
Modularity

Jurgen Vinju
January 13th 2013

Wednesday, January 16, 13



Plan

Motivation

Conceptual exploration

A story of three designs of the same system

Discussion

Wednesday, January 16, 13



Software Engineering
What’s the big issue anyway?

Programming!

Design? 

Collaboration? 

Goals:

Efficiency 

Quality

Continuity 

Wednesday, January 16, 13



Wednesday, January 16, 13



Software Engineering is a immensely complex, 
interesting and above all multi-dimensional domain 

(once you open your mind to all of it)

Wednesday, January 16, 13



Name three solutions to the 
software engineering puzzle

Wednesday, January 16, 13



There is but one
It’s called “modularity”!

High-level programming languages

Abstraction

Information hiding

Reuse

Separation of concerns

Aspects

Functions

Objects

Components

...

Modularity 
is para-pa

radigmatic, 

ubiquitous
, fundamental, the

 

bomb, ... [plea
se add yo

ur own 

superlativ
e qualifica

tions here
]

Wednesday, January 16, 13



What is modularity?

What is modularity?

What is modular?

What is not modular?

What is a module?

What is not a module?

What is a good module? 

What is a bad module?

Wednesday, January 16, 13



Examples of modules, or not?
Java class

Function

Jar file

Dll

Object

Eclipse project

GNU project

C header file

HTML file

Haskell function

Prolog clause

Haskell module

BNF grammar

ANTLR grammar

Build-time

Deployment-time

Release-tim
e

Run-time

Test-time

Wednesday, January 16, 13



Original Modularity

David Parnas “On the criteria being used in decomposing 
systems into modules” (1972)

Gauthier & Pont “Designing Systems Programs” (1970)

Motivations

Portability 

Reuse

Scaling to more programmers

Key concept: information hiding

Wednesday, January 16, 13



A module is...
An encapsulation of software artifacts

With certain properties

separate

independent

(re)usable

composable (ergo, dependent)

At a certain stage in the life-cycle, or more, or all 
(build, release, deploy, test, run)

a weird kind of box

like lego, or 
yet...maybe not quite 

like lego.

Wednesday, January 16, 13



Home grown modularity

“Module Algebra”, Bergstra, Heering & Klint

Modules for algebras

Algebra for modules

BTW, algebra in itself is about orthogonality, 
compositionality

Wednesday, January 16, 13



Modules are separate

Function

Method

Class

Clause

Dll

Jar

they have 
identity (a name)

Wednesday, January 16, 13



Modules are independent

The body of function can change

The private parts of a class can change

The internals of a library can change

they hide things

Wednesday, January 16, 13



Modules are usable

Function calling

Class importing, inheritance, referencing

Clause application

Dll loading

Jar loading

...

they expose an 
interface

Wednesday, January 16, 13



Modules are composable

Functions can call other functions

Classes can use, inherit from other classes

Jar files can be composed of other jar files

Yet there are so many software artifacts that 
are separate, usable, but not easily 
composable…

Example: frameworks are not modules themselves

closed under one or more composition operations

Wednesday, January 16, 13



The dark side
Composition (a.k.a. “integration”) is hard!

Making actually composable modules is hard

Making actually independent modules is hard

Finding the right module in a large collection is hard

Understanding an existing module is hard

Testing a module in isolation is hard

Predicting the quality of a composition is hard

Does modularity solve a problem, or just shift it? or does it even 
make life harder than it used to be?

a

Is modularity only for Jedi masters?

Wednesday, January 16, 13



“Maximizing reuse, minimizes use”

“It’s a DLL Hell”
“Modules schm

odules”

“The standard library uses way to much memory”

“When abstract
ion fails…”

Clemens Szyperski

Andreas Zeller

“All this added in
direction is slow

 and 

above all confu
sing”

Wednesday, January 16, 13



Think about the trade-off(s) 
that modularity is involved in

Coffee!
Wednesday, January 16, 13



Recap 

Module = identity, encapsulation, hiding, composition

Modules at build-time, run-time, deployment-time, …

One thing I skipped about modules… what?

Modules are the only solution

Modules are hard and introduce cost

Now, a story about 3 systems that do the same thing.

Wednesday, January 16, 13



Part 2: Three Modular Designs

Wednesday, January 16, 13



Generating Interactive 
Programming Environments

Take a language definition

Generate a full blown IDE

Which includes everything a programmer may need to 
program in this language (domain specific, general purpose, 
whtvr)

Solution space:

Generating components

Generic (parametric) components

Grammars and algebra and term rewriting

1984

Wednesday, January 16, 13



Wednesday, January 16, 13



Version 1: Sparc & Lisp
Centaur LeLisp: great GUI programming (for those days)

SUN Sparc only, 16Mhz, 1Mb (perhaps even 4!)

Lisp is the beginning and end of programming

Lisp has macros

Lisp has functions

Lisp has side-effects

The Lisp language is simple and elegant

Yet, Lisp programs do not necessarily inherit those 
qualifications...

Wednesday, January 16, 13



Version 1: result
A bunch of PhD theses

A usable system

> 100.000 LOC

A big ball of inter-dependent, incremental, state-full, highly optimized, 
LeLisp programs

Incomprehensible

Not portable

Really fast

Not modularly deployable

The end of a road

modularity 
everywhere 

though… but not 
of the good kind

Wednesday, January 16, 13



Version 2: Generic, Language 
Independent, Service-Oriented

Separation of concerns

coordination from computation

programming language independent

small tools connected to a generic bus

C, Java, TCL, Perl, Python, ASF+SDF, you name it

Release of parts (sum of the parts more than the 
whole)

Bootstrapped on previous system

1999

Wednesday, January 16, 13



Wednesday, January 16, 13



Version 2: modularity 
everywhere

Tools connected to bus: build-time and run-time modules

Processes: composable coordination scripts

Packages: GNU build, test and deployment interfaces 
(automake, autoconf)

GUI plugins (via Java reflection and jars)

Libraries, libraries, libraries

Code generators for C, Java, etc..

> 65 packages, > 150 tools, > 300.000 LOC (200.000 
generated)

Wednesday, January 16, 13



Version 2: results

(Re)use!!! libraries, parser generator, rewriting engines, generic 
IDE, 

A usable system, no wait: a family of usable systems

Overhead. M4, autoconf, automake, gcc, shell scripts, ant, you 
name it!

Home grown incremental continuous integration system (sisyphus)

Home grown source code package composition system (autobundle)

Too much modularity for our own good

Source code releases only (limited binary support)

Wednesday, January 16, 13



Version 3: back to basic

Everything on the JVM

Bootstrapped on previous system

Then Java

Then Bootstrapped on itself

Eclipse and IDE meta-tooling platform (IMP)

Only 3 components: run-time, language, IDE

2009

Wednesday, January 16, 13



Wednesday, January 16, 13



Version 3: results (2011)
100.000 LOC

more features than before, more users, more uses

Faster and simpler implementation (per feature)

Completely documented

Many automated tests

internal libraries no longer sold/exposed so much...

Success factors:

Uses reflection to decouple front-end from back-end (!)

Uses in-memory on-the-fly Java compilation instead of files

Uses simple abstract syntax classes and dynamic dispatch

Java JIT and GC deal well with the code we write

Long live Eclipse (yes really!)

Wednesday, January 16, 13



Discussions?

Modularity at different levels

Modularity at different times

Modularity for different purposes

Cost/Benefit of modularity

Styles and Standards

Wednesday, January 16, 13


