SWAT - Software Analysis And Transformation

Optimizing Hash-tries
for
Fast and Lean Immutable Collection Libraries

IFIP WG 2.4 Software Implementation Technology
Stellenbosch, November 2014

Michael Steindorfer
Jurgen J. Vinju
Centrum Wiskunde & Informatica
INRIA Lille & TU Eindhoven

Collections are ubiquitous

& Ny

® Application perspective:
® Builtin * Versatile

® Standard library Easy to use

® Adoption success factor Performance issues

- l' A el g -."3 Lo . 3
W L 2 : B A\ A~ E [Vik Muniz]
' i ** ' ~ . \ + & : < - ‘o" <

":/ﬁ

SWAT - SoftWare Analysis And Transformation

Immutable Collections

* Immutability implies safety

sharing with referential integrity

® equational reasoning

* co-variant sub-typing
® Overhead
* Copying
* More encoding and traversal
® Unused data
®* Special opportunities for optimization

® Structural equality

®* Hash-consing/maximal sharing

* Persistence (differencing) A

—

P

=T
— = \

\ CHT_ [Miche|- == ler el Loa‘d'\/ico,B_LJ‘gﬁérroti Simoni]

PhD Challenge

® Design and implement fastest & leanest collections

® on the JVM

® sets, maps, relations, vectors, etc.

staged [im]mutability

® “versatile”

® equals, insert, delete, lookup, union, intersection, diff, iteration

® For under-the-hood of Rascal MPL

m SWAT - SoftWare Analysis And Transformation

Variabilit
®* For experimentation & comparison

® simulate published data-structures

[] . .
scala simulation
® closure simulation

®* For versatility

NP OM. 2 bRl o mar -

\
4

® builtin data-types

hard, soft, weak references

nana Smar ~am Dsantt iy Dreamer 18
®* ordered/unordered | Truiieamer rom'Y DIFAMET B0) i .
®* sets vs. maps Solution:
* staged/immediate immutability Generative Program mi ng

(and you really don’t want to (re)write this code)

m SWAT - SoftWare Analysis And Transformation

Results

®* Measuring and profiling [submitted] (nouoday)

®* “Object Redundancy and Equals-Call Profiling”

® Precisely modeling JVM object footprints and alignment
®* Leaner [GPCE 2014, ongoing work]

* “Code Specialization for Memory Efficient Hash Tries”

® Faster [ongoing work]

E SWAT - SoftWare Analysis And Transformation

Hash-array Mapped Tries
Q\

®* [Bagwell 2001], Scala, Clojure oo 1100
® What is a HAMT? G\ i
®* Radix tree with hashes Omm °°°” o

o . .
Prefix/postfix tree —

01011 11101
g hY

Keys are encoded, step-by-step, inside

* DFA without cycles

Only expand if prefix overlaps

Keys are ordered explicitly

m SWAT - SoftWare Analysis And Transformation

Canonical Code

class TrieSet implements java.util.Set

1

TrieNode root;
Int size;

class TrieNode {
int bitmap; // 32 bits
Object[]| contentAndSubTries;

inserting 32, 2,4098, 34

2| 2 2| e 32| e
) 0 |
° o | 34
 / v
}] 4 0 4
> | 4098 > | 4098

Insert does this:

| .take 5 bits from hash
2.check position
3.store value or recurse

SWAT - SoftWare Analysis And Transformation

Memory of HAMT

®* Compared to hash-tables, hamts have:

* fewer null array elements

® possible persistence OVERHEAD
® no resizing HAZARD

®* Compared to dense arrays, hamts have:
® Bitmaps (on every level) —

® Arrays (on every level)
®* Compared to a flat object, hamts have:
® Extra array

® Extra bitmap

m SWAT - SoftWare Analysis And Transformation

Speed of HAMT

® Reasonable cache locality

® Bit-level operations

®* hashCode() and equals()
® Sub-optimal shape of the tree

* Fixed maximal depth =7

m SWAT - SoftWare Analysis And Transformation

Normalize on delete

Removes unnecessary overhead

Improves locality

Can assume canonical form
® allows short-circuiting equals more often

Faster and leaner

SWAT - SoftWare Analysis And Transformation

Different orderin

v

1
-

(s [ep]y

0 1 [0 0
B I 36 I Y 2 A

1
34

[
X

0
4

® Sets and maps do not need all this ordering

®* Much better locality for generators/iteration

®* Things to mitigate now:
® storing the boundary
® more bit operations

® moving pointers acros the boundaries

\ CWL_

B

SWAT - SoftWare Analysis And Transformation

Table I. Map benchmark runtimes. Results shows the runtime and memory savings of our data structure
compared to Scala’s implementation (higher is better).

Size Lookup Insert Delete Iteration Equality Memory Footprint
Key Entry Distinct Derived 32-bit 64-bit

21 41% —9% 6% 44% 35% 76% 78% 30% 28%
22 46% —6% —10% 50% 36% 83% 80% 54% 51%
23 59% 0% 1% 57% 45% 84% 88% 62% 59%
24 64% —21% 10% 55% 32% 84% 82% 1% 68%
25 61% ~10% 13% 43% 24% 78% 89% 65% 62%
26 57% —2% 15% 38% 26% 79% 95% 64% 61%
27 48% 2% 14% 1% 28% 81% 97% 69% 66%
28 42% —2% 12% 44% 31% 82% 98% 72% 68%
29 37% 21% 5% 1% 36% 80% 99% 70% 67%
210 22% 21% 15% 36% 46% 76% 100% 66% 64%
211 24% 18% 8% 45% 47% 69% 100% 65% 63%
212 18% 2% 21% 48% 49% 67% 100% 67% 65%
213 20% 4% 24% 55% 40% 66% 100% 1% 68%
214 29% 3% 27% 54% 51% 65% 100% 70% 67%
215 15% -1% 23% 70% 53% 51% 100% 67% 64%
216 14% 11% 12% 76% 62% 44% 100% 66% 63%
217 13% 7% 23% 56% 65% 44% 100% 68% 65%
218 7% 9% 22% 8% 59% 43% 100% 1% 68%
219 —9% 5% 12% 64% 58% 38% 100% 70% 67%
220 5% 5% 21% 24% 62% 57% 100% 67% 64%
221 17% 7% 17% 36% 61% 55% 100% 66% 63%
942 —1% 12% 20% 69% 59% T7% 100% 68% 65%
223 —4% 14% 14% 69% 62% 86% 100% 1% 68%
minimum —9% —21% —10% 8% 24% 38% 78% 30% 28%
maximum 64% 21% 27% 76% 65% 86% 100% 72% 68%
median 22% 4% 14% 48% 47% 76% 100% 67% 65%

W SWAT - SoftWare Analysis And Transformation

Squeezing space

®* The HAMT overhead is
® bitmap
® array

® For both the sparsity is defined by node arity:
® distribution of the input integers/hash-code
® details like chunk size

® Hypothesis: we can specialize for node arity

m SWAT - SoftWare Analysis And Transformation

Specializing Node Arity

® For the ordered version: exponential amount
® infeasible due to memory, cache, code size
® For the re-ordered version: polynomial amount
®* but we pay in bit-level operations

® For which sizes do we specialize?

m SWAT - SoftWare Analysis And Transformation

Specialized code

class TrieSet implements java.util.Set {

TrieNode root; int size;
interface TrieNode { ... }

class NodeNode extends TrieNode {
byte posl; TrieNode nodeAtPosl1;
byte pos2; TrieNode node AtPos2;

}...

class ElementNode extends TrieNode {
byte posl; Object key;
byte pos2; TrieNode node;

)

class ElementElement extends TrieNode {
byte posl; Object key1;
byte pos2; Object key?2;

¥

class GenericNode implements TrieNode {

}...

*code to switch
between specialized
and generic code

*lookup, insert, delete
are more complex

*miminize code
generation by having
a fragile base class

SWAT - SoftWare Analysis And Transformation

Experiment

Table 1. Frequencies and cumulative summed frequencies of tree nodes by arity.

Arity | 2 3 4 5 6 f 8 9 10 11 12 13 14 15 16
% .44 63.14 14.26 3.27 1.24 0.94 0.93 0.96 1.00 1.05 1.11 1.17 1.23 1.28 1.32 1.33
Z % 144 6458 7884 | 82.10 | 83.34 8429 85.21 86.17 | 87.17 88.22 8932 9049 91.72 9299 94.3] 95.65
I,Q‘ -
—— Generic R d .
g I Spccia“zcd an Om Integers
I (9‘ 1 ° °
g " simulating good
‘s
o . hash codes
o -—

L D D D D i D D D e e e e e e e e e D e e e

0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

\ CWL_

Figure 2. Memory overhead per node arity in 32-bit mode.

SWAT - SoftWare Analysis And Transformation

S —
05 B ==-‘_ ...
A —_—
0.0 el
=().§ s g . e .. ' e — e
—— —_— _:_ [A] CE—
-+ a lot leaner
Q, &< e v o= Q. 00 oDl ol | - < > O <« * 00 - o
€% &% &1 &% &< 3= 3% 31 3% &<
=3 =% zz zz = 3 s 3 p 3
@) > o 3)
)) 2)) R
v V)

Figure 3. Relative footprints of 32-bit sets and maps compared
against our generic implementation (i.e., the zero line).

but not much slower

0.6 - 8

0'4—' ? - t—-—,l;)

0.2 = — 6

| + & — =

0.0 —— —— | L il

—, e o

02 6 ©

04 - :
| | | | | | |] | |
Qs (= P-S =P .00 oo]] o0 ol
= £t 57 5% 52 5= 5& 57 5% 5=
- - -’ D -_ = < | Lo L O) |
& $2 55 EC sd 24 2o ES ES 2
- 40 38 383 34 o 3 3 5

A) - A A -

Figure 4. Relative run-times for lookup and insert in maps
compared against our generic implementation (i.e., the zero line).

SWAT - SoftWare Analysis And Transformation

Summary

® Currently we get, compared to the state-of-the-art
® 50%-100% speedups
* 50%-80% memory savings

® Generated Java code

® very low level, intrinsic complexity

® many variants for features, few specializations for optimization
® Current work:

®* Experimental evaluation on real code

®* Integrating different optimizations

®* Squeezing more out of iteration

® Squeezing more out of incrementality and staged immutability

m SWAT - SoftWare Analysis And Transformation

