage
u has the following elements: (i) a client node pointing to the
node in line 16—that is notifier.testAborted(description, e

.getCause()); (ii) a used API member pointing to the declaration
node of the testAborted(Description, Throwable) method in
the class RunNotifier; (iii) a source API member pointing to the
same used API member node—given that there is no transitive use
of a parent method, and; (iv) an API use referring to a method
invocation as defined in the JLS [57].

∆ Analyser

During the evolution analysis stage, the approach takes as input
the old release li and the newer release li+j of a library, and
generates the ∆-model with the set of changes introduced be-

144

tween the two releases. A ∆-model records changes performed
over language constructs usually used to define the contracts of
the API—that is, changes performed to constructs (e.g., modifiers,
names, parameters) that accompany the declaration of an API

member (e.g., type, field, method, or function), while excluding
changes to the body of the member declaration.

Concretely, a ∆-model is an annotated tree ∆ = ⟨r, (LC,≺)⟩,
where:

(a) r is the root of the tree and the unique maximal element
in the partially-ordered set (LC,≺) (it is not less than any
other element in LC). The role of r is usually symbolic,
meaning that it is used to gather all the compilation units
found within the project, and;

(b) (LC,≺) is the strict partially-ordered finite set of modified
language constructs within the software project. Each lc ∈ LC

is annotated with extra information referring to the type of
change (i.e., removed, added, or modified), and the previous
and new value if a modification has been performed. More-
over, (LC,≺) preserves the containment relation among the
language constructs. The partial order relation ≺ is a rela-
tion that preserves the scope containment of the language
constructs—that is, minimal elements are those declarations
that do not contain further declarations. ≺ is irreflexive (no
element is related to itself, i.e., a ≺ a for a ∈ LC), asym-
metric (if a ≺ b then b ⪯̸ a for a,b ∈ LC), and transitive (if
a ≺ b and b ≺ c, then a ≺ c for a,b, c ∈ LC).

example In the JUnit 4 example presented in List-
ing 4.1, the ∆-model contains a node pointing to the
testAborted(Description, Throwable) method declaration,
which was removed between versions 4.4 and 4.5. This node
must be defined as a child of a class declaration node repre-
senting the owning class RunNotifier, which in turn is a child
node of the compilation unit with the same name, and the latter
is a child of the symbolic root node r. In particular, the node
represents the BC type method removed. It is, therefore, annotated

145

with the label removed and no additional information about the
new and old values is required.

Impact Analysis

The last stage of the approach, the impact analysis, takes as input
the ∆-model and the API usage model. The impact model contains
a set of broken uses, which represent the client code that would be
broken due to the use of a BC introduced between two releases of
a library. Thus, the impact model I is a set of tuples bu = ⟨BC,u⟩
u ∈ U, where BC represents the BC type consisting of the type of
API member and the performed modification (e.g., method removed,
class now final), and u an API use tuple included in the API usage
model U.

To generate the impact model, the approach traverses the ∆-
model to extract the set of modified API members with their cor-
responding BCs. API member nodes in the ∆-model are mapped
to UAN and SAN nodes in the API usage model. Based on this
mapping, the API usage model is filtered out, keeping the candi-
date tuples U ′ for U ′ ⊆ U whose used and source API members
refer to modified API members as reported by the ∆-model. Then,
the client code must be inspected to verify if the API use of the
modified API member is actually breaking client code. To de-
termine it, one must consider (i) the type of BC introduced in
the API member as defined by the ∆-model, and (ii) the API use
for which such BC actually breaks client code. If the candidate
u ∈ U ′ breaks the client code, a tuple bu is created with the
corresponding BC and API use tuple u, and then added to the
impact model I.

example In the motivating example introduced in Listing 4.1,
the impact model has a broken use bu pointing to the BC type
method removed, as described at the end of the ∆ Analyser section,
and the usage u described at the end of the API Usage Analyser
section.

146

core Internal component

Top-level component

External component

Provided interface

Consumed interface

restforges
[…]

Impact
Analyser

∆-Analyser

Forge 1

Forge n

ery
Processor

Port

Figure 4.3: Component-view of the Maracas architecture

4.5 maracas : the implementation

Maracas is a static analysis tool that implements our three-
stage static impact analysis approach for Java projects. On top of
that, it offers both a REpresentational State Transfer (REST) API

to support external services that leverage Maracas capabilities,
and; connects with software forges to fetch projects requested for
specific API change and impact analysis. In its current version,
Maracas takes two JAR files with two different releases of a
library and the source code of a client as input. The output of the
tool is twofold: (i) a ∆-model reporting all BCs introduced between
two releases of a library, and (ii) an impact model containing
information about broken uses.

Architecture

Figure 4.3 shows a component view of the Maracas architecture.
As can be seen, Maracas has three top-level components, namely
the core, rest, and forges components.

The core component is the backbone of the tool: it is in charge
of implementing the static impact analysis approach. The com-
ponent orchestrates three sub-components, namely the query

147

processor, the ∆-analyser, and the impact analyser components. The
query processor is used to (i) specify the type of expected analysis
(i.e., API change analysis or the whole static impact analysis), and;
(ii) specify paths to the required code files (i.e., JAR and Java
source files) and add additional filtering options (e.g., exclude
unstable parts of the API from the analysis).

The ∆-analyser implements the API ∆-analysis stage of our
approach. For that, it relies on japicmp,7 a static analysis tool
that detects a subset of BCs in Java projects. The tool takes two
JAR files as input, meaning that it can only report binary BCs

and the source BCs that are shared between the two sets of BCs.
The output of the tool is then translated into a Maracas-specific
∆-model.

The API usage and impact analyses are implemented in the
impact analyser component. Maracas relies on Spoon [128] to
generate an AST from the client source code and via the visitor
design pattern, it traverses the structure and reports the broken
uses of the modified API members. To do so, there is one visitor
per BC type, each one of them visiting AST nodes that under
certain use conditions can be impacted by the BC. For each node,
there is a broken use detection algorithm. The language construct
gives information about the API usage and the used API member.
Although there are several visitors for each BC type, only one
traversal of the AST is required. All visitors are combined in one
class, and each one of them is requested to visit each node from
the AST. Together with the ∆-model and the expected behaviour
of the compiler, we provide an algorithm that can statically infer
broken uses. Maracas follows an over-approximation approach—
that is, in cases where we cannot decide locally whether a change
impacts client code, we still add a broken use to the model.

Lastly, Maracas provides both the rest and forges compo-
nents. The rest component provides the Maracas REST API.
This API enables a different way to use the tool, supporting ser-
vices such as bots to leverage Maracas capabilities. The forges

component connects Maracas to software forges like GitHub.
This is done to exploit Maracas capabilities at a bigger scale.

7 https://siom79.github.io/japicmp/

148

https://siom79.github.io/japicmp/

For instance, with the forges component, we can specify a set of
client repositories that need to be used in the impact analysis of
a specific library. Then, the component will take care of fetching
such repositories, cloning them, and performing the static impact
analysis with Maracas core.

Testing

In this section, we showcase the methods used to test Maracas

capabilities. In particular, we describe the use and design of
unit tests based on a synthetic benchmark and Maven projects,
and we refer to the accuracy evaluation of the tool presented in
Chapter 5.

unit testing To test the backbone capabilities of Maracas,
we implement a collection of unit tests that assess the generated
models. Concretely, we discuss two types of unit tests, namely
benchmark-based, and regression tests based on Maven projects.

The benchmark-based unit tests use the comp-changes syn-
thetic benchmark as baseline. This benchmark consists of three
main Java projects, namely the old, new, and client projects.
The former two projects represent the old and new releases of
a synthetic library. Although the new project preserves the same
structure defined for the old project, it is responsible of introduc-
ing expected BCs that potentially impact the client project. Each
package within the three projects addresses a specific BC type,
and every class within a package addresses a specific scenario
where a BC is used in a particular way. The projects cover 41 types
of BCs as defined by the japicmp project. To date, Maracas has
377 benchmark-based unit tests. The tests have been generated
by manually inspecting the errors reported by the compiler when
upgrading the client project to use the new project.

The regression tests consider a set of releases of Maven libraries
(e.g., Google Guava, Spoon, Log4J). Particularly, we consider two
different releases of each Maven project, and use the first release
as the client upgrading to the newer version of the library. For
instance, consider Google Guava releases 18.0 and 19.0. Both

149

releases are used to compute the ∆-model. In addition, release
18.0 is used as the potentially impacted client of the upgrade.
We do so, assuming that the library is internally making use
of the modified code, for instance when using API members in
their test suites. These tests download the requested releases
and perform some sanity checks on the generated ∆-models and
impact models. To date, Maracas has a total of 19 regression
unit tests.

accuracy evaluation To test the accuracy of Maracas, we
performed an accuracy evaluation included as part of the study
assessment presented in Chapter 5. In such evaluation, we focus
on answering the question how accurate is Maracas in detecting
the impact of BCs on clients? To do so, we consider two synthetic
benchmarks, the previously mentioned comp-changes and the
API evolution data [70] benchmarks. Both benchmarks provide two
library releases and a client that depends on the first release of
the library. The second library release introduces a set of BCs

that can impact the client project under certain circumstances.
While using Maven as build system, we automatically upgrade
the dependency of the client project to the newest release of
the library. This is done by injecting the new version of the
library in the dependencies defined in the client Project Object
Model (POM) file. We then use the warning and error messages
reported by the Maven compiler as our ground truth to verify if
Maracas correctly identifies the corresponding broken uses in
client code. We test the accuracy of the tool in terms of precision
and recall. After performing the evaluation, we find out that
Maracas reports a precision of 0.96 and a recall of 0.95 on the
comp-changes benchmark, and a precision of 0.92 and a recall of
0.90 on the API evolution data benchmark. To dive into the details
of the evaluation and the limitations of the tool, we refer the
reader to the Chapter 5.

150

4.6 current solutions

In this section, we present current solutions performing the evo-
lution and impact analysis of library releases in Java projects. We
also include the advantages and disadvantages of such studies
in light of our work.

Evolution Analysis: Detection of Breaking Changes

The Java compiler and linker systems are the main sources to
identify the source and binary BCs, respectively. However, these
tools cannot report on the nature of the BCs (e.g., changing the
access modifier of a method, making a class final) [162]. They also
introduce some overhead in terms of compilation and linking
time, requiring involved software projects to be compilable and
executable—which turns on to be impractical when performing
empirical compatibility analysis of several evolving projects.

Researchers in the software evolution field have proposed em-
pirical and statistical approaches, among others, to overcome the
aforementioned limitations when performing evolution analysis.
For instance, Robbes, Lungu, and Röthlisberger [136] detect rip-
ple effects caused by the deprecation of API methods and classes
in Squeak and Pharo, both of them dialects of Smalltalk. They
first identify the API members that have the deprecated annotation.
Afterwards, they mine commits of client code and pinpoint the
cases where the use of the deprecated API member has been mod-
ified. These members are labeled as ripple effect candidates and
only the ones that have been modified in at least three commits
are kept in the list. In general, this study does not focus on BCs

detection but rather on the detection of API deprecation and the
client reactions to such changes. Moreover, the study does not
aim at deeply studying the impact on client code.

A different set of static analysis tools have been developed
to identify the introduction of BCs [70, 162]. Examples of such
tools include clirr [89], jacc, japicc, japiChecker, japicmp [59],
japitool, jour, revapi, sigtest, and ACUA [162]. Usually, these
tools take two JAR files or source folders as input and generate a

151

model with the list of BCs introduced between two releases of a
project. Jezek and Dietrich find out that only a small portion of
these tools are suitable to detect BCs: they are neither sound nor
complete—that is, not all reported BCs are truly BCs, and not all
existing BCs are reported by the tools. In particular, tools dealing
with bytecode will not be able to detect source incompatible
changes due to loss of information after compilation. Further-
more, impact on client code is out of the scope of such tools.
However, the aforementioned tools do overcome the limitations
imposed by the use of the compiler or the linker: they eliminate
the compilation and linking resources overhead, and support BC

types identification.

Impact Analysis: Detection of Breaking Changes Impact

Robbes, Lungu, and Röthlisberger [136] are some of the first
researchers that pointed out the need for tools that can identify
how BCs introduced in a library can impact client projects and
trigger a wave of changes in a software ecosystem. As mentioned
previously, they perform the impact analysis of deprecated API

methods and classes. The authors introduced the Ripple Effect
Browser tool, which visualizes the diff of the commit on the
client side that modifies the use of the deprecated API member.
In this way, they can identify the number of reacting clients, the
magnitude of the change triggered by the deprecation, and the
copying BC strategy. Although the previous approach gives rele-
vant insights into the type of changes that succeed an API change,
the scalability and performance of the solution are compromised
by the required manual labour and the granularity level of the
analysis (i.e., commit level).

Wu et al. [162] introduce ACUA, a static analysis tool that goes
a step further and performs API evolution and impact analysis.
The tool takes as input the JAR files of two releases of a library
and a client of the first release. Then, a model is generated from
these files by means of using the ASM Java bytecode analysis
framework. On the impact analysis part, the tool detects where
and how API members are being used on client code. Based on

152

this information and the set of identified BCs, ACUA traces back
broken client code to specific BCs. Nevertheless, maintenance of
ACUA has been discontinued and details about the implemen-
tation of the approach are not provided. In particular, the way
impact analysis is performed can have a non-negligible effect on
the accuracy of the results.

Xavier et al. [165] also study API evolution and impact but
instead, they use a heuristic to estimate it: (i) in the case of a type,
they check if the client refers to the fully qualified name of the
class in any of its import statements, and; (ii) in the case of a
field or a method, they consider the owning type to perform the
previous check. This approach might not be resource-intensive
but the impact on the accuracy of the output is compromised.
Not all imported types in a class are actually used by the client,
and not all uses of certain breaking API members derive into
broken client code. Maracas, on the contrary, does consider the
specific usages of the API, and an algorithm mimics the behaviour
of the compiler to provide more accurate insights.

Furthermore, Scalabrino et al. [141] study backwards incom-
patibility in the Android ecosystem. Their approach investigates
Conditional API Usages (CAUs) in Android applications to detect
BCs and infer patches. A CAU is a code block that checks the
current Android version of the running app, and depending on
the value provides a specific behaviour compatible with such
a release. The CAUs are used to infer patching rules setting a
confidence level. This confidence level is strongly related to the
number of applications exhibiting a specific behaviour for a given
Android version. The rules are not only used to directly patch
Android clients, but also to detect impacted code on other appli-
cations that do not necessarily use CAUs. However, this approach
is data-intensive, requiring several clients to provide meaningful
patching rules. Moreover, the approach is not complete in the
sense that BCs are detected only for those cases appearing on the
Android application codebase.

153

4.7 conclusions

In this chapter, we introduce a static impact analysis approach to
perform API usage, evolution, and impact analysis in a language-
agnostic, resource-efficient, and accurate way. In particular, the
goal of the approach is to identify the set of syntactic BCs intro-
duced between two releases of a library, and the set of broken
uses on client code caused by such changes.

Our approach consists of three components, namely (i) the
API usage analyser, which takes as input a library release and
a client project and outputs an API usage model that contains
information about what API members are being used within the
client, where they are being used, and how (e.g., interface imple-
mentation, method invocation); (ii) the ∆-analyser, which takes
as input two library releases and generates the ∆-model with all
introduced BCs, and; (iii) the impact analyser, which takes the API

usage model and the ∆-model as inputs and builds an impact
model that links client broken code to BCs. The static impact anal-
ysis approach is implemented into Maracas, which performs
the corresponding analysis on Java code. Both unit tests and
an accuracy evaluation have been implemented to test the tool.
Two benchmarks have been considered for the latter evaluation,
namely the comp-changes and the API evolution data benchmarks.
Maracas reports a precision of 0.96 and a recall of 0.95 on the
comp-changes benchmark, and a precision of 0.92 and a recall of
0.90 on the API evolution data benchmark.

The previous results suggest that the static impact analysis ap-
proach, together with our implementation, Maracas, are ac-
curate solutions to help both library and client developers to
perform API evolution and impact analysis. An additional evalua-
tion must be performed in the future to verify that the approach
is also language-agnostic and resource-efficient, beating alterna-
tives that include Java compilers and build systems. Furthermore,
the limitations of the tooling (e.g., handling generics, estimating
the inheritance hierarchy) should also be addressed to increase
the accuracy of the solution.

154

As future research directions, we plan to use the static impact
analysis approach and the tools implementing it for different
programming languages (e.g., Maracas) as an infrastructure
to empower library and client developers when evolving their
projects. In particular, we believe that the output models can be
used, for instance, to (i) suggest improvements to the design of
software projects; (ii) decide beforehand whether to introduce a
BC based on the impact it has on client code, or decide to upgrade
to a newer version of an API based on the broken uses introduced
in a client project; (iii) measure the effort of upgrading to new
releases of a library, and; (iv) identify reaction patterns when
upgrading to a new version of an API [140] and even infer rules
to patch clients that undergo the same process [141].

155

5
B R E A K B O T : S TAT I C R E V E R S E D E P E N D E N C Y
C O M PAT I B I L I T Y T E S T I N G F O R J AVA L I B R A R I E S

abstract "If we make this change to our code, how will it im-
pact our clients?" It is difficult for library maintainers to answer
this simple—yet essential!—question when evolving their libraries.
Library maintainers are constantly balancing between two opposing
positions: make changes at the risk of breaking some of their clients
or avoid changes and maintain compatibility at the cost of immobility
and growing technical debt. We argue that the lack of objective usage
data and tool support leaves maintainers with their own subjective
perception of their community to make these decisions. We introduce
BreakBot, a bot that analyses the pull requests of Java libraries on
GitHub to identify the breaking changes they introduce and their impact
on client projects. Through static analysis of libraries and clients, it
extracts and summarizes objective data that enrich the code review
process by providing maintainers with the appropriate information to
decide whether—and how—changes should be accepted, directly in the
pull requests. Our accuracy evaluation shows that BreakBot is able
to detect breaking changes and their impact using static analysis on
two benchmarks with precision and recall scores ⩾ 90%. By analysing
thousands of pull requests on popular Java libraries hosted on GitHub,
our usefulness evaluation shows that many are introducing breaking
changes and impacting client projects, and that BreakBot provides
insightful information to maintainers in the code review process.

This chapter is originally submitted as Lina Ochoa, Thomas Degueule, Jean-
Rémy Falleri, and Jurgen J. Vinju. "BreakBot: Static Reverse Dependency Com-
patibility Testing for Java Libraries". In: IEEE Transactions on Software Engi-
neering (2023). IEEE, (Submitted).

157

Leveraging the time-honored principles of modularity and
reuse, modern software systems development typically entails
the use of external software libraries. Rather than implementing
new systems from scratch, developers incorporate libraries that
provide functionalities of interest into their projects. Such li-
braries expose their features through Application Programming
Interfaces (APIs), which govern the interactions between client
projects and libraries.

Libraries constantly evolve to incorporate new features, bug
fixes, security patches, refactorings, and extra-functional improve-
ments [12, 20]. It is critical for clients to stay up-to-date with the li-
braries they use to benefit from these improvements and to avoid
technical lag and its associated technical debt [27, 55, 150]. When
a library evolves, however, it may break the contract previously
established with its clients by introducing Breaking Change (BC)
in its API, resulting in syntactic and semantic errors [172]. In
Java, for instance, seemingly innocuous changes such as altering
the visibility or abstractness modifier of a type declaration or
inserting a new abstract method can, under certain conditions,
break client code. Errors triggered by these changes burden client
developers, given the sudden urgency to fix issues out of their
control without intrinsic motivation. As a result, clients some-
times hesitate to upgrade their dependencies, raising security
concerns and making future upgrades even more difficult. Thus,
it does not come as a surprise that the problem of helping clients
respond to library evolution has garnered considerable interest
in recent years [93, 110, 120, 163, 168].

Surprisingly, however, the problem of helping library maintain-
ers anticipate the impact of their changes and plan accordingly—
the other side of the coin—has received little attention. Libraries
are in general accountable to their clients for providing stabil-
ity [18]. We claim that library maintainers currently lack the
necessary information and tool support to live up to this respon-
sibility. In particular, these maintainers have limited means to
foresee the consequences of their actions on their clients [66, 136]
and would benefit from knowing precisely how their APIs are
used in client projects.

158

The consequences of breaking an API declaration used by many
clients, by a popular library, or by commercial clients might be
substantial: clients might lose trust and either stay outdated
or migrate to another API. Consequently, some very cautious
library maintainers refuse to change any existing declaration,
thinking it might be too impactful, leading to an accumulation
of technical debt and an aging design that will scare people
away [18]. Some more adventurous maintainers will push any
change, disregarding clients using the affected declaration, at the
risk of breaking too many of them and having to revert the change
ultimately [145]. We believe that the sweet spot is at the crossroad
of innovation2 and clients’ stability. Unfortunately, there are only
limited ways for library maintainers to acquire evidence-based
knowledge on the usage of their API, and they often must rely
on their own judgment and the subjective knowledge of their
community to figure out how to evolve it [173].

To assist maintainers in the evolution of their libraries while
avoiding breaking their clients unexpectedly, we introduce a
general framework for reasoning about the impact of library evo-
lution: static Reverse Dependency Compatibility Testing (RDCT),
as well as a first implementation: BreakBot. Static RDCT aims
at empowering library maintainers to make evidence-backed de-
cisions regarding the evolution of their libraries by efficiently
and accurately informing them about BCs introduction and their
impact on relevant clients. Concretely, library maintainers are
able to ask what-if questions and explore what consequences
evolving their library would have on their clients: "What if we
push this refactoring?" "What if we alter this method’s signature?" etc.,.

BreakBot is a GitHub bot that analyses the content of Pull
Requests (PRs) in Java repositories and employs static analysis
to identify BCs (on the library side) and their impact (on the
client side). The resulting reports are fed back into the PRs, en-
abling maintainers to review changes and their impact to decide
whether they should be accepted. BreakBot relies on Maracas

2 We adopt the description of "innovation" provided by Bogart et al. [18]—that is
"[i]nnovation through fast and potentially disruptive changes".

159

(cf. Chapter 4), a static analysis tool that detects syntactic BCs that
force clients to modify their code at upgrade time.

We evaluate BreakBot—and, indirectly, the static RDCT

approach—on two fronts: usefulness and accuracy. As main re-
sults, we find that BreakBot (and indirectly the static RDCT

approach) produces meaningful reports for a varied set of library
evolution scenarios, and that many PRs do indeed introduce
BCs, sometimes impacting clients, even in the most popular Java
libraries. Besides, our accuracy evaluation concludes that Mara-
cas, obtains excellent precision and recall scores. We expect our
framework and its implementation in BreakBot to fight immo-
bility and stagnation by pushing library maintainers to introduce
BCs when it is safe and to avoid pushing changes when they are
considered too impactful. Making the co-evolution of library and
clients more harmonious should benefit library maintainers and
client developers alike.

This chapter is an extension of our earlier short paper pub-
lished in the New Ideas and Emerging Results (NIER) track of
the International Conference on Software Engineering (ICSE’22),
which outlined our vision [121]. This chapter extends the latter
with a general framework for static RDCT, a detailed presentation
of BreakBot, and an evaluation of its usefulness and accuracy.
The remainder of the chapter is structured as follows. Section 5.1
introduces background notions on software evolution and soft-
ware forges. Section 5.2 dives into a real-world evolution scenario
that motivates our approach. Static RDCT and its implementation,
BreakBot, are described in Section 5.3 and Section 5.4, respec-
tively. Section 5.5 evaluates the useful and accuracy of BreakBot.
Finally, we discuss our main findings in Section 5.6, related work
in Section 5.7, and conclude the study in Section 5.8.

5.1 background

This section introduces core concepts regarding software evo-
lution, software forges, and version control systems, which are
used throughout the manuscript.

160

Software Evolution

Software evolution is the phenomenon that results from modifying
or maintaining software [80]. Often, this evolution affects more
than a single software project and propagates to other projects
as they are linked through dependencies and cohabit within
software ecosystems. A software project can act both as a library
and a client. When playing the library role, a change introduced
in the project can impact its API, i.e., an interface that exposes a
set of features and services to client projects. Changes introduced
in the API can either be backward-incompatible or compatible,
meaning that they can or cannot potentially break client code,
respectively. Backward-incompatible changes are also known as
BCs and can be classified as syntactic or semantic. Syntactic BCs

impact the structure of the API (e.g., changing the return type of a
method, the name of a type, or a parameter list), while semantic
BCs impact its behavior (e.g., for a given input, a different output
is observed) [172]. BCs are language-specific—that is, they depend
on the specification and implementation of the host programming
language. For instance, BCs related to the modification of access
modifiers exist in Java but not in Python, as the latter does not
support such constructs.

Software Forge & Version Control System

A software forge is a collaborative system where software projects
are hosted, developed, and shared [147]. The code and other
artifacts of the project are managed via a Version Control Sys-
tem (VCS) which facilitates collaborative development and keeps
track of the different versions of the project assets, to name but
a few capabilities. GitHub is an example of a software forge
relying on Git as VCS. All assets of a project are part of a reposi-
tory, which consists of a tree of commits, each with links to its
predecessors. A commit represents a chunk of changes (diff) to
the files of the repository. It is usually labeled with a message
and has a pointer to a snapshot of the repository at the moment
the commit was created. Commits can be spread around differ-

161

ent branches representing various development endeavors (e.g.,
feature development, bug fixing, refactoring). Additionally, the
development and operational workflow of the team developing
the project are supported by additional tools such as Continuous
Integration (CI), Continuous Development (CD), issue trackers,
and bots of different natures (e.g., Dependabot),3 among others.

5.2 motivation & current solutions

To understand the importance of assisting library maintainers
when introducing BCs and assessing their impact on client code,
we use an example brought to our attention by a core maintainer
of Spoon,4 a source code analysis and transformation library
for Java developed on GitHub. Spoon developers are very con-
cerned about stability and therefore avoid BCs. When they do
want to introduce a BC, they first use deprecation to warn clients
before proceeding with the change. In pull request PR#2683, a
new feature to pretty-print Java import statements was rolled
in, making a previous implementation—the ImportScanner in-
terface and corresponding ImportScannerImpl implementation
and ImportScannerTest tests—obsolete. Therefore, the author of
the PR labeled both types as deprecated. Two months later, in
PR#3184, Spoon developers removed a set of deprecated types
and methods from the code, notably the two types mentioned
above. The PR was merged, making its way into Spoon’s main
branch. However, three months later, Spoon’s developers noticed
that these changes broke two important clients (Astor [106] and
DSpot [31]) and realized that the ImportScanner interface and
implementation were used by clients and thus reconsidered the
deprecation. They finally reintroduced them in PR#3266.

Clearly, having to revert changes after introducing them is
not ideal. If other changes had been made based on the original
changes, they would have had to be reverted too, triggering
a nasty ripple effect within the library’s code. To avoid this
undesirable situation, there are, to the best of our knowledge,

3 https://github.com/dependabot/

4 https://github.com/INRIA/spoon/

162

https://github.com/INRIA/spoon/pull/2683
https://github.com/INRIA/spoon/pull/3184
https://github.com/INRIA/spoon/pull/3266
https://github.com/dependabot/
https://github.com/INRIA/spoon/

three approaches that enable library maintainers to evaluate the
impact of the BCs they introduce.

regression testing The most common approach is to use
a regression test suite, launched after each change. This test
suite contains test cases that ensure that the usage scenarios of
the library, as intended by its maintainers, work as expected.
With a strong enough test suite, BCs should make some test
cases fail and, thus, help library maintainers assess the impact of
their changes. However, regression test suites suffer one severe
drawback. Since it is neither possible nor desirable to build
a test suite covering every possible library usage, developers
typically enforce the usage scenarios they deem important to
their library using their own subjective opinion. These cases
may not accurately represent real usage scenarios of the library
and therefore convey a false sense of security by omitting some
popular usages or by including scenarios that seldom happen in
practice. In our example case, Spoon’s test suite did notice the BCs

introduced in PR#3184. However, the maintainers estimated that
it did not represent valid usages of the library any longer and
removed the corresponding test cases (the ImportScannerTest

class).

static analysis Another popular approach is to employ
dedicated static analysis tools to systematically search for BCs.
Various tools can statically scan two versions of a library to out-
put the list of BCs between them [70]. For instance, Guava relies
on JDiff [56] while the Apache foundation uses japicmp [59]. The
main drawback of this approach is that it might result in an
overly conservative approach when dealing with BCs introduc-
tion. Indeed, static analysis tools issue a warning whenever a BC

is introduced. However, many changes, including seemingly in-
nocuous ones (e.g., simply inserting a new method in a class), are
potentially breaking and therefore labeled as BCs, even though
they are safe for the vast majority of clients (cf. Chapter 3). This
typically results in static analysis reports containing dozens of
warnings about BCs, with only a small fraction of them having

163

https://github.com/INRIA/spoon/pull/3184/

Listing 5.1: Excerpt of japicmp’s output for PR#3184

1 ---! REMOVED INTERFACE: PUBLIC(-) ABSTRACT(-) spoon.reflect.visitor

.ImportScanner (not serializable)

2 --- REMOVED ANNOTATION: java.lang.Deprecated

3

4 ---! REMOVED CLASS: PUBLIC(-) spoon.reflect.visitor.

ImportScannerImpl (not serializable)

5 ---! REMOVED INTERFACE: spoon.reflect.visitor.ImportScanner

6 --- REMOVED ANNOTATION: java.lang.Deprecated

7

8 [...]

actual usages in client projects. Ultimately, maintainers must
again resort to their subjective opinion about the BCs detected
by these tools to decide whether they may significantly impact
clients.

Listing 5.1 shows an excerpt of japicmp’s output artificially
produced for PR#3184 (Spoon maintainers do not use this tool in
their development process). It signals the deleted ImportScanner

and ImportScannerImpl types, together with other BCs. However,
it does not bring any more information about the impact of the
changes than what the regression test suite already reported. One
can assume that Spoon maintainers would still have proceeded
with the change despite the warnings.

reverse dependency compatibility testing A third
and less common approach—the only one able to evaluate the
impact on real clients—is Reverse Dependency Compatibility
Testing (RDCT) [26, 174]. The idea of RDCT is to identify a set of
relevant clients, retrieve their source code, inject the new version
of the library in their dependencies, and finally build them and
run their test suite. If any error is detected during the process,
maintainers can analyse it by browsing through the resulting
log files. This approach is popular in the realm of programming
languages: Scala and Rust, for example, periodically perform
RDCT on their clients (standard library). The Coq project5 goes a
step further by directly integrating RDCT as part of its CI process

5 https://coq.inria.fr/

164

https://github.com/INRIA/spoon/pull/3184/
https://coq.inria.fr/

so that any BC impacting a client is detected right away [174].
Although examples are rare, some regular libraries also employ
RDCT as part of their evolution process (e.g., Spoon).6

RDCT is an effective technique to assess whether changes im-
pact real clients, but it suffers from several issues in practice.
First, selected clients must be up-to-date with the latest version
of the library, must successfully build, and must have a test suite
that passes so BCs impact can be effectively detected. Ensuring all
these conditions are met and setting up an environment to make
it happen requires considerable time and resources. Even with a
suitable environment, clients might be in a state of development
where they are not buildable or where their test suites are not
passing, making them useless. Second, RDCT takes considerable
time and computational resources to build and test every client.
For instance, the Rust project reports requiring up to a week to
check 74,234 clients using crater,7 as of September 2019. Third,
RDCT uses the results of compilation and individual tests (pass
or fail) to spot BCs in clients. However, it is very common for
maintainers to introduce several BCs simultaneously. Pinpointing
which ones are the problematic BCs for a given client requires
analysing the resulting log files and diagnosing the source of the
error. Unfortunately, the resulting log files are verbose, forcing
the maintainers to filter irrelevant information to understand the
root cause. Last, whenever a BC is merged, the impacted clients
can no longer be used for subsequent RDCT until their affected
code is repaired. This might not be a problem for BCs with a small
impact, but for BCs with a significant impact, it can result in the
impossibility of performing RDCT until all clients have adopted
the new version of the library. For this reason, Coq’s maintainers
resort to fixing the clients themselves to keep their CI process
running, which requires considerable effort [174].

In our example case, Spoon’s RDCT runs every day on
13 projects. Following PR#3184, it ran into errors for the As-
tor and DSpot clients. An analysis of the log file of Astor (List-
ing 5.2), containing 266 errors among 704 log statements, revealed

6 https://ci.inria.fr/sos/

7 https://github.com/rust-lang/crater/

165

https://github.com/INRIA/spoon/pull/3184/
https://ci.inria.fr/sos/
https://github.com/rust-lang/crater/

Listing 5.2: Extract of Astor’s build log file (704 lines in total)

1 [ERROR] Failed to execute goal org.apache.maven.plugins:maven-

compiler-plugin:3.0:compile (default-compile) on project astor:

Compilation failure: Compilation failure:

2 [ERROR] /builds/workspace/astor/src/main/java/fr/inria/astor/

approaches/scaffold/scaffoldgeneration/libinfo/LibParser.java

:[23,29] cannot find symbol

3 [ERROR] symbol: class ImportScanner

4 [ERROR] location: package spoon.reflect.visitor

5 [ERROR] /builds/workspace/astor/src/main/java/fr/inria/astor/

approaches/scaffold/scaffoldgeneration/libinfo/LibParser.java

:[24,29] cannot find symbol

6 [ERROR] symbol: class ImportScannerImpl

7 [ERROR] location: package spoon.reflect.visitor

8 [ERROR] /builds/workspace/astor/src/main/java/fr/inria/astor/

approaches/scaffold/scaffoldgeneration/libinfo/LibParser.java

:[53,9] cannot find symbol

9 [ERROR] symbol: class ImportScanner

10 [ERROR] location: class fr.inria.astor.approaches.scaffold.

scaffoldgeneration.libinfo.LibParser

11 [ERROR] /builds/workspace/astor/src/main/java/fr/inria/astor/

approaches/scaffold/scaffoldgeneration/libinfo/LibParser.java

:[53,43] cannot find symbol

12 [ERROR] symbol: class ImportScannerImpl

13 [ERROR] location: class fr.inria.astor.approaches.scaffold.

scaffoldgeneration.libinfo.LibParser

that the deleted types (ImportScanner and ImportScannerImpl)
raised missing symbol errors at compile time. Thanks to RDCT,
Spoon developers discovered the impact of the BC. Based on
this information, they decided to revert the removal of these
two types. However, Astor’s RDCT build was already failing for
three months before the revert took place, making it unusable for
detecting the impact of other BCs in this period.

In summary, while RDCT helps analyse the impact of BCs on
clients, it has several issues that severely hinder its usability and
adoption. In the next section, we present a novel and lightweight
approach based on static analysis to evaluate the impact of syn-
tactic BCs on clients that can easily integrate with the library
maintainers’ workflow. Naturally, RDCT still goes beyond our

166

approach regarding semantic BCs, at the cost of building and
running the client test suites.

5.3 static rdct

In this section, we introduce static RDCT, an approach that sup-
ports library maintainers in the evolution of their libraries by
analysing what changes are introduced in their APIs, and where
and how they impact client code. This section focuses on the
principles and main components of the approach, independently
from a particular programming language, software forge, or de-
velopment workflow. We introduce BreakBot later in Section 5.4
as an implementation of the static RDCT approach for Java li-
braries hosted on GitHub.

Approach Overview

Static RDCT aims to collect factual information from clients re-
garding their usage of a library and the impact the library’s
evolution may have. Our proposal for static RDCT solves the three
main issues identified with classical RDCT: (i) it does not require
clients to be healthy (i.e., to compile and have a passing test
suite); (ii) it drastically reduces the amount of resources needed
to analyse the clients by employing static analysis; (iii) it uses
dedicated reports to feed the information to maintainers, rather
than piggybacking on inadequate formats such as build logs,
and; (iv) it enables clients that are not up-to-date or that have re-
cently been impacted by BCs to remain usable in the compatibility
checking process.

Figure 5.1 depicts an overview of the static RDCT approach,
which involves three main components orchestrating the whole
solution: the client explorer, the static impact analyser, and the
impact reporter. The approach considers a software forge hosting
a set of repositories. Of particular interest are the repository of
the studied library and the client repositories that depend on it.
Zooming into one particular repository, the library repository, we

167

observe an excerpt of the commit tree, where commitj+1 points
to its predecessor commitj. Each commit also holds a pointer to a
snapshot of the source code and additional repository files.

To perform API evolution and impact analysis, one must first
pick two versions of the library and the corresponding snapshots.
According to the library maintainers’ needs, these two versions
may be two subsequent commits, the latest commits from two
different branches, the latest commit and a reference commit (e.g.,
the latest stable release), or any other combination of arbitrary
commits. Then, the client explorer gathers snapshots of relevant
client repositories that depend on the target library. The static
impact analyser takes as inputs the two snapshots of the library
to generate a ∆-model between the two library versions (which
lists the BCs introduced in between), and the set of client projects
to generate a set of impact models which pinpoint the locations
in the clients’ source code that are impacted by the changes
identified in the ∆-model. These models are input to the impact
reporter, which generates insightful impact reports fed back into
the library development workflow. Hereafter, we provide more
details on how the three main components of static RDCT operate.

Client Explorer

The client explorer is responsible for discovering, selecting, and
fetching client projects of interest for the library under study.
Naturally, the complete list of clients depending on a library is
unknown: not every client is publicly available online, and it is
difficult to identify all those that are. Several software forges and
ecosystems come with their own means to discover the reverse
dependencies of a library, e.g., the Maven Dependency Graph [13]
and the GitHub Dependency Graph,8 which can be queried to
identify clients. In other cases, the library maintainers may come
up with a custom list of clients—as is already the case with
classical RDCT, e.g., in Coq and Spoon.

8 https://docs.github.com/en/code-security/supply-chain-security/

understanding-your-software-supply-chain/about-the-dependency-graph/

168

https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph/
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph/

Library repositoryClient repositories

So

w
ar

e
fo

rg
e Filei

Snapshotj

CommitjClient1
…

Clientn

Commitj+1

Snapshotj+1

Filei+1

Filei+2

Filei

Filei+2

…

… … …

… …

∆ model

Impact models

Static impact
analyser

Client
explorer

Impact
reporter

Impact
report

D
evelopm

ent w
orkflow

Client1

Clientm

…

…

Figure 5.1: Overview of the static RDCT approach

As it is not desirable nor possible to exhaustively analyse
all clients of a library (popular libraries on GitHub and npm
typically reach hundreds of thousands of clients [37, 122]), the
client explorer honors additional criteria to reduce the analysis
space. As an illustration, BreakBot enables library maintainers
to limit the analysis to the top m most popular clients according
to GitHub’s stars score, where m is an arbitrary number (cf. Sec-
tion 5.4). Other possible criteria include coverage of the library’s
API by the clients (to avoid analysing several clients using the
library in the same way and to make sure that the library’s API is
adequately covered by the selected ones); diversity and represen-
tativeness of the clients w.r.t. chosen dimensions [119]; nature of
the library, in particular, if it is a engineered software project or
"noise" [118]; update date, or; importance of the client to library
maintainers.

Note that, for the approach to be accurate, clients do not nec-
essarily need to depend on the latest version of the library un-
der study. For instance, if maintainers remove in version 2.0

169

a method m() that was introduced in version 1.1, any client
depending on version v ∈ [1.1, 2.0) and using the method m()

will be impacted when it upgrades to v ′ ∈ [2.0,∞). Naturally,
clients that have not been updated in a long time (e.g., clients
that depend on version 2.x while the library is about to release
version 4.1) may not be as interesting to analyse since they may
never update to the latest version and, when they do, they will
be faced with other major changes. Ultimately, the decision is up
to the maintainers, who should be given the means to implement
their own policy.

Static Impact Analyser

The static impact analyser is in charge of both analysing the
changes introduced between two versions of a library and the
impact these changes have on a particular client project. After the
client explorer has fetched the client repository snapshots, the
static impact analyser takes the client sample (C) and two snapshots
of the target library (l1 and l2) corresponding to two different
commits in the repository. These commits may be adjacent or
not. Adjacent commits are commits that are directly connected
in the commit tree, where one commit (e.g., commitj) is the
predecessor of the other one (e.g., commitj+1). In either case, the
two commits can be in the same or different branches within the
VCS. Based on these inputs, the static impact analyser performs
a static API evolution analysis ∆⟨l1, l2⟩ generating a ∆-model
that contains all BCs introduced between l1 and l2. Afterward, it
performs a static impact analysis I⟨∆l1l2 , c⟩, ∀c ∈ C building a
set of impact models containing pointers to broken client code
after the upgrade from l1 to l2. To produce these assets, the
static impact analyser creates an Abstract Syntax Tree (AST) of
each library and client snapshot, avoiding the need to build and
compile the software projects. Then, it traverses the library ASTs

to identify the language-specific BCs. This information is later
used when traversing the clients’ ASTs to mimic the behaviour
of the host language tools (e.g., compiler, linker) and identify
broken client code.

170

Impact Reporter

Ultimately, the impact reporter takes the ∆-model and the impact
models as inputs to generate an impact report. This report pro-
vides library developers with insights into the BCs introduced
between two commits: what kinds of BC affects which declara-
tion, in which location in the source code, and how such changes
break client code. The report is later fed back to the development
workflow providing actionable information about the library
evolution to the project maintainers. Based on this information,
library maintainers can opt for totally or partially including the
introduced changes between the two commits or rejecting them.
They can also design strategies to support clients in their upgrade
process and better enforce their own policies regarding backward
compatibility and library evolution.

5.4 breakbot

BreakBot is our implementation of static RDCT for Java libraries
hosted on GitHub and following a pull-based development work-
flow [58]. It is implemented as a GitHub App that analyses
the PRs of Java libraries hosted on GitHub. In particular, it pin-
points the BCs introduced in the PR and their impact on a config-
urable set of client repositories. This information is fed back into
the development workflow in the form of a report attached to
the PR to support the code review process (see https://github.

com/break-bot/spoon-before-bc/pull/4/checks/ for an exam-
ple report on the scenario presented in Section 5.2). In this section,
we present how we implemented the three components of static
RDCT for BreakBot.

Client Explorer

In BreakBot, clients of a library hosted on GitHub are extracted
from the GitHub Dependency Graph. As there is currently no
dedicated API to retrieve clients of a repository, we implemented

171

https://github.com/break-bot/spoon-before-bc/pull/4/checks/
https://github.com/break-bot/spoon-before-bc/pull/4/checks/

Listing 5.3: An example BreakBot configuration file

1 clients:

2 top: 10

3 stars: 5

4 repositories:

5 - repository: foo/bar

6 sha: 6c3c1e

7 module: bar-core

8 - repository: bar/baz

9 branch: 3.x

a crawler that extracts the list of clients from the Dependency
Graph webpage of the library under study, together with asso-
ciated popularity metrics (number of stars, number of forks).
Users of BreakBot can configure which of these clients should
be taken into account during the impact analysis phase through
a dedicated YAML configuration file breakbot.yml that must be
placed in a .github directory at the root of the library’s reposi-
tory, following GitHub’s conventions. In this file, users can define
a threshold of popularity and a maximum number of clients to be
checked, as illustrated in Listing 5.3. Given this configuration, the
client explorer computes the list of clients ordered by popularity
and returns the top n. In addition, users may provide a custom
list of client repositories that should always be checked. As an
example, the configuration of Listing 5.3 will instruct BreakBot

to automatically fetch and analyse the ten clients using the library
with the most stars and a minimum of five stars, together with
the repository foo/bar (at commit 6c3c1e) and the bar-core

Maven module of the bar/baz repository on branch 3.x.

Static Impact Analyser

The static impact analyser is implemented as a standalone tool
named Maracas. Maracas is a static analysis tool written in
Java that performs API changes and impact analysis on Java

172

projects.9 In particular, Maracas takes two versions of a library
(as source code or bytecode) and the source code of a client
project that depends on the first version of the library as inputs
to conduct the static analysis. In earlier work, we implemented
a first version of Maracas in Rascal [84] to analyse hundreds
of thousands of Java ARchivess (JARs) hosted in Maven Central
Repository (MCR) (cf. Chapter 3). To use it in concert with Break-
Bot, we re-implemented Maracas in pure Java to improve the
tool’s performance and better integrate it with required Java li-
braries; e.g., japicmp for ∆-model computation, and the Spoon
library [128] for source code analysis.

It consists of three core components: (i) Maracas core per-
forms the static API change and impact analysis; (ii) Maracas

forges handles the communication with software forges, en-
abling Maracas to analyse source code hosted on remote repos-
itories, and; (iii) Maracas rest makes it easy for third-party
clients (such as BreakBot) to leverage the analysis capabilities of
Maracas through a REpresentational State Transfer (REST) API.

To detect the BCs introduced between two arbitrary versions
of a library, Maracas builds the corresponding snapshots us-
ing Maven to produce their JARs. The two JARs are then passed
through japicmp, which returns the declarations affected by a BC

and the kind of change (e.g., a method removal or a change in a
method’s return type). The list of BCs is stored in a ∆-model.

To detect the impact a ∆-model has on a particular client,
Maracas first builds an AST of the client’s source code. Then, for
each BC in the ∆-model, Maracas instantiates a dedicated visitor
of the appropriate BC kind, configured by the API declaration
that is affected. We implemented one kind of visitor per BC

type. Each visitor subscribes to the AST node types that may be
affected: a MethodRemovedVisitor, for instance, looks for method
invocations and method overrides in the client’s AST that point
towards the now-removed method in the library. The set of all
visitors for a particular ∆-model is then combined into a single
one so that the whole analysis runs efficiently in a single pass.
Each element in the client’s AST that is impacted by a BC (e.g., a

9 https://github.com/alien-tools/maracas/

173

https://github.com/alien-tools/maracas/

main

feature

The base branch

The PR's branch

a b c d e

f g h

i

merge-base HEAD

BASE

merge-
commit

Figure 5.2: By default, BreakBot compares the merge-base and the
HEAD commits when analysing a PR

method invocation, field access, or interface implementation) is
called a broken use and is associated with its path, location, and
kind of use. Together, the set of broken uses for a particular client
forms its impact model.

Reporter

Our BreakBot reporter is designed to act on GitHub PRs and is
implemented as a GitHub App that reacts to PRs events by sub-
scribing to GitHub webhooks.10 When a PR is created or updated,
a notification is sent to BreakBot. By default, BreakBot selects
the merge-base commit and the HEAD commit as the two ver-
sions to be compared, as illustrated in Figure 5.2. Although other
strategies could be implemented (e.g., using the merge-commit

or an arbitrary reference commit), this one is the closest to the
maintainers’ workflow as it picks the same commits as Git’s three-
dots diff strategy, which is the default strategy implemented in
GitHub when visualizing the changes introduced by a PR.

Then, BreakBot reads the .github/breakbot.yml configura-
tion file and fetches the appropriate client repositories to conduct
the BCs and impact analyses. The resulting ∆-model and impact
models are processed to produce a markdown report attached to

10 https://github.com/alien-tools/breakbot/

174

https://github.com/alien-tools/breakbot/

(a
)

R
ep

or
te

d
BC

s

(b
)

Im
pa

ct
ed

co
de

in
A

st
or

Fi
gu

re
5
.3

:E
xc

er
pt

of
th

e
Br

e
a

k
Bo

t
re

po
rt

fo
r

Sp
oo

n’
s

PR
#3

1
8

4
w

it
h

th
e

BC
s

an
d

th
ei

r
im

pa
ct

on
cl

ie
nt

s

175

Figure 5.4: Excerpt of the BreakBot report for Spoon’s PR#3184 with
the clients’ overview

176

the Checks tab of the PR, easily accessible to maintainers during
the code review process. The markdown report is enriched with
clickable links that allow the library maintainers to directly navi-
gate to the locations in the PR diff that introduce a BC, as well as
to the locations in client code that are impacted by the changes.

Figure 5.3 and Figure 5.4 depict an excerpt from a BreakBot

report. It displays an overview of the detected BCs together with
their status (red if any client is impacted, green otherwise), the
number of impacted clients, and the number of broken uses in
all clients (cf. Figure 5.3a). Then, it summarizes the impact on
each individual client (cf. Figure 5.4). Finally, it lists, for each
impacted client, which locations are impacted by broken uses (cf.
Figure 5.3b).

5.5 evaluation

In this section, we evaluate BreakBot and its support for static
RDCT. Concretely, we aim at assessing both (i) its usefulness as the
information generated by the approach and its corresponding
implementation must be meaningful and insightful for library
developers and; (ii) its accuracy, which comes hand in hand
with the usefulness evaluation aspect: to be meaningful, results
must reflect reality allowing library developers to make informed
decisions. Thus, we pose the following research questions:

Q1 How useful is BreakBot for the detection of BCs impact in
a pull-based development workflow?

Q2 How accurate is BreakBot in detecting the impact of BCs

on clients?

Henceforth, we address each one of these research questions,
discussing our corpora, methodology, main results, and analyses.
We discuss the threats to the validity of both studies at the end
of the section.

177

Usefulness Evaluation

Our objective in this evaluation is to evaluate whether static
RDCT—and, in particular, its instantiation in BreakBot—is valu-
able to library maintainers. A privileged approach to perform
this evaluation would be to conduct a field experiment [148]
where a selected few library maintainers would install and con-
figure BreakBot and use it as part of their development process
for a given period of time. However, this methodology would
also come with two drawbacks. First, it would hurt the generaliz-
ability of our findings. Second, within a limited time span, there
is no guarantee that the variety of evolution scenarios for which
BreakBot is helpful would be covered adequately.

Instead, to access a large and diverse set of evolution scenarios,
we conduct an experimental simulation [148] where we harvest
the sheer number of library evolution cases publicly available
as PRs in popular GitHub repositories [78]. Indeed, in every PR,
contributors (who may or may not be the project’s maintainers)
propose a set of changes to be merged into the library’s code.
Maintainers and reviewers evaluate the contributions as part
of the (possibly tool-assisted) code review process and decide
whether the changes should be incorporated.

For the sake of this evaluation, we first build a corpus of
relevant PRs from popular Java libraries on GitHub (cf. Corpus
section) and analyse them with BreakBot to compute their ∆-
models and impact models on a list of popular clients. This first
quantitative evaluation portrays how often and in which way
selected PRs of popular Java libraries include BCs that impact their
clients (cf. Quantitative Results section). Then, we qualitatively
review the content of a selected set of PRs and the associated
BreakBot reports to discuss their usefulness for maintainers (cf.
Qualitative Exploratory Results section).

In summary, we evaluate usefulness along two main dimen-
sions: (i) applicability: is it common for PRs to introduce BCs and,
when they do, do they have an impact? And (ii) relevance: when a
PR introduces BCs, does BreakBot provide valuable information
to assist the maintainers’ decision?

178

Table 5.1: Selection criteria for GitHub repositories and PRs

Criteria Repository

Language Java
Build system Maven
Buildable ✓

Stars ⩾ 500

Clients ⩾ 100

Last push ⩽ 1 month
Last PR merge ⩽ 1 month
Fork ✗

Mirror ✗

Empty ✗

Archived ✗

Disabled ✗

Locked ✗

Criteria Pull Request

Updated ⩽ 1 month
Closed ✗

Merged ✗

Locked ✗

Impacted Java files ⩾ 1

corpus To assemble our corpus, we query the GitHub
GraphQL API to search for relevant PRs recently created or up-
dated on popular and active Java libraries. Table 5.1 details the
criteria we use while considering the characteristics of the repos-
itories in GitHub (e.g., a repository is not necessarily a project,
projects tend to be inactive) as described by Kalliamvakou et
al. [78].

On the one hand, a repository is relevant for our study if it
uses Java as a programming language, contains a Maven Project
Object Model (POM) file in its root folder (is a project and is
buildable), has at least 500 stars (is popular) and 100 clients (is
a library), and has been updated in the past month (is active).
We pick a high minimum number of 500 stars for two reasons.
First, the analysis would not be realistically possible for every
library on GitHub, so we must pick a subset of all libraries.

179

Table 5.2: Descriptive statistics of the 230 studied repositories

Dimension Min Q1 Median Mean Q3 Max

Age (months) 34 75 114 118.3 149 259

Commits 159 2,323 4,561 8,325 10,367 61,716

Releases 0 0 9 76.8 40 4,883

Stars 512 1,186 2,973 6,529 7,881 38,184

Clients 127 1,589 3,272 26,750 22,544 1,380,374

Analysed PRs 1 2 5 16.5 11 390

Breaking PRs 1 1 2 4.6 5 40

Impactful PRs 1 1 1 2.2 3 11

Second, we hypothesize that libraries with a high number of
stars and clients are more likely to implement a proper code
review process and to care about their clients. Library clients
are extracted from the GitHub Dependency Graph, considering
every package offered in the repository. Packages and their de-
pendencies on other packages are identified via manifest files
(e.g., POM files) or lock files hosted on the repository [77]. Reposi-
tories with less than 100 clients per package are still considered
as long as the total number of clients for all packages is above
this threshold. Finally, we do not consider repositories that are
forks, mirrors, empty, archived, disabled, or locked. We ran the
query on the 25

th of November, 2022, and obtained a total of
230 repositories. Among these are well-known libraries such
as google/guava, apache/commons-lang, apache/activemq, and
many other apache libraries, spring libraries, as well as lesser-
known libraries. Table 5.2 presents some descriptive statistics of
the resulting corpus of libraries.

From these repositories, we then retrieve relevant PRs. Our
criteria are that the PR should have been created and/or updated
in the past month and must be active (i.e., it has not been closed,
merged, or locked). We consider both PRs that are in a DRAFT

state (i.e., work in progress) and those that are not. A DRAFT PR

is a PR labeled as "work in progress": it signals that the code is
not yet ready to be reviewed and merging into any other branch
is blocked. Moreover, since we are interested in PRs where a

180

contributor potentially introduces BCs, we filter out PRs that do
not affect Java files. This new query returned a total of 3,786 PRs,
which constitute our final corpus.11

method Using BreakBot and Maracas, we analyse our cor-
pus of PRs to perform the static RDCT via BreakBot. However,
to avoid having to install BreakBot on each of the repositories,
we query the GitHub API to search for interesting PRs recently
created on selected Java libraries (cf. Corpus section). We only
use Maracas API to perform this first assessment efficiently. PRs,
or sometimes the main development branch, might be in an un-
stable state and cannot be built properly to obtain the library
JARs necessary to construct the ∆-models. Whenever an impacted
package cannot be built, it is skipped and the analysis proceeds
on the packages that can be built. We obtain, then, for each anal-
ysed PR: the list of Java files that are modified, the list of impacted
packages (which, in our case, are Maven modules), ∆-models
for each impacted package (list of BCs), a list of relevant clients
for each package, and the impact model for each ∆-model as
a list of broken uses on these clients. We call breaking PR a PR

that introduces at least one BC in one of the packages it impacts,
and impactful PR a PR that introduces at least one BC that has an
impact on at least one client project (i.e., at least one broken use).

We consider a PR to be interesting if it is both breaking and
impactful. When we find an interesting PR, we fork the original
library in our own GitHub organization,12 where BreakBot is
installed, push the corresponding YAML file with BreakBot’s
configuration, and copy the original PRs there. BreakBot then
automatically builds the reports for these PRs (just as it would
have done in the original repository). These reports are later
manually inspected to report on interesting cases that can inform
us of the relevance of our approach and implementation. In
particular, we look for comments and information in the PR

associated with BCs introduction. For that, we perform a textual

11 Our dataset and software artefacts are available at the companion Zenodo
repository: https://zenodo.org/record/7475823/.

12 https://github.com/breakbot-playground/

181

https://zenodo.org/record/7475823/
https://github.com/breakbot-playground/

Table 5.3: Descriptive statistics of the 3,786 studied PRs

Dimension Min Q1 Median Mean Q3 Max

All PRs

Modified Java files 1 2 4 10.5 11 >100

Modified packages 0 1 1 2.2 2 97

Breaking changes 0 0 0 8.5 0 17,826

Analysis time (sec) 1 31 54 147.3 123 28,661

search on the PR title, description, and comments based on a
set of keywords, namely break, broken, compatible, backward, and
change. Notice that some interesting evolutionary scenarios might
be disregarded, such as cases where no BC is introduced, but the
library maintainer fears to impact clients.

While maintainers would typically fine-tune their own library-
specific BreakBot configuration (cf. Listing 5.3), we resort to
an intuitive default configuration that makes the analysis both
feasible and meaningful: for each package impacted by a PR, we
retrieve the list of all its clients in descending order of stars and
pick the first hundred with a minimum of 5 stars per client. As we
found out that a large number of repositories marked as clients in
the GitHub Dependency Graph are, in fact, forks of the original
library—and therefore very likely to be impacted by changes, we
filter out repositories that are explicitly marked as forks. However,
a few unofficial forks still slip into the analysis as they are created
manually as new repositories under the umbrella of a different
organization, without any explicit link to the source repository
on GitHub, and cannot be filtered automatically. Nevertheless,
the name of the original repository can be used to trace back
some of the unofficial forks that preserved it. Such cases are
removed from the corpus to reduce further impact in the final
results.

quantitative results On the one hand, Table 5.3 presents
some descriptive statistics of the obtained dataset. In particular,

182

Table 5.4: Descriptive statistics of the breaking PRs

Dimension Min Q1 Median Mean Q3 Max

Breaking changes 1 1 3 68.8 9 17,826

Analysed clients 0 1 12 37.4 100 337

Broken clients 0 0 0 1.0 0 91

Broken uses 0 0 0 25.8 0 2693

it shows the number of modified Java files per PR13 (median of 4),
the number of modified packages per PR (median of 1), the num-
ber of introduced BCs per PR (median of 1), and the time taken
by BreakBot to perform the analysis on the repository (median
of 54 sec). Overall, 465 out of 3,786 PRs are breaking (12.28%),
and 42 are impactful (2.19% of all PRs, 17.85% of breaking ones).
Interestingly, 391 of the 3,786 PRs are in a DRAFT state (10.33%),
yet they account for 16.56% of the breaking ones (77/465).

On the other hand, Table 5.4 depicts some descriptive statistics
related to the analysis of breaking PRs. It presents the number of
BCs per breaking PR (median of 3), the number of analysed clients
per breaking PR (median of 12), the number of broken clients per
breaking PR (median of 0), and the number of broken uses per
breaking PR (median of 0). Note that, in some cases, no client
is analysed even though the PR is breaking: this is because the
packages impacted by the PR do not have clients that meet our
criteria, even though the library does have more than 100 clients.

We draw the following lessons from this first quantitative
analysis. First, there is indeed an opportunity for BreakBot to
detect breaking PRs on GitHub, even when studying popular
and mature libraries with many clients. Second, BreakBot finds
impactful PRs even when considering a number of up to 100

clients per package, and we believe this can still be improved (cf.

13 The maximum number of modified Java files is labeled as >100 due to the
GitHub API endpoint pagination for PR files. We would need to navigate
the result pages to get the exact number of modified files, impacting the
querying time. As the current study is not aiming at performing a thorough
characterization of the chosen PRs, we opt for using the >100 to get a glimpse
of the PRs sizes.

183

Section 5.6). Third, BreakBot is quite efficient in its analysis (me-
dian of 54 and mean of 147.3 seconds, which includes identifying
the impacted packages, building the corresponding JAR versions,
computing the ∆-models, fetching the clients, and computing the
impact models). Fourth, however, the median of detected bro-
ken clients and broken uses for breaking PRs is 0. These results
require further investigation to identify how to improve Break-
Bot’s design so it can fit the library development process and
not appear as a silent bot that impacts maintainers’ confidence
in the tool. Interestingly, these results are of the same order of
magnitude (for breaking and impactful PRs) as those obtained
when studying semantic versioning in the Maven ecosystem (cf.
Chapter 3). In the next section, we conduct a more qualitative
analysis of its usefulness to library maintainers.

qualitative exploratory results In this section, we
perform a qualitative exploratory study to get a glimpse of the
potential relevance of BreakBot for library maintainers. We
analyse the reports ourselves, and in some pertinent cases, we
leave a comment on the PR asking for feedback from PR reviewers.
The comment contains a link to the fork of the library in our
GitHub organization—which contains the BreakBot report—and
a link to a 5-minutes pilot survey complying with GDPR and
approved by the ethical board of the Eindhoven University of
Technology (TU/e).

The survey contains questions about the role of the respondent
in the project, the project context, the selected PR and Break-
Bot’s report, and interest in participating in a follow-up study
(cf. Appendix A). The pilot survey faced a low response rate
(just a handful of people replied) and a mixed reception from
maintainers, prompting us not to distribute it further. Indeed, we
realized that our comments were interfering with the maintainers’
workflow of reviewing PRs—although we carefully selected the
PRs, manually reviewed the content of every report, and limited
our comments to one per repository. Concisely, some maintainers
considered the comment disturbing as it was unsolicited and
unexpected, and in some cases they found it irrelevant, arguing

184

that the nature of the introduced changes was already identi-
fied by them. Still, we received interesting comments from the
respondents, which we use as additional insights to comple-
ment our own manual inspection. The reception of some library
maintainers led us to stop the study after the publication of 15

comments and a total of 3 responses. Therefore, we disclaim that
these results are preliminary and exploratory; by no means they
should be considered conclusive. Additional research needs to
be conducted to draw conclusions on the usefulness of our tool.

After manually reviewing the reports, we identify four evolu-
tion scenarios, namely (i) introduction of deprecations anticipat-
ing broken client code; (ii) introduction of BCs impacting both
internal and external clients; (iii) introduction of unexpected BCs,
and; (iv) introduction of non-impactful BCs. This list of evolu-
tion scenarios is by no means complete. We briefly describe the
aforementioned scenarios and present some real examples with
pointers to the BreakBot reports.

Scenario I: Introduction of deprecations anticipating bro-
ken client code. The Java @Deprecated annotation (or the cor-
responding @deprecated Javadoc tag introduced in Java 1.1) is
used to discourage the use of some part of the API. This is done
primarily because it might be insecure, inefficient, buggy, or
obsolete, and will likely be considered for future removal [57].
Several BreakBot reports announced the forthcoming impact of
removing such elements on client code. To illustrate, PR#9523 in
trinodb/trino deprecated the getTableProperties() method in
interface io.trino.spi.connector.Connector. Four of the anal-
ysed client projects implement this interface. BreakBot accu-
rately reports the impact on these clients should this method be
removed in the future.14

Scenario II: Introduction of BCs impacting both internal
and external clients. BreakBot helped identify impacted in-
ternal and external clients. An internal client is a repository
hosted within the same GitHub organization as the library,
while an external one is owned by a different one. For in-

14 https://web.archive.org/web/https://github.com/breakbot-playground/

trino/pull/4/checks/

185

https://github.com/trinodb/trino/pull/9523
https://web.archive.org/web/https://github.com/breakbot-playground/trino/pull/4/checks/
https://web.archive.org/web/https://github.com/breakbot-playground/trino/pull/4/checks/

stance, PR#562 from spring-cloud/spring-cloud-commons re-
moved a method from a public class. The change impacted an
internal client spring-cloud/spring-cloud-consul—within the
same organization—which was overriding the method. Library
maintainers later reported failing tests for this client. BreakBot

detected such a scenario and linked the BCs introduced in the li-
brary with the impacted code in the client, providing traceability
between the change and the subsequent issue.15

Scenario III: Introduction of unexpected BCs. BreakBot can
bring awareness when unexpected BCs are introduced. One
of our survey respondents stated that even though "[the anal-
ysed] pull request is against a new major version [anonymised] and
[they] expect to introduce more breaking API changes", they un-
derestimated the impact of such a PR on client code. More-
over, as an additional example, project apache/flink uses a PR

template that explicitly asks contributors whether introduced
changes potentially affect the public API of classes annotated
with @Public(Evolving). PR#19986 removed three public con-
stants from the public API. Although the owning class was not
labeled with the @Public(Evolving) annotation, the change im-
pacted four client projects, as stated in the BreakBot report.16

Defining what the public API is is up to the library developers,
but these changes might be of interest to the maintainers when
reviewing the PR.

Scenario IV: Introduction of non-impactful BCs. As reported
before, 17.85% of breaking PRs impact client code, meaning that
most breaking PRs are harmless for their clients. Furthermore,
some impactful PRs can even have different types of BCs from
which a subset impacts client code, and the other does not. This
information can be relevant for library maintainers to corroborate
their decisions regarding the acceptance of certain changes in
their repositories’ PRs.

15 https://web.archive.org/web/https://github.com/breakbot-playground/

spring-cloud-commons/pull/1/checks/

16 https://web.archive.org/web/https://github.com/breakbot-playground/

flink/pull/6/checks/

186

https://github.com/spring-cloud/spring-cloud-commons/pull/562
https://github.com/apache/flink/pull/19986
https://web.archive.org/web/https://github.com/breakbot-playground/spring-cloud-commons/pull/1/checks/
https://web.archive.org/web/https://github.com/breakbot-playground/spring-cloud-commons/pull/1/checks/
https://web.archive.org/web/https://github.com/breakbot-playground/flink/pull/6/checks/
https://web.archive.org/web/https://github.com/breakbot-playground/flink/pull/6/checks/

As final remarks, to improve BreakBot’s output, library main-
tainers who responded to our survey and/or PR comments and
that are concerned about BCs impact on client code suggested
that deprecations must be treated differently to how BCs are re-
ported: "What [a deprecated annotation] does is signal that the code
should no longer be used, and that migrating away from it is required
for future compatibility." When both kinds of changes are reported
at the same level, the information might be interpreted as mis-
leading: "I’m not sure if I agree with the signals BreakBot is raising.
We did deprecate a factory method but the behavior is still consistent."
Respondents’ reactions also suggest that maintainers need a ded-
icated fine-tuned configuration for their libraries, rather than
the generic one we used in this evaluation, for instance regard-
ing deprecation, the development version against which the PRs

should be checked, and the clients to analyse.

analysis In summary, this first exploratory analysis shows
that BreakBot can successfully identify interesting evolution
scenarios on GitHub and applies to many libraries. Concretely,
12.18% of the studied PRs are breaking, but only 2.19% are im-
pactful (17.85% of the breaking PRs). Given these non-negligible
figures, we conclude that PRs do introduce BCs that might be
impactful. This problem can, therefore, be addressed via an ap-
proach such as static RDCT. Moreover, from the manual inspection
of BreakBot reports, we spot a list of four evolution scenarios
that give us early evidence of the applicability and relevance of
BreakBot.

Q1. How useful is BreakBot for the detection of BCs impact in
a pull-based development workflow?
12.18% of the studied PRs are breaking but only 2.19% are im-
pactful (17.85% of the breaking PRs). Although BreakBot can
identify these cases and provide insightful information to library
maintainers (as shown in different evolution scenarios), more
research needs to be conducted to prove how useful it actually is
and how valuable maintainers find it. The analysis of the reports

187

generated on breaking PRs highlights that BreakBot can pro-
vide valuable information for various evolution scenarios, which
might complement the maintainers’ expertise.

threats to validity In this section, we identify threats
that can impact the internal, external, and construct validity
of the usefulness evaluation of our approach. Regarding the
internal validity of the study, we measure applicability in terms
of the number of breaking and impactful PRs. Although these
figures let us know that such PRs do exist on Java repositories
hosted on GitHub, they are just a proxy to sense the applicability
of the approach in a pull-based development workflow. This
information can only accurately be obtained by directly asking
for the library maintainers’ opinion. In the future, the relevance
of the approach should be directly assessed with its potential
users—that is, once again, library maintainers.

The external validity of the study is threatened by the criteria
used in the usefulness evaluation; e.g., selecting GitHub as an
ecosystem and considering only Java projects that are public,
buildable, popular, and active. These criteria do not allow us to
generalize our results to other ecosystems, programming lan-
guages, or projects with divergent characteristics. Moreover, the
manual selection of interesting reports is arbitrary and intro-
duces a selection bias: only interesting cases might be included,
and irrelevant reports are kept aside. The selected reports, thus,
should be used only as a qualitative indicator that illustrates the
figures presented in the first part of the assessment.

Lastly, the construct validity of the study is threatened by the
existing issues and bugs of the underlying tools (e.g., GitHub
querying tools and Maracas). To reduce such threats, we con-
duct an accuracy evaluation presented in the Accuracy Evaluation
section. Undetected issues introduced in our dataset-gathering
pipelines can also impact the validity of the study. We performed
unit tests and exploratory data analysis to mitigate this threat.

188

Accuracy Evaluation

To answer Q2, we need to evaluate the accuracy of Maracas,
the static impact analyser implementation of our solution and,
therefore, the component in charge of detecting BCs between two
snapshots of a library together with their impact on client code.
We opt to frame the evaluation as a laboratory experiment [148],
which allows us to study, with high precision, whether Maracas

succeeds at identifying impacted and non-impacted client code in
well-defined API evolution cases. An API evolution case consists
of a BC introduced in an API member (i.e., type, method, or field)
and a use of such a member in client code. The latter can be
used in a breaking or non-breaking manner on the client side.
In concrete, we conduct a benchmark study that considers two
synthetic corpora.

corpora Our accuracy evaluation considers two synthetic
corpora, namely the comp-changes corpus developed by the au-
thors of this chapter, and the API evolution data corpus, designed
and implemented by Jezek and Dietrich [70]. We describe both
corpora below. (In the following text, consider l1, l2, and c de-
fined in Section 5.3.)
comp-changes corpus is a set of synthetic projects consisting

of three main Java projects, namely old, new, and client. The
former two represent the old and new releases of a synthetic
library (i.e., l1 and l2, respectively) that has been designed with
the sole purpose of introducing BCs. The library is split into
a set of packages, each addressing a different BC. In total, the
library covers 41 types of BCs as defined by the japicmp17 project,
which in turn is aligned with the JLS [57]. Moreover, each package
contains a set of classes representing different scenarios where
BCs manifest. The newest release of the library, new, is in charge
of introducing the corresponding BCs. The client project (i.e., c)
depends on the oldest release of the library, old. This is the project
that might be impacted (or not) by the BCs once it upgrades to

17 https://siom79.github.io/japicmp/

189

https://siom79.github.io/japicmp/

the newest release of the library. To date, the corpus reports 378

API evolution cases.
API evolution data corpus is a synthetic data set introduced

by Jezek and Dietrich to compare tools in charge of identifying
BCs introduction (e.g., japicmp, clirr). The corpus also consists
of three projects, namely lib-v1, lib-v2, and client. lib-v1
is the baseline release of a library, and lib-v2 is its modified
version (i.e., l1 and l2, respectively). The client project (i.e.,
c) is an executable application that depends on and uses the
first release of the library. The data set revolves around three
dimensions that aim to cover possible API evolution cases: (i) what
has changed (e.g., access modifier, type); (ii) where has it changed
(e.g., in a class, in a method), and; (iii) how the code has changed.
The latter dimension depends on the combination of the two
previous ones, but, in general, a code element can be added,
removed, or modified. We add some modifications to the original
corpus, specifically: (i) we transform the three projects into Maven
projects for later validation; (ii) we remove deprecated code to
avoid noisy compilation messages. In particular, we replace the
deprecated use of the Integer constructor with the static method
valueOf of the Integer class, and; (iii) we add a missing set of
cases addressing fields visibility increase. In the end, the corpus
results in 186 API evolution cases.

method To answer Q2, we set two benchmarks based on the
above-mentioned synthetic corpora, namely the comp-changes

and the API evolution data corpora. Each one simulates the intro-
duction of diverse BCs by defining a set of API evolution cases.
These cases are used as ground truth to compute the accuracy of
Maracas.

We developed a component in Maracas to evaluate the tool’s
accuracy, namely the validator project. The project takes two
releases of a library (l1 and l2) and a client project (c) that
depends on the oldest release of the library (l1). The three projects
are Maven projects, and therefore, the dependency of c on l1
is explicitly stated on the POM file. Then, Maracas is used to
compute the ∆-model between l1 and l2, and the impact model

190

of c. The latter contains a set of broken uses caused by BCs

introduction. It is, then, the target of our accuracy evaluation:
we aim at tracking true positive (TP), false positive (FP), and
false negative (FN) uses. With these measures, we compute the
accuracy of Maracas in terms of precision and recall. Precision
refers to the ratio of retrieved cases that are indeed relevant (cf.
Equation 5.1). Conversely, recall refers to the ratio of relevant
cases that are retrieved (cf. Equation 5.2).

precision =
TP

TP+ FP
(5.1)

recall =
TP

TP+ FN
(5.2)

However, to compute Maracas accuracy, we need to com-
pare Maracas output against a ground truth set. To do so, the
validator project is in charge of automatically upgrading the
dependency of the client project c to the library release l2. This is
achieved by injecting the new version of the library dependency
in the POM file of the client project. Then, the standard Maven
compiler (javax.tools.JavaCompiler) is used to try to build the
client project using Java 8 and gather the whole list of compilation
errors or warnings obtained after upgrading the library version.
This list of compilation messages is treated then as the ground
truth set. Finally, to verify Maracas accuracy, all compilation
messages related to the upgrade are matched against the set of
broken uses reported by Maracas. The matching is performed
based on the location of the client’s affected element in the bro-
ken use and the location reported by the compilation message.
For the location, we consider both the path to the file and the
source code line. Matched pairs of broken uses and compilation
messages are labeled as TP cases; unmatched broken uses are
labeled as FP cases, and; unmatched compilation messages are
labeled as FN cases. This project can be extended to consider
other corpora, build systems, and matching criteria.

After performing the automatic matching of the compilation
messages against the broken uses reported by Maracas for both

191

Table 5.5: Maracas accuracy measures and metrics

Benchmark
Cases Metrics

TP FP FN Disc. Total Precision Recall

comp-changes 356 13 19 11 388 0.96 0.95

API evolution data 170 15 1 12 186 0.92 0.99

corpora, we manually validate the results. Concretely, we go
through all FP and FN cases and verify if these cases need to be
reclassified or discarded. FP are reclassified as TP cases when the
Maven compiler does not report an expected broken use in the
form of a compilation message. Possible cases include illegal cast-
ing, unhandled checked exceptions, references to removed class
members, and references to members of deprecated transitive su-
pertypes. For instance, when invoking a method via an object of
a removed class. In like manner, FN cases can be discarded if they
address cases not meant to be handled by Maracas. In particu-
lar, we discard cases triggered by unsupported BCs, redundant
compilation messages pointing to two different locations (e.g., re-
moving a method can trigger a compilation message at the class
declaration and the overriding method), and errors triggered by
accessing a static field via an object. After this semi-automatic
classification, the number of TP, FP, and FN cases are used to
calculate the precision and recall for each benchmark.

results Table 5.518 summarizes the results obtained for
Maracas accuracy evaluation. The table shows results for both
the comp-changes and the API evolution data benchmarks. After-
wards, the number of TP, FP, and FN cases are reported, together
with the number of discarded cases after manual reclassification
and the total number of disclosed cases. The precision and recall
of the evaluation are also included for each benchmark.

On the one hand, the comp-changes benchmark outputs a total
of 388 cases, out of which 356 are TP cases, 13 are FP cases, 19

18 "Disc." stands for "Discarded".

192

are FN cases, 26 cases are manually reclassified, and 11 cases are
discarded. Based on these cases, Maracas reports a precision of
0.96 and a recall of 0.95. On the other hand, the API evolution data
benchmark reports 186 cases, out of which 170 are TP cases (16

more than before), 15 are FP cases (16 less than before), 1 is a FN

case (12 cases less than before), 16 cases are manually reclassified,
and 12 cases are discarded. Maracas reports a precision of 0.92

and a recall of 0.99.
Lastly, after performing the manual verification of the evalua-

tion, we find out that both FP and FN cases are triggered for the
following reasons:

generics . japicmp does not report BCs related to generics. This
is due to type erasure, which removes the type parame-
ters information from the source code to produce a binary
file that is backward compatible with previous versions of
Java [125].

inheritance hierarchy. Maracas only has access to infor-
mation in the library releases and the client projects. Thus,
it can only build part of the inheritance hierarchy for some
types.

the strictfp and native modifiers . japicmp does not
report BCs related to the strictfp and native modi-
fiers [70]. The strictfp modifier is used to restrict floating-
point calculations and ensure the same result on every
platform. The native modifier informs that the associated
method is implemented in native code using the Java Native
Interface (JNI).

(un)boxing types . japicmp does not always report the new
type of a construct when a primitive value is converted
to its corresponding object wrapper class (boxing) or vice
versa (unboxing). This is the case of a change in the type
of a method parameter. japicmp reports such a case as a
method removal, losing information about the new types
of the parameters.

193

Although reflection has not been included in the evaluation, we
are aware that it is not considered by Maracas during analysis.
That is, the use of reflection can result into broken uses that will
pass undetected by the tool.

analysis After performing the accuracy evaluation on both
benchmarks, we observe that Maracas scores more than 0.92 in
precision (0.96 and 0.92 for the comp-changes and API evolution
data benchmarks, respectively) and recall (0.95 and 0.99 for the
comp-changes and API evolution data benchmarks, respectively).
FP and FN cases are due to the loss of information when dealing
with binary code (i.e., generics and inheritance hierarchy), and
limitations coming from underlying tools (i.e., lack of information
about strictfp and native modifiers and (un)boxing types). These
results give us confidence that (i) noise or misleading information
is seldom reported on Maracas models, and (ii) few cases slip
unnoticed by the tool. Nevertheless, some important threats to
validity must be considered in future research. Such threats are
further described in the next section.

Q2. How accurate is BreakBot in detecting the impact of BCs on
clients?
Maracas reports a precision of 0.96 and a recall of 0.95 on our
synthetic comp-changes benchmark, and a precision of 0.92 and
a recall of 0.99 on the API evolution data one. In both benchmarks,
the accuracy metrics score more than 0.9.

threats to validity Some threats might impact the inter-
nal, external, and construct validity of our accuracy evaluation.
First, internal validity might be impacted as we do not control
the implementation decisions of the Maven compiler, which is
used to generate the ground truth of the study. In particular,
the expected behaviour might differ from the one showcased
by the compiler. To cope with this threat, we manually inspect
the FP and FN cases. Based on the expected output, we reclas-
sify incorrect FP cases as TP cases and discard the incorrect FN

194

from the analysis. Nevertheless, this triggers an additional inter-
nal threat: reclassification is a manual process and is, therefore,
error-prone.

Second, the external validity of the study is threatened by our
decision to report results only for Java 8, and to choose synthetic
corpora that, due to its design and implementation, might favor
the accuracy test of Maracas. Results cannot be blindly gen-
eralized to other Java projects, versions of Java, and languages.
Lastly, construct validity can be impacted by bugs introduced in
the validator project, particularly when performing the broken
uses and compiler messages matching. To decrease the effects of
this threat, we manually inspect the FP and FN cases to verify
that the output was correct. However, TP cases are disregarded
from this process.

5.6 discussion

The desire to preserve stability and to prioritize the sense of
community are generalized concerns among all projects in most
ecosystems [18]. Therefore, deciding whether and when to intro-
duce BCs is no trifling matter. The decision depends on values
and constraints established at the ecosystem and library levels.
To enact stability, libraries tend to assume that BCs are always
harmful [68]. This reasoning has led to the misconception that
stability is equivalent to change stagnation [18, 21, 109]. How-
ever, we claim that stability is the capability to not break clients
even under the presence of change. What truly affects stability
are changes that break clients, not BCs themselves. This distinction
is essential: it has been shown that, for instance, in MCR, most
BCs do not impact the clients whatsoever (cf. Chapter 3). In this
chapter, we confirm that this is also the case for BCs in PRs of
popular Java libraries on GitHub.

But, what if introduced BCs do impact client code? Do modifi-
cations need to be reverted? Once again, the decision will depend
on the library’s values: if innovation and rapid access are val-
ued, both breaking and non-breaking changes are more likely
to slip into new releases of the library; whilst, if stability and

195

compatibility are values appreciated by the library maintainers,
chances to revert modifications that potentially break client code
increase [18]. If such changes find their way in a new library
release, evidence about how changes impact clients should be
communicated, or else the mistrust in the community raises.

Some evolving libraries opt for communicating change via
their API, versioning conventions such as semantic versioning,
or official documentation such as release notes and changelogs.
These artifacts are seen as promises that, when broken, result
in further mistrust. Unfortunately, tooling to support the gener-
ation of such artifacts is lacking, forcing library maintainers to
define them manually, and making them error-prone. We fore-
see that shared tooling is required to enforce or encourage the
announcement of changes and their actual impact [18]. As our
study suggests, the static RDCT approach and BreakBot can be
valuable when plugged into a library development workflow.
However, further support can be offered to (i) improve the selec-
tion of client samples to assess the impact of BCs in client code;
(ii) support the configurability of static RDCT approaches; (iii)
praise the community value by using the reports to define client
upgrade policies and BCs-coping strategies, and; (iv) improve the
generation of existing BC communication channels (e.g., semantic
versioning, release notes).

discovering clients Knowing how BCs impact relevant
clients is key when deciding to apply or revert changes. Some
projects, such as Coq and Spoon, have a precise list of relevant
clients, but this is only the case for a few libraries. Even when
such a list exists, it might be incomplete and hide important
evidence. Automatically discovering a diverse and representative
sample [119] of clients should give a clearer picture of the library’s
usage. These capabilities must be integrated into the client explorer
component of the static RDCT approach (cf. Section 5.3). To do so,
one must first pinpoint which versions of the library are affected
by a given BC, and thus which clients may be affected. As it is
likely that clients’ usage of a library will overlap [64], and to
provide an efficient solution, it is essential to avoid analysing

196

similar clients multiple times. It is thus needed to find a sample
of clients that represent the overall usage of the API, e.g., by
clustering clients around their use of the library.

configurability Policies to deal with backward compati-
bility range from permissive (e.g., npm, favoring innovation) to
restrictive (e.g., Eclipse, favoring compatibility) [18]. Regardless of
their posture, projects should be given the necessary information
to decide whether and how to introduce a change. Bots such as
BreakBot must therefore be highly configurable to account for
project-specific policies [51, 157]. What are, then, the configuration
properties that impact analysis tools should capture? For instance,
defining the type and number of allowed BC, the parts of the API

subject to analysis (e.g., non-experimental interfaces), and the key
set of relevant clients (e.g., commercially-related projects, popular
projects), is of foremost importance.

upgrade policies and strategies BreakBot generates
reports for library maintainers that pinpoint clients that will
be impacted. This information can be leveraged to define up-
grade policies and BCs coping strategies on the client side. To
do so, the library and its community must decide how to dis-
tribute the upgrade costs associated with the library’s evolution.
A caring library can, for instance, provide documentation that
helps clients upgrade their impacted code, or patch their clients
themselves—as the Coq project does. On the contrary, a library
that prioritizes time to market might push the upgrade effort to
its client projects: client developers need to find ways to patch the
broken code and share such solutions in adequate community
channels.

communication channels When a new library version
is released to the public, clients may consider announcement
mechanisms such as the semantic version number, annotations,
and naming conventions to pinpoint unstable releases or fore-
see the introduction of BCs. They can also browse through the
associated release notes or changelogs to learn about new features,

197

BCs, or migration guides. Unfortunately, this information is not
always available, and if present, it might be erroneous and, there-
fore, misleading. For instance, Wu et al. identify that the absence
of information related to BCs is the prime complaint of users
when dealing with release notes [161]. Specifically, the authors
note that "it can be difficult for release notes producers to correctly
locate and highlight breaking changes". Tools that support previous
manual mechanisms, as well as the generation of community
artefacts, can be valued by developers. For instance, creating
tooling that suggests a semantic version number [90]; identifies
unstable parts of the library API, and; produces accurate and
relevant release notes and changelogs might be of great use. We
believe that BreakBot and Maracas provide such capabilities
and should be tuned in the future to support, for instance, the
automatic generation of release notes in new or existing tools
such as ARENA [115] and DeepRelease [75].

5.7 related work

API evolution and BCs have been the subject of active research
for a long time [18]. Multiple papers have studied why and how
evolution manifests at the level of individual libraries and entire
ecosystems [12, 21, 34, 66, 122, 164]. BCs are largely considered a
pain point for library users who must keep up to avoid technical
lag and for library maintainers who must be cautious when
introducing them [18, 170].

In a recent and extensive review of the literature, Lamothe,
Guéhéneuc, and Shang identify unsolved challenges in API evolu-
tion, some of which are particularly relevant to our work: "Tools
that mine usage data help API developers improve APIs", "Tools to help
API developers deal with API migration, not just users", and "Deter-
mining API migration and API recommendation impacts" [91]. We see
static RDCT, and its implementation in BreakBot, as first steps
towards addressing these challenges.

Over time, many tools have been developed to help maintainers
and users identify BCs in new library versions. We decided to
base Maracas on japicmp, which has been shown to be the best-

198

performing tool for BCs detection in Java libraries [70]. Although
we believe it is equally important to identify the impact of these
BCs in client code, there is little support in the Java ecosystem
to support this analysis [90]. Our tool Maracas is intended to
fill this gap, similar to work achieved in other ecosystems. For
instance, Møller, Nielsen, and Torp developed Tapir to identify
locations in JavaScript code potentially affected by BCs [114], and
Coccinelle has been used for more than a decade to automatically
co-evolve source code in the Linux kernel [93].

There has been significant work in dealing with API BCs through
automatic API migration [45, 92, 120, 168, 169]. While these ap-
proaches are most valuable, we attack the problem from a differ-
ent angle. We claim that API evolution could lead to less friction if
API designers and maintainers had the means to understand and
anticipate the impact of their changes. We see the two approaches
as complementary: getting a better understanding of the impact
of API changes should lead to fewer BCs and help to improve the
accuracy of automatic migration tools leveraging factual usage
data extracted from tools such as BreakBot.

5.8 conclusion

In this chapter, we introduce the static RDCT approach, together
with BreakBot, its implementation for Java projects hosted on
GitHub. The static RDCT approach aims to assist maintainers in
the evolution of their libraries by providing information about
how the changes they introduce impact client code. Specifically,
its implementation in BreakBot reports introduced syntactic BCs

on GitHub’s PRs and their impact on a subset of client projects.
This information is fed back to the development workflow of the
library maintainers for further analysis and assistance in code
review.

We evaluate static RDCT and BreakBot in terms of usefulness
and accuracy. Analysing thousands of PRs on popular and active
Java libraries hosted on GitHub, we identify BCs and their impact
on a sample of their most popular clients also hosted on GitHub.
We conclude that BreakBot identifies many breaking PRs, some

199

of which impact clients, and produces meaningful reports for a
subset of the library’s clients. However, further research needs to
be conducted to asses BreakBot’s potential value in real contexts.
Second, the accuracy evaluation performed on two synthetic
benchmarks (i.e., comp-changes and API evolution data) reports
a precision of 0.96 and a recall of 0.95 on the comp-changes

benchmark, and a precision of 0.92 and a recall of 0.99 on the
API evolution data benchmark. We expect our framework and its
implementation in BreakBot to empower library maintainers,
allowing them to fight technical debt and have a purposeful
picture of the nature of introduced changes in PRs and the impact
they have on selected clients.

200

Part IV

T O D O C A M B I A

Cambia lo superficial
Cambia también lo profundo
Cambia el modo de pensar
Cambia todo en este mundo

Cambia el clima con los años
Cambia el pastor su rebaño
Y así como todo cambia
Que yo cambie no es extraño

– Julio Numhauser (1982)

6
C O N C L U S I O N

In this thesis, we address the library-client co-evolution problem.
First, we consider the nounal view to understand the nature of
the phenomenon. Concretely, we investigate (i) best practices to
define dependencies to prevent the propagation of BCs, and; (ii)
BCs introduction with regards to semantic versioning practices
and their real impact on client projects. Second, we considered
the verbal view to come up with new processes, methods, and
tools that can better support the processes associated with the
library-client co-evolution phenomenon. To this aim, we intro-
duce (i) Maracas a static analysis tool that implements our static
impact analysis approach. The latter aims at statically detecting
BCs between two versions of a Java library and their impact on
client code, and; (ii) BreakBot, a GitHub bot that assists library
evolution by reporting insights into backwards compatibility and
impact analysis on a list of relevant clients. BreakBot is a pro-
totype that implements the static RDCT approach. In the rest of
the chapter, we report on the main findings of the thesis as a
whole (cf. Section 6.1). We close up the thesis by describing future
research directions (cf. Section 6.2).

6.1 main findings

In this chapter, we present the main conclusions to answer the
three main research questions introduced in Section 1.3. Q1 ad-
dresses the nounal view as its study gives us insights into how
experts manage dependencies and to what extent such practices

203

are followed by Eclipse developers. Q2 addresses both the nounal
and the verbal view as the first version of Maracas was imple-
mented to conduct the empirical study on BCs impact in Maven.
Lastly, Q3 focuses on the verbal view by providing a method and
tool to assist library evolution.

Research Question 1: Dependency Management Best Practices

We revisit Q1, which is addressed in Chapter 2.

Q1: What dependency management best practices are advised
and followed and what observable effect do they have on software
projects?

As main findings we discover that experts promote the adop-
tion of 11 best practices including exposing only the public API

and hiding implementation details to clients, defining all required
dependencies (even if they seem to be available by default during
development), explicitly using dependency versions and version-
ing conventions such as semantic versioning, among others. Six
out of 11 best practices are further studied to evaluate if they are
being used in the Eclipse ecosystem and their observable effect
on such projects. We find out that most of the selected best prac-
tices are not widely followed. Moreover, one-third of the studied
best practices, reduce the classpath size of the software projects,
and have no statistically significant impact on their resolution
time.

We conclude that advised dependency management best prac-
tices enforce the specification of robust and efficient APIs. In par-
ticular, experts suggest hiding implementation details, exposing
and using only needed interfaces, and always using versioning
mechanisms. The main goal of applying these best practices is to
prevent the unintended propagation of BCs into client code.

204

Research Question 2: Semantic Versioning, Breaking Changes & Impact
Analysis

We revisit Q2, which is explored in Chapter 3.

Q2: What is the real impact of BCs on clients?

Our results show that more than 83.4% of library upgrades
comply with semantic versioning principles—that is, that li-
braries introduce syntactic BCs only in the expected releases
(i.e., major and initial development releases). Furthermore, the
tendency to comply with semantic versioning principles has in-
creased over time. Lastly, we discover that code introducing BCs

is seldom used by any client in the studied ecosystem. Actually,
less than 8% of all clients are impacted by BCs. In conclusion, we
find that library and client projects (in Maven) are not "breaking
bad", meaning that (i) library maintainers tend, to inform about
the introduction of syntactic BCs via versioning mechanisms, and;
(ii) the real impact of these changes on client code represents
less than 10% of the potential impact. These findings increase the
confidence on supporting an informed client-library co-evolution,
where both technical debt and lag are reduced.

Research Question 3: Library Evolution Assistance

Finally, we revisit Q3 addressed in Chapter 4 and Chapter 5.

Q3: How to assist library evolution?

We introduce the static RDCT approach to assist library main-
tainers with the evolution of their projects, and its implementa-
tion, BreakBot. BreakBot is a GitHub bot used in pull-based
development Java repositories that depends on a set of static anal-
yses tool (e.g., Maracas, japicmp, Spoon) to provide insightful
information. After installing the bot on a fork of the Spoon frame-
work, we can validate the main features of the tool: (i) BreakBot

205

does not need to build client projects, instead, it parses client code
and performs a static analysis on to of the generated ASTs, and;
(ii) BreakBot summarises essential BCs impact information in a
single report. Our evaluation reports that Maracas—BreakBot’s
underlying tool—has a precision and recall of more than 90%
on synthetic benchmarks. We also identify that BreakBot, and,
therefore, the static RDCT approach, is applicable in a pull-based
development workflow. A first exploratory qualitative study sug-
gests that BreakBot can be relevant for library maintainers when
addressing diverse evolution scenarios.

6.2 future research directions

To discuss the future research directions derived from this thesis,
we consider our two methodological views (i.e., the nounal and
verbal view). Regarding the nounal view, we focus on studying the
phenomenon of library-client co-evolution. As for the verbal view,
we dive deeper into methods and tools that provide new ways
of supporting processes related to the library-client co-evolution
phenomenon.

Nounal View Future Research

In relation to the nounal view, we first consider research on depen-
dency management. In particular, we aim at better understanding
how poorly-managed dependencies impact BCs propagation in soft-
ware ecosystems. Are clients more prone to be impacted by BCs in
these scenarios? Are there design decisions that shield client code
from being impacted by such changes? We also plan to further
assess how specific ways of defining dependencies among soft-
ware projects has an impact on diverse extra-functional attributes of
an ecosystem. We shift from a client-library co-evolution scenario
to an ecosystem evolution one. For instance, are software ecosys-
tems whose projects follow certain dependency management
practices more reliable, usable, efficient or maintainable [52]?

206

How do these practices affect the design of the APIs within such
ecosystems?

Second, we intend to extend our research on BCs introduction
and their impact analysis. Concretely, we would like to focus
on better understanding the why of BCs introduction. Studying
the when and where of BCs is a first step towards this goal (cf.
Chapter 3). However, additional qualitative studies are required
to understand the motivation and management of library evo-
lution. How do developers cope with BCs? What are developers
concerns when evolving a library?

Additionally, we plan to study how programming languages de-
sign and their evolution impact the definition of syntactic BCs. As new
constructs are introduced in a language (e.g., the default opera-
tor in Java 8 or the record data type in Java 15) new BCs appear.
However, these new constructs can also be introduced as a way of
(i) coping with backwards compatibility (e.g., default methods
support the evolution of interfaces), or; (ii) supporting the design
of robust APIs (e.g., the module construct was introduced in Java
9 as a way to cope with the limitations of access modifiers). The
automatic identification of such BCs and its alignment with static
analysis tools is thus essential to provide insightful evidence to
the programming language users.

Another focal point for future research lays on the study of
clients reaction to BCs. At the dependency definition level, we
would like to explore how clients deal with the introduction of
new releases of their libraries. Some studies on technical lag and
outdated dependency management [36, 86, 87, 136] are stepping
stones into reaching this understanding. We aim to study how
clients react in the wild and which patterns can be identified
from these reactions. How do clients react to specific BCs? Are
there patterns that we can associate to specific instances of BCs? If
we take a step back, we can start by studying how to isolate code
modifications related to a specific BC [107], and, even further,
how to perform an automatic migration or repair the code [106].
The answer to this question can contribute not only to the field
of impact analysis and software upgrading, but also to other

207

fields where the isolation of data and control dependent code is
required (e.g., finding bugs, testing).

Finally, we would like to go beyond syntactic compatibility,
and study semantic compatibility. Semantic incompatibility does
not generate any compilation or linking-time error—at least in
Java. Not to mention that the difficulty to identify this type of
incompatibility originates from the problem of program equiva-
lence, which is undecidable [54]. Hence, detection of semantic
BCs is not trivial and in some scenarios can even be untraceable.
Particularly, we want to understand how to accurately identify the
introduction of semantic BCs, and how to efficiently detect the impact of
such BCs on client projects. A straight-forward approach to detect
semantic changes relies on using the tests suites of different soft-
ware projects to identify the changes in behaviour of a library. For
instance, Danglot et al. propose an approach to detect semantic
changes (also called behavioural changes in the literature) on com-
mits by generating a set of test methods derived from variations
of existing test cases [30]. Similarly, Chen et al. and Mujahid
et al. use the test suites of several clients of a library to detect the
introduction of such changes [26, 117]. We foresee that achieving
a good test coverage of the library and basing the identification of
semantic BC on the library tests is a potential scalable solution. In
particular, the tests of the old library release can be used to verify
the output of the new release under the same conditions and
inputs. Moreover, finding out what is the source that originates
such changes and the meaning of the change is relevant informa-
tion for the understanding of both library and client developers.
Testing techniques such as mutation and random testing [160]
would be beneficial to provide a robust approach.

Verbal View Future Research

Regarding the verbal view, we aim first at improving the design
and capabilities of the methods and tools that we introduce in the
thesis. In particular, to support the different policies and values
of software ecosystem and projects [18], we need to extend the
configurability of tools such as BreakBot. Knowing the configura-

208

tion properties required by library maintainers to perform static
impact analysis is thus needed. For example, library maintainers
can be interested in defining the number and type of allowed
BCs in a commit, the parts of the interface they care about when
facing software evolution, as well as the list of clients that are
relevant to them. The latter aspect is of foremost importance: the
automatic discovery of relevant clients. As a first goal, we aim at
gathering a diverse and representative sample [119] of clients of a
library. It is, however, important to avoid analyzing several times
clients that use the library in a similar fashion [64]. For that,
investigating how to represent the API usage print of a client is
not trivial and essential to generate a representative set of clients.
What do we understand by similar API usage? Which properties
must be considered to perform this comparison? Answers to
these questions will help us shape the required client-library
representation to generate the expected sample.

Lastly, we aim at leveraging Maracas capabilities to also serve
client developers. For instance, we intend to develop an improved
version of Dependabot that informs client projects about the
introduction of BCs in the libraries they are depending on, and
their impact on their own code. We would also like to provide an
automatic upgrade approach to help clients deal with the library-
client co-evolution problem. For instance, we can leverage the
wisdom of the crowd to identify upgrading patterns on client
projects when facing a specific BC introduced in a library. We can
also rely on the internal upgrades performed within the library
to assist the client with its upgrading process.

209

Part V

A P P E N D I X

A
B R E A K B O T S U RV E Y

Role in the Project

What is your experience working on open-source libraries?
[Single-choice question]

□ 0-2 years

□ 3-6 years

□ 7-10 years

□ >10 years

Project Context

When reviewing non-trivial pull requests for this library (in-
ternal or external contributors), are you concerned about their
impact on client code? [Single-choice question]

□ Not concerned at all

□ Moderately concerned

□ Very concerned

When reviewing non-trivial pull requests for this library (inter-
nal or external contributors), are you confident in your estimate
of their impact on client code? [Single-choice question]

213

□ I do not attempt to estimate

□ I am not confident in my estimate

□ I am confident in my estimate

□ Other:

Does the library use any of the following approaches to deal
with breaking changes and their impact? [Multiple-choice ques-
tion]

□ Semantic versioning

□ Regression testing

□ Code review

□ Static analysis tools

□ None

□ Other:

Can you give us more information on how such approaches are
integrated into the development process of this library? [Open
question]

PR & BreakBot

Do you think the potential impact of the changes in this pull
request is a concern? [Single-choice question]

□ Yes

□ No

□ Not sure

214

Before seeing the BreakBot report, did you think the pull re-
quest introduced breaking changes (regardless of their impact
on clients)? [Single-choice question]

□ Yes

□ No

□ I did not know

□ I did not think about it

□ No answer

Does the BreakBot report help you better assess the breaking
changes introduced in this pull request? [Single-choice question]

□ Yes, I did not think about breaking changes

□ Yes, I had trouble estimating the amount of breaking changes

□ Yes, I underestimated the amount of breaking changes

□ Yes, I overestimated the amount of breaking changes

□ No, the report describes the situation I was expecting

□ Other:

Before seeing the BreakBot report, did you think these changes
impacted client code? [Single-choice question]

□ Yes

□ No

□ I did not know

□ I did not think about it

215

Does the BreakBot report help you better assess the impact
of the changes introduced in this pull request on client code?
[Single-choice question]

□ Yes, I did not think about the impact

□ Yes, I had trouble estimating the impact of breaking changes

□ Yes, I underestimated the impact of breaking changes

□ Yes, I overestimated the impact of breaking changes

□ No, the report describes the situation I was expecting

□ Other:

Do you have any feedback on the BreakBot report (comments,
problems, improvements)? [Open question]

What effect will the BreakBot report have on your original de-
cision on this pull request (acceptance, refusal, or modification
requests)? [Single-choice question]

□ It will boost my confidence about my decision

□ It will change my decision

□ It will have no effect about my decision

Why? [Open question]

Would you be interested to include a tool such as BreakBot as
part of this library development process?

□ Not interested at all

□ Moderately interested

□ Very interested

Is there any other comment or information you would like to
share with us about BreakBot? [Open question]

216

Follow-up Study

If you would like to know about the results of our study, please
leave us your email [Open question]

Would you agree to participate in a follow-up study (in this
case, make sure to leave us your email address)? [Single-choice
question]

□ Yes

□ No

□ No answer

217

B I B L I O G R A P H Y

[1] Pietro Abate, Roberto Di Cosmo, Louis Gesbert, Fabrice
Le Fessant, Ralf Treinen, and Stefano Zacchiroli. “Mining
Component Repositories for Installability Issues.” In: 12th
Working Conference on Mining Software Repositories. Piscat-
away: IEEE, 2015, pp. 24–33. isbn: 978-0-7695-5594-2. doi:
10.1109/MSR.2015.10.

[2] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano
Zacchiroli. “Dependency Solving: A Separate Concern in
Component Evolution Management.” In: Journal of Systems
and Software 85.10 (2012), pp. 2228–2240. issn: 0164-1212.
doi: 10.1016/j.jss.2012.02.018.

[3] OSGi Alliance. Guidelines. https://goo.gl/kT4FU6. n.d.

[4] OSGi Alliance. OSGi Developer Certification – Professional.
https://goo.gl/TftHFF. n.d.

[5] The OSGi Alliance. OSGi Core Release 6 Specification. 2014.
url: https://docs.osgi.org/download/r6/osgi.core-
6.0.0.pdf.

[6] The OSGi Alliance. OSGi Core Release 8 Specification. 2021.
url: https : / / docs . osgi . org / specification / osgi .

core/8.0.0.

[7] Lowell Jay Arthur. Software Evolution: The Software Mainte-
nance Challenge. 1st ed. John Wiley & Sons, 1988.

[8] Roland Barcia, Tim deBoer, Jeremy Hughes, and Alas-
dair Nottingham. Developing OSGi enterprise applications.
https://dokumen.tips/documents/developing-osgi-

enterprise- applications- 2016- 08- 18- developing-

osgi-enterprise.html. 2010.

219

https://doi.org/10.1109/MSR.2015.10
https://doi.org/10.1016/j.jss.2012.02.018
https://goo.gl/kT4FU6
https://goo.gl/TftHFF
https://docs.osgi.org/download/r6/osgi.core-6.0.0.pdf
https://docs.osgi.org/download/r6/osgi.core-6.0.0.pdf
https://docs.osgi.org/specification/osgi.core/8.0.0
https://docs.osgi.org/specification/osgi.core/8.0.0
https://dokumen.tips/documents/developing-osgi-enterprise-applications-2016-08-18-developing-osgi-enterprise.html
https://dokumen.tips/documents/developing-osgi-enterprise-applications-2016-08-18-developing-osgi-enterprise.html
https://dokumen.tips/documents/developing-osgi-enterprise-applications-2016-08-18-developing-osgi-enterprise.html

[9] Neil Bartlett and Peter Kriens. bndtools: mostly painless tools
for OSGi. https://www.slideshare.net/mfrancis/osgi-
community- event- 2010- rapid- bundle- development-

with-bndtools-for-eclipse. 2010.

[10] Bas Basten, Mark Hills, Paul Klint, Davy Landman, Ashim
Shahi, Michael J. Steindorfer, and Jurgen J. Vinju. “M3:
A General Model for Code Analytics in Rascal.” In: 1st
IEEE International Workshop on Software Analytics. IEEE
Computer Society, 2015, pp. 25–28. doi: 10.1109/SWAN.
2015.7070485.

[11] Veronika Bauer and Lars Heinemann. “Understanding
API Usage to Support Informed Decision Making in Soft-
ware Maintenance.” In: 16th European Conference on Soft-
ware Maintenance and Reengineering. IEEE, 2012, pp. 435–
440. isbn: 978-0-7695-4666-7. doi: 10.1109/CSMR.2012.55.

[12] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta,
Rocco Oliveto, and Sebastiano Panichella. “The Evolution
of Project Inter-dependencies in a Software Ecosystem:
The Case of Apache.” In: International Conference on Soft-
ware Maintenance. IEEE Computer Society, 2013, pp. 280–
289. doi: 10.1109/ICSM.2013.39.

[13] Amine Benelallam, Nicolas Harrand, César Soto-Valero,
Benoit Baudry, and Olivier Barais. “The Maven Depen-
dency Graph: a Temporal Graph-based Representation of
Maven Central.” In: 16th International Conference on Mining
Software Repositories. IEEE & ACM, 2019, pp. 344–348. doi:
10.1109/MSR.2019.00060.

[14] Amine Benelallam, Nicolas Harrand, César Soto Valero,
Benoit Baudry, and Olivier Barais. Maven Central Depen-
dency Graph. last access 09.04.2022. 2018. doi: 10.5281/
zenodo . 1489120. url: https : / / zenodo . org / record /

1489120#.YfyzCNso9H4.

[15] Stephen M. Blackburn et al. “Wake Up and Smell the
Coffee: Evaluation Methodology for the 21st Century.”

220

https://www.slideshare.net/mfrancis/osgi-community-event-2010-rapid-bundle-development-with-bndtools-for-eclipse
https://www.slideshare.net/mfrancis/osgi-community-event-2010-rapid-bundle-development-with-bndtools-for-eclipse
https://www.slideshare.net/mfrancis/osgi-community-event-2010-rapid-bundle-development-with-bndtools-for-eclipse
https://doi.org/10.1109/SWAN.2015.7070485
https://doi.org/10.1109/SWAN.2015.7070485
https://doi.org/10.1109/CSMR.2012.55
https://doi.org/10.1109/ICSM.2013.39
https://doi.org/10.1109/MSR.2019.00060
https://doi.org/10.5281/zenodo.1489120
https://doi.org/10.5281/zenodo.1489120
https://zenodo.org/record/1489120#.YfyzCNso9H4
https://zenodo.org/record/1489120#.YfyzCNso9H4

In: Commun. ACM 51.8 (2008), pp. 83–89. issn: 0001-0782.
doi: 10.1145/1378704.1378723.

[16] Kelly Blincoe, Francis Harrison, Navpreet Kaur, and
Daniela Damian. “Reference Coupling: An Exploration of
Inter-project Technical Dependencies and Their Character-
istics Within Large Software Ecosystems.” In: Information
and Software Technology 110 (2019), pp. 174–189. issn: 0950-
5849. doi: 10.1016/j.infsof.2019.03.005.

[17] Christopher Bogart, Christian Kästner, James D. Herb-
sleb, and Ferdian Thung. “How to Break an API: Cost
Negotiation and Community Values in Three Software
Ecosystems.” In: 24th International Symposium on Founda-
tions of Software Engineering. ACM, 2016, pp. 109–120. doi:
10.1145/2950290.2950325.

[18] Christopher Bogart, Christian Kästner, James D. Herbsleb,
and Ferdian Thung. “When and How to Make Breaking
Changes: Policies and Practices in 18 Open Source Soft-
ware Ecosystems.” In: ACM Trans. Softw. Eng. Methodol.
30.4 (2021). issn: 1049-331X. doi: 10.1145/3447245.

[19] Pierre Bourque and Richard E. Fairley, eds. Guide to the
Software Engineering Body of Knowledge. Piscataway: IEEE
Computer Society, 2014. isbn: 978-0-7695-5166-1.

[20] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio
Valente. “Why and How Java Developers Break APIs.” In:
25th International Conference on Software Analysis, Evolution
and Reengineering. IEEE, 2018, pp. 255–265. doi: 10.1109/
SANER.2018.8330214.

[21] John Businge, Simon Kawuma, Moses Openja, Engineer
Bainomugisha, and Alexander Serebrenik. “How Stable
Are Eclipse Application Framework Internal Interfaces?”
In: 26th International Conference on Software Analysis, Evo-
lution and Reengineering. IEEE, 2019, pp. 117–127. doi:
10.1109/SANER.2019.8668018.

221

https://doi.org/10.1145/1378704.1378723
https://doi.org/10.1016/j.infsof.2019.03.005
https://doi.org/10.1145/2950290.2950325
https://doi.org/10.1145/3447245
https://doi.org/10.1109/SANER.2018.8330214
https://doi.org/10.1109/SANER.2018.8330214
https://doi.org/10.1109/SANER.2019.8668018

[22] John Businge, Alexander Serebrenik, and Mark G. J. van
den Brand. “An Empirical Study of the Evolution of
Eclipse Third-party Plug-ins.” In: Joint ERCIM Workshop
on Software Evolution (EVOL) and International Workshop
on Principles of Software Evolution (IWPSE). New York: As-
sociation for Computing Machinery, 2010, 63–72. isbn:
9781450301282. doi: 10.1145/1862372.1862389.

[23] John Businge, Alexander Serebrenik, and Mark G. J. van
den Brand. “Eclipse API Usage: the Good and the Bad.”
In: Software Quality Journal 23.1 (2013), pp. 107–141. issn:
1573-1367. doi: 10.1007/s11219-013-9221-3.

[24] Gerardo Canfora and Aniello Cimitile. “Software Main-
tenance.” In: Handbook of Software Engineering and Knowl-
edge Engineering. Ed. by S. K. Chang. World Scientific
Publishing Company, 2001, pp. 91–120. doi: 10.1142/
9789812389718_0005.

[25] Ned Chapin, Joanne E. Hale, Khaled Md. Kham, Juan
F. Ramil, and Wui-Gee Tan. “Types of Software Evolu-
tion and Software Maintenance.” In: Journal of Software
Maintenance 13.1 (Jan. 2001), 3–30. issn: 1040-550X.

[26] Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Ling-
ming Zhang. “Taming Behavioral Backward Incompatibili-
ties via Cross-Project Testing and Analysis.” In: 42nd Inter-
national Conference on Software Engineering. New York: As-
sociation for Computing Machinery, 2020, 112–124. isbn:
9781450371216. doi: 10.1145/3377811.3380436.

[27] Bodin Chinthanet, Raula Gaikovina Kula, Shane McIntosh,
Takashi Ishio, Akinori Ihara, and Kenichi Matsumoto.
“Lags in the Release, Adoption, and Propagation of npm
Vulnerability Fixes.” In: Empirical Software Engineering 26.3
(2021), pp. 1–28. issn: 1573-7616. doi: 10.1007/s10664-
021-09951-x.

[28] Bradley E. Cossette and Robert J. Walker. “Seeking the
Ground Truth: A Retroactive Study on the Evolution and
Migration of Software Libraries.” In: 20th International

222

https://doi.org/10.1145/1862372.1862389
https://doi.org/10.1007/s11219-013-9221-3
https://doi.org/10.1142/9789812389718_0005
https://doi.org/10.1142/9789812389718_0005
https://doi.org/10.1145/3377811.3380436
https://doi.org/10.1007/s10664-021-09951-x
https://doi.org/10.1007/s10664-021-09951-x

Symposium on the Foundations of Software Engineering. New
York: Association for Computing Machinery, 2012. isbn:
978-1-4503-1614-9. doi: 10.1145/2393596.2393661.

[29] Ward Cunningham. “The WyCash Portfolio Management
System.” In: Addendum to the Proceedings on Object-Oriented
Programming Systems, Languages, and Applications. New
York: Association for Computing Machinery, 1992, 29–30.
isbn: 0897916107. doi: 10.1145/157709.157715.

[30] Benjamin Danglot, Martin Monperrus, Walter
Rudametkin, and Benoit Baudry. “An Approach
and Benchmark to Detect Behavioral Changes of Com-
mits in Continuous Integration.” In: Empirical Software
Engineering 25.4 (2020), pp. 2379–2415. issn: 1573-7616.
doi: 10.1007/s10664-019-09794-7.

[31] Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry,
and Martin Monperrus. “Automatic Test Improvement
with DSpot: A Study with Ten Mature Open-Source
Projects.” In: Empirical Softw. Engg. 24.4 (2019), 2603–2635.
issn: 1382-3256. doi: 10.1007/s10664-019-09692-y.

[32] Joe Darcy. Kinds of Compatibility. 2021. url: https://wiki.
openjdk.org/display/csr/Kinds+of+Compatibility.

[33] Alexandre Decan and Tom Mens. “Lost in Zero Space –
An Empirical Comparison of 0.y.z Releases in Software
Package Distributions.” In: Science of Computer Program-
ming 208 (2021), p. 102656. issn: 0167-6423. doi: 10.1016/
j.scico.2021.102656.

[34] Alexandre Decan and Tom Mens. “What Do Package
Dependencies Tell Us About Semantic Versioning?” In:
IEEE Trans. Software Eng. 47 (2021), pp. 1226–1240. doi:
10.1109/TSE.2019.2918315.

[35] Alexandre Decan, Tom Mens, and Maëlick Claes. “An
Empirical Comparison of Dependency Issues in OSS Pack-
aging Ecosystems.” In: 24th International Conference on
Software Analysis, Evolution and Reengineering. IEEE, 2017,

223

https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1145/157709.157715
https://doi.org/10.1007/s10664-019-09794-7
https://doi.org/10.1007/s10664-019-09692-y
https://wiki.openjdk.org/display/csr/Kinds+of+Compatibility
https://wiki.openjdk.org/display/csr/Kinds+of+Compatibility
https://doi.org/10.1016/j.scico.2021.102656
https://doi.org/10.1016/j.scico.2021.102656
https://doi.org/10.1109/TSE.2019.2918315

pp. 2–12. isbn: 978-1-5090-5501-2. doi: 10.1109/SANER.
2017.7884604.

[36] Alexandre Decan, Tom Mens, and Eleni Constantinou.
“On the Evolution of Technical Lag in the npm Package
Dependency Network.” In: International Conference on Soft-
ware Maintenance and Evolution. IEEE, 2018, pp. 404–414.
doi: 10.1109/ICSME.2018.00050.

[37] Alexandre Decan, Tom Mens, and Eleni Constantinou.
“On the Impact of Security Vulnerabilities in the npm
Package Dependency Network.” In: 15th International Con-
ference on Mining Software Repositories. New York: Asso-
ciation for Computing Machinery, 2018, 181–191. isbn:
9781450357166. doi: 10.1145/3196398.3196401.

[38] Alexandre Decan, Tom Mens, and Philippe Grosjean. “An
Empirical Comparison of Dependency Network Evolution
in Seven Software Packaging Ecosystems.” In: Empirical
Software Engineering 24 (2019), pp. 381–416. doi: 10.1007/
s10664-017-9589-y.

[39] Jim Des Rivières. Evolving Java-based APIs. https : / /

tinyurl.com/yyqguo34. last access 26.07.2019. 2007.

[40] Jens Dietrich, Kamil Jezek, and Premek Brada. “Broken
Promises: An Empirical Study into Evolution Problems
in Java Programs Caused by Library Upgrades.” In: Con-
ference on Software Maintenance, Reengineering, and Reverse
Engineering. IEEE Computer Society, 2014, pp. 64–73. doi:
10.1109/CSMR-WCRE.2014.6747226.

[41] Jens Dietrich, David J. Pearce, Jacob Stringer, Amjed Tahir,
and Kelly Blincoe. “Dependency Versioning in the Wild.”
In: Proceedings of the 16th International Conference on Mining
Software Repositories. IEEE Press, 2019, 349–359. doi: 10.
1109/MSR.2019.00061.

[42] Danny Dig and Ralph E. Johnson. “The Role of Refactor-
ings in API Evolution.” In: 21st International Conference
on Software Maintenance. IEEE Computer Society, 2005,
pp. 389–398. doi: 10.1109/ICSM.2005.90.

224

https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/SANER.2017.7884604
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://tinyurl.com/yyqguo34
https://tinyurl.com/yyqguo34
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/MSR.2019.00061
https://doi.org/10.1109/ICSM.2005.90

[43] Danny Dig and Ralph Johnson. “How Do APIs Evolve?
A Story of Refactoring: Research Articles.” In: J. Softw.
Maint. Evol. 18.2 (2006), pp. 83–107. issn: 1532-060X. doi:
10.1002/smr.v18:2.

[44] Bernhard Dorninger. Experiences with OSGi in Industrial
Applications. https://www.slideshare.net/mfrancis/
osgi-community-event-2010-experiences-with-osgi-

in-industrial-applications. 2010.

[45] Mattia Fazzini, Qi Xin, and Alessandro Orso. “APIMigra-
tor: An API-Usage Migration Tool for Android Apps.” In:
7th International Conference on Mobile Software Engineering
and Systems. New York: Association for Computing Ma-
chinery, 2020, 77–80. isbn: 9781450379595. doi: 10.1145/
3387905.3388608.

[46] Apache Felix. OSGi Frequently Asked Questions. https:
/ / felix . apache . org / documentation / tutorials -

examples-and-presentations/apache-felix-osgi-faq.

html. 2013.

[47] Apache Felix. Dependency Manager – Background. https:
/ / felix . apache . org / documentation / subprojects /

apache - felix - dependency - manager / guides /

background.html. 2015.

[48] Ulf Fildebrandt. Structuring Software Systems with OSGi.
https://www.slideshare.net/mfrancis/structuring-

software-systems-with-os-gi-ulf-fildebrandt. 2011.

[49] Thomas Forster, Thorsten Keuler, Jens Knodel, and
Michael-Christian Becker. “Recovering Component De-
pendencies Hidden by Frameworks–Experiences from An-
alyzing OSGi and Qt.” In: 17th European Conference on
Software Maintenance and Reengineering. USA: IEEE Com-
puter Society, 2013, 295–304. isbn: 978-0-7695-4948-4. doi:
10.1109/CSMR.2013.38.

[50] Martin Fowler. Refactoring: Improving the Design of Existing
Code. Boston: Addison-Wesley Longman Publishing Co.,
Inc., 1999. isbn: 0-201-48567-2.

225

https://doi.org/10.1002/smr.v18:2
https://www.slideshare.net/mfrancis/osgi-community-event-2010-experiences-with-osgi-in-industrial-applications
https://www.slideshare.net/mfrancis/osgi-community-event-2010-experiences-with-osgi-in-industrial-applications
https://www.slideshare.net/mfrancis/osgi-community-event-2010-experiences-with-osgi-in-industrial-applications
https://doi.org/10.1145/3387905.3388608
https://doi.org/10.1145/3387905.3388608
https://felix.apache.org/documentation/tutorials-examples-and-presentations/apache-felix-osgi-faq.html
https://felix.apache.org/documentation/tutorials-examples-and-presentations/apache-felix-osgi-faq.html
https://felix.apache.org/documentation/tutorials-examples-and-presentations/apache-felix-osgi-faq.html
https://felix.apache.org/documentation/tutorials-examples-and-presentations/apache-felix-osgi-faq.html
https://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager/guides/background.html
https://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager/guides/background.html
https://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager/guides/background.html
https://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager/guides/background.html
https://www.slideshare.net/mfrancis/structuring-software-systems-with-os-gi-ulf-fildebrandt
https://www.slideshare.net/mfrancis/structuring-software-systems-with-os-gi-ulf-fildebrandt
https://doi.org/10.1109/CSMR.2013.38

[51] Amir Ghorbani, Nathan W. Cassee, Derek Robinson,
Adam Alami, Neil Ernst, Alexander Serebrenik, and An-
drzej Wasowski. “Autonomy Is An Acquired Taste: Ex-
ploring Developer Preferences for GitHub Bots.” In: 45th
IEEE/ACM International Conference on Software Engineering.
2022.

[52] Martin Glinz. “A Risk-Based, Value-Oriented Approach
to Quality Requirements.” In: IEEE Software 25.2 (2008),
pp. 34–41. doi: 10.1109/MS.2008.31.

[53] Michael W. Godfrey and Daniel M. German. “On the Evo-
lution of Lehman’s Laws.” In: Journal of Software: Evolution
and Process 26.7 (2014), pp. 613–619. doi: 10.1002/smr.
1636.

[54] Robert Goldblatt and Marcel Jackson. “Well-Structured
Program Equivalence is Highly Undecidable.” In: ACM
Trans. Comput. Logic 13.3 (2012). issn: 1529-3785. doi: 10.
1145/2287718.2287726.

[55] Jesus M. Gonzalez-Barahona, Paul Sherwood, Gregorio
Robles, and Daniel Izquierdo. “Technical Lag in Software
Compilations: Measuring How Outdated a Software De-
ployment Is.” In: Open Source Systems: Towards Robust
Practices. Ed. by Federico Balaguer, Roberto Di Cosmo,
Alejandra Garrido, Fabio Kon, Gregorio Robles, and Ste-
fano Zacchiroli. Cham: Springer, 2017, pp. 182–192. isbn:
978-3-319-57735-7. doi: 10.1007/978-3-319-57735-7_17.

[56] Google. API Differences between Guava 30.0-jre and Guava
30.1.1-jre. 2021. url: https://guava.dev/releases/30.1.
1-jre/api/diffs/.

[57] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and
Alex Buckley. The Java Language Specification, Java SE 8
Edition. Oracle America, Inc., 2015.

[58] Georgios Gousios, Martin Pinzger, and Arie van Deursen.
“An Exploratory Study of the Pull-Based Software Devel-
opment Model.” In: 36th International Conference on Soft-
ware Engineering. New York: Association for Computing

226

https://doi.org/10.1109/MS.2008.31
https://doi.org/10.1002/smr.1636
https://doi.org/10.1002/smr.1636
https://doi.org/10.1145/2287718.2287726
https://doi.org/10.1145/2287718.2287726
https://doi.org/10.1007/978-3-319-57735-7_17
https://guava.dev/releases/30.1.1-jre/api/diffs/
https://guava.dev/releases/30.1.1-jre/api/diffs/

Machinery, 2014, pp. 345–355. isbn: 9781450327565. doi:
10.1145/2568225.2568260.

[59] Gary Gregory. How We Handle Binary Compatibility at
Apache Commons. 2020. url: https : / / garygregory .

wordpress.com/2020/06/14/how-we-handle-binary-

compatibility-at-apache-commons/.

[60] Alexander Grzesik. TRESOR: the Modular Cloud – Building
a Domain Specific Cloud Platform with OSGi. https://es.
slideshare.net/mfrancis/tresor-the-modular-cloud-

building-a-domain-specific-cloud-platform-with-

osgi-alexander-grzesik. 2013.

[61] Brett Hackleman and James Branigan. OSGi: the Best
Tool in Your Embedded Systems Toolbox. https : / / www .

slideshare.net/bretth/osgi- best- tool- in- your-

embedded-systems-toolbox. 2009.

[62] Bentley J. Hargrave and Peter Kriens. OSGi Best Practices!
https://www.slideshare.net/mfrancis/osgi- best-

practices-learn-how-to-prevent-common-mistakes-

and-build-robust-reliable-modular-and-extendable-

systems - using - osgi - technology - p - kriens - bj -

hargrave. 2007.

[63] Bentley J. Hargrave and Jeff McAffer. Best Practices for
Programming Eclipse and OSGi. https://www.eclipse.
org / equinox / documents / eclipsecon2006 / Best %

20Practices%20for%20Programming%20Eclipse%20and%

20OSGi.pdf. 2006.

[64] Nicolas Harrand, Amine Benelallam, César Soto-Valero,
François Bettega, Olivier Barais, and Benoit Baudry. “API
Beauty Is in the Eye of the Clients: 2.2 Million Maven
Dependencies Reveal the Spectrum of Client-API Usages.”
In: J. Syst. Softw. 184 (2022), p. 111134. doi: 10.1016/j.
jss.2021.111134.

[65] Joseph Hejderup, Arie van Deursen, and Georgios
Gousios. “Software Ecosystem Call Graph for Depen-
dency Management.” In: 40th International Conference on

227

https://doi.org/10.1145/2568225.2568260
https://garygregory.wordpress.com/2020/06/14/how-we-handle-binary-compatibility-at-apache-commons/
https://garygregory.wordpress.com/2020/06/14/how-we-handle-binary-compatibility-at-apache-commons/
https://garygregory.wordpress.com/2020/06/14/how-we-handle-binary-compatibility-at-apache-commons/
https://es.slideshare.net/mfrancis/tresor-the-modular-cloud-building-a-domain-specific-cloud-platform-with-osgi-alexander-grzesik
https://es.slideshare.net/mfrancis/tresor-the-modular-cloud-building-a-domain-specific-cloud-platform-with-osgi-alexander-grzesik
https://es.slideshare.net/mfrancis/tresor-the-modular-cloud-building-a-domain-specific-cloud-platform-with-osgi-alexander-grzesik
https://es.slideshare.net/mfrancis/tresor-the-modular-cloud-building-a-domain-specific-cloud-platform-with-osgi-alexander-grzesik
https://www.slideshare.net/bretth/osgi-best-tool-in-your-embedded-systems-toolbox
https://www.slideshare.net/bretth/osgi-best-tool-in-your-embedded-systems-toolbox
https://www.slideshare.net/bretth/osgi-best-tool-in-your-embedded-systems-toolbox
https://www.slideshare.net/mfrancis/osgi-best-practices-learn-how-to-prevent-common-mistakes-and-build-robust-reliable-modular-and-extendable-systems-using-osgi-technology-p-kriens-bj-hargrave
https://www.slideshare.net/mfrancis/osgi-best-practices-learn-how-to-prevent-common-mistakes-and-build-robust-reliable-modular-and-extendable-systems-using-osgi-technology-p-kriens-bj-hargrave
https://www.slideshare.net/mfrancis/osgi-best-practices-learn-how-to-prevent-common-mistakes-and-build-robust-reliable-modular-and-extendable-systems-using-osgi-technology-p-kriens-bj-hargrave
https://www.slideshare.net/mfrancis/osgi-best-practices-learn-how-to-prevent-common-mistakes-and-build-robust-reliable-modular-and-extendable-systems-using-osgi-technology-p-kriens-bj-hargrave
https://www.slideshare.net/mfrancis/osgi-best-practices-learn-how-to-prevent-common-mistakes-and-build-robust-reliable-modular-and-extendable-systems-using-osgi-technology-p-kriens-bj-hargrave
https://www.eclipse.org/equinox/documents/eclipsecon2006/Best%20Practices%20for%20Programming%20Eclipse%20and%20OSGi.pdf
https://www.eclipse.org/equinox/documents/eclipsecon2006/Best%20Practices%20for%20Programming%20Eclipse%20and%20OSGi.pdf
https://www.eclipse.org/equinox/documents/eclipsecon2006/Best%20Practices%20for%20Programming%20Eclipse%20and%20OSGi.pdf
https://www.eclipse.org/equinox/documents/eclipsecon2006/Best%20Practices%20for%20Programming%20Eclipse%20and%20OSGi.pdf
https://doi.org/10.1016/j.jss.2021.111134
https://doi.org/10.1016/j.jss.2021.111134

Software Engineering: New Ideas and Emerging Technolo-
gies Results. Association for Computing Machinery, 2018,
pp. 101–104. doi: 10.1145/3183399.3183417.

[66] André Hora, Romain Robbes, Marco Tulio Valente, Nico-
las Anquetil, Anne Etien, and Stéphane Ducasse. “How
Do Developers React to API Evolution? A Large-Scale
Empirical Study.” In: Software Quality Journal 26.1 (2018),
161–191. issn: 0963-9314. doi: 10.1007/s11219-016-9344-
4.

[67] André Hora, Marco Tulio Valente, Romain Robbes, and
Nicolas Anquetil. “When Should Internal Interfaces Be
Promoted to Public?” In: 24th International Symposium on
Foundations of Software Engineering. New York: ACM, 2016,
pp. 278–289. isbn: 9781450342186. doi: 10.1145/2950290.
2950306.

[68] Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalka-
reem, Emad Shihab, and Nikolaos Tsantalis. “Dependency
Smells in JavaScript Projects.” In: IEEE Transactions on Soft-
ware Engineering (2021). doi: 10.1109/TSE.2021.3106247.

[69] Dileepa Jayakody. Building a Modular Server Platform with
OSGi. https://pt.slideshare.net/DileepaJayakody1/
building - a - modular - server - platform - with - osgi.
2012.

[70] Kamil Jezek and Jens Dietrich. “API Evolution and Com-
patibility: A Data Corpus and Tool Evaluation.” In: J.
Object Technol. 16 (2017), 2:1–23. doi: 10.5381/jot.2017.
16.4.a2.

[71] Kamil Jezek, Jens Dietrich, and Premek Brada. “How Java
APIs Break—An Empirical Study.” In: Inf. Softw. Technol.
65 (2015), pp. 129–146. doi: 10.1016/j.infsof.2015.02.
014.

[72] Kamil Jezek, Lukas Holy, Antonin Slezacek, and Premek
Brada. “Software Components Compatibility Verification
Based on Static Byte-Code Analysis.” In: 39th Euromicro
Conference on Software Engineering and Advanced Applica-

228

https://doi.org/10.1145/3183399.3183417
https://doi.org/10.1007/s11219-016-9344-4
https://doi.org/10.1007/s11219-016-9344-4
https://doi.org/10.1145/2950290.2950306
https://doi.org/10.1145/2950290.2950306
https://doi.org/10.1109/TSE.2021.3106247
https://pt.slideshare.net/DileepaJayakody1/building-a-modular-server-platform-with-osgi
https://pt.slideshare.net/DileepaJayakody1/building-a-modular-server-platform-with-osgi
https://doi.org/10.5381/jot.2017.16.4.a2
https://doi.org/10.5381/jot.2017.16.4.a2
https://doi.org/10.1016/j.infsof.2015.02.014
https://doi.org/10.1016/j.infsof.2015.02.014

tions. USA: IEEE Computer Society, 2013, 145–152. isbn:
9780769550916. doi: 10.1109/SEAA.2013.58.

[73] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. “Devel-
oper mistakes in writing Android manifests: An empirical
study of configuration errors.” In: 14th International Con-
ference on Mining Software Repositories. Piscataway: IEEE,
2017, pp. 25–36. isbn: 978-1-5386-1544-7. doi: 10.1109/
MSR.2017.41.

[74] Emily Jiang. OSGi Application Best Practices. https://
www.slideshare.net/mfrancis/best-practices-for-

enterprise-osgi-applications-emily-jiang. 2012.

[75] Huaxi Jiang, Jie Zhu, Li Yang, Geng Liang, and Chun Zuo.
“DeepRelease: Language-agnostic Release Notes Genera-
tion from Pull Requests of Open-source Software.” In: 28th
Asia-Pacific Software Engineering Conference. 2021, pp. 101–
110. doi: 10.1109/APSEC53868.2021.00018.

[76] Gerd Kachel, Stefan Kachel, and Ksenija Nitsche-Brodnjan.
Migration from Java EE Application Server to Server-side
OSGi for Process Management and Event Handling. https://
www.slideshare.net/mfrancis/osgi-community-event-

2010-migration-from-java-ee-application-server-

to- serverside- osgi- for- process- management- and-

event-handling. 2010.

[77] Maya Kaczorowski. Secure at Every Step: How GitHub’s
Dependency Graph Is Generated. 2020. url: https://github.
blog/2020-08-04-secure-at-every-step-how-githubs-

dependency-graph-is-generated/.

[78] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif
Singer, Daniel M. German, and Daniela Damian. “The
Promises and Perils of Mining GitHub.” In: 11th Work-
ing Conference on Mining Software Repositories. New York:
Association for Computing Machinery, 2014, pp. 92–101.
isbn: 9781450328630. doi: 10.1145/2597073.2597074.

229

https://doi.org/10.1109/SEAA.2013.58
https://doi.org/10.1109/MSR.2017.41
https://doi.org/10.1109/MSR.2017.41
https://www.slideshare.net/mfrancis/best-practices-for-enterprise-osgi-applications-emily-jiang
https://www.slideshare.net/mfrancis/best-practices-for-enterprise-osgi-applications-emily-jiang
https://www.slideshare.net/mfrancis/best-practices-for-enterprise-osgi-applications-emily-jiang
https://doi.org/10.1109/APSEC53868.2021.00018
https://www.slideshare.net/mfrancis/osgi-community-event-2010-migration-from-java-ee-application-server-to-serverside-osgi-for-process-management-and-event-handling
https://www.slideshare.net/mfrancis/osgi-community-event-2010-migration-from-java-ee-application-server-to-serverside-osgi-for-process-management-and-event-handling
https://www.slideshare.net/mfrancis/osgi-community-event-2010-migration-from-java-ee-application-server-to-serverside-osgi-for-process-management-and-event-handling
https://www.slideshare.net/mfrancis/osgi-community-event-2010-migration-from-java-ee-application-server-to-serverside-osgi-for-process-management-and-event-handling
https://www.slideshare.net/mfrancis/osgi-community-event-2010-migration-from-java-ee-application-server-to-serverside-osgi-for-process-management-and-event-handling
https://github.blog/2020-08-04-secure-at-every-step-how-githubs-dependency-graph-is-generated/
https://github.blog/2020-08-04-secure-at-every-step-how-githubs-dependency-graph-is-generated/
https://github.blog/2020-08-04-secure-at-every-step-how-githubs-dependency-graph-is-generated/
https://doi.org/10.1145/2597073.2597074

[79] Vassilios Karakoidas, Dimitris Mitropoulos, Panos Louri-
das, Georgios Gousios, and Diomidis Spinellis. “Gen-
erating the Blueprints of the Java Ecosystem.” In: 12th
Working Conference on Mining Software Repositories. Piscat-
away: IEEE, 2015, pp. 510–513. isbn: 978-0-7695-5594-2.
doi: 10.1109/MSR.2015.76.

[80] Taranjeet Kaur, Nisha Ratti, and Parminder Kaur. “Ap-
plicability of Lehman Laws on Open Source Evolution: A
Case Study.” In: International Journal of Computer Applica-
tions 93.18 (2014), pp. 40–46.

[81] Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. “Un-
derstanding Type Changes in Java.” In: 28th Joint European
Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering. ACM, 2020, pp. 629–641.
doi: 10.1145/3368089.3409725.

[82] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Di-
etmar Pfahl. “Structure and Evolution of Package De-
pendency Networks.” In: 14th International Conference on
Mining Software Repositories. IEEE Press, 2017, 102–112.
isbn: 9781538615447. doi: 10.1109/MSR.2017.55.

[83] Barbara Kitchenham, O. Pearl Brereton, David Budgen,
Mark Turner, John Bailey, and Stephen Linkman. “Sys-
tematic Literature Reviews in Software Engineering - A
Systematic Literature Review.” In: Inf. Softw. Technol. 51.1
(2009), pp. 7–15. issn: 0950-5849. doi: 10.1016/j.infsof.
2008.09.009.

[84] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. “EASY
Meta-programming with Rascal.” In: 3rd International Sum-
mer School on Generative and Transformational Techniques in
Software Engineering. Ed. by João M. Fernandes, Ralf Läm-
mel, Joost Visser, and João Saraiva. LNCS. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2011, pp. 222–289. isbn:
978-3-642-18023-1. doi: 10.1007/978-3-642-18023-1_6.

[85] Raula Gaikovina Kula, Coen De Roover, Daniel M Ger-
man, Takashi Ishio, and Katsuro Inoue. “Modeling Library

230

https://doi.org/10.1109/MSR.2015.76
https://doi.org/10.1145/3368089.3409725
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1007/978-3-642-18023-1_6

Dependencies and Updates in Large Software Repository
Universes.” In: arXiv preprint arXiv:1709.04626 (2017).

[86] Raula Gaikovina Kula, Daniel M. German, Takashi Ishio,
and Katsuro Inoue. “Trusting a Library: A Study of the
Latency to Adopt the Latest Maven Release.” In: 22nd
International Conference on Software Analysis, Evolution, and
Reengineering. IEEE, 2015, pp. 520–524. doi: 10.1109/

SANER.2015.7081869.

[87] Raula Gaikovina Kula, Daniel M. German, Ali Ouni,
Takashi Ishio, and Katsuro Inoue. “Do Developers Up-
date Their Library Dependencies?” In: Empirical Software
Engineering 23.1 (2018), pp. 384–417. issn: 1573-7616. doi:
10.1007/s10664-017-9521-5.

[88] Raula Gaikovina Kula, Ali Ouni, Daniel M. Germán, and
Katsuro Inoue. “An Empirical Study on the Impact of
Refactoring Activities on Evolving Client-used APIs.” In:
Inf. Softw. Technol. 93 (2018), pp. 186–199. doi: 10.1016/j.
infsof.2017.09.007.

[89] Lars Kühne, Vincent Massol, and Simon Kitching. The
Clirr Maven Plugin. https://www.mojohaus.org/clirr-
maven-plugin/. last access 08.04.2020. 2003.

[90] Patrick Lam, Jens Dietrich, and David J. Pearce. “Putting
the Semantics into Semantic Versioning.” In: International
Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. New York: Association for Com-
puting Machinery, 2020, 157–179. isbn: 9781450381789.
doi: 10.1145/3426428.3426922.

[91] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi
Shang. “A Systematic Review of API Evolution Litera-
ture.” In: ACM Comput. Surv. 54.8 (2021). issn: 0360-0300.
doi: 10.1145/3470133.

[92] Maxime Lamothe, Weiyi Shang, and Tse-Hsun Chen. “A4:
Automatically assisting Android API migrations using
code examples.” In: arXiv preprint arXiv:1812.04894 (2018).

231

https://doi.org/10.1109/SANER.2015.7081869
https://doi.org/10.1109/SANER.2015.7081869
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1016/j.infsof.2017.09.007
https://doi.org/10.1016/j.infsof.2017.09.007
https://www.mojohaus.org/clirr-maven-plugin/
https://www.mojohaus.org/clirr-maven-plugin/
https://doi.org/10.1145/3426428.3426922
https://doi.org/10.1145/3470133

[93] Julia Lawall and Gilles Muller. “Coccinelle: 10 Years of
Automated Evolution in the Linux Kernel.” In: USENIX
Conference on Usenix Annual Technical Conference. USA:
USENIX Association, 2018, 601–613. isbn: 9781931971447.
doi: 10.5555/3277355.3277413.

[94] Meir M. Lehman. “Programs, Cities, Students—Limits
to Growth?” In: Programming Methodology: A Collection of
Articles by Members of IFIP WG2.3. New York: Springer,
1978, pp. 42–69. isbn: 978-1-4612-6315-9. doi: 10.1007/
978-1-4612-6315-9_6.

[95] Meir M. Lehman. “Programs, life cycles, and laws of soft-
ware evolution.” In: Proceedings of the IEEE 68.9 (1980),
pp. 1060–1076. doi: 10.1109/PROC.1980.11805.

[96] Meir M. Lehman and Francis N. Parr. “Program Evolution
and Its Impact on Software Engineering.” In: 2nd Inter-
national Conference on Software Engineering. Washington:
IEEE Computer Society Press, 1976, pp. 350–357.

[97] Meir M. Lehman and Juan F. Ramil. “Software Evolution -
Background, Theory, Practice.” In: Information Processing
Letters 88.1 (2003), pp. 33–44. issn: 0020-0190. doi: 10.
1016/S0020-0190(03)00382-X.

[98] Meir M. Lehman, Juan F. Ramil, and Kahen G. “Evolu-
tion as a Noun and Evolution as a Verb.” In: Workshop
on Software and Organisation Co-evolution. London: IEEE
Computer Society, 2000, p. 2.

[99] Meir M. Lehman, Juan F. Ramil, Paul Wernick, Dewayne
E. Perry, and Wladyslaw M. Turski. “Metrics and Laws of
Software Evolution—The Nineties View.” In: 4th Interna-
tional Software Metrics Symposium. IEEE Computer Society,
1997, p. 20. doi: 10.1109/METRIC.1997.637156.

[100] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buck-
ley. The Java Virtual Machine Specification, Java SE 9 Edition.
Oracle America, Inc., 2017.

232

https://doi.org/10.5555/3277355.3277413
https://doi.org/10.1007/978-1-4612-6315-9_6
https://doi.org/10.1007/978-1-4612-6315-9_6
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1016/S0020-0190(03)00382-X
https://doi.org/10.1016/S0020-0190(03)00382-X
https://doi.org/10.1109/METRIC.1997.637156

[101] R. Murray Lindsay and Andrew S. C. Ehrenberg. “The
Design of Replicated Studies.” In: The American Statistician
47.3 (1993), pp. 217–228. doi: 10.2307/2684982.

[102] Mircea Lungu, Michele Lanza, Tudor Gîrba, and Romain
Robbes. “The Small Project Observatory: Visualizing Soft-
ware Ecosystems.” In: Science of Computer Programming
75.4 (2010), pp. 264–275. issn: 0167-6423. doi: 10.1016/j.
scico.2009.09.004.

[103] Salvatore Mamone. “The IEEE Standard for Software
Maintenance.” In: SIGSOFT Softw. Eng. Notes 19.1 (Jan.
1994), pp. 75–76. issn: 0163-5948. doi: 10.1145/181610.
181623.

[104] Konstantinos Manikas and Klaus Marius Hansen. “Soft-
ware Ecosystems – A Systematic Literature Review.” In:
Journal of Systems and Software 86.5 (2013), pp. 1294–1306.
issn: 0164-1212. doi: 10.1016/j.jss.2012.12.026.

[105] Robert C. Martin. Design Principles and Design Patterns.
Tech. rep. Object Mentor, 2000.

[106] Matias Martinez and Martin Monperrus. “ASTOR: A Pro-
gram Repair Library for Java.” In: 25th International Sym-
posium on Software Testing and Analysis. New York, 2016,
441–444. isbn: 9781450343909. doi: 10 . 1145 / 2931037 .

2948705.

[107] Matias Martinez and Martin Monperrus. “Coming: A Tool
for Mining Change Pattern Instances from Git Commits.”
In: 41st International Conference on Software Engineering:
Companion Proceedings. 2019, pp. 79–82. doi: 10.1109/
ICSE-Companion.2019.00043.

[108] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci,
Michele Lanza, Matthias Hauswirth, and Nathaniel Nys-
trom. “Use at Your Own Risk: The Java Unsafe API in
the Wild.” In: International Conference on Object-Oriented
Programming, Systems, Languages, and Applications. ACM,
2015, pp. 695–710. doi: 10.1145/2814270.2814313.

233

https://doi.org/10.2307/2684982
https://doi.org/10.1016/j.scico.2009.09.004
https://doi.org/10.1016/j.scico.2009.09.004
https://doi.org/10.1145/181610.181623
https://doi.org/10.1145/181610.181623
https://doi.org/10.1016/j.jss.2012.12.026
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1109/ICSE-Companion.2019.00043
https://doi.org/10.1109/ICSE-Companion.2019.00043
https://doi.org/10.1145/2814270.2814313

[109] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. “An
Empirical Study of API Stability and Adoption in the An-
droid Ecosystem.” In: International Conference on Software
Maintenance. IEEE, 2013, pp. 70–79. doi: 10.1109/ICSM.
2013.18.

[110] Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei.
“A History-based Matching Approach to Identification of
Framework Evolution.” In: 34th International Conference
on Software Engineering. IEEE, 2012, pp. 353–363. isbn:
978-1-4673-1067-3. doi: 10.1109/ICSE.2012.6227179.

[111] Samim Mirhosseini and Chris Parnin. “Can Automated
Pull Requests Encourage Software Developers to Upgrade
Out-of-date Dependencies?” In: 32nd International Confer-
ence on Automated Software Engineering. IEEE Computer
Society, 2017, pp. 84–94. doi: 10.1109/ASE.2017.8115621.

[112] Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louri-
das, Georgios Gousios, and Diomidis Spinellis. “The Bug
Catalog of the Maven Ecosystem.” In: 11th Working Con-
ference on Mining Software Repositories. New York: ACM,
2014, pp. 372–375. isbn: 978-1-4503-2863-0. doi: 10.1145/
2597073.2597123.

[113] Jerome Moliere. 10 Things to Know You Are Doing OSGi in
the Wrong Way. https://www.slideshare.net/mfrancis/
10-clues-showing-that-you-are-doing-os-gi-in-

the-wrong-manner-jerome-moliere. 2011.

[114] Anders Møller, Benjamin Barslev Nielsen, and Martin
Toldam Torp. “Detecting Locations in JavaScript Programs
Affected by Breaking Library Changes.” In: Proc. ACM
Program. Lang. 4 (2020). doi: 10.1145/3428255.

[115] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta,
Rocco Oliveto, Andrian Marcus, and Gerardo Canfora.
“ARENA: An Approach for the Automated Generation
of Release Notes.” In: IEEE Transactions on Software Engi-
neering 43.2 (2017), pp. 106–127. doi: 10.1109/TSE.2016.
2591536.

234

https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1109/ICSE.2012.6227179
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1145/2597073.2597123
https://doi.org/10.1145/2597073.2597123
https://www.slideshare.net/mfrancis/10-clues-showing-that-you-are-doing-os-gi-in-the-wrong-manner-jerome-moliere
https://www.slideshare.net/mfrancis/10-clues-showing-that-you-are-doing-os-gi-in-the-wrong-manner-jerome-moliere
https://www.slideshare.net/mfrancis/10-clues-showing-that-you-are-doing-os-gi-in-the-wrong-manner-jerome-moliere
https://doi.org/10.1145/3428255
https://doi.org/10.1109/TSE.2016.2591536
https://doi.org/10.1109/TSE.2016.2591536

[116] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang.
“Experience Paper: A Study on Behavioral Backward In-
compatibilities of Java Software Libraries.” In: 26th Inter-
national Symposium on Software Testing and Analysis. ACM,
2017, pp. 215–225. doi: 10.1145/3092703.3092721.

[117] Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and
Shane McIntosh. “Using Others’ Tests to Identify Breaking
Updates.” In: 17th International Conference on Mining Soft-
ware Repositories. New York: Association for Computing
Machinery, 2020, 466–476. isbn: 9781450375177.

[118] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyap-
pan Nagappan. “Curating GitHub for Engineered Soft-
ware Projects.” In: Empirical Softw. Engg. 22.6 (2017),
pp. 3219–3253. issn: 1382-3256. doi: 10.1007/s10664-
017-9512-6.

[119] Meiyappan Nagappan, Thomas Zimmermann, and Chris-
tian Bird. “Diversity in software Engineering Research.”
In: Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering. New York: Association for Com-
puting Machinery, 2013, pp. 466–476. isbn: 9781450322379.
doi: 10.1145/2491411.2491415.

[120] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson,
Anh Tuan Nguyen, Miryung Kim, and Tien N. Nguyen.
“A Graph-Based Approach to API Usage Adaptation.” In:
Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications.
New York: Association for Computing Machinery, 2010,
302–321. isbn: 9781450302036. doi: 10 . 1145 / 1869459 .

1869486.

[121] Lina Ochoa, Thomas Degueule, and Jean-Rémy Falleri.
“BreakBot: Analyzing the Impact of Breaking Changes to
Assist Library Evolution.” In: 44th International Conference
on Software Engineering: New Ideas and Emerging Results.
New York: Association for Computing Machinery, 2022,

235

https://doi.org/10.1145/3092703.3092721
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1145/1869459.1869486
https://doi.org/10.1145/1869459.1869486

pp. 26–30. isbn: 9781450392242. doi: 10.1145/3510455.
3512783.

[122] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and
Jurgen J. Vinju. “Breaking Bad? Semantic Versioning and
Impact of Breaking Changes in Maven Central.” In: Empir-
ical Software Engineering 27.3 (2022). doi: 10.1007/s10664-
021-10052-y.

[123] Marcel Offermans. Automatically Managing Service Depen-
dencies in OSGi. https : / / citeseerx . ist . psu . edu /

viewdoc/download?doi=10.1.1.645.3833&rep=rep1&

type=pdf. 2005.

[124] Marcel Offermans. Using Apache Felix: OSGi Best Practices.
2006. url: \url{https://goo.gl/jmZsYD}.

[125] Oracle. The Java Tutorials: Type Erasure. 2021. url: https:
//docs.oracle.com/javase/tutorial/java/generics/

erasure.html.

[126] David L. Parnas. “On the Criteria to Be Used in Decompos-
ing Systems into Modules.” In: Pioneers and Their Contribu-
tions to Software Engineering: sd&m Conference on Software
Pioneers. Ed. by Manfred Broy and Ernst Denert. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 479–498.
isbn: 978-3-642-48354-7. doi: 10.1007/978-3-642-48354-
7_20.

[127] David L. Parnas. “The Secret History of Information Hid-
ing.” In: Software Pioneers: Contributions to Software Engi-
neering. Berlin, Heidelberg: Springer-Verlag, 2002, 399–409.
isbn: 3540430814.

[128] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez,
Carlos Noguera, and Lionel Seinturier. “Spoon: A Li-
brary for Implementing Analyses and Transformations of
Java Source Code.” In: Software: Practice and Experience 46

(2015), pp. 1155–1179. doi: 10.1002/spe.2346.

236

https://doi.org/10.1145/3510455.3512783
https://doi.org/10.1145/3510455.3512783
https://doi.org/10.1007/s10664-021-10052-y
https://doi.org/10.1007/s10664-021-10052-y
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.645.3833&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.645.3833&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.645.3833&rep=rep1&type=pdf
\url{https://goo.gl/jmZsYD}
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
https://doi.org/10.1007/978-3-642-48354-7_20
https://doi.org/10.1007/978-3-642-48354-7_20
https://doi.org/10.1002/spe.2346

[129] Ricardo Pérez-Castillo, Ignacio García-Rodríguez de
Guzmán, and Mario Piattini. “Knowledge Discovery
Metamodel-ISO/IEC 19506: A Standard to Modernize
Legacy Systems.” In: Comput. Stand. Interfaces 33.6 (2011),
pp. 519–532. issn: 0920-5489. doi: 10.1016/j.csi.2011.
02.007.

[130] Tom Preston-Werner. Semantic Versioning 2.0.0. https://
semver.org/. last access 30.07.2019. 2013.

[131] Steven Raemaekers. The Maven Dependency Dataset. last ac-
cess 09.04.2022. 2013. doi: 10.4121/uuid:68a0e837-4fda-
407a-949e-a159546e67b6. url: \url{https://data.4tu.
nl/articles/dataset/The_Maven_Dependency_Dataset/

12698027/1}.

[132] Steven Raemaekers, Arie van Deursen, and Joost Visser.
“Measuring Software Library Stability through Historical
Version Analysis.” In: 28th International Conference on Soft-
ware Maintenance. IEEE Computer Society, 2012, pp. 378–
387. doi: 10.1109/ICSM.2012.6405296.

[133] Steven Raemaekers, Arie van Deursen, and Joost Visser.
“The Maven Repository Dataset of Metrics, Changes, and
Dependencies.” In: 10th Working Conference on Mining Soft-
ware Repositories. IEEE Computer Society, 2013, pp. 221–
224. doi: 10.1109/MSR.2013.6624031.

[134] Steven Raemaekers, Arie van Deursen, and Joost Visser.
“Semantic Versioning versus Breaking Changes: A Study
of the Maven Repository.” In: 14th International Working
Conference on Source Code Analysis and Manipulation. USA:
IEEE Computer Society, 2014, pp. 215–224. isbn: 978-1-
4799-6148-1. doi: 10.1109/SCAM.2014.30.

[135] Steven Raemaekers, Arie van Deursen, and Joost Visser.
“Semantic Versioning and Impact of Breaking Changes in
the Maven Repository.” In: Journal of Systems and Software
129 (2017), pp. 140–158. issn: 0164-1212. doi: 10.1016/j.
jss.2016.04.008.

237

https://doi.org/10.1016/j.csi.2011.02.007
https://doi.org/10.1016/j.csi.2011.02.007
https://semver.org/
https://semver.org/
https://doi.org/10.4121/uuid:68a0e837-4fda-407a-949e-a159546e67b6
https://doi.org/10.4121/uuid:68a0e837-4fda-407a-949e-a159546e67b6
\url{https://data.4tu.nl/articles/dataset/The_Maven_Dependency_Dataset/12698027/1}
\url{https://data.4tu.nl/articles/dataset/The_Maven_Dependency_Dataset/12698027/1}
\url{https://data.4tu.nl/articles/dataset/The_Maven_Dependency_Dataset/12698027/1}
https://doi.org/10.1109/ICSM.2012.6405296
https://doi.org/10.1109/MSR.2013.6624031
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/10.1016/j.jss.2016.04.008

[136] Romain Robbes, Mircea Lungu, and David Röthlisberger.
“How Do Developers React to API Deprecation? The
Case of a Smalltalk Ecosystem.” In: 20th International Sym-
posium on the Foundations of Software Engineering. New
York: Association for Computing Machinery, 2012. isbn:
9781450316149. doi: 10.1145/2393596.2393662.

[137] Roman Roelofsen. Very Important Bundles. https : / /

www.slideshare.net/romanroe/vib-very-important-

bundles. 2009.

[138] Anand Ashok Sawant. “The Impact of API Evolution on
API Consumers and How This Can Be Affected by API
Producers and Language Designers.” PhD thesis. Delft
University of Technology, 2019.

[139] Anand Ashok Sawant, Romain Robbes, and Alberto Bac-
chelli. “On the Reaction to Deprecation of 25,357 Clients of
4+1 Popular Java APIs.” In: International Conference on Soft-
ware Maintenance and Evolution. IEEE Computer Society,
2016, pp. 400–410. doi: 10.1109/ICSME.2016.64.

[140] Anand Ashok Sawant, Romain Robbes, and Alberto Bac-
chelli. “To React, or Not to React: Patterns of Reaction
to API Deprecation.” In: Empirical Software Engineering
24.6 (2019), pp. 3824–3870. issn: 1573-7616. doi: 10.1007/
s10664-019-09713-w.

[141] Simone Scalabrino, Gabriele Bavota, Mario Linares-
Vásquez, Valentina Piantadosi, Michele Lanza, and Rocco
Oliveto. “API Compatibility Issues in Android: Causes
and Effectiveness of Data-driven Detection Techniques.”
In: Empirical Software Engineering 25.6 (2020), pp. 5006–
5046. issn: 1573-7616. doi: 10.1007/s10664-020-09877-
w.

[142] Doreen Seider, Andreas Schreiber, Tobias Marquardt, and
Marlene Brüggemann. “Visualizing Modules and Depen-
dencies of OSGi-Based Applications.” In: Working Confer-
ence on Software Visualization. IEEE, 2016, pp. 96–100. isbn:
978-1-5090-3850-3. doi: 10.1109/VISSOFT.2016.20.

238

https://doi.org/10.1145/2393596.2393662
https://www.slideshare.net/romanroe/vib-very-important-bundles
https://www.slideshare.net/romanroe/vib-very-important-bundles
https://www.slideshare.net/romanroe/vib-very-important-bundles
https://doi.org/10.1109/ICSME.2016.64
https://doi.org/10.1007/s10664-019-09713-w
https://doi.org/10.1007/s10664-019-09713-w
https://doi.org/10.1007/s10664-020-09877-w
https://doi.org/10.1007/s10664-020-09877-w
https://doi.org/10.1109/VISSOFT.2016.20

[143] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinel-
lis. “Does Your Configuration Code Smell?” In: 13th
International Conference on Mining Software Repositories.
New York: Association for Computing Machinery, 2016,
pp. 189–200. isbn: 978-1-4503-4186-8. doi: 10 . 1145 /

2901739.2901761.

[144] Anas Shatnawi, Hafedh Mili, Ghizlane El Boussaidi, Anis
Boubaker, Yann-Gaël Guéhéneuc, Naouel Moha, Jean Pri-
vat, and Manel Abdellatif. “Analyzing Program Depen-
dencies in Java EE Applications.” In: 14th International Con-
ference on Mining Software Repositories. Piscataway: IEEE,
2017, pp. 64–74. isbn: 978-1-5386-1544-7. doi: 10.1109/
MSR.2017.6.

[145] Junji Shimagaki, Yasutaka Kamei, Shane McIntosh, David
Pursehouse, and Naoyasu Ubayashi. “Why are Commits
Being Reverted?: A Comparative Study of Industrial and
Open Source Projects.” In: International Conference on Soft-
ware Maintenance and Evolution. IEEE, 2016, pp. 301–311.
doi: 10.1109/ICSME.2016.83.

[146] James Shore. “Fail Fast [Software Debugging].” In: IEEE
Software 21.5 (2004), pp. 21–25. issn: 1937-4194. doi: 10.
1109/MS.2004.1331296.

[147] Megan Squire and David Williams. “Describing the Soft-
ware Forge Ecosystem.” In: 45th Hawaii International Con-
ference on System Sciences. IEEE, 2012, pp. 3416–3425. doi:
10.1109/HICSS.2012.197.

[148] Klaas-Jan Stol and Brian Fitzgerald. “The ABC of Soft-
ware Engineering Research.” In: ACM Trans. Softw. Eng.
Methodol. 27.3 (2018). issn: 1049-331X. doi: 10 . 1145 /

3241743.

[149] Klaas-Jan Stol, Michael Goedicke, and Ivar Jacobson. “In-
troduction to the Special Section—General Theories of
Software Engineering: New Advances and Implications
for Research.” In: Information and Software Technology 70

239

https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1109/MSR.2017.6
https://doi.org/10.1109/MSR.2017.6
https://doi.org/10.1109/ICSME.2016.83
https://doi.org/10.1109/MS.2004.1331296
https://doi.org/10.1109/MS.2004.1331296
https://doi.org/10.1109/HICSS.2012.197
https://doi.org/10.1145/3241743
https://doi.org/10.1145/3241743

(2016), pp. 176–180. issn: 0950-5849. doi: 10 . 1016 / j .

infsof.2015.07.010.

[150] Jacob Stringer, Amjed Tahir, Kelly Blincoe, and Jens Di-
etrich. “Technical Lag of Dependencies in Major Package
Managers.” In: 27th Asia-Pacific Software Engineering Con-
ference. IEEE, 2020, pp. 228–237. doi: 10.1109/APSEC51365.
2020.00031.

[151] Rok Strniša, Peter Sewell, and Matthew Parkinson. “The
Java Module System: Core Design and Semantic Defini-
tion.” In: New York: Association for Computing Machin-
ery, 2007, 499–514. isbn: 9781595937865. doi: 10.1145/
1297027.1297064.

[152] Fangchao Tian, Tianlu Wang, Peng Liang, Chong Wang,
Arif Ali Khan, and Muhammad Ali Babar. “The Impact
of Traceability on Software Maintenance and Evolution:
A Mapping Study.” In: Journal of Software: Evolution and
Process 33.10 (2021). doi: 10.1002/smr.2374.

[153] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massi-
miliano Di Penta, Rocco Oliveto, Andrea De Lucia, and
Denys Poshyvanyk. “There and Back Again: Can You
Compile that Snapshot?” In: Journal of Software: Evolution
and Process 29.4 (2017). doi: 10.1002/smr.1838.

[154] Ervin Varga. “Introduction.” In: Unraveling Software Main-
tenance and Evolution: Thinking Outside the Box. Cham:
Springer International Publishing, 2017, pp. 3–16. isbn:
978-3-319-71303-8. doi: 10.1007/978-3-319-71303-8_1.

[155] Tim Ward. Best Practices for (Enterprise) OSGi Applica-
tions. https : / / pt . slideshare . net / mfrancis / best -

practices-for-enterprise-osgi-applications-tim-

ward. 2012.

[156] Thomas Watson and Peter Kriens. OSGi Component Pro-
gramming. https://slidetodoc.com/osgi-component-
programming - thomas - watson - ibm - lotus - equinox/.
2006.

240

https://doi.org/10.1016/j.infsof.2015.07.010
https://doi.org/10.1016/j.infsof.2015.07.010
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1109/APSEC51365.2020.00031
https://doi.org/10.1145/1297027.1297064
https://doi.org/10.1145/1297027.1297064
https://doi.org/10.1002/smr.2374
https://doi.org/10.1002/smr.1838
https://doi.org/10.1007/978-3-319-71303-8_1
https://pt.slideshare.net/mfrancis/best-practices-for-enterprise-osgi-applications-tim-ward
https://pt.slideshare.net/mfrancis/best-practices-for-enterprise-osgi-applications-tim-ward
https://pt.slideshare.net/mfrancis/best-practices-for-enterprise-osgi-applications-tim-ward
https://slidetodoc.com/osgi-component-programming-thomas-watson-ibm-lotus-equinox/
https://slidetodoc.com/osgi-component-programming-thomas-watson-ibm-lotus-equinox/

[157] Mairieli Wessel, Andy Zaidman, Marco A. Gerosa, and
Igor Steinmacher. “Guidelines for Developing Bots for
GitHub.” In: IEEE Software (2022). doi: 10.1109/MS.2022.
3224813.

[158] James R. Williams, Davide Di Ruscio, Nicholas Matragkas,
Juri Di Rocco, and Dimitris S. Kolovos. “Models of OSS
Project Meta-information: A Dataset of Three Forges.”
In: 11th Working Conference on Mining Software Repositories.
New York: ACM, 2014, pp. 408–411. isbn: 978-1-4503-2863-
0. doi: 10.1145/2597073.2597132.

[159] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohls-
son, Bjöorn Regnell, and Anders Wesslén. Experimentation
in Software Engineering: An Introduction. Norwell: Kluwer
Academic Publishers, 2000. isbn: 0-7923-8682-5.

[160] Martin R. Woodward. “Mutation Testing—Its Origin and
Evolution.” In: Information and Software Technology 35.3
(1993), pp. 163–169. issn: 0950-5849. doi: 10.1016/0950-
5849(93)90053-6.

[161] Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, and Minghui
Zhou. “Demystifying Software Release Note Issues on
GitHub.” In: 30th IEEE/ACM International Conference on
Program Comprehension. 2022.

[162] Wei Wu, Bram Adams, Yann-Gaël Guéhéneuc, and Giu-
liano Antoniol. “ACUA: API Change and Usage Audi-
tor.” In: 14th International Working Conference on Source
Code Analysis and Manipulation. IEEE, 2014, pp. 89–94. doi:
10.1109/SCAM.2014.33.

[163] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and
Miryung Kim. “AURA: A Hybrid Approach to Iden-
tify Framework Evolution.” In: 32nd ACM/IEEE Interna-
tional Conference on Software Engineering. New York: As-
sociation for Computing Machinery, 2010, 325–334. isbn:
9781605587196. doi: 10.1145/1806799.1806848.

241

https://doi.org/10.1109/MS.2022.3224813
https://doi.org/10.1109/MS.2022.3224813
https://doi.org/10.1145/2597073.2597132
https://doi.org/10.1016/0950-5849(93)90053-6
https://doi.org/10.1016/0950-5849(93)90053-6
https://doi.org/10.1109/SCAM.2014.33
https://doi.org/10.1145/1806799.1806848

[164] Wei Wu, Foutse Khomh, Bram Adams, Yann-Gaël
Guéhéneuc, and Giuliano Antoniol. “An Exploratory
Study of API Changes and Usages Based on Apache
and Eclipse Ecosystems.” In: Empir. Softw. Eng. 21 (2016),
pp. 2366–2412. doi: 10.1007/s10664-015-9411-7.

[165] Laerte Xavier, Aline Brito, André C. Hora, and Marco
Tulio Valente. “Historical and impact analysis of API
breaking changes: A large-scale study.” In: 24th Interna-
tional Conference on Software Analysis, Evolution and Reengi-
neering. IEEE Computer Society, 2017, pp. 138–147. doi:
10.1109/SANER.2017.7884616.

[166] Laerte Xavier, André C. Hora, and Marco Tulio Valente.
“Why Do We Break APIs? First Answers from Develop-
ers.” In: 24th International Conference on Software Analysis,
Evolution and Reengineering. IEEE Computer Society, 2017,
pp. 392–396. doi: 10.1109/SANER.2017.7884640.

[167] Yaoguo Xi, Liwei Shen, Yukun Gui, and Wenyun Zhao.
“Migrating Deprecated API to Documented Replacement:
Patterns and Tool.” In: The 11th Asia-Pacific Symposium
on Internetware. ACM, 2019, 15:1–15:10. doi: 10.1145/
3361242.3361246.

[168] Zhenchang Xing and Eleni Stroulia. “API-Evolution Sup-
port with Diff-CatchUp.” In: Transactions on Software En-
gineering 33.12 (2007), pp. 818–836. issn: 1939-3520. doi:
10.1109/TSE.2007.70747.

[169] Shengzhe Xu, Ziqi Dong, and Na Meng. “Meditor: Infer-
ence and Application of API Migration Edits.” In: 27th
International Conference on Program Comprehension. IEEE &
ACM, 2019, pp. 335–346. doi: 10.1109/ICPC.2019.00052.

[170] Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil,
and Arnaud Thiefaine. “How Libraries Evolve: A Sur-
vey of Two Industrial Companies and an Open-Source
Community.” In: 29th Asia-Pacific Software Engineering Con-
ference (APSEC 2022). 2022.

242

https://doi.org/10.1007/s10664-015-9411-7
https://doi.org/10.1109/SANER.2017.7884616
https://doi.org/10.1109/SANER.2017.7884640
https://doi.org/10.1145/3361242.3361246
https://doi.org/10.1145/3361242.3361246
https://doi.org/10.1109/TSE.2007.70747
https://doi.org/10.1109/ICPC.2019.00052

[171] Ahmed Zerouali, Tom Mens, Jesús M. González-Barahona,
Alexandre Decan, Eleni Constantinou, and Gregorio Rob-
les. “A Formal Framework for Measuring Technical Lag in
Component Repositories - and Its Application to npm.” In:
J. Softw. Evol. Process. 31 (2019). doi: 10.1002/smr.2157.

[172] Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lin-
gling Fan, Bihuan Chen, and Yang Liu. “Has My Release
Disobeyed Semantic Versioning? Static Detection Based
on Semantic Differencing.” In: 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering. 2022.
doi: 10.48550/ARXIV.2209.00393.

[173] Tianyi Zhang, Björn Hartmann, Miryung Kim, and Elena
L. Glassman. “Enabling Data-Driven API Design with
Community Usage Data: A Need-Finding Study.” In: CHI
Conference on Human Factors in Computing Systems. New
York: Association for Computing Machinery, 2020, 1––13.
isbn: 9781450367080. doi: 10.1145/3313831.3376382.

[174] Théo Zimmermann. “Challenges in the Collaborative Evo-
lution of a Proof Language and Its Ecosystem. (Défis dans
l’évolution collaborative d’un langage de preuve et de son
écosystème).” PhD thesis. Paris Diderot University, France,
2019. url: https://tel.archives- ouvertes.fr/tel-
02451322.

243

https://doi.org/10.1002/smr.2157
https://doi.org/10.48550/ARXIV.2209.00393
https://doi.org/10.1145/3313831.3376382
https://tel.archives-ouvertes.fr/tel-02451322
https://tel.archives-ouvertes.fr/tel-02451322

C U R R I C U L U M V I TA E

Lina María Ochoa Venegas was born in Bogotá, Colombia. In
2010, she started her studies in Systems and Computation Engi-
neering with extra courses on Art at Universidad de los Andes,
Bogotá, Colombia. Afterwards, she obtained her master’s degree
in Software Engineering at the same university under the super-
vision of dr. Oscar González Rojas and prof.dr. Harold Castro
Barrera. She moved to Amsterdam in 2017 to start a position as
a Ph.D. candidate for the European Union project, Crossminer.
During this time she was affiliated with the Centrum Wiskunde &
Informatica (CWI), Amsterdam, The Netherlands. After the com-
pletion of the project, she moved to Eindhoven to work as a Ph.D.
candidate at Eindhoven University of Technology (TU/e) sup-
porting teaching and research activities. She finalized her Ph.D.
studies in 2022 under the supervision of dr. Thomas Degueule,
prof.dr. Jurgen Vinju, and prof.dr. Mark van den Brand.

245

I PA D I S S E RTAT I O N S E R I E S

Titles in the IPA Dissertation Series since 2020.

M.A. Cano Grijalba. Session-
Based Concurrency: Between Oper-
ational and Declarative Views. Fac-
ulty of Science and Engineering,
RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty
of Science, Mathematics and
Computer Science, RU. 2020-02

R.A. van Rozen. Languages of
Games and Play: Automating Game
Design & Enabling Live Pro-
gramming. Faculty of Science,
UvA. 2020-03

B. Changizi. Constraint-Based
Analysis of Business Process Mod-
els. Faculty of Mathematics and
Natural Sciences, UL. 2020-04

N. Naus. Assisting End Users in
Workflow Systems. Faculty of Sci-
ence, UU. 2020-05

J.J.H.M. Wulms. Stability of Ge-
ometric Algorithms. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2020-06

T.S. Neele. Reductions for Parity
Games and Model Checking. Fac-
ulty of Mathematics and Com-
puter Science, TU/e. 2020-07

P. van den Bos. Coverage and
Games in Model-Based Testing. Fac-
ulty of Science, RU. 2020-08

M.F.M. Sondag. Algorithms
for Coherent Rectangular Visu-
alizations. Faculty of Mathe-
matics and Computer Science,
TU/e. 2020-09

D. Frumin. Concurrent Separation
Logics for Safety, Refinement, and
Security. Faculty of Science, Math-
ematics and Computer Science,
RU. 2021-01

A. Bentkamp. Superposition for
Higher-Order Logic. Faculty of Sci-
ences, Department of Computer
Science, VU. 2021-02

P. Derakhshanfar. Carving Infor-
mation Sources to Drive Search-
based Crash Reproduction and
Test Case Generation. Faculty of
Electrical Engineering, Mathe-
matics, and Computer Science,
TUD. 2021-03

K. Aslam. Deriving Behavioral
Specifications of Industrial Software
Components. Faculty of Mathe-
matics and Computer Science,
TU/e. 2021-04

W. Silva Torres. Supporting Multi-
Domain Model Management. Fac-

247

ulty of Mathematics and Com-
puter Science, TU/e. 2021-05

A. Fedotov. Verification Techniques
for xMAS. Faculty of Mathe-
matics and Computer Science,
TU/e. 2022-01

M.O. Mahmoud. GPU Enabled
Automated Reasoning. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2022-02

M. Safari. Correct Optimized GPU
Programs. Faculty of Electrical En-
gineering, Mathematics & Com-
puter Science, UT. 2022-03

M. Verano Merino. Engineer-
ing Language-Parametric End-
User Programming Environments
for DSLs. Faculty of Mathe-
matics and Computer Science,
TU/e. 2022-04

G.F.C. Dupont. Network Secu-
rity Monitoring in Environments
where Digital and Physical Safety
are Critical. Faculty of Mathe-
matics and Computer Science,
TU/e. 2022-05

T.M. Soethout. Banking on Do-
main Knowledge for Faster Trans-
actions. Faculty of Mathemat-

ics and Computer Science,
TU/e. 2022-06

P. Vukmirović. Implementation of
Higher-Order Superposition. Fac-
ulty of Sciences, Department of
Computer Science, VU. 2022-07

J. Wagemaker. Concurrent Separa-
tion Logics for Safety, Refinement,
and Security. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2022-08

R. Janssen. Refinement and Par-
tiality for Model-Based Testing. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2022-09

M. Laveaux. Accelerated Verifica-
tion of Concurrent Systems. Faculty
of Mathematics and Computer
Science, TU/e. 2022-10

S. Kochanthara. A Changing
Landscape: On Safety & Open
Source in Automated and Con-
nected Driving. Faculty of Math-
ematics and Computer Science,
TU/e. 2023-01

L.M. Ochoa Venegas. Break the
Code? Breaking Changes and Their
Impact on Software Evolution. Fac-
ulty of Mathematics and Com-
puter Science, TU/e. 2023-02

248

	Dedication
	Summary
	Samenvatting
	Acknowledgements
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	 The Origin
	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Thesis Context
	1.5 Artefacts
	1.6 Origin of the Chapters

	 The Nounal View
	2 OSGi Dependency Management Best Practices
	2.1 Introduction
	2.2 Background: the OSGi Framework
	2.3 OSGi Best Practices
	2.4 OSGi Corpus Analysis
	2.5 Related Work
	2.6 Conclusion

	3 Breaking Bad? Semantic Versioning and Breaking Changes
	3.1 Introduction
	3.2 Background
	3.3 Original Study
	3.4 Design of the Replication Study
	3.5 Results & Analysis
	3.6 Related Work
	3.7 Discussion
	3.8 Conclusion

	 The Verbal View
	4 Maracas: Designing and Implementing the Static Impact Analysis Approach
	4.1 Introduction
	4.2 Background & Motivating Example
	4.3 API Change & Impact Requirements
	4.4 Static Impact Analysis: The Approach
	4.5 Maracas: The Implementation
	4.6 Current Solutions
	4.7 Conclusions

	5 BreakBot: Static Reverse Dependency Compatibility Testing for Java Libraries
	5.1 Background
	5.2 Motivation & Current Solutions
	5.3 Static RDCT
	5.4 BreakBot
	5.5 Evaluation
	5.6 Discussion
	5.7 Related Work
	5.8 Conclusion

	 Todo Cambia
	6 Conclusion
	6.1 Main Findings
	6.2 Future Research Directions

	 Appendix
	A BreakBot Survey
	 Bibliography

	Bibliography
	Curriculum Vitae
	IPA Dissertation Series

