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Source Code Complexity
• Source Complexity results from tangling four code dimensions

Domain Complexity x Domain Evolution x 
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Software Maintenance

• Design stage

• System architecture is designed
• Reversible design decisions

• Short term successes

• Testing is easy 


• Growth stage

• Incremental additions and corrections grow
• Misconceptions and haste lead to design erosion

• Co-evolution: changes become scattered

• “Accidental” code, when it works -> commit

• Testing becomes cumbersome


• Stagnation stage

• Changes break the system; increasing focus on analysis

• Working on bugs rather than features 

• “How did this ever work”?

• Critical reading pushes out (creative) writing


• Early Benefits of software ownership 

• Tactical advantage: fast time-to-market

• Short horizons

• Incremental costs


• Growing Cost of software ownership

• Lower margins over time 

• Increasing maintenance costs

• Cost of replacement out-weighs the ROI


• Inevitable Risks of software ownership

• Software becomes cause of stagnation

• Employee turn-over rate too high

• Cost of maintenance outweighs total value


Engineering Business 

“changing source code after the initial release”
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Source Code Maintenance:

Necessary but Challenging
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Goals of Software Maintenance

1. prevent sky rocketing costs
2. enable strategic maintenance 


1. do better and faster maintenance
2. extend life-time of legacy code 


1. make code analysis a “humane” task
2. enable large scale restructuring

[tudor girba/feenk.com]
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Business Attitudes 

• I want to motivate good software maintenance by evaluating maintenance:

• New KPI’s measure costs and benefits of maintenance


• I want to invest in Preventive Maintenance

• Because maintainable software is flexible software


• I know that high-quality (=maintainable) software does not come for free


• Engineers have to invest in software quality


• Before they can offer agility


• I want to explain my requirements precisely

Use Better

Key Performance 


Indicators
Plan for maintenance:


maintenance now =

 future ROI

Appreciate

Software Quality
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Grow Business Knowledge

• “I know my business”: model business complexity independently, e.g:


• image algorithms vs {SIMD,GPU,FPGA}  instructions


• documented protocols vs inter-process communication library calls


• telemetry and control state machines vs code design patterns


• Model Driven Engineering benefits start with domain knowledge


• benefits: early feedback (verification, simulation)


• benefit: code generation


• benefit: independent evolution: domain & technology untangle

domain
design
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Learn New Business Skills
• I can “measure maintenance quality (contra)-indicators”


• growth of volume & complexity


• issues: registration and resolution of maintenance tasks, … 


• versions: locality of change, commit coherence, … 


• tests: coverage (branches) and quality (mutant score)


• I can “author executable domain models”


• lightweight formalization of requirements

• (interactively) simulate, explore, test, verify software products before implementation

• evolve domain models to address new business opportunities


• predict impact of business changes on technology stack

metrics that

make sense

MDE experimentation

= understanding
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Need business tools
• I need tailor-made modeling, simulation, validation tools


• I need tools to measuring maintenance quality and productivity


• Off-the-shelf is _not_ the answer


• domain knowledge is contextual


• maintenance quality is contextual


• Rascal is a metaprogramming language for tailor-made 
software analysis and manipulation tools.

accuracy 

requires

context
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Engineering attitudes

• I think analyzing software puzzles is interesting

• I own the maintenance of this legacy code


• I want to automate analyses and transformations

Maintenance
is my job
and I like it
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Increase engineering 
knowledge

• I understand the programming language and the OS


• I understand code-as-data: AST, CG, PDG, SDG


• I know our domain independent from our code

untangle

domain
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Learn new engineering skills

• “I can automate analysis tasks”:


• Write tailor-made source code analysis queries (code-to-model)


• Map models to existing analysis platforms (SMT, PDE, 


• “I can automate refactoring tasks”


• Writing source-to-source transformations (code-to-code)


• “I can automated software construction tasks”


• I can separate domain knowledge from code design knowledge


• I can write source code generators (model-to-code)

going
meta

Rascal is for easily writing meta programs
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Need new engineering tools

• Need API for handling programming language complexity

• code-as-data: syntactic and semantic intermediate models 


• query/expression: pattern matching, relational queries, templates


• Need ability to encode domain knowledge and design knowledge


• A “one-stop-shop” meta-programming language: Rascal
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Rascal MPL
• Comprehensive metaprogramming language


• For creating tailor-made modeling and analysis tools


• For creating analysis, transformation and generation tools


• Same functionality in ±10% of lines of code


• (Inter)National Community:


• Research: incorporates results from 1982 to 2021


• Education: UvA, TUE, RUG, OU, ECU, Bergen


• Business: 


• Support

• Languages: Java, C++, C#, PHP, JS, JVM bytecode, … 


• Analysis: SMT, Relational Algebra, State Machines


• UI: Eclipse, VScode (LSP), Commandline Interface


• Track record: Philips Healthcare, ING, OCÉ, NFI, SIDN, Stokhos, 
EU Typhon, EU CROSSMINER, EU OSSMETER, …

Code/Data

Model

Picture

GenerationExtraction

FormalizationVisualization

Transformation
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Execution
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“E-A-SY” Rascal Example

Extract, Analyse, and SYnthesize

1. parse input code

module Syntax


extend lang::std::Layout;

extend lang::std::Id;


start syntax Machine = machine: State+ states;

syntax State = state: "state" Id name Trans* out;

syntax Trans = trans: Id event ":" Id to;

grammars

2. create “model”, transitive closure, and query

module Analyze


import Syntax;


set[Id] unreachable(Machine m) {

  rel[Id,Id] r = { <q1,q2> | (State) `state <Id q1> <Trans* ts>` <- m.states, 


              (Trans) `<Id _>: <Id q2>` <- ts 

                 }+; 


  qs = [ q.name | /State q := m ];

  return { q | q <- qs, q notin r[qs[0]] };

}

matching & query

module Visualize


import Syntax;

import DagreD3;


void visualize(Machine m) {

  edges = { edge("<q1>", "<q2>") | (State)`state <Id q1> <Trans* ts>` <- m.states, 


       (Trans)`<Id _>: <Id q2>` <- ts };


  nodes = { node(“<q.name>") | /State q := m };


  showGraph(nodes, edges);

}

3. generate a visual representation

overviews

4. generate implementation
module Compile


import Syntax;


str compile(Machine m) =

  "while (true) {

  '  event = input.next();

  '  switch (current) { 

  '    <for (q <- m.states) {>

  '    case \"<q.name>\":

  '      <for (t <- q.out) {>

  '      if (event.equals(\"<t.event>\"))

  '        current = \"<t.to>\";

  '      <}>

  '      break;

  '    <}>

  '  }

  '}"; 

templates
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Conclusion

writing and using 

executable models and

implementing quality monitoring

automating code/model analysis and 
transformation, generation

enabling tailor-made
MDE, reverse engineering

and quality monitoring support

models

m
od

els
m

odels

one stop meta shop

Rascal
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