
Software Engineering with COBOL and Mainframe:
how special is that?

Jurgen Vinju

TU Eindhoven
Swat.engineering BV
Centrum Wiskunde & Informatica
 and VERSEN

18 January 2024

http://www.swat.engineering
https://www.versen.nl

➡What do we have in common?

➡What makes us special?

➡Where are we going?

The Future of COBOL and Mainframe

Dineke	Botterweg	
programming	away	at	

ARRA	“mainframe”	at	CWI

For	a	field	of	engineering,	
we	share	an	exciting	
(and	relatively	short)	history…

(disclaimer:	year	numbers	found	after	a	night	of	intense	googling)

1947	Adriaan	van	Wijngaarden	builds	first	computer	at	CWI:	computing	dike	heights	
1952	Dineke	Botterweg	is	programming	ARRA	at	CWI	(see	photo)	
1956	Electrologica	builds	Dutch	“mainframes”	
1960	ALGOL	60;	Edsger	Dijkstra	and	others,	portable	programming	for	scientists	
1960	with	IBM;	COBOL	is	created;	Grace	Hopper	and	others,	portable	programming	for	business	people	
1966	Dutch	post	(PTT)	pays	salaries	electronically	for	the	first	time,	using	mainframes	
1968	Philips	Computer	Industrie	takes	over	Electrologica	
1968	First	NATO	conference	on	Software	Engineerig	in	Garnisch	GE:	The	SOFTWARE	CRISIS	exists…	
1968	“Goto	considered	harmful”	by	Edsger	Dijkstra.	Programming	languages	make	the	difference.		
1974	COBOL-74	ANSI	standard	published	
1974	CWI	Paul	Klint	introduces	Unix	in	Europe,	on	a	tape	
1976	First	NASA	Conference	on	Software	Engineering	
1979	Wim	Ebbinkhuijsen	starts	work	on	COBOL	85	@	ISO	for	Philips	Computer	Industrie		
1982	First	curriculum	Computer	Science	(“Informatica”)	appears	in	Dutch	universities	
1984	First	debit	card	payment	in	a	gas	station	in	The	Hague	
1988	CWI	Piet	Beertema	connects	the	“internet”	to	Europe	
1990	Switzerland:	Tim	Berners	Lee	invents	HTTP	and	the	“World	Wide	Web”	
1993	Peter	de	Jager	(SA)	calls	out	the	Y2K	problem	
1994	Hack-Tic	&	gemeente	Amsterdam	launch	“DDS:	De	Digitale	Stad”	
1995	Postbank	introduces		“telebankieren”	for	the	public	
1995	Belastingdienst	introduces	“elektronische	aangifteprogramma”	
2000	Y2K	is	an	anticlimax	for	the	public	and	a	triumph	for	the	insiders	
2003	CWI,	UvA,	VU	and	HvA	start	a	joint	master's	in	“Software	Engineering”	
2007	Belgium	goes	IBAN	
2014	The	Netherlands	go	IBAN

…	Netherlands	is	often	
ahead	of	the	pack!

Grace Hopper
[wikipedia]

“[…] Manipulating symbols was fine for mathematicians but it was no good for [administrators]
[…] I decided [administrators] ought to be able to write their programs in English, […]
[…] That was the beginning of COBOL
[Now they] could say 'SUBTRACT INCOMETAX FROM PAY’ [.…]”

COBOL:	an	industrial	design	“form	follows	function”

ALGOL: `PAY !:= PAY - INCOMETAX`
LISP: `(setq PAY (- PAY INCOMETAX))`
COBOL: `SUBTRACT INCOMETAX FROM PAY`

COBOL	was	invented	to	onboard	more	“non-mathy”	people.	
That	was	a	huge	success,	compared	to	other	languages.	
It	was	the	gateway	to	buying	more	mainframes.

Edsger Dijkstra
[wikipedia]

“COBOL is bad”

What is [COBOL] Software Engineering?
[COBOL] [Software] Engineering is the application of

scientific, economic, social, and practical knowledge in
order to invent, design, build, maintain, and improve

[COBOL] [Software].

So, what do we know about [COBOL] software engineering?

First, we know more about what we don’t know…

Wicked Problem

pr
or

am
m

in
g

computer sc
ience

sociology

econom
ics

UX design

hardware

SE

security
privacy
robustness
maintainability
usability
efficiency
energy
scalability
availability
flexibility
cost
…

requirements
architecture

design
testing

construction
evolution

configuration
deployment

Conway’s Law:
Communication patterns, collaboration, and relationships within organizations will shape

the architecture and design of the software systems they develop [, and vice versa].

There are “Laws” of Software Engineering

organization system

More “Laws” of Software Engineering

It’s	the	about	same	for	C,	C++,	Java,	PHP

Lehman’s Laws of Software Evolution:

 1. Software always has to change; because it can.

 2. Software always grows [more complex]; because there is no opposite force

15%	yearly	code	growth	
is	“typical”	(anecdotal	evidence)

code	growth	is	like	%	interest:	
cumulative	growth	is	cumulative	
costs	and	risks15%	growth	becomes	untenable	after	10	years

5%	growth	lasts	around	20	years

Cleaning	up	is	like	paying	off	a	loan	early.

Teams	build	expertise,	but	also	loose	it	again

The “Laws” of Software Engineering

Vinju’s Law of Software Contexts:

 In Software Engineering context (sector, domain, legacy, culture) dominates software design decisions.

 General theory may tell us where all the trade-offs may be, context knowledge tells us how to balance them.

That’s	why	you	can’t	find	answers	to	your	software	questions	in	a	book.

That’s	why	your	new	employees,	masters	and	bachelors	interns,	“don’t	know	anything”	and	“can’t	fix	anything”.

That’s	why	you	end	up	depending	on	the	“heroes”	in	your	organization.	Bus	factor=1

That’s	why	outsourcing	maintenance	of	essential	software	systems	is	very	risky.

This	is	why	you’ll	find	special	ownership	of,	and	pride	in,	the	systems	of	your	organization

Software complexity

[Dall-e	2]

Together,	those	“laws”	explain	software	complexity.		
Software	complexity	explains	low	productivity	or	inflexibility.

Often	more	“intricate”,	like	a	knitted	sweater,	
than	“complex”,	like	Fermat’s	last	theorem.

In	Dutch:	“wel	ingewikkeld	
maar	niet	zo	moeilijk.”

• Complex	“algorithms”	are	often	well-isolated	and	well-understood	
• Parametrized	computation	of	monthly	mortgage	payments	
• Specified	requirements,	and	theory	on	performance	characteristics.	

• Intricate	“processes”	escape	architectural	boundaries,	emergent	effects:	
• A	new	business	customer	is	onboarded	into	all	relevant	systems.	
• There	is	no	well-defined	idea	of	what	to	expect,	and	we	don’t	know	

what	to	expect	of	performance	either.	
• Responsibilities	are	spread	over	asynchronously	running	independent	

components	that	still	depend	on	each	other.		

Paradoxically,	the	seemingly	easy	parts	are	hard	and	the	provenly	
hard	parts	are	“easy”	in	software	engineering	:-)

Why better programming languages (don’t) matter

Large

Code

Volumes

High

Towers

of

Abstraction

Expressive

power

trade-off

knob

COBOL	74
Scala

C++

Java

Python

Pascal,	Modula	2,

C
FORTRAN

COBOL	85

COBOL	2002

it’s	cultural.

✓ COBOL has evolved to a modern programming language

✓ Mainframes are supercomputers

✓ COBOL has modern IDEs (code editors and browsers)

✓ And it works! Y2K, EURO, IBAN, SEPA, AVG/GDPR, negative interest, batch-to-online, you managed it all!

✓ So, what’s the deal?

➡ COBOL systems are hugely successful; they enable the Netherlands’ economy and beyond like nothing else.

➡ they’ve grown [complex] for many decades; Because they were there first they trump everything else.

➡ they are enabling economic infrastructure, and so society needs and demands 100% availability.

➡ The Netherlands has not educated enough COBOL programmers (yet); instead, we taught C, Java, C#,

Prolog, Pascal, PHP, Javascript, Typescript, Python, Scala, C++, Haskell, and even Rascal.

➡ Inmaintainability: inability to respond in time with correct code changes to changing requirements

COBOL and Mainframe; what’s (not) so different?

A	rough	estimate;	in	the	Turing	room,	right	now,	we	are	responsible	
for	1,500	million	(1.5	billion)	lines	of	COBOL	code.	Wow!

http://www.rascal-mpl.org

Different directions we see and hear about today:

1. Rationalization and simplification of COBOL assets;

2. Incremental replacement of components {in other languages, on other platforms};

3. Big bang semi-automated renovation; let’s get it over with.

4. Sticking with the original plan.

All those require a deep understanding of COBOL assets:

1. Because they (should) reflect your organization’s rules, values, and structure;

2. Because incremental maintenance requires decomposition into modules

3. Because to replace something, you need to know what that “something” is.

4. Because changing a system with availability guarantees, requires predictability.

The Future of COBOL and Mainframe

 1. personnel : we need fresh expertise; how do we teach it, grow it, nurture it, keep it around?

 2. finance : budget for continuous maintenance, and buying quality instead of volume

 3. technology: high-tech SME’s and research institutes enough: co-create, co-maintain, co-innovate

From CWI and Swat.engineering our message is technological and cultural:

“source code is data too”.

What does that bring you?

Understanding COBOL assets; how?

Personnel	and	finance	are	not	my	cup	of	tea,	but	
go	find	out	from	the	other	speakers…	wow!

https://www.cwi.nl
https://www.swat.engineering

[COBOL] source code mixes the “what” with the “where” and “how” in code:

 - “what” is the legal rule for tax-deductible traveling costs?

 - “where” and “how” is that rule implemented in UI, database, server, etc. at the tax administration?

 - the design synthesis of these aspects in code is called “software architecture” and “programming”

 - note that the “why” is lost in this Bermuda triangle of design; that becomes “tacit” knowledge.

[COBOL] source code is too long to read, let alone understand.

What if we could treat code as if it’s data? That question has a long tradition (80’s) in research

and engineering, but it has yet to reach its full potential.

Source code is data too. So what?

Can	this	tangled	knot	of	dependencies	be	untangled?

Can	we	prevent	this	tangling	for	the	future?

(both)	by	treating	the	code	as	data?

COBOL code can be queried for important questions:

 - trying to understand how the system works and what it’s structure has become

 - trying to learn where and how the “what” requirements are implemented

 - not off-the-shelf analysis tools, but questions asked with contextual knowledge

COBOL Code is data too

code model fact	base
analyst

insight

COBOL code can be simulated and even generated:

 - separate the “what” in Domain Specific Languages

 - run simulations, visualizations, and predictions, independent of implementation technology

 - generate to mainframe, cloud, Java, COBOL, …

COBOL Code is data too

“what”	 model
analyst

insight
simulation

“how” generator source	code

➡What do we have in common?
 We have lots and lots of code; and that’s quite normal.

➡What makes us special?
 The intricate and complete dependency of Dutch society

➡Where are we going?
 More acknowledging COBOL systems as critical assets
 Taking action: technologically, financially, and personnel-wise.

The Future of COBOL and Mainframe

Keep	this	mind:	source	code	is	data	too.

