
Efficient Im
m

utable Collections
M

ichael J. Steindorfer

 Efficient
 Immutable
 Collections

Michael J. Steindorfer

Efficient Immutable Collections

Efficient Immutable Collections

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op dinsdag 28 februari 2017, te 14.00 uur

door

Michael Johannes Steindorfer

geboren te Friesach, Oostenrijk

Promotiecommissie

Promotores: Prof. dr. P. Klint Universiteit van Amsterdam
Prof. dr. J.J. Vinju Technische Universiteit Eindhoven

Overige leden: Prof. dr. M.L. Kersten Universiteit van Amsterdam
Dr. C.U. Grelck Universiteit van Amsterdam
Prof. dr. P. van Emde Boas Universiteit van Amsterdam
Prof. dr. M. Püschel ETH Zurich
Dr. D. Syme Microsoft Research

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The work in this thesis has been carried out at Centrum Wiskunde & Informatica
(CWI) under the auspices of the research school IPA (Institute for Programming
research and Algorithmics).

Contents

Contents v

1 Introduction 1
1.1 Collection Libraries . 3

1.2 Variability Dimensions of Collections 5

1.3 Immutable Collections . 8

1.4 Persistent Data Structures . 10

1.5 Platform-Specific Data Locality Challenges 15

1.6 Contributions . 19

1.7 Software Artifacts . 22

1.8 Further Reading . 23

2 Towards a Software Product Line of Trie-Based Collections 25
2.1 Introduction . 26

2.2 Related Work . 27

2.3 A Stable Data Type Independent Encoding 29

2.4 Intermediate Generator Abstractions . 31

2.5 Conclusion . 33

3 The CHAMP Encoding 35
3.1 Introduction . 36

3.2 Background . 38

3.3 Data Locality . 41

3.4 Canonicalization . 45

3.5 Memoization and Hash Codes . 50

3.6 Benchmarks: CHAMP versus Clojure’s and Scala’s HAMTs 53

3.7 Case Study: Static Program Analysis . 62

3.8 Analysis and Threats to Validity . 65

3.9 Related Work . 68

3.10 Conclusion . 69

v

vi CONTENTS

4 Specialization for Memory Efficiency 71
4.1 Introduction . 72

4.2 Background . 73

4.3 Node Frequency Statistics . 75

4.4 Modeling and Measuring Memory Footprints 77

4.5 Small Number of Specializations for Big Savings 78

4.6 Conclusion . 81

5 A Flexible Encoding for Heterogeneous Data 83
5.1 Introduction . 84

5.2 From Homogeneity to Heterogeneity 85

5.3 Lean Specializations . 95

5.4 Benchmarks: Heterogeneous Multi-Maps versus Maps 98

5.5 Benchmarks: Comparing Multi-Map Designs 103

5.6 Case Study: Primitive Collection Footprints 106

5.7 Case Study: Static Program Analysis . 109

5.8 Related Work . 111

5.9 Further Applications of Heterogeneous Data Structures 112

5.10 Conclusion . 114

6 Performance Modeling of Maximal Sharing 115
6.1 Introduction . 116

6.2 Architecture and Design Decisions . 119

6.3 Profiling Techniques . 121

6.4 Predictive Modeling of Maximal Sharing 123

6.5 Evaluation: Setup . 125

6.6 Evaluation: Controlled Experiment . 129

6.7 Evaluation: Case Study . 132

6.8 Related Work . 140

6.9 Conclusion . 142

7 Conclusion 143
7.1 Recapitulation of Research Questions 144

7.2 Future Work . 147

7.3 Takeaway . 149

References 155

Chapter 1

Introduction

“Good programmers worry about data structures
and their relationships.”

— Linus Torvalds

“Good programmers worry about their relationships
and data structures.”

— the author

Using an object-oriented or functional programming language without data struc-
tures is comparable to riding an electric car without batteries included. The car
would still operate with a power cord attached, but user experience would be poor
and utility would be limited. Programming languages gain utility from processing
and transforming data being hold by data structures. We use the following definition
of the term data structure [PB04]:

“An organization of information, usually in memory, for better algorithm effi-
ciency, such as queue, stack, linked list, heap, dictionary, and tree, or conceptual
unity, such as the name and address of a person. It may include redundant
information, such as length of the list or number of nodes in a subtree.”

“Most data structures have associated algorithms to perform operations, such as
search, insert, or balance, that maintain the properties of the data structure.”

Data structures are a key ingredient to enable the design of efficient algorithms.
To provide programmers with a versatile toolbox, most programming languages do
include commonly used data structures in their standard libraries. This attitude is
also known as the “batteries included” philosophy and refers to “having a rich and

1

2 CHAPTER 1. INTRODUCTION

versatile standard library which is immediately available, without making the user download
separate packages”.∗ An essential part of standard libraries are collections. A collection
is a data type that “represents a group of objects, known as its elements”.† Common
collection data types —such as list, set, or map— under-pin many, if not most,
applications in general purpose programming languages and therefore constitute an
essential part of standard libraries.

Generally speaking, collection data structures are general purpose implemen-
tations that should carefully balance operation runtimes and memory footprints.
Those implementations are not optimized for a certain problem size, they are as-
sumed to perform well when containing a few bytes of data, or gigabytes of data. In
order to balance the properties of general purpose data structures, engineers who
design standard library data structures have to solve a multi-objective optimization
challenge by making trade-offs. Unfortunately the objectives of generality and perfor-
mance rival with each other, resulting in data structures with mediocre performance
for specific contexts or usage patterns. E.g., several collection data structures can be
implemented more efficiently without supporting a deletion operation. Because the
predefined set of supported operations on collections is fixed, client code that does
not depend on deletion essentially uses a suboptimal implementation.

In this thesis we introduce data structures that are more performant than com-
parable state-of-the-art standard library data structures —in terms of operation
runtimes and memory footprints— and more general by supporting storage and
retrieval of type-heterogeneous data‡ where parametric polymorphism [OW97]
on the language level falls short. We specifically target immutable, unordered and
hashed data types, such as widely-used hash-sets and hash-maps; we will specify the
concepts just mentioned as well as the characteristics of the proposed data structures
throughout the remainder of this chapter.

Industrial and Practical Impact. We start with the conjecture that even widely
used data structures still contain a large potential for optimization, which proved to
be true. By targeting widely used data structures, the contributions of this thesis
could have a high practical and industrial impact.

This thesis describes data structure implementations, written in Java, that run
on and are optimized for the Java Virtual Machine (JVM).§ We chose the JVM as
platform, because there exist industry grade JVM implementations, such as Oracle’s
HotSpotTM,¶ that are open-sourced, maintained by strong industrial institutions, and
have been optimized for more than a decade. Furthermore, the JVM hosts a multitude

∗https://www.python.org/dev/peps/pep-0206/
†http://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
‡In type-heterogeneous data structures, elements could have different (internal) representations.
§cf. The Java Virtual Machine Specification: http://docs.oracle.com/javase/specs/jvms/se8/html/
¶http://openjdk.java.net/groups/hotspot/

https://www.python.org/dev/peps/pep-0206/
http://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/specs/jvms/se8/html/
http://openjdk.java.net/groups/hotspot/

1.1. COLLECTION LIBRARIES 3

1 interface List<E> {

2 int size();

3 void add(E item);

4 E get(int index);

5 }

Listing 1.1: Object-oriented interface of a List data type.

of programming language runtimes,‖ including many that feature interoperability
with Java. By choosing Java, our research results are immediately available to many
programming language runtimes and standard libraries.

1.1 Collection Libraries

Most modern programming languages support the creation of modules or libraries
to encapsulate reusable data types that can be shared amongst different programs.
The Java programming language ships with a standard library that features a rich
set of collection data types.

The technical term collection describes standard library data structures of com-
monly used data types for representing groups of objects [NW06]. The semantics of
the various forms that groups of objects can take (cf. Section “Variability Dimensions
of Collections”) are modeled by abstract data types and are exposed as a hierarchy of
interfaces. Each interface is typically matched by one or more concrete data structure
implementations that vary in performance characteristics. Abstract data types ex-
press a contract of what functionality a data type must support, without dictating
a data structure implementation how to accomplish such a contract. Listing 1.1
illustrates the interface of a simple List collection data type that supports querying
the amount of elements it holds (size), appending elements at the end (add), and
retrieving elements based on their position (get).

Data structures, implementing object-oriented interfaces, encapsulate their inter-
nal state and hide implementation details of the methods operating on the state. E.g.,
when implementing the List interface of Listing 1.1, an ArrayList (cf. Listing 1.2)
may use Java’s built-in array primitive to compactly store the collection’s elements
while a LinkedList (cf. Listing 1.3) may use individual interlinked Node objects,
each containing references to their next and previous element. How an interface
is implemented, has direct impact on the expected performance of an operation.
Lookup (get) executes in constant time on an ArrayList regardless of the size of the
data structure due to random-access support of the underlying array, while lookup
executes in (worst case) linear time on a LinkedList.

‖http://jvmlangsummit.com

http://jvmlangsummit.com

4 CHAPTER 1. INTRODUCTION

1 abstract class ArrayList<E> implements List<E> {

2 // internal representation

3 Object[] elementData;

4 }

Listing 1.2: Internal state representation of an ArrayList data type.

1 abstract class LinkedList<E> implements List<E> {

2 // internal representation

3 int size;

4 Node<E> first;

5 Node<E> last;

6 }

7

8 abstract class Node<E> {

9 // internal representation

10 E item;

11 Node<E> next;

12 Node<E> prev;

13 }

Listing 1.3: Internal state representation of a LinkedList data type.

Substitutability. In object-oriented programming languages, programmers are
allowed to program against the interface of a data type —an opaque abstraction— or
against a specific implementation —a transparent abstraction. The Liskov substitution
principle [LW94; LW99] states that if two types S and T are in a sub-type relationship
—S is a subtype of T— then all objects of the super-type T may be replaced by
objects of the more specific sub-type S, without altering a program’s correctness.
Substitutability describes a form of strong behavioral sub-typing that is usually
supported by collection libraries.

Java’s collection library exposes collection data types as Java interfaces and
furthermore contains at least one or more data structure implementations per
interface. Substitutability allows replacing usages of the interfaces by usages of
specific implementations in the source code. To regulate behavioral sub-typing, Java’s
collection library contains a range of documented design choices that potentially
impact the performance of data structure implementations. E.g., the definition of
hashCode of the java.util.Map interface assumes a row-wise data decomposition of the
tuples, and complicates incremental computations on column-wise decompositions.

1.2. VARIABILITY DIMENSIONS OF COLLECTIONS 5

Parametric Polymorphism. Next to distinguishing between interfaces and imple-
mentations, collections in Java and C# abstract over their element types with a
language feature named generics, a form of parametric polymorphism [OW97; KS01].

Generics were introduced in Java SE 5 to allow the parametrization of classes by
type variables that act as placeholders. Generics allow devising code that can be
re-used and checked at compile time for type-safety. Listing 1.4 illustrates a Box data
type that supports storage and retrieval of a single untyped object. While the Box

supports arbitrary reference types, it is not type safe and requires unchecked type
casts, which could lead to latent program errors. Without generic type arguments, a
Java programmer interested in type-safety would be inclined to specialize the data
type for a specific reference type or primitive type (cf. Listing 1.5). An equivalent
data type using generic type arguments —offering code re-use without duplication
and compile-time type safety— is shown in Listing 1.6.

Unfortunately the current version of Java does not support generics over primitive
types, which complicates the design of generic and performant collections that
contain primitive data or that mix primitive data with object instances.

1.2 Variability Dimensions of Collections

Collection libraries are often organized by the intended usage of the contained
collections. E.g., collection libraries are split and specialized by several of the
following criteria [OM09] in the JVM languages Java and Scala:

Split by data type semantics: Interfaces and implementations for a range of ab-
stract data types such as lists, sets, bags, maps, multi-maps, and so forth.

Split by ordering: The elements of a collection are either ordered arbitrarily or
non-arbitrarily. The semantics of some collections (e.g., set) do not dictate
a particular ordering. Hashing may arbitrarily shuffle the element order. In
contrast, the semantics of some collections dictate non-arbitrary ordering, e.g.,
alphabetic ordering of strings in a sorted-set, or sorting by temporal properties
such as insertion order in a linked hash-set.

Split by update semantics: Data structures either allow mutation of their content
over time, or they are immutable. So called transient data structures represent
the middle ground by allowing efficient batch updates on otherwise immutable
data structures.

Split by processing semantics: Data structures either support sequential, parallel
(e.g., by splitting and merging data), or concurrent processing.

6 CHAPTER 1. INTRODUCTION

1 class Box {

2 private final Object item;

3

4 public Box(Object item) { this.item = item; }

5 public Object get() { return item; }

6 }

7

8 // EXAMPLE:

9 //

10 // Box boxedItem = new Box("example");

11 // String item = (String) boxedItem.get(); /* requires unchecked cast to String */

Listing 1.4: A basic data type supporting storage and retrieval of untyped objects.

1 class IntBox {

2 private final int item;

3

4 public IntBox(int item) { this.item = item; }

5 public int get() { return item; }

6 }

7

8 // EXAMPLE:

9 //

10 // IntBox boxedItem = new IntBox(13);

11 // int item = boxedItem.get(); /* no cast required, however restricted to int */

Listing 1.5: A specialized data type supporting storage and retrieval of int values.

1 class GenericBox<T> {

2 private final T item;

3

4 public GenericBox(T item) { this.item = item; }

5 public T get() { return item; }

6 }

7

8 // EXAMPLE:

9 //

10 // GenericBox<String> boxedItem = new GenericBox<>("example");

11 // String item = boxedItem.get(); /* generically supports all reference types */

Listing 1.6: A generic data type supporting storage and retrieval of typed objects.

1.2. VARIABILITY DIMENSIONS OF COLLECTIONS 7

Split by implementation strategy: Different implementation strategies yield differ-
ent performance characteristics. For example, a list data type allows imple-
mentations as an array, or as entries that are linked through references.

Split by content: Most collection data structures are designed to be type-safe by
restricting elements to a single homogeneous generic type. Storing mixed
content of various types is often only possible untyped.

The dimensions span a multi-dimensional space with a large number of variants. In
contrast to the large domain with a large variability, collection libraries of program-
ming languages typically provide only a very small subset of the most frequently
demanded data structures.

From an implementer’s perspective, in terms of effort it is often not feasible to
manually implement and maintain a complete set of variants. Because of the slightly
different requirements and optimizations, each data structure variant usually comes
with a separate hand-written implementation that evolves individually.

From a user’s perspective, it is a double-edged sword to have many implemen-
tations per data type available. On the one hand, expert users could benefit from
a wide range of specialized data structures (though selection requires knowledge
about the options and their trade-offs). On the other hand, collection libraries accom-
modate novice users with exposing a small set of implementations. E.g., often users
are just interested in a particular abstract data type without requiring particular
performance guarantees or knowledge about implementation details.

In order to satisfy both the implementer’s and the user’s perspective, collection
libraries traditionally settle for trade-offs between generality and performance: they
aim to be as powerful as possible while keeping the code base simple and slim, at
the cost of giving up maximum efficiency.

We expect that it is feasible to use generative programming in the traditional
sense [McI68; Big98; CE00] to overcome current trade-offs and to satisfy both the
implementer’s and the user’s perspective. Analyzing and understanding the domain,
its variability, and engineering and design trade-offs are the key requirements for
success. We further expect that by constraining the domain of collections, by fixing
the update semantic to immutable, it is possible to find a small set of intermediate
code generator abstractions that efficiently cover the chosen sub-domain.

Research Question: What are the commonalities and differences between differ-
ent data structures in the domain of collection libraries? Can we generalize
over the sub-domain of immutable collections by modeling variability and
documenting implementation choices? Research Question (RQ-1). Addressed
by Chapter 2.

8 CHAPTER 1. INTRODUCTION

1.3 Immutable Collections

Immutability is a characteristic that can be associated with arbitrary objects and
—in the context of this thesis— with collections in particular. In its section about
concurrency, Oracle’s The JavaTM Tutorials∗ series describes what immutability is and
what to expect from immutable objects, especially in concurrent environments:

“An object is considered immutable if its state cannot change after it is con-
structed. Maximum reliance on immutable objects is widely accepted as a sound
strategy for creating simple, reliable code.

Immutable objects are particularly useful in concurrent applications. Since they
cannot change state, they cannot be corrupted by thread interference or observed
in an inconsistent state.

Programmers are often reluctant to employ immutable objects, because they
worry about the cost of creating a new object as opposed to updating an object
in place. The impact of object creation is often overestimated, and can be offset
by some of the efficiencies associated with immutable objects. These include
decreased overhead due to garbage collection, and the elimination of code needed
to protect mutable objects from corruption.”

In general, immutable data structures [Oka99] are applied in domains such as
functional languages [CD08; Vis04; KvdSV09], proof assistants [BJM13], meta-pro-
gramming [KvdSV09], algebraic specification formalisms [vdBra+02; Bor+98; Cla+01;
Mos04; Bal+07], and compiler infrastructures [Vaz+07]. Implementations of logic pro-
gramming formalisms like, Datalog [HVdM06], can also benefit from optimizations
of immutable data-structures [Ram+95].

Immutable collections are a specific area most relevant to functional or hybrid
functional/object-oriented programming such as practiced by Clojure†, Rascal‡, and
Scala§ programmers on the JVM.

In the book Effective Java [Blo08], Joshua Bloch said that “immutable [collections]
provide many advantages, and their only disadvantage is the potential for performance
problems under certain circumstances”. While state-of-the-art immutable collections
do have advantages over mutable collections, the property of immutability comes
at the cost of decreased performance of operations like lookup, insertion, and
deletion. These performance differences arise because state-of-the-art immutable
collections are implemented as shallow trees, while mutable collections are based on
flat continuous arrays. Hence, immutable collections are challenging to optimize.

∗https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html
†http://clojure.org
‡http://rascal-mpl.org
§http://scala-lang.org

https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html
http://clojure.org
http://rascal-mpl.org
http://scala-lang.org

1.3. IMMUTABLE COLLECTIONS 9

Goal Definition. In the bigger picture the overall goal of this thesis is to strengthen
the performance perspective and expressivity of immutable data structures, such
that they could become viable default choices over their mutable counterparts. This
goal can be formulated as follows:

The goal of this research is to make immutable data structures as fast as
mutable data structures, or even faster, while maintaining the beneficial
property of immutability.

Making immutable collections efficiently available in object-oriented programming
languages transfers some of the benefits of functional and formal languages to
mainstream programming: immutability is a foundation for equational reasoning,
i.e., reasoning about your source code as it was a mathematical expression [HO80].

Immutability from a User’s Perspective. Object-oriented data structures typically
allow modifying (or mutating) their in-memory content. Instantiation of a mutable
data type yields a stable reference to the data structure. The reference does not
change, however, the internal state of objects may change by invoking methods on
the object. Listing 1.7 exemplifies the usage of a mutable data type, as contained in
Java’s collection library. Multiple state modifications, to add new elements, are listed
as separate imperative statements. This style of Application Program Interface (API)
is common for mutable object-oriented libraries.

In contrast, immutable data structures prohibit internal modification. The content
of a data structure is guaranteed to not change. However, immutable data structures
yet allow updates by returning new instances upon modification. To enable updates,
immutable data structure expose alternative APIs to the users. Listing 1.8 illustrates
the usage of a purely functional API. The add operation is implemented as a function
that takes two arguments, a set and an element to be added, and returns a reference
to a newly constructed set containing the added element. A purely functional
programming style, requires chaining of the calls to add as nesting expressions.
Libraries of object-oriented languages do usually provide an object-oriented fluent
interface on top of functional data structures, as shown in Listing 1.9. Hence, API

design requires different considerations for mutable and immutable data structures
in object-oriented languages.

Immutability from the Implementation’s Perspective. From the user’s perspec-
tive, immutability reflects the simple guarantee that the content of a data structure
does not change. Deriving new updated instances from existing data structures
does not give the user guarantees about the performance to be expected and the
implementation of such a derivation operation. E.g., it is not obvious how much

10 CHAPTER 1. INTRODUCTION

1 Set<Integer> mutableSet = new HashSet<>();

2 mutableSet.add(1);

3 mutableSet.add(2);

4 mutableSet.add(3);

5 mutableSet.add(4);

Listing 1.7: API usage of a mutable Set data structure.

1 ImmutableSet<Integer> set = add(add(add(add(ImmutableSet.empty(), 1), 2), 3), 4);

Listing 1.8: Functional API usage of a immutable set data structure.

1 ImmutableSet<Integer> set = ImmutableSet.empty()

2 .add(1)

3 .add(2)

4 .add(3)

5 .add(4);

Listing 1.9: Fluent API usage of an immutable set data structure.

data has to be copied when executing deriving a new instance from a large data
structure when adding a new element. A naive attempt is shown in Listing 1.10.
First, a copy requiring linear space is allocated, second, it temporarily mutates the
copy, before finally freezing the copy to avoid further mutation. Especially when
dealing with potentially big data structures, requiring a linear space copy at each
modification renders this naive effort inefficient for most if not all algorithms.

1.4 Persistent Data Structures

An advanced implementation technique for immutable data structures makes use
of a property that is commonly known as persistency to achieve more efficient data
structure derivations [Got74; Dri+86; Oka99]. Please note that the term persistency
has nothing in common with the likewise named property in the context of database
systems. We define the term persistent data structure as follows:

A persistent data structure is an immutable data structure that is a Directed
Acyclic Graph (DAG) and consists of separate immutable segments. A persistent
data structure is incrementally constructed by linking new immutable data
segments to an existing DAG of immutable data structure segments.

1.4. PERSISTENT DATA STRUCTURES 11

1 // allocating new instance

2 Set<Integer> __tmp = new HashSet<>(hugeSet.size + 1);

3

4 // temporary mutation

5
__tmp.addAll(hugeSet);

6
__tmp.add(34);

7

8 // freezing state

9 Set<Integer> updatedSet = Collections.unmodifiableSet(__tmp);

Listing 1.10: Immutable updates by naive cloning (addAll) requiring linear space.

In contrast to mutable data structures, instances of persistent data structure can
safely share common (immutable) DAG sub-structures. Incrementally constructing a
persistent data structure, is similar to versioning or snapshotting states of the data
structure over time. Driscoll et al. [Dri+86] characterize persistency as follows:

“Ordinary data structures are ephemeral in the sense that a change to the struc-
ture destroys the old version, leaving only the new version available for use. In
contrast, a persistent structure allows access to any version, [...] at any time.”

A persistent data structure therefore has many things in common with regular
immutable data structures: they allow for new versions while leaving the previous
versions untouched. However, the implementation strategies for persistent data
structures differ. Persistent data structures mostly express derivations of data struc-
tures as small deltas (i.e., new immutable segments) to their previous states. Thus,
only a small fraction of the data structure has to be copied, while structurally sharing
and linking back to the parts of the data that remain unmodified. Nowadays, since
Okasaki’s book on Purely Functional Data Structures [Oka99], the term persistency is
synonymously used for immutable data structures with structural sharing.

In practice, tree data structures in particular are suitable for expressing persistent
delta updates. However, the most basic persistent data structure is the cons-list, a
wide-spread data structure that was present in most LISP-like interpreters [McC60]
early on. In the following, we will first introduce a basic persistent cons-list, before
outlining the state-of-the-art of tree-based persistent data structures, relevant for
immutable collections.

Cons-List. The term cons-list originates form the LISP programming language
[McC60]. In most LISP dialects, cons is an essential function that constructs memory
cells holding ordered pairs of values, or references to values. Those cons-cells are
then used to construct more sophisticated data structures, such as single-linked lists,
or trees. Cons-cells are the foundation for derived persistent data structures.

12 CHAPTER 1. INTRODUCTION

1 abstract class ConsList<E> {

2

3 /* FIELD ACCESSORS */

4 public abstract E head();

5 public abstract ConsList<E> tail();

6

7 /* DATA TYPE PROPERTIES */

8 public abstract boolean isEmpty();

9 public abstract int size();

10

11 /* LIST CONSTRUCTION */

12 public static final <E> ConsList<E> empty() { return EMPTY_LIST; }

13 public ConsCell<E> cons(E item) { return new ConsCell<>(item, this); }

14

15 /* DATA TYPE IMPLEMENTATIONS */

16 private static final ConsList EMPTY_LIST = new ConsList() { /* omitted */ };

17 private static final class ConsCell<E> extends ConsList<E> { /* omitted */ }

18 }

Listing 1.11: Internal state representation of an immutable ConsList data type.

Listing 1.11 shows an object-oriented implementation of an immutable ConsList

data type in Java. The ConsList data type represents a sequence of ordered tuples
of the properties head and tail. The ConsList is an Algebraic Data Type (ADT), that
is a composite of two implementations: Lists are incrementally constructed by
prepending new ConsCell objects (cf. Listing 1.13) to the EMPTY_LIST constant (cf.
Listing 1.12), which is the terminator of list instances.

Listing 1.13 depicts the source code of the ConsCell implementation, that stores
the local properties head and tail in fields. Both field references are immutable by
using the keyword final. Most notably, the implementations of the methods size

and hashCode are recursive over the list, and end when encountering the EMPTY_LIST.

To recapitulate, a ConsList is a persistent data structure that consists of ConsCell

segments. New lists are constructed by prepending new ConsCell segments to an
existing list, without destroying the old list. Every segment within a list designates
a valid (shorter) previous version of the list. Such immutable single-linked lists are
still present nowadays in standard libraries of programming languages. E.g., on
the JVM, Clojure contains an immutable sequence data type, named seq,∗ and Scala
contains an immutable List† data type.

∗https://clojure.org/reference/sequences
†https://www.scala-lang.org/api/current/#scala.collection.immutable.List

https://clojure.org/reference/sequences
https://www.scala-lang.org/api/current/#scala.collection.immutable.List

1.4. PERSISTENT DATA STRUCTURES 13

1 private static final ConsList EMPTY_LIST = new ConsList() {

2

3 public Object head() { throw new UnsupportedOperationException(); }

4 public ConsList tail() { throw new UnsupportedOperationException(); }

5

6 public boolean isEmpty() { return true; }

7 public int size() { return 0; }

8

9 public int hashCode() { return 0; }

10 public boolean equals(Object that) { return this == that; }

11 };

Listing 1.12: Implementation of EmptyCell case of a ConsList.

Hash-Consing. The hash-consing [Got74] tactic is an optimization strategy that is
inseparably connected with persistent data structures. It entails that selected objects
that are equal are not present in memory more than once at a given point in time.

There are two main expected benefits of hash-consing: avoiding all redundancy
by eliminating clones in memory, and the ability to use constant time reference
comparisons instead of deep equals checks that are in O(size of object graph). This
is because hash-consing enforces the following invariant among selected objects:
∀ objects x, y : x.equals(y) ⇔ x == y, which allows any call to equals on shared
objects to be replaced with a reference comparison.

Essentially, the hash-consing strategy memoizes [McC60; Mic68; Nor91] the
equality relation between objects [Vaz+07]. For the EMPTY_LIST constant of Listing 1.12,
we manually enforced that there exists only a single empty list, and therefore it
makes use of reference equality (cf. Line 10) instead of invoking equals.

To extend the memoization of arbitrary ConsList instances (cf. Listing 1.14), a
global cache is used to administrate the current universe of live objects, against
which every new list is tested. The overhead introduced by hash-consing is the
administration of the cache, and additional calls to hashcode and equals methods
due to cache lookups. The expected benefits are the elimination of duplicate objects
and constant time references comparisons in contrast to deep recursive equals calls.

In practice, maximal sharing can effectively improve the performance of pro-
grams that operate on immutable and persistent data structures. In the context
of term rewriting engines van den Brand and Klint [vdBK07] observed memory
savings of at least 50 % and up to 98.50 %. The authors reported that the increased
term construction time was “more than compensated for by fast equality checking and
less use of space”. However, depending on the scenario, hash-consing could also
increase a program’s execution time and memory consumption in absence of enough
redundancy, due to the overhead of the global cache.

14 CHAPTER 1. INTRODUCTION

1 private static final class ConsCell<E> extends ConsList<E> {

2

3 private final E head;

4 private final ConsList<E> tail;

5

6 ConsCell(E head, ConsList<E> tail) { this.head = head; this.tail = tail; }

7

8 public E head() { return head; }

9

10 public ConsList<E> tail() { return tail; }

11

12 public boolean isEmpty() { return false; }

13

14 public int size() { return 1 + tail.size(); }

15

16 public int hashCode() { return Objects.hashCode(head) + 31 * tail.hashCode(); }

17

18 public boolean equals(Object other) {

19 if (other == this) { return true; }

20 if (other == null) { return false; }

21 if (getClass() != other.getClass()) { return false; }

22

23 ConsCell<?> that = (ConsCell<?>) other;

24 return Objects.equals(head, that.head) && Objects.equals(tail, that.tail);

25 }

26 }

Listing 1.13: Implementation of ConsCell case of a ConsList.

In general, hash-consing avoids the allocation of duplicate objects and makes
singleton instances available across otherwise independent parts of a program. To
guarantee safe sharing, and not to introduce unexpected side-effects, object-to-be
shared are required to be immutable or persistent.

Introducing hash-consing to a library requires cross-cutting and invasive changes
to the library’s code base. The following list sketches a minimal set of changes
necessary to introduce hash-consing, without considering optimizations:

• replacing object allocations by calls to factory methods with cache lookups;

• maintaining a set of live objects in a thread-safe/concurrent object pool;

• replacing calls to equals by ==, or implementing object identity inside equals;

• adding a new shallow equality comparator to objects that compares nested
sub-structures with == (because DAG sub-structures are already shared).

1.5. PLATFORM-SPECIFIC DATA LOCALITY CHALLENGES 15

Hash-consing is an essential optimization strategy to consider for immutable and
persistent data structures, therefore we raise the question if it possible to assess the
applicability of this strategy to existing data structure libraries:

Research Question: Hash-consing is an essential optimization strategy to con-
sider for persistent data structures, which involves cross-cutting and
invasive changes to a data structure library code base. How can we evalu-
ate a priori the performance impact of applying hash-consing to a data
structure library? Research Question (RQ-6). Addressed by Chapter 6.

Hash-Array Mapped Tries. The state-of-the-art data structure for persistent hash-
sets and hash-maps is the Hash-Array Mapped Trie (HAMT) [Bag01]. HAMTs are wide
and shallow search trees that encode the hash codes of the elements contained in
the data structure in a prefix tree.

The first persistent implementation of HAMTs can be attributed [BR11] to Rich
Hickey, the lead developer of the Clojure programming language. Collections
that are implemented as persistent HAMTs are contained in standard libraries of JVM

languages such as Clojure, Rascal, or Scala —that promote either functional or hybrid
object-oriented and functional programming paradigms— and other widely-used
programming languages such as Erlang, JavaScript, Haskell, and Ruby.

HAMTs are the de-facto standard for efficient persistent hash-set and hash-map
data types that support sequential and parallel processing. HAMTs also share a
common foundation with derived data structures for sequences [Stu+15; BR11] and
concurrent processing [Pro+12]. We analyze the current state-of-the-art of HAMT

implementations on the JVM, in order to improve the common core abstractions that
influence the performance of all of the former mentioned data structures.

Research Question: What are the strength and weaknesses of current state-of-
the-art persistent data structures that are based on HAMTs, i.e., hash-sets
and hash-maps? Research Question (RQ-2). Addressed by Chapter 3.

1.5 Platform-Specific Data Locality Challenges

Theoretical results from data structure research usually describe worst case, asymp-
totic and amortized complexities of operation runtimes and memory footprints
of data structures, but do usually not consider non-functional properties such as
throughput and response-time, expected memory footprint and expected run-time.
The former list of important quality factors are not considered by non-parametric,

16 CHAPTER 1. INTRODUCTION

1 private static final class ConsCell<E> extends ConsList<E> {

2

3 private final int hash;

4 private final E head;

5 private final ConsList<E> tail;

6

7 private ConsCell(E head, ConsList<E> tail) {

8 this.head = head; this.tail = tail;

9 this.hash = Objects.hashCode(head) + 31 * tail.hashCode();

10 }

11

12 private static final Map<ConsList, ConsList> CACHE = new

WeakShallowEqualsHashMap<>();

13

14 public final static <E> ConsList<E> of(E head, ConsList<E> tail) {

15 ConsList tmp = new ConsList(item, this);

16 ConsList cached = CACHE.get(tmp);

17

18 if (cached != null) {

19 return cached;

20 } else {

21 cache.put(tmp, tmp);

22 return tmp;

23 }

24 }

25

26 public E head() { return head; }

27

28 public ConsList<E> tail() { return tail; }

29

30 public boolean isEmpty() { return false; }

31

32 public int size() { return 1 + tail.size(); }

33

34 public int hashCode() { return hash; }

35

36 public boolean equals(Object other) { return this == other; }

37

38 public boolean shallowEquals(Object other) {

39 if (getClass() != other.getClass()) { return false; }

40

41 ConsCell<?> that = (ConsCell<?>) other;

42 return Objects.equals(head, that.head) && tail == that.tail;

43 }

44 }

Listing 1.14: An extended ConsCell that supports hash-consing.

1.5. PLATFORM-SPECIFIC DATA LOCALITY CHALLENGES 17

asymptotical algorithmic complexity and data-structure theory. As a consequence,
it remains difficult to estimate the expected performance of collections on a spe-
cific platform. Data structures in Java and the JVM are in particular challenging to
optimize, due to automatic memory management and garbage collection.

Optimizations for Tree Data Structures

HAMTs inherently feature data locality issues caused by their tree-based nature,
notably when compared to mutable array-based data structures such as dense
hashtables (which use consecutive arrays). The JVM disallows fine grained control
over an object graph’s memory layout. Instead the JVM hides details of memory
allocations and de-allocations by automatically managing memory at a runtime-level.
Therefore HAMTs present an optimization challenge on the JVM:

• The JVM currently does not allow custom memory layouts. A HAMT forms a
prefix tree that consists of linked nodes. Each HAMT node is an object that
could be arbitrarily positioned in memory, resulting in an increased number of
cache misses.

• Arrays are objects too on the JVM. HAMT nodes use arrays to compactly store
references to sub-trees. Hence, arrays introduce here yet another level of
memory indirections, reducing data locality within nodes.

In contrast, system programming languages, such as C/C++, allow compact custom
memory layouts that are tailored to the shape of the data, with possibly better data
locality than on the JVM. We are interested in optimizing the memory footprint of
HAMT data structures on the JVM.

Research Question: HAMT data structures inherently feature many memory
indirections due to their tree-based nature. How can we optimize the
memory footprint of such data structures on the JVM? Research Question
(RQ-3). Addressed by Chapters 4 and 5.

Optimizations for Composite Data Structures

Collection libraries contain a small set of versatile and often used data structures.
To avoid code duplication, standard libraries of languages such as Clojure, Java,
and Scala avoid specialized data structures, if possible. Instead those libraries try
to implement data structures by reusing and composing other collections. Two
examples illustrate that philosophy. First, Clojure contains a persistent hash-map
implementation, but Clojure’s hash-set data structure is implemented as a wrapper

18 CHAPTER 1. INTRODUCTION

1 GenericBox<Integer> boxedItem = new GenericBox<>(13);

2 int item = boxedItem.get(); /* no cast required, however, performance

3 degradations may occur due to automatic conversion of int to Integer */

Listing 1.15: Illustrating current limitations of primitive generics.

of a hash-map, mapping elements to boolean objects. Second, instead of a specialized
multi-map,∗ Clojure and Scala contain multi-maps that nest sets as the values of a
polymorphic map. While a specialized multi-map implementation would be more
memory efficient, a composition solution saves collection library maintainers from
duplicating an almost identical implementation. Note, that persistent data structure
implementations are highly detailed and error prone, reuse by composition is thus a
factor of quality control when data structures are written by hand.

In a setting where data structures are engineered by hand, reuse by composition
is a trade-off, giving away performance in favor of a smaller code base with better
maintainability and quality. We want to break the trade-off between reuse and
variability by using generative programming [McI68; Big98; CE00].

By generating collection data structures (cf. Section 1.2), we expect that it is
possible to generate specialized and more efficient data structures. Automation
facilitates repeatability and a high level of quality of the generated results.

For the case of multi-maps, we are interested to overcome the limitations of
composite implementations, improving drastically on the memory footprint without
loss of storage, lookup and iteration efficiency. Achieving this goal requires the
extension of traditional persistent data structures to accommodate for the abstrac-
tions of composite data structures. Furthermore, proper support on the level of data
structures is a precursor to generate efficient specialized multi-maps.

Research Question: How can HAMTs be utilized (or extended) to efficiently sup-
port the implementation of specialized composite data structures such as
multi-maps, avoiding the memory overhead of nesting existing collections
into each other? Research Question (RQ-4). Addressed by Chapter 5.

Optimizations based on Data Structure Content

In Section 1.1 we discussed the role of parametric polymorphism and generics in the
context of collection libraries. The current version of the Java programming language,
Java SE 8, restricts generics to reference types, i.e., sub-types of java.lang.Object.

∗A multi-map is a data structure which acts as an associative array storing possibly multiple values
with a specific key. Typically multi-maps are used to store graphs or many-to-many relations.

1.6. CONTRIBUTIONS 19

Listing 1.15, that uses the GenericBox data type of Listing 1.6, illustrates the potential
performance pitfalls when using generic data types with primitives. When substitut-
ing type parameters with a primitive type —such as byte, char, int or long— Java will
apply boxing,† an automatic conversion of a primitive type to an equivalent object
representation (Byte, Char, Integer or Long). Boxing of primitive values degrades
performance, causing more cache misses and increasing the memory footprint of the
program. Consequently, manual code specialization, as shown in Listing 1.5, is still
required when top performance is required for processing data of primitive types.

The differentiation between primitive types and reference types in the Java
programming language also affects the design of collections. Because of the above
mentioned shortcomings of collections, when used with primitive data types, third
party libraries were created that are specialized for primitive values, however at the
expense of not supporting the storage of reference types along primitives values.

Research Question: Can we bring the advantages in efficiency of primitive col-
lections to generic collections? E.g., how can we optimize data structures
for numeric or primitive data types? Or, how can we mix elements of
primitive types and reference types without boxing? Research Question
(RQ-5). Addressed by Chapter 5.

1.6 Contributions

The remainder of this section elaborates on the origins and contributions of the
forthcoming thesis chapters. Bibliography references are listed for all published arti-
cles. Furthermore, the list of research questions, and their mapping to forthcomings
thesis chapters, is aggregated in Table 1.1.

For all published papers, the author of this thesis was also the primary author of
the paper, the researcher who designed and executed the research method, and the
programmer who build the contributing software.

Chapter 2. Towards a Software Product Line of Trie-Based Collections.

Michael J. Steindorfer and Jurgen J. Vinju. 2016. Towards a Software Product
Line of Trie-Based Collections. In Proceedings of the 2016 International Con-
ference on Generative Programming: Concepts and Experiences (GPCE 2016).
ACM, New York, NY, USA. URL http://dx.doi.org/10.1145/2993236.2993251

Chapter 2 discusses a product line for collection data structures that would relieve
library designers from optimizing for the general case, and allows evolving the

†http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.7

http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.7

20 CHAPTER 1. INTRODUCTION

Table 1.1: Summary of research questions and their mapping to chapters.

RQ-1 What are the commonalities and differences between different data structures in the
domain of collection libraries? Can we generalize over the sub-domain of immutable
collections by modeling variability and documenting implementation choices? Ad-
dressed by Chapter 2.

RQ-2 What are the strength and weaknesses of current state-of-the-art persistent data struc-
tures that are based on HAMTs, i.e., hash-sets and hash-maps? Addressed by Chapter 3.

RQ-3 HAMT data structures inherently feature many memory indirections due to their tree-
based nature. How can we optimize the memory footprint of such data structures on
the JVM? Addressed by Chapters 4 and 5.

RQ-4 How can HAMTs be utilized (or extended) to efficiently support the implementation
of specialized composite data structures such as multi-maps, avoiding the memory
overhead of nesting existing collections into each other? Addressed by Chapter 5.

RQ-5 Can we bring the advantages in efficiency of primitive collections to generic collec-
tions? E.g., how can we optimize data structures for numeric or primitive data types?
Or, how can we mix elements of primitive types and reference types without boxing?
Addressed by Chapter 5.

RQ-6 Hash-consing is an essential optimization strategy to consider for persistent data struc-
tures, which involves cross-cutting and invasive changes to a data structure library
code base. How can we evaluate a priori the performance impact of applying hash-
consing to a data structure library? Addressed by Chapter 6.

potentially large code base of a collection family efficiently. We present a small core
of intermediate abstractions for immutable collection data structures that concisely
covers a wide range of variations that feature class-leading performance.

Chapter 3. The CHAMP Encoding.

Michael J. Steindorfer and Jurgen J. Vinju. 2015. Optimizing Hash-array
Mapped Tries for Fast and Lean Immutable JVM Collections. In Proceedings
of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2015). ACM,
New York, NY, USA. URL http://dx.doi.org/10.1145/2814270.2814312

The paper is accompanied by a source code and benchmarking artifact∗

that passed the peer-reviewed OOPSLA 2015 Artifact Evaluation.

Our results were picked up and independently replicated by industry.†

∗http://michael.steindorfer.name/publications/oopsla15-artifact
†https://bendyworks.com/leveling-clojures-hash-maps/

http://michael.steindorfer.name/publications/oopsla15-artifact
https://bendyworks.com/leveling-clojures-hash-maps/

1.6. CONTRIBUTIONS 21

The standard libraries of recent Java Virtual Machine languages, such as Clojure or
Scala, contain scalable and well-performing immutable collection data structures that
are implemented as HAMTs. In Chapter 3, we propose the Compressed Hash-Array
Mapped Prefix-tree (CHAMP) encoding, that improves the overall performance of
immutable sets and maps. The resulting general purpose design increases cache
locality and features a canonical representation. It outperforms Scala’s and Clojure’s
data structure implementations in terms of memory footprint and runtime efficiency
of iteration (1.3–6.7 x) and equality checking (3–25.4 x).

Chapter 4. Specialization for Memory Efficiency.

Michael J. Steindorfer and Jurgen J. Vinju. 2014. Code Specialization for
Memory Efficient Hash Tries (Short Paper). In Proceedings of the 2014 Inter-
national Conference on Generative Programming: Concepts and Experiences
(GPCE 2014). ACM, New York, NY, USA. URL http://dx.doi.org/10.1145/
2658761.2658763

In Chapter 4, we apply generative programming techniques to specialize HAMT

nodes. We discuss how to reduce the number of specializations from a large
exponential number to a small subset while still maximizing memory savings. With
this techniques we achieved a median decrease of 55 % in memory footprint for
maps and 78 % for sets compared to a non-specialized version, but at the cost of
20–40 % runtime overhead of the lookup operation.

Chapter 5. A Flexible Encoding for Heterogeneous Data was submitted to the
2016 edition of the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). A pre-print of the article is available:

Michael J. Steindorfer and Jurgen J. Vinju. 2016. Fast and Lean Immutable
Multi-Maps on the JVM based on Heterogeneous Hash-Array Mapped Tries.
arXiv:1608.01036. URL https://arxiv.org/abs/1608.01036

In Chapter 5, we propose a general framework for Hash-Array Mapped Tries on
the JVM which can store type-heterogeneous keys and values: a Heterogeneous
Hash-Array Mapped Trie (HHAMT). Among other applications, this allows for a
highly efficient multi-map encoding by (a) not reserving space for empty value sets
and (b) inlining the values of singleton sets while maintaining a (c) type-safe API. We
detail the necessary encoding and optimizations to mitigate the overhead of storing
and retrieving heterogeneous data in a hash-trie. The new encoding brings the per
key-value storage overhead down by a 2 x improvement. With additional inlining of
primitive values it reaches a 4 x improvement.

22 CHAPTER 1. INTRODUCTION

Chapter 6. Performance Modeling of Maximal Sharing.

Michael J. Steindorfer and Jurgen J. Vinju. 2016. Performance Modeling of
Maximal Sharing. In Proceedings of the 7th ACM/SPEC on International
Conference on Performance Engineering (ICPE ’16). ACM, New York, NY,
USA. URL http://dx.doi.org/10.1145/2851553.2851566

The paper was awarded with the Best Paper Award of the Industry and
Experience track.

Chapter 6 discusses an a priori performance modeling technique for advanced
cross-cutting optimization strategies that depend on immutable data structures. We
specifically model the potential performance implications of introducing “maximal
sharing” (a.k.a. “hash-consing”) to a library that does not implement maximal
sharing yet. Maximal sharing may have great benefit in terms of time and space,
or may have detrimental overhead, depending on the redundancy of data and
the use of equality. With comparatively low effort we can predict the impact of
maximal sharing on existing code upfront, and uncover optimization opportunities
that otherwise would remain hidden.

1.7 Software Artifacts

In the scope of this thesis, several open-source software projects were created that
are licensed under the “Simplified” BSD 2-Clause License,∗ facilitating the transfer
of our research results within the scientific and open-source community, and the
transfer of our results to industry.

Our projects either directly contain data structure implementations (Capsule),
facilitate cross-language and cross-library benchmarking (Criterion), or support the
generation and specialization of efficient immutable data structures (DSCG).

Capsule: The Hash Trie Collections Library.† Capsule is a collections library for
the JVM and written in Java that contains implementations of our research results
on persistent trie-based unordered data structures. In contrast to other persistent
collection libraries on the JVM —that are either forks or ports of Clojure’s and Scala’s
data structures— Capsule is engineered from ground up for Java. Furthermore,
Capsule powers the built-in data structures of the Rascal programming language in
production since 2014.

∗https://opensource.org/licenses/BSD-2-Clause
†https://michael.steindorfer.name/projects/capsule

https://opensource.org/licenses/BSD-2-Clause
https://michael.steindorfer.name/projects/capsule

1.8. FURTHER READING 23

Criterion: The Benchmarking Suite for Immutable Collections across the JVM.‡

Criterion is a benchmarking library that facilitates cross-language comparisons of
persistent data structures, supporting Scala’s immutable collections, Clojure’s built-
in data structures, and several collections libraries in the Java ecosystem. To our
knowledge, Criterion is the first elaborate benchmarking attempt to benchmark
immutable collection data structures across different library and language barriers.

DSCG: A Domain Specific / Data Structure Code Generator for Collections.§

The Data Structure Code Generator (DSCG) is an ongoing effort to encapsulate
the commonalities and differences in abstractions and features of trie-based col-
lections. It aims to simplify the co-evolution of a product family of efficient data
structures by applying generative programming techniques.

1.8 Further Reading

This concludes the summary of objectives and contributions of our research. Readers
that are interested in contributions per field or subject, in particular, can find
recommendations below:

Data Structure Design: Our contributions are language independent for the most
part (and therefore portable), but also detail optimizations specific to the JVM.

Chapter 3 describes the CHAMP encoding, a successor to the state-of-the-art
approach of HAMTs. We detail design choices and differences to Clojure’s and
Scala’s immutable collections.

Chapter 5 details HHAMT that is a generalization of CHAMP for storing type-he-
terogeneous payloads. Amongst other applications, HHAMT by design unifies
the long-standing divide between generic collections and primitive specialized
collections. This topic might be of interested to Virtual Machine and core
library engineers.

Code Generation: Chapter 2 describes our overall approach to use generative pro-
gramming techniques for obtaining efficient trie-based collections, and dis-
cusses core intermediate abstractions.

Furthermore, Chapter 4 and Section 5.3 cover generative memory layout
optimizations for trie-based data structures. The former details a pragmatic
approach on a library level, the latter discusses a more sophisticated approach
that works best with Virtual Machine (VM) support.

‡https://michael.steindorfer.name/projects/criterion
§https://michael.steindorfer.name/projects/dscg

https://michael.steindorfer.name/projects/criterion
https://michael.steindorfer.name/projects/dscg

24 CHAPTER 1. INTRODUCTION

Applications and Performance Modeling: Chapter 6 zooms out and focuses on
library and application level optimizations that are applicable to immutable
data structures. The chapter discusses profiling and performance modeling
techniques to a priori investigate optimization opportunities.

Readers that are generally interested to learn more about immutable collections,
advanced optimizations, and applications are suggested to progress in linear order.

Chapter 2

Towards a Software Product Line of
Trie-Based Collections

Collection data structures in standard libraries of programming languages are
designed to excel for the average case by carefully balancing memory footprint
and runtime performance. These implicit design decisions and hard-coded trade-
offs do constrain users from using an optimal variant for a given problem.
Although a wide range of specialized collections is available for the Java Virtual
Machine (JVM), they introduce yet another dependency and complicate user
adoption by requiring specific Application Program Interfaces (APIs) incompatible
with the standard library.

A product line for collection data structures would relieve library designers from
optimizing for the general case. Furthermore, a product line allows evolving
the potentially large code base of a collection family efficiently. The challenge
is to find a small core framework for collection data structures which covers all
variations without exhaustively listing them, while supporting good performance
at the same time.

We claim that the concept of Array Mapped Tries (AMTs) embodies a high degree
of commonality in the sub-domain of immutable collection data structures.
AMTs are flexible enough to cover most of the variability, while minimizing
code bloat in the generator and the generated code. We implemented a Data
Structure Code Generator (DSCG) that emits immutable collections based on an
AMT skeleton foundation. The generated data structures outperform competitive
hand-optimized implementations, and the generator still allows for customization
towards specific workloads.

This chapter is based on the following published article: Michael J. Steindorfer and Jurgen J. Vinju. 2016.
Towards a Software Product Line of Trie-Based Collections. In Proceedings of the 2016 International
Conference on Generative Programming: Concepts and Experiences (GPCE 2016). ACM, New York, NY,
USA. URL http://dx.doi.org/10.1145/2993236.2993251.

25

26 CHAPTER 2. TOWARDS A SPL OF TRIE-BASED COLLECTIONS

2.1 Introduction

Collection data structures that are contained in standard libraries of programming
languages are popular amongst programmers. Almost all programs make use
of collections. Therefore optimizing collections implies automatically increasing
the performance of many programs. Optimizations within collection libraries are
orthogonal to compiler and runtime improvements, because they usually focus on
improving data structure encodings and algorithms.

Immutable collections represent key data structures in hybrid functional and
object-oriented programming languages, such as Scala∗ and Clojure†. Immutability
allows optimizations that exploit the fact that data does not change [Hel15; SV16b],
allows safe sharing of data in concurrent environments, and makes equational
reasoning possible in object-oriented programming environments.

Collection data structures that are contained in standard libraries are mostly
one-off solutions, aiming for reasonable performance for the general use case. Design
decisions and trade-offs are preselected by the library engineer and turn collection
data structures into hard-coded assets. This is problematic, since statically encoding
data structure design decisions and trade-offs brings disadvantages for the library
users and the library engineers. While the former do not have easy access to
optimized problem-specific data structures, the latter cannot extend and evolve
potentially large code bases of collection libraries efficiently.

A Large Domain with Variability. The various dimensions of collection libraries
in languages such as Java or Scala become apparent when looking at their package
structures. They provide many data structure variations that duplicate code and are
split by several of the following dimensions:

Split by data type semantics: Interfaces and implementations for lists, sets, bags,
maps, multi-maps, etcetera.

Split by ordering: Data structures can be ordered by data type semantics or tem-
poral properties such as insertion order. Otherwise, data structures can be
unordered by nature (e.g., sets) or unordered due to hashing of the keys.

Split by update semantics: Data structures can allow mutation of their content
over time, or remain immutable after initialization. Transient data structures
represent the middle ground by allowing efficient initialization and batch
updates on otherwise immutable data structures.

∗https://scala-lang.org
†https://clojure.org

https://scala-lang.org
https://clojure.org

2.2. RELATED WORK 27

Split by processing semantics: Data structures are often divided into categories by
their supported processing semantics. They can either support basic sequen-
tial processing, parallel processing (e.g., by splitting and merging data), or
concurrent processing.

Split by encoding: Different encodings yield different performance characteristics.
For example, a list data type allows implementations as an array, or as entries
that are linked through references.

Split by content: Most collection data structures are designed to be type-safe by
restricting elements to a single homogeneous generic type. Storing mixed
content of various types is often only possible untyped.

Given the above (incomplete) indication of variability, collection libraries seem like
an ideal case for generative programming in the traditional sense [McI68; Big98;
CE00]. We expect to factor out commonalities for ease-of-maintenance, improve
efficiency, and make variants available as context-specific solutions. Because of the
large amount of variability, the challenge is to find a minimal core that is expressive
enough to cover the domain while at the same time offer good performance. We
claim that by fixing the dimension of update semantics to immutable (and transient),
we can provide a minimal core, on basis of an Array Mapped Trie (AMT) skeleton,
which is able to satisfy our performance requirements.

Without loss of generality, AMTs do allow the generation of mutable collections.
However, early experiments showed that these generally exhibit weaker performance
characteristics than competing array-based data structures. We limit our motivation
and claims in this chapter to immutable data.

Contributions. We contribute a domain analysis that covers variability in collection
data structures, and the application of AMT skeletons in our domain specific code
generator, factoring out commonalities while enabling performance.

2.2 Related Work

Software Product Lines and Dynamic Adaptation. We take a static Software Prod-
uct Line (SPL) [CN01] perspective on collections to enable software reuse. Features
of collections and variability are typically known at design time. Dynamic Software
Product Lines [Hal+08] and Run-Time Adaptation [Alv+09] cover variability at
program runtime. AMTs are amenable to run-time variability as well; which we
consider future work.

28 CHAPTER 2. TOWARDS A SPL OF TRIE-BASED COLLECTIONS

Data Structure Selection at Run-Time. SETL pioneered automatic data structure
selection [SSS79]. On the Java Virtual Machine (JVM), Shacham et al. [SVY09] intro-
duced Chameleon, a dynamic analysis tool that lets programmers choose the most
efficient implementation for a given collection Application Program Interface (API).
Regardless of data structure selection, neither SETL nor Chameleon is concerned
with our goal of encoding commonalities of a product family of data types.

Generating Complex Collection Data Structures. Declaratively synthesizing com-
plex collection data structures by component composition goes back to DiSTiL [SB97].

Hawkins et al. worked on declarative and provable specifications and synthesis
of data structures with complex sharing, both for the sequential [Haw+11] and
concurrent [Haw+12] case.

Loncaric et al. [LTE16] extend the work of Hawkins et al. by adding support for
order among elements and complex retrieval operations. They generate intrusive
data structures that avoid a layer of indirection by storing auxiliary pointers in
domain elements directly, trading flexibility of generic collections for a potential
increase in performance. In contrast, our approach natively supports sharing of
sub-structures and focuses on non-intrusive collections, however we do not integrate
formal methods for making correctness claims.

All previously discussed papers have one approach in common: they synthesize
complex data structures by composing basic collection data structures (e.g., array-list,
linked-list, hash-map, etcetera). None of these results tackle the generation of basic
collection APIs like the current chapter does.

Specializing for Primitive Data Types. Ureche et al. [UTO13] added automatic
specializations for primitive JVM data types to the Scala compiler. Combinatorial
code-bloat is tackled by specializing for the largest primitive type long and by
automatically coercing smaller-sized primitives.

State of the Art of Trie Data Structures. Trie data structures were invented in 1959

by Briandais [dlBri59] and named a year later by Fredkin [Fre60]. An AMT [Bir77;
Bag00] is a trie variant where lookup time is independent from the number of keys
stored in the trie. AMTs eliminate empty array slots of nodes by using one bit in a
bitmap for each valid outgoing trie branch.

Functional Unordered Collections based on AMTs. A Hash-Array Mapped Trie
(HAMT) [Bag01] is a space-efficient trie that encodes the hash code prefixes of ele-
ments. HAMTs constitute the basis for purely functional collections that are incre-
mentally constructed and may refer to the unaltered parts of previous states [Dri+86;
Oka99]. In previous work we introduced the Compressed Hash-Array Mapped

2.3. A STABLE DATA TYPE INDEPENDENT ENCODING 29

Prefix-tree (CHAMP) [SV15], a cache-oblivious and canonical HAMT variant that im-
proves the runtime efficiency of iteration (1.3–6.7 x) and equality checking (3–25.4 x)
over its predecessor, while at the same time reducing memory footprints.

Functional Lists and Vectors Inspired by HAMTs. Immutable vectors are primarily
based on principles of AMTs, because they resulting prefix trees cover densely
filled lists. Bagwell and Rompf [BR11] published a technical report about efficient
immutable vectors that improved runtimes of split and merge operations to a
logarithmic bound. Stucki et al. [Stu+15] improved upon the latter and added a
broad scale evaluation.

Concurrent HAMTs. Prokopec et al. [Pro+12] worked on mutable concurrent HAMTs

that feature iterators with snapshot semantics, which preserve enumeration of all
elements that were present when the iterator was created.

2.3 A Stable Data Type Independent Encoding

Efficient collection data structures on the JVM are typically coded as array-based
hashtables. The array core complicates separating commonality from variability to
construct a product family. In particular, arrays imply that either all elements are
primitives or they are all references. For primitive collections, the absence of a value
requires additional encoding (sentinels or bitmaps) to represent null. AMT-based
collections on the other hand do allow fine-grained memory layout choices (per
internal node) and are therefore more amenable for encoding a product family of
collection data structures. While the API operations and details may differ between
variants, we explain how to use the AMT as a fundamental skeleton to support many
kinds of efficient immutable collections.

The remainder of this section describes the core concepts of trie-based collections
in Feature Description Language (FDL) notation [vDK02]. The full model has been
archived [Ste16] and details the variability in the domain of collections, making
commonalities and differences of configurations, constraints among them, explicit.

A trie (cf. Listing 2.1) is an ordered tree data structure. It is like a Deterministic
Finite Automaton (DFA) without any loops, where the transitions are steps of a
search path, the internal nodes encode prefix sharing, and the accept nodes hold
the stored values. Like with a DFA, a single path represents a single data value by
concatenating the labels of the edges. An example would be a vector data structure
where the index is stored in the path. When we store hashOfData however, like in
unordered map collections, we store a copy at the accept nodes to cater for possible
hash collisions. The features ChunkUnit, ChunkLength and EncodingDirection determine

30 CHAPTER 2. TOWARDS A SPL OF TRIE-BASED COLLECTIONS

1 features trie

2 EncodingType : one-of(data, hashOfData)

3 EncodingLength : one-of(bounded, unbounded)

4 EncodingDirection : one-of(prefix, postfix)

5 ChunkUnit : one-of(bit, char)

6 ChunkLength : int

7 DataDensity : one-of(sparse, dense)

8 Content : one-of(mixedNodes, dataAsLeafs)

Listing 2.1: Extract of a feature model describing trie data structure encodings.

the granularity of information encoded by the edges. Encoding direction prefix

starts at the least-significant bit, whereas postfix starts at the most significant bit.
The trie model describes the common core characteristics of trie-based collections:

each flavor encodes prefixes of either bounded length (e.g., integers) or unbounded
length (e.g., strings) with a particular stepping size. Based on any particular trie

configuration, a code generator can derive the storage and lookup implementation
using different (bit-level) operations to split values across the respective paths.

The above describes how the keys of a collection are stored in an ordered or
unordered collection, but we also cater for more general collections such as maps
and relations. To do this we store Payload tuples (specification elided) at the accept
nodes with variable arity and content. To achieve the required top-level API, a code
generator will wrap the internal trie nodes using different visitors to collect the
stored data in the required form (e.g., java.util.Map.Entry).

The following partial configurations characterize AMTs. First, an AMT-based vector
maps from a prefix-encoded index to an element (index 7→ element). The prefix code
direction ensures space efficiency for dense vectors, because vector indices usually
occupy the least-significant bits:

config amt-vector requires EncodingType::data, EncodingDirection::prefix,

DataDensity::dense

Second, a configuration for an unordered hashed collection looks slightly different:

config hamt-unordered requires EncodingType::hashOfData, EncodingLength::bounded,

DataDensity::sparse

Efficient immutable hash data structures are typically implemented as HAMTs, map-
ping from hash(key) 7→ key/value, in case of a hash-map. In Java, default hash codes
are bound in size (32 bit) and assumed to have an almost uniform distribution, so the
EncodingDirection is not constrained. The size of a hashed collection is usually sparse,
compared to the 232 space of possible hash codes. The previous two listings describe
viable default configurations for vectors and hash-maps of collection libraries. Yet,

2.4. INTERMEDIATE GENERATOR ABSTRACTIONS 31

1 list[Partition] champ_partition_configuration(int bound) = [

2 slice("payload", tuple(generic("K"), generic("V")), range(0, bound), forward()),

3 slice("node", specific("Node"), range(0, bound), backward())];

Listing 2.2: ADT term for the partitioning of a set of family members called CHAMP,
parametrized by a size bound (i.e. 32).

1 list[PartitionCopy] transform(Partition p, Manipulation m:copyAndInsert()) {

2 list[PartitionCopy] operations = [

3 rangeCopy (p, m.beginExpr, m.indexExpr, indexIdentity, indexIdentity),

4 injection (p, m.indexExpr, valueList = m.valueList),

5 rangeCopy (p, m.indexExpr, p.lengthExpr, indexIdentity, indexPlus1)];

6

7 return p.direction == forward() ? operations : reverse(operations);

8 }

Listing 2.3: Linearization and transformation from domain specific copyAndInsert

primitive to intermediate abstraction.

a feature model allows for customization towards specific workloads (e.g., sparse
vectors). For efficiency trade-offs it is important to distinguish between HAMTs that
store dataAsLeafs and HAMTs that allow for mixedNodes internally [SV15].

We currently generate unordered set, map, and multi-map data structures based
on the state-of-the-art HAMT variants: HAMT [Bag01], CHAMP [SV15], and HHAMT

[SV16a]. The latter is a generalization of the former two and supports multiple het-
erogeneous payload categories simultaneously. A subset of the generated collections
is distributed with the capsule library.∗ In future work we plan supporting vectors
and concurrency.

2.4 Intermediate Generator Abstractions

We use a form of these feature models to configure the Data Structure Code Gen-
erator (DSCG) that actually implements each variant.∗ The DSCG is implemented
in Rascal, a Domain-Specific Language (DSL) designed for analyzing, processing,
transforming and generating source code [KvdSV09]. We represent variants in trie
implementation details using abstract tree grammars with Rascal’s data declarations.
In the following section we detail the core intermediate abstractions, necessary to
efficiently implement each configuration.

∗https://michael.steindorfer.name/projects/capsule/
∗https://michael.steindorfer.name/projects/dscg/

https://michael.steindorfer.name/projects/capsule/
https://michael.steindorfer.name/projects/dscg/

32 CHAPTER 2. TOWARDS A SPL OF TRIE-BASED COLLECTIONS

Modeling Trie Node Data Layouts and Transformations. The skeleton design is
that the out edges of the trie nodes are stored in a array, at least conceptually.
Depending on the feature configuration, order, sequence, and types of the elements
in the array may differ. For example, these arrays can mix payload and sub-nodes in
arbitrary order, or group elements per content category together [SV15]. We model
this variability in array content as follows:

data Partition

= slice (Id, Type, Range, Direction)

| stripe(Id, Type, Range, Direction, list[Partition]);

A partition describes a typed sequence of elements that is limited to a size Range

(lower and upper bounds). A slice is the atomic unit, whereas a stripe joins two or
more adjacent slices together. The two Direction values, forward or backward, allow
advanced slice configurations that —similar to heap and stack— grow from separate
fixed bases, to omit the necessity of dynamic partition boundary calculations [SV15].

Listing 2.2 shows the partition configuration of a hash-map encoded in CHAMP

[SV15]. CHAMP splits a node’s content into two homogeneously typed groups —
payload and sub-nodes— that are indexed from different directions. Each partition
is delimited in growth (bound). Furthermore, a domain specific invariant guarantees
space sharing: the sum of sizes of all partitions together must not exceed the bound.

DSCG reduces the partition layout to a minimal set of physical arrays, e.g., by
grouping adjacent slices of reference types together into a single untyped stripe. To
reduce memory footprints further, DSCG supports specialization approaches that are
specific to AMTs [SV14; SV16a].

Synthesizing Linearized Update Operations. DSCG supports twelve primitives for
manipulating logical partitions of AMT-based data structures. These primitives cover
(lazy) expansion of prefix structures, insert/update/delete on partitions, migration
of data between partitions and canonicalization on insert and delete. However, the
cost of manipulating data on top of logical partitions increases with added data
categories, and furthermore different encoding directions break linearity of copying
operations as shown for copyAndInsert in Listing 2.4.

By transforming update operations such that they operate on a linearized view
of the underlying physical array instead on logical partitions, we can further reduce
the number of back-end generator primitives to two —rangeCopy that supports index
shifts, and injection of payload— as shown in Listing 2.3. A linearized view turns
copy operations into stream processing operations, where the source and destination
arrays are traversed with monotonous growing indices front to back. Adjacent
rangeCopy operations can be fused together to increase efficiency (cf. Listing 2.5).

2.5. CONCLUSION 33

1 for (int i = 0; i < index; i++)

2 dst.setPayload(i, src.getPayload(i));

3

4 dst.setPayload(index, new Tuple(key, val));

5

6 for (int i = index; i < src.payloadLength(); i++)

7 dst.setPayload(i + 1, src.getPayload(i));

8

9 for (int i = src.nodeLength(); i >= 0; i--)

10 dst.setNode(i, src.getNode(i));

Listing 2.4: Generated (naive) Java code for copyAndInsert that is derived from a
logical partition layout.

1 offset += rangeCopy (src, dst, offset, index);

2 delta += injection (dst, offset, key, val);

3 offset += rangeCopy (src, offset, dst, offset + delta, length - index);

Listing 2.5: Generated (optimized) Java code for copyAndInsert that is derived after
linearization of the partition layout and fusion of rangeCopy operations.

2.5 Conclusion

The Array Mapped Tries skeleton is a common framework for generating fast
immutable collection data structures. Our feature model covers both variants that
occur in the wild, and supports novel heterogeneous variants [SV16a]. The generated
code is efficient, overall outperforming competitive state-of-the-art collections [SV15;
SV16a], and —when specialized for primitive data types— they match the memory
footprints of best-of-breed primitive collections [SV16a].

Based on this evidence of the efficacy of the feature model and the intermediate
abstractions for DSCG, we will extend it further to generate a complete Software
Product Line of trie-based immutable collections.

Chapter 3

The CHAMP Encoding
The data structures under-pinning collection API (e.g. lists, sets, maps) in
the standard libraries of programming languages are used intensively in many
applications.

The standard libraries of recent Java Virtual Machine languages, such as Clo-
jure or Scala, contain scalable and well-performing immutable collection data
structures that are implemented as Hash-Array Mapped Tries (HAMTs). HAMTs

already feature efficient lookup, insert, and delete operations, however due to
their tree-based nature their memory footprints and the runtime performance
of iteration and equality checking lag behind array-based counterparts. This
particularly prohibits their application in programs processing larger data sets.

In this chapter, we propose changes to the HAMT data structure that increase
the overall performance of immutable sets and maps. The resulting general
purpose design increases cache locality and features a canonical representation.
It outperforms Scala’s and Clojure’s data structure implementations in terms
of memory footprint and runtime efficiency of iteration (1.3–6.7 x) and equality
checking (3–25.4 x).

This chapter is based on the following published article: Michael J. Steindorfer and Jurgen J. Vinju.
2015. Optimizing Hash-array Mapped Tries for Fast and Lean Immutable JVM Collections. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2015). ACM, New York, NY, USA. URL
http://dx.doi.org/10.1145/2814270.2814312.

35

36 CHAPTER 3. THE CHAMP ENCODING

3.1 Introduction

In this chapter we reduce memory overhead and runtime performance overhead
from the implementations of immutable collections on the Java Virtual Machine
(JVM). Collections under-pin many (if not most) applications in general purpose
programming languages as well as domain specific languages that are compiled to
the JVM. Optimizing collections implies optimizing many applications.

Immutable collections are a specific area most relevant to functional/object-
oriented programming such as practiced by Scala∗ and Clojure† programmers. With
the advance of functional language constructs in Java 8 and functional APIs such as
the stream processing API [Bib+15], immutable collections become more relevant
to Java as well. Immutability for collections has a number of benefits: it implies
referential transparency without giving up on sharing data [IV02]; it satisfies safety
requirements for having co-variant sub-types [IV02]; it allows to safely share data in
presence of concurrency.

The prime candidate data structure for efficient immutable collections is the
Hash-Array Mapped Trie (HAMT) by Bagwell [Bag01]. This data structure design
was already ported from C++ to the JVM platform and is used especially in the
Scala and Clojure communities. However, these ports do not perform optimally,
because the performance characteristics of the JVM are substantially different from
the performance characteristics of C/C++ runtimes. The unique properties of the JVM

have not sufficiently been exploited yet. The following properties hinder efficiency
of data structures that are ported directly from C/C++ to the JVM:

• The JVM currently does not allow custom memory layouts. A HAMT forms
a prefix tree and therefore consists of linked nodes. Each HAMT node is
represented as an object that is arbitrarily positioned in memory, resulting in
an increased number of cache misses.

• Arrays are objects too. HAMT nodes use arrays to compactly store references to
sub-trees. Hence, arrays add here yet another level of memory indirections.

In contrast, C/C++ allows custom memory layouts that are tailored to the shape of
the data, without the need of memory indirections. With possibly better data locality
than on the JVM, C/C++ runtimes directly place the content of statically sized arrays
into an object’s or struct’s memory region.

Fine-tuning data structures for cache locality usually improves their runtime
performance [LFN02]. However, HAMTs inherently feature many memory indirec-
tions due to their tree-based nature, notably when compared to array-based data
structures such as hashtables. Hence HAMTs are challenging to optimize on the JVM.

∗http://scala-lang.org
†http://clojure.org

http://scala-lang.org
http://clojure.org

3.1. INTRODUCTION 37

Our goal is to optimize HAMT-based data structures such that they become a
strong competitor of their optimized array-based counterparts in terms of speed and
memory footprints. Our contributions can be summarized as follows:

• We introduce a new generic HAMT encoding, named Compressed Hash-Array
Mapped Prefix-tree (CHAMP). CHAMP maintains the lookup, insertion, and
deletion runtime performance of a HAMT, while reducing memory footprints
and significantly improving iteration and equality checks.

• In relation to CHAMP, we discuss the design and engineering trade-offs of two
wide-spread HAMT implementations on the JVM that are part of Clojure’s and
Scala’s standard libraries.

• We evaluate the memory footprints and runtime performance of CHAMP, com-
pared to immutable sets and maps from the aforementioned two libraries.

Speedups of CHAMP range between 9.9 x and 28.1 x, for an example program analysis
algorithm that uses classical set and relational calculus in a fixed-point loop. In
micro-benchmarks, CHAMP reduces the memory footprint of maps by 64 %, and of
sets by 52 % compared to Scala. Compared to Clojure, CHAMP reduces the memory
footprint by 15 % for maps, and of 31 % for sets. Compared to both, iteration speeds
up 1.3–6.7 x, and equality checking improves 3–25.4 x. All speedups are medians.

Roadmap. The remainder of this chapter is structured as follows:

• Section 3.2 discusses background and optimization opportunities for HAMTs.

• Section 3.3 describes the foundations of CHAMP: the differently ordered data
layout of the tree nodes, and compression via an additional bitmap.

• Section 3.4 introduces an efficient algorithm to canonicalize HAMTs upon
deletion, and details how to use this to improve equality checking.

• Section 3.5 discusses design and implementation trade-offs that are related to
our core contributions and necessary to discuss the evaluation results.

• Section 3.6 compares CHAMP against Clojure’s and Scala’s data structures in
terms of memory footprint and runtime efficiency with microbenchmarks.

• Section 3.7 extends the former benchmarks to a realistic use-case and workload.

• Section 3.8 discusses threats to validity and implementation differences.

• Section 3.9 addresses related work, before we conclude in Section 3.10.

All source code discussed, of data structures and benchmarks, is available online.‡

‡http://michael.steindorfer.name/papers/oopsla15-artifact

http://michael.steindorfer.name/papers/oopsla15-artifact

38 CHAPTER 3. THE CHAMP ENCODING

A
0

B
2

(a) A and B

A
0 2

0

B
0

C
4

(b) C

A
0 2

0

D
1

B
0

C
4

(c) D

hash(A) = 3210 = 0 1 0 . . .32

hash(B) = 210 = 2 0 0 . . .32

hash(C) = 409810 = 2 0 4 . . .32

hash(D) = 3410 = 2 1 0 . . .32

(d) hash codes in base 32

Figure 3.1: Inserting three integers into a HAMT-based set (3.1(a), 3.1(b), and 3.1(c)),
on basis of their hashes (3.1(d)).

3.2 Background

Although sets and maps need no motivation, immutable collections are not as
commonplace in the object-oriented domain yet. We enumerate several applications
here to convince the reader of the interest in optimizing them.

A number of (semi-)formal mechanisms for analyzing sets and relations, based
on Codd’s relational calculus or Tarski’s relational algebra have or can have im-
mutable collections under-the-hood. Example Java-based systems in this category
are JRelCal [Rad08], JGraLab [Ebe+07] and Rascal [KvdSV09]. Implementations
of logic programming formalisms like, Datalog [HVdM06], can also benefit from
optimizations of these data-structures [Ram+95]. Both categories of formalisms are
used actively in static analysis of object-oriented programs. Another application
domain is the representation of graphs and models in model-driven engineering.

Making immutable collections efficiently available in object-oriented languages
transfers the benefits of the aforementioned formal languages to mainstream pro-
gramming: immutability enables equational reasoning.

HAMTs Compared to Array-based Hashtables

A general trie [dlBri59; Fre60] is a lookup structure for finite strings that acts like
a Deterministic Finite Automaton (DFA) without any loops: the transitions are the
characters of the strings, the internal nodes encode prefix sharing, and the accept
nodes may point to values associated with the strings. In a HAMT, the strings are the
bits of the hash codes of the elements stored in the trie. Depending on the branching
factor we may use different sizes of chunks from the hash code for indexing into the
(sparse) array of child nodes.

3.2. BACKGROUND 39

0 1

B
2

C
3

A
4 5

D
6

Figure 3.2: This figure shows a collision-free array-based hash set —with prime
number table size 7 and load factor of 75 %— that is equivalent to Figure 3.1(c).

Figures 3.1(a), 3.1(b), and 3.1(c) graphically illustrate the structure of a small
HAMT set with branching factor 32 after step-by-step inserting the objects A, B,
C, and D. HAMTs encode the hash codes of the elements in their tree structure
(cf. Figure 3.1(d)). The prefix tree structure grows lazily upon insertion until the
new element can be distinguished unambiguously from all other elements by its
hash code prefix. The index numbers in the left top corner of each node refer
to the positions of elements in an imaginary sparse array. This array is actually
implemented as a 32-bit bitmap and a completely filled array with length equal to
the node’s arity. To change a HAMT set into a map, a common method is to double
the size of the array and store references to each value next to each key.

Figure 3.2 illustrates the same data stored in a more commonly known data
structure, an array-based hashtable with table size 7 and load factor of 75 %. The
buckets assigned to elements are calculated by hashcode mod 7. Comparing
these two figures we highlight the following inherent drawbacks of HAMTs against
array-based hashtables:

Memory overhead: Each internal trie node adds an overhead over a direct array-
based encoding, so finding a small representation for internal nodes is crucial.
On the other hand, HAMTs do not need expensive table resizing and do not
waste (much) space on null references.

Degeneration on delete: Any delete operations can cause a HAMT to deviate from its
most compact representation, leading to superfluous internal nodes harming
cache locality, adding indirections for lookup, insertion and deletion, and
increasing memory size. Delete on most hashtable implementations is a lot
less influential.

Non-locality slows down iteration: When iterating over all elements, a hashtable
benefits from locality by linearly scanning through a continuous array. A HAMT,
in comparison, must perform a depth-first in-order traversal over a complex
object graph (going up and down), which increases the chance of cache misses.

Equality is punished twice: While iterating over the one HAMT and looking up
elements in the other, the non-locality and a possibly degenerate structure
make equality checking an expensive operation.

40 CHAPTER 3. THE CHAMP ENCODING

A
0 2

0

D
1

B
0

C
4

(a) Internal

0 2

A
0 1

0 4

D

B C

(b) Leaf

Figure 3.3: HAMT-based sets with values in internal nodes versus values at the leaves.

Mutable and Immutable Update Semantics

HAMTs are suitable to implement data structures with mutable and immutable update
semantics. The two variants differ in how and when nodes have to be reallocated.
Mutable HAMTs reallocate a node if and only if the node’s arity changes [Bag01].
Otherwise, values or sub-node references are updated in-place without realloca-
tion. In contrast to mutable HAMTs, immutable HAMTs perform path-copying on
updates [ST86; Oka99]: the edited node and all its parent nodes are reallocated.
The resulting new root node satisfies the immutability property by resembling
the updated path-copied branch and, for the remainder, references to unmodified
branches.

Memory Layouts and Hash Code Memoization

Figure 3.3 illustrates the two principle choices for a HAMT’s memory layout: storing
values next to sub-nodes directly in internal nodes, as opposed to storing them at
the leaf level.

The former approach originates from Bagwell [Bag01], it increases locality and
saves space over the latter. Because a HAMT encodes the prefixes of hash codes
implicitly in its tree structure, it can avoid storing full 32-bit hash codes. As a result,
this design yields a very low memory footprint at the potential cost of increased
runtimes of update operations.

The latter approach stores elements in leaf nodes, separated from inner prefix tree
nodes. While leaf nodes increase the data structure’s memory footprint, they enable

3.3. DATA LOCALITY 41

1 abstract class HamtCollection {

2 HamtNode root; int size;

3

4 class HamtNode {

5 int bitmap;

6 Object[] contentArray;

7 }

8 }

Listing 3.1: Skeleton of a HAMT in Java with internal values.

storage of additional information along the elements. Scala for example memoizes
the hash codes of elements inside the leafs. Memoized hash codes consequently
enable fast failing on negative lookups by first comparing hash codes, and avoid
recalculation of hash codes upon prefix expansion.

CHAMP builds upon the internal nodes design and primarily optimizes for smaller
footprints and cache locality. Nevertheless, to reconcile both designs in our eval-
uation section, we will also analyze a CHAMP variant that supports hash code
memoization in Section 3.5.

3.3 Data Locality

Listing 3.1 shows a Java source code skeleton that is the basis for implementing
HAMT collections with the internal nodes design. Traditionally [Bag01], a single
32-bit integer bitmap is used to encode which slots in the untyped array are used,
together with a mapping function that calculates offsets in the array by counting
bits in the bitmap. For set data structures, we can use Java’s instanceof operator
to distinguish if an array slot holds either an element, or a sub-node reference.
This encoding orders values by their hash codes—the bitmap compression solely
eliminates empty slots.

In the following, we first devise a new compact data layout for internal trie nodes
which enables faster iteration and equality checking. The causes of the performance
increase are compactness and locality, both leading to better cache performance, and
avoiding the use of the instanceof operation.

Partitioning Values and Sub-Nodes

Maps with internal values (as opposed to sets) require additional storage room for
the values. To cater for this the dense array can be allocated at twice the normal size
such that next to each key a reference to a value may be stored. Each index is then
multiplied by 2 to skip over the extra slots.

42 CHAPTER 3. THE CHAMP ENCODING

2 2

4

4

C
4 5 5

2

0

A
0

34

1

X
1

5

0

B
0

37

1

Y
1

(a) Current HAMT ordering with 1-bit state.

4

4

C
4 2 5

2

0

A
0

34

1

X
1

5

0

B
0

37

1

Y
1

(b) Conceptual CHAMP ordering with 2-bit state.

4

4

C
4 5 2

2

0

A
0

34

1

X
1

5

0

B
0

37

1

Y
1

(c) Final CHAMP ordering with 2-bit state.

Figure 3.4: Various implementations of HAMT maps with values in internal nodes.
The index numbers in the top left corners denote the logical indices for each key/-
value entry and not their physical indices. Figure 3.4(a) depicts Clojure’s HAMT
implementation that indicates sub-nodes by leaving the array slot for the key empty.

3.3. DATA LOCALITY 43

Figure 3.4(a) exemplifies a HAMT-based map with internal values as found in
Clojure. Accidentally, the root node has two child nodes, a few empty slots with
null references and a key/value pair in the middle. Due to the fixed tuple length
of two, an empty array slot is wasted per sub-node reference. Note that the C/C++
HAMT implementation of Bagwell [BR11] also uses fixed length tuples of size two for
maps, however C/C++ offers better reuse (e.g., with union types) of the empty slots.

HAMT Design Results in Poor Iteration Performance. One aspect that is directly
influenced by the order of array elements is iteration performance. The order of
child nodes and values depends entirely on the data structure’s content; sub-nodes
and internal values may alternate arbitrarily. An in-order traversal for iteration
will switch between the trie nodes a few times, because values and internal nodes
alternate positions in the array, causing a bad cache performance. For iteration, the
HAMT design requires to go through each node at most m + n times, where n equals
the HAMT’s total number of sub-tree references and m equals the total number of
references to internal data entries.

CHAMP Design Improves Iteration Performance due to a Cache-Oblivious Re-
ordering with Compression. To increase data locality during iteration —and
further to remove the need for empty array slots— we propose to split the sin-
gle untyped array conceptually into two typed arrays (cf. Figure 3.4(b)): one array
holding sub-node references, and another one holding values. This split effectively
reorders the elements, while the ordering within each group remains. The element
order is irrelevant anyway in already unordered set and map data structures. We
remove the need for using instanceof, by introducing an extra bitmap that makes
the separation between sub-nodes and internal values explicit. For iteration, the
proposed CHAMP design reduces the complexity from O(m + n) to O(n). A full
traversal in CHAMP requires exactly n node visits, because it can yield all internal
values before descending for each sub-node exactly once.

Mitigating Memory Overhead. The CHAMP design conceptually requires two ar-
rays and two accompanying bitmaps. A naive CHAMP implementation would in-
troduce significant overhead compared to a HAMT. Figure 3.4(b) shows how we
mitigate the incurred overhead by sharing one array for the two compressed array
sequences. The second arrow indicates the need for the second bitmap. Two bitmaps
are necessary to compute indices for either kind of value. We propose to use one
32-bit bitmap, called datamap, to store if a branch is either absent or a value reference,
and another 32-bit bitmap, called nodemap, to store if a branch is either absent or a
sub-node reference. Especially for maps we can spare the extra bitmap because we
are saving an empty array cell for every sub-node due to our explicit encoding.

44 CHAPTER 3. THE CHAMP ENCODING

Mitigating Runtime Overhead

We have increased data locality at the cost of a more expensive index calculation that
requires an extra bitmap and additional bit-level operations. This directly influences
the runtime performance of lookup, insertion, and deletion. Each of these operations
now requires a case distinction with, in worst case, two separate lookups in the
two distinct bitmaps, to decide in which group an element is present. Because we
compactly store both groups in a single array, we need to perform offset-based
indexing when accessing the second group of sub-node references. Both the offset
and the index calculations require more bit-level operations on the datamap and
nodemap, as explained below.

Listing 3.2 illustrates Java snippets of how the indexing is usually implemented.
Lines 1–3 shows the masking function that selects the prefix bits based on the
node level in the tree (shift == 5 * level). The index function (lines 4–6) requires
a bitpos variable with a single non-zero bit, designating one of the 32 possible
branches. It then maps from the bitmap/bitpos tuple to a sparse-array index by
counting the non-zero bits in bitmap on the right of bitpos.

Lines 8–18 illustrate indexing into a traditional HAMT that requires only a single
call to index. For sets (WIDTH = 1), the content array does not have empty cells with
null, for maps (WIDTH = 2) it follows the convention that an empty key slot indicates
that the value slot is a sub-node reference.

Lines 20–34 show our proposal that requires different methods for accessing keys
and sub-nodes. Accessing keys works equally to current HAMTs, however we call
the index function with the datamap. For accessing sub-nodes we first calculate an
offset (with datamap) before calling the index function with nodemap.

One option to remove the overhead of the offset calculation is to cache its
value in a byte field. However, the extra byte pushes the memory layout of an
internal node right over the JVM’s 8-byte alignment edge, which seriously influences
the memory footprint. Instead we remove the need for the additional field as
follows. In our optimized and final CHAMP encoding, as displayed in Figure 3.4(c),
we reverse the storage order of the nodes in the back of the array. We can then
perform contentArray.length - 1 - index instead of the previous offset + index

calculation. Since the length field is there anyway in the array we pay no extra cost
in memory. CHAMP’s optimized index calculation code that mitigates overhead is
displayed in Listing 3.2, lines 36–42.

Implementing Fast Iterators

To support Java’s Iterable<T> and Iterator<T> interfaces, our code is layered as
in Listing 3.1. The outer (collection) layer provides key, value and entry iterators
and a node iterator for the entire trie. The inner (trie node) layer provides separate

3.4. CANONICALIZATION 45

iterators for the internal values and for the child nodes of each internal node. As a
result, the internal iterators essentially reflect a node’s logical partitioning.

We implemented the node iterator using a stack interface. Since we statically
know the maximal trie depth, the stack can be implemented in a pre-allocated
cache-friendly array.

The idea of using pre-allocated stack iterators is not novel. Scala’s HAMT imple-
mentations are already leveraging such iterators. Our own implementation is more
elaborate to achieve the worst case iteration complexity reduction from O(m + n) to
O(n) as discussed in earlier in Section 3.3.

Summary

We have increased locality by reshuffling the references in a trie node, at the cost of
more bit-level arithmetic. Otherwise lookup, insertion, and deletion are unchanged.
For iteration, the proposed CHAMP design reduces complexity from O(m + n) to
O(n). For maps we avoid empty slots in the arrays and thus save memory. In the
evaluation section we will show that the net result of our design is satisfying.

3.4 Canonicalization

Another way to increase locality and to further save memory is to keep a HAMT in
a compact canonical representation, even after deleting elements. For example, in
Figure 3.1(b) removing object C from the deepest node would yield a perfectly valid
HAMT. However, in the optimal case, deletion would restore the state of Figure 3.1(a),
resulting in a smaller footprint and less dereferencing upon lookup, insertion, and
deletion.

Clojure’s HAMT implementations do not compact on delete at all, whereas Scala’s
implementations do. In the remainder of this section we contribute a formalization
(based on predicates and an invariant) that details how a HAMT with inline values can
efficiently be kept in a compact canonical form when deleting elements. Bagwell’s
original version of insert is enough to keep the tree canonical for that operation. All
other operations having an effect on the shape of the trie nodes can be expressed
using insertion and deletion.

Contract for Canonicalization

We formalize the canonical form of internal trie nodes by a strict invariant for trie
nodes. The reasons are that canonicalization depends on the children of trie nodes
to be in canonical form already and the many operations on HAMTs are somewhat
complex. An explicit invariant helps in implementing the canonical form correctly
and in optimizing the code. We need two basic properties to express the invariant:

46 CHAPTER 3. THE CHAMP ENCODING

1 static final int mask(int hash, int shift) {

2 return (hash >>> shift) & 0b11111;

3 }

4 static final int index(int bitmap, int bitpos) {

5 return Integer.bitCount(bitmap & (bitpos - 1));

6 }

7

8 // HAMT indexing with 1-bit state

9 Object getKeyOrNode(K key, int hash, int shift) {

10 int bitpos = 1 << mask(hash, shift);

11

12 int index = WIDTH * index(this.bitmap, bitpos);

13 if (contentArray[index] != null) {

14 return contentArray[index];

15 } else {

16 return contentArray[index + 1];

17 }

18 }

19

20 // Proposed CHAMP indexing with 2-bit state

21 K getKey(K key, int hash, int shift) {

22 int bitpos = 1 << mask(hash, shift);

23

24 int index = WIDTH * index(this.datamap, bitpos);

25 return (K) contentArray[index];

26 }

27

28 Node getNode(K key, int hash, int shift) {

29 int bitpos = 1 << mask(hash, shift);

30

31 int offset = WIDTH * Integer.bitCount(this.datamap);

32 int index = offset + index(this.nodemap, bitpos);

33 return (Node) contentArray[index];

34 }

35

36 // Optimized CHAMP indexing into sub-nodes

37 Node getNode(K key, int hash, int shift) {

38 int bitpos = 1 << mask(hash, shift);

39

40 int index = contentArray.length - 1 - index(this.nodemap, bitpos);

41 return (Node) contentArray[index];

42 }

Listing 3.2: Index calculations for the various designs.

3.4. CANONICALIZATION 47

Arity (local): The arity of a node designates the number of outgoing edges. In
CHAMP the arity equals the sum of nodeArity and payloadArity, counting bits
set to 1 in nodemap and datamap respectively.

Branch Size (non-local): The branch size equals the total number of elements that
are transitively reachable from a node. Later we will find an approximation
for branch size which can be computed locally.

We assume both properties are available as methods on the objects of the internal
nodes. The following class invariant asserts canonically minimal trie nodes:

CHAMP invariant:

branchSize ≥ 2 ∗ nodeArity+ payloadArity

The invariant states that sub-trees with arity less than 2 are not allowed. This implies
that single elements should always be inlined and singleton paths to sub-tries should
be collapsed. The invariant holds for all nodes on all levels.

Deletion Algorithm

Deletion is a recursive operation on the tree. To satisfy the invariant, delete on a trie
node structure should be the exact inverse operation of insert. Listing 3.3 contains
a pseudocode description of the delete operation. For a given key the search starts
at the root node. If the node contains the search key locally, the operation removes
the data tuple from the node and returns an updated node. Otherwise, if the node
contains a sub-tree for a given hash-prefix, the operation will descend recursively.

If the hash prefix is in datamap (line 2) and the value stored matches the key we
are looking for then we can remove a value right here. In case a CHAMP instance
consists of a single root node with a singe element, an EMPTY_NODE constant is
returned, otherwise we return a copy of the node without the current element. We
may temporarily generate a singleton value node (which is allowed by the invariant
since it does not have a parent yet) but later in line 21 on the way back from the
recursion this singleton will be collapsed. A singleton can only fall through, when
delete collapses a multi-node tree of two elements to a tree with a single root node
with a single element.

Note that both operations in line 21 (removal of subNode and inlining of key) need
to be executed atomically to ensure the invariant. We provide a copying primitive
(named copyAndMigrateFromNodeToInline) in our implementation that performs
both modifications with a single array-copy.

If the hash prefix is in the nodemap (line 9) then delete is called recursively. The
compaction to satisfy the invariant happens on the way back from the recursion,
dispatching on the values of arity and branch size of the current node and the

48 CHAPTER 3. THE CHAMP ENCODING

received new node. If the current node’s size is 1 then we may pass the new node to
our own parent if it only contains values (line 17). If the received node has a bigger
size, then we make a copy of the current singleton node with the new child at the
right position (line 19). The final case is when the new child node wraps a value,
generated by line 6, and we can inline it here right now. Line 23 implements the
case where no compaction or inlining takes place at all.

Deletion Implementation Details. The object-oriented implementation of the
delete algorithm involves careful consideration. It should avoid re-computations
of hash codes, avoid allocation of temporary objects and it should maintain the
class invariant. Also, computing the predicates used in the algorithm may become a
bottleneck, especially computing the branch size of a trie node is problematic since
this operation is linear in the size of the sub-tree. The following design elements are
necessary to make the delete operation efficient:

• Passing a single state object through the recursive calls of the delete method,
like a reference parameter, to record whether a modification was made.

• Inspecting the state of a received node by dispatching on the arity and
branchSize properties. Using these properties we avoid the use of instanceof.

• Abstracting branchSize into an over-approximation which can be computed
without recursion or caching. For the deletion algorithm (cf. Listing 3.3)
we need to differentiate three states: if a sub-tree has no elements, exactly
one element, or more. We can substitute calls to branchSize with calls to the
sizePredicate method (cf. Listing 3.4) that returns a byte representation of
the aforementioned three states.

Structural Equality Checking

Tree compaction on delete lays the groundwork for faster (structural) equality
checking. In an ideal world without hash collisions we would short-circuit recursive
equality checks without further ado: if two nodes that are reachable by the same
prefix have different bitmaps it is guaranteed that their contents differ. Together with
short-circuiting on equal references (then the sub-tries are guaranteed equal), the
short-circuiting on unequal bitmaps makes equality checking a sub-linear operation
in practice.∗ Only when the heap graphs of two equal HAMTs are disjunct, then a
full linear traversal is necessary to assert equality.

∗Note that an alternative implementation of equals —e.g., such as implemented in Clojure— is to
iterate over one tree while looking up each key in the other until the first key which is not found. This
operation is especially expensive on large HAMTs as it performs in O(n log32(n)).

3.4. CANONICALIZATION 49

1 delete(node: Node, key: Object): (Boolean, Node) {

2 if (key in datamap) {

3 if (node.arity == 1)

4 return (true, EMPTY_NODE)

5 else

6 return (true, node without key)

7 }

8

9 if (∃subNode for which key is in nodemap) {

10 (isModified, resultNode) = delete(subNode, key)

11

12 if (isModified == false) // short-circuit

13 return (false, node)

14

15 if (node.arity == 1)

16 if (resultNode.branchSize == 1) // propagate

17 return (true, resultNode)

18 else

19 return (true, node updated with resultNode)

20 else if (resultNode.branchSize == 1) // inline

21 return (true, (node without subNode) with key)

22 else

23 return (true, node updated with resultNode)

24 }

25

26 return (false, node) // key not found

27 }

Listing 3.3: Pattern match logic for deletion in pseudocode.

1 byte sizePredicate() {

2 if (this.nodeArity() == 0)

3 switch (this.payloadArity()) {

4 case 0: return SIZE_EMPTY;

5 case 1: return SIZE_ONE;

6 default:return SIZE_MORE_THAN_ONE;

7 }

8 else return SIZE_MORE_THAN_ONE;

9 }

Listing 3.4: sizePredicate method used for compaction.

50 CHAPTER 3. THE CHAMP ENCODING

Still, hash collisions do occur in practice. In a HAMT, a collision is detected when
all hash code bits are consumed and two elements cannot be differentiated. Similar
to a hashtable, a chained bucket can then be created at the bottom of the tree to hold
both elements (or more). To be able to see why short-circuiting on unequal bitmaps is
still possible, even though the structure of the buckets depends on dynamic insertion
and deletion order, consider that we short-circuit only on hash codes prefixes being
unequal and not on the actual values. This means that if the Java hash code contract
—unequal hash codes imply unequal values— has been implemented correctly the
short-circuiting is safe. Listings 3.5 and 3.6 show the source code of equals methods
(regular node and hash collisions node) of a CHAMP-based set implementation.

Canonical representations enable equality checks to benefit from the persistent
nature of immutable HAMTs. Like lookup, insert, and delete already did, equal-
ity checks can exploit short-circuiting due to incremental updates and sharing of
intermediate nodes between different trie instances.

Summary

Compacting trie nodes on delete and only lazily expanding them on insert makes
sure they are always in a canonical and compact state. The algorithm satisfies an
invariant for trie nodes and needs to be implemented with care to mitigate the
overhead. We save memory and gain locality, but we increase CPU overhead with
more complex bitmap compaction. The evaluation in Section 3.6 analyses the true
impact of the proposed trade-offs.

3.5 Memoization and Hash Codes

In the following we discuss design and performance implications of memoization of
hash codes on two different levels: on element basis, and on collection level. For the
latter case we discuss implications of incrementally updating them.

Memoizing Collection Hash Codes. A key design element of CHAMP is to use
the outer wrapper objects to cache collection hash codes and to incrementally
update these hash codes as elements are added or removed. This requires insertion-
order independent and reversible hash code computations. Due to the JVM’s 8-byte
memory alignment, adding the hash code field to CHAMP does not increase its
memory footprint.∗

In contrast, memoization of collection hash codes is not an option for Scala,
because in their class hierarchy every node is also a collection. Adding another field
to each node would increase the memory footprint of inner nodes by 8 bytes.
∗This is valid for JVM instances with less than 32GB heaps with the CompressedOops option enabled

(default). https://wikis.oracle.com/display/HotSpotInternals/CompressedOops.

https://wikis.oracle.com/display/HotSpotInternals/CompressedOops

3.5. MEMOIZATION AND HASH CODES 51

1 boolean equals(Object other) {

2 if (other == this) return true;

3 if (other == null) return false;

4 if (getClass() != other.getClass())

5 return false;

6

7 ChampNode<?> that = (ChampNode<?>) other;

8

9 if (datamap != that.datamap)

10 return false;

11 if (nodemap != that.nodemap)

12 return false;

13

14 if (!Arrays.equals(nodes, that.nodes))

15 return false;

16

17 return true;

18 }

Listing 3.5: equals method of a regular CHAMP node.

1 boolean equals(Object other) {

2 if (other == this) return true;

3 if (other == null) return false;

4 if (getClass() != other.getClass())

5 return false;

6

7 HashCollisionNode<?> that = (HashCollisionNode<?>) other;

8

9 if (hash != that.hash)

10 return false;

11

12 for (K key : keys)

13 if (!that.contains(key))

14 return false;

15

16 return true;

17 }

Listing 3.6: equals method of a set’s hash collision node.

52 CHAPTER 3. THE CHAMP ENCODING

Table 3.1: Worst case number of invocations of hashCode/equals per HAMT operation.
The numbers exclude full hash collisions, but assume distinct hash codes with
matching prefixes. For each operations we distinguish between the succeeding and
the failing case. The table is split by the following HAMT features: memoizing and
incrementally updating the collection hash code, and memoizing hashes of the keys.

Operation hashCode / equals Calls per Data Structure and Feature Set

HAMT Map HAMT Set

¬Incremental Incremental ¬Incremental Incremental

¬Memo Memo ¬Memo Memo ¬Memo Memo ¬Memo Memo

Lookup (¬Contained) 1 / 1 1 / 0 1 / 1 1 / 0 1 / 1 1 / 0 1 / 1 1 / 0

Lookup (Contained) 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

Insert (¬Contained) 2 / 1 1 / 1 3 / 1 2 / 0 2 / 1 1 / 0 2 / 1 1 / 0

Insert (Contained) 1 / 1 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

Replace (Contained) 1 / 1 1 / 1 3 / 1 3 / 1 – / – – / – – / – – / –

Delete (¬Contained) 1 / 1 1 / 0 1 / 1 1 / 0 1 / 1 1 / 0 1 / 1 1 / 0

Delete (Contained) 1 / 1 1 / 1 2 / 1 2 / 1 1 / 1 1 / 1 1 / 1 1 / 1

Total 8 / 7 7 / 4 12 / 7 11 / 4 7 / 6 6 / 3 7 / 6 6 / 3

Memoizing Element Hash Codes. While Scala’s HAMT implementations memoize
the full 32-bit hash codes of keys in leaf nodes, neither Bagwell’s HAMT design nor
Clojure’s implementations consider memoization. Adding memoization is trading
a higher memory footprint against improved worst case runtime performance of
lookup, insertion, and deletion.

Adding Memoization of Element Hash Codes to CHAMP. We strive for a flexible
design that can be used with or without memoization. To add memoization to
CHAMP, we use a technique called field consolidation [GS12]. Instead of storing cached
hash codes in a large number of leaf nodes as Scala does, we consolidate the hashes
of all elements of a node, to store them in a single integer array per node.

With MEMCHAMP we will refer throughout the text to the variant of CHAMP that
adds memoized element hash codes, but drops incremental collection hash codes.

3.6. BENCHMARKS: CHAMP VERSUS CLOJURE’S AND SCALA’S HAMTs 53

Performance Implications of Memoization

Table 3.1 summarizes the worst case number of hashCode and equals calls per
lookup or update operation. It shows the cross product of all combinations from
hash-set and hash-map data types paired with feature options of memoizing and
incrementally updating the collection hash code, and memoizing the hash codes of
the keys.

As in general with hash-based data structures, each operation needs to calculate
the hash code of the key. Non-memoized HAMTs call in worst case hashCode once
more with Insert ¬Contained: if a prefix collision occurs the hashCode of the already
stored element must be recalculated to extend the prefix tree. Otherwise, only
incremental map operations cause additional hashCode calls, because suddenly the
hash codes of the values are eagerly evaluated. Furthermore, equality is checked
at most once for keys. Memoization avoids some equals calls due to fast-failing on
equal hashes. Like Clojure and Scala, also other JVM collection libraries differ in
their design choices for hash code memoization. E.g., Google’s Guava† collections
do not memoize key hash codes, whereas Java Development Kit (JDK) collections do.

We conclude, based on Table 3.1, that for sets incrementally calculating collection
hash codes comes essentially for free: the number of hashCode and equals calls stay
the same. Maps in contrast pay for the eager and incremental evaluation of value
hash codes, as compared to lazy evaluation. We suggest considering incremental
collection hash codes for maps, if nesting of maps into other hash-based collections
is a frequent pattern in a program, library or language.

3.6 Benchmarks: CHAMP versus Clojure’s and Scala’s HAMTs

We further evaluate the performance characteristics of CHAMP and MEMCHAMP.
While the former is most comparable to Clojure’s HAMTs, the latter is most compa-
rable to Scala’s implementations. Specifically, we compare to Clojure’s Persistent-

Hash{Set,Map} and Scala’s immutable Hash{Set,Map} implementations. We used
latest stable versions available of Scala (2.11.6) and Clojure (1.6.0) at the time of
evaluation.

The evaluated CHAMP data structures are used daily in the runtime environment
of the Rascal∗ programming language, and are currently being tested for inclusion
into the Object Storage Model [Wöß+14] of the Truffle language implementation
framework. We report on this to assert that our implementations have been well
tested and used by users other than ourselves, mitigating threats to the internal
validity of the following evaluation.

†https://github.com/google/guava
∗http://www.rascal-mpl.org

https://github.com/google/guava
http://www.rascal-mpl.org

54 CHAPTER 3. THE CHAMP ENCODING

Assumptions. We evaluate the pure overhead of operations on the data struc-
tures, without considering cost functions for hashCode and equals methods. Our
performance assessment is supposed to reveal the overhead of maintaining bitmaps,
incremental hash codes and hash code memoization.

Hypotheses. We expect CHAMP’s runtime performance of lookup, deletion, and
insertion to equal Clojure’s and Scala’s runtime performance, albeit canonicalizing
and computing over two bitmaps. Runtimes should not degrade below a certain
threshold —say 20 % for median values and 40 % for maximum values would just
be acceptable— (Hypothesis 1).
In general we are betting on significantly better cache behavior and therefore ex-
pect to see speedups in iteration (Hypothesis 2). We further expect structural
equality checking of two equal collections that do not share reference equal objects
to yield at least the same —and likely even higher improvement— as iteration
(Hypothesis 3). We also expect that equality checks on derived sets and maps,
i.e., measuring coll.insert(x).delete(x).equals(coll), to be orders of magnitude
faster (Hypothesis 4).

Despite the addition of a second bitmap, we expect CHAMP maps to use less
memory than Clojure’s maps because we avoid empty slots (Hypothesis 5). We
expect to save a significant amount of memory in big HAMTs because many nodes
should have more than two empty slots.

The following hypothesis (Hypothesis 6) formulates our expectations with respect
of memory savings of the two HAMT designs: internal values versus leaf nodes. To
get a precise expectation we modeled and computed the growth of HAMT-based sets
and maps on the Java code skeleton from Figure 3.1. We assume the absence of
empty cells in the contentArray and consider the JVM’s 8-byte memory alignment.
Based on our model [SV14], we expect for optimal implementations that HAMTs with
internal values require roughly half the memory of HAMTs with explicit leaf nodes,
both in 32-bit and 64-bit.

With our final hypothesis (Hypothesis 7) we expect the memory footprints of
MEMCHAMP to remain close to Clojure’s footprints and still vastly improve over
Scala’s footprints. With field consolidation MEMCHAMP avoids memory gaps due to
object alignment, while minimizing the number of worst case hashCode and equals

methods invocations to the same level that Scala’s implementations do.

Benchmark Selection. We assess the performance characteristics of CHAMP with
microbenchmarks, focusing on the usage of sets and maps to store and retrieve data
and to manipulate them via iterations over the entire collection. We deliberately
chose to not use existing CPU benchmark suites or randomly selected applications.
The reasons are:

3.6. BENCHMARKS: CHAMP VERSUS CLOJURE’S AND SCALA’S HAMTs 55

• The pressure on the collection API is quite different per selected real-world
application. We have no background theory available to randomly select
representative applications which use immutable collections without likely
introducing a selection bias.

• It is possible to accurately isolate the use of collections and their operations
easily in our microbenchmark setup to confirm or deny our hypotheses. Using
these results the designers of standard libraries for programming languages as
well as their users will be able to make an informed designed choice for the
set and map data structures, irrespective of the other important parts of their
designs.

So, on the one hand the importance of these optimizations is different for every
application and this remains a threat to external validity. On the other hand the
results in the following experiments are very general since they hold for every
immutable set or map implementation that uses the proposed optimizations.

Experiment Setup

We use a machine with Linux Fedora 20 (kernel 3.17) and 16 GB RAM. It has an Intel
Core i7-2600 CPU, with 3.40 GHz, and an 8 MB Last-Level Cache (LLC) with 64-byte
cache lines. Frequency scaling was disabled.

We used Oracle’s JVM (JDK 8u25) configured with a fixed heap size of 4 GB. We
measure the exact memory footprints of data structures with Google’s memory-
measurer library.† Running times of operations are measured with the Java Mi-
crobenchmarking Harness (JMH), a framework to overcome the pitfalls of micro-
benchmarking.‡ For all experiments we configured JMH to perform 20 measurement
iterations of one second each, after a warmup period of 10 equally long iterations.
For each iteration we report the median runtime, and measurement error as Median
Absolute Deviation (MAD), a robust statistical measure of variability that is resilient
to small numbers of outliers. Furthermore, we configured JMH to run the Garbage
Collector (GC) between measurement iterations to reduce a possible confounding
effect of the GC on time measurements.

Because each evaluated library comes with its own API, we implemented facades
to uniformly access them. In our evaluation we use collections of sizes 2x for
x ∈ [1, 23]. Our selected size range was previously used to measure the performance
of HAMTs [Bag01]. For every size, we fill the collections with numbers from a random
number generator and measure the resulting memory footprints. Subsequently we
perform the following operations and measure their running times:

†https://github.com/DimitrisAndreou/memory-measurer
‡http://openjdk.java.net/projects/code-tools/jmh/

https://github.com/DimitrisAndreou/memory-measurer
http://openjdk.java.net/projects/code-tools/jmh/

56 CHAPTER 3. THE CHAMP ENCODING

Lookup, Insert and Delete: Each operation is measured with a sequence of 8 ran-
dom parameters to exercise different trie paths. For Lookup and Delete we
randomly selected from the elements that were present in the data structures.§

For Insert we ensured that the random sequence of values was not yet present.

Lookup (Fail), Insert (Fail) and Delete (Fail): Measuring unsuccessful operations.
The setup equals the aforementioned setting, however with the difference that
we swap the sequences of present/not present parameters.

Iteration (Key): Iterating over the elements of a set or the keys of a map respectively.

Iteration (Entry): Iterating over a map, yielding tuples of type Map.Entry.

Equality (Distinct): Comparing two structurally equal data structures. The two
object graphs are distinct from each other (i.e., they contain no reference equal
elements).

Equality (Derived): Comparing two structurally equal data structures. The second
structure is derived from the first by applying two operations: inserting a new
element and then removing it again.

We repeat the list of operations for each size with five different trees, starting
from different seeds. This counters possible biases introduced by the accidental
shape of the tries and it also mitigates a threat to external validity: the shape of a
tree depends on the hash codes and hash code transformations which may vary
between implementations or applications. E.g., Scala’s HAMTs apply a bit-spreading
transformation to every hash code —similar to java.util.HashMap— to counter
badly implemented hash functions.

Evaluating HAMT-based sets and maps containing simply random integers ac-
curately simulates any application for which the elements have good uniformly
distributed hash codes. A worse-than-uniform distribution would —regardless of
the HAMT library— overall reduce the memory overhead per element and increase
the cost of updates (both due to clustering of elements). We consider a uniform
distribution the most representative choice for our comparison.

We first discuss how CHAMP compares against Clojure and Scala (Sections 3.6
and 3.6), before we focus on the performance implications of adding memoization
(Section 3.6).

Runtime Speedup Results

We first report the precision of the individual data points. For 99 % of the data points,
the relative measurement error amounts to less than 1 % of the microbenchmark
runtimes, with an overall range of 0–4.9 % and a median error of 0 %.

§For < 8 elements, we duplicated the elements until we reached 8 samples.

3.6. BENCHMARKS: CHAMP VERSUS CLOJURE’S AND SCALA’S HAMTs 57

●
●

●
●●
●●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Iteration
(Entry)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−40%

−20%

0%

20%

40%

60%

80%

100%

(a) CHAMP versus Clojure’s PersistentHashMap

●

●
●●
●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−40%

−20%

0%

20%

40%

60%

80%

100%

(b) CHAMP versus Clojure’s PersistentHashSet

Figure 3.5: Runtime and memory savings of CHAMP compared to Clojure’s
PersistentHash{Map,Set}.

We summarize the data points of the runs with the five different trees with their
medians. Then Figure 3.5(a), 3.5(b), 3.6(a), and 3.6(b) report for each benchmark the
ranges of runtime improvements and memory footprint reductions. Each boxplot
visualizes the measurements for the whole range of input size parameters. Because
the input sizes are scaled exponentially we report savings in percentages using the
following formula, normalizing the size factor:

(1−measurementCHAMP / measurementOther) ∗ 100

Speedups Compared to Clojure’s Maps. In every runtime measurement CHAMP is
better than Clojure. CHAMP improves by a median 72 % for Lookup, 24 % for Insert,
and 32 % for Delete. At iteration and equality checking, CHAMP significantly outper-
forms Clojure. Iteration (Key) improves by a median 83 %, and Iteration (Entry) by
73 %. Further, CHAMP improves on Equality (Distinct) by a median 96 %, and scores
several magnitudes better at Equality (Derived).

Speedups Compared to Clojure’s Sets. The speedups of CHAMP for sets are similar
to maps across the board, with exception of insertion and deletion where it scores
even better.

58 CHAPTER 3. THE CHAMP ENCODING

●
●

●
●

●
●●
●

● ●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Iteration
(Entry)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−40%

−20%

0%

20%

40%

60%

80%

100%

(a) CHAMP versus Scala’s immutable.HashMap

●●

●

●

●

●

●

●

●

●

●

●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−40%

−20%

0%

20%

40%

60%

80%

100%

(b) CHAMP versus Scala’s immutable.HashSet

Figure 3.6: Runtime and memory savings of CHAMP compared to Scala’s
immutable.Hash{Map,Set}.

Speedups Compared to Scala’s Maps. Lookup performance improves by a median
23 %, especially at small collections until 128 entries (34–45 %). For bigger sizes
the advantage is less pronounced. Given that in practice most collections are
small [MS07] and that a usual workload performs more queries than updates, these
improvements look promising. For Lookup (Fail) both implementations are neck-
and-neck, however CHAMP performs better on the smaller half of the data set and
Scala on the bigger half.

Insertion improves by a median 16 %, however with a different pattern from
lookup. Insertion performs up to 12 % worse at small collections until 25 entries,
and then improves again (9–28 %). At Insert (Fail) CHAMP improves across the size
range (23–47 %).

Deletion performs with a median runtime reduction of 25 % better than Scala,
despite of the compaction overhead. Only for size 24 CHAMP is 3 % slower. For
Delete (Fail) however, CHAMP is behind Scala allover (13 % median).

For iteration and equality checking, CHAMP clearly improves upon Scala’s im-
mutable hash maps. Iteration (Key) improves by 48 % and Iteration (Entry) by 39 %.
Equality (Distinct) improves by a median 81 %. Equality (Derived) unsurprisingly
performs 100 % better, because the operation is in a different complexity class.

3.6. BENCHMARKS: CHAMP VERSUS CLOJURE’S AND SCALA’S HAMTs 59

Speedups Compared to Scala’s Sets. The results for sets exhibit similar patterns
as the results for maps, however as expected the runtime and memory savings are
across the board are slightly lower than for maps. Median improvements for Lookup
(13 %), Insert (13 %), and Delete (17 %) highlight that the performance of those
operations are similar to Scala. In contrast, CHAMP performs worse in benchmarks
Lookup (Fail) and Delete (Fail). In case of the former, CHAMP lags 7–24 % behind
Scala from sizes 27 upwards, and up to 22 % across the whole size range in case of
the latter.

For all other benchmarks we have a handful of measurements where Scala does
slightly better. Lookup performed 1 % worse at sizes 220 and 221. Insert performed
up to 11 % slower until 24 elements and 28 % slower at size 25.

Iteration (Key) improves by a median 22 % and increases up to 58 % for sets
bigger than a thousand elements. However, falsifying our hypothesis, iteration
performed 4 % worse at size 21 and at three sizes (smaller than 128) 1 % slower. The
median improvements of 66 % for Equality (Distinct) and 80 % for Equality (Derived)
are less pronounced than for maps, but still substantial. Scala implements set
equality with a structural subsetOf operation that exploits the HAMT encoding and
therefore performs well. Scala’s subset operation is conceptually a unidirectional
version of structural equality.

Memory Improvements

CHAMP reduces the footprint of Clojure’s maps by a median 16 % (32-bit) and 23 %
(64-bit), ranging from 3 % to 48 %. The median reductions for sets are 30 % (32-bit)
and 41 % (64-bit) respectively, ranging from 19 % to 60 %.

Compared to Scala’s maps, CHAMP saves a median 68 % (32-bit) and a median
65 % (64-bit) memory. Savings range from 45 % to 76 %. Note that CHAMP supports a
transient representation for efficient batch updates, like Clojure does, and therefore
uses one more reference per node. For completeness’ sake we also tested a version
of CHAMP without support for transients —similar to Scala in terms of functionality—
that yields median savings of 71 % (32-bit) and 67 % (64-bit).

CHAMP reduces memory footprints over Scala’s sets by a median 52 % (32-bit)
and 50 % (64-bit). Once again, a CHAMP variant without support for transients yields
slightly higher savings of 57 % (32-bit) and 53 % (64-bit) respectively.

Performance Implications of Adding Memoization

Adding memoization of the full 32-bit hash codes improves worst case performance
of lookup, insertion and deletion in practice (cf. Table 3.1). In our microbenchmarks
this effect is not observable because we evaluate the performance overhead that

60 CHAPTER 3. THE CHAMP ENCODING

●

●●

●

●
●●●●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Iteration
(Entry)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−80%
−60%
−40%
−20%

0%
20%
40%
60%
80%

100%

(a) MEMCHAMP versus Clojure’s PersistentHashMap

●

●

●●
●●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−80%
−60%
−40%
−20%

0%
20%
40%
60%
80%

100%

(b) MEMCHAMP versus Clojure’s PersistentHashSet

Figure 3.7: Runtime and memory savings of MEMCHAMP compared to Clojure’s
PersistentHash{Map,Set}.

incurs with aforementioned operations. Due to measuring overhead, we can evaluate
how the performance characteristics of operations change with MEMCHAMP.

Figures 3.7(a), 3.7(b), 3.8(a), and 3.8(b) show the results of comparing MEMCHAMP

against Clojure’s and Scala’s data structures. Allover the memory footprint advan-
tage lessens, due to the additional (consolidated) array of hash codes per node. As
a consequence, MEMCHAMP consumes a median 15 % (and maximally 35 %) more
memory than Clojure’s maps. MEMCHAMP still outperforms Clojure in all operations,
with exception of single data points at Insert for maps.

Comparing to Scala, MEMCHAMP retains memory footprint reductions of at least
49 % for maps at sizes bigger than 22, and reductions of 15–51 % for equally sized
sets. The only outliers here are measurements for size 21 where the additional array
has a negative impact. The runtimes of lookup and update operations show a similar
profile —but worse net runtimes— than CHAMP. MEMCHAMP’s allover performance
declines, although median runtimes of aforementioned operations are still close to
Scala, with exception of Delete (Fail). The reasons for this are twofold. First, locality
decreases because hash codes are stored apart from the elements in a separate array.
Second, maintaining a second array increases the runtimes of copying operations.

3.6. BENCHMARKS: CHAMP VERSUS CLOJURE’S AND SCALA’S HAMTs 61

●
●

●
●
● ●

●

●

●
●●
●

● ●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Iteration
(Entry)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−80%
−60%
−40%
−20%

0%
20%
40%
60%
80%

100%

(a) MEMCHAMP versus Scala’s immutable.HashMap

●

●
●

●

●

●

●

●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Equality
(Distinct)

Equality
(Derived)

Footprint
(32−bit)

Footprint
(64−bit)

sa
vi

ng
s (

in
 %

)

−80%
−60%
−40%
−20%

0%
20%
40%
60%
80%

100%

(b) MEMCHAMP versus Scala’s immutable.HashSet

Figure 3.8: Runtime and memory savings of MEMCHAMP compared to Scala’s
immutable.Hash{Map,Set}.

Summary

Hypothesis 1 has to be answered case-by-case. With respect to Clojure, it is confirmed.
Both variants of CHAMP outperform Clojure’s implementations of lookup, insert, and
delete. When compared to Scala, the two inherently different designs reveal varying
performance profiles. Hypothesis 1 is confirmed for CHAMP, because it performs
mostly faster and not often a bit slower than Scala. The exception is when calling
delete with a key that is not present in the data structure. Finally, for MEMCHAMP

the hypothesis is falsified, because several data points violate our thresholds of
acceptable loss of runtime performance. With matching characteristics in terms
of hashCode and equals calls, MEMCHAMP loses runtime performance over Scala, to
gain significant memory savings (cf. Hypothesis 7).

Hypothesis 2 is confirmed as well. Over all implementations, the median speed-
ups for iteration range from 22–85 %. However, counter to our expectations CHAMP

performs up to 4 % worse on some small sets when compared to Scala.

Hypothesis 3 is confirmed. Structural equality checking of two collections that do
not share reference equal objects improves by 96 %, 96 %, 81 % and 66 % (medians)
over the competing HAMT implementations.

62 CHAPTER 3. THE CHAMP ENCODING

Hypothesis 4 is confirmed. Structural equality checking of two derived collections
improves by median 80–100 %, with speedups up to 34 x.

Hypothesis 5 is confirmed. Despite increasing the memory footprint per node,
CHAMP-based maps decrease overall memory footprints by up to 46 % compared to
Clojure’s maps. We conclude that savings due to more efficient compaction outweigh
the overhead of the addition of a second bitmap.

Hypothesis 6 is confirmed. When compared to Scala’s design with leaf nodes,
CHAMP reduces memory footprints by median 65 % for maps and 50 % for sets.

Hypothesis 7 is confirmed as well. MEMCHAMP adds little memory overhead over
Clojure’s implementation, for a great part also due to our savings from Hypothesis
6. The median savings over Scala’s HAMTs still range from 27 % to 56 %.

To conclude, despite its more complex encoding, CHAMP achieves excellent
runtimes across all tested operations. MEMCHAMP does add overhead over CHAMP,
nevertheless runtimes of lookup, insertion, and deletion and memory footprints
remain competitive. The significant improvements of the runtime performance of
iteration and structural equality checking are observable for CHAMP and MEMCHAMP.

3.7 Case Study: Static Program Analysis

Next to microbenchmarks which isolate important effects experimentally, we also
need to evaluate the new design on a realistic case to be able to observe its relevance
in relation to other (unexpected) factors. In contrast to the microbenchmarks that
exclude a cost model for hashCode and equals methods, the realistic case has costs
attached to those methods. We chose to use a classic algorithm from program
analysis which is used in optimizing compilers, static analysis, reverse engineering
tools and refactoring tools: computing the control flow dominators [ASU86].

Instead of implementing an optimized data structure specifically for the purpose
of computing dominators on a Control-Flow Graph (CFG) [CHK06] we picked a most
direct implementation finding a maximal solution to the two dominator equations
with Scala’s and Clojure’s HAMTs, and CHAMP:

Dom(n0) = {n0}

Dom(n) =

 ⋂
p∈preds(n)

Dom(p)

 ∪ {n}
The benchmark source code∗ uses only classical set and relational calculus in a
fixed-point loop: Dom and preds are implemented as maps, the big intersection
is generated by first producing a set of sets for the predecessors and then folding

∗http://michael.steindorfer.name/papers/oopsla15-artifact

http://michael.steindorfer.name/papers/oopsla15-artifact

3.7. CASE STUDY: STATIC PROGRAM ANALYSIS 63

Table 3.2: Runtimes of Clojure, Scala, and CHAMP for CFG dominators experiment
per CFG count. All libraries are unmodified.

#CFG Clojure Scala CHAMP
Speedup w.r.t.

Clojure Scala

4096 1686 s 2654 s 170 s 9.9 x 15.6 x

2048 834 s 1387 s 81 s 10.2 x 17.0 x

1024 699 s 1215 s 61 s 11.4 x 19.8 x

512 457 s 469 s 27 s 16.7 x 17.1 x

256 403 s 418 s 18 s 22.3 x 23.1 x

128 390 s 368 s 14 s 28.1 x 26.5 x

intersection over it. The goal is to show that such a direct implementation is viable
when implemented on top of an optimized representation of immutable sets and
maps. In program analysis pipelines simple high-level code, immutability and
persistency are beneficial especially for intermediate data structures like dominator
sets. It avoids any bugs caused by unnecessary control and data dependencies.

For our experiment, we obtained all the ±5000 control flow graphs for all units
of code (function, method and script) of Wordpress,† one of the most popular
open-source Content Management Systems written in PHP, using the PHP AiR
framework [HK14]. We then applied the aforementioned dominator implementations
to measure CPU time, with JMH, on a randomly-sampled subset of all CFGs. Sample
sizes ranged from 128 to 4096 in exponential steps; we omitted smaller samples due
to the expected long tail distribution of the CFGs.

This experiment is not trivial since the effect depends on the shape of the real data
and the hard-to-predict dynamic progression of the algorithm as it incrementally
solves the equations. The nodes in the CFGs we use are the Abstract Syntax Trees
of blocks inside PHP units which are arbitrarily complex; equality checks on these
sub-structures could overshadow the computations. The hypothesis is that this
case should highlight our optimizations showing a significant benefit; if not it will
invalidate the relevance of our contributions.

Results

Table 3.2 shows the mean runtimes of 10 benchmark executions. Measurement errors
for Clojure and CHAMP are smaller than 1 s, Scala’s measurements varied by 8–18 s.

†https://wordpress.com

https://wordpress.com

64 CHAPTER 3. THE CHAMP ENCODING

Table 3.3: Runtimes of Clojure, Scala, and CHAMP for CFG dominators experiment
per CFG count. Scala and CHAMP were modified to calculate hash codes lazily, such
as Clojure does.

#CFG Clojure Scala CHAMP
Speedup w.r.t.

Clojure Scala

4096 1686 s 1022 s 565 s 3.0 x 1.8 x

2048 834 s 535 s 289 s 2.9 x 1.8 x

1024 699 s 461 s 243 s 2.9 x 1.9 x

512 457 s 277 s 153 s 3.0 x 1.8 x

256 403 s 241 s 132 s 3.1 x 1.8 x

128 390 s 228 s 123 s 3.2 x 1.8 x

CHAMP’s runtimes range from 14–170 s, Clojure ranges from 390–1686 s, and Scala
from 368–2654 s. To summarize, CHAMP computed the biggest CFG sample of size
4096 more than two times faster than Clojure and Scala could compute the smallest
sample of size 128. Overall, the speedups range from minimal 9.9 x to 28.1 x. The
highest speedups were achieved at smaller sample sizes.

Instrumented Libraries to Normalize Results. By profiling and code inspection
we identified differences in how the libraries implement the hash code operation.
Instead of caching, Scala always recomputes the hash code for collections. This
necessarily follows from its design choice where every internal trie node implements
the full container API: caching hash codes on every level would incur a major memory
overhead. In contrast, Clojure computes collection hash codes lazily, whereas CHAMP

incrementally updates them.

These differences do not influence the microbenchmarks since they do not invoke
hash code calculations at all. Nevertheless, from the dominators case we conclude
that caching hash codes is a critical design element of immutable nested collections.
To remove possible bias from hash code calculations, we manually modified the
source code of Scala and CHAMP to calculate hash codes lazily such as Clojure does.
Subsequently, we ran the dominator experiment again; the results are illustrated
in Table 3.3. CHAMP improves over Clojure by median 3 x, and over Scala by 1.8 x.
These speedups are directly accountable to improved iteration and equality checking
performance in this realistic case.

3.8. ANALYSIS AND THREATS TO VALIDITY 65

Table 3.4: Preliminary measurements of Last-Level Cache misses for map data
structures of size 223. The number in brackets illustrate how much CHAMP reduces
cache misses over the other implementations.

Operation
Last-Level Cache Misses for Maps

CHAMP Scala Clojure

Equality (Distinct) 112 682 364 452 (3.2 x) 157 240 (1.4 x)

Equality (Derived) 82 744 351 063 (4.2 x) 146 735 (1.8 x)

Iteration (Key) 110 397 333 985 (3.0 x) 152 210 (1.4 x)

Iteration (Entry) 109 979 341 010 (3.1 x) 147 221 (1.3 x)

Table 3.5: Preliminary measurements of Last-Level Cache misses for set data struc-
tures of size 223. The number in brackets illustrate how much CHAMP reduces cache
misses over the other implementations.

Operation
Last-Level Cache Misses for Sets

CHAMP Scala Clojure

Equality (Distinct) 100 576 205 710 (2.0 x) 203 176 (2.0 x)

Equality (Derived) 71 348 171 872 (2.4 x) 206 862 (2.9 x)

Iteration (Key) 99 268 205 177 (2.1 x) 160 346 (1.6 x)

Conclusion

Although the dominators case was selected to demonstrate a positive effect of our
optimizations, it is real and the evaluation could have produced a contra-indication
of the relevance of the new CHAMP data structure. It is not true that every algorithm
will benefit from CHAMP, but this case does provide a strong indication that if you
start from the design decision of using functional programming abstractions, then
CHAMP is bound to be faster than the traditional renderings of a HAMT on the JVM.

3.8 Analysis and Threats to Validity

The experimental results in the previous sections answer our hypotheses. From this
we learn that the optimizations work but not exactly why they work. The three
evaluated HAMT implementations, and their map and set implementations do not

66 CHAPTER 3. THE CHAMP ENCODING

only differ from each other, but also from Bagwell’s original. In this section we dig
deeper to find confirmation of the hypothesis that indeed better locality is the cause
of the improvement and we discuss which other factors may be at play to threaten
the validity of this claim.

Differences with Clojure’s Implementation

Firstly, Clojure uses a lazy sequence abstraction for their iterators. This extra
indirection might cause a performance issue or higher number of cache misses as
well. However, we did isolate the effect of our optimizations comparing versions of
CHAMP itself (cf. Section 3.8), mitigating this threat to validity.

Secondly, Clojure’s PersistentHashSet internally wraps a PersistentHashMap

instead of specializing for the lack of a value reference. This explains why memory
savings are bigger for sets than for maps compared to CHAMP, but has no effect on
our conclusions otherwise.

Finally, Clojure uses utility functions for calculating hash codes that dispatch
(with two instanceof checks) on specific interfaces, to apply specialized hash func-
tions. In our case, Clojure delegated to the standard hashCode method. However,
these utility functions are called in lookup, insert, and delete and may have a small
negative effect on performance.

Influence of Internal Values versus Leaf Values

The most fundamental difference between CHAMP and Scala’s implementation is
how they store the content. Conceptually, Scala’s leaf nodes mirror Java’s Map.Entry

instances, and therefore do not require boxing of tuples when iterating over entries.
With leaf nodes, Scala’s HAMT design stores the content elements exactly one tree
level deeper than other HAMTs. Whereas the differences in memory footprints can
be directly attributed to this difference in design, the runtime differences for lookup,
insertion, and deletion can not. The median differences between CHAMP and Scala
(up to 30 %) could be either due to the additional level of memory indirections or
because of implementation details.

Modeling Costs of Hash Codes and Equality

The microbenchmarks deliberately focused on the overhead of operations and ex-
cluded explicit costs for hashCode and equals methods. We mitigated this concern
by providing a realistic benchmark that has costs attached, and by additionally
microbenchmarking MEMCHAMP, a CHAMP variant that exactly matches Scala’s mem-
oized design in numbers of hashCode and equals invocations. Furthermore, if for
a particular workload the expected costs for hashCode and equals are known, one

3.8. ANALYSIS AND THREATS TO VALIDITY 67

could establish a worst case cost calculation based on Table 3.1 by weighting the
operation runtimes.

Isolating the Iteration and Equality Contributions

We internally validated that the speedups for structural equality checking and
iteration are due to our contributions by selectively switching on/off code parts. We
are using code generators to produce all different variants of CHAMP implementations
to mitigate human error.

Thus, we compared our final CHAMP design with a number of variants. E.g., for
equality checking we removed the overriding equals implementations (cf. Listing 3.5
and Listing 3.6) to fallback to the equality behavior of java.util.AbstractSet and
AbstractMap implementations. These mini-experiments do confirm that the com-
paction and canonical forms are the main source of performance improvement.

Observing Cache Misses

Most of our hypotheses in the evaluation are based on a claim that CHAMP has better
cache behavior, but measuring this on a JVM is not so easy. We used Linux perf
tool to observe low-level cache statistics.∗ In particular, we measured the CPU’s
hardware events for Last-Level Cache (LLC) misses (i.e., how often a data request
could not be served any cache) for the experiments from Section 3.6. We used JMH’s
built-in bridge to perf for our cache measurements.

In a preliminary setup we applied perf to measure selective data points at a
sampling rate of 1000 Hz. Because sampling does not report the exact amounts
of LLC misses, we restricted our observations to largest input size of 223 to the
following benchmarks: Iteration (Key), Iteration (Entry), Equality (Distinct), and
Equality (Derived). We expect from the large input size to see the effects of data
locality more accentuated. Tables 3.4 and 3.5 show the results of these experiments.
For sets and maps a pronounced effect is observable in terms of cache misses. CHAMP

always has fewer cache misses, explaining (at least for a large part) the observed
performance benefits. A future more fine-grained analysis uncovering different
cache levels may reveal more detail.

Trie Compression and Canonicalization

On insertion Clojure and Scala compress paths, if and only if the full 32-bit hash
codes of two or more elements are equal, by directly allocating a hash collision
node. Canonicalization, as presented in Section 3.4, does not implement this form of
compaction currently.

∗https://perf.wiki.kernel.org/index.php/Main_Page

https://perf.wiki.kernel.org/index.php/Main_Page

68 CHAPTER 3. THE CHAMP ENCODING

3.9 Related Work

Trie data structures have been studied since 1959: they were originally invented by
Briandais [dlBri59] and named a year later by Fredkin [Fre60]. Bagwell [Bag00] and
Olsson and Nilsson [ON07] give an elaborate overview of trie and hash-trie variants
and their performance characteristics.

HAMTs and Persistent Data Structures. In 2001 Bagwell [Bag01] described the
HAMT, a space-efficient trie variant that encodes the hash code prefixes of elements,
while preserving an upper bound in O(log32(n)) on lookup, insertion, and dele-
tion. Bagwell described a mutable hash-map implementation, but his HAMT design
was picked up to implement efficient persistent data structures [Dri+86; Oka99].
Persistency refers to purely functional, immutable data structures that are incre-
mentally constructed by referencing its previous states. The first persistent HAMT

implementation can be attributed to Rich Hickey, lead-developer of Clojure.
CHAMP builds directly on the foundations of HAMTs, improving iteration and

equality checking runtime performance while still reducing memory footprints.

Functional Lists and Vectors Inspired by HAMTs. After the introduction of HAMTs,
Bagwell published about functional list implementations [Bag02] that were evaluated
in the context of Common Lisp and OCaml runtimes. A decade later Bagwell and
Rompf [BR11] published a techreport about efficient immutable vectors that feature
logarithmic runtimes of split and merge operations. Stucki et al. [Stu+15] improved
upon the latter and performed a broader scale evaluation.

These immutable vectors are Array Mapped Tries (AMTs) and not HAMTs, because
they build prefix trees from the indices of densely filled lists. Nevertheless, the
implementation of such vectors take many design cues from HAMTs.

Concurrent HAMTs. Prokopec et al. [Pro+12] worked on mutable concurrent HAMTs

that feature iterators with snapshot semantics, which preserve enumeration of all
elements that were present when the iterator was created.

In contrast to Prokopec et al., CHAMP improves a sequential data structure design.
However, similar to Clojure’s implementation, CHAMP supports edits on a thread-
local copy that together with Software Transactional Memory [ST95] can be used to
resolve concurrent modifications.

Generative Programming Techniques. In other work, we applied generative pro-
gramming techniques [Big98; CE00; McI68] to specialize HAMT nodes [SV14]. We
discussed how to reduce the number of specializations from a large exponential num-
ber to a small subset while still maximizing memory savings. With this techniques

3.10. CONCLUSION 69

we achieved a median decrease of 55 % in memory footprint for maps and 78 %
for sets compared to a non-specialized version, but at the cost of 20–40 % runtime
overhead of the lookup operation.

Orthogonal to our previous work, Ureche et al. [UTO13] presented a specializa-
tion transformation technique called miniboxing. Miniboxing adds specializations for
primitive JVM data types to Scala, while reducing the generated bytecode.

In contrast to the generative approach, CHAMP achieves memory reductions and
speedups without the need for specialization. However, generative programming
techniques could be applied to CHAMP to save even more space.

Cache-Aware and Cache-Oblivious Data Structures [LFN02]. Cache-aware data
structures store elements in close space proximity if they are supposed to be used
together in close time proximity. Cache-aware data structures exploit knowledge
about the memory block sizes, cache lines, etc. Thus, research about cache-aware
data structures is mostly concerned with (low-level) system programming languages
where the engineer has precise control over memory layout. Java does not offer this:
everything beside primitive numeric data types are objects that live on the heap.

In contrast, cache-oblivious data structures try to store elements that are accessed
closely in time close to each other, without considering details of cache and memory
hierarchies. In that sense, CHAMP can be seen as a cache-oblivious HAMT with respect
to iteration and equality checking.

Memory Bloat and Improving Mutable Collections. On the side of mutable col-
lections, Gil et al. [GS12] identified sources of memory inefficiencies and proposed
memory compaction techniques [GS12] to counter them. They improved the memory
efficiency of Java’s mutable Hash{Map,Set} and Tree{Map,Set} data structures by
20–77 % while keeping the runtime characteristics mostly unchanged. In contrast,
CHAMP improves runtime performance of immutable collections while also slightly
improving memory performance.

3.10 Conclusion

We proposed CHAMP, a new design for Hash-Array Mapped Tries on the JVM which
improves locality and makes sure the trees remain in a canonical representation.

The evaluation of the new data structure design shows that it yields smaller
memory footprints and that runtimes can be expected to perform at least the same
but usually faster on all operations (with the exception of a slight disadvantage at
unsuccessful deletes when compared to Scala). We highlight equality checking and
iteration in particular which improves by order of magnitude in a number of cases.

CHAMP’s design can be used with or without memoization of hash codes and
thus reconciles the benefits of Clojure’s and Scala’s implementations such as small

70 CHAPTER 3. THE CHAMP ENCODING

footprints and improved worst case runtime performance. We further showed that
memoizing and incrementally updating collection hash codes is a critical design
element of nested collections, which can be added to sets without a cost.

The proposed data structures are currently used within the runtime data struc-
tures of the Rascal programming language. We expect CHAMP to be relevant for
standard libraries of other JVM programming languages as well.

Chapter 4

Specialization for Memory Efficiency
The hash trie data structure is a common part in standard collection libraries
of JVM programming languages such as Clojure and Scala. It enables fast im-
mutable implementations of maps, sets, and vectors, but it requires considerably
more memory than an equivalent array-based data structure. This hinders the
scalability of functional programs and the further adoption of this otherwise
attractive style of programming.

In this chapter we present a product family of hash tries. We generate Java
source code to specialize them using knowledge of JVM object memory layout.
The number of possible specializations is exponential. The optimization challenge
is thus to find a minimal set of variants which lead to a maximal loss in memory
footprint on any given data. Using a set of experiments we measured the
distribution of internal tree node sizes in hash tries. We used the results as a
guidance to decide which variants of the family to generate and which variants
should be left to the generic implementation.

A preliminary validating experiment on the implementation of sets and maps
shows that this technique leads to a median decrease of 55% in memory footprint
for maps (and 78% for sets), while still maintaining comparable performance.
Our combination of data analysis and code specialization proved to be effective.

This chapter is based on the following published article: Michael J. Steindorfer and Jurgen J. Vinju.
2014. Code Specialization for Memory Efficient Hash Tries (Short Paper). In Proceedings of the 2014

International Conference on Generative Programming: Concepts and Experiences (GPCE 2014). ACM,
New York, NY, USA. URL http://dx.doi.org/10.1145/2658761.2658763.

71

72 CHAPTER 4. SPECIALIZATION FOR MEMORY EFFICIENCY

4.1 Introduction

Trie data structures have been studied since more than 55 years, yet major per-
formance improvements in memory usage are still possible using generative pro-
gramming. Tries are used to implement efficient persistent set and map data
structures [Dri+86; Oka99]. They were originally invented by Briandais [dlBri59]
and named a year later by Fredkin [Fre60]. Persistency —in this context— means a
functional, immutable data structure that is incrementally built by referencing its
previous states; the previous state is what is persistent. In 2001 Bagwell [Bag01]
described a Hash Array Mapped Trie (HAMT), a space-efficient trie that encodes
common hash code prefixes of elements, while preserving an upper bound in
O(log32(n)) on lookup, insert, and delete operations. Bagwell’s contribution is a
corner stone for immutable collection libraries of modern programming languages
that run on the Java Virtual Machine, such as Clojure and Scala.

The hash trie design space. Firstly, the current versions of the aforementioned col-
lections libraries can be considered to be quite optimized, yet we need better memory
behavior from a HAMT implementation for the sake of scalability. This is one reason
why we explored generative programming for specializing the implementation of
a HAMT’s internal nodes. Secondly there exist a number of very similar uses of
HAMT implementation strategies for different kinds of data structures which cannot
be modeled using Java generic programming techniques without loss of efficiency.

Hash tries exist in many variations in standard collection libraries of program-
ming languages. These are the variation points:

• Update semantics: Hash tries can have immutable semantics, mutable semantics,
or staged mutability.

• Processing semantics: sequentially, concurrent, or in parallel.

• Data type semantics: sets (element 7→ boolean), maps (key 7→ value), and
vectors (index 7→ element).

• Shape of internal nodes: Hash trie nodes are n-ary (n defaults to 32).

The Scala collection library is split by the following dimensions: mutable/immutable
and sequential/parallel/concurrent. Within these categories there exist distinct data
types for set/map/vector semantics. The Clojure library contains one implementation
for hash trie-based maps and one for hash trie-based vectors, while sets are imple-
mented as wrappers for maps (key 7→ boolean). Wrapping enables reuse, but at the
cost of memory efficiency. These choices illustrate the (common) problem with the
family: any manual decomposition of one dimension will make variation in the
other dimension impractical or even infeasible.

4.2. BACKGROUND 73

In other words, the hash trie data structure seems like an ideal case for generative
programming in the traditional sense [McI68; Big98; CE00]. We expect to both spe-
cialize for better efficiency and to factor the common code for ease-of-maintenance.
On the other hand, especially the shape of the internal nodes makes the size of the
product family very large. Generating the code, loading it, “jitting” it and keeping
it in the CPU’s caches would all be hard and lead to performance penalty. Instead,
we should find a way to limit the number of specializations necessary to achieve
better memory behavior without too much losing run-time performance. This is the
technical challenge of this work; code generation is an enabler here, but it requires
careful design to benefit from it. We contribute the following:

• Statistical analysis of the shape and distribution of hash trie nodes in practice.
This evidence guides the selection of product family members to specialize.

• A hash trie specialization layout that reduces the amount of possible specializa-
tions from exponential to quadratic. Incorporating results from our analyses,
we show how to further restrict the amount of useful specializations.

• Experimental evidence that the above techniques do decrease memory usage
of sets by 78% and maps by 55%, while maintaining comparable performance.

The resulting hash trie family that we can generate appears to significantly outper-
form the current state-of-the-art implementations in terms of memory consumption.

4.2 Background

A general trie is a lookup structure for finite strings that looks and acts like a finite
automaton (DFA) without any loops: the transitions are the elements of the strings,
the internal nodes encode prefix sharing, and the accept nodes may point to values
associated with the strings. In a hash trie, the strings are the bits of a hash-code of
the elements stored in the trie. We use lazily created hash tries, in the sense that
internal nodes are only created when two hash-code prefixes would collide, leading
to internal nodes with values and references to further “states” stored along.

For example, we sequentially insert objects with the following 32-bit hash-codes
into a set: 32, 2, 4098, 34. Figure 4.1 visualizes the hash trie states as these values are
inserted. A hash trie distinguishes elements by their hash-code prefixes:

32 : . . . 00000 00001 000002 = . . . 0 1 032

2 : . . . 00000 00000 000102 = . . . 0 0 232

4098 : . . . 00100 00000 000102 = . . . 4 0 232

34 : . . . 00000 00001 000102 = . . . 0 1 232

74 CHAPTER 4. SPECIALIZATION FOR MEMORY EFFICIENCY

32

0

2

2

(a) 33 and 2

32

0 2

0

2

0

4098

4

(b) 4098

32

0 2

0

34

1

2

0

4098

4

(c) 34

Figure 4.1: Inserting numbers into a trie (array indices in top-left).

We have hash tries with a maximal arity of 32 (n-ary trees, with n = 32). To select
the path sequence that indicates where a value is inserted, we first separate a hash
code in chunks of 5 bits (values ranging between 0 and 31).

We expand the tree structure until every prefix can be unambiguously stored. In
our example: number 32 is inserted at the root node; number 2 as well (because they
do not share a common prefix). Number 4098 shares the prefix path →2→0 with
number 2, consequently it is placed unambiguously on level 3. Number 32 shares
the prefix→2 with numbers 2 and 4098, but can be separated from both on level 2.

Listing 4.1 shows a class skeleton of a hash trie implementation for a set data
structure, where the container class, the TrieSet contains size information and a
reference to the root node of the trie. The nested TrieNode class encodes the possible
n = 32 sub-tries as a compacted sparse array; the 32-bit integer bitmap signals which
of the branches are used (for value or child nodes). The size of the array is equal to
the number of 1’s in the bitmap.

The contentAndSubTries array is of type Object to either store set elements
or references to sub-tries. This compaction technique obviates extra leaf nodes
by pulling them up one level. Listing 4.1 closely resembles Clojure’s hash trie
implementations.

Both the bitmap and the array are candidates for specialization because they
introduce overhead. Here, all possible specializations would lead to thousands of
classes. Which classes do we generate for maximum effect on footprint with minimal
loss on efficiency?

4.3. NODE FREQUENCY STATISTICS 75

1 abstract class TrieSet implements java.util.Set {

2 TrieNode root; int size;

3 class TrieNode {

4 int bitmap; Object[] contentAndSubTries;

5 }

6 }

Listing 4.1: Skeleton of a hash trie-based set data structure in Java.

1 abstract class TrieSet implements java.util.Set {

2 TrieNode root; int size;

3

4 interface TrieNode { ... }

5 ...

6 class NodeNode extends TrieNode {

7 byte pos1; TrieNode nodeAtPos1;

8 byte pos2; TrieNode nodeAtPos2;

9 }

10 class ElementNode extends TrieNode {

11 byte pos1; Object keyAtPos1;

12 byte pos2; TrieNode nodeAtPos2;

13 }

14 class NodeElement extends TrieNode {

15 byte pos1; TrieNode nodeAtPos1;

16 byte pos2; Object keyAtPos2;

17 }

18 class ElementElement extends TrieNode {

19 byte pos1; Object keyAtPos1;

20 byte pos2; Object keyAtPos2;

21 }

22 ...

23 }

Listing 4.2: Skeleton of a specialized hash trie-based set in Java.

4.3 Node Frequency Statistics

We measure the distribution of node arities, to focus specialization on the most
frequent node arities. The distribution of arities is governed only by the hash-codes.
We can assume a uniform hash distribution, because if the hash-codes in a real
application do not approximate a uniform distribution, the trie’s efficiency would
degenerate anyway due to collisions, and our optimizations would be less relevant.

76 CHAPTER 4. SPECIALIZATION FOR MEMORY EFFICIENCY

Table 4.1: Frequencies and cumulative summed frequencies of tree nodes by arity.

Arity 1 2 3 4 5 6 7 8

% 1.44 63.14 14.26 3.27 1.24 0.94 0.93 0.96

∑ % 1.44 64.58 78.84 82.10 83.34 84.29 85.21 86.17

Arity 9 10 11 12 13 14 15 16

% 1.00 1.05 1.11 1.17 1.23 1.28 1.32 1.33

∑ % 87.17 88.22 89.32 90.49 91.72 92.99 94.31 95.65

Arity 17 18 19 20 21 22 23 24

% 1.28 1.09 0.75 0.40 0.15 0.04 0.01 0.00

∑ % 96.93 98.01 98.76 99.16 99.32 99.36 99.37 99.37

Arity 25 26 27 28 29 30 31 32

% 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.61

∑ % 99.37 99.37 99.37 99.37 99.37 99.38 99.39 100

To generate representative data sets, we use the Java pseudo-random number
generator. First, we generated 4096 integers between 0–8M, which we used as target
sizes for set data structures.∗For each size we then generated a random sequence
of integers to be inserted. Note that in Java the hash-code for an integer equals its
value. The results in Table 4.1 show how a uniform distribution of hash-codes does
lead to a non-uniform distribution in node arities. Similar distributions appear every
time we vary the sizes of the sets.

It can be seen that the smaller arities (2–4) account for more than 80% of all
nodes. In sum, all node combinations with arities 0–4 account for 82% of all nodes,
arities 0–8 for 86%, and arities 0–12 for 90.5%. After this there is a long tail of sizes
with a an almost uniform distribution to make up for the last 9.5%.

This data suggests the number of specializations can be reduced to 31, while still
achieving an impact on 82% of the nodes. Yet we still need to answer two questions.
First, how do the impact numbers translate to real memory savings? Second, should
we go beyond arities 0–4 with specializing?

∗Bagwell’s data set for evaluation included maps up to 8M. For the sake of comparability, we
benchmarked the same data points [Bag01].

4.4. MODELING AND MEASURING MEMORY FOOTPRINTS 77

4.4 Modeling and Measuring Memory Footprints

Measuring JVM memory consumption precisely takes quite some time and energy.
To optimize our experiments, instead we accurately model the memory consumption
of hash tries, calibrate the model once, and then continue to optimize using the
predictive model. We model these two properties:

1. the footprint of trie nodes, following JVM’s memory alignment.

2. the overhead of trie nodes compared to real data stored in nodes.

In Java every object is 8-byte memory aligned, allowing for memory compaction
techniques [GS12]. Consequently, if an object’s header together with the size of
all fields do not sum to a multiple of eight, your object will be aligned to the
nearest 8-byte boundary and consume more memory than strictly necessary. Note
that Oracle’s HotSpot JVM uses 12-byte object headers in 32-bit mode and 16-byte
headers in 64-bit mode. References consume four bytes in a 32-bit JVM, and eight
bytes in a 64-bit JVM. Based on this knowledge we model the footprint (fp) of hash
trie nodes in formulas.

fp32(n) = d(12 + 4 + 4)/8e ∗ 8 + d(12 + 4 + 4 ∗ n)/8e ∗ 8

fp64(n) = d(16 + 4 + 8)/8e ∗ 8 + d(16 + 4 + 8 ∗ n)/8e ∗ 8

The parameter n is the arity of the node. The first part of each formula calculates
the footprint of a tree node which consists of the class header, the size of the integer
bitmap and the reference to the array. The second part of the formula describes the
layout of an array, containing an integer length field with value n, and n data slots.

We validated the correctness of both formulas on JVM 1.7.0u55, on OS X 10.9.3.
To measure the exact footprints of internal trie nodes, we use memory-measurer.∗

In order to put the numbers obtained from the formulas into perspective, we
put them into relation to the theoretical minimum amount of data that has to be
stored per node, i.e. the number of references to data/sub-tries. Figure 4.2 shows the
overhead per reference a node stores, for each possible arity in 32-bits.† It is visible
that the sparse-array implementation (cf. TreeNode in Listing 4.1) has a significant
overhead at small arities and negligible overhead for the larger arities.

This analysis illustrates how trie nodes usually have low arity with a high
overhead. Due to the uniformity of hash-codes, there are low chances of sharing
prefixes if there are few elements. When the trie fills up, more and more prefixes are
shared, lowering the overhead per element. This is another strong argument in favor
of only specializing the classes in the lower ranges.‡

∗https://code.google.com/p/memory-measurer/
†The picture is comparable for 64-bit mode.
‡An optimal, uniform hash distribution results in the worst memory performance of hash tries, on the JVM.

https://code.google.com/p/memory-measurer/

78 CHAPTER 4. SPECIALIZATION FOR MEMORY EFFICIENCY

0
10

20
30

40
50

by
te

s

Generic
Specialized

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Figure 4.2: Memory overhead per node arity in 32-bit mode.

Our goal is to achieve a worst-case per-reference overhead of 16 bytes in 32-bit
mode and 24 bytes in 64-bit mode, even for small numbers of elements. For tries,
where nodes are represented as objects, this seems a reasonable target since an object
with a single reference to it would consume 12 + 4 = 16 or 16 + 8 = 24 bytes in
32-bit and 64-bit mode, respectively.

4.5 Small Number of Specializations for Big Savings

Listing 4.2 contains a Java source code skeleton that shows all specializations for
arity 2.∗ Instead of a single bitmap we now store the 5-bit chunk of the hash-code
for each branch in a byte and the reference to either a child or value node in a field.

The following formula models the footprints for these class layouts, yielding our
target 24 bytes for size 2 (which was 48 before):

fps
32(n) = d(12 + 1 ∗ n + 4 ∗ n)/8e ∗ 8

fps
64(n) = d(16 + 1 ∗ n + 8 ∗ n)/8e ∗ 8

Given the previous analysis of arity distribution, we save 50% of the memory on at
least 80% of the nodes. Figure 4.2 shows how the overhead declines quickly.

The generated code contains specialized implementations of insert and delete
methods, such that we scale incrementally to different specialized classes and
eventually escalate into the generic implementation. This is the reason that the fields
are ordered and we generated, for example, both ElementNode and NodeElement. The
number of specializations necessary for each arity is the number of permutations: 31

for 4, 511 for 8 and 8191 for 12.
∗We used Rascal’s auto-indenting recursive templates for code generation.

4.5. SMALL NUMBER OF SPECIALIZATIONS FOR BIG SAVINGS 79

●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●

●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

M
ap

Sc
al

a

M
ap

C
lo

ju
re

M
ap

Sp
ec

. 0
−4

M
ap

Sp
ec

. 0
−8

M
ap

Sp
ec

. 0
−1

2

Se
t

Sc
al

a

Se
t

C
lo

ju
re Se
t

Sp
ec

. 0
−4 Se

t
Sp

ec
. 0

−8 Se
t

Sp
ec

. 0
−1

2

−1.0

−0.5

0.0

0.5

Figure 4.3: Relative footprints of 32-bit sets and maps compared against our generic
implementation (i.e., the zero line).

●
●●●●●●●

●●●●● ●
●●●

●●
●

●●

● ●

●●●●● ●
●

Lo
ok

up
Sc

al
a

Lo
ok

up
C

lo
ju

re

Lo
ok

up
Sp

ec
. 0

−4

Lo
ok

up
Sp

ec
. 0

−8

Lo
ok

up
Sp

ec
. 0

−1
2

In
se

rt
Sc

al
a

In
se

rt
C

lo
ju

re

In
se

rt
Sp

ec
. 0

−4

In
se

rt
Sp

ec
. 0

−8

In
se

rt
Sp

ec
. 0

−1
2

−0.4
−0.2

0.0
0.2
0.4
0.6

Figure 4.4: Relative run-times for lookup and insert in maps compared against our
generic implementation (i.e., the zero line).

Avoiding Permutations

We know we may save about half of the memory, but at the cost of generating
too many classes. A quick experiment showed that this generates too much of
an efficiency overhead. Many of the permutation classes we generate have the
exact same types and numbers of fields. If we only generate classes for unique
combinations of values and internal nodes, then the number of classes would go
down to quadratic, or more precisely to ∑n

i=1 (
2+i−1

i) classes.

80 CHAPTER 4. SPECIALIZATION FOR MEMORY EFFICIENCY

We only store how for a certain arity the node splits into content elements and
sub-tries. This yields 15 classes (0–4), 45 classes (0–8), and 91 classes (0–12), and all
possible specializations would yield 561 classes (0–32). For example, in Listing 4.2
classes ElementNode and NodeElement would collapse to a single class.

We achieve this complexity reduction by dropping the total ordering of elements
within in a specialized node. The cost of this optimization is that we need to
dynamically sort the entries when we escalate from a specialized representation to
the generic trie node. This only happens for nodes with low numbers of elements,
necessarily, so the run-time overhead is expected to be very low, especially given
that it only happens at the boundary.

Evaluation

Here we evaluate memory and run-time efficiency. The goal is to position the
memory behavior of the resulting tries to the current Clojure and Scala collections,
and we report the effect of specialization. The costs of specialization in terms of
run-time overhead are also measured.

We used the following versions: clojure-1.6.0.jar, scala-library-2.10.4.jar, and a
research branch of pdb.values-0.4.1.jar, our current library. We compared Clojure’s
PersistentHash{Set,Map}, Scala’s immutable Hash{Set,Map} and our generic set and
map against specialized versions with arities up to 4, 8 and 12.

Memory. We used the same experimental setup for evaluating the space savings,
as we used in Section 4.3 for obtaining frequency statistics. We used the first
256 pseudo-randomly generated target sizes and performed a single experiment
for every version. Figure 4.3 shows the results obtained for 32-bit. Our generic
trie-map uses less memory than the Scala and Clojure implementations, but the
specialized versions still improve on it up to 55% for maps and 78% for sets. The
64-bit measurements are the same, always 5% below the 32-bit results, but exhibit
the same magnitude of savings.

Run-time. Experiments were run with a 64-bit JVM, version 1.7.0u55, running
on an Intel Core i7 3720QM CPU under Mac OS X 10.9.3. We used Caliper† to
run all measurements. We report the median of the 15 last repetitions of each
microbenchmark, after Caliper has warmed up the JVM.

For microbenchmarking we reused the earlier setup to generate random sets and
maps. For lookup and insert we tested with a sequence of 8 randomly generated
examples. The results in Figure 4.4 show how insertion time is not affected much
by the postponed sorting and that our implementation performs the same as the

†https://code.google.com/p/caliper/

https://code.google.com/p/caliper/

4.6. CONCLUSION 81

Scala and Clojure implementations. For lookup the Scala code is 20% better than our
generic implementation, and our specializations cost between 20% and 40% run-time
overhead due to the unordered storage of node elements. We still perform faster
lookups than the Clojure implementation though.

Specialization range 0–8 yields best performance characteristics while keeping
the number of classes necessary low. It performs better than range 0–4 and equally
well as range 0–12.

4.6 Conclusion

We reduced the memory footprint of hash trie-based set and map implementations
by 55–78% by (one-time) generating specializations of hash trie nodes at the cost of
a 40% slow-down in lookup efficiency and no loss in efficiency of insertion.

A side-effect was the generation of a product family for parts of the multi-di-
mensional design space for hash trie implementations of collections. The presented
library is currently used in the run-time of the Rascal meta-programming language.

As future work we intend to study and evaluate a number of additional optimiza-
tions to the current design, mainly focusing on run-time efficiency. This would also
include a more in-depth evaluation based on wider and more realistic benchmarks.

Chapter 5

A Flexible Encoding for
Heterogeneous Data

An immutable multi-map is a many-to-many thread-friendly map data structure
with expected fast insert and lookup operations. This data structure is used
for applications processing graphs or many-to-many relations as applied in
static analysis of object-oriented systems. When processing such big data sets
the memory overhead of the data structure encoding itself is a memory usage
bottleneck. Motivated by reuse and type-safety, libraries for Java, Scala and
Clojure typically implement immutable multi-maps by nesting sets as the values
with the keys of a trie map. Like this, based on our measurements the expected
byte overhead for a sparse multi-map per stored entry adds up to around 65B,
which renders it unfeasible to compute with effectively on the JVM.

We propose a general framework for Hash-Array Mapped Tries which can store
type-heterogeneous keys and values: a Heterogeneous Hash-Array Mapped
Trie (HHAMT). Among other applications, this allows for a highly efficient multi-
map encoding by (a) not reserving space for empty value sets and (b) inlining
the values of singleton sets while maintaining a (c) type-safe API.

We detail the necessary encoding and optimizations to mitigate the overhead of
storing and retrieving heterogeneous data in a hash-trie on the JVM. Furthermore,
we evaluate HHAMT specifically for the application to multi-maps, comparing
them to state-of-the-art encodings of multi-maps in Java, Scala and Clojure.
We isolate key differences using microbenchmarks and validate the resulting
conclusions on a real world case in static analysis. The new encoding brings
the per key-value storage overhead down to 30B: a 2 x improvement. With
additional inlining of primitive values it reaches a 4 x improvement.

This chapter is based on an article that is currently under submission: Michael J. Steindorfer and Jurgen
J. Vinju. 2016. Fast and Lean Immutable Multi-Maps on the JVM based on Heterogeneous Hash-Array
Mapped Tries. arXiv:1608.01036. URL https://arxiv.org/abs/1608.01036.

83

84 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

5.1 Introduction

This chapter is about the challenges of optimizing immutable multi-maps on the
Java Virtual Machine (JVM) and how they can be solved using a general method
of coding heterogenous hash-array mapped tries. A multi-map is a data structure
which acts as an associative array storing possibly multiple values with a specific
key. Typically multi-maps are used to store graphs or many-to-many relations.

Many-to-many relations or graphs in general occur naturally in application areas
such as static analysis of object-oriented software. In some applications it is the
case that the initial raw data is many-to-one, and further processing or exploration
incrementally leads to a many-to-many mapping for some of the entries. In other
applications the distribution of sizes of the range sets in the raw data is highly
skewed, such as when representing scale-free networks, like academic citations,
the web, online social networks, and program dependence graphs. The number of
values associated with a specific key is then practically always very low, yet there
are possibly numerous exceptions to cater for nevertheless, where many values end
up being associated with the same key. A key insight in the current chapter is that
we can exploit these highly common skewed distributions to save memory for the
most frequent cases.

On the JVM relations are not natively language-supported; rather the standard
libraries of Java, Scala and Clojure either provide implementations of multi-maps,
or the map and set Application Program Interfaces (APIs) allow programmers to
construct multi-maps easily in a type-safe manner (i.e., using sets as the values of a
normal polymorphic map). The goal of this chapter is to overcome the limitations of
these existing implementations of multi-maps, improving drastically on the memory
footprint without loss of storage, lookup and iteration efficiency. Typically state-of-
the-art multi-maps come with a mode of 65B overhead per stored key/value item,
while the most compressed new encoding in this chapter reaches an optimum of 30B.
In general the encoding has 2 x smaller footprints (modal) when storing reference
objects, and 4 x smaller footprints when storing Java primitive values.

On the JVM, immutable collections are used mostly by functional/object-oriented
programmers from the Scala and Clojure communities. However, since Java 8 the
functional and streaming APIs [Bib+15] are becoming mature, making immutable
collections become more relevant in the Java context. Immutability for collections
implies referential transparency (without giving up on sharing data) and it satis-
fies safety requirements for having co-variant sub-types [IV02]. Because of these
properties, immutable collections are also safely shared in presence of concurrency.

Our point of departure is the Hash-Array Mapped Trie (HAMT) data struc-
ture [Bag01], which has proven to be an efficient immutable alternative to array-based
implementations. In contrast to arrays, HAMTs enable fine-grained memory layout
optimizations [SV14]. There exists an optimized encoding [SV15] of HAMTs tailored

5.2. FROM HOMOGENEITY TO HETEROGENEITY 85

the JVM, named Compressed Hash-Array Mapped Prefix-tree (CHAMP). The CHAMP

data structure allows for time and memory efficient immutable maps and sets.
To efficiently encode multi-maps we propose a generalisation of the CHAMP data
structure to allow for heterogeneous data shapes. The new resulting data structure,
called Heterogeneous Hash-Array Mapped Trie (HHAMT), unifies design elements
from both HAMT and CHAMP. A HHAMT allows for a type-safe API in which keys and
values can be represented using different types of data within the same map. This
allows for all kinds of optimized data structures, but we focus on multi-maps in
this chapter as the key purpose. A basic dichotomous HHAMT multi-map is used to
either store an inlined single value, or a full nested set data structure. We propose
an efficient encoding of HHAMT to mitigate the incurred overhead.

Contributions and Roadmap

We address the design and evaluation of HHAMT as follows:

• Section 5.2 describes the foundations of HHAMT and identifies the main sources
of overhead that need to be mitigated.

• Section 5.3 outlines scalable encoding of source code specializations (and their
necessary runtime support) to yield memory savings between 2 x and 4 x.

• Section 5.4 compares HHAMT against CHAMP (baseline) to understand the cost
of turning a (homogeneous) map into a (heterogeneous) multi-map.

• Section 5.5 compares a specialized HHAMT multi-map against idiomatic solu-
tions from Clojure and Scala.

• Section 5.6 compares the memory footprint of a specialized HHAMT multi-map
against state-of-the-art primitive collection libraries (Goldman Sachs, FastUtil,
Trove, Mahout).

• Section 5.7 compares the performance of multi-maps in HHAMT, Clojure, and
Scala on a realistic case.

Section 5.8 discusses related work and Section 5.9 enumerates further use cases for
heterogeneity, before we conclude in Section 5.10. All source code of data structures
and the benchmarks discussed in this chapter are available online.∗

5.2 From Homogeneity to Heterogeneity

A general trie [dlBri59; Fre60] is a lookup structure for finite strings that acts like
a Deterministic Finite Automaton (DFA) without any loops: the transitions are the
∗http://michael.steindorfer.name/drafts/hamt-heterogeneous-artifact

http://michael.steindorfer.name/drafts/hamt-heterogeneous-artifact

86 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

1 abstract class HamtCollection {

2 HamtNode root; int size;

3 // 1-bit + runtime checks (e.g., instanceof)

4 class HamtNode {

5 int bitmap;

6 Object[] contentArray;

7 }

8 }

9 abstract class ChampCollection {

10 ChampNode root; int size;

11

12 // 2-bits (distributed)

13 class ChampNode {

14 int datamap;

15 int nodemap;

16 Object[] contentArray;

17 }

18 }

19 abstract class HeterogeneousHamtCollection {

20 HeterogeneousHamtNode root; int size;

21

22 // n-bits (consecutive)

23 class HeterogeneousHamtNode {

24 BitVector bitmap = new BitVector(n * 32);

25 Object[] contentArray;

26 }

27 }

Listing 5.1: Skeletons of a various HAMTs.

characters of the strings, the internal nodes encode prefix sharing, and the accept
nodes may point to values associated with the strings. In a HAMT, the strings are the
bits of the hash codes of the elements stored in the trie. A HAMT is memory efficient
not only because prefixes are shared, but also because child nodes are only allocated
if the prefixes of two or more elements overlap.

The first class in Listing 5.1 (lines 1–8) depicts a typical encoding of a HAMT in
Java. A single 32-bit integer bitmap is used to encode which of the 32 trie-branches
—and correspondingly which slots in the untyped array— are used, together with a
mapping function that calculates offsets in the array by counting bits in the bitmap.
In general, a HAMT must be able to distinguish between three possible states for each
trie-branch: absence of data, and otherwise distinguishing the data category (either
payload, or a sub-node). Because a single bit cannot differentiate three different

5.2. FROM HOMOGENEITY TO HETEROGENEITY 87

states, additional dynamic checks —such as instanceof— are used for discriminating
the data category. Note, payload and sub-nodes occur in arbitrary order in the array.

The second class in Listing 5.1 (lines 9–18) depicts the skeleton of the CHAMP en-
coding [SV15], which operates like a HAMT but uses an explicit encoding to eliminate
dynamic instanceof checks. With two bitmaps CHAMP improves the mapping func-
tion to regroup the array slots into two separate homogeneously-typed sequences:
a sequence of data payload, followed by a sequence of sub-node references. Be-
cause each homogeneous sequence uses its own bitmap, CHAMP kept the bitmap
processing identical to HAMTs.

Summary. In a HAMT, each trie node contains an arbitrary mix of data elements
and sub-nodes, therefore array slots require type checks individually. In contrast,
CHAMP splits HAMT’s mixed data sequence into two homogeneous sequences, en-
abling optimizations that were not possible before. A key to performance —when
iterating over or batch-processing elements of homogeneous or heterogeneous data
structures— is that individual elements do not need to be checked for their specific
types [BDT13]. This is also one of the reasons why the CHAMP performs better
than the HAMT. In short: the homogeneous CHAMP data structure provides a good
starting point for heterogeneous collections.

Generalizing Towards a Heterogeneous HAMT

The third class in Listing 5.1 (lines 19–27) illustrates the proposed HHAMT skeleton.
HHAMT uses a multi-bit encoding like CHAMP but reverts to a sequential represen-
tation: one larger bitmap that stores a sequence of 32 n-bit tuples consecutively,
instead of at maximum k individual bitmaps. k denotes the maximum number of
supported heterogeneous types while n denotes the number of bits needed in our
encoding.

For any k, a HHAMT requires n = dlog2(k+ 2)e bits at minimum per trie-branch to
encode all of its possible states. The two additional states are needed for encoding the
absence of a trie branch, and encoding sub-trees in case of hash-prefix collisions. For
the sake of clarity we mainly focus on the k = 2 case in the evaluation (Sections 5.4,
5.5, 5.6 and 5.7), where the required number of bits n = 2. This case covers the
scenario of distinguishing between a singleton value, and an arbitrarily sized nested
set for multi-map implementations. However in the current section we detail the
general design and code for arbitrary k. Note that fixing k does influence efficiency
trade-offs: experimental results for k = 2 do not generalize directly to k > 2.

88 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

1 interface HeterogeneousMap {

2 // pull-based dispatch on type

3 <K,V> TypedObject<?> put (Class<K> keyType, K key, Class<V> valueType, V val);

4 <K,V> TypedObject<?> remove (Class<K> keyType, K key);

5 <K,V> TypedObject<?> get (Class<K> keyType, K key);

6

7 // push-based dispatch on type

8 <K,V> void put (Class<K> keyType, K key, Class<V> valueType, V val,

9 CallbackMap callbacks);

10

11 <K,V> void remove (Class<K> keyType, K key, Class<V> valueType, V val,

12 CallbackMap callbacks);

13

14 <K,V> void get (Class<K> keyType, K key, Class<V> valueType, V val,

15 CallbackMap callbacks);

16 }

17

18 interface TypedObject<T> {

19 Class<T> getType();

20 T get();

21 }

22

23 interface CallbackMap {

24 <E> Consumer<E> put (Class<E> elementType, Consumer<E> consumer);

25 <E> Consumer<E> get (Class<E> elementType);

26 }

Listing 5.2: Generic HHAMT interface, based on Item 29: Consider typesafe heterogeneous
containers of Effective Java [Blo08].

HHAMT API

Although this is not a core contribution, since we model data structures beyond the
power of Java’s type system, we should detail how to circumvent it. Java does not
support union types, and a polymorphic wrapper (such as Scala’s Either) would
introduce overhead. To solve this we can either write or generate specialized code for
fixed combinations of types, or use Java’s method type polymorphism and judicious
use of class literals (a.k.a. type tokens like Integer.class).

For multi-maps, which are heterogeneous internally, a generic API will suffice. For
other applications, such as when the keys or values of a map are type heterogeneous
or primitive values are inlined, code generation for the wrapping API is possible.

5.2. FROM HOMOGENEITY TO HETEROGENEITY 89

1 public void heterogeneousInterfaceTest() {

2 put(String.class, "abc", int.class, 5); // accepted by guard condition

3 put(String.class, "abc", Integer.class, 5); // accepted by guard condition

4

5 put(String.class, "abc", long.class, 5L); // rejected by guard condition

6 put(String.class, "abc", Long.class, 5L); // rejected by guard condition

7 }

8

9 static <T, U> void put(Class<T> keyType, T keyInstance, Class<U> valueType, U

valueInstance) {

10 switch(keyType.getName()) {

11 case "java.lang.String":

12 switch(valueType.getName()) {

13 case "int":

14 put((String) keyType.cast(keyInstance), (int) valueInstance);

15 return;

16 case "java.lang.Integer":

17 put((String) keyType.cast(keyInstance), (Integer) valueInstance);

18 return;

19 }

20 }

21

22 System.out.println("Unsupported Type");

23 }

24

25 static void put(String keyInstance, Integer valueInstance) {

26 System.out.println("put(String keyInstance, Integer valueInstance)");

27 }

28

29 static void put(String keyInstance, int valueInstance) {

30 System.out.println("put(String keyInstance, int valueInstance)");

31 }

Listing 5.3: The method heterogeneousInterfaceTest illustrates a possible way to map
a generalized HHAMT interface to specialized functions with type guards (cf. switch
statement).

If we use Java’s method polymorphism (cf. Effective Java, Item 29 [Blo08]) instead
we may avoid code generation at a certain cost. We use type tokens and their cast

method to encode type heterogeneity. Up to Java 8 it is not possible to bind primitive
types to type variables though, and care must be taken to avoid dynamic type errors.
Casts can be avoided using either-typed (temporary) wrappers or a typed callback
interface. Examples are contained in Listings 5.2 and 5.3. Note that the internals of
the HHAMT can decide upon the type a value with 100 % certainty.

90 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

Bitmap Encoding and Indexing

The heterogeneous skeleton in Listing 5.1 (lines 19–27) does not exhibit an optimal
encoding. We specialize the BitVector code for obtaining better memory performance.
Assuming k = 2, we use a single long field as bitmap, for a larger k we would use
several consecutive int or long fields.

The way we index into the trie node array (for lookup, insertion or deletion) is a
key design element. This indexing is different between the original CHAMP encoding
and the new HHAMT encoding because there are k-cases to distinguish.

Listing 5.4 shows how CHAMP’s original per-node-bitmap indexing would work
if generalized to multiple entry types. By default CHAMP already distinguishes
between payload data and nested nodes with separate bitmaps. This baseline (naive)
design for heterogeneous hash tries carries on similarly to distinguish more types of
references. The masking function (lines 1–3) selects the prefix bits based on the node
level in the tree (shift = 5 * level). The index function (line 4–6) requires a bitpos

variable with a single non-zero bit, designating one of the 32 possible branches. It
then maps from the bitmap/bitpos tuple to a sparse-array index by counting the
non-zero bits in bitmap on the right of bitpos. On line 9 a method template for lookup,
insertion, and deletion is shown. Because for each of the three data categories a
separate bitmap is used the processing happens in a linear-scanning manner until
the right category for a hash-prefix is matched, or the default case applies (line 31).

Although lines 12, 18, and 24 suggest the use of separate bitmaps for each distinct
type, two bitmaps are sufficient to distinguish between three cases:

int xxxxMap = rawMap1 & rawMap2;

int dataMap = rawMap2 ^ xxxxMap;

int nodeMap = rawMap1 ^ xxxxMap;

The above listing depicts how to retrofit three logical bitmaps onto two physical
bitmaps. The fields for datamap and nodemap are renamed to rawMap1 and rawMap2.
Subsequently, the data structure infers three logical views from the two raw bitmaps.
We further will refer to this retrofitted heterogeneous variant as Heterogeneous
Compressed Hash-Array Mapped Prefix-tree (HCHAMP).

Listing 5.5 illustrates operations on the bitmap in the generalized data structure
that is specialized to k = 2. The mask function can be reused, and the index function
is scaled to using a long. The new template method retrieves the 2-bit wide pattern

(line 12) and translates it to an enum value to switch on. Instead of having to search
linearly, as in Listing 5.4, we now jump directly to the relevant case handler. Using
a fast switch is even more beneficial with an increasing number of heterogeneous
types (k > 2), and while iterating which is when type dispatch will be hot.

5.2. FROM HOMOGENEITY TO HETEROGENEITY 91

1 static final int mask(int hash, int shift) {

2 return (hash >>> shift) & 0b11111;

3 }

4 static final int index(int bitmap, int bitpos) {

5 return Integer.bitCount(bitmap & (bitpos - 1));

6 }

7

8 // processing in (Heterogeneous) CHAMP

9 void processAtNode(int keyHash, int shift) {

10 int mask = mask(keyHash, shift);

11 int bitpos = bitpos(mask);

12

13 int nodeMap = nodeMap();

14 if ((nodeMap & bitpos) != 0) {

15 // process node

16 int index = index(nodeMap, bitpos);

17 ...code for lookup, insert or delete ...

18 } else {

19 int dataMap = dataMap();

20 if ((dataMap & bitpos) != 0) {

21 // process payload category 1

22 int index = index(dataMap, bitpos);

23 ...code for lookup, insert or delete ...

24 } else {

25 int xxxxMap = xxxxMap();

26 if ((xxxxMap & bitpos) != 0) {

27 // process payload category X

28 int index = index(xxxxMap, bitpos);

29 ...code for lookup, insert or delete ...

30 } else {

31 // process empty slot

32 ...code for lookup, insert or delete ...

33 }

34 }

35 }

Listing 5.4: Processing of multiple bitmaps with 1-bit entries.

92 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

1 static final int index(long bitmap, long bitpos) {

2 return Long.bitCount(bitmap & (bitpos - 1));

3 }

4

5 // processing in a Heterogeneous HAMT

6 void processAtNode(int keyHash, int shift) {

7 long bitmap = bitmap();

8

9 int mask = mask(keyHash, shift) << 1;

10 long bitpos = 1L << mask;

11

12 int pattern = (int) ((bitmap >>> mask) & 0b11);

13 Type type = toEnum(pattern);

14

15 switch (type) {

16 case EMPTY:

17 ...code for lookup, insert or delete ...

18 break;

19 case NODE:

20 int index = index(filter(bitmap, type), bitpos);

21 ...code for lookup, insert or delete ...

22 break;

23 case PAYLOAD_CATEGORY_1:

24 int index = index(filter(bitmap, type), bitpos);

25 ...code for lookup, insert or delete ...

26 break;

27 case PAYLOAD_CATEGORY_2:

28 int index = index(filter(bitmap, type), bitpos);

29 ...code for lookup, insert or delete ...

30 break;

31 }

32 }

Listing 5.5: Processing of one bitmap with 2-bit entries.

5.2. FROM HOMOGENEITY TO HETEROGENEITY 93

1 static final long filter(long bitmap, Type type) {

2 long mask = 0x5555555555555555L;

3

4 long masked0 = mask & bitmap;

5 long masked1 = mask & (bitmap >> 1);

6

7 switch (type) {

8 case EMPTY:

9 return (masked0 ^ mask) & (masked1 ^ mask);

10 case NODE:

11 return masked0 & (masked1 ^ mask);

12 case PAYLOAD_CATEGORY_1:

13 return masked1 & (masked0 ^ mask);

14 case PAYLOAD_CATEGORY_2:

15 return masked0 & masked1;

16 }

17 }

Listing 5.6: Filtering of multi-bit patterns (for k = 2).

Optimizing Bit-Counting

Extra bitwise operations are in the overhead of HHAMT which we need to mitigate.
We explain three techniques to do so.

Relative Indexing into a Single Data Category. The purpose of the index function
in Listing 5.5 is to calculate the relative index of a data element within its data
category. Given a type enum and a trie-branch descriptor (bitpos), the index function
calculates how often the given type pattern occurs in the bitmap before the bitpos

position.
The Java standard library contains bit count operations for the types int and long

that count the number of bits set to 1. These functions do not support n-bit patterns
with n > 1. However, we want to reuse the aforementioned functions, because on
the widespread X86/X86_64 architectures they map directly to hardware instructions.
We introduce some bitmap pre-processing with filters to get to that point where we
can use the native bit counters. Listing 5.6 illustrates how such a filter reduces a
matching 2-bit wide pattern to a single bit set to 1, while resetting all other bits to 0.

Distribution of Heterogeneous Elements. While lookup, insertion, and deletion
only require indexing into a single data category, on the other hand iteration and
streaming require information about the types of all elements in a trie node: their
frequency per node. Studies on homogeneous data structures [BDT13] have shown
avoiding checks on a per elements basis is indeed relevant for performance.

94 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

To also avoid such checks in HHAMT we introduce the use of histograms, on a
per node basis, that are calculated in constant time (for a given branch factor). The
computation is independent of the number of heterogenous types:

int[] histogram = new int[2n];

for (int branch = 0; branch < 32; branch++) {

histogram[(int) bitmap & mask]++;

bitmap = bitmap >>> n;

}

The former listing abstracts over the number of heterogeneous elements and executes
in 32 iterations. n and mask are constants, where mask has the lowest n bits set to 1. In
its generic form, the code profits from compiler-level optimizations, such as scalar
replacement [Sta14] to avoid allocating the array on the heap, and loop unrolling.

We assigned the bit-pattern EMPTY = 0 and NODE = 2n−1, the various remaining het-
erogenous types are assigned consecutively in the middle. For iteration, streaming,
or batch-processing data, histograms avoid expensive repetition of indexing individ-
ual categories: k bit-count operations, where each one requires applying a filter to
the bitmap. For example, the total number of elements, regardless of their types, can
be calculated with 32 - histogram[EMPTY] - histogram[NODE]. The otherwise complex
code for trie-node iteration reduces to looping through the two-dimensional his-
togram using two integer indices. The added benefit is that inlined values although
stored out of order, will be iterated over in concert, avoiding spurious recursive
traversal and its associated cache misses [SV15]. Finally, iteration can exit early when
the running counter reaches the maximum branching factor of 32 to avoid iterating
over empty positions in the tail. Note that for fixed k the code can be partially
evaluated (i.e., by a code generator) to avoid the intermediate histogram completely.

Reversing the Bitmap Encoding: Extracting Index and Type. For enabling fast
structural equality comparisons [SV15] maintaining a canonical form of the hash-trie
is essential, also after the delete operation. For HHAMT and especially for HHAMT

multi-maps this takes an extra effort: the deletion operation does know the index
and type of the removed element, however it does not know the index and type of
the remaining elements. Upon deletion, canonicalization triggers inlining of sub-tree
structures with only a single remaining payload tuple. Efficiently recovering the
index and type of the only remaining tuple is important for the overall efficiency of
the deletion operation. We devised a recovery function for bitmaps with n-bit tuples,
based on Java’s standard library functions: Long.numberOfTrailingZeros(bitmap)/n*n.
By first counting the number of trailing zeros, we approximate the region within
the bitmap that contains bit-pattern information. We subsequently adjust the non-
zero count to our n-bit pattern alignment with an integer division followed by an

5.3. LEAN SPECIALIZATIONS 95

multiplication. As a result, we recovered the mask that allows retrieving the type of
the remaining element (cf. Listing 5.5, lines 10–13).

Outlook. We have now discussed all techniques to mitigate Central Processing
Unit (CPU) overhead caused by a more complex indexing. The remaining challenge
is saving memory, which is discussed next.

5.3 Lean Specializations

Specialization for a fixed number of heterogeneous types will prove essential for both
memory efficiency and CPU performance. In this section we take the perspective of
the general k-heterogeneous HHAMT. The effect of these techniques will be evaluated
in Sections 5.4, 5.5, 5.6 and 5.7 in different contexts.

For a HHAMT with k different types, there exist aritynodes ×∏k
i=1 arityi possible

strongly-typed variants in theory, with the constraint that aritynodes +∑k
i=1 arityi <=

32. We can reduce this complexity by grouping different heterogeneous types
together into a section that is represented by their least upper bound type. Ultimately,
we can group together all reference types and sub-nodes into one section, and all
primitive types into another section [UTO13], to achieve a quadratic upper bound
that overcomes the dichotomy of reference and primitive types. Therefore, in the
remainder of this section we will focus on the most common case of k = 2 that
also satisfies our use case of multi-maps. Note that due to the bitmap encoding we
always know the precise type of an object, using more general types for internal
storage is solely used to reduce the total number of specializations.

There exist empirical evidence [SV14] for k = 1 that specializing up to arities of
8 or 12 balances impact on memory performance best with the necessary amount of
generated code. However with heterogeneity k > 1 this may not hold, and to exploit
inlining primitive types for saving more memory we should support specializing
the full bandwidth up to 32.

We now present an improved approach for code generation that allows fully
specialized collections (i.e., "array-less" data structures) with very low memory
footprints. It aims to overcome the following issues that typically compromise
performance of specialized code:

Additional Polymorphism: Turning a generic data type into a set of distinct spe-
cializations compromises trace-based inlining strategies of a Just-in-time (JIT)
compiler. By introducing specializations, previous monomorphic call-sites are
turned into polymorphic call-sites: a JIT compiler has to fallback to dynamic
dispatch for method method calls that were previously resolved to direct calls.

96 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

1 abstract class Set1 implements Set {

2 final Object slot0;

3

4 Set add(Object value) {

5 if (slot0.equals(value)) {

6 return this;

7 } else {

8 return new Set2(slot0, value);

9 }

10 }

11 }

Listing 5.7: Interlinking of specializations prohibits generic methods: Set1 contains a
static reference to Set2.

Code Bloat: Substituting a dynamic structure with specializations often demands
the specialization of operations as well. In the case of hash-tries, we specialize
for constant array sizes [SV14]: instead of referencing a heap structure, we
inline the array-fields into a trie-node. Unfortunately the resulting memory
saving come at a price: suddenly array operations (i.e., allocation, copy, get,
set, length) must be specialized as well.

Interdependency of Specializations: In general, each specialized data type con-
tains static references to other specializations that represent possible next
states. Listing 5.7 exemplary lists the add method of set data structure special-
ized for one element that might return a set specialized for two elements. The
switching between specialized representations, puts strain on the JIT compiler
at run-time due to incremental class loading and the constant need to compile
methods of specializations during a data structure builds up, further, it is one
source of code bloat.

In the remainder of this section we detail our approach of specialization that remedies
the aforementioned overheads. In our design, a specialization represents purely
a heterogeneous trie-node, specialized for a certain content size. It contains pre-
evaluated content stored in static fields and instance fields (storing the bitmap, and
the inlined array content), however does not override methods.

Indexing and Selecting Specializations

We replace the use of arrays, which can be allocated using an arbitrary length pa-
rameter, with fields inlined in specialized classes. Commonly, for each specilization
a unique constructor must be called (cf. Listing 5.7, specialization interlinking).

5.3. LEAN SPECIALIZATIONS 97

Which constructor must be called depends on the current state of a trie node and
the operation applied to the data structure.

To enable class selection at run-time, we introduce a global and static two-
dimensional Class[][] specializations array, indexed by the number of primitive
data fields (t) and the number of reference fields (u). This lookup table solves the in-
terdependency problem of specialization: when adding a key-value tuple of reference
type the next specialization can be be determined with specializations[t][u + 2],
or respectively with specializations[t - 2][u] when a tuple of primitive type is
deleted. Once a specialization is selected, it can be initialized by invoking its default
constructor: Object instance = specialization[t][u].newInstance().

Since the array is often used and relatively small, we found it runs faster than
distributing code over the specialized classes. This also allows for more generic code
in base classes that is more likely to be optimized by the JIT compiler.

Initializing Instances of Specialized Classes

For the generic representation that operates on arrays, we would use System.arraycopy

initializing a new trie node, which is really fast. Now we want to try and approach
similar efficiency for initializing the fields of our specialized classes.

Our solution is to introduce a arraycopy-like operation that is capable of copying
consecutive fields between object instances: an ArrayView on an object layout is an
abstraction which logically maps an arbitrary region within objects to an array. To
ensure safety we check whether the JVM indeed maps the fields in a consecutive
region at class loading time. Using a primitive ArrayView.copy we achieve similar
performance to System.arraycopy. We measured the effect using a micro-experiment:
the new primitive is about 20–30 % faster than field-by-field copying. Since eventually
copying trie nodes is the primary bottleneck we may expect similar speedups for
insertion- and deletion-intensive code of HHAMT and less for lookup intensive code.

Listing 5.8 shows how we can model an array view of a range of fields within
a heap object. Once we have obtained a reference to an ArrayView, we can in-
voke corresponding (getFrom|setIn)HeapRegionArrayView methods that either retrieve
or a set a value of a ArrayView. To mimic System.arraycopy on an ArrayView, we
use sun.misc.Unsafe.copyMemory. For our experiments, we extended the copyMemory

function to support copying from/to objects while catering for card marking, i.e.,
signaling the Garbage Collector (GC) that references changed.

Relationship to VarHandle API of the Upcoming JDK 9. The Java Development
Kit (JDK) 9 will introduce an API for uniformly referencing, accessing and modifying
fields. Thus, independently of the realization of a variable —static field, instance
field, or array— a handle to the field reference can be obtained. In earlier versions
of Java, the granularity of references was restricted to objects; a VarHandle in contrast

98 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

1 class TrieNode_T4_U3 implements Node {

2 long bitmap;

3

4 int key0; int val0;

5 int key1; int val1;

6

7 Object slot0;

8 Object slot1;

9 Object slot2;

10

11 static ArrayView getArrayView_T4() {

12 return createHeapRegionArrayView(

13 TrieNode_T4_U3.class, "key0", "val1");

14 }

15

16 static ArrayView getArrayView_U3() {

17 return createHeapRegionArrayView(

18 TrieNode_T4_U3.class, "slot0", "slot2");

19 }

20 }

Listing 5.8: ArrayView on regions of specialized trie node.

enables addressing fields or arrays (at a finer granularity) inside an object. The
VarHandle API furthermore contains abstractions to view and process off-heap memory
regions as arrays. However, it does not provide likewise abstractions for obtaining
array views on on-heap regions.

The aforementioned ArrayView implementation we used provides a proof-of-
concept implementation on how to extend the VarHandle API to support array views
for on-heap regions.

Summary

For collections, we eliminated issues that typically compromise the performance of
specialized code. We will evaluate the effects of these techniques in Section 5.4.

5.4 Benchmarks: Heterogeneous Multi-Maps versus Maps

In this section we evaluate the performance characteristics of the various imple-
mentations of multi-maps on top of the HCHAMP, HHAMT, and specialized HHAMT

encodings, comparing them against the basic homogeneous CHAMP map data struc-
ture as state-of-the-art baseline [SV15]. We are interested in isolating the effects that
are incurred by adding the heterogeneity feature:

5.4. BENCHMARKS: HETEROGENEOUS MULTI-MAPS VERSUS MAPS 99

• HCHAMP is close to CHAMP (same logic, but derives three bitmap views from
two physical bitmaps);

• HHAMT generalizes the heterogeneous bitmap encoding;

• and specialized HHAMT improves memory footprints by dynamically selecting
statically known specializations.

In the case of multi-maps, heterogeneity lies in the internal distinction between
1 : 1 and 1 : n mappings.

Assumptions. We evaluate the pure overhead of operations on the data structures,
without considering cost functions for hashCode and equals methods. This perfor-
mance assessment should reveal the overhead of adding heterogeneity to CHAMP, the
effect of the specialization approach and the effect of accessing the heterogeneous
data elements.

Hypotheses. We expect HHAMT’s runtime performance of lookup, deletion, and
insertion to be similar comparable to CHAMP’s runtime performance, but never better.
Running times should not degrade below a certain threshold —we feel that 25 %
for median values and 50 % for maximum values would about be acceptable as a
trade-off— (Hypothesis 1).

Iteration over a multi-map is more complex than iterating over a map. Iter-
ation (Key) has to distinguish between heterogeneous categories, whereas Itera-
tion (Key) has to distinguish heterogeneous categories, Iteration (Entry) additionally
has to flatten nested sets to obtain a tuple view on multi-maps. Consequently, we
assume costs of about 25 % for median values and 50 % for maximum values as well
(Hypothesis 2).

Based on related work in the domain of specializing HAMTs [SV14], we expect that
specializing may introduce run-time overhead. However, we expect lower overhead
(than the reported 20–40 % degradations for lookup) due to our mitigation strategies
outlined in Section 5.3 (Hypothesis 3).

Furthermore, memory footprints of HCHAMP and HHAMT should in practice
match CHAMP’s footprints, because all variants use in total 64-bits for bitmaps
(Hypothesis 4).

Experiment Setup

We use a machine with Apple OS X (10.11.3) and 16 GB RAM. It has an Intel Core
i7-3720QM CPU, with 2.60 GHz, and an 6 MB Last-Level Cache (LLC). Frequency
scaling was disabled. For testing, we used an OpenJDK (JDK 8u65) JVM configured
with a fixed heap size of 8 GB. We measure the exact memory footprints of data

100 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

structures with Google’s memory-measurer library.∗ Running times of operations
are measured with the Java Microbenchmarking Harness (JMH), a framework to
overcome the pitfalls of microbenchmarking.† For all experiments we configured
JMH to perform 20 measurement iterations of one second each, after a warmup
period of 10 equally long iterations. For each iteration we report the median runtime,
and measurement error as Median Absolute Deviation (MAD), a robust statistical
measure of variability that is resilient to small numbers of outliers. Furthermore, we
configured JMH to run the GC between measurement iterations to reduce a possible
confounding effect of the GC on time measurements.

In our evaluation we use collections of sizes 2x for x ∈ [1, 23]. Our selected size
range was previously used to measure the performance of HAMTs [Bag01; SV15]. For
every size, we fill the collections with numbers from a random number generator and
measure the resulting memory footprints. Subsequently we perform the following
operations and measure their running times:

Lookup, Insert and Delete: Each operation is measured with a sequence of 8 ran-
dom parameters to exercise different trie paths. For Lookup and Delete we
randomly selected from the elements that were present in the data structures.‡

For Insert we ensured that the random sequence of values was not yet present.

Lookup (Fail), Insert (Fail) and Delete (Fail): Measuring unsuccessful operations.
The setup equals the aforementioned setting, however with the difference that
we swap the sequences of present/not present parameters.

Iteration (Key): Iterating over the elements of a set or the keys of a map respectively.

Iteration (Entry): Iterating over a multi-map, flattening and yielding tuples of type
Map.Entry.

We repeat the list of operations for each size with five different trees, starting from
different seeds. This counters possible biases introduced by the accidental shape
of the tries, and accidental bad locations in main memory. Evaluating HAMT data
structures containing simply random integers accurately simulates any application
for which the elements have good uniformly distributed hash codes. A worse-
than-uniform distribution would —regardless of the HAMT-like implementation—
overall reduce the memory overhead per element and increase the cost of updates
(both due to clustering of elements). We consider a uniform distribution the most
representative choice for our comparison.

∗https://github.com/DimitrisAndreou/memory-measurer
†http://openjdk.java.net/projects/code-tools/jmh/
‡For < 8 elements, we duplicated the elements until we reached 8 samples.

https://github.com/DimitrisAndreou/memory-measurer
http://openjdk.java.net/projects/code-tools/jmh/

5.4. BENCHMARKS: HETEROGENEOUS MULTI-MAPS VERSUS MAPS 101

Experiment Results

We first report the precision of the individual data points. For 99 % of the data points,
the relative measurement error amounts to less than 1 % of the microbenchmark
runtimes, with an overall range of 0–4.8 % and a median error of 0 %.

We summarize the data points of the runs with the five different trees with
their medians. Then Figure 5.1(a), and 5.1(b) report for each benchmark the ranges
of runtime improvements or degradations. For brevity, the effects on memory
footprints and of specialization are not contained in the boxplots, but are discussed
in text. Each boxplot visualizes the measurements for the whole range of input size
parameters. For improvements we report speedup factors above the neutral line
(measurementCHAMP / measurementHHAMT-Variant), and degradations as slowdown
factors below the neutral line , i.e., the inverse of the speedup equation. From this
data we learn the following:

Confirmation of Hypothesis 1: The cost of converting a map to a multi-map stayed
within the specified bounds for both HCHAMP and HHAMT.

For HCHAMP, Lookup, Insert and Delete added a median slowdown of 9 %, 0 %,
and 7 % respectively, and Lookup (Fail), Insert (Fail) and Delete (Fail) added
12 %, 2 % and 7 % respectively. With exception to single outliers produced
Delete (Fail), the maximum slowdown are lower than 18 % at most.

For the generalized HHAMT, the costs for multi-maps over maps are higher.
Lookup, Insert and Delete added a median slowdown of 20 %, 5 %, and 10 %
respectively, and Lookup (Fail), Insert (Fail) and Delete (Fail) added 22 %, 0 %
and 13 % respectively. With exception to single outliers produced Delete (Fail),
the maximum slowdown are lower than 29 % at most.

(Partial) Confirmation of Hypothesis 2: Compared to our baseline, and counter to
our intuition, HCHAMP improved Iteration (Key) by a median 35 % and Itera-
tion (Entry) by 37 %. The more general HHAMT improved Iteration (Key) by a
median 16 % and Iteration (Entry) by 13 %. However, the value spread in Fig-
ure 5.1 appears large and the maximum bounds are violated for Iteration (Key).

(Partial) Confirmation of Hypothesis 3: On average, we observed an overhead of
3 % for Lookup and 6 % for Lookup (Fail) when comparing a specialized
HHAMT against its regular HHAMT counterpart. These numbers confirm our
intuition and are lower then the 20–40 % overhead reported by Steindorfer and
Vinju [SV14]. The median costs for Insert (24 %) and Delete (31 %) however
match their results. Specializations improved memory consumption by at least
38 % for data structures with 32 or more entries.

Confirmation of Hypothesis 4: Memory footprints of HCHAMP and HHAMT (omit-
ted in Figure 5.1) match exactly CHAMP’s, when using multi-maps as maps.

102 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

●●

●

●

●

●

●
●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Iteration
(Entry)

R
eg

re
ss

io
n

or
 Im

pr
ov

em
en

t (
Fa

ct
or

)

1.50x

1.25x

neutral

1.25x

1.50x

(a) HCHAMP multi-map versus CHAMP map (baseline).

●
●

●
●

●

●

Lookup Lookup
(Fail)

Insert Insert
(Fail)

Delete Delete
(Fail)

Iteration
(Key)

Iteration
(Entry)

R
eg

re
ss

io
n

or
 Im

pr
ov

em
en

t (
Fa

ct
or

)

1.50x

1.25x

neutral

1.25x

1.50x

(b) HHAMT multi-map versus CHAMP map (baseline).

Figure 5.1: Visualizing the overhead of various multi-map implementations over a
CHAMP map implementation.

5.5. BENCHMARKS: COMPARING MULTI-MAP DESIGNS 103

Discussion. A more detailed investigation revealed that for Iteration (Key) mea-
surements at sizes 21 and 25 showed significant deviation from the remaining
measurements. These two measurements were not statistically identified as outliers
due to the small sample size of 23 (sizes 2x for x ∈ [1, 23]). When removing these
two measurements, the upper bound of slowdowns is 6 % for HHAMT and 36 % for
HCHAMP.

While not impacting lookup performance, specializing trades the runtime perfor-
mance of insertion and deletion for gaining savings of approximately 1.4 x.§ Because
only operations that allocate new tree nodes are affected, we attribute slowdowns
to the lookup table we introduced (adding two memory indirection). Nevertheless,
specializing is of key importance when optimizations for primitive data types; we
evaluate that effect separately in Section 5.6.

Summary. Despite its more complex and heterogeneous encoding, HHAMTs achieves
excellent runtimes across all tested operations. Converting a map into a multi-map
with the means of a heterogeneous encoding had usually less costs associated than
we expected beforehand. Our specialization approach could successfully mitigate
overhead for lookups while reducing memory footprints. However, using a lookup
table for our specializations still impacts insertion and deletion, when compared to
regular array allocations that do not require a lookup table.

5.5 Benchmarks: Comparing Multi-Map Designs

We further evaluate the performance characteristics of our specialized HHAMT multi-
map against implementations from Clojure and Scala. Both languages do not provide
native immutable multi-maps in their standard libraries, however suggest idiomatic
solutions to transform maps with nested sets into multi-maps.

VanderHart [VN14, p. 100–103] proposes a solution for Clojure based on “proto-
cols”. Values are stored untyped as either a singleton, or a nested set. Consequently,
the protocol extension handles the possible case distinctions —not found, singleton,
or nested set— for lookup, insertion, and deletion.

Scala programmers would idiomatically use a trait for hoisting a regular map to
a multi-map. However, the Scala standard library only contains a trait for mutable
maps; we therefore ported the standard library program logic of the trait to the
immutable case, nesting typed sets into maps.

Hypotheses. We expect specialized HHAMT’s runtime performance of lookup, dele-
tion, and insertion to equal the competitors performance, because we tried hard to

§Note that only the outer multi-map structure was specialized and not the nested sets. A further
specialization of the nested sets would yield even more substantial memory savings.

104 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

●

●●●●

●●●

Lookup Lookup
(Fail)

Insert Delete Footprint
(32−bit)

Footprint
(64−bit)

R
eg

re
ss

io
n

or
 Im

pr
ov

em
en

t (
Fa

ct
or

)

2x

neutral

2x

3x

4x

5x

(a) Specialized HHAMT multi-map versus Clojure’s multi-map (baseline).

●
●
●●

●
●
●●

Lookup Lookup
(Fail)

Insert Delete Footprint
(32−bit)

Footprint
(64−bit)

R
eg

re
ss

io
n

or
 Im

pr
ov

em
en

t (
Fa

ct
or

)

2x

neutral

2x

3x

4x

5x

(b) Specialized HHAMT multi-map versus Scala’s multi-map (baseline).

Figure 5.2: Performance comparison of a specialized HHAMT multi-map against
implementations in Clojure and Scala.

5.5. BENCHMARKS: COMPARING MULTI-MAP DESIGNS 105

mitigate the incurred overhead, and the idiomatic solutions require some overhead
as well. Runtimes should not degrade below a certain threshold —say 10 % for me-
dian values and 20 % for maximum values would just be acceptable— (Hypothesis
5). However, for negative lookups we expected that specialized HHAMT performs
worse than Scala (Hypothesis 6). This hypothesis is based on related work [SV15]
that explains the inherent differences between CHAMP and Scala when it comes to
memoizing hash codes. Our hypothesis expects memory improvements by at least
50 % on average due to omitting nested collections for singletons (Hypothesis 7).

Experiment Setup

Data generation is derived from the experimental setup outlined in Section 5.4. We
keep the number of unique keys equal —2x for x ∈ [1, 23]— but instead of using
distinct data in each tuple, we now use 50 % of 1 : 1 mappings, and 50 % of 1 : 2
mappings. Fixing the maximal size of right-hand side of the mapping to 2 may
seem artificial, but it allows us to precisely observe the singleton case, the case for
introducing the wrapper and the overhead per additionally stored element. The
effect of larger value sets on memory usage and time can be inferred from that
without the need for additional experiments.

Insert: We call insertion in three bursts, each time with 8 random parameters to
exercise different trie paths. Firstly we provoke full matches (key and value
present), secondly partial matches (only key present), and thirdly no matches
(neither key nor value present). Next to insertion of a new key, this mixed
workload also triggers promotions from singletons to full collections.

Delete: We call deletion in two bursts, each time with 8 random parameters. Pro-
voking again, full matches and partial matches. Next to deletion of a key, this
mixed workload also triggers demotions from full collections to singletons,
and canonicalization where applicable.

Lookup: Similar to Delete we call lookup in two bursts to exercise full and partial
matches.

Lookup (Fail): In a single burst with 8 random parameters we test negative lookups
(neither key nor value present). We assume this test equivalent to Delete with
no match.

Experiment Results

Figures 5.2(a) and 5.2(b) show the relative differences of specialized HHAMT multi-
map compared to the implementations in Clojure and Scala. From the data we can
evaluate our hypotheses:

106 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

Confirmation of Hypothesis 5: Runtimes unexpectedly improve over the competi-
tion. Lookup, Insert, and Delete perform similar to Scala (by a median 12 %,
9 %, and 16 % faster), and clearly better than Clojure (by a median speedup
of 2.51 x, 1.75 x, and 2.05 x). Compared to Scala we observed individual data
points that exhibited minimal slowdowns of less than 9 % at larger input sizes.

Confirmation of Hypothesis 6: HHAMT performs worse than Scala for negative
lookups. Runtimes increased by a median 39 % and roughly doubled at
maximum with a 106 % increase. In contrast, when compared to Clojure we
do not see a negative impact.

Confirmation of Hypothesis 7: Memory footprints improve by a median factor of
1.92 x (32-bit) and 1.93 x (64-bit) over the implementation in Scala, and over in
Clojure by a median factor of 1.9 x (32-bit) and 2.14 x (64-bit).

Discussion. We were surprised that the memory footprint consumptions of Clo-
jure’s and Scala’s multi-map implementations are essentially equal. From related
work [SV15] we knew the typical trade-offs of both libraries: Scala mainly opti-
mizes for runtime performance, while Clojure optimizes for memory consumption.
Code inspection revealed the cause of Scala’s improved memory performance: their
immutable hash-sets contains a specialization for singleton sets.

All three libraries follow different paradigms for avoiding code duplication in
their collection libraries. While Scala and Clojure use extension mechanisms (i.e.,
traits and protocols respectively), HHAMT avoids duplication by supporting internal
heterogeneity.

Summary. With microbenchmarks we were able to measure the performance of
individual operation, and further to measure the footprint of synthetically generated
structures of different sizes. In this setting the heterogeneous design of specialized
HHAMT proved to be better in general: improved runtimes of lookup, insertion, and
deletion —with the notable exception of negative lookups when compared to Scala—
and most importantly memory improvements of 1.9–2.14 x.

5.6 Case Study: Primitive Collection Footprints

A type-safe heterogeneous HAMT encoding shines most with bounded numerical
data: it allows to exploit the difference between primitive (value-based) data types
and reference types. More specifically, a Multimap<int, int> can leverage storing
unboxed inlined singletons. Any non-heterogeneous immutable collection structure
would have to store boxed integer objects instead, if not singleton sets of boxed

5.6. CASE STUDY: PRIMITIVE COLLECTION FOOTPRINTS 107

integers. So, instead, as a fair point-of-reference we will compare to the state-of-the-
art hand-optimized specialized immutable data structures for primitive values.

We are not aware of any comparable persistent or immutable primitive collec-
tion library which is optimized for primitive data types on the JVM. While there
are many specialized primitive collection libraries for the JVM, only some contain
(slower) copy-on-write immutable data structures implemented as facades over their
mutable counterparts. With respect to primitive multi-maps, we did not find any
implementation, neither mutable nor mutable.

So, we concentrate on comparing the memory footprint of Map<int, int>, imple-
mented as a specialized HHAMT (with 1 : 1 mappings) compared to the most efficient
primitive mutable collections we are aware of, namely: Goldman Sachs Collections,
FastUtil, Trove, and Mahout. As a point of reference we also include Guava’s
RegularImmutableMap because it is a well-known library, but commonly known to be
non-optimal in terms of memory consumption.

Experiment Results

Table 5.6 illustrates observed memory footprints for maps for sizes 2x for x ∈ [1, 23].
At each size, measurements are normalized with respect to the minimum memory
footprint (retained size of heap graph). Consequently, the minimum value 1 depicts
the smallest data structure, whereas all other data points are displayed in their
relative distance (factor of how much more memory they consume).

The results show that HHAMT consistently consumes the least amount of memory
(median 1.00 x, range 1.00–1.10 x), followed by Goldman Sachs (median 1.04 x, range
1.00–2.18 x) and FastUtil (median 1.07 x, range 1.00–4.18 x). Trove exhibits constant
results within a small bandwidth (median 1.23 x, range 1.15–2.15 x). In contrast to
Trove’s constant results, Mahout delivered surprisingly inconsistent results (median
1.94 x, range 1.22–29.64 x). With overheads of 29.64 x, 25.08 x, 19.18 x, 11.24 x and
4.72 x for the data points 21–25, Mahout exceeds the footprints of our generic
reference data structure from Guava (median 4.00 x, range 2.27–4.72 x).

Discussion. Compared to all other primitive collections, HHAMT excelled especially
at small collections up to 32 elements. Given that in practice most collections
are small [MS07] these improvements look promising. Primitive collections in
general have the problem how to mark which slots are in use (there is no null

equivalent in value types). Several encodings —e.g., sentinel values, or bitmaps—
exist to circumvent this limitation. HHAMT performs well with respect to primitive
collections, because HHAMT inherently encodes information about the presence
and type of (primitive) values on a per node basis an therefore obsoletes special
encodings for sentinel values. Further applications and benefits of heterogeneous
data structures are discussed in Section 5.9.

108 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

Table 5.1: Comparing the memory footprint of a HHAMT map (specialized for int)
to state-of-the-art primitive int maps. Guava*** is our reference data point for a
generic map containing boxed integers, i.e., Map<Integer, Integer>. At each size,
measurements are normalized with respect to the minimum memory footprint
observed (smaller is better).

Map
Entries

HHAMT Goldman
Sachs

Trove FastUtil Mahout Guava***

21 1.00 2.18 1.91 4.18 29.64 2.27

22 1.00 1.85 2.15 3.54 25.08 3.15

23 1.00 1.41 2.06 2.71 19.18 4.29

24 1.00 1.38 1.97 1.59 11.24 4.72

25 1.00 1.04 1.32 1.13 4.72 3.84

26 1.05 1.00 1.25 1.04 2.40 3.83

27 1.00 1.04 1.29 1.06 1.28 4.07

28 1.00 1.14 1.41 1.15 1.41 4.51

29 1.00 1.07 1.22 1.07 1.22 4.24

210 1.03 1.00 1.15 1.00 1.94 3.99

211 1.10 1.00 1.15 1.00 1.76 3.99

212 1.00 1.00 1.15 1.00 1.68 4.00

213 1.00 1.11 1.27 1.11 1.76 4.43

214 1.00 1.07 1.23 1.07 1.61 4.29

215 1.04 1.00 1.15 1.00 1.41 4.00

216 1.10 1.00 1.15 1.00 1.33 4.00

217 1.00 1.00 1.15 1.00 1.23 4.00

218 1.00 1.11 1.27 1.11 1.27 4.43

219 1.00 1.07 1.23 1.07 2.08 4.29

220 1.04 1.00 1.15 1.00 1.94 4.00

221 1.09 1.00 1.15 1.00 1.94 4.00

222 1.00 1.00 1.15 1.00 1.94 4.00

223 1.00 1.11 1.28 1.11 2.16 4.44

min 1.00 1.00 1.15 1.00 1.22 2.27

median 1.00 1.04 1.23 1.07 1.94 4.00

max 1.10 2.18 2.15 4.18 29.64 4.72

5.7. CASE STUDY: STATIC PROGRAM ANALYSIS 109

Summary. In our measurements, HHAMT multi-maps that are specialized for int

consume (with 1 : 1 data) a median 4 x less memory than generic map data structures.
HHAMT further achieves the same small footprints as class-leading primitive int maps,
while providing the additional functionality of allowing 1 : n mappings.

5.7 Case Study: Static Program Analysis

The above experiments isolate important factors, but they do not show the support
for the expected improvements on an algorithm “in the wild”. To add this perspec-
tive, we selected computing control flow dominators using fixed point computation
over sets [ASU86]. The nodes in the graphs are complex recursive ASTs with arbi-
trarily complex (but linear) complexity for hashCode and equals. More importantly,
the effect of the heterogenous encoding does depend on the accidental shape of
the data, as it is initially produced from the raw control flow graphs, and as it is
dynamically generated by the incremental progression of the algorithm.

Code. Although we do not claim the algorithm in this section to be representative
of all applications of multi-maps, it is a basic implementation of a well known and
fundamental algorithm in program analysis. It has been used before to evaluate the
efficiency of hash-array mapped tries [SV15]. We implemented the following two
equations directly on top of the multi-maps:

Dom(n0) = {n0}

Dom(n) =

 ⋂
p∈preds(n)

Dom(p)

 ∪ {n}
Our code∗ uses set union and intersection in a fixed-point loop: Dom and preds
are implemented as multi-maps. The big intersection is not implemented directly,
but staged by first producing a set of sets for the predecessors and intersecting the
respective sets with each other.

Hypotheses. On the one hand, since Dom is expected to be many-to-many with
large value sets it should not generate any space savings but at least it should not
degenerate the runtime performance either compared to CHAMP (Hypothesis 8). On
the other hand we expect preds to be mostly one-to-one and we should get good
benefit from the inlining of singletons (Hypothesis 9). Since CHAMP was reported
to outperform existing state-of-the-art implementations in Scala and Clojure on the
same case, there is no need to further include these [SV15].

∗http://michael.steindorfer.name/drafts/hamt-heterogeneous-artifact

http://michael.steindorfer.name/drafts/hamt-heterogeneous-artifact

110 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

Table 5.2: Runtimes of HHAMT for the CFG dominators experiment per CFG count,
and data shape statistics over preds relation (unique keys, tuples, 1 : 1 mappings).

#CFG CHAMP HHAMT #Keys #Tuples % 1 : 1

4096 173 s 174 s 315 009 331 218 91 %

2048 84 s 85 s 162 418 170 635 91 %

1024 64 s 62 s 88 952 93 232 92 %

512 28 s 28 s 43 666 45 743 92 %

256 19 s 18 s 21 946 22 997 92 %

128 14 s 14 s 13 025 13 583 93 %

Data. For our experiment, we used ±5000 control flow graphs for all units of
code (function, method and script) of Wordpress,† by using the PHP AiR frame-
work [HK14]. Like before, we used JMH to measure CPU time. We ran the dominator
calculations on a random selection of the aforementioned graphs. The set of selected
graphs range between a size of from 128 to 4096 in exponential steps. Since smaller
graphs occur much more frequently, we selected samples with exponentially increas-
ing sizes from 128 to 4096. We furthermore measured the number of many-to-one
and many-to-many entries in the preds relation.

Results. The results were obtained with a Linux machine running Fedora 20 (kernel
3.17). It featured 16 GB RAM and an Intel Core i7-2600 CPU with 3.40 GHz (8 MB
LLC with 64-byte cache lines). Frequency scaling was disabled.

Table 5.2 shows the mean runtimes of the experiment for CHAMP and HHAMT.
Both perform almost identically, with at most ±2 s difference. Due to equal runtimes,
HHAMT retains the same magnitude of speedups that CHAMP yielded over Clojure
and Scala [SV15], from minimal 9.9 x to 28.1 x. We also observed that the shape of
data in the preds relation contains a high number of 1 : 1 mappings (median 92 %)
and that the average ratio of unique keys to tuples is 1.05 x. In the case of Wordpress,
the CFG algorithm turns out to profit over CHAMP in terms of memory savings from
the heterogeneous opimizations for 1 : 1 mappings. We conclude both Hypothesis 8

and 9 to be confirmed.

†https://wordpress.com

https://wordpress.com

5.8. RELATED WORK 111

5.8 Related Work

Reducing the Memory Footprint of Collections is a goal of other people as well.
Gil et al. [GS12] identified sources of memory inefficiencies in Java’s mutable collec-
tions and proposed memory compaction techniques to counter them. They improved
the memory efficiency of Java’s Hash{Map,Set} and Tree{Map,Set} data structures
by 20–77 %. We observed that even with added heterogeneity, HHAMT multi-maps
achieve lower memory footprints than the class-leading primitive collection libraries,
and in the generic case on average 4 x improvements over Guava’s maps.

Steindorfer and Vinju [SV14] specialized internal trie nodes to gain memory
savings of 55 % for maps and 78 % for sets at median while adding 20–40 % runtime
overhead for lookup. Their approach minimized the amount of specializations to
mitigate effects on code bloat and run-time performance. In contrast, we targeted
the root causes of inefficiency one-by-one allowing full specialization at all arities.

Optimizing Collections in Dynamically-Typed Languages. Runtimes of dynam-
ically typed languages often introduce a significant run-time and memory over-
head [Tra09] due to generic collection data structures that could at run-time hold a
heterogeneous mix of data.

Bolz et al. [BDT13] introduced a technique dubbed storage strategies that en-
ables dynamic conversion of data representations. A set of interlinked strategies
form a fine-grained type lattice that is based on known optimizations. Strate-
gies mostly include support for collections of a homogeneous (primitive) type.
An exemplary lattices for a Set data structure could be EmptySetStrategy <->

(Integer|Float|...)SetStrategy <-> ObjectSetStrategy. Resulting performance im-
provements mainly stem from object layouts that specialize for a homogeneous
primitive types and corresponding optimized operations (e.g., direct value compar-
isons instead of calling equals methods).

Bolz [BDT13] showed that with Python on average 10% of collections dehomoge-
nize, mostly at small sizes. These results suggest that even in the absence of strict
typing, collections are often used homogeneously. Heterogeneous data structures
are orthogonal to homogeneous storage strategies. On one hand, heterogeneous data
structures could diversify current strategy approaches, e.g., when homogeneous
strategies are not applicable, or when many conversion occur. On the other hand,
they have the potential to replace homogeneous strategies when flexibility in mixing
data is required upfront. Furthermore, HHAMT optimizes internal heterogeneity that
occurs in general purpose data structures such as multi-maps.

Specializations and Generics for Primitives Reducing Code-Bloat. Specializing
for primitives can lead to a combinatorial explosion of variants amplifying code-bloat.
Due to the object vs. primitive dichotomy, Java does not offer solutions countering a

112 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

combinatorial explosion of code duplication when specializing for primitives. Java 10

or later will solve this issue by supporting generics over primitives.∗

Ureche et al. [UTO13] presented a compiler-based specialization transformation
technique called miniboxing. Miniboxing adds automatic specializations for primitive
JVM data types to the Scala compiler while reducing the generated bytecode. Com-
binatorial code-bloat is tackled by specializing for the largest primitive type long,
together with automatic coercion for smaller-sized primitives. While not always
memory-optimal due to always utilizing long variables, miniboxing is a practical
approach to tackle combinatorial code explosion.

HHAMT’s contribution is orthogonal to both previously discussed techniques,
because it generalizes the encoding of heterogeneous data stored together in a col-
lection. HHAMT’s specializations currently do duplicate code for different (primitive)
type combinations. Using primitive generics in later versions of Java —or miniboxing
in Scala— could bring this down to a single generic specialization per trie node arity.

(Partial) Escape Analysis. Escape analysis enables compilers to improve the run-
time performance of programs: it determines whether an object is accessible outside
its allocating method or thread. Subsequently this information is used to apply
optimizations such as stack allocation (in contrast to heap allocation), scalar replace-
ments, lock elision, or region-based memory management [Sta+15]. Current JVMs

use partial escape analysis [Sta14], which is a control-flow sensitive and practical
variant tailored toward JIT compilers.

Our encoding of specializing is a memory layout optimization for value-type
based data types: trie nodes are specialized for arrays of constant sizes that do not
escape. We use code generation to conceptually apply object inlining [Wim08] of
statically sized (non-escaping) arrays into the memory layout of their corresponding
trie nodes. Memory layout sensitive inlining as we perform could be applied in
Virtual Machine (VM) based on information obtained from escape analysis. We hope
that future compilers and language runtimes are capable of doing so out-of-the-box.

5.9 Further Applications of Heterogeneous Data Structures

We extrapolate some client applications which would benefit from HHAMT.

Libraries or Languages Supporting Data or Code Analysis on the JVM would
benefit from more efficient in-memory multi-maps. Typical examples are frameworks
such as KNIME [Ber+09] for general purpose data analysis or Rascal for program
analysis [KvdSV09], and MoDisCo [Bru+10] for software re-engineering and reverse

∗http://openjdk.java.net/projects/valhalla/

http://openjdk.java.net/projects/valhalla/

5.9. FURTHER APPLICATIONS OF HETEROGENEOUS DATA STRUCTURES 113

engineering, especially when their algorithms require frequent lookup and thus will
benefit from an efficiently indexed relation such as a multi-map.

Unifying Primitive and Generic Collections. Looking at specialized collections
for primitives from the programming language designer’s perspective, they are
a necessary evil implied by the dichotomy between objects and primitive values.
Primitive values give programmers access to low level and memory-efficient data
representations, but the impact of having them leaks through in the type systems
and the design of standard libraries of programming languages supporting them.
The current chapter describes a heterogeneous framework that can be used for
implementing data structures which allow storing either primitive data values or
their boxed counterparts next to each other, while the client code remains practically
oblivious. For statically-typed languages this implies we can have a generically
typed library for both primitive and object values. For dynamically-typed languages
it implies a much lower overhead for the builtin dictionaries.

Big Integers for Big Data. Most programming languages feature a library for
representing arbitrary-sized integers. We use these to avoid overflow, especially
in the context of scientific computing applications. The drawback of using these
libraries for data science is that large homogeneous collections immediately blow up,
even if the big numbers are exceptional. We want to use smaller FIXNUMs (FIXNUMs)
were possible, and BIGNUMs (BIGNUMs) only when necessary.

This application is where HHAMT could potentially have a rather big impact. Sets
and maps filled with mostly inlined FIXNUM’s and an occasional BIGNUM without
having to a priori allocate space for BIGNUMs, and without having to migrate at
run-time. Even if the entire collection accidentally ends up filled with BIGNUMs,
HHAMT still is more memory efficient than common array-based hash-maps.

Cleaning Raw Data in a Type-Safe Manner. The HHAMT data structure enables
efficient storage and retrieval of objects of incomparable types without memory
overhead (no need to wrap the objects) and without dynamic type checks. In Java
there exist no “union” types like in C, but using HHAMT we can approach this in
the context of collections. A typical use case would be reading in raw data from
Comma-Separated Values (CSV) files (or spreadsheets) in Java where the data is not
cleansed and some cells contain integers while the other contain decimal numbers
or even empty cells, depending on the original manual and unvalidated input of
the user. A CSV parser could output a HHAMT, inferring the most accurate value
for each cell from the used notation, and allowing for further processing the data
downstream in a manner both type-safe and efficient.

114 CHAPTER 5. A FLEXIBLE ENCODING FOR HETEROGENEOUS DATA

In general, homogeneous collections storing numeric data struggle with repre-
senting empty cells. Sentinel values (e.g., integer constant −1) are a viable solution
if and only if the data does not use the data type’s full value range. Cases where the
data range is used exhaustively require additional auxiliary data structure (e.g., an
array of booleans) to encode if a value is initialized. In contrast to homogeneous
collections, HHAMTs by design supports mixing sentinel values of a different type
(e.g., static final EMPTY_CELL = new Object()) with the full value range of primitives.

5.10 Conclusion

We proposed HHAMT, a new design for hash-array mapped tries which allows
storage, retrieval and iteration over maps which store heterogeneously typed data.
In particular we motivate this data structure by applying it to efficiently implement
multi-maps, and it also shines when used to specialize for primitive types.

The evaluation compared to the state-of-the-art: comparing to other hash-trie
data structures with and without the many-to-many feature, comparing against
state-of-the-art encodings of multi-maps in Scala and Clojure and comparing to
hand-optimized maps for primitive values. Even when compared unfairly to imple-
mentations which do not feature heterogeneity, HHAMT compares well. We safe a lot
of memory (2–4 x) at relatively low costs in runtime overhead.

We hope multi-maps based on these results will be available in the future in the
standard libraries for collections on the JVM, since that would make the JVM even
more attractive for safely computing with large immutable datasets.

Chapter 6

Performance Modeling of
Maximal Sharing

It is noticeably hard to predict the effect of optimization strategies in Java without
implementing them. “Maximal sharing” (a.k.a. “hash-consing”) is one of these
strategies that may have great benefit in terms of time and space, or may have
detrimental overhead. It all depends on the redundancy of data and the use of
equality.

We used a combination of new techniques to predict the impact of maximal
sharing on existing code: Object Redundancy Profiling (ORP) to model the effect
on memory when sharing all immutable objects, and Equals-Call Profiling (ECP)
to reason about how removing redundancy impacts runtime performance. With
comparatively low effort, using the MAximal SHaring Oracle (MASHO), a proto-
type profiler based on ORP and ECP, we can uncover optimization opportunities
that otherwise would remain hidden.

This is an experience report on applying MASHO to real and complex case: we
conclude that ORP and ECP combined can accurately predict gains and losses of
maximal sharing, and also that (by isolating variables) a cheap predictive model
can sometimes provide more accurate information than an expensive experiments.

This chapter is based on the following published article: Michael J. Steindorfer and Jurgen J. Vinju.
2016. Performance Modeling of Maximal Sharing. In Proceedings of the 7th ACM/SPEC on In-
ternational Conference on Performance Engineering (ICPE ’16). ACM, New York, NY, USA. URL
http://dx.doi.org/10.1145/2851553.2851566.

115

116 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

6.1 Introduction

This section is concerned with performance modeling of Java libraries. “Premature
optimization is the root of all evil”, says Donald Knuth [Knu79]. The reason is that
optimization strategies are prone to make code more complex and perhaps for no
good reason because they may backfire unexpectedly.

Our question is: how can we know, a priori, that a particular optimization strategy
will pay off? For most optimizations there is only one way to find out: implement an
optimization and compare runtime characteristics against an unoptimized version.
In reality it will often take multiple rounds of profiling and tuning before the desired
effect and the promised benefit of an optimization is attained. In this chapter
we present the MAximal SHaring Oracle (MASHO): a prototype profiling tool that
predicts the effect of the maximal sharing optimization a priori, avoiding costly and
risky engineering. We report on the experience of testing MASHO and trying it out
on a real and complex case.

The “maximal sharing” optimization tactic, dubbed “hash-consing” [Got74],
entails that selected objects that are equal are not present in memory more than once
at a given point in time. To make this happen a global cache is used to administrate
the current universe of live objects, against which every new object is tested. There
are two main expected benefits of maximal sharing: avoiding all redundancy by
eliminating clones in memory, and the ability to use constant time reference com-
parisons instead of deep equals checks that are in O(size of object graph). This is
because maximal sharing enforces the following invariant among selected objects:
∀ objects x, y : x.equals(y) ⇔ x == y, which allows any call to equals on shared
objects to be replaced with a reference comparison. The expected overhead is the
maintenance of a global cache, and for each object allocation, extra calls to the
hashcode and equals methods.

Figure 6.1 illustrates the effect of maximal sharing on an object that is “embar-
rassingly redundant”: a reduction from exponential to linear size (in the depth of
the tree). In contrast, a tree with the same structure but all unique integer values in
its leaf nodes would have no sharing potential.

Maximal sharing is associated with immutable data structures [Oka99], since it
requires objects to not change after allocation. It is applied in the context of language
runtimes of functional languages [Vis04; KvdSV09], proof assistants [BJM13], and
algebraic specification formalisms [vdBra+02; Bor+98; Cla+01; Mos04; Bal+07], com-
pilers [Vaz+07], or libraries that supply similar functionality. Especially when many
incremental updates are expected during computation (i.e., creating redundancy over
time) we may expect big benefits. E.g., implementations of term rewriting (reducing
trees), type constraint solving (minimizing sets of solutions) and solving data flow
equations (incrementally adding/removing graph edges) share these characteristics.

6.1. INTRODUCTION 117

Figure 6.1: Good conditions for sharing: redundant objects.

On the one hand, in the case of high performance implementations of term
rewriting engine libraries, maximal sharing has proven to be a very successful
strategy: “It turns out the increased term construction time is more than compensated
for by fast equality checking and less use of space (and hence time)” [vdBra+02]. In
real cases memory savings between 52.20%–98.50% of term representations were
observed [vdBK07]. On the other hand, maximal sharing can have a negative
net effect on memory consumption in absence of enough redundancy, due to the
overhead of the global cache.

The audience for the maximal sharing technique is library developers rather
than application developers. Considering the effort associated with optimizing
for maximal sharing, an often reused library is expected to have larger return on
investment than a single application.

With the advance of immutable objects and functional language constructs in
object-oriented languages —like Java 8 or Scala, and functional languages running
on the Java Virtual Machine (JVM) like Clojure— it is now relevant to investigate if
and how we can use maximal sharing to our benefit in JVM library implementations.
Immutability may be a too strong requirement for any Java library in general, but
if immutability comes naturally for different reasons, then the maximal sharing
strategy is an important one to consider.

Potential adopters of maximal sharing suffer from a common problem: converting
a library to use maximal sharing is hard and costly [vdBra+00; vdBK07; vdBMV05]:
it is a cross-cutting design decision with difficult to tune implementation details.
To illustrate one of many pitfalls, let us take a Java library for graph processing
as example. It makes use of standard library classes for integers and sets. The

118 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

hashcodes of empty sets are 0 in Java and for singleton sets the hashcodes are equal
to the hashcode of the elements, because hashCode() of a java.util.Set is defined
to be the sum of the hash codes of the elements in the set. Inserting such similar
values in a global cache for sharing would trigger unexpected hash collisions. The
success of maximal sharing depends on one hand on a broad spectrum of properties
of a library, like its Application Program Interface (API) design, quality of hash
codes, co-optimization of shared data structures, and on the other hand on runtime
characteristics like data redundancy and the ratio between object allocations and
equality checks of shared objects. Naive implementations of maximal sharing —that
do not take these issues into account— are likely to slow down programs and
increase their memory footprint.

Contributions and Outline

This chapter does not contain an evaluation of the maximal sharing optimization
technique; it does contain an evaluation of the accuracy and usefulness of a modeling
and simulation technique for maximal sharing. The contribution of this chapter is
firstly the design of MASHO (Section 6.2), which includes:

• Object Redundancy Profiling (ORP): measuring the lifetime of redundant
objects during a program execution, optimized to benefit from immutable data
and to include the notion of data abstraction to accurately model the possible
effects of maximal sharing;

• Equals-Call Profiling (ECP): capturing the recursive call-graph shapes of calls
to equals, including a partial alias analysis;

• Maximal Sharing Model (MSM): a lightweight predictive model that uses ORP

and ECP profiles to predict the behavior of a program after the application of
maximal sharing.

Secondly we contribute an experience report on the use MASHO for modelling the
runtime environment of a programming language. From this we learned that:

• it predicts the impact of maximal sharing on memory usage and the use of
equality very accurately and so it removes the need for direct experimentation
with maximal sharing, producing equivalent information for making go/no-go
decisions with a mean slowdown of 7x for ORP and ECP;

• it isolates the effects of introducing maximal sharing from the effects of JVM con-
figuration (e.g., memory bounds, garbage collector heuristics) and accidental
hash collisions that would occur due to a global cache.

6.2. ARCHITECTURE AND DESIGN DECISIONS 119

MASHO

all tracker components are
connected to a logging backend <<callback>>

FingerprintDB
objectFingerprintMap
store(Object)
get(Object)

AllocationTracker
<<aspect>>

EqualsTracker
<<aspect>>

-callbackObjectFreed

LifetimeTracker
+getTimestamp(Object)
+setTimestamp(Object)
+getAndIncreaseLogicalTime

Application

ClassClassClassClassClassClass

<<use>>

Library

ClassClassClassClassClass

Class to be
sharedClass to be

sharedClass to be
shared

<<pointcut>>

<<pointcut>>

<<instrument>>

Instrumenter
<<JVMTI>>

Figure 6.2: Class diagram and Aspect-Oriented Programming profile depicting
MASHO’s architecture.

• for the validating experiment, a set of realistic demonstrations, implementing
maximal sharing will produce good memory savings but will not lead to
performance speed-up without first applying major changes to the semantics
of the library. We can decide a “no-go”.

In general, this experience shows how cheap predictive performance modelling can
produce more actionable information than an expensive real-world experiment can
since it can soundly factor our confounding factors like the Java garbage collector
and reason about otherwise infeasible design alternatives. Related work is further
discussed in Section 6.8, before we summarize in Section 6.9.

6.2 Architecture and Design Decisions

In the following we describe the design decisions and most important implemen-
tation details of MASHO in this order: how it is used by a library developer, its
architecture and implementation choices, and what its preconditions are.

120 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

Library Developer Perspective

The user first configures MASHO with a list of interesting classes or interfaces which
might hypothetically benefit from maximal sharing. MASHO then instruments the
library (which does not implement maximal sharing). Next, the user runs programs
that use the library, while the instrumentation logs information to be analyzed. After
this, MASHO analyzes the logs producing charts and tables explaining the likely
effect of maximal sharing on the library in the context of the executed programs.
The user interprets the charts to decide go/no-go on investing in maximal sharing,
or continues tweaking the experiment’s setup or the test runs.

Instrumenting a Program for Profiling

Figure 6.2 depicts the architecture of MASHO. A client library is instrumented using
both AspectJ and the Java Virtual Machine Tool Interface (JVMTI) for gathering the
following events: object allocations, object garbage collections, and calls to equals.
An AspectJ pointcut selects all constructor call-sites of to-be-shared classes. In
an advice, which gets called whenever one of these constructors executes, MASHO

performs at run-time ORP with fingerprinting (Section 6.3) and an alias-aware object
graph size measurement (Section 6.3). Similarly, we use pointcuts for ECP to record
the call-graph shape of equals-calls (Section 6.3). Bytecode Instrumentation (BCI) is
used to track object allocations that are otherwise intangible for AspectJ, for example
object construction via reflection. For lifetime tracking, we tag each newly allocated
object with the aid of the JVMTI to get notified about an object’s garbage collection.

The Precondition: Weak Immutability

Maximal sharing introduces a global cache for all designated objects and uses an
object factory for creating new instances. Instead of new Tuple(a, b), one would call
a factory method like so: factory.tuple(a, b). Whenever the factory encounters
that an equal object already exists in the global cache, it returns the cached instance
and forgets the temporary object. Otherwise it caches the new instance and returns
it. Such a global cache introduces data dependencies between parts of the program
which would normally be unrelated to each other. Consequently, maximal sharing
does not work for mutable objects because it may break referential integrity: if a
shared object would change, this would become observable in otherwise logically
independent parts of the program.

One way to avoid breaking programs in the presence of maximal sharing is
requiring full immutability of shared objects, but such a strong condition is not
necessary. Therefore we define weak immutability, a sufficient condition under which
maximal sharing can work, as follows: for any object o and its updated future value
o′ it holds that o.equals(o′), while observing that not necessarily all fields have to

6.3. PROFILING TECHNIQUES 121

contribute to its equals method. Based on weak immutability, object identity can be
defined by the transitive closure of immutable attributes of an object, also known
as structural equality [Bak93]. Similarly it follows that all object graphs generated
from these classes, if we follow only references to fields that are used by the equals

methods, are Directed Acyclic Graphs (DAGs).
Competitive tools [MO03] solely reason on the granularity of “physical” object-

graph equality, while logical object equality may need some form of abstraction. For
example, in case of unordered collection data structures such as hashtables, and
lazily instantiated (caching) fields. We will detail in the next section, how to support
those cases for better coverage.

6.3 Profiling Techniques

The following section describes how ORP and ECP work as individual techniques.
ORP and ECP form the basis of MSM (cf. Section 6.4), which predicts the effect of
introducing maximal sharing. We identify possible sources of inaccuracy throughout
the text and evaluate these in Section 6.5.

Object Redundancy Profiling

The ORP part of MASHO takes advantage of the weak immutability of the selected
classes and the fact that we are guaranteed to analyze data that could be repre-
sented as a DAG. Namely, we compute a fingerprint for each object, representing
the structural identity of its value, using a bottom-up analysis of the object DAG.
Fingerprinting allows us to avoid fully serializing heap objects or logging all changes
of the heap to disk [SHM08; MO03]. Instead we serialize only the fingerprints that
are expected to be a lot smaller in size.

The fingerprint function f , a cryptographic 256-bit SHA-2 hash function in our
case, has similar goals as the normal standard 32-bit integer hashcode method but
necessarily it has a much higher resolution to better represent object identity. For
an optimal f (i.e., perfect hashing) it can be said that for any two objects o1, o2
it holds that o1. f () = o2. f () ⇔ o1.equals(o2). The inevitable non-optimality of a
cryptographic f may introduce inaccuracy in MASHO’s profiles, while at the same
time making the analysis feasible by avoiding a full serialization of every object.

Weakly-immutable object DAGs can only be created bottom-up, so MASHO com-
putes a fingerprint at each allocation of a to-be-shared object. We use a fingerprint
cache to efficiently refer to the fingerprints of already known objects. Therefore, fin-
gerprinting a new composite object is always O(shallow object size). We distinguish
the following cases:

122 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

Leaf Objects: are objects that have no children in the immutable DAG. We serialize
leaf objects and fingerprint them by applying f on the resulting byte-arrays.

Ordered Composite Objects: are objects that contain an ordered sequence of refer-
ences to other shared objects. We first lookup and concatenate the fingerprints
of all referenced shared objects. Then, we compute f over the concatenated
hashes.

Unordered Composite Objects: are objects that contain an unordered sequence of
references to other shared objects. We first lookup and concatenate the finger-
prints of all referenced shared objects. Then, we reduce the set of fingerprints
to a single fingerprint with the bitwise XOR operator. This commutative
fingerprint computation is stable under arbitrary orderings.

In the case of unordered composite objects, arbitrary orderings of arrays, contain-
ing the same values, are to be expected for example in array-based implementations
of hash-maps and hash-sets. We abstract from these arbitrary orderings in order to
predict more opportunities for maximal sharing, as well as abstracting away from
differences that are due to hash collision resolution tactics.

Object Graph Size Calculation

Modeling memory savings requires reasoning over which references already point
to the same objects and which do not. Such aliasing is likely present in any
Java application. MASHO computes the memory footprint of a to-be-shared object
efficiently at object allocation time, which is sufficient only due to weak immutability.
It uses Java reflection to collect fields and compute the size of all referenced objects
and contained primitive values. This traversal skips nested to-be-shared objects to
solely measure the overhead incurred by redundant objects. Aliases of not to-be-
shared objects are detected by maintaining a lookup table that maps object identities
to their memory footprints. If an object reference is already present in the table, then
we have detected an alias and should not count the same object again, but simply
add the size of the 32 or 64-bit reference. Note that this alias analysis is incomplete by
design due to efficiency considerations. We distinguish two cases: visible and invisible
aliases. While the former is traced accurately, the latter may introduce inaccuracy
because we only partly track the heap.

Visible aliases

Visible aliases are references that are reachable from a to-be-shared object. For
example, consider two different Java fragments which construct a tuple and its
content, an atom. Both classes are to be maximally shared:

6.4. PREDICTIVE MODELING OF MAXIMAL SHARING 123

• Tuple elements are aliases:
Atom a = new Atom("S"); new Tuple(a, a);

• Tuple elements are unique:
new Tuple(new Atom("S"); new Atom("S"));

ORP should predict savings for the latter because it uses duplicates, whereas the
former already shares the atom.

Invisible aliases

Invisible aliases are references to library objects that are outside the interfaces that
the library developer chose to track. Consider the following Java fragment: Atom

atom(String s) { return new Atom(s); }. Atom is to be shared, whereas String is
not. We attribute the size of s to the size of the first tracked object that references
s. Note that s might be referenced by any other object: either from an object to be
shared, or from an object that is not meant to be shared. The accuracy of MASHO is
influenced by this effect (addressed by one of our evaluation questions in Section 6.5).

Equals-Call Profiling

The goal of ECP is to record the shape of (recursive) calls to equals on to-be-shared
objects. Tracking the calls to equals requires detailed consideration to be applicable
to maximal sharing. After objects are maximally shared, all calls to equals can be
replaced by reference comparisons, but also already existing aliases have to be taken
into account to not over-approximate the potential benefits of maximal sharing.

In Java it is common that equals implementations first check for reference
equality on both arguments to short-circuit the recursion in case of aliased
arguments. Using AspectJ we cannot easily capture the use of == or !=, but we can
measure the difference between root calls to equals and recursively nested calls to
equals. By root calls we mean invocations of equals that are not nested in another
equals-call. In case equals implementations do not return on aliases directly,
MASHO pinpoints these optimization opportunities by warning the user about them.

6.4 Predictive Modeling of Maximal Sharing

By combining the results from redundancy and equals-call profiling, we are able to
hypothetically model the impact of maximal sharing, including changes to the heap
structure, overhead introduced by a global cache, and substitutions of (recursive)
equals-calls by reference comparisons.

124 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

0
1

2
3

4
5

6
7

Object Lifetime

U
ni

qu
e

O
bj

ec
t I

D

measured objects
replacement objects

0 1 2 3 4 5 6 7 8 9 10

04DA...9A22

04DA...9A22

04DA...9A22

04DA...9A22

04DA...9A22

04DA...9A22

04DA...9A22

Figure 6.3: Overlapping lifetimes for objects with identical fingerprints. Two families
of redundant alive objects are visible (solid lines) and also their possible replacement
maximally shared alternatives (dashed lines).

Modeling memory usage. MASHO analyzes the profiled data as follows. It reasons
about redundancy that is present at each point in time. Time is measured by
allocation and deallocation event timestamps. Figure 6.3 illustrates several objects
that map to the same fingerprint 04DA. . . 9A22. The objects with identifiers 1, 2, and
3 consecutively overlap, as well as objects 4 and 5. We call a sequence of overlapping
lifetimes an “object family”. In an optimal situation each family would reduce to a
single object, with an extended lifetime (see dashed lines in Figure 6.3).

First, we replay the trace to compute the current memory usage of the profiled
program for each point in time. We start from a set of object lifetime triples,
allocationTime× deallocationTime× uniqueSize. We compute two lists for these objects:
one sorted by allocation time, and another one sorted by deallocation time. Then we
traverse the two sorted lists and compute their running sums. At each timestamp
the difference between the running sums denotes the current memory usage.

Second, we compute an estimated memory profile of the same program run
as-if objects would be maximally shared. Again, we sort the aforementioned object

6.5. EVALUATION: SETUP 125

lifetime triples on timestamps but now we also group them by their fingerprints.
This artificially removes duplicate objects and extends the lifetimes of the remaining
objects. The final memory usage at each point in time is computed exactly as before,
but on this filtered and re-ordered set of lifetime triples. This computation predicts
what memory is theoretically minimally necessary to store the observed objects. In
practice of course more memory will be used because objects are now even more
unlikely to be garbage collected immediately after they become unreferenced. This
effect will be observable in the evaluation later.

Modeling the global cache memory overhead. MASHO assumes a fixed bytes-
per-record overhead per object reference stored in the global cache that is to be
introduced. Predicting the overhead is a matter of multiplying a constant —currently
42— by the number of unique objects at any point in time. To choose its default value,
we analyzed the memory overhead of an object repository that is implementable with
the standard Java collections API (i.e., WeakHashMap with WeakReferences as values)
and an existing and thoroughly optimized implementation from the ATerm Java
library [vdBra+00]. ATerm’s global cache imposes a 42 bytes-per-record memory
overhead, while a standard WeakHashMap implementation requires 79 bytes-per-record.

Modeling the global cache runtime overhead. The expected number of newly
introduced calls to the equals method is exactly equal to the number of redundant
object allocations. The new implementation of equals will not have to be recursive
anymore under the assumption of maximal sharing. Note that these predictions are
under the assumption of optimal hash code implementations and a collision free
global cache implementation.

We may also predict the maximal number of new executions of == by counting
at each call to equals the number of immutable fields, i.e., the arity, of the object.
Note that this arity depends on the definition of the original equals method. This is
the number of fields that contribute to its implementation.

Suppose an implementation of a to-be-shared class uses arrays for storing nested
objects. In this case the arity of the object is open and equals is in principle in
O(arity) even after introducing maximal sharing. The higher this arity, the lower the
benefit of maximal sharing will be. This is why MASHO reports also the expected
number of newly introduced reference comparisons to the library engineer.

6.5 Evaluation: Setup

Does MASHO allow library engineers to model and simulate what they might get out
of maximal sharing without actually implementing and tuning it? Our evaluation
questions are:

126 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

Q-Accurate: does MASHO predict memory gains and the effect on equals-calls after
maximal sharing accurately?

Q-Actionable: does MASHO give a library engineer enough information to decide
upon further time investments in the maximal sharing strategy?

First, we set up a controlled experiment (Section 6.6) where we can theoretically
explain the shape of the input and the shape of the resulting statistics. This is to test
whether the experimental setup works reliably and accurately.

To answer Q-Accurate we will then compare MASHO’s models to profiles obtained
from realistic cases that implement maximal sharing (Section 6.7). The hypothesis
is that the memory and equals-calls models are very accurate, i.e., within a 1%
margin of error. The hypothesis assumes that the introduction of the global cache
—that holds weak references to shared objects— does not (or only marginally)
change the overlapping lifetimes of the object families; we will report whether or
assumption holds. The output of these realistic experiments is discussed in detail as
a prerequisite to assess Q-Actionable qualitatively.

Experience: the Program Data Base Case

We report on our experience testing and evaluating MASHO on two open-source
projects: the Program Data Base (PDB),∗ a library for representing immutable facts
about programs, and Rascal [KvdSV09], a Domain-Specific Language (DSL) for
meta-programming. Both projects are actively developed and maintained since
2008. Rascal has 110K Source Lines of Code (SLOC) and PDB 23K SLOC. PDB is
the run-time system of Rascal. All values produced and consumed by Rascal
programs are instances of PDB library classes. This ranges from primitive data
types, to collections, and more complex compositional data structures like arbitrary
Algebraic Data Types (ADTs). PDB’s basic primitive is the IValue interface, which
every weakly-immutable data type adheres to. Thus, analyzing the usage of IValue
in Rascal programs is comparable to analyzing how Object is used in Java. For the
experiments below, we configured MASHO to share all objects of library classes that
implement IValue.

The PDB classes support two forms of equality. This is common for weakly-
immutable libraries with structural equality (cf. Clojure). One is implemented
by equals satisfying weak immutability by implementing strict structural equality.
The other is called isEqual and ignores so called “annotations”. Annotations are
extensions to a data value which should not break the semantics of existing code that
does not know about them. The isEqual method does satisfy weak immutability, but
if maximal sharing would be applied based on the isEqual semantics instead of on

∗https://github.com/cwi-swat/pdb.values

https://github.com/cwi-swat/pdb.values

6.5. EVALUATION: SETUP 127

Maximal Sharing
Experiment

Global Cache
<<pointcut>> recursive calls

to equals can be
replaced by ==

all calls to
equals can be
replaced by ==

AllocationInterceptor
<<aspect>>

EqualsToReferenceEquality
<<aspect>>

Application Library

ClassClassClassClassClassClass

<<use>> ClassClassClassClassClassClass

Class to be
sharedClass to be

sharedClass to be
sharedClass to be

shared

<<pointcut>>
<<pointcut>>

Figure 6.4: Using AspectJ to experiment with maximal sharing.

the equals semantics it could break client code: annotations would quasi-randomly
disappear due to accidental order of storing (un)annotated values in the global cache.
With maximal sharing in mind, annotations should not be ignored for equality.

To be able to analyse isEqual as well, we configured ECP to track isEqual

calls like it tracks equals-calls. Note that equals and isEqual do not call each
other. Furthermore, we inserted an additional rule that checks at run-time if both
arguments to isEqual map to the same fingerprint, by performing fingerprint cache
lookups. If yes, we imply that they are strictly equal to each other and do not contain
annotations in their object graphs. As a consequence we model such an isEqual

call as a reference equality, because both arguments will eventually become aliases
under maximal sharing. Otherwise, if fingerprints do not match, we continue to
recursively descent into the isEqual call.

To conclude, PDB represents a well-suited but challenging case for maximal
sharing: it is not set up for tautological conclusions of our evaluation of MASHO.

128 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

A Minimal Maximal Sharing Realization

For answering the Q-Accurate question we should verify the predictive model of
MASHO against actual data from a real maximal sharing implementation. To gather
memory data and to profile equals-calls, a fully optimized implementation is not
necessary, and also absolute numbers about runtime performance are not comparable
anyway due to interference of the profiler and JVM configuration. Therefore, we
should abstract from absolute runtime numbers and instead evaluate the absolute
reductions/increases in terms of equals-calls.

Figure 6.4 shows a class diagram of how we used AspectJ to obtain a maximally
shared version of PDB. Our global cache is implemented using a WeakHashMap with
WeakReference values. We use a pointcut with around-advises to intercept and
instrument object allocation call-sites (both in library and in application code),
substituting new objects with references from the global cache, if present. We also
replace all calls to equals outside of the central repository by reference equalities,
as well as all recursive calls to equals called by the central repository. The recursive
calls can be replaced because nested values have already been maximally shared.

Shared versus Non-Shared Measurement

We reuse MASHO’s measurement facilities to measure both a shared and a non-shared
version of each experimental run. In the shared version we reuse a strict subset
of MASHO’s measurement facilities, namely for ECP, object size calculation, and
timestamping of allocation and deallocation events. The latter are services of the
JVMTI. Reuse of MASHO’s measurement facilities entails a threat-to-validity that is
mitigated by the controlled experiment, where we can theoretically explain the shape
of the data and the expected outcome. We do completely turn off ORP profiling for
these experiments to avoid interference. In the presence of the maximal sharing
aspect we can observe real global cache behavior and identify redundant objects
based on cache hit counts.

Our first naive memory measurement method (method 1) is to aggregate and
compare the mean memory usage from a shared library experiment against the
model that is calculated from the non-shared profiles. If the difference is small,
then MASHO predicts accurately. Otherwise, either the evaluation method is flawed,
fingerprinting has too many collisions, or MASHO misses an important aspect in
modeling maximal sharing. The hypothesis is that based on this analysis we will see
only minor differences because MASHO is expected to produce an accurate model.

The previous method is naive, because we know that the Garbage Collector
(GC) will influence the mean memory usage as often and perhaps as much as the
optimization strategy does. It is a confounding factor. We should expect sawtooth
patterns in MASHO’s memory profiles caused by short-living temporary objects that

6.6. EVALUATION: CONTROLLED EXPERIMENT 129

could all be discarded immediately after allocation —in case of a hit in the global
cache— but instead will remain in memory until the GC starts to operate. So, from
the comparison of mean memory usage we should hypothesize significant inaccuracy
in predicting memory usage.

To mitigate the confounding factor introduced by the delays in garbage collection
we may set the heap size setting of the JVM to a benchmark specific global minimum.†

This would trigger the GC more often and force it to collect temporary objects. The
mean memory usage then starts approaching the global minimum in memory
usage. While identifying globally minimal heap sizes per benchmark could be
automated with bisection search, we argue it is not precise enough for our memory
measurements. Therefore we also set up a second method of comparison (method 2).
This method is similar to the previous, but additionally we tag all short-living
temporary objects —by measuring whether they cause cache hits— and subtract
their sizes from the actual memory usage. The effect is that we filter noise introduced
by the GC. Instead of only considering one global minimum, we now reason over
a series of local minima in time. If the difference in memory usage between this
minimal size and the predicted size is still large, then MASHO is inaccurate, as caused
by fingerprint collisions or an unsound modeling. Otherwise it is accurate. For the
sake of transparency we will discuss both the results of the naive method and the
mitigated method of comparison.

Setup of JVM Parameters. We use AspectJ 1.7.3 a 64-bit JVM from Oracle, Java
version 1.7.0_51, running on an Intel Core i7 3720QM CPU under Mac OS X.‡

We configured the JVM with the following settings additional to the -server flag:
with -Xms4G -Xmx4G we set the heap to a fixed size of 4GB and prohibit resizing;
-XX:+DisableExplicitGC deactivates manual invocation of the GC; -XX:+UseParallel-
OldGC uses a parallel collector for new and old generations.

6.6 Evaluation: Controlled Experiment

Here we test-drive our evaluation method. We use two scenarios that are based
on the introductory example from Figure 6.1: with the PDB library we first build
binary trees of depth d where all leaf nodes are equal with respect to each other, and
second binary trees of depth d where all leafs nodes are different from each other.
We hypothesize the results of the experiment and observe whether or not these

†Minimum heap size is a function of time: each program state has its own minimum. With global
minimum we refer to the maximum of all minima, i.e., the lower memory bound that is sufficient to run
the program.
‡At the time of performing our experiments, the latest stable AspectJ Development Tools (AJDT)

version included AspectJ 1.7.3, which only supported Java Development Kit (JDK) 7.

130 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

numbers are produced. This check of both an optimal case and a worst case scenario
for maximal sharing would reveal obvious problems with our measurements.

Expectations

While profiling we expect from our setup that no object is garbage collected until the
program ends and that both trees consume the same heap size. Zero redundancy
should be measured in the redundancy-free case, and for depth d in the redundant
case 2d+1 − d duplicates. When running PDB with the maximal sharing aspect, mem-
ory savings should be visible for the redundant case, and growing with increasing
depth. The controlled experiment only allocates objects, but does not invoke equals.
However the maximal sharing introduces equals-calls by performing global cache
lookups. We expect one equals-call per cache hit, and furthermore for each binary
tree node two reference comparisons, one for the left and one for the right subtree.

Results

Figure 6.5 shows the results of profiling the creation of trees with depths from 1 to
20. The plots use logarithmic scales.

Redundant Trees

Figure 6.5(a) focuses on redundant trees. The x-axis highlights the profiled allocation
count at each depth d. Surprisingly, the measurement at d = 0 exhibits four
allocations instead of the one expected: Manual inspection revealed that PDB’s integer
implementation contains an integer(1) constant, and further, the two boolean
constants TRUE and FALSE were pre-initialized by the library.

The profile line shows memory usage obtained by the profiles, while the maxi-
mum sharing model line illustrates the predicted minimal heap usage under maximal
sharing. At low object counts (d <= 2) the maximum sharing model signals a higher
memory usage with maximal sharing than without, however, at d = 5 the measure-
ments break even, denoting a saving potential of 66%. The saving potential stabilizes
around 100% from d = 10.

The sharing run (with default heap size) line shows the heap profile with the
maximal sharing aspect applied. For d < 20 there is no measurable difference
from the profile line. Only at d = 20 with about 2M object allocations, we see a
difference because temporary objects are partially collected. Performing another
sharing run (with tight heap size), yields results that are clearly different from the
original memory profile, yet a significant error remains. The results confirm that the
GC largely influences the naive method 1 (mean accuracy of 27%, range of 3–93%).

6.6. EVALUATION: CONTROLLED EXPERIMENT 131

object count (log2) [d=tree depth]

m
em

or
y

us
ag

e
in

 b
yt

es
 (l

og
10

)

profile
maximum sharing model
sharing run (with default heap size)
sharing run (with tight heap size)

4 [d=0] 66 [d=5] 2K [d=10] 66K [d=15] 2M [d=20]

10
0

1K
10

K
10

0K
1M

10
M

(a) results for redundant trees

object count (log2) [d=tree depth]

m
em

or
y

us
ag

e
in

 b
yt

es
 (l

og
10

)

profile
maximum sharing model
sharing run (with default heap size)

4 [d=0] 66 [d=5] 2K [d=10] 66K [d=15] 2M [d=20]

10
0

1K
10

K
10

0K
1M

10
M

10
0M

(b) results for redundancy-free trees

Figure 6.5: Calibration data: Memory usage for various test runs (without com-
pensation for GC noise). Figure 6.5(a) illustrates that compensating for GC noise is
necessary to obtain accurate memory footprint models.

132 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

Measurements with method 2 are not visible in the graph, because the data
aligns exactly with our maximum sharing model. It performed with 100% accuracy
at experiments with an allocation count bigger than 66; at smaller counts the three
unexpected allocations reduce accuracy marginally.

The measured global cache hits (that are not listed here for brevity) are exactly
off by one due to the integer(1) constant. Measured equals-calls that are caused by
the global cache match exactly with the number of cache hits, as expected. Estimated
reference equalities are also accurate: each cache hit of a tree node object yields two
reference comparisons, one for each sub-node.

Redundancy-free Trees

Figure 6.5(b) shows the results for trees with no shareable data. The maximum
sharing model and sharing run (with default heap size) correlate. The plot illustrates
the overhead of the global cache that grows linearly with each unique object. The
only unexpected observation is one additional cache hit, caused by the previously
mentioned integer(1) constant.

No hash collisions were recorded due to global cache lookups, with the exception
of a single experiment (d = 20) that yielded 420 false equality comparisons in a
cache with 2M cached objects. We list the number of equality checks that yielded
false rather than full collisions to abstract from global cache implementation details.

Analysis

First, we observed particularities of PDB in terms of preallocated constants. Second,
even under optimal conditions hash collisions became visible at 2M cached objects.
We suspect this becoming a dominant factor in further experiments. This indicates
also that the hash code quality should be an engineering priority in case of a “go”
decision for maximal sharing for this kind of data.

The naive method 1 of comparing mean memory is not able to show the effect
of maximal sharing due to GC noise. In contrast, our alternative method 2 shows
accurate results that matched our model.

We may confirm Q-Accurate for this case: MASHO precisely analyzes potential
savings and losses, our second method of memory comparison works, and also
equals-calls are predicted accurately.

6.7 Evaluation: Case Study

In this section we report on our experience with predicting the effect of maximal
sharing in the context of PDB being embedded into Rascal. We will evaluate the
following benchmarks:

6.7. EVALUATION: CASE STUDY 133

−0.5

0.0

0.5

1.0

A B C D E F G H

ME05

ME10

ME15

ME20

MS05

MS10

MS15

MS20

MT05

MT10

MT15

MT20

Experiment Name

Fa
ct

or

Object Redundancy

Mean Memory Reduction

Figure 6.6: Relation of Redundancy and Mean Memory Savings

A: Start the Read-Eval-Print Loop (REPL) of the Rascal language interpreter, and
load its prelude module.

B: Start the REPL of the Rascal language interpreter, and generate a parser for an
expression grammar.

C: Start the REPL of the Rascal language interpreter, and type check a large module
(5–10k lines of code).

D–H: Load serialized call-graphs and calculate the transitive closure for JHotdraw,
JWAM16FullAndreas, Eclipse202a, jdk14v2 and JDK140AWT. These benchmarks
are supposed to stress the influence of data shape, and the effect of redundancy
in algorithmic computation.

M{E,S,T}: Peano arithmetic modulo 17 in three variations, i.e. expression, symbolic,
and tree. These are standard benchmarks for term rewriting engines and are
previously used to measure the effect of maximal sharing [vdBra+02].

134 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

0B

25MB

100MB

225MB

A B C D E F G H

ME05

ME10

ME15

ME20

MS05

MS10

MS15

MS20

MT05

MT10

MT15

MT20

Experiment Name

M
ea

n
M

em
or

y
C

on
su

m
pt

io
n

Without Sharing

With Sharing

Figure 6.7: Effect of Maximal Sharing on Memory Consumption

Results

First of all, we report that the experimental runs with the maximal sharing aspect
of benchmarks B and C timed out after 30 minutes. The cause of the problem,
after some manual investigation, was an enormous amount of hashing collisions
in the global cache of the shared version. Using MASHO’s hashcode logging feature
and a Java debugger we found out that the “annotations” feature of PDB was
causing trouble. For every annotated value there is a non-annotated value with
the same hashcode, leading to as many collisions as there are annotated values.
In benchmarks B and C there are many parse trees that are annotated with their
source code position. To continue our experiments, we then provided an alternative
hashcode implementation for annotated values, which only the global cache invokes
for lookups. Note that altering the problematic hashcode method itself is not an
option, because it would break the semantic of any program that uses the annotation
feature. Applying the fix was necessary for continuing the evaluation, to be able to
compare MASHO’s models against data from a real maximal sharing implementation.
However, the fix was not necessary for a priori performance modeling. We also
noticed another hashcode related problem —the hashcode of a singleton set collides

6.7. EVALUATION: CASE STUDY 135

0

1

2

3

4

5

A B C D E F G H

ME05

ME10

ME15

ME20

MS05

MS10

MS15

MS20

MT05

MT10

MT15

MT20

Experiment Name

Av
er

ag
e

of
 F

al
se

 E
qu

al
s

pe
r C

ac
he

 H
it

Figure 6.8: Ratio of False Equality Comparisons per Cache Hit

with the hashcode of its contained object— and fixed it analogous to the previous
problem. Figure 6.12 finally visualizes the results for all benchmarks. We first
interpret this data to subsequently answer our evaluation questions. In obtaining
the results, ORP and ECP yielded a mean slowdown of 7x (range 2.5–32x).

Object Redundancy and Memory Gains. Figure 6.6 illustrates object redundancy
in relative numbers, that is how many newly allocated objects yield a hit in the
global cache. Over all benchmarks, we can report a mean redundancy of 64%, with
a minimum of 33%, and a high of 100% in case of the Peano arithmetic benchmarks.
However, the amount of object redundancy does not imply equal gains in mean
memory reduction. Allover, observed mean memory reductions are below the object
redundancy numbers, emphasizing that the size of redundant objects matters and
not only their count. In case of the algorithmic transitive closure benchmarks (D–H)
we even see a negative net impact on mean memory consumption, albeit 33–58%
object redundancy. The loss is attributed to the overhead of the global cache and that
redundancy is mostly present in terms of small objects. Figure 6.7 presents another
view on the Mean Memory Reduction data points from Figure 6.6 by displaying the
mean memory usage of the benchmarks before and after applying maximal sharing.

136 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

50

650

2K

4K

8K

A B C D E F G H

ME05

ME10

ME15

ME20

MS05

MS10

MS15

MS20

MT05

MT10

MT15

MT20

Experiment Name

Fa
ct

or

Object Allocations

Cache Hits

False Equals

Figure 6.9: Relation of Object Allocation, Cache Hits, and Collisions

Cache Hits and Negative Comparisons due to Chaining and Hash Collisions.
In Figure 6.8 we illustrate the number of false equals-calls that occur on average
when performing a global cache lookup that eventually yields a hit. We do not
further distinguish and discuss the causes of false equals-calls, which could be
either attributed to implementation details of the global cache (e.g., chaining due to
modulo size operations), or to hashcode implementations causing collisions. A high
ratio should alert a library engineer to systematically explore these possible causes.

Figure 6.9 shows the absolute numbers for object allocations, cache hits, and
collisions for all benchmarks. Benchmarks ME20, MS20, and MT20 created a high
cache load —causing many negative equality checks— that in the case of ME20 and
MT20 led to substantial memory savings (cf. Figure 6.7).

In our data set, on average a global cache hit triggers 1.4 nested reference
comparisons. This illustrates how maximal sharing transforms the shape of equals-
call-graphs: frequent comparisons in the global cache are shallow, and recursive
equals-calls in the program collapse to one comparison.

6.7. EVALUATION: CASE STUDY 137

5K

150K

1M

5M

15M

40M

80M

A B C D E F G H

ME05

ME10

ME15

ME20

MS05

MS10

MS15

MS20

MT05

MT10

MT15

MT20

Experiment Name

E
qu

al
ity

 C
al

ls

equals

==

isEqual

Figure 6.10: Equality Profile without Maximal Sharing

Equality Profile of the Original Library. Figure 6.10 highlights the mixture of
equalities encountered. Surprisingly, calls to equals with aliased arguments oc-
curred more frequently than calls to equals and isEqual with distinct arguments.
The transitive closure benchmarks D, E and H solely perform reference comparisons.
Consequently, the alias-aware analysis of ECP is necessary in our case, otherwise we
would have clearly over-approximated savings under maximal sharing. With respect
to the recursive call-graph shape of equals and isEqual, we observed on average
2.7 nested equality calls (other than reference equalities).

Equality Profile with Maximal Sharing. Figure 6.11 shows the equality profile
of the experiments with maximal sharing enabled and highlights the changes to
Figure 6.10. Absolute numbers of calls decrease, because each recursive equals-call
is replaced by a single reference comparison. Recursive call-graphs for isEqual

remain, if two objects are objects are equivalent (isEqual) but not strictly equal.

138 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

5K

150K

1M

5M

15M

40M

80M

A B C D E F G H

ME05

ME10

ME15

ME20

MS05

MS10

MS15

MS20

MT05

MT10

MT15

MT20

Experiment Name

E
qu

al
ity

 C
al

ls

equals

==

isEqual

Figure 6.11: Equality Profiles with Maximal Sharing

Figure 6.12: Realistic data: Various memory and equality aspects of the applications
under test. Figures 6.7 and 6.9 use a square root scale on the y-axes, and figures 6.10

and 6.11 a double square root scale, to better accommodate the wide range of values.

Benchmarks M{E,S,T} — Peano Arithmetic are designed to bring out best behav-
ior for maximal sharing by generating an enormous amount of redundant terms.
The results are shown for different sizes of the problem of symbolically computing
2n mod 17 in Peano arithmetic. The results show that redundancy was accurately
predicted for all three benchmark versions. MS exhibited a saving potential up to
86% with increasing input size, the others up to 100%, which is in line with related
work [vdBra+02]. However, we do not see significant gains in use of equality. The
reason is that our benchmark implementation uses deep pattern matching instead
of calls to equals and therefore loses the benefit of O(1) reference comparisons.

6.7. EVALUATION: CASE STUDY 139

Analysis

Q-Accurate. None of the experiments showed significant differences between the
predicted and the actual memory usage; the mean accuracy of method 2 was about
99%. For all but one benchmark, calls to equals methods were predicted with an
accuracy of at least 99%. The only outlier was benchmark B, the parser generator
benchmark, that exhibited 19% more calls to equals, caused by an corresponding
increase in global cache hits. The additional cache hits were caused by equivalent
objects that were re-generated at a higher rate than the collection of the weak
references from the global cache. In the latter case, we actually under-approximated
the potential savings, because the longer living weak references caused an overlap
between previously disjoint object families.

We conclude that MASHO accurately models lower bounds for hypothetical heap
evolution and calls to equals under maximal sharing for all our benchmarks. This
means that 256-bit SHA-2 hashes were good enough at least for this (heterogeneous)
data, and that the MASHO model is complete.

Q-Actionable. The redundancy data clearly suggests that PDB could benefit from
maximal sharing for most benchmarks. However, during profiling we figured out
that PDB’s annotation feature causes a substantial number of hash-collisions. Further-
more, the effectiveness of maximal sharing diminished under isEqual that ignores
annotations: many calls to isEqual cannot be replaced by reference comparisons. It
follows that the library would require severe reengineering before maximal sharing
can be applied optimally.

As compared to general memory profilers, which do not consider the specifics
and preconditions of maximal sharing, we showed that the GC can hide memory
savings of maximal sharing. A memory profiler will not even see substantial savings
unless by trial and error global minimum heap bounds are found. Since MASHO

ignores the effect of the GC, this confounding effect has become a non-issue.
The information provided by MASHO as compared to our simple maximal sharing

aspect is comparable. More importantly, the maximal sharing aspect suffers from
arbitrary hash collisions in terms of accuracy (more equals-calls will be made as
hash buckets become deeper) and speed (the benchmarks will run longer and longer).
MASHO provides filtered information, isolating the effect of maximal sharing from
the confounding effect of hash collisions.

In additional experiments simulating the semantics of related memory profilers,
which check for isomorphic heap graphs [RK14; MO03], we measured that MASHO

uncovers up to 14%, and at median 4%, more unique caching opportunities in
the aforementioned benchmarks than the related work can provide —due to the
additional abstraction facilities.

140 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

6.8 Related Work

We position our contribution with respect to memory profiling tools and studies,
programming language features, and maximal sharing libraries.

Memory profiling tools and studies. Sewe et al. [Sew+12] investigated the dif-
ferences in memory behavior between Java and Scala programs. The key findings
were that objects in Scala are more likely to be immutable, small, and to have a
short lifetime, compared to pure object-oriented Java programs. Ergo, the Scala
community may benefit from MASHO.

Dieckmann and Hölzle [DH99] originally published a study about the allocation
behavior of six SPECjvm98 Java programs, and compared the results to Smalltalk
and ML. The authors obtained allocation data by instrumenting the source code of a
virtual machine and built a heap simulator.

Sartor et al. [SHM08] discuss the limits of heap data compression by examining
types and sources of memory inefficiencies. Techniques were investigated that work
on a wide spectrum of granularity, ranging from object equality to stripping off
empty bytes, or compressing fields and arrays. Their analysis approximates saving
potentials by analyzing a series of timed heap dumps. The authors observed that
deep object equality together with array sharing reduces the size of applications by
14% on average. These results also motivate our research but timed heap dumps do
not provide enough detail to assess the impact of maximal sharing accurately.

Resurrector [Xu13] is an object lifetime profiler that supports tuneable cost set-
tings per allocation site. For frequent calls to allocation sites, Resurrector works
more precisely than garbage collector heuristics and can avoid expensive reacha-
bility analyses to identify dead objects, as used by Merlin [Her+06] or Elephant
Tracks [RGM13]. These more advanced lifetime profiling techniques are usually
implemented inside a Virtual Machine (VM). In contrast, MASHO uses garage collector
timestamps as heuristic for object lifetime obtained via JVMTI and BCI and thus works
across different JVMs. MASHO predicts with almost perfect accuracy (see Section 6.5),
so these more precise and much more expensive techniques are not necessary here.

Bhattacharya et al. [Bha+11] reduce unnecessary allocations of temporary strings
or container objects inside loops, by analyzing which objects can be reused after
each loop iteration. MASHO reasons over redundancy of a whole program run and
therefore also covers these cases, necessarily.

Nguyen and Xu [NX13] detect cacheable objects at allocation sites with variants
of data dependence graphs, and memoizable functions at their call sites. Their
tool, Cachetor, is implemented inside a VM and targets arbitrary mutable programs
and thus leading to a 200x overhead. Redundancy profiling, as implemented by
MASHO, in contrast exploits the preconditions of immutable object graphs and can
thus operate at lower runtime overheads.

6.8. RELATED WORK 141

To optimize compilers, Lattner and Adve [LA05] researched a macroscopic ap-
proach for reasoning over pointer-intense programs, by focusing on how programs
use entire logical data structures, rather than individual objects, to then segregate
these objects automatically into separate memory pools.

With Object Equality Profiling (OEP), Marinov et al. [MO03] pinpoint groups
of equivalent objects that could be replaced by a single representative instance.
OEP considers every single object created during a program run. The authors
use BCI to track heap activity dynamically. A post-mortem analysis calculates
mergeability of objects, by checking isomorphism of labelled graphs. OEP uses
an off-line graph partitioning algorithm to process data sets that might exceed
main memory size in O(n log n) time. One of the key contributions of OEP—that
makes it scalable for mutable objects but difficult to apply for modeling maximal
sharing— is pre-partitioning heap graphs based on the primitive values of objects
as a discriminator. In our context this causes OEP not being able to abstract from
implementation details such as arbitrary ordering of elements in arrays, specialized
sub-classes, and lazily initialized or cached hashcodes. For libraries based on
immutable objects, this can make objects look different while they should be the
same. Our experiments showed that MASHO uncovers up to 14%, and at median 4%,
more unique sharing opportunities than OEP on the same data would. The focus on
immutable objects gives MASHO both the opportunity to abstract and the ability to
optimize the necessary high granularity memory profiles.

Rama and Komondoor [RK14] worked on an extension of OEP and introduced
a tool, the Object Caching Advisor (OCA), to support introducing hash-consing at
the source-code level as a refactoring. The authors reuse a fingerprinting function,
introduced by Xu [Xu12], that runs in O(size of object graph) and yields a runtime
overhead ranging from 98–2520x. In contrast, MASHO’s fingerprinting, which is
based on Merkle trees, operates in O(shallow object size).

Language support for obviating equals and hashCode. Vaziri et al. [Vaz+07] pro-
posed a declarative, stricter form of object identity called relation types. By requiring
that the identity of an object never changes during runtime, the authors obviated
potential error-prone equals and hashcode methods. A subset of immutable key
fields, referred to as tuple, designates object identity. These tuples match our
weak-immutability requirement (see Section 6.2). The authors formalized their
programming model and proved that hash-consing preserves semantics and is a safe
optimization in their model. Our contribution is nicely orthogonal: Whereas MASHO

investigates maximal sharing for libraries and requires that equals and hashcode

are user provided, relation types are meant to be an equality substitute at language
level. Vaziri et al. contribute the language supported semantics of weak immutability,
which is our a priori assumption.

142 CHAPTER 6. PERFORMANCE MODELING OF MAXIMAL SHARING

Scala counters fragile equals and hashcode implementations with the concept of
case classes. Scala shows that immutable data types that adhere to structural equality
can obviate hand-written equals and hashcode implementations. The compiler
synthesizes their implementation, but since maximal sharing is not always beneficial
it does not generate shared implementations. A recast of MASHO to Scala may help
finding optimal solutions for libraries that heavily rely on case classes.

The ATerm library. is a prime source of inspiration [vdBra+00; vdBK07; vdBMV05].
Both in C and in Java this is a successful library that employs maximal sharing for
representing atomic data-types, lists and trees. Key design considerations of the
ATerm library are to specialize garbage collection (in C), and (de)serialization as well
based on the condition of maximal sharing and structural equality. In this chapter
we use benchmarks from the ATerm experience to evaluate MASHO. The reported
use cases of ATerm library (specifically in the term rewriting and model checking
context) indicate the possibility of great savings in memory consumption and great
increases in performance, but in the general case it is unlikely that maximal sharing
is always a good idea.

ShadowVM [Mar+13] is a recent generic Java run-time analysis framework. It sep-
arates instrumentation from the client VM and adds asynchronous remote evaluation
to increase isolation and coverage. Analyses can be written on a high level of abstrac-
tion using an open pointcut model and support bytecode instruction granularity as
well. MASHO would be a good usage scenario for ShadowVM, since tracking ==
instructions needs bytecode instrumentation beyond the capabilities of AspectJ.

6.9 Conclusion

We introduced a new predictive performance modeling tool —named MASHO— for
assessing the effects of introducing the maximal sharing optimization strategy into a
Java library without changing the library or client code of the library.

MASHO profiles object redundancy and calls to equals efficiently using object
fingerprints. Under the assumption of weak immutability, fingerprinting leads to
an accurate model efficiently. MASHO can abstract from accidental implementation
details in the current version of a library, such as arbitrary array orderings which
also enhances its accuracy.

The experience report focused on the accuracy of the predictions, since finger-
printing and feedback loops with garbage collection heuristics may introduce noise.
This showed on a controlled case and on realistic cases that MASHO’s predictions are
accurate. Predictive performance analysis with MASHO isolates the effect of maximal
sharing from noise in the measurements, in contrast to a full blown experiment
where confounding effects may be prohibitive for decision making.

Chapter 7

Conclusion

In this dissertation we presented a generative programming perspective for creating
efficient immutable collection data structures for standard libraries of programming
languages. We analyzed the variability within the domain of collection libraries, and
outlined intermediate abstractions for concisely encoding the variability amongst
various collection data structures. The key enabler for concisely encoding the vari-
ability are novel and efficient data structure designs that improve memory footprints
and runtime performance over the Hash-Array Mapped Trie (HAMT) data structure.
HAMT is the current state-of-the-art and de-facto standard for implementing efficient
unordered hashed collections, such as hash-sets or hash-maps. Form a bird’s eye
view, we learned the following lessons while doing our research:

Algorithmic Improvements: Algorithmic improvements —that were enabled by
novel data structure designs— proved to be the most effective contributions,
yielding speedups of several orders of magnitude.

Data Locality: Improving data locality turned out to be a key factor to create in-
dustrial strength data structures with good performance, especially under the
restrictions of languages with automatic memory management, such as Java or
C#, that prohibit fine-grained memory data layouts. Our data structures and
algorithms improve data locality by design. Besides that, we consider code
specialization of data types essential for reducing memory indirections.

Language and Runtime Support for Immutability: We assess that Java lacks
proper programming language abstractions to support the design and imple-
mentation of immutable data types. From a user’s perspective, the language
only offers the final keyword for single assignments to variables. However, the
Java Virtual Machine (JVM) mostly ignores the final modifier, because reflective
code is still able to change the content of final fields.

143

144 CHAPTER 7. CONCLUSION

In the remainder of this chapter we first recapitulate the answers to our research
questions (cf. Section 7.1), before outlining remaining challenges and future work
(cf. Section 7.2), and concluding (cf. Section 7.3).

7.1 Recapitulation of Research Questions

Research Question (RQ-1): What are the commonalities and differences be-
tween different data structures in the domain of collection libraries? Can
we generalize over the sub-domain of immutable collections by modeling
variability and documenting implementation choices?

RQ-1 is answered by Chapter 2. The chapter describes a small core of intermedi-
ate abstractions for immutable collection data structures that covers all variations
without exhaustively listing them, and enables excellent runtime performance.

Based on the outcome of our domain analysis and our intermediate abstractions,
we designed a product line for immutable collection data structures that relieves
library designers from optimizing for the general case, and allows the co-evolution
of a collection family (with a potentially large code base) efficiently.

So far related work, as discussed in this thesis, focused on synthesizing complex
data structures by composing basic collection data structures (e.g., array-list, linked-
list, hash-map). Unlike our approach, none of these results tackled the generation
of basic collection data structures themselves. Due to our focus on describing the
variability of those basic data structures, future iterations of data structure code
generators could apply an integrated code generation approach, fusing various
levels of abstraction across basic collections and complex composites.

Research Question (RQ-2): What are the strength and weaknesses of current
state-of-the-art persistent data structures that are based on HAMTs, i.e.,
hash-sets and hash-maps?

RQ-2 is answered by Chapter 3. We identified that the main strength points of
HAMTs are incremental updates (for basic operations such insertion and deletion)
and structural operations on the partially-ordered trie structure, e.g., a set union
operation that merges trees directly instead of using higher level abstractions.

We identified the following weaknesses of HAMT implementations: first, HAMT

implementations require dynamic type checks or polymorphism (to distinguish real
payload data from accidental tree encoding) due to an insufficient bitmap encoding;
second, traversal algorithms suffer from cache locality issues due to an untyped

7.1. RECAPITULATION OF RESEARCH QUESTIONS 145

mix of heterogeneous data; third, operations such as equality checking are not
incremental due to potentially degenerated trie structures that are not canonical.

We addressed the above mentioned weaknesses by proposing a new cache-
oblivious memory layout, an explicit bitmap encoding that enables a higher com-
pression ratio, and invariants that enforce a canonical tree structure. We call our
improved HAMT variant a Compressed Hash-Array Mapped Prefix-tree (CHAMP).
CHAMP increases the overall performance of immutable sets and maps, and out-
performs Scala’s and Clojure’s implementations in terms of memory footprint and
runtime efficiency of iteration (1.3–6.7 x) and equality checking (3–25.4 x).

CHAMP constitutes the key contribution of this thesis and is the foundation
for efficiently encoding the variability of the domain of unordered immutable
collections in a Software Product Line (SPL). CHAMP’s explicit bitmap encoding avoids
dynamic type checks at runtime and reorders objects for improved data locality by
design. CHAMP further enables improved algorithms, effective memory footprint
specializations, and generalized data structures that support type-heterogeneous
content. Overall, CHAMP facilitates generating an efficient and extensive family of
collection data structures.

Research Question (RQ-3): HAMT data structures inherently feature many
memory indirections due to their tree-based nature. How can we op-
timize the memory footprint of such data structures on the JVM?

RQ-3 is answered by Chapters 4 and 5. To effectively optimize the memory footprint
of trie data structures, it is sufficient to specialize trie-nodes based on their arity.
In each specialization we can then replace the node’s dynamic content array by a
static number of inlined fields. However, HAMTs feature an exponential amount of
typed content configurations (and memory specializations) because a trie’s content
is dynamically dictated by the hash codes of its elements.

In Chapter 4 we explore a pragmatic approach that applies generative program-
ming techniques to specializing HAMT nodes. We reduced the exponential number
of specializations to a small practical subset while still maximizing memory savings,
by experimentally analyzing typical node-arity distributions. With these techniques
we achieved a median decrease of 55 % in memory footprint for maps and 78 %
for sets compared to a non-specialized version, but at the cost of 20–40 % runtime
overhead of the lookup operation.

In Chapter 5 we improved the scalability and performance over our previous
pragmatic approach. Instead of finding a small number of specializations, the
improved approach makes use of full specialization, while at the time avoiding code
bloat and polymorphic calls for improved runtime performance.

146 CHAPTER 7. CONCLUSION

Next to data structure and algorithmic improvements, memory specialization
is an effective optimization strategy. Specialized data structures can significantly
lower an application’s memory footprint, and improve data locality due to a reduced
amount of memory indirections and objects created. Memory specialization tech-
niques become feasible through generative programming and code generators and
are invaluable for creating high-performance collection data structures.

Research Question (RQ-4): How can HAMTs be utilized (or extended) to effi-
ciently support the implementation of specialized composite data struc-
tures such as multi-maps, avoiding the memory overhead of nesting
existing collections into each other?

Research Question (RQ-5): Can we bring the advantages in efficiency of prim-
itive collections to generic collections? E.g., how can we optimize data
structures for numeric or primitive data types? Or, how can we mix
elements of primitive types and reference types without boxing?

RQ-4 and RQ-5 are answered by Chapter 5. The chapter describes a general frame-
work for Hash-Array Mapped Tries on the JVM which can store type-heterogeneous
keys and values: a Heterogeneous Hash-Array Mapped Trie (HHAMT). Among
other applications, this allows for highly efficient composite data structures such
as memory-optimized multi-maps. The new multi-map design reduced the per
key-value storage overhead by a factor of two. Moreover, our type-heterogeneous
data structure design allows specializing data structures by content. The resulting
data structures can freely mix unboxed primitive types and reference types with a
factor four improvement in memory consumption over standard generic collections.

Research Question (RQ-6): Hash-consing is an essential optimization strategy
to consider for persistent data structures, which involves cross-cutting
and invasive changes to a data structure library code base. How can we
evaluate a priori the performance impact of applying hash-consing to a
data structure library?

RQ-6 is answered by Chapter 6. We detail a priori performance modeling techniques
for the hash-consing optimization strategy. We model the potential performance
implications of introducing hash-consing to a library that does not implement it
yet. Our accompanying performance modeling tool creates predictive performance
models, without requiring developers to implement hash-consing.

7.2. FUTURE WORK 147

While in general it is noticeably hard to predict the effect of optimization strate-
gies without implementing them, this thesis illustrates the rewards of doing so. For
the case of hash-consing, we have shown that a cheap predictive model can provide
more accurate information than an expensive experiment can, and further that we
can uncover optimization opportunities that otherwise would remain hidden. We
expect that our research approach of a priori modeling the effect of optimization
strategies gets picked up by research communities and ported to further optimiza-
tion strategies. In the end, such tools enable library designers and implementers to
make informed choices about the effectivity of optimization strategies upfront.

7.2 Future Work

In this thesis we are concerned with improving the efficiency of immutable collections
by devising new data structure designs, algorithms, and memory specialization
strategies. We did push the boundaries of immutable data structure implementations
under the current version of the JVM. To go beyond this, it is necessary to investigate
the co-design of collections with dedicated programming language and Virtual
Machine (VM) features for immutability, to boost data structure performance even
further. In the remainder of this section we will discuss ideas for carrying research
results from this thesis over to other application domains.

Generic Runtime Optimizations for Persistent Data Structures

This section describes ideas on how advanced memory management techniques
could help to further increase the performance of tree-based data structures.

Advanced Garbage Collection Strategies. The HAMT data structure imposes a
partially-ordered trie structure on hash codes of otherwise unsorted data elements.
However, because of automatic memory management, the JVM does not guarantee
any particular ordering of the trie data structure and its content in memory. Because
immutable object graphs remain stable, a garbage collector could improve on data
locality by copying objects according to a HAMT’s partial ordering.

A copying garbage collector could increase the locality between tree nodes,
by co-locating the objects of partially-ordered trie structures. Such a co-location
would essentially flatten tree structures in memory and approximate the locality of
array-based structures. Co-location strategies could be triggered transparently upon
garbage collection cycles.

Furthermore, long-living object graphs of immutable collections, which have not
been modified for longer periods, could benefit from compression strategies that
are applied transparently upon garbage collection cycles. Recursive object inlining
that omits tree node indirections, or the use of serialization and compression of

148 CHAPTER 7. CONCLUSION

immutable heap graphs, are possible optimization strategies to improve the memory
footprint of applications that predominantly rely on immutable data structures.

Mapping Persistent Data Structures onto Region-Based Memory Layouts. Effi-
cient immutable data structures that are descendant from HAMTs fall in the category
of persistent data structures. Persistency, in this context, designates that multiple
data structures may structurally share data that they have in common. Recent
region-based memory management techniques [Sta+15] allow grouping of mem-
ory allocations based on expected object lifetime or semantic. We are interested
to explore if region-based memory allocation could be an enabler for advanced,
domain-specific memory management strategies for persistent data structures.

Communicating Hints to a Runtime or Garbage Collector. To fully leverage the
potential of the two aforementioned research ideas, a data structure engineer would
most likely have to signal his/her intents to a language runtime or garbage collector.
We are interested to explore solutions that allow signaling intents to components of
programming language runtimes.

Optimizing Language Runtimes with Persistent Data Structures

In contrast to statically typed languages, dynamically typed language implemen-
tations often impose a significant run-time and memory overhead [Tra09] due to
generic collection data structures that can hold heterogeneously typed elements. To
improve efficiency, language runtimes already optimize collections for homogeneously
typed primitive elements [BDT13]. The resulting performance improvements mainly
stem from object layouts that specialize for unboxed primitive values and corre-
sponding optimized operations.

In many programming language implementations exist homogeneous language
abstractions that are decomposed into heterogeneous VM abstractions for which
traditional optimizations [BDT13] are not applicable. E.g., the Rascal programming
language supports arbitrary-precision integers. From the viewpoint of a language
abstraction, a collection of arbitrary-precision integers is homogenous, however from
the viewpoint of a VM the data is heterogeneous. VMs internally store integers in the
most efficient representation provided by the host language or platform. Integers
that fit into the 32-bit range may be stored as an int in a JVM language runtime,
whereas bigger numbers require complex object representations.

Chapter 5 showcased HHAMT, an efficient encoding that supports (bounded)
heterogenous content. Applying HHAMT to runtimes of dynamic programming
languages seems very promising to bridge the conceptual differences between high-
level language abstractions and low-level VM implementation details.

7.3. TAKEAWAY 149

7.3 Takeaway

Efficient persistent data structures are an important pillar of the success of functional
and hybrid functional/object-oriented programming languages, but also of popular
productivity tools such as the GIT version control system, or large scale industrial
file systems such as ZFS.

Our results on the CHAMPs data structure design, including our performance re-
sults, have already been independently replicated in the ClojureScript programming
language, and are being considered for inclusion in JVM languages such as Clojure
and Kotlin, amongst others.

This thesis shows that there is still plenty of room to leap the foundations of
efficient persistent data structures forward. We are confident that in the near future,
immutable collections will become viable defaults over mutable collections. To say it
with the words of Pet Helland [Hel15]: “Immutability Changes Everything”.

Abstract

This thesis proposes novel and efficient data structures, suitable for im-
mutable collection libraries, that carefully balance memory footprint and runtime
performance of operations, and are aware of constraints and platform co-design
challenges on the Java Virtual Machine (JVM). Collection data structures that are
contained in standard libraries of programming languages are popular amongst
programmers. Almost all programs make use of collections. Therefore optimizing
collections implies automatically increasing the performance of many programs.

Today’s collection data structures are mostly one-off solutions. This is prob-
lematic, since statically encoding data structure design decisions and trade-offs
brings disadvantages for the library users and the library engineers. While the
former do not have easy access to optimized problem-specific data structures,
the latter cannot extend and evolve potentially large code bases of collection
libraries efficiently. Applying generative programming techniques may solve
the aforementioned problems, however it requires a minimal core that is expres-
sive enough to cover the commonalities and variability of the domain. The key
enablers are data structure encodings that constitute the core of this thesis.

First, we contribute a successor to the state-of-the-art approach of Hash-
Array Mapped Tries: the Compressed Hash-Array Mapped Prefix-tree (CHAMP).
CHAMP improves the overall performance of immutable sets and maps by in-
creasing cache locality and keeping the data structure canonical. Compared to
its predecessor, CHAMP reduces memory footprints by design, and most notably
increases runtime efficiency of iteration and equality checking significantly.

Second, we propose the Heterogeneous Hash-Array Mapped Trie (HHAMT), a
generic encoding that allows storing type-heterogeneous payloads. We detail how
a range of data structure design challenges can be reformulated as optimization
problems for storing type-heterogeneous payloads. Amongst other optimizations,
HHAMT enables highly efficient multi-maps, and collections that efficiently mix
(unboxed) value-types und reference types.

Third, we discuss memory layout specialization approaches that are specific
to trie-based data structures. Reducing the memory footprint of frequently used
collections improves the scalability of programs that handle larger data sets, but
also improves application performance in memory constraint environments.

Based on our theoretical results, we generated Capsule, a library of trie-based
immutable collections that powers the Rascal programming language. Capsule’s
data structures carefully balance memory footprint and runtime performance,
and are tailored toward JVM specifics. We managed to further reduce the per-
formance gap between immutable and mutable collections, and to even surpass
mutable collections when it comes to memory footprints and equality checking.
Comparisons to state-of-the-art implementations of immutable collections in
Clojure and Scala show that our encodings increase overall performance and
versatility, making them sensible default choices.

Samenvatting

Dit proefschrift introduceert nieuwe en efficiënte datastructuren voor “im-
mutable collection libraries”: bibliotheken van functies op datastructuren voor
collecties (zoals verzamelingen, relaties en tabellen) die niet-veranderbaar zijn
d.w.z. dat ze na creatie niet meer te wijzigen zijn. De afweging tussen snelheid
en geheugengebruik is geoptimaliseerd voor schaalbaarheid en brede toepas-
baarheid voor berekeningstaken op het Java Virtual Machine (JVM) platform.
Datastructuren voor collecties in standaardbibliotheken van programmeertalen
zijn populair onder programmeurs. Ons ontwerp voor het optimaliseren van
collecties zou daarom een positieve bijdrage kunnen leveren omdat bijna ieder
programma gebruikmaakt van collecties.

De beschikbare datastructuren voor collecties zijn meestal context-specifiek.
Een probleem daarvan is dat ontwerpbeslissingen, aannames en afwegingen
hard gecodeerd zijn in de broncode die de datastructuur implementeert en
daardoor impliciet en niet goed zichtbaar zijn. Impliciete codering van kennis
heeft nadelen voor zowel gebruikers als ontwikkelaars van bibliotheken. De
eerstgenoemden hebben geen mogelijkheid om geoptimaliseerde datastructuren
te gebruiken om een specifiek probleem op te lossen. Laatstgenoemden kunnen
een grote bibliotheek alleen maar verder uitbreiden of ontwikkelen. Technieken
voor generatief programmeren zijn geschikt om deze problemen op te lossen,
maar vereisen een allesomvattende domeinbeschrijving die krachtig genoeg is
om de variabiliteit en gemeenschappelijkheden van een domein te karakteriseren.
De concepten en datastructuren zoals beschreven in dit proefschrift maken deze
visie realistisch uitvoerbaar.

Ten eerste, introduceren we de Compressed Hash-Array Mapped Prefix-
tree (CHAMP), een opvolger van de huidige state-of-the-art aanpak van Hash-
Array Mapped Tries. CHAMP verbetert de prestaties van niet-veranderbare datas-
tructuren voor verzamelingen en tabellen door het verhogen van de lokaliteit van
geheugencaches en door het garanderen van invarianten waardoor een kanon-
ieke representatie van deze collecties mogelijk wordt. In vergelijking met zijn
voorganger heeft CHAMP per ontwerp minder geheugen nodig, en daarnaast
verhoogt het de snelheid van iteratie en vergelijkingsoperaties aanzienlijk.

Ten tweede, introduceren we de Heterogeneous Hash-Array Mapped Trie
(HHAMT), een generieke codering die heterogene data elementen in collecties
ondersteunt. We beschrijven een aantal uitdagingen bij het ontwerpen van
deze heterogene datastructuur. Onze heterogene codering maakt het mogelijk
om hoogst efficiënte multi-maps te implementeren en datastructuren die het
mengen van (niet geboxte) waardetypes (zoals integers en reals) en referentietypes
ondersteunen.

Ten derde, bespreken we de toegepaste technieken voor het specialiseren van
geheugenlayout voor trie datastructuren. Hierdoor kunnen wij in het algemeen
het geheugengebruik van datastructuren voor collecties verlagen en de schaal-
baarheid van programma’s met grotere databestanden vergroten. Bovendien

wordt de efficiency van programma’s verbeterd in omgevingen waar weinig
geheugen beschikbaar is.

Op basis van onze theoretische resultaten hebben wij Capsule ontworpen en
gebouwd, een bibliotheek voor niet-veranderbare collecties gebaseerd op tries. In
de praktijk versnelt Capsule de runtime van de Rascal programmeertaal.

De datastructuren van Capsule zijn toegepast op de JVM en balanceren
snelheid van operaties met geheugengebruik. Met ons onderzoek hebben wij het
huidige gat tussen niet-veranderbare en veranderbare collecties kleiner gemaakt
en voor bepaalde scenarios zijn onze datastructuren zelfs beter dan veranderbare
collecties (t.a.v. geheugengebruik en snelheid van vergelijkingsoperaties). Uit
metingen en vergelijkingen met de state-of-the-art niet-veranderbare collecties
van Clojure en Scala blijkt dat onze datastructuren in het algemeen prestaties
verhogen en daarom een zeer plausibele standaardkeuze zijn.

References

[Alv+09] Vander Alves, Daniel Schneider, Martin Becker, Nelly Bencomo, and Paul Grace. “Com-
paritive Study of Variability Management in Software Product Lines and Runtime
Adaptable Systems”. In: VaMoS ’09: Proceedings of Third International Workshop on Vari-
ability Modelling of Software-Intensive Systems. Vol. 29. ICB Research Report. Universität
Duisburg-Essen, 2009 (cit. on p. 27).

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986 (cit. on pp. 62, 109).

[Bag00] Phil Bagwell. Fast And Space Efficient Trie Searches. Tech. rep. LAMP-REPORT-2000-001.
Ecole polytechnique fédérale de Lausanne, 2000 (cit. on pp. 28, 68).

[Bag01] Phil Bagwell. Ideal Hash Trees. Tech. rep. LAMP-REPORT-2001-001. Ecole polytechnique
fédérale de Lausanne, 2001 (cit. on pp. 15, 28, 31, 36, 40, 41, 55, 68, 72, 76, 84, 100).

[Bag02] Phil Bagwell. Fast Functional Lists, Hash-Lists, Deques, and Variable Length Arrays. Tech.
rep. LAMP-REPORT-2002-003. Ecole polytechnique fédérale de Lausanne, 2002 (cit. on
p. 68).

[Bak93] Henry G. Baker. “Equal Rights for Functional Objects or, the More Things Change, the
More They Are the Same”. In: SIGPLAN OOPS Messenger 4.4 (1993) (cit. on p. 121).

[Bal+07] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and Antoine Reilles.
“Tom: Piggybacking Rewriting on Java”. In: RTA ’07: Proceedings of International Confer-
ence on Rewriting Theory and Applications. LNCS. Springer, 2007 (cit. on pp. 8, 116).

[BDT13] Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. “Storage Strategies for
Collections in Dynamically Typed Languages”. In: OOPSLA ’13: Proceedings of the ACM
SIGPLAN International Conference on Object Oriented Programming Systems Languages and
Applications. ACM, 2013 (cit. on pp. 87, 93, 111, 148).

[Ber+09] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter,
Thorsten Meinl, Peter Ohl, Kilian Thiel, and Bernd Wiswedel. “KNIME - the Konstanz
Information Miner: Version 2.0 and Beyond”. In: SIGKDD Explorations Newsletter 11.1
(2009) (cit. on p. 112).

[Bha+11] Suparna Bhattacharya, Mangala Gowri Nanda, K. Gopinath, and Manish Gupta. “Reuse,
Recycle to De-bloat Software”. In: ECOOP ’11: Proceedings of the 25th European Conference
on Object-oriented Programming. Springer, 2011 (cit. on p. 140).

[Bib+15] Aggelos Biboudis, Nick Palladinos, George Fourtounis, and Yannis Smaragdakis.
“Streams a la carte: Extensible Pipelines with Object Algebras”. In: ECOOP ’15: Pro-
ceedings of the 29th European conference on Object-Oriented Programming. LIPIcs. Schloss
Dagstuhl, 2015 (cit. on pp. 36, 84).

155

[Big98] Ted J. Biggerstaff. “A Perspective of Generative Reuse”. In: Annals of Software Engineering
5.1 (1998) (cit. on pp. 7, 18, 27, 68, 73).

[Bir77] Richard S. Bird. “Two Dimensional Pattern Matching”. In: Information Processing Letters
6.5 (1977) (cit. on p. 28).

[BJM13] Thomas Braibant, Jacques-Henri Jourdan, and David Monniaux. “Implementing Hash-
consed Structures in Coq”. In: ITP ’13: Proceedings of the 4th International Conference on
Interactive Theorem Proving. LNCS. Springer, 2013 (cit. on pp. 8, 116).

[Blo08] Joshua Bloch. Effective Java, Second Edition. Addison-Wesley, 2008 (cit. on pp. 8, 88, 89).

[Bor+98] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau, and
Christophe Ringeissen. “An Overview of ELAN”. In: WRLA ’98: International Work-
shop on Rewriting Logic and its Applications. Ed. by Claude Kirchner and Hélène Kirchner.
Vol. 15. ENTCS. Elsevier, 1998 (cit. on pp. 8, 116).

[BR11] Phil Bagwell and Tiark Rompf. RRB-Trees: Efficient Immutable Vectors. Tech. rep. EPFL-
REPORT-169879. Ecole polytechnique fédérale de Lausanne, 2011 (cit. on pp. 15, 29, 43,
68).

[Bru+10] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. “MoDisco: A
Generic and Extensible Framework for Model Driven Reverse Engineering”. In: ASE ’10:
Proceedings of the IEEE/ACM International Conference on Automated Software Engineering.
ACM, 2010 (cit. on p. 112).

[CD08] Pascal Cuoq and Damien Doligez. “Hashconsing in an Incrementally Garbage-collected
System: A Story of Weak Pointers and Hashconsing in OCaml 3.10.2”. In: ML ’08:
Proceedings of the 2008 ACM SIGPLAN Workshop on ML. ACM, 2008 (cit. on p. 8).

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. ACM Press, 2000 (cit. on pp. 7, 18, 27, 68, 73).

[CHK06] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. A Simple, Fast Dominance
Algorithm. Tech. rep. TR-06-33870. Rice University, 2006 (cit. on p. 62).

[Cla+01] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and José F. Quesada. “Maude: Specification and Programming in Rewriting
Logic”. In: Theoretical Computer Science (2001) (cit. on pp. 8, 116).

[CN01] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001 (cit. on p. 27).

[DH99] Sylvia Dieckmann and Urs Hölzle. “A study of the Allocation Behavior of the SPECjvm98

Java Benchmarks”. In: ECOOP ’99: Proceedings of the 13th European Conference on Object-
oriented Programming. Springer, 1999 (cit. on p. 140).

[dlBri59] Rene de la Briandais. “File Searching Using Variable Length Keys”. In: IRE-AIEE-ACM
’59 (Western): Papers Presented at the March 3-5, 1959, Western Joint Computer Conference.
ACM, 1959 (cit. on pp. 28, 38, 68, 72, 85).

[Dri+86] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. “Making Data
Structures Persistent”. In: STOC ’86: Proceedings of the Eighteenth Annual ACM Symposium
on Theory of Computing. ACM, 1986 (cit. on pp. 10, 11, 28, 68, 72).

[Ebe+07] Jürgen Ebert, Daniel Bildhauer, Hannes Schwarz, and Volker Riediger. “Using Difference
Information to Reuse Software Cases”. In: Softwaretechnik-Trends (2007) (cit. on p. 38).

[Fre60] Edward Fredkin. “Trie Memory”. In: Communications of the ACM 3.9 (Sept. 1960) (cit. on
pp. 28, 38, 68, 72, 85).

[Got74] Eiichi Goto. Monocopy and Associative Algorithms in Extended Lisp. University of Toyko.
Tech. rep. 1974 (cit. on pp. 10, 13, 116).

[GS12] Joseph Gil and Yuval Shimron. “Smaller Footprint for Java Collections”. In: ECOOP
’12: Proceedings of the 26th European conference on Object-Oriented Programming. Springer,
2012 (cit. on pp. 52, 69, 77, 111).

[Hal+08] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. “Dynamic Software
Product Lines”. In: Computer 41.4 (2008) (cit. on p. 27).

[Haw+11] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv. “Data Rep-
resentation Synthesis”. In: PLDI ’11: Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 2011 (cit. on p. 28).

[Haw+12] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv. “Concur-
rent Data Representation Synthesis”. In: PLDI ’12: Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 2012 (cit. on p. 28).

[Hel15] Pat Helland. “Immutability Changes Everything”. In: Communications of the ACM 59.1
(2015) (cit. on pp. 26, 149).

[Her+06] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S. McKinley, and Darko
Stefanović. “Generating Object Lifetime Traces with Merlin”. In: ACM Transactions on
Programming Languages and Systems (TOPLAS) 28.3 (2006) (cit. on p. 140).

[HK14] Mark Hills and Paul Klint. “PHP AiR: Analyzing PHP systems with Rascal”. In: CSMR-
WCRE ’14: Proceedings of IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering. IEEE, 2014 (cit. on pp. 63, 110).

[HO80] Gerard Huet and Derek C. Oppen. Equations and Rewrite Rules: A Survey. Tech. rep.
CS-TR-80-785. Stanford University, Department of Computer Science, 1980 (cit. on p. 9).

[HVdM06] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. “CodeQuest: Scalable Source
Code Queries with Datalog”. In: ECOOP ’06: Proceedings of the 20th European Conference
on Object-Oriented Programming. Springer, 2006 (cit. on pp. 8, 38).

[IV02] Atsushi Igarashi and Mirko Viroli. “On Variance-Based Subtyping for Parametric Types”.
In: ECOOP ’02: Proceedings of the 16th European conference on Object-Oriented Programming.
Springer, 2002 (cit. on pp. 36, 84).

[Knu79] Donald Knuth. “Structured Programming with Goto Statements”. In: Classics in Software
Engineering. Ed. by Edward Nash Yourdon. Yourdon Press, 1979 (cit. on p. 116).

[KS01] Andrew Kennedy and Don Syme. “Design and Implementation of Generics for the
.NET Common Language Runtime”. In: PLDI ’01: Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation. ACM, 2001 (cit. on p. 5).

[KvdSV09] Paul Klint, Tijs van der Storm, and Jurgen Vinju. “Rascal: A Domain Specific Language
for Source Code Analysis and Manipulation”. In: SCAM ’09: Proceedings of the 9th IEEE
International Working Conference on Source Code Analysis and Manipulation. IEEE, 2009

(cit. on pp. 8, 31, 38, 112, 116, 126).

[LA05] Chris Lattner and Vikram Adve. “Automatic Pool Allocation: Improving Performance
by Controlling Data Structure Layout in the Heap”. In: ACM Sigplan Notices 40.6 (2005)
(cit. on p. 141).

[LFN02] Richard E. Ladner, Ray Fortna, and Bao-Hoang Nguyen. “A Comparison of Cache
Aware and Cache Oblivious Static Search Trees Using Program Instrumentation”. In:
Experimental Algorithmics. Springer, 2002 (cit. on pp. 36, 69).

[LTE16] Calvin Loncaric, Emina Torlak, and Michael D. Ernst. “Fast Synthesis of Fast Collections”.
In: PLDI ’16: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM, 2016 (cit. on p. 28).

[LW94] Barbara H. Liskov and Jeannette M. Wing. “A Behavioral Notion of Subtyping”. In:
Transactions on Programming Languages and Systems (TOPLAS) 16.6 (1994) (cit. on p. 4).

[LW99] Barbara H. Liskov and Jeannette M. Wing. Behavioral Subtyping Using Invariants and
Constraints. Tech. rep. CMU-CS-99-156. Carnegie Mellon University, 1999 (cit. on p. 4).

[Mar+13] Lukáš Marek, Stephen Kell, Yudi Zheng, Lubomír Bulej, Walter Binder, Petr Tůma,
Danilo Ansaloni, Aibek Sarimbekov, and Andreas Sewe. “ShadowVM: robust and com-
prehensive dynamic program analysis for the Java platform”. In: GPCE ’13: Proceedings of
the 12th International Conference on Generative Programming: Concepts & Experiences. ACM,
2013 (cit. on p. 142).

[McC60] John McCarthy. “Recursive Functions of Symbolic Expressions and Their Computation
by Machine, Part I”. In: Communications of the ACM 3.4 (Apr. 1960) (cit. on pp. 11, 13).

[McI68] Doug McIlroy. “Mass-Produced Software Components”. In: Proceedings of NATO Software
Engineering Conference. Ed. by P. Naur and B. Randell. 1968 (cit. on pp. 7, 18, 27, 68, 73).

[Mic68] Donald Michie. “Memo Functions and Machine Learning”. In: Nature 218.5136 (1968)
(cit. on p. 13).

[MO03] Darko Marinov and Robert O’Callahan. “Object Equality Profiling”. In: OOPSLA ’03:
Proceedings of the ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications. ACM, 2003 (cit. on pp. 121, 139, 141).

[Mos04] Peter D. Mosses. CASL Reference Manual, The Complete Documentation of the Common
Algebraic Specification Language. Vol. 2960. LNCS. Springer, 2004 (cit. on pp. 8, 116).

[MS07] Nick Mitchell and Gary Sevitsky. “The Causes of Bloat, the Limits of Health”. In:
OOPSLA ’07: Proceedings of the ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages and Applications. ACM, 2007 (cit. on pp. 58, 107).

[Nor91] Peter Norvig. “Techniques for Automatic Memoization with Applications to Context-free
Parsing”. In: Computational Linguistics 17.1 (Mar. 1991) (cit. on p. 13).

[NW06] Maurice Naftalin and Philip Wadler. Java Generics and Collections. O’Reilly, 2006 (cit. on
p. 3).

[NX13] Khanh Nguyen and Guoqing Xu. “Cachetor: Detecting Cacheable Data to Remove Bloat”.
In: ESEC/FSE ’13: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. ACM, 2013 (cit. on p. 140).

[Oka99] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, June 1999

(cit. on pp. 8, 10, 11, 28, 40, 68, 72, 116).

[OM09] Martin Odersky and Adriaan Moors. “Fighting bit Rot with Types (Experience Re-
port: Scala Collections)”. In: FSTTCS ’09: Annual Conference on Foundations of Software
Technology and Theoretical Computer Science. LIPIcs. Schloss Dagstuhl, 2009 (cit. on p. 5).

[ON07] Robert Olsson and Stefan Nilsson. “TRASH A dynamic LC-trie and hash data structure”.
In: HPSR ’07: Workshop on High Performance Switching and Routing. IEEE, 2007 (cit. on
p. 68).

[OW97] Martin Odersky and Philip Wadler. “Pizza into Java: Translating Theory into Practice”.
In: POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, 1997 (cit. on pp. 2, 5).

[PB04] Vreda Pieterse and Paul E. Black, eds. "data structure". Dictionary of Algorithms and
Data Structures. Dec. 2004. url: http://www.nist.gov/dads/HTML/dataStructure.html
(cit. on p. 1).

[Pro+12] Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Martin Odersky.
“Concurrent Tries with Efficient Non-blocking Snapshots”. In: PPoPP ’12: Proceedings
of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming.
ACM, 2012 (cit. on pp. 15, 29, 68).

[Rad08] Peter Rademaker. “Binary Relational Querying for Structural Source Code Analysis”.
MA thesis. Universiteit Utrecht, 2008 (cit. on p. 38).

[Ram+95] I. V. Ramakrishnan, Prasad Rao, Konstantinos Sagonas, Terrance Swift, and David S.
Warren. “Efficient Tabling Mechanisms for Logic Programs”. In: ICLP ’95: Proceedings of
the 12th International Conference on Logic Programming. Elsevier, 1995 (cit. on pp. 8, 38).

[RGM13] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. “Elephant Tracks: Portable
Production of Complete and Precise GC Traces”. In: ISMM ’13: Proceedings of the 2013
International Symposium on Memory Management. ACM, 2013 (cit. on p. 140).

[RK14] Girish Maskeri Rama and Raghavan Komondoor. “A Dynamic Analysis to Support
Object-sharing Code Refactorings”. In: ASE ’14: Proceedings of the 29th ACM/IEEE In-
ternational Conference on Automated Software Engineering. ACM, 2014 (cit. on pp. 139,
141).

[SB97] Yannis Smaragdakis and Don Batory. “DiSTiL: A Transformation Library for Data Struc-
tures”. In: DSL’97: Proceedings of the Conference on Domain-Specific Languages. USENIX
Association, 1997 (cit. on p. 28).

[Sew+12] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni, Walter Binder, Nathan
Ricci, and Samuel Z. Guyer. “new Scala() instance of Java: A Comparison of the Memory
Behaviour of Java and Scala Programs”. In: ISMM ’12: Proceedings of the 2012 International
Symposium on Memory Management. ACM, 2012 (cit. on p. 140).

[SHM08] Jennifer B. Sartor, Martin Hirzel, and Kathryn S. McKinley. “No Bit Left Behind: The
Limits of Heap Data Compression”. In: ISMM ’08: Proceedings of the 7th International
Symposium on Memory Management. ACM, 2008 (cit. on pp. 121, 140).

[SSS79] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. “Automatic Data Structure Se-
lection in SETL”. In: POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. ACM, 1979 (cit. on p. 28).

[ST86] Neil Sarnak and Robert E. Tarjan. “Planar Point Location Using Persistent Search Trees”.
In: Communications of the ACM 29.7 (1986) (cit. on p. 40).

[ST95] Nir Shavit and Dan Touitou. Software Transactional Memory. ACM Press, 1995 (cit. on
p. 68).

[Sta+15] Codruţ Stancu, Christian Wimmer, Stefan Brunthaler, Per Larsen, and Michael Franz.
“Safe and Efficient Hybrid Memory Management for Java”. In: ISMM ’15: Proceedings
of the 2015 International Symposium on Memory Management. ACM, 2015 (cit. on pp. 112,
148).

[Sta14] Lukas Stadler. “Partial Escape Analysis and Scalar Replacement for Java”. PhD thesis.
Johannes Kepler University Linz, 2014 (cit. on pp. 94, 112).

[Ste16] Michael J. Steindorfer. Towards a Feature Model of Trie-Based Collections. 2016. doi: 10.
5281/zenodo.59739. url: https://doi.org/10.5281/zenodo.59739 (cit. on p. 29).

http://www.nist.gov/dads/HTML/dataStructure.html
http://dx.doi.org/10.5281/zenodo.59739
http://dx.doi.org/10.5281/zenodo.59739
https://doi.org/10.5281/zenodo.59739

[Stu+15] Nicolas Stucki, Tiark Rompf, Vlad Ureche, and Phil Bagwell. “RRB Vector: A Practical
General Purpose Immutable Sequence”. In: ICFP ’15: Proceedings of the 20th ACM SIG-
PLAN International Conference on Functional Programming. ACM, 2015 (cit. on pp. 15, 29,
68).

[SV14] Michael J. Steindorfer and Jurgen J. Vinju. “Code Specialization for Memory Efficient
Hash Tries (Short Paper)”. In: GPCE ’14: Proceedings of the International Conference on
Generative Programming: Concepts and Experiences. ACM, 2014 (cit. on pp. 32, 54, 68, 84,
95, 96, 99, 101, 111).

[SV15] Michael J. Steindorfer and Jurgen J. Vinju. “Optimizing Hash-array Mapped Tries for
Fast and Lean Immutable JVM Collections”. In: OOPSLA ’15: Proceedings of the ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages
and Applications. ACM, 2015 (cit. on pp. 29, 31–33, 84, 87, 94, 98, 100, 105, 106, 109, 110).

[SV16a] Michael J. Steindorfer and Jurgen J. Vinju. “Fast and Lean Immutable Multi-Maps on
the JVM based on Heterogeneous Hash-Array Mapped Tries”. In: ArXiv e-prints (2016).
arXiv: 1608.01036 [cs.DS] (cit. on pp. 31–33).

[SV16b] Michael J. Steindorfer and Jurgen J. Vinju. “Performance Modeling of Maximal Sharing”.
In: ICPE ’16: Proceedings of the 7th ACM/SPEC International Conference on Performance
Engineering. ACM, 2016 (cit. on p. 26).

[SV16c] Michael J. Steindorfer and Jurgen J. Vinju. “Towards a Software Product Line of Trie-
based Collections”. In: GPCE ’16: Proceedings of the 2016 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences. ACM, 2016.

[SVY09] Ohad Shacham, Martin Vechev, and Eran Yahav. “Chameleon: Adaptive Selection of Col-
lections”. In: PLDI ’09: Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2009 (cit. on p. 28).

[Tra09] Laurence Tratt. “Dynamically Typed Languages”. In: Advances in Computers. Elsevier,
2009 (cit. on pp. 111, 148).

[UTO13] Vlad Ureche, Cristian Talau, and Martin Odersky. “Miniboxing: Improving the Speed
to Code Size Tradeoff in Parametric Polymorphism Translations”. In: OOPSLA ’13:
Proceedings of the ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications. ACM, 2013 (cit. on pp. 28, 69, 95, 112).

[Vaz+07] Mandana Vaziri, Frank Tip, Stephen Fink, and Julian Dolby. “Declarative object identity
using relation types”. In: ECOOP ’07: Proceedings of the 21th European Conference on
Object-oriented Programming. Springer, 2007 (cit. on pp. 8, 13, 116, 141).

[vdBK07] Mark G. J. van den Brand and Paul Klint. “ATerms for Manipulation and Exchange
of Structured Data: It’s All About Sharing”. In: Information and Software Technology 49.1
(2007) (cit. on pp. 13, 117, 142).

[vdBMV05] Mark G. J. van den Brand, Pierre-Etienne Moreau, and Jurgen Vinju. “A Generator of
Efficient Strongly Typed Abstract Syntax Trees in Java”. In: IEE Proceedings - Software
Engineering 152.2 (2005) (cit. on pp. 117, 142).

[vdBra+00] Mark G. J. van den Brand, Hayco A. de Jong, Paul Klint, and Pieter A. Olivier. “Efficient
Annotated Terms”. In: Software: Practice and Experience 30.3 (2000) (cit. on pp. 117, 125,
142).

[vdBra+02] Mark G. J. van den Brand, Jan Heering, Paul Klint, and Pieter A. Olivier. “Compil-
ing Language Definitions: The ASF+SDF Compiler”. In: Transactions on Programming
Languages and Systems (TOPLAS) 24.4 (2002) (cit. on pp. 8, 116, 117, 133, 138).

http://arxiv.org/abs/1608.01036

[vDK02] Arie van Deursen and Paul Klint. “Domain-Specific Language Design Requires Feature
Descriptions”. In: Journal of Computing and Information Technology 10.1 (2002) (cit. on
p. 29).

[Vis04] Eelco Visser. “Program Transformation with Stratego/XT: Rules, Strategies, Tools, and
Systems in StrategoXT-0.9”. In: Domain-Specific Program Generation. Ed. by C. Lengauer
et al. Vol. 3016. LNCS. Springer, 2004 (cit. on pp. 8, 116).

[VN14] Luke VanderHart and Ryan Neufeld. Clojure Cookbook: Recipes for Functional Programming.
O’Reilly, 2014 (cit. on p. 103).

[Wim08] Christian Wimmer. “Automatic Object Inlining in a Java Virtual Machine”. PhD thesis.
Johannes Kepler University Linz, 2008 (cit. on p. 112).

[Wöß+14] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer, and
Hanspeter Mössenböck. “An Object Storage Model for the Truffle Language Imple-
mentation Framework”. In: PPPJ ’14: Proceedings of the 2014 International Conference on
Principles and Practices of Programming on the Java platform. ACM, 2014 (cit. on p. 53).

[Xu12] Guoqing Xu. “Finding Reusable Data Structures”. In: OOPSLA ’12: Proceedings of the
ACM SIGPLAN International Conference on Object Oriented Programming Systems Lan-
guages and Applications. ACM, 2012 (cit. on p. 141).

[Xu13] Guoqing Xu. “Resurrector: A Tunable Object Lifetime Profiling Technique for Optimizing
Real-world Programs”. In: OOPSLA ’13: Proceedings of the ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applications. ACM,
2013 (cit. on p. 140).

Titles in the IPA Dissertation Series since 2014

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in Au-
tomated Digital Forensics. Faculty of Sci-
ence, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Control
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-03

C.-P. Bezemer. Performance Optimization
of Multi-Tenant Software Systems. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2014-04

T.M. Ngo. Qualitative and Quantita-
tive Information Flow Analysis for Multi-
threaded Programs. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-06

J. Winter. Coalgebraic Characterizations
of Automata-Theoretic Classes. Faculty
of Science, Mathematics and Computer
Science, RU. 2014-07

W. Meulemans. Similarity Measures and
Algorithms for Cartographic Schematiza-
tion. Faculty of Mathematics and Com-
puter Science, TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-09

A.P. van der Meer. Domain Specific Lan-
guages and their Type Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Collab-
oration in Online Software Communities.
Faculty of Mathematics and Computer
Science, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the Gap be-
tween Active Learning and Real-World Sys-
tems. Faculty of Science, Mathematics
and Computer Science, RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Science,
TU/e. 2014-13

M. Helvensteijn. Abstract Delta Model-
ing: Software Product Lines and Beyond.
Faculty of Mathematics and Natural Sci-
ences, UL. 2014-14

P. Vullers. Efficient Implementations of
Attribute-based Credentials on Smart Cards.
Faculty of Science, Mathematics and
Computer Science, RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty
of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record Link-
age. Faculty of Mathematics and Natu-
ral Sciences, UL. 2014-17

G. Alpár. Attribute-Based Identity Man-
agement: Bridging the Cryptographic De-
sign of ABCs with the Real World. Faculty
of Science, Mathematics and Computer
Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstractions
for Visualization and Interaction. Faculty
of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Control
in Health Care Systems. Faculty of Me-
chanical Engineering, TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibility and
Trustworthiness. Faculty of Mathematics
and Computer Science, TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and Their
Clients. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-06

S. Dietzel. Resilient In-network Aggrega-
tion for Vehicular Networks. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2015-07

E. Costante. Privacy throughout the Data
Cycle. Faculty of Mathematics and Com-
puter Science, TU/e. 2015-08

S. Cranen. Getting the point — Obtain-
ing and understanding fixpoints in model
checking. Faculty of Mathematics and
Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of propri-
etary cryptography. Faculty of Science,

Mathematics and Computer Science,
RU. 2015-10

J.E.J. de Ruiter. Lessons learned in the
analysis of the EMV and TLS security pro-
tocols. Faculty of Science, Mathematics
and Computer Science, RU. 2015-11

Y. Dajsuren. On the Design of an Archi-
tecture Framework and Quality Evaluation
for Automotive Software Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2015-12

J. Bransen. On the Incremental Evalua-
tion of Higher-Order Attribute Grammars.
Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-16

R.W.J. Kersten. Software Analysis Meth-
ods for Resource-Sensitive Systems. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Faculty
of Mathematics and Natural Sciences,
UL. 2015-18

M. Stolikj. Building Blocks for the Inter-
net of Things. Faculty of Mathematics
and Computer Science, TU/e. 2015-19

D. Gebler. Robust SOS Specifications
of Probabilistic Processes. Faculty of Sci-
ences, Department of Computer Science,
VUA. 2015-20

M. Zaharieva-Stojanovski. Closer to Re-
liable Software: Verifying functional be-
haviour of concurrent programs. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2015-21

R.J. Krebbers. The C standard formalized
in Coq. Faculty of Science, Mathematics
and Computer Science, RU. 2015-22

R. van Vliet. DNA Expressions –
A Formal Notation for DNA. Faculty
of Mathematics and Natural Sciences,
UL. 2015-23

S.-S.T.Q. Jongmans. Automata-Theoretic
Protocol Programming. Faculty of
Mathematics and Natural Sciences,
UL. 2016-01

S.J.C. Joosten. Verification of Intercon-
nects. Faculty of Mathematics and Com-
puter Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty
of Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis
and Verification of Embedded Systems for
Healthcare. Faculty of Mathematics and
Computer Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2016-05

Y. Luo. From Conceptual Models to Safety
Assurance – Applying Model-Based Tech-

niques to Support Safety Assurance. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-06

B. Ege. Physical Security Analysis of
Embedded Devices. Faculty of Science,
Mathematics and Computer Science,
RU. 2016-07

A.I. van Goethem. Algorithms for
Curved Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core Decision
Diagrams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2016-09

I. David. Run-time resource manage-
ment for component-based systems. Faculty
of Mathematics and Computer Science,
TU/e. 2016-10

A.C. van Hulst. Control Synthesis us-
ing Modal Logic and Partial Bisimilarity
– A Treatise Supported by Computer Verified
Proofs. Faculty of Mechanical Engineer-
ing, TU/e. 2016-11

A. Zawedde. Modeling the Dynamics of
Requirements Process Improvement. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-12

F.M.J. van den Broek. Mobile Commu-
nication Security. Faculty of Science,
Mathematics and Computer Science,
RU. 2016-13

J.N. van Rijn. Massively Collaborative
Machine Learning. Faculty of Mathemat-
ics and Natural Sciences, UL. 2016-14

M.J. Steindorfer. Efficient Immutable
Collections. Faculty of Science,
UvA. 2017-01

Efficient Im
m

utable Collections
M

ichael J. Steindorfer

 Efficient
 Immutable
 Collections

Michael J. Steindorfer

	Contents
	Introduction
	Collection Libraries
	Variability Dimensions of Collections
	Immutable Collections
	Persistent Data Structures
	Platform-Specific Data Locality Challenges
	Contributions
	Software Artifacts
	Further Reading

	Towards a Software Product Line of Trie-Based Collections
	Introduction
	Related Work
	A Stable Data Type Independent Encoding
	Intermediate Generator Abstractions
	Conclusion

	The CHAMP Encoding
	Introduction
	Background
	Data Locality
	Canonicalization
	Memoization and Hash Codes
	Benchmarks: CHAMP versus Clojure's and Scala's HAMTs
	Case Study: Static Program Analysis
	Analysis and Threats to Validity
	Related Work
	Conclusion

	Specialization for Memory Efficiency
	Introduction
	Background
	Node Frequency Statistics
	Modeling and Measuring Memory Footprints
	Small Number of Specializations for Big Savings
	Conclusion

	A Flexible Encoding for Heterogeneous Data
	Introduction
	From Homogeneity to Heterogeneity
	Lean Specializations
	Benchmarks: Heterogeneous Multi-Maps versus Maps
	Benchmarks: Comparing Multi-Map Designs
	Case Study: Primitive Collection Footprints
	Case Study: Static Program Analysis
	Related Work
	Further Applications of Heterogeneous Data Structures
	Conclusion

	Performance Modeling of Maximal Sharing
	Introduction
	Architecture and Design Decisions
	Profiling Techniques
	Predictive Modeling of Maximal Sharing
	Evaluation: Setup
	Evaluation: Controlled Experiment
	Evaluation: Case Study
	Related Work
	Conclusion

	Conclusion
	Recapitulation of Research Questions
	Future Work
	Takeaway

	References

