
SWAT - Software Analysis And Transformation

This work has been supported by the NWO TOPGO grant #612.001.011 “Domain-Specific Languages: A Big Future for Small Programs” 



SWAT - Software Analysis And Transformation

Our initial context:
Is “reflection” going to be a 

problem
if we want to harvest some

(domain) knowledge
from Java source code?

This work has been supported by the NWO TOPGO grant #612.001.011 “Domain-Specific Languages: A Big Future for Small Programs” 

[MC Escher]



SWAT - Software Analysis And Transformation

Complicated!

So?

Useful!

[The Muppet Show]



SWAT - Software Analysis And Transformation

[Raphael, School of Athens]

I know no 
general solution 

exists in 
theory!

But!! I can design 
tools which work
on these categories

You are both 
biased

we could use 
empirical 
evidence…



SWAT - SoftWare Analysis And Transformation

Empirical evidence

• Complex reflection is everywhere in Java
• 462 Java projects in a representative and clean corpus
• 78% of Java projects have hard reflective code

• Known limitations have significant impact (4% - 54%)
• Existing soundy assumptions validated, more assumptions motivated

Actionable results

• Researchers: high impact suggestions 
• Practisioners: adapt code for robustness

Answers to research questions

1.What is Java reflection?
2.How often is Java reflection used, and how?
3.What do static analysis tools do to resolve reflection?
4.What are limitations of static analysis tools?
5.How often does real Java code challenge limitations of static analysis?

WAR 
on

validity 
threats

=
M
E
T
H
O
D
S



SWAT - SoftWare Analysis And Transformation

Q1: What is Java reflection?

“Hard” “Easy”



“Hard”

“Easy”



SWAT - SoftWare Analysis And Transformation

“Hard”

“Easy”



SWAT - SoftWare Analysis And Transformation

Q2: How often is reflection used?
• Corpus of 461 (out of 3000) OSS Java projects:

• Maximize representativeness [55]

• Clean [clone detection]

• Parse & resolve [Rascal, Eclipse JDT]

• Categorize [see Q1]



SWAT - SoftWare Analysis And Transformation

of projects
using 

reflection



SWAT - SoftWare Analysis And Transformation

Q3: What do analysis tools do?

• Extended structured literature review

• 4K pdf’s

• Semi-automatic full text analysis

• Filtering from 4k via 514, to 50 to 33 pdf’s

• Annotating

• Categorizing



SWAT - SoftWare Analysis And Transformation



SWAT - SoftWare Analysis And Transformation



SWAT - SoftWare Analysis And Transformation

• Collect and categorize analysis papers self-reported:

• Optimistic ‘soundy’ assumptions about code

• Known limitations of the algorithms 

• What is their damage in the corpus?

• Method:

• Recognize and count counter examples 

• Applying AST patterns to the entire corpus

• Rascal metaprogramming language

Q4: What are the limitations? 
and Q5: how do these relate to real code?

http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
http://www.rascalmpl.org
https://zenodo.org/record/163326#.WR6Yn1P5jVo


SWAT - SoftWare Analysis And Transformation



SWAT - SoftWare Analysis And Transformation

Advice for software engineers; make your code more robust now

1.Do not factor reflection into type polymorphic methods
2.Never use dynamic proxies
3.Use local variables/fields for meta object storage
4.Avoid loops over collections of meta objects
5.Test for preconditions instead of waiting for exceptions

Suggestions for static analysis researchers and Java language designers

1.Reflection API improvements to restrict arbitrary interactions (i.e. using lambdas)
2.Infer information from downcasts more aggressively
3.Make soundy assumptions about dynamic proxies: the “oblivious wrapper proxy”
4.Model common “goto patterns” with exceptions around reflection
5.Soundily assume boundedness and unorderedness of meta object collections
6.Apply dynamic language analysis techniques to methods which have reflection



SWAT - Software Analysis And Transformation

This work has been supported by the NWO TOPGO grant #612.001.011 “Domain-Specific Languages: A Big Future for Small Programs” 

@jurgenvinju@davylandman @aserebrenik

Please use these artefacts for yourselves, or contact us for discussion about:- the new soundy assumptions are a prioritized work list (*)- the corpus is a way to validate relevance for new ideas in static analysis [3]- tell us why we were wrong (replicate it) [63]

To the authors of the static analysis papers, to the anonymous 
reviewers and to the members of IFIP WG 2.4 Software 

Implementation Technology, including Anders Møller

https://zenodo.org/record/163326#.WR6Yn1P5jVo
https://zenodo.org/record/162926#.WR6i9lP5jVo

