
Software Analysis And Transformation

High fidelity source-to-source
transformations with parse tree dif

Jurgen Vinju
Centrum Wiskunde & Informatica

Swat.engineering BV
TU Eindhoven

https://www.cwi.nl/research/groups/software-analysis-and-transformation

SWAT - Software Analysis And Transformation

source-to-source transformations;
programmatically

• either: language preserving

• refactoring

• quick fix

• formatting

• or: not language preserving

• code generators

• transpilers

• decompilers

• model extractors (reverse engineering tools)

Focus

here we care less about fidelity

here we care a lot about fidelity

SWAT - Software Analysis And Transformation

Requirements for source-to-source
• the baseline is “grep and sed”: regular expressions, “search and replace”

• string manipulation, pretty Hi-Fi by nature…

• better: more “syntactically and semantically exact”

• beyond regex: parsing and semantic modeling (trees, tables and graphs)

• but we still need: “high fidelity”: no new noise and not lossy

• source code comments and indentation !!!!!

• normalization side-effects: If to if, i=i+1 to i++, and loss of (brackets)

lo-f hi-f

and NOISY and NOISELESS

Quality of source-to-source transformation

SWAT - Software Analysis And Transformation

Quality of source-to-source transformations

• Quality is: high-fidelity, no visual loss and no visual noise

• Another quality is: exactness (correctness)

• syntactically correct, by using syntax definitions exactly

• semantically correct, by using semantic models exactly

•How: conditional rewrite rules written in concrete syntax

• readable and understandable

• open to query any semantic model via any (pre)conditions

• correctness is contextual: e.g. refactoring vs. quickfix vs. formatting

SWAT - SoftWare Analysis And Transformation

example: flip the branches
(Statement) `if (!<cond>) { <stats1> } else { <stats2> }`
=>
(Statement) `if (<cond>) { <stats2> } else { <stats1> }`

• pattern matches syntax trees exactly

• subtitution creates new syntax tree exactly

• whitespace and comments are ignored during matching

• the pattern is great but the substitution does not meet our requirements: it’s visually lossy and noisy.

demo this

SWAT - SoftWare Analysis And Transformation

demo a noisy rewrite

SWAT - Software Analysis And Transformation

The mechanics of source-to-source

Rewrite rules

model
extractor

parse

new codeparse tree

parsed
rules

parse

unparse

new parse treecode

model

SWAT - SoftWare Analysis And Transformation

Real metaprogrammers generate “edit scripts”
• as old as the original dif (1974) and patch programs (1984) in Unix

• fundamental to textual version control: rcs, cvs, svn, git, …

• patching visual concrete syntax is also fundamental to visual modeling environments

• The “edit” command: “inputText” ⊨ edit(offset, length, “newSubstring”)

• All collected edit commands executed (in reverse order of offset) produce a new file.

• Limitation: overlapping edits have to be staged in separate diff/patch cycles.

SWAT - SoftWare Analysis And Transformation

Real metaprogrammers generate(d) “edit scripts”

RULE 2000: Steven Klusener, Mark van den Brand, YT.

Observation:
All industrial applications generate

lists of patches rather than rewriting
parse trees. Duh.

SWAT - Software Analysis And Transformation

The mechanics of source-to-source

Rewrite rules

model
extractor

parser

codeparse tree

parsed
rules

parser

unparser

parse treecode

model

SWAT - Software Analysis And Transformation

Rewrite mechanics with “treeDiff”

Rewrite rules

model
extractor

parser

new codeparse tree

parsed
rules

parser

treeDiff

new parse treecode

model patch

ed
its

SWAT - SoftWare Analysis And Transformation

demo a hif rewrite

SWAT - SoftWare Analysis And Transformation

treeDiff algorithm
• Pseudocode of treeDiff: given an original and new (sub)tree (ot, nt):

if (ot == nt) done;

if (ot.rule != nt.rule) then collect `edit(ot.offset, ot.length, nt.text)`

if (ot.rule is list) then with [prefixOt, commonSublist, postfixOt] and [prefixNt, commonSublist, postfixNt]
recurse(prefixOt, prefixNt) and recurse(postfixOt, postfixNt)

if (ot.rule == nt.rule) then for all (non-layout) children otc and ntc: pairwise recurse(otc, ntc)

• add original indentation to the replacement: `edit(ot.offset, ot.length, learnIndentation(ot.text, nt.text))`

• commonSubexpression detection similar to commonSublist (not shown today)

• language parametric and hifi: lossless concrete parse trees are the key enabler [Vinju 2005]

SWAT - SoftWare Analysis And Transformation

Conclusions
• A new keystone for the source-to-source pipeline: parse | rewrite | treeDiff

• treeDiff: non-whitespace code edits, infers indentation from the original

• layoutDiff: non-code whitespace edits, infers comments from the original

• HiFi has always been a critical requirement for source-to-source tools

• Patch API is great for DSL/PL UX (LSP, VScode, Eclipse, …)

• formatting, quickfix, refactoring, lenses, undo, preview, side-by-side, …

• Room for improvement… even more comment preservation.

• HiFi treeDiff improves pull request reviews

• Comment and indentation preservation are no longer a concern for the language engineer

do you have
questions?

