Software Analysis And Transformation

High fidelity source-to-source
transformations with parse tree diff

Jurgen Vinju
Centrum Wiskunde & Informatica

Swat.engineering BV
TU Eindhoven

https://www.cwi.nl/research/groups/software-analysis-and-transformation

source-to-source transformations;
programmatically

® cither: language preserving

® refactoring

® quick fix

® formatting here we care a lot about fidelity

® or: not language preserving

® code generators

® transpilers

here we care less about fidelity
® decompilers

® model extractors (reverse engineering tools)

E SWAT - Software Analysis And Transformation

Requirements for source-to-source

® the baseline is “grep and sed”: regular expressions, “search and replace”
® string manipulation, pretty Hi-Fi1 by nature...

® better: more “syntactically and semantically exact”
® beyond regex: parsing and semantic modeling (trees, tables and graphs)

® but we still need: “high fidelity’””: no new noise and not lossy

® normalization side-effects: If to if, i=i+1 to i++, and loss of (brackets)

E SWAT - Software Analysis And Transformation

Quality of source-to-source transformation

lo-fi hi-fi
LOSSY LOSSLESS

and NOISY and NOISELESS

if (condition){ if (condition) {
return b;} return b;

}
// Check the condit

Quality of source-to-source transformations

® (uality is: high-fidelity, no visual loss and no wvisual noise

® Another quality is: exactness (correctness)
® syntactically correct, by using syntax definitions exactly
® semantically correct, by using semantic models exactly

® How: conditional rewrite rules written in concrete syntax
® rcadable and understandable

® open to query any semantic model via any (pre)conditions

® correctness is contextual: e.g. refactoring vs. quickfix vs. formatting

E SWAT - Software Analysis And Transformation

example: flip the branches

(Statement) "if (!<cond>) { <statsl> } else { <stats2> }"
— >
(Statement) "if (<cond>) { <stats2> } else { <statsl> }"

pattern matches syntax trees ezxactly

subtitution creates new syntax tree exactly /))
O

whitespace and comments are ignored during matching

the pattern is great but the substitution does not meet our requirements: it’s visually lossy and noisy.

SWAT - SoftWare Analysis And Transformation

demo a noisy rewrite

The mechanics of source-to-source

parse
“ parsed ”) A
pEI I —> — —_— g UNParse hamnd |/
J I”LI|eS - V
code parse ‘tree new parse tree new code
& B
model

exXtractor
U J

E SWAT - Software Analysis And Transformation

Real metaprogrammers generate “edit scripts”

as old as the original diff (1974) and patch programs (1984) in Unix
fundamental to textual version control: rcs, cvs, svn, git, ...

patching visual concrete syntax is also fundamental to visual modeling environments

The “edit” command: “inputText” = edit(offset, length, ‘newSubstring”)

All collected edit commands executed (in reverse order of offset) produce a new file.

Limitation: overlapping edits have to be staged in separate diff/patch cycles.

SWAT - SoftWare Analysis And Transformation

Real metaprogrammers generate(d) “edit scripts”

//SYSUT2 DD DSN=PSSIAS8.S00.SDPAR02.DSCO017, 00520000
// DISP= (NEW,CATLG, DELETE) , 00530000
// SPACE=(TRK, (1,1)), 00540000
// DCB= (RECFM=FB, LRECL=80) 00550000
ASF+SDF
(SC017, DELETE-TO-CATLG , 00530000) @
//SYSUT2 DD DSN=PSSIAS8.S00.SDPAR02.DSCO017, 00520000
// DISP= (NEW, CATLG, CATLG), 00530000
// SPACE=(TRK, (1,1)), 00540000
// DCB= (RECFM=FB, LRECL=80) 00550000

Figure 1: Sample input and output of a source code transformation in JCL. The
DELETE keyword is be replaced by CATLG, but in a specific context.

RULE 2000: Steven Klusener, Mark van den Brand, YT.

Received: 26 July 2021 Revised: 22 January 2022 Accepted: 22 February 2022

DOI: 10.1002/spe.3082

EXPERIENCE REPORT

WILEY

Large-scale semi-automated migration of legacy C/C++

test code

Mathijs T. W. Schuts!? | Rodin T. A. Aarssen3*® | Paul M. Tielemans! | Jurgen J. Vinju3*

!Philips, Best, The Netherlands

2Software Science, Radboud University,
Nijmegen, The Netherlands

3Software Analysis and Transformation,

Centrum Wiskunde & Informatica,
Amsterdam, The Netherlands

4Software Engineering and Technology,
Eindhoven University of Technology,
Eindhoven, The Netherlands

Abstract

This is an industrial experience report on a large semi-automated migration
of legacy test code in C and C++. The particular migration was enabled by
automating most of the maintenance steps. Without automation this particular
large-scale migration would not have been conducted, due to the risks involved
in manual maintenance (risk of introducing errors, risk of unexpected rework,
and loss of productivity). We describe and evaluate the method of automation

Observation:

All industrial applications generate

lists of patches rather than rewriting
parse trees. Duh.

|\ CWL_

SWAT - SoftWare Analysis And Transformation

The mechanics of source-to-source

> ‘ parsed ‘ ! \ ‘
> I"Ll|eS - Y,

code parse tree parse tree code

E SWAT - Software Analysis And Transformatio

Rewrite mechanics with “treeDift”

Rewrite rules

v

4 N

parser

o

parser
J

AN

parseitree new code
v
& B
model

U J

E SWAT - Software Analysis And Transformation

demo a hifi rewrite

treeDifl algorithm

® Pseudocode of treeDiff: given an original and new (sub)tree (ot, nt):
if (ot == nt) done;
if (ot.rule '= nt.rule) then collect "edit(ot.offset, ot.length, nt.text)"

if (ot.rule is list) then with [prefixOt, commonSublist, postfixOt] and [prefixNt, commonSublist, postfixNt]

recurse(prefixOt, prefixNt) and recurse(postfixOt, postfixNt)

if (ot.rule == nt.rule) then for all (non-layout) children otc and ntc: pairwise recurse(otc, ntc)

® add original indentation to the replacement: “edit(ot.offset, ot.length, learnIndentation(ot.text, nt.text))

® commonSubexpression detection similar to commonSublist (not shown today)

® /anguage parametric and hifi: lossless concrete parse trees are the key enabler [Vinju 2005]

E SWAT - SoftWare Analysis And Transformation

COI]_C]_U_S]_OI]_S do you have

guestions?

® A new keystone for the source-to-source pipeline: parse | rewrite | treeDiff

® treeDiff: non-whitespace code edits, infers indentation from the original

<

® layoutDiff: non-code whitespace edits, infers comments from the original

® HiFi has always been a critical requirement for source-to-source tools

13 module lang::rascal::grammar::definition::Characters
.] 14
® Patch APl is great for DSL/PL UX (LSP, VSCOde, EC|Ipse,) 15 import lang::rascal::\syntax::Rascal;
16 import ParseTree;
17 import String;
18 import Grammar;

® formatting, quickfix, refactoring, lenses, undo, preview, side-by-side, ... 19 import L
20 Quick Fix
21 data Cha Visualize project import graph
. . 22 .
® Room for improvement... even more comment preservation. 23 CharRangl_—_ oo meorsandextends . L 40 2 ran

24

® HiFi treeDiff improves pull request reviews

® Comment and indentation preservation are no longer a concern for the language engineer

@ SWAT - SoftWare Analysis And Transformation

