
The mechanics of building
a DSL using Rascal

Jurgen J. Vinju
IPA spring days
April 17th 2012

Thursday, April 19, 12

Rascal Team
Paul
Klint

Jurgen
Vinju

Tijs
v/d Storm

Bob
Fuhrer

IMP

Thursday, April 19, 12

Credits

Esprit: GIPE I & GIPE II (90’s)

ASF+SDF Meta-Environment (00’s)

Eclipse

IDE Meta Tooling Platform (IMP)

Rascal is a part of IMP now

Rascal draws inspiration from
countless other projects (see
SCAM 2009 paper for references)

“Generation of Interactive Programming Environments”
How Tijs & I were drafted...

Thursday, April 19, 12

Research

Tools

Application

Meta Tool

Why we
need Rascal
@CWInl

Every week
a new tool
a new DSL

Thursday, April 19, 12

Story
We focus on

textual DSLs (not graphical)

external DSLs (not embedded/internal)

executability via code generation (not interpreted)

This talk is about

source file in, source file out

language prototyping

building a DSL using a DSL

Thursday, April 19, 12

Rascal
is
a

DSL
for

meta
programming

Code

Model

Picture

GenerationExtraction

FormalizationVisualization

Transformation

Conversion

Analysis

Execution

Rendering

Thursday, April 19, 12

Rascal
is
a

DSL
for

meta
programming

Code

Model

Picture

GenerationExtraction

FormalizationVisualization

Transformation

Conversion

Analysis

Execution

Rendering

=
moving
between

representations
of

source code
Thursday, April 19, 12

Code

Model

Picture

GenerationExtraction

FormalizationVisualization

Transformation

Conversion

Analysis

Execution

Rendering

Static analysis
Software metrics
Model extraction
Model-to-model
Model-to-code
Code-to-model

Compilation
Code generation

Visualization
Parsing

Source-to-source
etc.

Thursday, April 19, 12

DSL Code GPL Code

??

? ?

Eclipse

? ?

Code

Model

Picture

GenerationExtraction

FormalizationVisualization

Transformation

Conversion

Analysis

Execution

Rendering

Thursday, April 19, 12

DSL Code GPL Code

??

? ?

Eclipse

? ?

external design
source input
source output

internal mechanics
parsing
models
stages
analysis
optimization
user feedback
IDE

Choices

Thursday, April 19, 12

External design is wicked

Thursday, April 19, 12

Rascal
is about making
the mechanics

of the internal design
so easy to manipulate

that you can
experiment with the

external design
without much
punishment;
modularly,

incrementally

Thursday, April 19, 12

Rascal
is about making
the mechanics

of the internal design
so easy to manipulate

that you can
experiment with the

external design
without much
punishment;
modularly,

incrementally

Rascal does not solve the
external design problem,
it does solve the internal

mechanics problem
Thursday, April 19, 12

Design Principles
(a.k.a. Requirements)

Scaling up and scaling down

Expressivity without magic

One-stop-shop (integrated)

Open

Debuggable/Understandable

Simple = Simple

Advanced =

Accessible

Meta Programming = Programming
Integration = Valuable REPL

Thursday, April 19, 12

What’s good about
programming

Rascal provides primitives for constructing the
mechanics of meta programs

It is a high level programming language

This means that

it looks & feels like a programming language

and the code can be very concise

and you still control what happens

and you can still observe what happens at run-time

Thursday, April 19, 12

Ingredients
Familiar syntax & notation

Immutable data

Pattern-based dispatch

Domain specific data-types

General context-free grammars

String templates

Java back door

IDE integration via Eclipse IMP

procedural+
+

functional
parse trees
relations

matching

traversal

modular

typed

Thursday, April 19, 12

Ingredients

Parse
Trees

Source
Text Files

Abstract
Syntax
Trees

Relations

Code

Sets

Maps

Model

CF Grammars

Relational Queries

Pattern matching

Traversal

Tools

ADTs
Concrete syntax

Closures

Templates

Thursday, April 19, 12

Source
Text File

Parse
Trees

Grammar

Abstract
Syntax
Tree

Implode
Relations

Error
Messages

Concrete syntax

Traversal

Pattern matching

Queries

“E.A.Sy” error messages

Thursday, April 19, 12

Source
Text File

Parse
Trees

Abstract
Syntax
Tree

Relations

Error
Messages

Traversal

“E.A.Sy” code generation

matching

Target
Text File

Templates

Queries

Thursday, April 19, 12

Source
Text File

Parse
Trees

Abstract
Syntax
Tree

Relations

Error
Messages

“E.A.Sy” IDE instantiation

Target
Text File

Eclipse IMP callbacks
Eclipse @^$@

Closures

highlights
outline

menus
...

Thursday, April 19, 12

Summary of DSLs
with Rascal

Parse using context-free grammars

Extract info using patterns, traversals

either concrete or abstract syntax

Query using relational operators

Generate code using templates

callback Closures to interact with Eclipse

Thursday, April 19, 12

Summary of DSLs
with Rascal

Parse using context-free grammars

Extract info using patterns, traversals

either concrete or abstract syntax

Query using relational operators

Generate code using templates

callback Closures to interact with Eclipse

Thursday, April 19, 12

Miss Grant

State Machine Language

Static analysis for error messages

Code generators for different designs

methods are states

switch

object-oriented (dynamic) representation

State machine visualization

Martin Fowler

Thursday, April 19, 12

DEMO

Thursday, April 19, 12

Design Principles
(a.k.a. Requirements)

Scaling up and scaling down

Expressivity without magic

One-stop-shop (integrated)

Open

Immediate

No Database

No Coordination

No Diagrams

Just Control flow

Just EBNF

Just Matching

Just Trees

Just Relations

No Algorithms

Just IMPJust Debugging
Just Profiling

Just Tracing

Thursday, April 19, 12

Other applications
Java refactorings/generics [SCAM2009, N. Izmaylova]

Source code Visualization

Oberon-0 compiler in 4 levels [LDTA2011]

Language Workbench Competitions ’11 en ’12

Derric: DSL for CSI (Digital Forensics) [ICSE 2011]

Visitor 2 Interpreter refactoring [TOOLS 2011]

PHP backward compat analysis

Debunking McCabe

Student projects (Java analysis, SVN analysis, ...)

Maude/K-framework collaboration

etc.

Thursday, April 19, 12

S.W.O.T.

[S] simple, powerful, immediate, integral

[W] alpha/beta quality, slow

[O] optimization, applications, collaboration, growing team

[T] the feature creep

Quality of Rascal

Thursday, April 19, 12

Immediate future

Applications in Software Analysis & Transformation

Applications in DSL development and evaluation

Move to Eclipse.org

More grammarware (CASE for grammars)

More source/model visualization

More front-ends and back-ends for GPLS

Thursday, April 19, 12

Questions?

http://www.rascal-mpl.org

http://www.eclipse.org/imp

http://www.cwi.nl/sen1

http://tutor.rascal-mpl.org

http://ask.rascal-mpl.org

interactive docs

stackoverflow
Thursday, April 19, 12

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp

Questions?

http://www.rascal-mpl.org

http://www.eclipse.org/imp

http://www.cwi.nl/sen1

http://tutor.rascal-mpl.org

http://ask.rascal-mpl.org

interactive docs

stackoverflow
Thursday, April 19, 12

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp
http://www.eclipse.org/imp

First Entities & Instances languages

Immediate IDE: highlighting, folding, error marking, ...

Java and SQL generation

Online checking and error marking

Then modular extensions

Packages: Source-to-source transformation

Derived I: expression language extension

Derived II: linking to host language using annotations

Demo Outline

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Thursday, April 19, 12

Summary
4 languages

1+4 IDEs (Rascal’s + Dynamically installed)

3 checkers

3 code generators to Java

1 SQL code generator

2 XML code generators

Total lines of code: 950 LOC

Thursday, April 19, 12

