
Software Analysis And Transformation

Software Maintenance Competences

Jurgen J. Vinju

NWO-I Centrum Wiskunde & Informatica
TU Eindhoven

Swat.engineering

https://www.cwi.nl/research/groups/software-analysis-and-transformation
https://www.tue.nl/en/research/research-groups/computer-science/software-engineering-and-technology-w/
http://www.swat.engineering

SWAT - SoftWare Analysis And Transformation

Source Code Complexity
• Source Complexity results from tangling four code dimensions

Domain Complexity x Domain Evolution x

Technical Complexity x Technical Evolution

do
main

kn
owled

ge
technical
knowledge

technical
evolution

domain
evolution

technical
evolution

software

starts

simple

and

flexible

and then

gradually

grows into

a big knot

which is hard

to maintain

SWAT - SoftWare Analysis And Transformation

Software Maintenance

• Design stage

• System architecture is designed
• Reversible design decisions

• Short term successes

• Testing is easy

• Growth stage

• Incremental additions and corrections grow
• Misconceptions and haste lead to design erosion

• Co-evolution: changes become scattered

• “Accidental” code, when it works -> commit

• Testing becomes cumbersome

• Stagnation stage

• Changes break the system; increasing focus on analysis

• Working on bugs rather than features

• “How did this ever work”?

• Critical reading pushes out (creative) writing

• Early Benefits of software ownership

• Tactical advantage: fast time-to-market

• Short horizons

• Incremental costs

• Growing Cost of software ownership

• Lower margins over time

• Increasing maintenance costs

• Cost of replacement out-weighs the ROI

• Inevitable Risks of software ownership

• Software becomes cause of stagnation

• Employee turn-over rate too high

• Cost of maintenance outweighs total value

Engineering Business

“changing source code after the initial release”

SWAT - SoftWare Analysis And Transformation

Source Code Maintenance:

Necessary but Challenging

port to Linuxswitch to ARM

add WWW interface add live user

feedback

integrat
e 3D

sim
ulatio

n

upgrade

to Windows 10

from Windows 95

certify GDPR
 compliance

merge this

acquired

software

“stack” into

our own, with

backward

compatibility

fix performance

bottleneck for peek

user loads

add live
 user

feedback
scale to
{giga,tera,peta}byte/s
throughput

SWAT - SoftWare Analysis And Transformation

attitude

knowledge
sk

ill

Engineering

Viewpoint

Business

Viewpoint

Tool Support

Viewpoint

Software Maintenance Competences

SWAT - SoftWare Analysis And Transformation

attitude

knowledge
sk

ill

Engineering

Viewpoint

Business

Viewpoint

Tool Support

Viewpoint

Goals of Software Maintenance

1. prevent sky rocketing costs
2. enable strategic maintenance

1. do better and faster maintenance
2. extend life-time of legacy code

1. make code analysis a “humane” task
2. enable large scale restructuring

[tudor girba/feenk.com]

SWAT - SoftWare Analysis And Transformation

Business Attitudes

• I want to motivate good software maintenance by evaluating maintenance:

• New KPI’s measure costs and benefits of maintenance

• I want to invest in Preventive Maintenance

• Because maintainable software is flexible software

• I know that high-quality (=maintainable) software does not come for free

• Engineers have to invest in software quality

• Before they can offer agility

• I want to explain my requirements precisely

Use Better

Key Performance

Indicators
Plan for maintenance:

maintenance now =

 future ROI

Appreciate

Software Quality

SWAT - SoftWare Analysis And Transformation

Grow Business Knowledge

• “I know my business”: model business complexity independently, e.g:

• image algorithms vs {SIMD,GPU,FPGA} instructions

• documented protocols vs inter-process communication library calls

• telemetry and control state machines vs code design patterns

• Model Driven Engineering benefits start with domain knowledge

• benefits: early feedback (verification, simulation)

• benefit: code generation

• benefit: independent evolution: domain & technology untangle

domain
design

SWAT - SoftWare Analysis And Transformation

Learn New Business Skills
• I can “measure maintenance quality (contra)-indicators”

• growth of volume & complexity

• issues: registration and resolution of maintenance tasks, …

• versions: locality of change, commit coherence, …

• tests: coverage (branches) and quality (mutant score)

• I can “author executable domain models”

• lightweight formalization of requirements

• (interactively) simulate, explore, test, verify software products before implementation

• evolve domain models to address new business opportunities

• predict impact of business changes on technology stack

metrics that

make sense

MDE experimentation

= understanding

SWAT - SoftWare Analysis And Transformation

Need business tools
• I need tailor-made modeling, simulation, validation tools

• I need tools to measuring maintenance quality and productivity

• Off-the-shelf is _not_ the answer

• domain knowledge is contextual

• maintenance quality is contextual

• Rascal is a metaprogramming language for tailor-made
software analysis and manipulation tools.

accuracy

requires

context

SWAT - SoftWare Analysis And Transformation

Engineering attitudes

• I think analyzing software puzzles is interesting

• I own the maintenance of this legacy code

• I want to automate analyses and transformations

Maintenance
is my job
and I like it

SWAT - SoftWare Analysis And Transformation

Increase engineering
knowledge

• I understand the programming language and the OS

• I understand code-as-data: AST, CG, PDG, SDG

• I know our domain independent from our code

untangle

domain

SWAT - SoftWare Analysis And Transformation

Learn new engineering skills

• “I can automate analysis tasks”:

• Write tailor-made source code analysis queries (code-to-model)

• Map models to existing analysis platforms (SMT, PDE,

• “I can automate refactoring tasks”

• Writing source-to-source transformations (code-to-code)

• “I can automated software construction tasks”

• I can separate domain knowledge from code design knowledge

• I can write source code generators (model-to-code)

going
meta

Rascal is for easily writing meta programs

SWAT - SoftWare Analysis And Transformation

Need new engineering tools

• Need API for handling programming language complexity

• code-as-data: syntactic and semantic intermediate models

• query/expression: pattern matching, relational queries, templates

• Need ability to encode domain knowledge and design knowledge

• A “one-stop-shop” meta-programming language: Rascal

SWAT - SoftWare Analysis And Transformation

Rascal MPL
• Comprehensive metaprogramming language

• For creating tailor-made modeling and analysis tools

• For creating analysis, transformation and generation tools

• Same functionality in ±10% of lines of code

• (Inter)National Community:

• Research: incorporates results from 1982 to 2021

• Education: UvA, TUE, RUG, OU, ECU, Bergen

• Business:

• Support

• Languages: Java, C++, C#, PHP, JS, JVM bytecode, …

• Analysis: SMT, Relational Algebra, State Machines

• UI: Eclipse, VScode (LSP), Commandline Interface

• Track record: Philips Healthcare, ING, OCÉ, NFI, SIDN, Stokhos,
EU Typhon, EU CROSSMINER, EU OSSMETER, …

Code/Data

Model

Picture

GenerationExtraction

FormalizationVisualization

Transformation

Conversion

Analysis

Execution

Rendering

http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering
http://swat.engineering

SWAT - SoftWare Analysis And Transformation

“E-A-SY” Rascal Example

Extract, Analyse, and SYnthesize

1. parse input code

module Syntax

extend lang::std::Layout;

extend lang::std::Id;

start syntax Machine = machine: State+ states;

syntax State = state: "state" Id name Trans* out;

syntax Trans = trans: Id event ":" Id to;

grammars

2. create “model”, transitive closure, and query

module Analyze

import Syntax;

set[Id] unreachable(Machine m) {

 rel[Id,Id] r = { <q1,q2> | (State) `state <Id q1> <Trans* ts>` <- m.states,

 (Trans) `<Id _>: <Id q2>` <- ts

 }+;

 qs = [q.name | /State q := m];

 return { q | q <- qs, q notin r[qs[0]] };

}

matching & query

module Visualize

import Syntax;

import DagreD3;

void visualize(Machine m) {

 edges = { edge("<q1>", "<q2>") | (State)`state <Id q1> <Trans* ts>` <- m.states,

 (Trans)`<Id _>: <Id q2>` <- ts };

 nodes = { node(“<q.name>") | /State q := m };

 showGraph(nodes, edges);

}

3. generate a visual representation

overviews

4. generate implementation
module Compile

import Syntax;

str compile(Machine m) =

 "while (true) {

 ' event = input.next();

 ' switch (current) {

 ' <for (q <- m.states) {>

 ' case \"<q.name>\":

 ' <for (t <- q.out) {>

 ' if (event.equals(\"<t.event>\"))

 ' current = \"<t.to>\";

 ' <}>

 ' break;

 ' <}>

 ' }

 '}";

templates

SWAT - SoftWare Analysis And Transformation

attitude

knowledge
sk

ill

Engineering

Viewpoint

Business

Viewpoint

Tool Support

Viewpoint

Conclusion

writing and using

executable models and

implementing quality monitoring

automating code/model analysis and
transformation, generation

enabling tailor-made
MDE, reverse engineering

and quality monitoring support

models

m
od

els
m

odels

one stop meta shop

Rascal

@jurgenvinju

jurgen.Vinju@cwi.nl
j.j.vinju@tue.nl

mailto:jurgen.Vinju@cwi.nl
mailto:j.j.vinju@tue.nl

