
SWAT - Software Analysis And Transformation

Optimizing Hash-tries
for

Fast and Lean Immutable Collection Libraries

Michael Steindorfer
Jurgen J. Vinju

Centrum Wiskunde & Informatica
INRIA Lille & TU Eindhoven

IFIP WG 2.4 Software Implementation Technology
Stellenbosch, November 2014

SWAT - SoftWare Analysis And Transformation

• Language perspective:

• Builtin

• Standard library

• Adoption success factor

• Drives polymorphism

• Application perspective:

• Versatile

• Easy to use

• Performance issues

[Vik Muniz]

Collections are ubiquitous

SWAT - SoftWare Analysis And Transformation

Immutable Collections
• Immutability implies safety

• sharing with referential integrity

• equational reasoning

• co-variant sub-typing

• Overhead

• Copying

• More encoding and traversal

• Unused data

• Special opportunities for optimization

• Structural equality

• Hash-consing/maximal sharing

• Persistence (differencing)

[Michelangelo di Lodovico Buonarroti Simoni]

SWAT - SoftWare Analysis And Transformation

PhD Challenge
• Design and implement fastest & leanest collections

• on the JVM

• sets, maps, relations, vectors, etc.

• staged [im]mutability

• “versatile”

• equals, insert, delete, lookup, union, intersection, diff, iteration

• For under-the-hood of Rascal MPL

SWAT - SoftWare Analysis And Transformation

Variability
• For experimentation & comparison

• simulate published data-structures

• scala simulation

• closure simulation

• For versatility

• builtin data-types

• hard, soft, weak references

• ordered/unordered

• sets vs. maps

• staged/immediate immutability
Solution:

Generative Programming
(and you really don’t want to (re)write this code)

SWAT - SoftWare Analysis And Transformation

Results
• Measuring and profiling [submitted] (not today)

• “Object Redundancy and Equals-Call Profiling”

• Precisely modeling JVM object footprints and alignment

• Leaner [GPCE 2014, ongoing work]
• “Code Specialization for Memory Efficient Hash Tries”

• Faster [ongoing work]

SWAT - SoftWare Analysis And Transformation

Hash-array Mapped Tries
• [Bagwell 2001], Scala, Clojure

• What is a HAMT?

• Radix tree with hashes

• Prefix/postfix tree

• DFA without cycles

• Only expand if prefix overlaps

• Keys are encoded, step-by-step, inside

• Keys are ordered explicitly

SWAT - SoftWare Analysis And Transformation

Canonical Code

class TrieSet implements java.util.Set
{
 TrieNode root;
 int size;

 class TrieNode {
 int bitmap; // 32 bits
 Object[] contentAndSubTries;
 …
 }
}

Insert does this:
1.take 5 bits from hash
2.check position
3.store value or recurse

inserting 32, 2, 4098, 34

SWAT - SoftWare Analysis And Transformation

Memory of HAMT
• Compared to hash-tables, hamts have:

• fewer null array elements

• possible persistence

• no resizing

• Compared to dense arrays, hamts have:

• Bitmaps (on every level)

• Arrays (on every level)

• Compared to a flat object, hamts have:

• Extra array

• Extra bitmap

SWAT - SoftWare Analysis And Transformation

Speed of HAMT

• Reasonable cache locality

• Bit-level operations

• hashCode() and equals()

• Sub-optimal shape of the tree

• Fixed maximal depth = 7

SWAT - SoftWare Analysis And Transformation

Normalize on delete

• Removes unnecessary overhead

• Improves locality

• Can assume canonical form

• allows short-circuiting equals more often

• Faster and leaner

SWAT - SoftWare Analysis And Transformation

Different ordering

• Sets and maps do not need all this ordering

• Much better locality for generators/iteration

• Things to mitigate now:

• storing the boundary

• more bit operations

• moving pointers acros the boundaries

SWAT - SoftWare Analysis And Transformation

SWAT - SoftWare Analysis And Transformation

Squeezing space
• The HAMT overhead is

• bitmap

• array

• For both the sparsity is defined by node arity:

• distribution of the input integers/hash-code

• details like chunk size

• Hypothesis: we can specialize for node arity

SWAT - SoftWare Analysis And Transformation

Specializing Node Arity

• For the ordered version: exponential amount

• infeasible due to memory, cache, code size

• For the re-ordered version: polynomial amount

• but we pay in bit-level operations

• For which sizes do we specialize?

SWAT - SoftWare Analysis And Transformation

Specialized code
class TrieSet implements java.util.Set {
 TrieNode root; int size;
 interface TrieNode { ... }
 ...
 class NodeNode extends TrieNode {
 byte pos1; TrieNode nodeAtPos1;
 byte pos2; TrieNode nodeAtPos2;
 …
 }
 class ElementNode extends TrieNode {
 byte pos1; Object key;
 byte pos2; TrieNode node;
 …
 }
 class ElementElement extends TrieNode {
 byte pos1; Object key1;
 byte pos2; Object key2;
 …
 }
 class GenericNode implements TrieNode {
 …
 }
}

•code to switch
between specialized
and generic code

•lookup, insert, delete
are more complex

•miminize code
generation by having
a fragile base class

SWAT - SoftWare Analysis And Transformation

Experiment

Random integers
simulating good
hash codes

SWAT - SoftWare Analysis And Transformation

Leaner
a lot leaner

but not much slower

SWAT - SoftWare Analysis And Transformation

Summary
• Currently we get, compared to the state-of-the-art

• 50%-100% speedups

• 50%-80% memory savings

• Generated Java code

• very low level, intrinsic complexity

• many variants for features, few specializations for optimization

• Current work:

• Experimental evaluation on real code

• Integrating different optimizations

• Squeezing more out of iteration

• Squeezing more out of incrementality and staged immutability

